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to General Aléssio Ribeiro Souto.

i



Abstract

We are interested in solving the time-harmonic inverse acoustic scattering problem for
planar sound-soft obstacles. In this work, we introduce four methods for solving inverse
scattering problems. The first method is a variation of the method introduced by Johansson
and Sleeman. This method solves the inverse problem when we have the far field pattern
given for only one incident wave. It is an iterative method based on a pair of integral
equations used to obtain the far field pattern of a known single object. The method proposed
in this thesis has a better computational performance than the method of Johansson and
Sleeman.

The second method we present is a multi-frequency method called the recursive lineariza-
tion algorithm. This method solves the inverse problem when the far field pattern is given
for multiple frequencies. The idea of this method is that from an initial guess, we solve the
single frequency inverse problem for the lowest frequency. We use the result obtained as the
initial guess to solve the problem for the next highest frequency. We repeat this process until
we use the data from all frequencies. To solve the problem at each frequency, we use the
first method proposed. To improve the quality of the reconstruction of the shadowed part of
the object, we solve the inverse scattering problem of reconstructing an unknown sound-soft
obstacle in the presence of known scatterers. We show that depending on the position of the
scatterers, we may be able to obtain very accurate reconstructions of the entire unknown
object.

Next, we introduce a method for solving the inverse problem of reconstructing a convex
sound-soft obstacle, given measures of the far field pattern at two frequencies that are not
in the resonance region of the object. This method is based on the use of an approximation
formula for the far field pattern using geometric optics. We are able to prove that for the
reconstruction of the circle of radius R and center at the origin, the size of the interval of
convergence of this method is proportional to the inverse of the wavenumber. This procedure
is e↵ective at reconstructing the illuminated part of the object; however, it requires an initial
guess close to the object for frequencies out of the resonance region.

Finally, we propose a globalization technique to obtain a better initial guess to solve
the inverse problem at frequencies out of the resonance region. In this technique, given the
far field pattern of a convex object at two frequencies out of the resonance region, we use
our extrapolation operator to generate synthetic data for low frequencies. We apply the
recursive linearization algorithm, using as a single frequency solver the method that is based
on geometric optics. We obtain an approximation of the object that can be used as the
initial guess to apply the recursive linearization algorithm using the first method introduced
as the single frequency solver.
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Chapter 1

Introdution

There is an increasing interest in the solution of inverse problems in the areas of

• medical imaging: reconstruction and location of tumors;

• non-destructive testing: location of cracks in materials;

• defense applications: radar and sonar, and land mine detection;

• analysis of subsurface strata for resource identification and recovery: oil and prospect-
ing;

In these types of problem, a set of measured data is given from experimentation and,
using this data, the goal is to reconstruct the object or its properties. We consider in this
thesis the problem of acoustic scattering by infinitely long cylinders; namely, we solve the
associated direct and inverse scattering problems.

The propagation of acoustic waves in a homogeneous isotropic medium with constant
speed of sound c is governed by the wave equation

�U =
1

c2
@2U

@t2
,

for the potential U(x, t). If we consider time-harmonic waves with frequency !, then we can
factor out the time dependence and obtain

U(x, t) = Re
�

u(x)e�i!t
�

,

which, used in the wave equation, gives us the Helmholtz equation

�u+ k2u = 0,

where k = w/c, k > 0 is the wavenumber. We consider two types of problems for sound-soft
obstacles D:
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1. Direct scattering problem: Given an incident plane wave uinc = eikx·d for x 2 R2, find
the scattered field uscat such that it satisfies the Helmholtz equation

�uscat + k2uscat = 0 in R2 \D,

the boundary condition
uscat = �uinc on @D,

and the Sommerfeld radiation condition

lim
r!1

p
r

✓

@uscat

@⌫
� ikuscat

◆

= 0, r = |x|.

The radiation condition implies that the scattered wave has the asymptotic behavior
of an outgoing cylindrical wave

uscat =
eik|x|
p|x|



u1(x̂) +O
✓

1

|x|
◆�

, |x| ! 1,

in all directions x̂ = x
|x| . We call the function u1 the far field pattern of the object D.

2. Inverse scattering problem: Given the far field pattern u1 of a sound-soft object D for
one or several incident plane waves uinc, reconstruct the shape of the scatterer D.

In the literature, there are several di↵erent known methods of solving this inverse problem.
In his paper [1], Kress classified the inverse scattering methods by three di↵erent types:
iterative, decomposition and sampling methods. The description of each is as follows:

1. Iterative methods: The inverse problem is interpreted as a nonlinear ill-posed operator
equation

F (@D) = u1,

where the operator F : @D ! u1 maps the boundary @D of the scatterer onto the far
field pattern u1 generated by the scattering of the incident plane wave uinc. This equa-
tion is solved by iteration methods such as regularized Newton’s methods, Landweber
iterations or conjugate gradient methods. These methods generally produce good re-
sults; however, they require the solution of the direct problem at each step. For details,
see [2–4].

2. Decomposition methods: These methods separate the nonlinear ill-posed inverse prob-
lem into an ill-posed problem to reconstruct the scattered field uscat from the far field
pattern u1, and a non-linear problem to reconstruct the domain @D using the bound-
ary condition. Some examples are the potential method of Kirsch and Kress [5], and
the point-source method of Potthast [6–8]. The main advantage of these methods is
that they do not require a forward solver. The disadvantage is that in general, good a
priori information on the unknown scatterer is needed, and the quality of the recon-
struction is inferior to that given by Newton’s method.
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3. Sampling methods: In these methods, we choose an indicator function f on Rn, where
n depends on the dimension of the problem that we are solving, such that depending
on the value of the function at a point in the domain, this point may be inside or
outside the scatterer. Some examples are the linear sampling method by Colton and
Kirsch [9], the singular source method by Potthast [8; 10], the factorization method by
Kirsch [11], and the probe method by Ikehata [12]. The advantages of these methods
are their simple implementation and the fact that we do not need a priori information
on the object. The disadvantages are that these methods require a great amount of
data and the quality of their reconstruction depends on the number of points where
the indicator function is evaluated.

Some approaches that combine the ideas of these methods have been presented. One of
these approaches, called the hybrid method, was presented by Kress in [4], and implemented
and analyzed by Serranho in [13].

Another approach was presented by Kress and Rundell for the problem of reconstruct-
ing the shape of a perfectly conducting inclusion within a two-dimensional homogeneous
host medium from overdetermined Cauchy data in [14], not the far field pattern, and later
adapted for the case of inverse obstacle and crack scattering [15]. This approach is based on
nonlinear integral equations arising from Green’s integral theorem. Both of these equations
are solved iteratively. The advantage of this method compared with Newton’s method is
that the derivative of the integral operators in this method with respect to the domain are
boundary integral operators that can be expressed in explicit form. The disadvantage is that
the system that we need to solve in each iteration is composed of two coupled equations,
and is thus relatively large.

Finally, Johansson and Sleeman implemented and analyzed in [16] a method proposed
by Sleeman in [17] for reconstruction of the shape of a two-dimensional sound-soft obstacle
with a polar representation using measures of the far field pattern for one incident wave. We
refer to this method as Method A. This method was later extended for domains represented
by more general curves by Ivanyshyn and Johansson in [18]. The idea of this method is
very similar to that of the method developed in [14]: to decompose the problem into two
di↵erent integral equations obtained using Green’s integral theorem. We point out that this
method is for the far field pattern of the scattered field, while in [14], the method is used
for the near field measures of the scattered field. Johansson and Sleeman’s method was
introduced as faster and easier to implement than the classical Newton’s method [3]. In
the Johansson and Sleeman algorithm, an initial guess for the solution is chosen and a pair
of integral equations, one related to the boundary condition of the problem and another
related to the linearization of the integral equation associated with the far field measure,
is solved iteratively. After solving this pair of equations, an approximation of the domain
is updated. We repeat this process until we reach a stopping criterion, i.e., when the de-
sired number of iterations, absolute value of the residue, or other criteria are reached [19; 20].
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The first problem that we deal with in this thesis is to reconstruct the shape of the
sound-soft obstacle D given the far field pattern measures generated by one incident wave.
We can phrase the problem as the following:

Problem 1 Given the far field pattern measures u1(x̂l) at the Nff points x̂l 2 ⌦, where
⌦ is the unit circle, generated by the scattering of the incident plane wave uinc(x) = eikx·d

with fixed direction d and wavenumber k by an unknown sound-soft object D, reconstruct the
shape of the object D.

We develop in this thesis a variation of Method A, which we call Method B. We believe
that Johansson and Sleeman’s method has a slight advantage over Ivanyshyn’s method, due
to the smaller system that is solved at each iteration, and because it is simpler to implement.

In this thesis, we present in Chapter 2 a variation of Johansson and Sleeman’s method
that produces equivalent results to Johansson and Sleeman’s method, but has better com-
putational performance, requiring fewer iterations in general.

In each of these methods, we must determine the set in which to look for solutions.
We consider that the scatterer D that we want to reconstruct is star shaped, having a
parameterization x : [0, 2⇡] ! R2, where x(t) = xr(t) (cos(t), sin(t)). When solving the
problem, we must choose a space in which to look for the function xr(t). We tested two
spaces:

• The space of trigonometric polynomials, with xr(t) > 0 and xr(0) = xr(2⇡), and

• The space of B-splines, with xr(t) > 0 and xr(0) = xr(2⇡).

Comparison of the results obtained by solving the inverse problem using the two spaces
showed that both produce reconstructions with the same quality; however, the reconstruction
using trigonometric polynomials is computationally less expensive than that using B-splines.

The choice of initial guess is fundamental to obtain convergence of Methods A and B
to the correct solution. When we apply these algorithms, it becomes clear that at low fre-
quencies we are able to obtain fuzzy reconstructions of the object using initial guesses that
are not very close to the object, while when we increase the frequency we can obtain sharp
reconstructions of the object, and this requires an initial guess much closer to the object to
be reconstructed.

It was pointed out by Chen in [21] that we cannot determine features of the scatterer
that are less than half a wavelength in size. Thus, to obtain a detailed reconstruction of
the object, we must use frequencies high enough to reconstruct the details. The main issue
of increasing the frequency is that for frequencies out of the resonance region, the initial
guess used in the method to reconstruct the object needs to be closer to the solution. Chen
considered the following problem:
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Problem 2 Given N
total

= Nff ⇥N
inc

far field pattern measures at the Nff points x̂l 2 ⌦,
where ⌦ is the unit circle, generated by the scattering of the N

inc

incident plane waves
uinc

j (x) = eikjx·d with fixed direction d and varying wavenumbers kj for j = 1, . . . , Ninc, by
an unknown sound-soft object D, where k

1

< k
2

< · · · < kN
inc

, reconstruct the shape of the
object D.

To solve this problem, we use the Recursive Linearization Algorithm (RLA) that was
proposed by Chen in [21] for the potential problem. This algorithm was later analyzed by
Bao and Triki in [22] for the case of the inhomogeneous problem with noiseless data and by
Sini and Nguyen in [23] for the case of impenetrable sound-soft obstacles with the presence of
noise. The idea of this algorithm is to replace the nonlinear least-squares objective functional
at each frequency by a linearized one using the Taylor expansion at the solution at a lower
frequency. When lower frequency data is available, it is possible to use an initial guess not
so close to the object for Newton’s method [3]. Once a desired approximation of the object
is found for a lower frequency, it is used as an initial guess to reconstruct the object at a
higher frequency. We repeat this process iteratively for the data up to the highest frequency
available. If the amount of data available for all frequencies is su�cient, it is possible to
obtain a very sharp approximation of the part of the object illuminated by the plane wave. A
drawback of this method is that it is not possible to obtain a very good reconstruction of the
object in the shadowed part. Another problem with the method is that we need the far field
pattern scattered by the object at very low frequencies if we want to start the method with
an initial guess that is not very close to the object. Another issue is that Newton’s method
is computationally very expensive, since several integral equations are required to perform
the linearization. Here, we use Method B instead of Newton’s method in [3]. We denote
this Method by RLA-B, because for each frequency we solve the problem using Method B.
The reconstructions obtained by our method have the same quality as the reconstructions
obtained in [23].

Unfortunately, neither RLA-B nor the RLA method of Chen are e↵ective in producing
good reconstructions in the shadowed part of the object. To remedy this setback, Nguyen
and Sini (work in progress) make use of known scatterers to obtain good approximations of
the shadowed part of the object, where these known scatterers are placed in such a position
as to reflect the incident wave, and thereby illuminate the shadowed part of the object that
we intend to recover. Implementing a similar algorithm using Method B, we move from a
single object scattering problem to a multiple object scattering problem, for which the im-
plementation is well discussed in Martin [24], and in Ganesh and Hawkins [25]. We must be
very careful when introducing the scatterers into our configuration. In the implementation
of RLA-B with multiple scatterers, we prefer to insert objects with simple geometries, such
as circles or ellipses. The distance from the inserted object to the object that we want to
reconstruct cannot be too short, otherwise the results are not satisfactory. The size and
position of the objects should be chosen to best reflect the incident wave onto the shadowed
part of the object.

Finally, we consider a di↵erent problem, in which we do not have far field pattern mea-
sures at several di↵erent frequencies, in particular, at low frequencies. We assume that we
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have only the far field data for two frequencies ka and kb, where ka < kb, and ka and kb are
frequencies outside of the resonance region of the object. We also assume that the scatterer
is strictly convex. The problem is as follows:

Problem 3 Given 2Nff far field pattern measures at the Nff points x̂l 2 ⌦, where ⌦ is the
unit circle, generated by the scattering of two incident plane waves uinc

j (x) = eikjx·d with fixed
direction d and varying wavenumbers ka and kb, by an unknown sound-soft strictly convex
object D, where ka < kb, and ka is of a greater order of magnitude than the radius of the
object, reconstruct the shape of the object D.

In this case, there are two main issues for solving this problem. One issue is that the
forward solver becomes computationally expensive when the frequency is very high. We do
not deal with this issue in this thesis, but to solve this issue, we direct the reader to the work
of Bruno et al. [26] and of Giladi [27], which was based on the works of Keller [28–30]. The
other issue is that at higher frequencies, we need to provide an initial guess for the method
very close to the object that we want to reconstruct, and most of the time we do not have
such a good initial guess available.

To obtain a good initial guess to be used for solving the problem at the ka wavenumber,
we present a set of procedures. First, we present an approximation formula based on the
Kirchho↵ approximation of the scattered field at frequencies out of the resonance region
for strictly convex objects. The derivation of this formula follows [31]. It is derived using
the stationary phase method for highly oscillatory integrals [32], and the geometric optics
approximation

@u

@⌫
(x) =

(

2@u
inc

@⌫
(x), for x 2 @D+

d

0, for x 2 @D�
d ,

where @D+

d is the part of the object D illuminated by the incident plane wave uinc with
incidence direction d and @D�

d is the shadowed part of the object. We propose a method,
which we call Method C, to reconstruct the shape of a strictly convex obstacle based on
this approximation formula. We prove, see Theorem 5.2.3, that the size of the interval of
convergence of this method for the reconstruction of a circle of radius R centered at the
origin is proportional to the inverse of the wavenumber.

Next, using the approximation formula obtained for the far field pattern, we are able
to obtain an operator that generates far field synthetic data for low wavenumbers using
the far field pattern for the wavenumbers ka and kb. The data is generated in general for
wavenumbers lower than ka. The quality of the data generated by this operator is good in
the illuminated part of the object; however, in the shadowed part of the object the approxi-
mation is not e�cient.

Finally, our globalization technique is based on the extrapolator operator of synthetic
data. We call this Method RLA-C. We do the following:
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1. Given the far field data for the wavenumbers ka and kb, we generate synthetic far field
data for lower frequencies, in this case, as many as we judge are necessary to implement
the globalization technique;

2. Apply the RLA with Method C for each wavenumber lower than ka, using the data
generated by the extrapolator operator;

3. Use the solution obtained in the previous step as the initial guess for the Method RLA-
B for the wavenumbers ka and kb.

We present some results of the application of this method for the reconstruction of ob-
stacles that have an illuminated convex part, obtaining good approximations. If the same
initial guess used for those reconstructions were used for the RLA-B for each frequency for
the data given for the wavenumbers ka and kb, the method would not converge. This shows
that our globalization technique RLA-C is e↵ective.

The outline of this thesis is the following:

• In Chapter 2, we present the theory of the direct and inverse acoustic scattering prob-
lems. To solve the inverse scattering problem, we present a variation of Johansson and
Sleeman’s method called Method B. We also present the RLA-B method, which has
the framework of the RLA and uses Method B as the solver for each frequency. We
finish Chapter 2 presenting the reconstruction of an unknown sound-soft obstacle in
the presence of known scatterers.

• In Chapter 3, we present the details of the numerical implementation of the direct
scattering problem. We follow the ideas in [3; 33; 34] and derive the formulas for the
use of the Nyström method for the solution of the direct scattering problem.

• In Chapter 4, we present the details of the numerical implementation of the inverse
scattering methods. We start by presenting the implementation of Method B, followed
by numerical examples of the use of this method for the solution of the inverse scatter-
ing problem. We also compare the performance of Method B with that of Method A
using numerical examples. Method A is shown to be computationally more expensive
than Method B. Next, we present details of the numerical implementation of the RLA
for the multi-frequency inverse problem using the Method B as the solver for each
frequency. We present numerical results showing improvement in the reconstruction
of details using this method. This method does not produce good approximations of
the shadowed part of the object. To improve the quality of the reconstruction of the
shadowed part of the object, we show the implementation of Method RLA-B for the
reconstruction of an unknown sound-soft obstacle in the presence of known scatterers.
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We finish Chapter 4 by presenting some numerical examples confirming the e↵ective-
ness of the multiple object scattering technique.

• In Chapter 5, we begin by presenting an approximation formula to calculate the far
field pattern of a strictly convex object D that uses the Kirchho↵ approximation for
incident waves with frequency out of the resonance region. We present some examples
showing the accuracy of this formula in the illuminated part of D. Next, we present
an iterative method based on the approximation formula for the far field pattern, to
reconstruct the convex object D, and we refer to this procedure as Method C. We
are able to prove that for the reconstruction of a circle centered at the origin and of
radius R, the size of the interval of convergence of the method is O (1/k). Next, we
present a procedure for generating synthetic far field data, where we have the far field
patterns uka

1 and ukb
1, for wavenumbers ka and kb, where ka < kb, and where the order

of magnitude of ka is higher than the radius of the object. We present some examples
showing the quality of the generated data compared with the data given from the inte-
gral equation formulation of Chapter 3. Finally, we present a globalization procedure
to reconstruct the object given the far field pattern uka

1 and ukb
1, for wavenumbers ka

and kb, where ka < kb, and where the order of magnitude of ka is higher than the ra-
dius of the object. We make use of this procedure to generate synthetic data together
with the RLA to obtain a good initial guess for our problem. For the synthetic data,
instead of using Method B for each wavenumber of the RLA, we use the Method C. We
present details of the numerical implementation of Method RLA-C. We present some
results of the method applied to the reconstruction of strictly convex obstacles and to
the reconstruction of an object that has a convex illuminated part.

• In Chapter 6, we present the conclusion of our results, with a discussion of possible
future works and problems for research.
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Chapter 2

Formulation of the problem

2.1 Direct scattering problem

2.1.1 Introduction to the direct scattering problem

u
'

uinc

uscat

D

Figure 2.1: The direct scattering problem of finding the field scattered by an impenetrable
obstacle.

We want to calculate the scattered acoustic field uscat on R2 \ D of an impenetrable
C2 sound-soft obstacle D due to an incident plane wave with direction d, kdk = 1, and
wavenumber k > 0. We consider the two dimensional problem. This problem can be de-
duced from a three dimensional infinite cylinder with cross-section D in the presence of an
incident plane wave uinc(x) = exp(ikx · d) perpendicular to the cylinder’s axis. We seek to
solve the following problem:
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Problem 4 Sound-Soft Acoustic Exterior Dirichlet Problem
Find the solution uscat 2 C2(R2 \D) \ C(R2 \D) to the problem

�uscat(x) + k2uscat(x) = 0 in R2 \D
uscat(x) = f on @D,

with f = �uinc, where uscat(x) satisfies the Sommerfeld condition

lim
r!1

r1/2
✓

@uscat

@r
� ikuscat

◆

= 0, r = |x| .

Solving this problem, we can obtain the total field

u(x) = uinc(x) + uscat(x), x 2 R2 \D

such that u(x) = 0 on @D.

We have the following results with respect to uniqueness of the solution of this problem.

Theorem 2.1.1 The Sound-Soft Exterior Dirichlet Problem has a unique solution,
and the solution depends continuously on f in the maximum norm, i.e., small deviations
in f in the maximum norm cause small deviations in u with respect to the maximum norm
on R2 \D and in all its derivatives with respect to the maximum norm on closed subsets of
R2 \D.

Proof: The proof for the three-dimensional case is on page 48 of [3]. With appropriate
changes in the fundamental solution, the radiation condition, and the spherical wave func-
tions, it is possible to replicate the proof for the two-dimensional case. ⇤

In this thesis, we use the integral equation approach to solve this problem. We define
the acoustic layer potentials:

Definition 2.1.1 Given an integrable function �, we have the single-layer potential

u(x) =

Z

@D

�(x, y)�(y) ds(y), x 2 R \ @D,

and the double-layer potential

v(x) =

Z

@D

@�(x, y)

@⌫(y)
�(y) ds(y), x 2 R \ @D,

where

�(x, y) =
i

4
H1

0

(k|x� y|)
is the fundamental solution of the Helmholtz equation in R2, and H1

0

(k|x�y|) is the 0th order
Hankel function of the first kind, and ⌫(y) is the outward-pointing vector normal to @D at
the point y.
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The acoustic layer potentials are solutions to the Helmholtz equation in D and in R2 \ D,
and they satisfy the Sommerfeld radiation condition.

We have the following theorem regarding layer potentials, which can be found along with
its proof in [35]:

Theorem 2.1.2 Let @D be of class C2 and let � be a continuous function. Then the single-
layer potential u with density � is continuous throughout R2 and

kuk1,R2  C
1

k�k1,@D

for some constant C
1

depending on @D. On the boundary we have

u(x) =

Z

@D

�(x, y)�(y) ds(y), x 2 @D,

@u±

@⌫
(x) =

Z

@D

�(x, y)�(y) ds(y)⌥ 1

2
�(x), x 2 @D,

where

@u±

@⌫
(x) := lim

h!0

+
⌫(x) · grad u(x± h⌫(x))

is to be understood in the sense of uniform convergence on @D, and where the integrals
exist as improper integrals. The double-layer potential v with density � can be continuously
extended from D to D and from R2 \D to R2 \D with limiting values

v±(x) =

Z

@D

@�(x, y)

@⌫(y)
�(y) ds(y)± 1

2
�(x), x 2 @D,

where

v±(x) := lim
h!0

+
v(x± h⌫(x))

and where the integral exists as an improper integral. Furthermore,

kvk1,D  C
2

k�k1,@D,

kvk1,R2\D  C
2

k�k1,@D

for some constant C
2

depending on @D, and

lim
h!0

+

⇢

@v

@⌫
(x+ h⌫(x))� @v

@⌫
(x� h⌫(x))

�

= 0, x 2 @D,

uniformly on @D.

Among the main tools in studying the Helmholtz equation are Green’s integral theorems:
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Theorem 2.1.3 (Green’s first theorem) Let D be a bounded domain of class C1 and let
⌫ denote the unit normal vector to the boundary @D directed into the exterior of D. Then,
for u 2 C1(D) and v 2 C2(D) we have

Z

D

(u�v + grad u · grad v) dx =

Z

@D

u
@v

@⌫
ds.

Theorem 2.1.4 (Green’s second theorem) Let D be a bounded domain of class C1 and
let ⌫ denote the unit normal vector to the boundary @D directed into the exterior of D. Then,
for u, v 2 C2(D) we have

Z

D

(u�v � v�u) dx =

Z

@D

✓

u
@v

@⌫
� v

@u

@⌫

◆

ds.

Theorem 2.1.5 Assume the bounded set D is the open complement of an unbounded do-
main of class C2 and let ⌫ denote the unit normal vector to the boundary @D directed into
the exterior of D. Let u 2 C2(R2 \D) \ C(R2 \D) be a radiation solution to the Helmholtz
equation

�u(x) + k2u(x) = 0 in R2 \D
that possesses a normal derivative on the boundary in the sense that the limit

@u

@⌫
(x) = lim

h!0+

⌫(x) · grad u(x� h⌫(x)), x 2 @D

exists uniformly on @D. Then we have Green’s formula

u(x) =

Z

@D



u(y)
@�(x, y)

@⌫(y)
� @u

@⌫
(y)�(x, y)

�

ds(y), x 2 D. (1)

From Theorem 2.1.5, we deduce that the radiating solutions u to the Helmholtz equation
automatically satisfy the Sommerfeld condition

lim
|x|!1

|x|1/2
✓

@u

@⌫
� iku

◆

uniformly for all directions.

Applying Green’s Theorem to uscat we get:

uscat(x) =

Z

@D



uscat(y)
@�(x, y)

@⌫(y)
� �(x, y)

@uscat(y)

@⌫(y)

�

ds(y), x 2 R2 \D,

where ⌫ is the outward-pointing unit vector normal to @D. Applying Green’s Second Theo-
rem to the entire solution uinc we get:

0 =

Z

@D

⇢

uinc(y)
@�(x, y)

@⌫(y)
� �(x, y)

@uinc(y)

@⌫(y)

�

ds(y), x 2 R2 \D.
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Putting these two equations together and using the homogeneous Dirichlet boundary condi-
tion, we obtain:

uinc(x) =

Z

@D

�(x, y)
@u

@⌫
(y) ds(y), x 2 @D. (2)

We define the single layer operator S@D : C(@D) ! C(@D) as follows:

S@D (x) :=
i

4

Z

@D

H
(1)

0

(k|x� y|) (y) ds(y).

Theorem 2.1.6 The integral operator S@D : C(@D) ! C(@D), where S@D maps C(@D)
into C0,↵(@D) and C0,↵(@D) into C1,↵(@D), is a self-adjoint operator and is a compact
operator in C(@D) and C0,↵(@D) for 0 < ↵ < 1.

Proof: The proof is on page 62 of [35]. ⇤

Now, if we use a parameterization for @D as x : [0, 2⇡] ! R2, the operator S@D becomes

S@D (t) :=
i

4

Z

2⇡

0

H
(1)

0

(k|x(t)� x(⌧)|) (⌧) d⌧,

where we write for the sake of simplicity  (⌧) :=  (x(⌧))|x0(⌧)|.

We may thus rewrite (2) as

uinc(x(t)) =

✓

S@D
@u

@⌫

◆

(x(t)), 8x(t) 2 @D. (3)

This is a boundary integral equation of the first kind, which allows us to find
@u

@⌫
using only

the boundary condition u(x) = 0 for x 2 @D. We have the following theorem concerning
the solution of Equation (3).

Theorem 2.1.7 The integral equation of the first kind for the Dirichlet problem

uinc(x(t)) =

✓

S@D
@u

@⌫

◆

(x(t)), 8x(t) 2 @D

has a unique solution provided k2 is not an interior Dirichlet eigenvalue. If k2 is an eigen-
value, then the solution exists but may not be unique.

Proof: The proof of a general theorem for first kind integral equations is on page 88 of
[35]. It su�ces to apply this to the left hand side uinc(x). ⇤
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Remark 2.1.1 To avoid the problem of non-uniqueness of the solution when k2 is an eigen-
value of the interior Dirichlet problem, Leis [36] and Brakhage [37] independently presented
a combined layer approach. We do not present this approach in this thesis. The likelihood
that a wavenumber is exactly an eigenvalue for the interior Dirichlet problem is very small.
However, all of the techniques presented in this thesis can be extended to be used with the
combined layer approach. We are not going to address this approach in this thesis. For more
detail in the combined layer approach, we direct the reader to the book of Colton and Kress
[3].

Later in this thesis, we will be interested in solving inverse problems that have as given
data the far field pattern of the object D. We define the far field pattern or scattering
amplitude in the following theorem.

Theorem 2.1.8 Every radiating solution u to the Helmholtz equation has the asymptotic
behavior of an outgoing spherical wave

u(x) =
eik|x|

|x|1/2
⇢

u1(x̂) +O
✓

1

|x|3/2
◆�

, |x| ! 1,

uniformly in all directions x̂ = x/|x| where the function u1 defined on the unit circle ⌦ is
known as the far field pattern of u. Under the assumptions of Theorem (2.1.5), we have

u1(x̂) =
e�i⇡4p
8⇡k

Z

@D



u(y)
@e�ikx̂·y

@⌫(y)
� @u

@⌫
(y)e�ikx̂·y

�

ds(y), x̂ 2 ⌦.

Proof: We use (1), the asymptotic behavior of the Hankel function as t ! 1

H(1)

n (t) =

r

2

⇡t
e±i(t�n⇡

2 �⇡
4 )
⇢

1 +O
✓

1

t

◆�

,

and the approximation

|x� y| = |x|� x̂ · y +O
✓

1

|x|
◆

.

For details, see page 21 of [3]. ⇤

Using the homogeneous Dirichlet boundary condition again, we obtain:

u1(x̂) = � ei⇡/4p
8⇡k

Z

@D

@u

@⌫
(y)e�ikx̂·(y) ds(y). (4)

Using the parameterization x(t) of @D again, we obtain

u1(x̂) = � ei⇡/4p
8⇡k

Z

2⇡

0

@u

@⌫
(y(⌧))e�ikx̂·(y(⌧))|y0(⌧)| d⌧. (5)

We define the operator S@D,1 : L2([0, 2⇡]) ! L2([0, 2⇡]) by

(S@D,1 ) (x̂) = � ei⇡/4p
8⇡k

Z

2⇡

0

e�ikx̂·y(⌧) (⌧) d⌧,
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where  (⌧) = @u
@⌫
(y(⌧))|y0(⌧)|.

In short, we write (5) as

u1(x̂) =

✓

S@D,1
@u

@⌫

◆

(x̂), 8x̂ 2 ⌦, (6)

and this equation provides us with the far field pattern of D.

It is worth noting that the kernel of the operator is analytic. If we were to solve Equation

(6) to obtain the normal derivative
@u

@⌫
of the field in the presence of the object D from the

far field pattern data provided, this problem would be ill-posed.

2.1.2 Direct scattering problem with multiple objects

We briefly present a way of adapting the previous procedure to obtain the normal derivative
of the field and the far field pattern of a configuration with multiple objects.

Consider our scatterer domain D as the union of ND many scatterers Ds, s 2 {1, . . . , ND}
(that is, D =

SND

s=1

Ds), where the Ds are connected sets and Ds \Dw = ; for s 6= w. Our
equations for the direct problem become:

uinc(x) =

Z

@D

�(x, y)
@u(y)

@⌫(y)
ds(y)

=
ND
X

s=1

Z

@Ds

�(x, y)
@u(y)

@⌫(y)
ds(y). (7)

Let us define the operators

(S@Ds,@Dw�) (x
(w)) =

Z

@Ds

�(x(w), y)�(y) ds(y)

(S@Ds,@Ds�) (x
(s)) =

Z

@Ds

�(x(s), y)�(y) ds(y),

where x(s) 2 @Ds and x(w) 2 @Dw. Choosing x = x(w) 2 @Dw, (7) becomes

uinc(x(w)) =
ND
X

s=1

✓

S@Ds,@Dw

@u

@⌫

◆

(x(w))

�

. (8)

We use Equation (8) to obtain the value of the normal derivative of the field on the
boundary of the objects Ds. Using the normal derivative, we find the far field for the
configuration using the operators:

(S@Ds,1�) (x̂) =
ei⇡/4p
8⇡k

Z

@Ds

e�ikx̂·y�(y) ds(y),

15



for each domain Ds.

Finally, to find the far field pattern at x̂ we must solve:

u1(x̂) =
ND
X

s=1

✓

S@Ds,1
@u

@⌫

◆

(x̂)

�

. (9)

2.2 Inverse scattering problem

2.2.1 Introduction to the inverse scattering problem

u
'

uinc

uscat

D

?

Figure 2.2: The inverse scattering problem of reconstructing an impenetrable object from
measures of the far field pattern.

In the previous section we introduced the direct acoustic scattering problem for an im-
penetrable object with Dirichlet boundary condition, where we find the scattered wave and
its behavior at long distances from the object (i.e., its far field) given information on the
boundary of the scatterer and the nature of the boundary condition. In this section, we focus
on the solution of the inverse scattering problem for impenetrable objects. In this problem,
we have the far field pattern of an impenetrable object and we find properties of the nature
of the object—more specifically, we are interested in its shape.

There are several di↵erent iterative methods that can be used to obtain approximate so-
lutions to this inverse problem, and these methods can be characterized in the following ways:
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• Methods for recovering the object from a far field pattern generated by
only one incoming wave

– One group of methods for iteratively solving the inverse problem in this scenario
divides the problem into two parts: an ill-posed linear equation, which is used to
find the scattered field using the far field pattern data, and a well-posed non-linear
part to find the boundary using the boundary condition, see [38–41].

– Alternative approaches which avoid solving the direct problem have been consid-
ered in [42] and [43].

• Methods for recovering the object from a far field pattern generated by
multiple incoming waves

– Some methods for solving this problem include the linear sampling method [9], the
point-source method [41], the factorization method [44], and the probe method
[45].

We are interested in solving the inverse problem where we know the kind of boundary
condition of the object—in our case, the Dirichlet condition—and measurements of the far
field pattern (its real and complex parts) generated when the incoming incident waves—
which we suppose to have one fixed incidence direction at one or several frequencies—deflect
from the object D.

An inverse problem of this type is ill-posed and nonlinear. In the next section, we present
the concept of ill-posedness and present the techniques to solve this problem.

2.2.2 Ill-posed problems and regularization

In mathematical physics, Hadamard [46] postulated three main requirements in order for a
problem to be considered well-posed: the existence of the solution, the uniqueness of the
solution, and the continuous dependence of the solution on the input data. The continuity
requirement ensures that small errors in the data will yield only commensurately small er-
rors in the solution. The following is a more rigorous definition of posedness in the sense of
Hadamard.

Definition 2.2.1 Let A : X � U ! V ⇢ Y be an operator from a subset U of a normed
space X into a subset V of a normed space Y . The equation

A� = f

is called well-posed or properly posed if A : U ! V is bijective and the inverse operator
A�1 : V ! U is continuous. Otherwise, the equation is called ill-posed or improperly posed.
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The ill-posedness of an equation influences its numerical treatment. To produce stable
solutions of an ill-posed problem we use so-called regularization methods.

Definition 2.2.2 Let X and Y be normed spaces and let A : X ! Y be an injective
bounded linear operator. Then a family of bounded linear operators R� : Y ! X, � > 0,
with the property of pointwise convergence

lim
�!0

R�A =  (10)

for all  2 X is called a regularization scheme for the operator A. The parameter � is called
the regularization parameter.

The regularization scheme allows the solution  of A = f to be approximated by the
regularized solution

 �� := R�f
�.

We have for the approximation error,

 �� �  = R�f
� �R�f +R�A �  .

By the triangle inequality, we obtain the estimate

k �� �  k  �kR�k+ kR�A �  k, (11)

where � > 0 is a constant such that

kf � f �k  �.

In practice, we will use an a posteriori choice of the regularization parameter � based on
[47].

We will use Tikhonov’s regularization scheme [48; 49], which can also be understood as
a penalized residual minimization.

Theorem 2.2.1 Let A : X ! Y be a compact linear operator. Then for each � > 0, the
operator (�I + A⇤A) : X ! X is bijective and has a bounded inverse. Furthermore, if A is
injective then

R� := (�I + A⇤A)�1A⇤

describes a regularization scheme with kR�k  1/2
p
�.

Proof: The proof can be found on page 97 of [3]. ⇤

We have the following theorem relating Tikhonov regularization to the penalized residual
minimization.
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Theorem 2.2.2 Let A : X ! Y be a compact linear operator and let � > 0. Then for each
f 2 Y , there exists a unique  � such that

kA � � fk2 + �k �k2 = inf
 2X

�kA � fk2 + �k k2 .

The minimizer  � is given by the unique solution of

(�I + A⇤A) � = A⇤f (12)

and depends continuously on f .

Proof: The proof can be found on page 98 of [3]. ⇤

2.2.3 Newton method for a single frequency

We consider in this section the case when we have an incident wave with direction d and
wavenumber k. We have the problem

Problem 1 Given the far field pattern generated by the scattering of the incident plane
waves uinc(x) = eikx·d with direction d and wavenumber k o↵ of an unknown object D with
homogeneous Dirichlet boundary condition, reconstruct the shape of the object D.

The solution of the direct Dirichlet scattering problem with a fixed incident plane wave
uinc defines an operator F : X ! L2(⌦) that maps the boundary curve @D 2 X of the
scatterer, where X is a selected space of curves, to the far field pattern u1 of the scattered
wave.

Applying the operator F to the curve @D is equivalent to solving the following equation
for @u

@⌫
:

S@D
@u

@⌫
= uinc,

and applying the operator S@D,1 to the solution @u
@⌫

to find the far field pattern u1 as in the
equation

u1 = S@D,1
@u

@⌫
.

In terms of this operator, given a far field pattern u1, the inverse problem consists of
solving the equation

F (@D) = u1, (13)

for the unknown surface @D.
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Regarding this problem, when we have only one incident wave with wavenumber k, we
have the following uniqueness theorem related to the inverse Dirichlet scattering problem,
which can be found with its proof in [50]. The theorem tells us that the object can be
uniquely determined by the far field pattern generated by an incident plane wave, given that
the size of the object is known.

Theorem 2.2.3 Let D
1

and D
2

be two impenetrable objects which are contained in a ball
of radius R, such that R < C/k, where C ⇡ 2.40482556 is the smallest positive root of the
Bessel function J

0

[51], and assume that the far field patterns coincide for one incident plane
wave with wavenumber k. Then D

1

= D
2

.

So far, we have not defined the solution space for @D. We consider the solution space
X to be the space of starlike domains with respect to the origin, i.e., we assume that @D is
represented by a parameterization x of the form

x(x̂) = xr(x̂)x̂, x̂ 2 ⌦, (14)

where the radius function xr is positive and is in C1(⌦). Considering x̂(t) = (cos(t), sin(t))
for t 2 [0, 2⇡], we may slightly abuse notation by writing for short x(t) = xr(t)(cos(t), sin(t)).

We thus define the solution space X as

X =
n

x : [0, 2⇡] ! R2 | x(t) = xr(t) (cos(t), sin(t)) , xr(t) > 0, xr(0) = xr(2⇡),

x0
r(0) = x0

r(2⇡) and xr(t) 2 C1(⌦)
o

.

Using (13) in (14), we obtain the mapping F̂ : C1(⌦) ! L2(⌦), defined by

F̂ (xr) = u1. (15)

Note that F̂ (xr(x̂)) = F (xr(x̂)x̂) = F (x).

The main questions that we wish to address are those of continuity, di↵erentiability and
compactness of the operator F . With respect to the continuity and di↵erentiability, we have
the following theorems:

Theorem 2.2.4 For a fixed incident plane wave uinc, the operator F̂ : C1(⌦) ! u1 that
maps the boundary @D to the far field pattern u1 of the scattered wave uscat is continuous
from C1(⌦) to L2(⌦).

Proof: See page 115 of [3]. ⇤

Due to the non-linearity of the problem, we need to study the di↵erentiability of the
operator F . Next, we define the concept of the Fréchet derivative of an operator.
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Definition 2.2.3 Let X and Y be normed spaces, and U ⇢ X be an open subset of X. A
mapping A : X ! Y is called Fréchet di↵erentiable at  2 U if there exists a bounded linear
operator A0 : X ! Y such that

kA( + h)� A( )� A0( )hk = o(khk)

uniformly as khk ! 0. A0( ) is called the Fréchet derivative of A at  . A is called Fréchet
di↵erentiable if it is Fréchet di↵erentiable at every point  2 U .

Regarding the Fréchet derivative of the mapping F̂ , we have the following theorems:

Theorem 2.2.5 The far field mapping F̂ : C1(⌦) ! L2(⌦) is Fréchet di↵erentiable from
C2(⌦) to L2(⌦). The derivative F̂ 0

xr
: C2(⌦) ! L2(⌦) is given by

F̂ 0
xr
h = v1, (16)

where v1 denotes the far field pattern of the solution v to the Helmholtz equation in R2 \D
satisfying the Sommerfeld radiation condition and the boundary condition

v = �⌫ · xh
@u

@⌫
on @D,

where xh = h(x̂)x̂ and u is the solution of the direct problem used to obtain u1.

Proof: See the paper of Kirsch [52]. ⇤

Theorem 2.2.6 The linear operator F̂ 0
xr

is injective in C2(⌦).

Proof: See page 129 of [3]. ⇤

In addition, the operator F̂ is ill-posed according to the next theorem, which is proven
on page 121 of [3].

Theorem 2.2.7 The mapping F̂ : C1(⌦) ! L2(⌦) is locally compact from C1(⌦) into
L2(⌦); that is, for each xr 2 C1(⌦) there exists a neighborhood U of xr such that F̂ : U !
L2(⌦) is compact.

The next theorem of [3] states that the Fréchet derivative of an ill-posed nonlinear oper-
ator inherits the operator’s ill-posedness.

Theorem 2.2.8 Let A : U ⇢ X ! Y be a compact operator from an open subset U of a
normed space X into a Banach space Y and assume A to be Fréchet di↵erentiable at  2 U .
Then the derivative A0( ) is compact.
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Proof: For the proof, see page 102 of [3]. ⇤

Using the last theorem with F̂ as A, C1(⌦) as X and L2(⌦) as Y , and the fact that
F̂ is completely continuous by Theorem 2.2.3, we have that the operator F̂ 0

xr
inherits the

ill-posedness of the operator F̂ .

These theorems are the theoretical foundation for the application of Newton’s method
and related methods of solving the inverse scattering problem. In Newton’s method, given
the far field pattern u1 of an object D, instead of solving the ill-posed nonlinear equation
(15), we solve for h, its linearized version, using the equation

F̂ (xr) + F̂ 0
xr
h = u1. (17)

With the solution h, we update the boundary condition according to xr := xr + h. The idea
behind Newton’s method is to iterate this procedure until we reach a stopping criterion. The
question of uniqueness of the solution of (17) is answered by the injectivity of F̂ 0

xr
[3]. With

respect to the ill-posedness, we have to apply a regularization technique.

Algorithm 2.2.1 Newton’s method for the inverse scattering problem

1. Chose an initial guess x(0)

r and set j = 0.

2. Repeat until a stopping criterion is reached

(a) Solve (17) for h;

(b) Update x
(j+1)

r := x
(j)
r + h;

(c) Set j=j+1.

Figure 2.3: Summary of Newton’s method for solving the inverse scattering problem.

We look for the functions xr(t) in two types of spaces XNr :

• The space of trigonometric polynomials

XNr =

(

xr : [0, 2⇡] ! R+| xr(t) = a
0

+
Nr
X

m=1

(am cos(mt) + bm sin(mt)) , a
0

, am, bm 2 R,

m = 1, . . . , Nr

)

,

where 2Nr + 1 is the number of degrees of freedom of the polynomial xr(t); and
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• The space of B-splines

XNr =

(

xr : [0, 2⇡] ! R+| xr(0) = xr(2⇡), xr(t) =
Nr
X

m=1

cmN
q
m(t), cm 2 R,

m = 1, . . . , Nr

)

,

where Nr is the number of degrees of freedom of the polynomial xr(t), and N q
m is the

B-spline function of order q relative to the coe�cient cm. For details on the implemen-
tation of B-splines we refer the reader to [53].

Each choice for the space XNr has its advantages. The implementation of trigonometric
functions is simpler and faster than using B-splines. The advantage of B-splines is that they
are local functions, while the trigonometric functions are global, and so with B-splines, we
may choose to update the function only locally, instead of globally. We present examples
using both implementations.

For practical computations, we choose h in the solution space XNr , and write it

h =
N
X

j=1

wjWj, (18)

where {W
1

, . . . ,WNr} is a basis for XNr and w
1

, . . . , wNr are the coordinates of h with respect
to this basis. Using (18) in (17), we obtain

Nr
X

j=1

wj(F̂
0
xr
Wj) = u1 � F̂ (xr).

For each basis function Wj, j = 1, . . . , Nr, we must solve the direct problem for (F̂ 0
xr
Wj), as

in Theorem 2.2.3. According to Theorem 2.2.3, in order to obtain the value of v1 = (F̂ 0
xr
Wj),

we must find v that solves the Helmholtz equation in R2 \D, and satisfies the Sommerfeld
radiation condition together with the boundary condition

v = �⌫ ·Wj
@u

@⌫
on @D.

We can use the integral equation approach presented in the last section to find the value
of v1. First, we solve for @v

@⌫
the equation

Z

@D

�(x, y)
@v

@⌫
(y) ds(y) = eikx·d + ⌫(x) ·Wj

@u

@⌫
(x)�

Z

@D

@�(x, y)

@⌫(y)
⌫ ·Wj

@u

@⌫
(y) ds(y), (19)
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where x 2 @D.

After obtaining the solution @v
@⌫

to Equation (19), we calculate the far field pattern v1
using the asymptotic behavior of the fundamental solution �(x, y)

v1(x̂) =

Z

@D

⇢

�@e
�ikx̂·y

@⌫(y)
⌫ ·Wj

@u

@⌫
(y)� e�ikx̂·y @v

@⌫
(y)

�

ds(y). (20)

For each basis function Wj of the space XNr , j = 1, . . . , Nr, we need to solve a direct scat-
tering problem. In total, for each step of the Newton method, we solve Nr direct problems.
This is computationally expensive. Because of the computational cost, in this thesis we do
not use Newton’s method. It was introduced only because of its relation to the numerical
method that we use in our problem.

2.2.4 The variation of the Method of Johansson and Sleeman–
Method B

In the last section we showed the approach of Newton’s method as seen in [3]. Since Newton’s
method is computationally expensive, we instead use the algorithm introduced independently
in [16] and [54] (and later extended in [18]) to recover the object. This algorithm is based
on a two-step iterative procedure directly related to Equations (3) and (6).

We start with a motivation for the method. Considering the process of obtaining the far
field pattern from the domain @D, we can write the operator F̂ : C1(⌦) ! L2(⌦) as

F̂ (xr) = Sxr,1
@u

@⌫
, (21)

where x(t) = xr(t)(cos(t), sin(t)) is the parameterization of the domain @D, the operator
Sxr,1 is the far field operator for this parameterization, and @u

@⌫
is the solution of

Sxr

@u

@⌫
= uinc on @D,

where Sxr is the acoustic single-layer potential for the same parameterization x(t) of @D.
We can write

@u

@⌫
= S�1

xr
uinc on @D,

where the operator S�1

xr
is the inverse operator of Sxr .

Finally, we have the operator F̂ as

F̂ (xr) = Sxr,1(S�1

xr
uinc) on @D. (22)
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In the Newton method, we calculate the Fréchet derivative of the operator F̂ with respect
to the domain in Theorem 2.2.3. An alternative way to write (16) in Theorem 2.2.5 is:

F̂ 0
xr
h = S 0

xr,1(S�1

xr
uinc)h+ Sxr,1(S�1

xr
uinc)0h. (23)

Assuming that @u
@⌫

= S�1

xr
uinc depends very weakly on the change of the curve xr, i.e.,

✓

@u

@⌫

◆0

= (S�1

xr
uinc)0 ⇡ 0,

we discard the second term of (23) and obtain an approximation given by

F̂ 0
xr
h ⇡ S 0

xr,1

✓

@u

@⌫

◆

h.

This approach is computationally less expensive than each step of Newton’s method.

It is important to emphasize the fact that in this method, we do not need to solve several
direct problems in each step. On the other hand, instead of linearizing the entire operator F ,
we only linearize the part regarding the far field pattern—that is, the operator Sxr,1. This
method can be considered a quasi-Newton method for approximating the Fréchet derivative
of the operator F̂ by S 0

xr,1. After showing the motivation, we now present Johansson and
Sleeman’s method in detail.

The iterative method introduced by Johansson and Sleeman for solving the inverse scat-
tering problem can be described in the following way:

1. Choose an initial guess x(0)(t) = x
(0)

r (t)(cos(t), sin(t)) in X.

2. Repeat until the stopping criterion is reached:

(a) Use the two-step procedure with the parameterization x(j)(t) = x
(j)
r (t)(cos(t), sin(t)),

j 2 {1, 2, . . .}, to obtain a new approximation of the domain x(j+1) updating x(j).

We present the two-step procedure that is used in the method.

1. Suppose we have a parameterization x(j) approximating the object. We solve for
 (x(j)) = @u

@⌫
(x(j))|(x(j))0| the integral equation of the first kind

S
x
(j)
r
 = uinc on @D(j), (24)

where S
x
(j)
r

is the acoustic single-layer operator for the domain @D(j) with parameter-

ization x(j)(t) = x
(j)
r (t)(cos(t), sin(t)), for t 2 [0, 2⇡].
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2. In the next step, we define the residual function

r(xr) = Sxr,1 � u1.

We define the functional

f(xr) =
1

2
kr(xr)k2L2

(⌦)

and solve the following minimization problem:

min
xr2XNr

f(xr). (25)

This problem is nonlinear, so instead of minimizing the function f(xr), we minimize

the first order approximation around x
(j)
r ,

M (j)(xr) = r(x(j)
r ) + J(x(j)

r )(xr � x(j)
r ),

whereM (j) : C1(⌦) ! L2(⌦) is the first-order model approximation of f , and J(x(j)
r ) =

⇣

S
x
(j)
r ,1

@u
@⌫

⌘0
is the Fréchet derivative of r(xr) (actually of Sxr) at the domain param-

eterization x(j) given in the next theorem, which can be found together with its proof
in [52].

Theorem 2.2.9 Given a density  (⌧), the Fréchet derivative of the operator S 0
x(j),1 :

X ! L2[0, 2⇡] is the operator
h

�

Sx(j),1
@u
@⌫

�0
h
i

(x̂) defined as

✓

S
x
(j)
r ,1

@u

@⌫

◆0

h

�

(x̂) = ik
ei⇡/4p
8⇡k

Z

2⇡

0

e�ikx̂·x(j)
(⌧) (⌧)x̂ · h(⌧)d⌧, (26)

with  (⌧) = @u
@⌫
(x(j)(⌧))

�

�

�

x(j)0(⌧)
�

�

�

and h 2 X, where

X = {h(t) = hr(t)(cos(t), sin(t))| hr(t) > 0 and hr(t) 2 XNr} ,
the space of star-shaped parameterizations of the domain with positive radius function.

Note that in the derivative (26), we consider that the density function  is given by
solving (24), and we do not consider its dependence on the domain.

Instead of solving problem (25), we solve

min
xr2XNr

1

2
kM (j)(xr)k2L2

(⌦)

(27)

using an iterative method. At each step we solve an equation of the form

x(j+1)

r = x(j)
r � �J(x(j)

r )⇤J(x(j)
r )
��1

J(x(j)
r )⇤r(x(j)

r ). (28)

26



Due to the ill-posedness of the operator S 0
x
(j)
r ,1

, we must use a regularization technique

such as Tikhonov regularization to solve Equation (25). Instead of solving Equation

(25), we define the Tikhonov functional f̃(xr) =
1

2

kM (j)(x(j)
r )k2

L2
(⌦)

+ 1

2

�(j)kx�x(j)k2H1
(⌦)

,

where x(j)(t) = x
(j)
r (t)(cos(t), sin(t)), x(t) = xr(t)(cos(t), sin(t)), and we solve the

following problem:
min

xr2XNr

f̃(xr), (29)

where �(j) > 0 is a regularization parameter chosen such that the problem is not ill-
posed. We will discuss the regularization parameter further in Section 2.2.5.

To solve (29) we use a Gauss-Newton method and obtain the update for each step

x(j+1)

r = x(j)
r � �J(x(j)

r )⇤J(x(j)
r ) + �(j)Ip

��1

J(x(j)
r )⇤r(x(j)

r ), (30)

where Ip is the identity operator for the Hp-norm.

To justify the use of Tikhonov regularization, we have the following theorems:

Theorem 2.2.10 The operator Sxr,1 : C(@D) ! L2(⌦) is compact.

Proof: The operator Sxr,1 has a continuous kernel, then it is compact. ⇤

Theorem 2.2.11 The operator (Sxr,1 )
0 : C(@D) ! L2(⌦) is compact.

Proof: The result follows from Theorem 2.2.3. ⇤

Theorem 2.2.12 Assume that k2 is not an interior Neumann eigenvalue for the negative
Laplacian in D. Moreover, let xr be a parameterization of the boundary @D and let @u

@⌫
be

given by the solution of Equation (24). Then h(t) = 0 is the only su�ciently small twice
di↵erentiable and 2⇡ periodic function that solves

✓

Sxr,1
@u

@⌫

◆0

h = 0 (31)

for t 2 [0, 2⇡].

Proof: On page 61 of [15]. ⇤

Using these three theorems, and taking
�

Sxr,1
@u
@⌫

�0
as A in Theorem 2.2.2, the Tikhonov

regularization to the equation in the second step is a regularization scheme.

We write from now on S 0
x
(j)
r ,1

=
⇣

S
x
(j)
r ,1

@u
@⌫

⌘0
. We use the Fréchet derivative (26) to

obtain the update h solving

(�(j)Ip + (S 0
x
(j)
r ,1

)⇤S 0
x
(j)
r ,1

)h = (S 0
x
(j)
r ,1

)⇤
✓

S
x
(j)
r ,1

@u

@⌫
� u1

◆

, (32)
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where
⇣

S 0
x
(j)
r ,1

⌘⇤
is the L2 adjoint of S 0

x
(j)
r ,1

, and Ip is the identity operator with respect

to the norm Hp for the solution space X. This operator is related to the Hp norm of the
solution, which in this case for a function f 2 Hp(⌦) is

kfk2Hp
(⌦)

=
p
X

j=0

kDjfkL2
(⌦)

=
p
X

j=0



Z

2⇡

0

✓

djf(⌧)

d⌧ j
· d

jf(⌧)

d⌧ j

◆

d⌧

�

.

Equation (32) represents a Gauss–Newton method step for minimizing

�

�

�

�

S
x
(j)
r ,1

@u

@⌫
� u1

�

�

�

�

2

L2
(⌦)

+ �(j)
�

�x� x(j)
�

�

2

H1
([0,2⇡])

with respect to the domain x(j). To implement the constraint that x
(j)
r + hr 2 XNr , we

must use a projection method and project into XNr . We define the projection operator
PXNr

: S ! X, such that PXNr
(x(j)

r + hr) 2 XNr , where S is the space of all possible solutions
of Equation (32).

There are di↵erent ways to implement the second step in the procedure to solve problem
(29). We mention two ways in particular:

Method A:

1. After solving Equation (24) for  using x(j), we set a value for �(j). We present in the
next section how to choose �(j).

2. Solve Equation (32) to obtain hr. We make the update x
(j+1)

r = PXNr

⇣

x
(j)
r + hr

⌘

.

3. After obtaining x
(j+1)

r we go back to the first step of the method.

This implementation was used in [16; 18].
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Method B:

1. Solve Equation (24) for  using x(j).

2. Repeat until a stopping criterion is reached:

(a) Choose �(j,l) and solve Equation (32) for h. We make x(j,l+1)

r = PXNr

⇣

x
(j,l)
r + hr

⌘

for l 2 {0, 1, . . . , Nf}, where Nf is the final iteration.

(b) Set x(j+1) = x(j,Nf ) and start the procedure over again.

We call this implementation of Method B from now on in this thesis.

In this thesis, we present a comparison of results for both methods in the Chapter 4, and
we show that Method B is more e�cient. Although the methods have very similar imple-
mentations, they present a big di↵erence in their computational cost.

We define the following computational costs:

• Assembling matrix S
x
(j)
r
: A

1

(k)

• Solution of Equation (24): C
1

k3

• Assembling matrix S
x
(j)
r ,1: A

2

(k,Nff )

• Assembling matrix (S
x
(j)
r ,1

@u
@⌫
)0: A

3

(k,Nff , Nr)

• Solution of Equation (32): C
2

N3

r

The two-step procedure cost for Method A is

A
1

(k) + C
1

k3 + A
2

(k,Nff ) + A
3

(k,Nff , Nr) + C
2

N3

r .

As for Method B, the cost of the two-step procedure is

A
1

(k) + C
1

k3 +N
int

⇥

A
2

(k,Nff ) + A
3

(k,Nff , Nr) + C
2

N3

r

⇤

,

where N
int

� 1 is the number of iterations solving Equation (32).

It appears that the two-step procedure is more computationally expensive for Method
B than for Method A, because of the multiplying factor related to the number of iterations
inside of the two-step procedure. However, we can expect that our approximation of the
domain is better after the two-step procedure of Method B than it is after that of Method
A because �(j,l) is updated more frequently, and therefore, fewer iterations are needed.

Overall, we can expect that Method B will have fewer iterations of the two-step proce-
dure than will Method A. The advantage of using Method B in place of Method A is that
it minimizes the number of times that we have to solve Equation (24). Of the two systems
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that we solve, system in Equation (24) is generally more expensive to solve than the system
in Equation (32), because to solve Equation (24) the number of operations is proportional to
the cube of the wavenumber while for Equation (32), the number of operations necessary to
find the solution is proportional to the number of degrees of freedom chosen for the solution
space XNr . Although the performance of the methods does not seem too di↵erent for low
wavenumbers, it is more pronounced at higher wavenumbers. We present results comparing
the results of Methods A and B in Chapter 4.

2.2.5 Globalization techniques

To improve the convergence of the methods, we make use of globalization techniques that
can be found in [19; 20; 47], and [55]. There are several di↵erent ways to implement glob-
alization techniques to ensure the convergence of our methods. We focus specifically on the
choice of the regularization parameter � and the choice of a scaling factor that will shorten
the size h of the step, in order to ensure the convergence of the method.

To find an appropriate the value for the regularization parameter � we use the Levenberg–
Marquardt hook-step approach [56; 57]. In this approach, we solve the following equation
instead of Equation (32):

(�(j)Ip + (S 0
x
(j)
r ,1

)⇤S 0
x
(j)
r ,1

)h = (S 0
x
(j)
r ,1

)⇤
✓

S
x
(j)
r ,1

@u

@⌫
� u1

◆

. (33)

Note that we use a di↵erent value for �(j) to calculate h at each step. There are di↵erent
ways of choosing the value of �(j), and we choose two values

�(j) = kS
x
(j)
r ,1

@u

@⌫
� u1k

as in [58], and

�(j) = kS
x
(j)
r ,1

@u

@⌫
� u1k2

as in [47].

Remark 2.2.1 There are other choices; for example, one could choose a constant value
[23], or an integer power of the norm of the residue as in [18].

Finally, we deal with the problem of finding an acceptable length for the step h in a given
direction of search. Sometimes, the step size h is too big and we need to apply a globalization
technique. In this case, a scaling factor is used to control the size of the step, and we update
the domain by setting

x(j,l+1)

r = PXNr
(x(j,l)

r + ⇢hr),
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where PXNr
is the projection operator on the space XNr and the parameter ⇢ is the scaling

factor.

One way of implementing this scaling factor is to use the backtracking line-search frame-
work with the Armijo rule [59]:

Armijo rule:
We pick an ↵ 2 (0, 1) and choose a ⇢j from among those ⇢ > 0 that satisfies

f(x(j)
r + ⇢hr)  f(x(j)

r ) + ↵⇢ gradf(x(j)
r )⇤hr.

We have this algorithm in Figure (2.4).

Algorithm 2.2.2 Backtracking line-search

1. Given ↵ 2 (0, 1/2), 0 < l < u < 1

2. Set ⇢k = 1;

3. Repeat until the Armijo rule is satisfied

(a) ⇢k = ✓⇢k for some ✓ 2 [l, u], where ✓ is newly

chosen each time by the line search;

4. Set x(j+1)

r := PXNr
(x(j)

r + ⇢khr).

Figure 2.4: Backtracking line-search framework

In practice, the chosen ↵ is very small. There are several di↵erent ways to choose the
parameter ✓, and we choose a constant ✓ 2 [l, u].

Another way to implement the scaling factor that is simpler than the backtracking pro-
cedure implemented above is to choose it to be constant over all the steps. We can see
numerical results for this approach in [18].

We present a summary of the algorithm for solving the acoustic inverse scattering prob-
lem for a single frequency with Levenberg–Marquardt using line-search with the Armijo rule
in Figure (2.6).

2.2.6 The use of multiple frequencies

We have so far presented techniques for solving inverse scattering problem: that is, given
the far field pattern generated by the reflection of one incident wave, we have shown how
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Algorithm 2.2.3 Given the measured far-field pattern u1.

1. Choose an initial guess x(0)

.

2. Repeat while the stopping criteria are not reached:

(a) Set the domain @D(j)

with parameterization x(j)

and solve

S
x

(j)
r

@u

@⌫
= uinc

for

@u

@⌫

.

(b) Set x(j,0) = x(j)

.

(c) Repeat while the stopping criteria are not reached:

i. Set the regularization parameter �(j,l) and solve the

equation

h
r

= L

✓

u1 � S
x

(j,l)
r ,1

@u

@⌫

◆

.

with

L =
⇣

�(j,l)Hp +
⇣

S0
x

(j,l)
r ,1

⌘⇤ ⇣
S0
x

(j,l)
r ,1

⌘⌘�1

⇣

S0
x

(j,l)
r ,1

⌘⇤

ii. Use the line-search algorithm with the Armijo rule to

update x
(j,l+1)

r

= PXNr

⇣

x
(j,l)

r

+ ⇢h
r

⌘

.

(d) Update x(j+1) = x(j,Nf )
, where N

f

is the total number of

iterations to reach the stopping criteria.

Figure 2.5: The heuristic Method B based on Johansson and Sleeman’s method to solve the
inverse scattering problem.

to reconstruct the shape of an object. With respect to the solution of the inverse problem
(2.2.3), we have that there is a relation between the solution and the wavenumber k. In
practice, the coarse scale of an object can be recovered from the far field pattern generated
by one incident plane wave with a slow frequency. Chen discussed the following remark in
[21]:

Remark 2.2.2 Given the far-field measurements of the scatterer D, we cannot determine
features of the scatterer D that are less than half a wavelength.

In general, at low frequencies, the reconstruction problem is uniquely solvable [50], but its
stability is poor [60; 61]. This means that we do not need an initial guess very close to the
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object to solve the problem, but it is di�cult to reconstruct small details of the object. On
the other hand, at higher frequencies the inverse problem may not be uniquely solvable, but
it is more stable—so we can reconstruct details of the object but we need a better initial
guess to use with our algorithms. This relation between the wavenumber k and the initial
guess motivates the use of multifrequency data.

We have the following problem:

Problem 2 Given the far field pattern patterns u
kj
1 at x̂l 2 ⌦, for j 2 {1, . . . , N

inc

} and
where ⌦ is the unit circle, generated by the scattering of the N

inc

incident plane waves
uinc

j (x) = eikjx·d with fixed direction d and varying wavenumbers kj 2 [kl, kh], such that
0 < kl < kj < kh, o↵ of an unknown object D with homogeneous Dirichlet boundary condi-
tion, reconstruct the shape of D.

We previously cited the result of uniqueness for each frequency. In the case of a band of
wavenumbers [kl, kh], the uniqueness of this inverse problem was proved in [62]. For finitely
many wavenumbers, we have uniqueness of the solution if the lowest frequency is small
enough [50; 63].

One way to solve Problem 2 is to use the recursive linearization algorithm (RLA) pro-
posed first in [21], and later analyzed in [22] for the inhomogeneous medium problem, and
analyzed in [23] for impenetrable obstacles and far field measures with noise.

Having chosen an initial guess for the domain @D at the frequency k
0

, say x(k0), the idea
of this algorithm is to solve the inverse scattering problem using the Newton method for each
frequency kj, j = 1, . . . , N

inc

using the solution of the problem for the previous frequency.

The linear convergence of this algorithm was proved for the case of the inhomogeneous
medium with noiseless data in [22] and for the Dirichlet boundary condition case in [23].

There are other recursive algorithms that can be used, such as the second order ap-
proximation or the fully nonlinear recursive algorithm, see, e.g., [64; 65]. This algorithm is
equivalent to solving the Newton method for the far field pattern generated by the plane
wave with wavenumber kj, and then using this solution as the initial guess for the Newton
method for the far field pattern data generated by the plane wave with wavenumber kj+1

.

Instead of applying the Newton method that uses the expensive Fréchet derivative of
the operator F (xr) for each frequency, we will solve the problem using Method B. In our
alternative to the RLA, we solve the problem for each frequency using Method B presented
for the solution of the single frequency problem. We call this procedure Method RLA-B.

First, we use Algorithm 2.2.2 with the data at the lowest wavenumber k
1

to obtain a
rough approximation of the object’s shape using a initial guess not necessarily very close
to the solution. Once we obtain the approximate solution for the problem at the lowest
frequency, we use this approximate solution as the initial guess for the next wavenumber k

2

.
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Algorithm 2.2.4 Recursive Linearization Algorithm

Given u
kj
1 for kj = k

0

, . . . , kN and the parameters � > 0, � > 0.

1. Find an approximation x(k0) of the shape x = @D at the lowest frequency k
0

by minimizing the functional

f(xr) =
1

2

�

�M (i)(xr)� uk0
1
�

�

2

L2
([0,2⇡])

+
1

2
�
�

�x� x(i)
�

�

2

L2
([0,2⇡])

(34)

2. For j = 1, . . . , N do

(a) Set the solution x(kj�1) as the initial guess for the Newton method.

(b) Use the Newton method to find the approximation x(kj) of the object at

the frequency kj.

Figure 2.6: The Recursive Linearization Algorithm.

We repeat this process until we reach a desired result or use the entire set of data up to the
highest wavenumber kNinc .

Suppose that our data set contains measures of the far field pattern for an object D at
the points x̂l, l 2 {1, . . . , Nff} for di↵erent wavenumbers kj, j 2 {1, . . . , N

inc

}, ordered from
the lowest to the highest wavenumber. The following is a summary of the algorithm:

Algorithm 2.2.5 Given the far field pattern u
kj
1 for j 2 {1, . . . , N

inc

} and an initial guess

x(0)

for the approximation of the domain

1. For j 2 {1, . . . , N
inc

}:

(a) Set the initial guess x(j,0) = x(j�1)

;

(b) Use Algorithm 2.2.2 with the far field pattern measurements u
kj
1 and the initial guess

x(j,0)

. Call the approximation obtained x(j)

.

Figure 2.7: Iterative method for solving the inverse problem for an object D with Dirichlet
boundary conditions using multiple frequencies far field pattern measures.

This approach enables us to obtain an accurate reconstruction of the part of the obstacle
boundary illuminated by the incident plane waves without requiring a good initial guess.
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We should not expect to obtain a good approximation in the shadowed part of the object,
since for higher frequencies, the scattered field of the object goes to zero in that region. In
fact, it was shown in [23] that the reconstruction is stable in the illuminated convex part of
the object.

2.2.7 Inverse scattering of a single object in the presence of mul-
tiple scatterers

In the last section, we presented our alternative version of the RLA. We are able to re-
construct details of the object in the illuminated part, however, our approximation of the
shadow part of the object is very poor. To improve our reconstruction of the shadow part,
we insert obstacles of known shape, so that the incident waves will reflect from those objects
and illuminate the shadow part of the object.

We want to adapt our iterative method to a configuration with multiple scatterers. In
this case, we will assume that the shape of the scatterers Ds, s = 2, . . . , ND is known, and
that we want to reconstruct the shape of the object D

1

. The first part of the algorithm is
similar to the direct problem previously presented. We must change the second part of the
problem, in which we solve the linearized version of Equation (9).

The Fréchet derivative with respect to the domain D
1

is:

�

S 0
@D1,1[y,�]h

�

(x̂) = ik
ei⇡/4p
8⇡k

Z

@D1

e�ikx̂(✓)·y�(y)x̂ · h ds(y).

Since the other objects remain the same, we have
�

S 0
@Ds,1[y,�]h

�

(x̂) = 0 for all s =
2, . . . , ND. The linearized equation becomes

�

S 0
@D1,1[y,�]

�

h(x̂) = u1(x̂)�
ND
X

s=1

(S@Ds,1�) (x̂),

where � = @u
@⌫
.
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Chapter 3

Numerical solution of the direct
problem at low frequencies

3.1 The case of a single scatterer

3.1.1 Numerical implementation

There are several di↵erent ways to discretize Equations (3) and (6). Amongst those choices
we have the collocation method, the Galerkin method, and the Nyström method. For this
problem, the Nyström method was recommended by Colton and Kress in [3]. It is clear
that the Nyström method and the collocation method require less computational e↵ort than
the Galerkin method, because the former methods require numerical integration to solve
only one integral, while the Galerkin method requires two numerical integrations of a double
integral.

We note that the collocation method requires that we choose a basis and sometimes this
choice of basis can generate an unstable discrete operator. This is the reason that we prefer
the Nyström method over the collocation method.

Parameterizing the domain @D by x : [0, 2⇡] ! R2, with x(t) = (x
1

(t), x
2

(t)), Equation
(3) becomes

Z

2⇡

0

i

4
H

(1)

0

(k|x(t)� x(⌧)|)@u
@⌫

(x(⌧))|x0(⌧)| d⌧ = uinc(x(t)), (35)

where H(1)

n = Jn+iYn is the Hankel function of first kind of order n, Jn is the Bessel function
of order n, and Yn is the Neumann function of order n. The Bessel function of order n is an
analytic function given by the formula

J⌫(t) =

✓

1

2
t

◆⌫ 1
X

p=0

��1

4

z2
�p

p!�(⌫ + p+ 1)
.
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As for the Neumann function of order n, we have the formula

Y⌫(t) =
J⌫(t) cos(⌫⇡)� J�⌫(t)

sin(⌫⇡)
,

see [66].

For n = 0, 1, 2, . . . the Bessel function of order n can be written as

Jn(t) =
1
X

p=0

(�1)p

p!(n+ p)!

✓

t

2

◆n+2p

,

and the Neumann function can be written as

Yn(t) =
2

⇡

⇢

ln

✓

t

2
+ C

◆�

Jn(t)� 1

⇡

n�1

X

p=0

(n� 1� p)!

p!

✓

2

t

◆n�2p

� 1

⇡

1
X

p=0

(�1)p

p!(n+ p)!

✓

t

2

◆n+2p

{�(p+ n) + �(p)} ,

where C is Euler’s constant. For the case n = 0, the second term of the Neumann function
is set to zero, and we define �(0) := 0,

�(p) :=
p
X

m=1

1

m
, p = 1, 2, . . . .

We notice the singularity in the Neumann function of order 1. We have a logarithmic
singularity in the kernel of Equation (52). We will follow the approach of [3; 33; 34], in which
the authors divide the kernel of the single layer operator into two parts: an analytic part
K

1

(t, ⌧), and a singular part K
2

(t, ⌧). We have the following equation:

Z

2⇡

0

✓

K
1

(t, ⌧) ln

✓

4 sin2

✓

t� ⌧

2

◆◆

+K
2

(t, ⌧))

◆

@u

@⌘
(x(⌧))|x0(⌧)| d⌧ = uinc(x(t))

where

K
1

(t, ⌧) = � 1

2⇡
J
0

(k|x(t)� x(⌧ |),

K
2

(t, ⌧) = H
(1)

0

(t, ⌧)�K
1

(t, ⌧) ln

✓

4 sin2

✓

t� ⌧

2

◆◆

,

and at the singular point, we have:

K
1

(t, t) = 0,

K
2

(t, t) =
i

2
� C

⇡
� 1

2⇡
ln

✓

k2

4
|x0(t)|

◆

.
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To solve this problem numerically we discretize the domain [0, 2⇡] uniformly with the
points tm = m⇡/Nm, where 2Nm is the number of points (and it must increase linearly with
respect to the wavenumber k), and m = 0, . . . , 2Nm � 1. We evaluate the integral

I
1

(t) =

Z

2⇡

0

K
1

(t, ⌧)f(⌧) d⌧,

where f(⌧) = @u
@⌘
(x(⌧))|x0(⌧)|, using the finite Fourier series approximation of the function

f(⌧). We have the following finite Fourier series approximation:

f(t) ⇡ fNm =
a
0

2
+

Nm�1

X

j=1

(aj cos(jt) + bj sin(jt)) + aNm cos(Nmt),

where

aj =
1

Nm

2Nm�1

X

m=0

f(tm) cos

✓

⇡jm

Nm

◆

,

bj =
1

Nm

2Nm�1

X

m=0

f(tm) sin

✓

⇡jm

Nm

◆

.

We say that fNm is in the space TNm of trigonometric polynomials

pNm(t) =
a
0

2
+

Nm�1

X

j=1

(aj cos(jt) + bj sin(jt)) + aNm cos(Nmt),

where a
0

, aNm , aj, bj 2 R, for j = 1, . . . , Nm � 1.

To obtain the numerical approximation for the integral I
1

, we use the following lemma:

Lemma 3.1.1

Z

2⇡

0

ln

✓

4 sin2

✓

t� ⌧

2

◆◆

cos(m⌧) d⌧ =

(

0, m = 0

� 2⇡
|m| , m 2 Z� {0}

Z

2⇡

0

ln

✓

4 sin2

✓

t� ⌧

2

◆◆

sin(m⌧) d⌧ = 0,m 2 Z.

Proof: We consider an adaptation of the procedure shown in [67]. ⇤

To simplify the notation, we set for the rest of this section  (⌧) = @u
@⌘
(x(⌧))|x0(⌧)|. Using

the series representation of aj and bj together with the lemma we obtain the following
numerical approximation for I

1

:

I
1

(t) ⇡
2Nm�1

X

m=0

R(t, tm) (tm), (36)
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where we have the quadrature terms

R(t, tm) ⇡ � 2⇡

Nm

2Nm�1

X

m=0

1

m
cos(m(t� tm))� ⇡

N2

m

cos(Nm(t� tNm)).

For the integral I
2

(t), since the kernel is analytic, we apply a quadrature midpoint rule
(trapezoidal rule). We obtain:

I
2

(t) ⇡ ⇡

Nm

2Nm�1

X

m=0

K
2

(t, tm) (tm). (37)

Putting the approximations in Equations (36) and (37) together, we obtain
✓

R(t, tm)K1

(t, tm) +
⇡

Nm

K
2

(t, tm)

◆

 (tm) = uinc(x(t)). (38)

Choosing t = tm for m = 0, . . . , 2Nm � 1 in Equation (38), we obtain a linear system of
equations with 2Nm � 1 equations and 2Nm � 1 unknowns. We write the system

S@D = uinc(x), (39)

where S@D is the matrix equivalent to the discretization of the operator S@D, x = (x(t
1

) ,
. . ., x(tNm�1

)) is the vector of the points x(tm) on the boundary of D, and  and uinc(x) are
respectively the value of  (t) and the values of the incident wave at the points x(tm) on the

boundary of D. The elements s(@D)

jm of the matrix S@D are

s
(@D)

jm = R(tj, tm)K1

(tj, tm) +
⇡

Nm

K
2

(tj, tm), for j,m = 0, . . . , 2Nm � 1,

and the components u(@D)

j of the vector uinc(x) are

u
(@D)

j = eikx(tj)·d, for j = 0, . . . , 2Nm � 1.

After solving the system in Equation (39) and obtaining the values for  (t) at the points
tm = m⇡

Nm
for m = 0, . . . , 2Nm � 1, we use these values to obtain the far field pattern

generated by the object D from the scattering of the incident plane wave uinc. We need to
solve Equation (6) numerically to obtain the far field pattern for the object D at Nff points
x̂l 2 [0, 2⇡], l = 1, . . . , Nff . Using the trapezoid rule, we obtain the discrete equivalent of
the operator S@D,1, S@D,1, with elements

s
(@D,1)

lm =
⇡

Nm

e�ikx̂j ·x(tm),
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for m = 0, . . . , 2Nm � 1, and l = 1 . . . , Nff .

To find the far field at the points x̂l, we multiply the Nff ⇥ (2Nm � 1) matrix S@D,1 by
the solution  of (39), obtaining

u1(x̂) = S@D,1 ,

where u1(x̂) =
�

u1(x̂
1

), . . . , u1(x̂Nff
)
�

is the vector with the value of the far field pattern
at the points x̂l.

3.1.2 Numerical analysis

We present some numerical results for the direct scattering problem, using the Nyström
method that can be found in [68]. We start by presenting the following definition, and
noting that more details can be found in [69].

Definition 3.1.1 Let Hp([0, 2⇡]) for p � 1 be the Sobolev space of 2⇡-periodic functions
on the interval [0, 2⇡], i.e., the space of 2⇡-periodic functions � with the property

1
X

m=�1
(1 +m2)p|cm|2 < 1, (40)

where the cm are the Fourier coe�cients of �.

We define the trigonometric interpolation operator PNm : C([0, 2⇡]) ! R that interpolates
the function � with the formula

PNm(�) =
2Nm�1

X

j=0

�(tj)L
(Nm)

j , (41)

where L
(Nm)

j is the Lagrange trigonometric polynomial given by

L
(Nm)

j =
1

2

(

1 + 2
2Nm�1

X

j=1

cos(m(t� tj)) + cos(Nm(t� tj))

)

. (42)

We obtain the following result with respect to the trigonometric interpolation of polyno-
mials:

Theorem 3.1.1 For the trigonometric interpolation operator we have the error estimate

kPn �  kHq
([0,2⇡])  c

✓

⇡

Nm

◆p�q

k kHp
([0,2⇡]), 0  q  p,

1

2
< p, (43)

for all  2 Hp([0, 2⇡]) and some constant c (depending on p and q).
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Proof: See [68].

Using the last theorem, we can prove the following result with respect to the approximate
solution of the Equation (6):

Theorem 3.1.2 Let  2 Hp([0, 2⇡]), where p > 3/2, be the solution to Equation (3).
The approximate solution  Nm to Equation (3) obtained using the Nyström method with Nm

modes is unique and we have the following estimate:

k �  ̃kHq+1
([0,2⇡])  c

✓

⇡

Nm

◆p�q

k kHp�1
([0,2⇡]), 1  q  p. (44)

Proof: See [68].

If the domain boundary @D is infinitely di↵erentiable, the convergence rate is faster than
any polynomial power of the discrete step ⇡/Nm, as we can see in the numerical results given
in the next section.

3.1.3 Numerical results

We present some examples of the calculation of the normal derivative of the field on @D and
the far field generated by the scattering of a plane wave o↵ of the object D.

Example 3.1.1

Consider the object D to be the circle with radius 1, centered at the origin. We consider the
acoustic scattering problem for the plane wave with direction d = (1, 0) and wavenumbers
k = 1 and 5. The normal derivative of the field on @D was calculated at points uniformly
distributed over the interval [0, 2⇡], x(tm), for tm = ⇡m/Nm, m = 0, . . . , 2Nm � 1, with
varying Nm. We calculate the real and complex part of the far field pattern u1 at the points
x̂
1

= (1, 0) and x̂
2

= (�1, 0) using the values of the normal derivative of the field calculated
with di↵erent Nm. The result is presented in Table 3.1.

Example 3.1.2

Consider the object D that has parameterization x : [0, 2⇡] ! R2, such that x(t) =
(cos(t) + 0.65 cos(2t) � 0.65, 1.5 sin(t)). We consider the acoustic scattering problem for
the plane wave with direction d = (1, 0) and wavenumbers k = 1 and 5. The normal deriva-
tive of the field on @D was calculated at points uniformly distributed over the interval [0, 2⇡],
x(tm), for tm = ⇡m/Nm, m = 0, . . . , 2Nm � 1, with varying Nm. We calculate the real and
complex part of the far field pattern u1 at the points x̂

1

= (1, 0) and x̂
2

= (�1, 0) using
the values of the normal derivative of the field calculated with di↵erent Nm. The result is
presented in Table 3.2.
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k Nm Re(u1(x̂
1

)) Im(u1(x̂
1

)) Re(u1(x̂
2

)) Im(u1(x̂
2

))
k=1 8 - 1.334329188063 0.333726766344 0.181637801094 0.762482655016

16 - 1.334362929767 0.333695654409 0.181849734687 0.762686731981
32 - 1.334362929769 0.333695654407 0.181849734688 0.762686731982
64 - 1.334362929769 0.333695654407 0.181849734688 0.762686731982
128 - 1.334362929769 0.333695654407 0.181849734688 0.762686731982

k=5 8 - 1.986831402118 0.485295285649 - 0.422300542958 0.095732670775
16 - 1.826278487306 1.101243955268 0.610309598972 - 0.359816840301
32 - 1.849386998826 1.098974319078 0.620998659379 - 0.352399089264
64 - 1.849387027437 1.098974291243 0.620998659384 - 0.352399089277
128 - 1.849387027437 1.098974291243 0.620998659384 - 0.352399089277

Table 3.1: Far field pattern for Example 3.1.1. The object D is the circle with radius 1,
centered at the origin. We vary the discretization step increasing the value of Nm.

k Nm Re(u1(x̂
1

)) Im(u1(x̂
1

)) Re(u1(x̂
2

)) Im(u1(x̂
2

))
k=1 8 - 1.618381695675 0.606752164102 1.416909410769 0.080109038586

16 - 1.627476854614 0.602315684865 1.397221837801 0.094476191840
32 - 1.627457445405 0.602225838875 1.396944648697 0.094997221929
64 - 1.627457503695 0.602225912525 1.396944882313 0.094996358536
128 - 1.627457503694 0.602225912524 1.396944882311 0.094996358533

k=5 8 - 1.377090397189 2.127972815671 - 0.384525312729 - 0.014674739378
16 - 2.365174647855 1.725065657606 - 0.253616783423 0.139640857157
32 - 2.465534936698 1.688929672563 - 0.199212087324 0.060993039836
64 - 2.475543796632 1.687479379007 - 0.199457879732 0.060158937522
128 - 2.475543801434 1.687479372453 - 0.199457879741 0.060158937516

Table 3.2: Far field pattern for Example 3.1.2. The object D is the Kite with parameteriza-
tion x(t) = (cos(t) + 0.65 cos(2t)� 0.65, 1.5 sin(t)).
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From the results in Tables (3.1) and (3.2), we can verify the fast convergence of the
implementation of our problem using the Nyström method. It is worth emphasizing the fact
that when we increase the wavenumber k, we need to increase the number of modes used in
the Nyström method. This aspect of the method is due to the oscillatory behavior of the
integrals in Equations (3) and (6).

Remark 3.1.1 We can apply the same numerical method to solve the Neumann and the
impedance problem. In this case, we will need to solve di↵erent integral equations.

Remark 3.1.2 The number of discretization points Nm necessary to obtain a good approx-
imation of the solution of (3) grows linearly with the wavenumber k. This means that the
number of elements of the matrix S@D is proportional to O(k2). For small values of the
parameter k, the method presented in this chapter works well, but for very high wavenum-
bers this method becomes computationally expensive. To overcome this setback we present a
method in the following chapters based on the ideas in [26; 27].

3.2 The case of multiple scatterers

The solution to the problem for multiple scatterers can be obtained in di↵erent ways; for
a complete survey of the subject, see [24]. We present here the solution using all of the
integral equations obtained simultaneously. This method is very easy to implement and
precise; on the other hand, it becomes increasingly computationally expensive with increas-
ing frequency (and consequently the wavenumber k), increasing number of objects ND, and
increasing number of dimensions (from two to three). In the case that the problem becomes
intractable due to computational complexity, there are other methods, such the iterative
method presented in [25]. Although we do not consider this method in this thesis, we intend
to work with it in the future.

The procedure of finding the far field pattern and scattered field in the presence of mul-
tiple objects is very similar to the procedure we would use in the case of a single object.
To find the normal derivative of the field on the boundary of the objects Ds, we use the
Nyström method. Suppose each object Ds has parameterization x(@Ds) : [0, 2⇡] ! R2.
If we choose 2Nm discretization points on the domain [0, 2⇡], we have tm = m⇡/Nm, for
m = 0, . . . , 2Nm � 1.

For the operators S@Ds,@Dw , with @Ds 6= @Dw, since we have no singularities in the
kernel, we use only the trapezoid rule to numerically approximate this problem. We obtain
the following approximation:

S@Ds,@Dw�(x
(w)) =

i

4

Z

2⇡

0

H
(1)

0

(k|x(w) � x(s)(⌧)|)�(x(s)(⌧)) d⌧

⇡ i

4

2Nm�1

X

m=0

H
(1)

0

(k|x(w) � x(s)(tm)|)�(x(s)(tm)).
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Using the discretization points x(@Dw)(tm) for m = 0, . . . , 2Nm � 1 in the domain @Dw, we
obtain the discrete operator S@Ds,@Dw with elements

s(s,w)

m,n =
i

4
H

(1)

0

(k|x(w)(tm)� x(s)(tn)|). (45)

For the operators S@Ds,@Ds and S@Ds,1, we must note that their implementation is exactly
equal to the implementation of the single layer operator and the far field operator of the
previous section. We use S@Ds,@Ds and S@s,1 to represent the discrete versions of the single
layer operator and the far field operator respectively.

Solving Equation (7) is equivalent to solving the system

2

6

6

6

4

S@D1,@D1 S@D1,@D2 · · · S@D1,@DND

S@D2,@D1 S@D2,@D2 · · · S@D2,@DND
...

...
. . .

...
S@DND

,@D1 S@DND
,@D2 · · · S@DND

,@DND

3

7

7

7

5

0

B

B

B

B

@

�

@u
@⌫

�

(@D1)

�

@u
@⌫

�

(@D2)

...
�

@u
@⌫

�

(@DND
)

1

C

C

C

C

A

=

0

B

B

B

@

uinc(x(@D1))
uinc(x(@D2))

...
uinc(x(@DND

))

1

C

C

C

A

,(46)

where
�

@u
@⌫

�

(@Ds) and uinc(x(@Ds)), for s = 0, . . . , ND, represent respectively the normal deriva-
tive of the field and the incident field at x(@Ds) = (x(@Ds)(t

0

), x(@Ds)(t
1

), . . . , x(@Ds)(t
2Nm�1

))
on the objects Ds. Solving (46), we obtain the value of the normal derivative of the field on
the boundary of the objects Ds at the discretization points.

Using the value of the normal derivative at the discretization points of the objects Ds,
we find the far field at the points x̂l, l = 1, . . . , Nff by solving

u1(x̂) =
⇥

S@D1,1 S@D2,1 · · · S@DND
,1
⇤

0

B

B

B

B

@

�

@u
@⌫

�

(@D1)

�

@u
@⌫

�

(@D2)

...
�

@u
@⌫

�

(@DND
)

1

C

C

C

C

A

, (47)

where u1(x̂) = (u1(x̂
1

), u1(x̂
2

), . . . , u1(x̂Nff
)).

44



Chapter 4

Numerical solution of the inverse
problem at low frequencies

4.1 Inverse scattering problem for a single frequency

After introducing the direct scattering problem, we now focus on the main topic of this
thesis, which is the solution of the inverse scattering problem.

In Chapter 2, we presented the continuous inverse scattering problem of the reconstruc-
tion of the object @D using the far field pattern in ⌦. In real life, we do not have the far field
pattern data for the entire circle ⌦, as the far field data is measured at only a finite number
of points on ⌦. We use that data to construct a system of equations to approximately solve
our problem of finding the shape of the object D. We rephrase our problem for a single
frequency as:

Problem 1 Given the Nff measures u1(x̂l) of the far field pattern at the points x̂l 2 ⌦,
for l = 1, . . . , Nff , where ⌦ is the unit circle, obtained from a plane wave of fixed incidence
direction d wavenumber k reflecting from an object D, reconstruct the shape of the object D.
Homogeneous Dirichlet boundary conditions are assumed on @D.

4.1.1 Implementation of Method B

We use Method B in this thesis instead of Method A. As we pointed out in Section 2.2.4,
Method B has better computational performance than Method A.

We point out here that in this thesis, we will use bold face to represent discrete quantities
like matrices and vectors: for example, the discrete counterpart of the operator S

x
(j)
r

will be
the matrix S

x

(j)
r
. We now focus on the numerical implementation of the two-step procedure

of Method B.

For the first step, where we solve Equation (3) for  , we discretize the domain [0, 2⇡]
uniformly with the points tm = m⇡/Nm. We calculate the single layer discrete operator,
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which is the matrix S
x

(j)
r
, and the right hand side uinc(x(j)) of Equation (3) at the vector

x(j) =
�

x(j)(t
1

), . . . , x(j)(tNm)
�

in the same way as in Chapter 2. With the matrix S
x

(j)
r

and

vector uinc(x(j)), we solve the linear system for  (x(j)):

S
x

(j)
r
 (x(j)) = uinc(x(j)), (48)

where  (x(j))|(x(j))0| is the vector with components

�

 (x(j))
�

m
=
@u

@⌫
(x(j)(tm))

q

[(x(j)
1

)0]2(tm) + [(x(j)
2

)0]2(tm).

Summarizing, the first step in our procedure is:

Step 1: Solve for  (x(j)) the linear system

S
x

(j)
r
 (x(j)) = uinc(x(j)). (49)

For the second step, as was described in Chapter 2, we must iteratively solve the following
equation:

⇣

�(j)Ip + (S 0
x
(j)
r ,1

)⇤S 0
x
(j)
r ,1

⌘

hr = (S 0
x
(j)
r ,1

)⇤
✓

S
x
(j)
r ,1

@u

@⌫
� u1

◆

(50)

to obtain the coe�cients of the update polynomial hr.

The term
⇣

S
x
(j)
r ,1

@u
@⌫

� u1

⌘

on the right hand side of (50) is calculated in the same way

as shown in Chapter 3.

To implement the operator S 0
x
(j)
r ,1

, we have Nff equations of the same type as (50), one

for each of the far field pattern measurements of the object and the object update function
h 2 XNr . The discrete analogue of this operator is thus an Nff ⇥Nr matrix (not necessarily
square) with complex entries.

For the case when XNr is the space of trigonometric polynomials, we solve for the coef-
ficients a

0

, . . . , aNr , b1, . . . , bNr of hr(t). For the case when XNr is the space of B-splines, we
look for the coe�cients c

0

, . . . , cNr of hr(t).

To implement the operator
⇣

S
x
(j)
r ,1

⌘0
hr numerically, we use the same uniform discretiza-

tion of the domain [0, 2⇡] as before for the single layer operator. After all the calculations,
we obtain the discrete approximation

S 0
x
(j)
r ,1

hr ⇡ S0
x

(j)
r ,1

h
r

, (51)
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where S0
x

(j)
r ,1

h
r

is the discrete version of the operation
h

S 0
x
(j)
r ,1

hr

i

, and h
r

is the vector of

coe�cients of the polynomial hr(t). We abuse notation by calling this discrete operator
S0
x

(j)
r ,1

, and this does not mean that we are taking the derivative of the discrete operator.

The use of this notation is to remind the reader that this operator is the discretization of
the operator S 0

x
(j)
r ,1

.

We have for each x̂l, l = 1, . . . , Nff , that

h

S 0
x(j),1h

i

(x̂l) ⇡ ik
ei⇡/4⇡

Nm

p
8⇡k

Nm
X

m=1

e�ikx̂l·x(j)
(tm) (tm)x̂l · h(tm)

=
ei3⇡/4

Nm

r

k⇡

8

Nm
X

m=1

Smx̂l · h(tm),

where Sm = e�ikx̂l·x(j)
(tm) (tm).

For the case when XNr is the space of trigonometric polynomials, we insert the values of
hr(tm) into the last equation and obtain

⇥

S0
xr,1h

r

⇤

(x̂
l

) ⇡ ei3⇡/4

N
m

r

k⇡

8

Nm
X

m=1

S
m

(x̂
l,1

cos(t
m

) + x̂
l,2

sin(t
m

))

"

a
0

+

Nr
X

n=1

(a
n

cos(nt
m

) + b
n

sin(nt
m

))

#

=
ei3⇡/4

N
m

r

k⇡

8

"

A
0

a
0

+

Nr
X

n=1

(A
n

a
n

+B
n

b
n

)

#

,

where x̂l = (x̂l,1, x̂l,2), and the coe�cients A
0

, An, and Bn are:

A
0

=
Nm
X

m=1

Sm (x̂l,1 cos(tm) + x̂l,2 sin(tm)) ,

An =
Nm
X

m=1

Sm (x̂l,1 cos(tm) + x̂l,2 sin(tm)) cos(ntm),

Bn =
Nm
X

m=1

Sm (x̂l,1 cos(tm) + x̂l,2 sin(tm)) sin(ntm),

for n = 1, . . . , Nr.

For the case when XNr is the space of B-splines, we insert the values of h(tm) into the
last equation, and obtain

⇥

S 0
xr,1hr

⇤

(x̂l) ⇡ ei3⇡/4

Nm

r

k⇡

8

Nm
X

m=1

Sm (x̂l,1 cos(tm) + x̂l,2 sin(tm))

 

Nr
X

n=1

cnN
q
n(tm)

!

=
ei3⇡/4

Nm

r

k⇡

8

 

Nr
X

n=1

Cncn

!

,
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where x̂l = (x̂l,1, x̂l,2) and the coe�cients Cn are:

Cn =
Nm
X

m=1

Sm (x̂l,1 cos(tm) + x̂l,2 sin(tm))N
q
n(tm),

for n = 1, . . . , Nr.

Although the discrete approximation (51) is a complex matrix, the components of the
vector h

r

must all be real. Then we must consider the real and imaginary part of this
operator, and from this we conclude that in reality we have 2Nff rows. We obtain the
matrix

2

4

Re
⇣

S0
x

(j)
r ,1

⌘

Im
⇣

S0
x

(j)
r ,1

⌘

3

5h
r

,

where Re
⇣

S0
x

(j)
r ,1

⌘

and Im
⇣

S0
x

(j)
r ,1

⌘

are respectively the real and imaginary parts of S0
x

(j)
r ,1

.

The operator
⇣

S 0
x
(j)
r ,1

⌘⇤
is obtained by taking the conjugate of the matrix S0

x

(j)
r ,1

, and

we separate the imaginary and real parts the same way we did with S 0
x
(j)
r ,1

to obtain



Re
⇣

S0
x

(j)
r ,1

⌘>
Im
⇣

S0
x

(j)
r ,1

⌘>
�

.

Since the operator S 0
x
(j)
r ,1

is ill-posed, the system is ill conditioned, and we need to

apply a regularization scheme. To overcome the problem of ill-posedness, we use a penalty
term �Ip, where Ip is the matrix obtained by discretizing the norm of the solution h(t) =
hr(t)(cos(t), sin(t)) in the Hilbert space Hp ([0, 2⇡]), where p is an integer. We calculate the
matrix Ip as the discretization of the norm of the solution, which in this case is:

khk2Hp
([0,2⇡]) =

p
X

j=0

kDjhkL2
([0,2⇡])

=
p
X

j=0



Z

2⇡

0

✓

djh(⌧)

d⌧ j
· d

jh(⌧)

d⌧ j

◆

d⌧

�

.

The matrix Ip depends on the solution space that we choose. For the special case that
we choose p = 1 and hr(t) is a trigonometric polynomial, the mass matrix becomes a di-
agonal matrix with elements h

11

= 2⇡, hnn = ⇡ (1 + (n� 1)2) for n = 2, . . . , Nr + 1, and
hnn = ⇡ (1 + (n�Nr � 1)2) for n = Nr + 2, . . . , 2Nr + 1.

For the case that hr(t) is a represented by B-splines, the mass matrix has a di↵erent
structure. The matrix is a symmetric Toeplitz matrix. The elements mij of the matrix H1
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are

mij =

Z

2⇡

0

N q
i (⌧)N

q
j (⌧) d⌧ +

Z

2⇡

0

(N q
i (⌧))

0(N q
j (⌧))

0 d⌧.

Since the functions N q
i (⌧) have local compact support, the configuration of the Nr ⇥ Nr

matrix I1 will depend on the order of the splines N q
i used to represent hr(t). If N q

i is of
order q, each row of the matrix will have q + 2 nonzero elements. In particular,

mij =

(

0, for N q
i (t)N

q
j (t) = 0

R

2⇡

0

N q
i (⌧)N

q
j (⌧) d⌧ +

R

2⇡

0

(N q
i (⌧))

0(N q
j (⌧))

0 d⌧, otherwise.

In Figure (4.1), we present the matrix I1 for a fixed number of coe�cients Nr = 20 and
varying order q.
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(b) q = 5

Figure 4.1: Matrix I1 for a fixed number of coe�cients Nr = 40 and varying order q. (a)
q = 4. (b) q = 5. Each dot represents a nonzero element, and where there are no dots, the
matrix entries are filled by zeros.

Finally, we solve the following equation to find h
r

:

h
r

= Rb, (52)

where the regularization scheme is

R =

0

@�Ip +



Re
⇣⇣

S0
x

(j)
r ,1

⌘⌘>
Im
⇣⇣

S0
x

(j)
r ,1

⌘⌘>
�

2

4
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S0
x

(j)
r ,1

⌘⌘

Im
⇣⇣

S0
x

(j)
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⌘⌘

3

5

1

A

�1

,

and the residue b is the vector

b =



Re
⇣⇣

S0
x

(j)
r ,1

⌘⌘>
Im
⇣⇣

S0
x

(j)
r ,1

⌘⌘>
�

2

4

Re
⇣

u1 � S
x
(j)
r ,1 

⌘

Im
⇣

u1 � S
x
(j)
r ,1 

⌘

3

5 ,
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where � is the regularization parameter and Ip is the semi-norm matrix of order p.

We solve Equation (52) to obtain the coe�cients for hr(t). We then update the domain

x
(i)
r (t)+⇢hr(t) using a scaling factor that can be obtained as pointed out in the Section 2.2.5.

Unfortunately, there is no guarantee that the new domain obtained is in our set of possi-
ble domains XNr , which in our case is the set of parameterizations of star-shaped domains.
There are di↵erent ways to try to ensure that the solution lies in the solution space XNr . We
choose to approximately project the solution x

(i)
r (t) + ⇢hr(t) into the space XNr . To do this

we will use a quasi-projection operator PXNr
: C2(@D) ! XNr . There are di↵erent ways to

implement the quasi-projection operator. We present a way that is independent of the basis
functions chosen for the space XNr and another that is more specifically for the case when
we use B-splines as a basis for the solution space. In the latter case, the quasi-projection
operator is a projection operator.

Suppose x
r

is the vector of coe�cients of the trigonometric polynomial xr for the ap-
proximation domain.

1. Quasi-projection for trigonometric polynomials:

(a) Choose N
proj

points to use for the projection of the domain. It is important to
choose a large value for N

proj

, since choosing a small value may cause this algo-
rithm to not work properly. Discretize the interval [0, 2⇡] uniformly with points
t` = 2`⇡/N

proj

.

(b) Using the vector x(j)

r

, calculate the values of the function x
(j)
r (t) at the discretiza-

tion points t`, obtaining the vector x
p

with components xp,` = x
(j)
r (t`).

(c) If all of the components of x
p

exceed a threshold value x
min

then

• Accept the domain with parameterization x(t) = x
(j)
r (cos(t), sin(t)).

(d) Else

• Take the components of the vector x
p

that are less than x
min

, make those
components equal to x

min

and call this new vector x̃
p

.

• Consider the matrix A such that each element alm of A is

a`m =

8

>

<

>

:

1 for m = 1

cos((m� 1)t`) for m = 2, . . . , Nr + 1

sin((m� (Nr + 1))t`) for m = Nr + 2, . . . , 2Nr + 1

where t` are the discretization points. We have that Ax̃
r

= x
p

.
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• Solve for x̃
r

the system
A0Ax̃

r

= A0x
p

. (53)

• Set the vector of coe�cients of the solution as the vector x̃
r

. The components
of this vector become the coe�cients of the new trigonometric polynomial x(j)

r ,
and we obtain the new parameterization x(j) = x

(j)
r (cos(t), sin(t)).

We call this procedure trigonometric quasi-projection and will define the operator
PXNr ,T

: C([0, 2⇡]) ! XNr as the operator that applies this procedure to a parameteri-
zation x(t) = xr(t)(cos(t), sin(t)).

Remark 4.1.1 We can use the quasi-projection in solution spaces with any type of
basis functions, not only trigonometric polynomials. In this case, we just need to
change the matrix A for the chosen basis functions. For example, this procedure also
works with B-spline basis functions. However, we have a better procedure to use with
B-splines that we present next.

2. Projection for B-splines:

(a) If all of the components of the coe�cient vector x(j)

r

exceed a threshold value x
min

then

• Accept the domain with coe�cients vector x(j)

r

.

(b) Else

• Take the components of the vector x
(j)

r

that are less than x
min

, make those
components equal to x

min

and call this new vector x̃(j)

r

.

• Let x̃
r

be the vector of coe�cients of the solution. The components of this
vector become the coe�cients of the new B-spline x

(j)
r , and we obtain the

parameterization x(j) = x
(j)
r (cos(t), sin(t)).

We call this procedure projection for B-splines and will define the operator PXNr ,B
:

C([0, 2⇡]) ! XNr as the operator that applies this procedure to a parameterization

x(j)(t) = x
(j)
r (t)(cos(t), sin(t)).

Summarizing, the second step in our procedure is:
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Step 2: Repeat until stopping criteria are reached:

• Solve for h
r

the linear system

h
r

= Rb,

where

R =

0

@�Ip +



Re

⇣

S

0
x

(j)
r ,1

⌘>
Im

⇣

S

0
x

(j)
r ,1

⌘>
�

2

4

Re

⇣

S

0
x

(j)
r ,1

⌘

Im

⇣

S

0
x

(j)
r ,1

⌘

3

5

1

A

�1

and

b =



Re
⇣

S0
x

(j)
r ,1

⌘>
Im
⇣

S0
x

(j)
r ,1

⌘>
�

2

4

Re
⇣

u1 � S
x
(j)
r ,1 

⌘

Im
⇣

u1 � S
x
(j)
r ,1 

⌘

3

5 .

• Using PXNr
=
�

PXNr ,T
on PXNr ,B

 

, update the parameterization of the domain

x
(j)
r = PXNr

(x(j)
r + hr), with the appropriate projection for the solution space

used.

There are di↵erent stopping criteria that may be used here, among which are:

• The number of iterations realized. Sometimes we would like to stop our procedure
after a certain number of iterations in order to conserve time and resources;

• The magnitude of the residue vector
⇣

u1 � S
x
(j)
r ,1 

⌘

reaches a value ✏
1

, which means

that we obtain our result up to a certain tolerance ✏
1

;

• The di↵erence between the residue on two consecutive steps decreases at a rate smaller
than a value ✏

2

. This means that our method is taking too long to provide a desired
answer if it is going to provide an answer at all.

There are other variations of stopping criteria based on these ideas that can be used in
this problem; for more details look at [19] or [20].

We implement a combination of all of the above stopping criteria for our method in this
step. After we reach our stopping criteria, we set the new approximation of the domain as
x(j+1). We then repeat steps 1 and 2 to obtain a new approximation of the domain until a
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general stopping criterion is reached. We summarize Method B, an alternative implementa-
tion of Johansson and Sleeman’s method, in Algorithm 4.1.1.

Algorithm 4.1.1 Numerical Implementation of Method B

Given the initial guess x
(0)

r

, a scaling factor ⇢ and the measured far-field pattern

u1(x̂
l

) at x̂
l

, for l = 1, . . . , N
ff

on the boundary of the unit circle

1. Repeat while the stopping criteria are not reached:

(a) Use the domain x(j)

and solve

S

x

(j)
r
 = u

inc

for  .

(b) Repeat while the stopping criteria are not reached:

i. Take the regularization parameter

� = kS
x

(j)
r ,1 � u1k

2

,

where u1 is the vector with components equal to u1(x̂
l

), and apply

Step 2 of the two-step procedure described above to obtain an update

for the domain.

ii. Update x
(j)

r

= PXNr
(x

(j)

r

+ ⇢h
r

), where PXNr
is the appropriate pro-

jection for the type of solution space used.

(c) Update x
(j+1)

r

= x
(j)

r

.

Figure 4.2: Implementation of Method B described in Chapter 2 for solving the inverse
problem for an object D with Dirichlet boundary conditions using single frequency far field
pattern measures.

Remark 4.1.2 We choose the order of the penalty term to be p = 1 in our implementa-
tion, which means that our matrix I1 is equivalent to the H1 ([0, 2⇡]). It is possible to choose
p = 0, which would be equivalent to the L2 ([0, 2⇡]) norm.

Remark 4.1.3 We choose � equal to the L2-norm of the residue vector. In this case, we
should be careful to not allow the value of � to grow too much.
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Remark 4.1.4 In [47], the authors propose to choose the regularization parameter � equal
to the L2-norm of the residue in Equation (3).

Remark 4.1.5 In [18], the authors propose taking � to be the L2-norm of the residue to
a power of µ, where µ takes di↵erent integer values. In [23] and other works, the use of a
constant value was proposed.

Remark 4.1.6 One can also use the Levenberg-Marquardt hooking step to choose �. In
this case, we choose an initial � and an ✏�-neighborhood of � to look for the best � that would
minimize the residue at each step. There are di↵erent ways to implement this; see [19; 20].

Remark 4.1.7 For some of our examples, we choose the scaling factor ⇢ equal to 1 in our
implementation of the method. Other choices are possible; see [18]. For other examples we
apply the globalization techniques of Chapter 2. We must keep in mind that if we choose a
value too small for the scaling factor ⇢, the method takes more time to converge and if we
take a value too large, the method may take longer, or may not converge at all.

4.1.2 Numerical results

We present some examples illustrating the implementation of a method for solving the inverse
scattering problem for a single frequency. We choose the examples to illustrate the influence
of the initial guess, the shape of the object that we are reconstructing, the wavenumber of
the incident plane wave, and the solution space used. For all the examples presented in this
chapter, we considered the H1-penalty term.

Example 4.1.1 (Comparison of Methods A and B)

We compare the results of the Methods A and B for the reconstruction of the object D
with parameterization

x(t) = (2 + 0.3 cos(3t))(cos(t), sin(t)), (54)

which we from now on call the “Pear”.

We consider di↵erent scenarios for our comparison of Methods A and B. In all the
scenarios considered, we have an incident wave with wavenumber k and incidence direc-
tion d. The far field data was measured at points uniformly distributed over the circle
x̂l = (cos(✓l), sin(✓l)), for ✓l = 2(l � 1)⇡/Nff , l = 1, . . . , Nff , with Nff = 32. We look for
the solution in the space
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where Nr = 5 and x
min

> 0. The stopping criteria used for both methods are

kS1,x(j) � u1k
2

< ✏ (55)

and
�

�kS1,x(j) � u1k
2

� kS1,x(j�1) � u1k
2

�

� < 10�6. (56)

We use the the stopping criterion (55) to control the absolute value of the error in the
approximation of the far field pattern. The stopping criterion (56) is used to ensure that our
iterations advance toward the solution at a reasonable rate.

For this example, we use wavenumbers k = 1 and k = 3 and di↵erent incidence directions
d = nd⇡/4, where nd = 0, 1, . . . , 4. For the wavenumber k = 1 in all incidence directions,
we use as an initial guess the circle with radius 0.1 centered at the origin, and the stopping
criterion ✏ = 0.25. For the wavenumber k = 3 in all incidence directions, we use as an initial
guess the circle with radius 1.8 centered at the origin, and the stopping criterion ✏ = 0.8.
Throughout this thesis, we use x

min

equal to the radius of the initial guess. Below these
tolerance values, we start to have problems with convergence of the algorithm.

In Table 4.1, we present the number of iterations of the two-step procedure and the CPU
time in seconds necessary for obtaining the solution of the problem using Methods A and B,
with stopping criteria (55) and (56). For Method A this means that for each two-step pro-
cedure iteration we solve the system in (49) and the system in (52) each once. For Method
B, we include in parentheses the number of inner iterations for the the solution of Equation
(52). The number of iterations outside parentheses is the number of times that we solve the
system in (49), and the number inside parentheses is the number of times that we solve the
system in (52). The approximate solutions obtained with both methods were similar.

To calculate the CPU time in seconds, we ran the algorithms with the same conditions
10 times each and took the average time spent to execute the program. We used a computer
with a 2.4 GHz Intel Core i7 processor and 8 GB RAM for the simulations.

As expected, Method B requires in general fewer iterations of Equation (49) than Method
A. Consequently, Method B requires less CPU time than Method A. This is an advantage
since the system in (49) is larger than the system in (52) and consequently its solution re-
quires a greater number of operations.

In Figure 4.3, we present the plot of the residue as a function of the number of iterations
for Methods A and B for each of the scenarios in our example. The residue is calculated
before the two-step procedure in each iteration. Each curve in each figure represents the
residues for a problem with incidence direction d. In Figure 4.3(a), we have the result using
Method A with k = 1. Since the number of iterations for Method A with k = 1 is very high,
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Method A Method B
k Radius ✏ Direction d Iterations CPU time Iterations CPU time

1 0.1 0.25

0 217 143.41 10(34) 5.53
⇡/4 26 16.64 11(38) 6.23
⇡/2 160 109.30 13(43) 7.77
3⇡/4 313 210.01 22(58) 12.63
⇡ 21 14.2 8(33) 4.82

3 1.8 0.8

0 4 7.14 6(19) 11.03
⇡/4 6 10.49 3(10) 5.44
⇡/2 6 10.73 5(14) 9.60
3⇡/4 5 9.10 5(15) 8.94
⇡ 5 8.96 3(10) 5.40

Table 4.1: We compare the number of iterations and CPU time in seconds needed for Methods A and B

to obtain the solution for the Dirichlet scattering problem using the incident plane wave with wavenumbers

k = 1 and k = 3, and incidence direction d = n
d

⇡/4, where n
d

= 0, 1, . . . , 4. For the wavenumber k = 1 in all

incident directions, we use as initial guess the circle with radius 0.1 and ✏ = 0.25, and for the wavenumber

k = 3 in all incident directions, we use as initial guess the circle with radius 1.8 and ✏ = 0.8. The number

of iterations for each method is presented with the respective average CPU time in seconds. For Method B,

the number of iterations necessary for the inner loop is in parenthesis.

we used in this plot the log-10 scale on the x-axis. The result for Method B with k = 1 is
in Figure 4.3(b). The result for Method A with k = 3 is in Figure 4.3(c). The result for
Method B with k = 3 is in Figure 4.3(d).

Example 4.1.2 (Comparison of B-spline and trigonometric polynomial solution
spaces)

In this example we use Method B to solve the inverse problem for di↵erent objects using
two di↵erent solution spaces; the space of B-spline polynomials and the space of trigonometric
polynomials. We compare the solutions obtained by the two types of solution space. The
solution space of trigonometric polynomials is
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,

with N
(1)

r being the number of modes in the trigonometric polynomial, and the solution
space of B-splines is

X(2)

N

(2)
r

=
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r(t) : r(t) =
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X
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)

,

with N
(2)

r being the number of basis functions (which is equal to the number of knots used

for describing the B-spline), and q is the degree of the B-spline. In all of the scenarios of
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5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

Iterations

R
e
s
id

u
e

 

 

d=(1,0)
d=(cos(//4),sin(//4))
d=(0,1)
d=(cos(3//4),sin(3//4))
d=(−1,0)

(b) Method B, k = 1
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(c) Method A, k = 3
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(d) Method B, k = 3

Figure 4.3: Plot of residue versus number of iterations for all the scenarios of this example. Each curve

represents the residue in each iteration for the problem using an incident plane wave with wavenumber k and

incidence direction d using Method A or Method B. (a) Method A with k = 1. (Note here that the x-axis

is on the log-scale for only this figure.) (b) Method B with k = 1. (c) Method A with k = 3. (d) Method B

with k = 3.

this example, we take q = 4.

In all of the scenarios considered in this example, we use the incident plane wave with
wavenumber k = 1 and incidence direction d. The far field data was measured at points uni-
formly distributed over the circle x̂l = (cos(✓l), sin(✓l)), for ✓l = 2(l�1)⇡/Nff , l = 1, . . . , Nff ,
with Nff = 32.

We consider three scenarios:

• In the first scenario, the object that we use as a scatterer has the parameterization
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x(t) = xr(t)(cos(t), sin(t)) and xr : [0, 2⇡] ! R, with xr(t) = (2 + 0.3 cos(3t)). As in
the last example, we call it the Pear. Note that this object is in the solution space
of trigonometric polynomials. For this scenario, the direction of the incident wave is
d = (0, 1). The stopping criterion is (55) with ✏ = 0.1. First, we try to approximate

this object using trigonometric polynomials with N
(1)

r = 5 and a circle with radius 0.1
centered at the origin as an initial guess. The result is shown in Figure 4.4(a). Later,

we try to approximate this object using polynomials of B-splines with N
(2)

r = 12 and
a circle with radius 0.1 centered at the origin as an initial guess. The result is shown
in Figure 4.4(b).

• In the second scenario, the object that we use as a scatterer has the parameterization
x(t) = xr(t)(cos(t), sin(t)) and xr : [0, 2⇡] ! R, with xr(t) =

p

3 cos2(t) + 1. We call
this object the Peanut. Although this object is star-shaped, it is not in the solution
space of trigonometric polynomials. For this scenario, the direction of the incident
wave is d = (cos(⇡/3), sin(⇡/3)). The stopping criterion is (55) with ✏ = 0.1. First, we

try to approximate this object using trigonometric polynomials with N
(1)

r = 5 and a
circle with radius 0.1 centered at the origin as an initial guess. The result is shown in
Figure 4.4(c). Later, we try to approximate this object using polynomials of B-splines

with N
(2)

r = 12 and a circle with radius 0.1 centered at the origin as an initial guess.
The result is shown in Figure 4.4(d).

• In the third scenario, the object that we use as a scatterer has the parameterization
x : [0, 2⇡] ! R2, with

x(t) = (cos(t) + 0.65 cos(2t)� 0.65, 1.5 sin(t)). (57)

We call this object the Kite. This object parameterization is not of the form x(t) =
xr(t)(cos(t), sin(t)), and is neither in the solution space of trigonometric polynomials
nor the B-spline solution space. For this scenario, the direction of the incident wave is
d = (�1, 0). The stopping criterion is (55) with ✏ = 0.1. First, we try to approximate

this object using trigonometric polynomials with N
(1)

r = 20 and a circle with radius 0.3
centered at the origin as an initial guess. The result is shown in Figure 4.4(e). Later,

we try to approximate this object using polynomials of B-splines with N
(2)

r = 40 and
a circle with radius 0.3 centered at the origin as an initial guess. The result is shown
in Figure 4.4(f).

Note that the dimension of both spaces for each of the scenarios is very similar: for the
first two scenarios, the space X(1)

N1
r
has dimension 11 and the space X(2)

N2
r
has dimension 12,

while for the third scenario, X(1)

N1
r
has dimension 41 and the space X(2)

N2
r
has dimension 40.

Looking at the reconstructions of the object for the three scenarios, we conclude that the
solution obtained in the first scenario is very similar to that obtained in the second scenario
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Iterations
Object ✏ Direction d Trig B-spline
Pear 0.1 (0, 1) 48(113) 61(184)

Peanut 0.1 (
p
3/2, 1/2) 44(104) 111(353)

Kite 0.1 (�1, 0) 24(53) 195(525)

Table 4.2: Number of iterations needed for Method B to obtain the solution for the three scenarios

using as solution spaces the space of trigonometric polynomials and the space of B-splines. The number of

iterations needed for the trigonometric polynomial solution space is under the column labeled “Trig”, while

the number of iterations needed for the B-spline solution space is under the column labeled “B-spline”. We

have an incident plane wave with wavenumber k, and incidence direction d. The column labeled “Object”

has the objects used in each one of the three scenarios, the column labeled ✏ has the value used for the

stopping criterion in each one of the scenarios, and the column Direction has the direction of the incident

wave for each one of the scenarios.

using either space. For the third scenario, the solution obtained using the B-spline solution
space has the same quality of the solution obtained using the solution space of trigonometric
polynomials. Since the Kite is not in the solution space of trigonometric polynomials, it
seems that the B-spline can approximate the object more closely.

We present in Table 4.2 the number of iterations of the two-step procedure needed for
obtaining the solution in each of the three scenarios, in the same fashion as it was presented
in Table 4.1 for Method B. For all the scenarios, the approximation using the solution space
of trigonometric polynomials performs better computationally than the solution space of
B-splines. One possible explanation for this is that the objects that we are approximating
are parameterized using trigonometric functions.

Although using the space solution of trigonometric polynomials gives better computa-
tional performance, we still believe that the approach using the solution space of B-splines
has some advantages. Such advantages are compatibility with CAD tools, the chance of
obtaining good approximations for any kind of object despite the expensive computational
cost, and finally the advantage of the B-splines being local functions, which guarantees that
we can locally update some parameters of the object, obtaining better approximations; and
this is not possible with trigonometric functions, since those functions are global in the entire
domain.

Example 4.1.3 (Relation of the frequency and initial guess with the solution)

In this example, we present the influence of the initial guess and frequency of the incident
plane wave on the solution of the problem. We have two scenarios in this example. In each
scenario presented, the far field data was measured at points uniformly distributed over the
circle x̂l = (cos(✓l), sin(✓l)), for ✓l = 2(l � 1)⇡/Nff , l = 1, . . . , Nff , with Nff = 32.
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In the first scenario, we solve the problem for the incident plane wave with wavenumber
k = 0.5 and direction d = (1, 0).

We first consider the object to be the Pear, and we solve the problem using the so-
lution space of trigonometric polynomials with N

(1)

r = 5 and the solution space of B-
splines N

(2)

r = 8 and q = 4. Later, we consider the object with parameterization x(t) =
(2+ 0.4 cos(9t))(cos(t), sin(t)), which we call from now on the 9-gear, and solve the problem

using the solution space of trigonometric polynomials with N
(1)

r = 10 and the solution space
of B-splines N (2)

r = 32 and q = 4. For all tests, we use as an initial guess a circle with center
at the origin and radius 0.5.

We present the result for the reconstruction of the Pear using the solution space of the
trigonometric polynomials in Figure 4.5(a) and the result using the B-splines solution space
in Figure 4.5(b). The result for the 9-gear reconstruction using the solution space of the
trigonometric polynomials can be seen in Figure 4.5(c), while the result using the B-spline
solution space can be seen in Figure 4.5(d).

In the second scenario, we take the incident plane wave with same direction d = (1, 0),
but di↵erent wavenumber k = 5.

For all tests, we use the 9-gear object, and we solve the problem using the solution space
of trigonometric polynomials with N

(1)

r = 10 and the solution space of B-splines N (2)

r = 32
and q = 4. For each of the solution spaces we solve the problem using as initial guess the
circle centered at the origin with radius 0.5, and the circle centered at the origin with radius 2.

We present the result for the reconstruction of the 9-gear using the solution space of the
trigonometric polynomials and as initial guess the circle centered at the origin with radius
0.5 in Figure 4.6(a). In Figure 4.6(b) we have the reconstruction using the same solution
space with the initial guess being the circle centered at the origin with radius 2.

The result for the using the B-splines solution space can be seen in Figure 4.6(c), for the
initial guess being the circle centered at the origin with radius 0.5, and in Figure 4.6(d), for
the initial guess being the circle centered at the origin with radius 2.

Since the method presented is a linearization of Equation (6), the convergence of the
solution to the shape of the object depends on the choice of initial guess. Also, Figures
4.5 and 4.6 indicate that there is a dependence on the magnitude of the wavenumber k, as
expected from Theorem 2.2.3.

It is clear from Figures 4.5(a)–4.5(d) that for low frequencies, we can choose as an initial
guess parameterizations that are not close to the original object and still obtain convergence
for the method. On the other hand, we can see from Figures 4.6(a)–4.6(d) that for higher
frequencies, the initial guess must be closer to the object in order to obtain convergence.
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In the first scenario, where the incident plane wave has wavenumber k = 0.5, and where
we used the circle of radius 0.5 centered at the origin as an initial guess, we were able to
produce fuzzy approximations of the scattered object at low frequencies. In the second sce-
nario where the incident plane wave has wavenumber k = 5, when we used the initial guess
not close enough to object (Figures 4.6(a) and 4.6(c)), the method did not converge; how-
ever, as seen in Figures 4.6(b) and 4.6(d), when we used the initial guess as the circle with
radius 2 centered at the origin, we obtained a relatively detailed reconstruction of the object.

It is clear that if we want to obtain a detailed reconstruction of the object it is necessary
to use several frequencies, which sets the framework for the multi-frequency method shown
in [21].

As expected from Example 4.1.2, the solutions obtained using the trigonometric poly-
nomial solution space and the B-spline solution space are very similar, and can be both
considered good quality reconstructions of the scatterer.

We can conclude that if the initial guess is not close enough to the object, the solution
will not converge to the parameterization of the object D. The region where we choose the
initial guess depends on the frequency used. For low frequencies, we can use solutions that
are not close to the original object and still obtain convergence of the method. This behavior
is summarized in the following table:

Frequency Reconstruction Initial Guess
Lower Fuzzy Simple
Higher Sharp Closer to object

4.2 Inverse scattering problem for multiple frequencies

In the last section, we presented a variation on Johansson and Sleeman’s method, which we
called Method B, for the reconstruction of the shape of the object D using a single frequency.

It is shown in [21] that the scatterer can be reconstructed with a resolution that is pro-
portional to the wavenumber, so for low wavenumbers and consequently low frequencies, we
are able to produce rough approximations of the object, while for higher frequencies, we can
reconstruct the object with detail in the illuminated part.

However, the convergence of our method depends on the frequency of the incident plane
wave and on the initial guess used: see Theorem 3.1 of [23], where the authors used one step
of the Newton method at each frequency. If we are using a lower frequency, we do not need
an initial guess close to the object’s shape, while if we use a higher frequency our initial
guess needs to be closer to the shape of the object.

We verify with our examples in the previous section that the method can provide fuzzy
approximations to the shape of D using as an initial guess a shape that is not very close
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to D when the frequency of the incident plane wave that generates the scattered data is
low enough. At the same time, the method can provide sharp approximations of the object
using data for higher frequencies when provided with an initial guess close to the shape of
the object.

This dependence of the reconstruction on the data frequency led Chen to introduce in
[21] a new approach to the reconstruction of objects using multi-frequency data for the
reconstruction of the object. Chen proposed the RLA method for the potential problem,
which would solve the inverse problem recursively on the frequency of the data. The inverse
scattering problem for sound-soft obstacles was solved in [23] using the RLA. The problem
solved in [23] is:

Problem 2 Given N
total

= Nff ⇥N
inc

far field pattern measures at the Nff points x̂l 2 ⌦,
where ⌦ is the circle of centered at the origin with radius 1, generated by the scattering of the
N

inc

incident plane waves uinc

j (x) = eikjx·d with fixed direction d and varying wavenumbers
kj for j = 1, . . . , N

inc

, where k
1

< k
2

< · · · < kN
inc

by an unknown object D with known
boundary condition, reconstruct the shape of the object D.

The idea of the RLA is that for each single frequency, we would use a Newton method to
solve the inverse scattering problem, as shown in [23]. As we saw in Chapter 2, the Newton
method is very expensive because it requires the solution of several di↵erent direct problems
for the same boundary @D and di↵erent boundary conditions [3]. To overcome this problem
and improve the speed of the method, we propose to use Method B instead of the Newton
method to solve the problem at each frequency.

4.2.1 Numerical implementation of the RLA-B

We present the numerical implementation of the RLA using Method B for each frequency.

Suppose that our data set contains measures of the far field pattern for an object D
at the points x̂l, l = 1, . . . , Nff for di↵erent wave numbers kj, j = 1, . . . , N

inc

, where
k
1

< k
2

< . . . < kNinc . Our idea is to implement Algorithm 4.1.1 from the last section
for each one of the wavenumbers kj, starting from the lowest and going recursively to the
highest.

Choose a solution space XNr and an initial guess x(0). Take x
(0)

k1
= x(0) and apply Al-

gorithm 4.1.1. We obtain an approximate solution x
(sol)

k1
. We make x(1) = x

(sol)

k1
. We repeat

this procedure recursively to obtain Algorithm 4.2.1 in Figure 4.2.1.

Remark 4.2.1 We should not expect to obtain a good approximation in the shadowed part
of the object, since the scattered field of the object goes to zero in that region with increasing
frequency. The shadowed part of the object is the part with the worse approximation.

62



Remark 4.2.2 Although there is not a uniform way to choosing the stopping criteria for
each of the steps, it is possible to use the same stopping criteria for each problem with a fixed
frequency, or to use adaptive stopping criteria dependent on the frequency or the quality of
the approximation.

4.2.2 Numerical results

Example 4.2.1 The multi-frequency Algorithm 4.2.1

We consider four scenarios using the multiple frequency Algorithm 4.2.1. In each of the
scenarios, we consider a scatterer D and multiple incident waves with fixed direction d and
varying wavenumber kj, where j = 1, . . . , N

inc

. We measure the far field data at points uni-
formly distributed over the circle x̂l = (cos(✓l), sin(✓l)), for ✓l = 2(l�1)⇡/Nff , l = 1, . . . , Nff

for each of the wavenumbers kj, j = 1, . . . , N
inc

. We look for the star-shaped solution
x(t) = xr(t)(cos(t), sin(t)) with the radius function xr(t) in the space of trigonometric poly-
nomials

XNr =

(

xr(t)|xr(t) = a
0

+
Nr
X

m=1

(am cos(mt) + bm sin(mt)) , xr(0) = xr(2⇡), xr(t) > x
min

)

.

In all the scenarios, we use as an initial guess the circle centered at the origin with radius 0.1.

• In the first scenario, we consider the object D to be the Kite. The number of incident
plane waves is N

inc

= 8, the incidence direction of the plane waves is d = (�1, 0) and
the wavenumber of each of the waves is kj = 0.5j, where j = 1, . . . , N

inc

. We find the
solution in the space of trigonometric polynomials with degree Nr = 20. In Figure 4.8,
we show the partial result obtained by the method at wavenumbers: (a) k = 0.5, (b)
k = 2, and (c) k = 3.5. In (d), we have the solution for the method using all frequencies.

• In the next scenario, we assume that the object D has parameterization x : [0, 2⇡] !
R2, with x(t) = (2 + 0.4 cos(7t))(cos(t), sin(t)), to which we refer from now on as the
“7-gear”. The number of incident plane waves is N

inc

= 10, the incidence direction of
the plane waves is d = (0, 1), and the wavenumber of each of the waves is kj = 0.5j,
where j = 1, . . . , N

inc

. We choose to look for the solution in the space of trigonometric
polynomials with degree Nr = 10. In Figure 4.9, we show the partial result obtained
by the method at wavenumbers: (a) k = 0.5, (b) k = 2, and (c) k = 3.5. In Figure
4.9(d), we have the solution for the method using all frequencies.

• In the third scenario, we consider the objectD to be the 9-gear. The number of incident
plane waves is N

inc

= 12, the incidence direction of the plane waves is d = (1, 0), and
the wavenumber of each of the waves is kj = 0.5j, where j = 1, . . . , N

inc

. We choose to
look for the solution in the space of trigonometric polynomials with degree Nr = 10.
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In Figure 4.10, we show the partial result obtained by the method at wavenumbers:
(a) k = 0.5, (b) k = 2.5, and (c) k = 4.5. In Figure 4.10(d), we have the solution for
the method using all frequencies.

• In the last scenario, we assume that the object D has a parameterization x : [0, 2⇡] !
R2, with x(t) = (2 + 0.4 cos(15t))(cos(t), sin(t)), to which we refer from now on as the
“15-gear”. The number of incident plane waves is N

inc

= 12, the incidence direction of
the plane waves is d = (1, 0), and the wavenumber of each of the waves is kj = 0.5j,
where j = 1, . . . , N

inc

. We choose to look for the solution in the space of trigonometric
polynomials with degree Nr = 17. In Figure 4.11, we show the partial result obtained
by the method at wavenumbers: (a) k = 0.5, (b) k = 2, and (c) k = 4.5. In Figure
4.11(d), we have the solution for the method using all frequencies.

We also present the plot of the residue as a function of frequency for the multi-frequency
method in Figure 4.12. Each point in the graph is the residue after one iteration of the
two-step procedure. This graph shows the decrease in the residue with the increase of the
frequency, which happens because we are improving the details of the solution in the illumi-
nated part. We see that the residue does not go to zero with increasing frequency; instead,
it seems to stabilize at a value greater than zero. We expect this, since we are not able to
provide a good approximation of the object in the shadowed part and most of the error of
the residue is due to the inaccuracy of the approximation in that part of the object.

We come to the following conclusions:

• As expected, we obtain a detailed reconstruction of the object in the illuminated part.
Unfortunately, the method is not able to obtain a good reconstruction of the shadowed
part of the object.

• We can consider the multiple frequency solution procedure as a preconditioning of the
method. The solution at each lower frequency works as an initial guess for the method
at the next higher frequency.

• To address the problem of not being able to reconstruct the shadowed part of the
object, in the next section we introduce objects that will work as reflectors for the
incident wave, providing information from the shadowed part.

4.3 Inverse scattering problem for multiple frequencies

in the presence of multiple scatterers

In the previous section, we presented our method for the reconstruction of the object using
far field measurements at multiple frequencies. The method seems to provide very detailed
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reconstructions of the illuminated part of the object; however, we are not able to obtain a
sharp reconstruction of the shadowed part of the object. To overcome this problem we follow
the ideas of Sini and Nguyen (work in progress) and use multiple scatterers to reflect the
incident wave back to the shadowed part of the object D.

We presented the implementation of the direct multiple scattering problem in Chapter
3, and we use this implementation in the multifrequency method in the presence of multiple
objects. The method is an extension of the procedures in Section 4.2 with the presence of
multiple objects.

4.3.1 Numerical results

We present an example illustrating the method using data obtained at multiple frequencies
and with introduced obstacles. The examples illustrate the improvement of the reconstruc-
tion of the object in the presence of known scatterers. We solve the same problem as in
Example 4.2.2.

• We repeat the first scenario of the previous example, but this time, instead of hav-
ing only the Kite, we also have two known scatterers: the circle of radius 1 cen-
tered at the point (�6,�6), and the circle of radius 1 centered at the point (�6, 6).
The number of incident plane waves is N

inc

= 8, the incidence direction of the plane
waves is d = (�1, 0), and the wavenumber of each of the waves is kj = 0.5j, where
j = 1, . . . , N

inc

. We choose to look for the solution in the space of trigonometric poly-
nomials with degree Nr = 30. The result is shown in Figure 4.13(a).

• In the next scenario, we consider the object D to be the 7-gear and introduce two
scatterers: the circle of radius 1 centered at the point (6, 7), and the circle of radius 1
centered at the point (�6, 7). The number of incident plane waves is N

inc

= 10, the
incidence direction of the plane waves is d = (0, 1), and the wavenumber of each of the
waves is kj = 0.5j, where j = 1, . . . , N

inc

. We choose to look for the solution in the
space of trigonometric polynomials with degree Nr = 10. In Figure 4.13(b), we have
the solution for the method using all frequencies.

• In the third scenario, we consider the object D to be the 9-gear and introduce two
scatterers: the circle of radius 1 centered at the point (6, 6), and the circle of radius 1
centered at the point (6,�6). The number of incident plane waves is N

inc

= 12, the
incidence direction of the plane waves is d = (1, 0), and the wavenumber of each of the
waves is kj = 0.5j, where j = 1, . . . , N

inc

. We choose to look for the solution in the
space of trigonometric polynomials with degree Nr = 10. In Figure 4.13(c), we have
the solution for the method using all frequencies.
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• In the last scenario, we consider the object D to be the 15-gear and introduce two
scatterers: the circle of radius 1 centered at the point (6, 6), and the circle of radius 1
centered at the point (6,�6). The number of incident plane waves is N

inc

= 12, the
incidence direction of the plane waves is d = (1, 0), and the wavenumber of each of the
waves is kj = 0.5j, where j = 1, . . . , N

inc

. We choose to look for the solution in the
space of trigonometric polynomials with degree Nr = 17. In Figure 4.13(d), we have
the solution for the method using all frequencies.

As in the last example, we also present in Figure 4.14 the graph of the residue as a func-
tion of the frequency for the multifrequency method. Each point in the graph is the residue
after an iteration of the two-step procedure.

This time, we see a decrease in the residue with increasing frequency. This is a conse-
quence of the better approximation to the shadowed part of the object due to the reflection
of the incident plane wave o↵ the known scatterers. Those reflections work as incident waves
in and of themselves, improving the quality of the approximation in the shadowed part of
the object.

We conclude the following:

• We are able to provide good reconstructions of the object. The incident wave reflects
o↵ the scatterers introduced, and this reflected wave illuminates the shadowed parts
of the object, providing us the information necessary for reconstructing these parts.

• We can consider the scatterers as sources for new waves; this is a good opportunity to
obtain more information from the object with the use of fewer sources.
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Figure 4.4: We solve for the Pear using: (a) the space of trigonometric polynomials with N
(1)

r

= 5; and

(b) the space of B-splines with N
(2)

r

= 12. We solve for the Peanut using (c) the space of trigonometric

polynomials with N
(1)

r

= 5; and (d) the solution of B-splines with N
(2)

r

= 12. We solve for the Kite using:

(e) the space of trigonometric polynomials with N
(1)

r

= 20; and (f) the space of B-splines with N
(2)

r

= 40.
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Figure 4.5: Solution of the inverse scattering problem for incident plane wave with wavenumber k = 0.5

and incident direction d = (1, 0) and using as initial guess the circle with center at the origin and radius 0.5.

(a) Using the solution space of trigonometric polynomials to reconstruct the Pear with N
(1)

r

= 5. (b) Using

the solution space of B-splines to reconstruct the Pear with N
(2)

r

= 8 and q = 4. (c) Using the solution

space of trigonometric polynomials to reconstruct the 9-gear with N
r

= 10. (d) Using the solution space of

B-splines to reconstruct the 9-gear with N
r

= 32.
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Figure 4.6: Solution of the inverse scattering problem for incident plane wave with wavenumber k = 0.5

and incident direction d = (1, 0). We reconstruct the 9-gear. (a) Using the solution space of trigonometric

polynomials with N
(1)

r

= 10 and initial guess being the circle with center at the origin and radius 0.5. (b)

Using the solution space of trigonometric polynomials with N
(1)

r

= 10 and initial guess being the circle with

center at the origin and radius 2. (c) Using the solution space of B-splines with N
(2)

r

= 32, q = 4 and initial

guess being the circle with center at the origin and radius 0.5. (d) Using the solution space of B-splines with

N
(2)

r

= 32, q = 4 and initial guess being the circle with center at the origin and radius 2.
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Algorithm 4.2.1 Given the initial guess x

(0)

, and the measured

far-field pattern u

kj
1 at the points x̂

l

, for l = 1, . . . , N
ff

, in the unit disk

for the respective wavenumbers k
j

, j = 1, . . . , N
inc

.

1. For j = 1, . . . , N
inc

:

(a) Use Algorithm 4.1.1 with initial guess x

(0)

kj
= x

(j�1)

and far

field pattern measures u

kj
1. We obtain the result x

(sol)

kj
.

(b) Make x

(j) = x

(sol)

kj
.

Figure 4.7: Implementation of the iterative method for solving the inverse problem for an
object D with Dirichlet boundary conditions using multiple frequencies far field pattern
measures.
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Figure 4.8: Solution of the inverse scattering problem for the Kite using the multi-frequency
method. The incident plane waves have fixed incidence direction d = (�1, 0) and varying
wavenumbers kj = 0.5j, where j = 1, . . . , 8. We use as the initial guess for the multi-
frequency the circle with center at the origin and radius 0.1. The solution space with
trigonometric polynomials of degree Nr = 20 is used for the method. We have the par-
tial solution obtained at the wavenumber: (a) k

1

= 0.5, (b) k
4

= 2, and (c) k
7

= 3.5. In (d),
we have the solution using all frequencies.
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Figure 4.9: Solution of the inverse scattering problem for the 7-gear using the multi-frequency
method. The incident plane waves have fixed incidence direction d = (0, 1) and varying
wavenumbers kj = 0.5j, where j = 1, . . . , 10. We use as the initial guess for the multi-
frequency the circle with center at the origin and radius 0.1. The solution space with
trigonometric polynomials of degree Nr = 10 is used for the method. We have the par-
tial solution obtained at the wavenumber: (a) k

1

= 0.5, (b) k
4

= 2, and (c) k
7

= 3.5. In (d),
we have the solution using all frequencies.
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Figure 4.10: Solution of the inverse scattering problem for the 9-gear using the multi-
frequency method. The incident plane waves have fixed incidence direction d = (1, 0) and
varying wavenumbers kj = 0.5j, where j = 1, . . . , 12. We use as the initial guess for the
multi-frequency the circle with center at the origin and radius 0.1. The solution space with
trigonometric polynomials of degree Nr = 10 is used for the method. We have the partial
solution obtained at the wavenumber: (a) k

1

= 0.5, (b) k
5

= 2.5, and (c) k
9

= 4.5. In (d),
we have the solution using all frequencies.

73



−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−3

−2

−1

0

1

2

3

 

 

Solution k=0.5
Object D

(a) k
1

= 0.5

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−3

−2

−1

0

1

2

3

 

 

Solution k=2
Object D

(b) k
4

= 2

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−3

−2

−1

0

1

2

3

 

 

Solution k=4.5
Object D

(c) k
9

= 4.5

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−3

−2

−1

0

1

2

3

 

 

Solution
Initial guess
Object D

d=(1,0)

(d) k
1

2 = 6

Figure 4.11: Solution of the inverse scattering problem for the 15-gear using the multi-
frequency method. The incident plane waves have fixed incidence direction d = (1, 0) and
varying wavenumbers kj = 0.5j, where j = 1, . . . , 12. We use as the initial guess for the
multi-frequency the circle with center at the origin and radius 0.1. The solution space with
trigonometric polynomials of degree Nr = 17 is used for the method. We have the partial
solution obtained at the wavenumber: (a) k

1

= 0.5, (b) k
4

= 2, and (c) k
9

= 4.5. In (d), we
have the solution using all frequencies.
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Figure 4.12: Graph of the residue versus frequency for the multi-frequency method. We
present the graph for the scenarios in our example for: (a) Kite, (b) 7-gear, (c) 9-gear and
(d) 15-gear. On the y-axis, we have the residue on the log-scale and on the x-axis we have
the frequency. Each point in the graph is the residue after an iteration of the two-step
procedure.
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Figure 4.13: Solution of the inverse scattering problem for: (a) Kite in the presence of two
circles of radius 1 with centers at (�6, 6) and (�6,�6), (b) 7-gear in the presence of two
circles of radius 1 with centers at (�6, 7) and (6, 7), (c) 9-gear in the presence of two circles
of radius 1 with centers at (�6, 6) and (6, 6), and (d) 15-gear in the presence of two circles
of radius 1 with centers at (�6, 6) and (6, 6).
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Figure 4.14: Plot of the residue versus frequency for the multifrequency method in the
presence of known objects. We present the graph for the scenarios in our example for: (a)
Kite in the presence of two circles of radius 1 with centers at (�6, 6) and (�6,�6), (b) 7-gear
in the presence of two circles of radius 1 with centers at (�6, 7) and (6, 7), (c) 9-gear in the
presence of two circles of radius 1 with centers at (�6, 6) and (6, 6), and (d) 15-gear in the
presence of two circles of radius 1 with centers at (�6, 6) and (6, 6). On the y-axis, we have
the residue on the log-scale and on the x-axis we have the frequency. Each point in the graph
is the residue after an iteration of the two-step procedure.
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Chapter 5

A globalization technique for inverse
problems

In this chapter, we present a globalization technique to use with the methods of the previous
section. For frequencies out of the resonance region the initial guess must be very close to
the object that we want to reconstruct; however, most of the time we do not have such a
close initial guess. To address this problem, we introduce in this chapter several globalization
techniques that provide a better initial guess for the methods.

In Section 5.1, we derive (71) to approximate the far field pattern of a strictly convex
object using the Kirchho↵ approximation for the wave scattered by an obstacle (60). This
formula is the basis for the globalization techniques presented in this chapter. Following the
presentation of the formula, we show some numerical results comparing the far field pattern
obtained by the Kirchho↵ approximation formula and the method of integral equations pre-
sented in Chapter 2.

The numerical solution of the direct scattering problem presented in Chapter 3 is very
accurate, as can be seen in [3; 67], but the mesh discretization used is proportional to the
wavenumber k of the incident plane wave. This means that the number of columns and also
rows of the scattering matrix for the domain with parameterization x, S

xr , grows linearly
with k, which means that the problem is more computationally expensive to solve. To avoid
expending computational resources in the solution of the direct scattering problem, we use
the Kirchho↵ approximation for high frequencies. Using the Kirchho↵ approximation for
convex objects on high frequencies, we are able to obtain a formula to calculate directly the
far field pattern without constructing the integral operators Sxr and Sxr,1.

In the Section 5.2, we present a method based on the Kirchho↵ approximation to obtain
a formula to solve the inverse scattering problem. We also apply the method to reconstruct
a circle with radius R and center at the origin and prove that the region of convergence is
proportional to 1/k, where k is the wavenumber of the incident plane wave.

Finally, in Section 5.3, we deal with the following new problem to reconstruct an objectD:
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Problem 3 Given the far field patterns u
kj
1 generated by the scattering of the two incident

plane waves uinc

j (x) = eikjx·d with fixed direction d and wavenumbers ka and kb, where ka < kb,
by an unknown convex object D with homogeneous Dirichlet boundary condition, such that
the wavenumbers ka and kb are not in the resonance region of the object, reconstruct the
shape of D.

As we pointed out previously, for the inverse methods presented in this thesis, as the fre-
quency of the incident plane wave increases, the initial guess should be closer to the object.
Without a good initial guess, we are not able to apply the method presented in Chapter 2.

In order to generate a good initial guess, we present here an idea that can be considered
a globalization technique. We obtain a better initial guess for the object by solving the prob-
lem using data for low frequencies. In Section 5.3.1, we present a procedure based on the
Kirchho↵ approximation formula that allows us to generate far field data for wavenumbers
lower than ka. The data generated has better quality for higher frequencies, and is better
in the illuminated part of the object. In Section 5.3.2, using the data generated by a new
procedure, we present a method to obtain a good initial guess of the illuminated part of the
object. This good initial guess can be used to recover the object using Method B presented
in Chapter 2. We show some numerical results at the end of this chapter.

5.1 Direct problem at frequencies out of the resonance

region for convex objects

5.1.1 The Kirchho↵ approximation formula

We will consider the scattering of an incident plane wave by a strictly convex obstacle D,
where we have a frequency out of the resonance region. In this case, instead of solving inte-
gral equations like (3), we use the Kirchho↵ approximation for the scattered field. Using the
Kirchho↵ approximation for the scattered field together with the stationary phase method
for high oscillatory integrals, we are able to obtain a formula to approximate the far field
pattern of the object. To obtain this approximation, we use a similar approach to [31].

We begin with a few definitions, including those of the illuminated and shadowed parts
of an object.

Definition 5.1.1 Take ⌫(x) to be the outward-pointing vector normal to @D at the point
x 2 @D. The illuminated part of the object D by a wave with incidence direction d is defined
to be

@D+

d = {x 2 @D : d · ⌫(x) < 0} ,
and the shadowed part is defined to be

@D�
d = {x 2 @D : d · ⌫(x) � 0} .
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Definition 5.1.2 Given a plane wave with incidence direction d to a convex object D, the
shadow points of the convex object D are the points x1

s and x2

s such that

d · ⌫(xj
s) = 0, (58)

for j = 1, 2.

As we can see from the definitions, the boundary of the sets @D+ and @D� is comprised
of the shadow points of the convex object D generated by the incident plane wave uinc.

We also have the following definition for a specular point:

Definition 5.1.3 Given an incidence direction z, we define the specular point xz 2 @D+

z

as the point such that

xz · z = min
x2@D+

z

x · z.

Because we consider only convex objects D, the specular point xz is unique.

Supposing that the object D is illuminated by an incident plane wave with direction
z = (z

1

, z
2

), the equation of the line tangent to the resulting illuminated part @D+

z of the
object at the specular point xz is:

z
1

x
1

+ z
2

x
2

= xz · z.

Consequently, we have the following relation for the normal vector at the specular point:

⌫(xz) = �z. (59)

For the case where we have the frequency out the resonance region, we can approximate
the normal derivative of the far field using the Kirchho↵ approximation. In the Kirchho↵
approximation, we have

@u

@⌫
(x) =

(

2@u
inc

@⌫
(x), for x 2 @D+

d

0, for x 2 @D�
d .

(60)

Using the approximation (60) in Equation (52), we obtain:

ukirc

1 (x̂) = � ei⇡/4p
2⇡k

Z

@D+
d

@uinc

@⌫
(x)e�ikx̂·x ds(x). (61)

Substituting the incident plane wave into Equation (61), we obtain:

ukirc

1 (x̂) =
e�i⇡/4

p
kp

2⇡

Z

@D+
d

d · ⌫(x)eik(d�x̂)·x ds(x).
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Parameterizing the set @D with the function x(t) : [0, 2⇡] ! R2, we obtain the integral

ukirc

1 (x̂) =
e�i⇡/4

p
kp

2⇡

Z t+2

t+1

d · ⌫(x(t))eik(d�x̂)·x(t)|x0(t)| dt, (62)

where t+
1

and t+
2

are the boundary points of the domain @D+

d for the parameterization vari-
able t.

Take ⌧ 2 ⇥t+
1

, t+
2

⇤

such that x(⌧) is the specular point of the object illuminated by an
incident plane wave with direction z = d�x̂

|d�x̂| . We have that

⌫(x(⌧)) = � d� x̂

|d� x̂| . (63)

Take the function

g(t) = (d� x̂) · x(t), (64)

therefore its first derivative is

g0(t) = (d� x̂) · x0(t), (65)

and its second derivative is

g00(t) = (d� x̂) · x00(t). (66)

Plugging the specular point x(⌧) into Equation (65) and using (63) we obtain

g0(⌧) = (d� x̂) · x0(⌧)

= ⌫(x(⌧)) · x0(⌧)|d� x̂|
= 0.

We call ⌧ , where g0(⌧) = 0, the stationary point of the function g(t). Since the object D
is convex, ⌧ is the unique non-degenerate stationary point of g(t) on the illuminated part of
the object, which means that g0(⌧) = 0, and g00(⌧) 6= 0.

The integral in Equation (62) has a high oscillatory kernel with the exception of the region
around the stationary point. To solve this integral, we use the stationary phase method [32].
We have the following theorem about the stationary phase method [32] that will be used to
obtain our formula for the far field pattern of the object D:

Theorem 5.1.1 Suppose g(t) is a C2([0, 2⇡]) function, g00(t) 6= 0, and g0(⌧) = 0, where ⌧
is the stationary point. Then

Z b

a

f(t)eikg(t) dt = f(⌧) exp



ikg(⌧) +
i⇡

4

g00(⌧)

|g00(⌧)|
�

s

2⇡

k|g00(⌧)|


1 +O
✓

1

k

◆�

,

as k ! 1.
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Proof: See [32]. ⇤

The strict convexity of D implies that ⌧ is the unique point where g(t) attains a minimum
in the illuminated part of the object, and that

g00(⌧)

|g00(⌧)| = 1. (67)

Applying the theorem above on Equations (62) and (67), we obtain

ukirc

1 (x̂) =
d · ⌫(x(⌧))

p| (d� x̂) · x00(⌧)| |x
0(⌧)|eik(d�x̂)·x(⌧) ⇥1 +O �k�1

�⇤

, (68)

as k ! 1.

Because d · d = x̂ · x̂ = 1, we have

(d� x̂) · x̂ = � (d� x̂) · d.

We also have
2d · (d� x̂) = |d� x̂|2. (69)

Using (63) and (69) in (68), we get from [70]

ukirc

1 (x̂) = �1

2

s

|d� x̂|
|� ⌫(x(⌧)) · x00(⌧)|e

ik(d�x̂)·x(⌧)|x0(⌧)| ⇥1 +O �k�1

�⇤

.

We define the curvature of a smooth curve @D as

(t) = �⌫(x(t)) · x
00(t)

|x0(t)|2 . (70)

Using (70), we can write the following approximation ũ1(x̂) ⇡ ukirch

1 (x̂) of the far field
pattern:

ũ1(x̂) = �1

2

s

|d� x̂|
(⌧)

eik(d�x̂)·x(⌧), (71)

as k ! 1. From now on, we use ũ1 to refer to the far field pattern obtained using the
Kirchho↵ approximation.
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We define the far field operator K(x; x̂) : Xc ⇥ ⌦ ! L2(⌦) for frequencies out of the
resonance region as

K(x; x̂) = �1

2

s

|d� x̂|
(⌧)

eik(d�x̂)·x(⌧), (72)

where the domain is parameterized by x 2 Xc, where Xc is the set of parameterizations of
convex obstacles, and ⌦ is the unit circle with center at the origin. In this chapter, to keep
notation consistent with the other chapters, we abuse notation by writing K(x; x̂) = Kxr(x̂)
every time we use a star-shaped domain with parameterization x(t) = xr(t)(cos(t), sin(t)).

5.1.2 Numerical implementation and results

We present examples comparing the Kirchho↵ approximation with the Nyström method
presented in Chapter 3 applied to di↵erent objects at di↵erent frequencies. In all scenarios
presented, the incident plane wave has a relatively high wavenumber compared to the ob-
ject’s size, and it illuminates the convex part of the object.

Example 5.1.1 Comparison of the Nyström method and the Kirchho↵ approximation

In this example, we have the following configuration: a plane wave with direction d and
wavenumber k is incident at a convex object D. We calculate the far field pattern at the
points x̂l = 2⇡(l � 1)/Nff , for l = 1, . . . , Nff using the Kirchho↵ approximation (72) and
the Nyström method as in Chapter 3. Since we want to see detailed graphs of the far field
pattern, we pick Nff = 640.

We present three scenarios:

• In the first scenario, the object D is the unit circle centered at the origin, to which we
refer as S1, and the plane wave has the incidence direction d = (1, 0) and wavenumber
k = 10. We present the results in Figure 5.1. In Figures 5.1(a) and 5.1(b), the real
and imaginary parts of the far field pattern for the two solutions are presented, in blue
we have the solution given by the Nyström method and in red we have the solution
given by the Kirchho↵ approximation. In Figures 5.1(c) and 5.1(d), the absolute value
of the di↵erence of the real and imaginary parts of the solution given by the Nyström
method and the Kirchho↵ approximation is shown. Note that in Figures 5.1(c) and
5.1(d) the y-axis uses the log scale.

• In this scenario, the object D has the parameterization x : [0, 2⇡] ! R2, with x(t) =
(3 + 0.15 cos(3t))(cos(t), sin(t)). For the sake of simplicity we call this object the Egg.
The incidence direction and wavenumber are d = (1, 0) and k = 10. In Figure 5.2, we
have the results for this scenario. In Figures 5.2(a) and 5.2(b), the real and imaginary
parts of the far field pattern for the two solutions are presented: in blue we have the
solution given by the Nyström method and in red we have the solution given by the
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(a) Re(u1), D = S1, k = 10, d = (1, 0)

0 1 2 3 4 5 6−1

−0.5

0

0.5

1

1.5

2

2.5

 

 

Solution Chapter 2
Kirchoff approximation

(b) Im(u1), D = S1, k = 10, d = (1, 0)
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(c) Di↵erence of Re(u1) for Nyström and Kirch-
ho↵
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(d) Di↵erence of Im(u1) for Nyström and Kirch-
ho↵

Figure 5.1: Comparison of the far field pattern obtained for the circle S1 with k = 10 and d = (1, 0) by

the Nyström method and by the Kirchho↵ approximation. In (a) and (b) we have respectively the real and

imaginary parts of the far field pattern, where blue is used for the Nyström method and red for the Kirchho↵

approximation. In (c) and (d) we have respectively the absolute value of the di↵erence between the real and

imaginary parts of the solutions given by the Nyström method and the Kirchho↵ approximation. Note that

we have a log scale on the y-axis of the graphs.

Kirchho↵ approximation. In Figures 5.2(c) and 5.2(d), the absolute value of the dif-
ference of the real and imaginary parts of the solution given by the Nyström method
and the Kirchho↵ approximation are shown. Note that in Figures 5.2(c) and 5.2(d)
the y-axis uses the log scale.

• Finally, we take the non-convex object D to be the Kite, and we assume an incident
plane wave with incidence direction d = (�1, 0) and wavenumber k = 20. We note
that the illuminated part goes from t = ⇡/2 to t = 3⇡/2, and this part of the Kite
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(a) Re(u1), D=Egg, k = 10, d = (1, 0)
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(b) Im(u1), D=Egg, k = 10, d = (1, 0)
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(c) Di↵erence of Re(u1) for Nyström and Kirch-
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Figure 5.2: Comparison of the far field pattern obtained for the Egg with k = 10 and d = (1, 0) by the

Nyström method and by the Kirchho↵ approximation. In (a) and (b) we have respectively the real and

imaginary parts of the far field pattern, where blue is used for the Nyström method and red for the Kirchho↵

approximation. In (c) and (d) we have respectively the absolute value of the di↵erence between the real and

imaginary parts of the solutions given by the Nyström method and the Kirchho↵ approximation. Note that

we have a log scale on the y-axis of the graphs.

is convex. The results are in Figure 5.3. In Figures 5.3(a) and 5.3(b), the real and
imaginary parts of the far field pattern for the two solutions are presented: in blue we
have the solution given by the Nyström method and in red we have the solution given
by the Kirchho↵ approximation. In Figures 5.3(c) and 5.3(d), the absolute value of the
di↵erence of the real and imaginary parts of the solution given by the Nyström method
and the Kirchho↵ approximation is shown. Note that in Figures 5.3(c) and 5.3(d) the
y-axis uses the log scale.
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(a) Re(u1), D=Kite, k = 20, d = (�1, 0)

0 1 2 3 4 5 6−1

0

1

2

3

 

 

Solution Chapter 2
Kirchoff approximation

(b) Im(u1), D=Kite, k = 20, d = (�1, 0)
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(c) Di↵erence of Re(u1) for Nyström and Kirch-
ho↵
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Figure 5.3: Comparison of the far field pattern obtained for the Kite with k = 20 and d = (�1, 0) by

the Nyström method and by the Kirchho↵ approximation. In (a) and (b) we have respectively the real and

imaginary parts of the far field pattern, where blue is used for the Nyström method and red for the Kirchho↵

approximation. In (c) and (d) we have respectively the absolute value of the di↵erence between the real and

imaginary parts of the solutions given by the Nyström method and the Kirchho↵ approximation. Note that

we have a log scale on the y-axis of the graphs.

We see from Figures 5.1, 5.2 and 5.3 that the Kirchho↵ approximation yields good results
in the illuminated part of the object, and its accuracy deteriorates in the shadowed part of
the object. We observe that the Kirchho↵ approximation works only for convex objects, or
in problems such that the part of the object illuminated by the incoming plane wave is convex.
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5.2 Inverse problems using the Kirchho↵ approxima-

tion formula

5.2.1 Inverse problem for single frequency using the Kirchho↵ ap-
proximation formula

In Section 5.1, we follow the steps of [31; 71] and use the Kirchho↵ approximation for the
scattered field and the stationary phase method for highly oscillatory integrals to obtain
formula (72) that allows us to calculate an approximation ũ1 of the far-field pattern of the
convex object D, which has great accuracy for frequencies out of the resonance region in the
illuminated part of the object, as was shown in Example 5.1.2.

In this section, we present an algorithm based on the far field pattern approximation
formula (72) for the reconstruction of the shape of the convex object D using the far field
pattern measured u1 at the points x̂l 2 ⌦+, for l = 1, . . . , Ñff , where ⌦+ ⇢ ⌦ and ⌦+ is
the set where the approximation formula of the far field pattern (72) can be used to obtain
a good approximation of the far field pattern. This means that we expect that the higher
the wavenumber, the smaller is the set ⌦+.

The algorithm proposed is an iterative two-step procedure. For the sake of simplicity, we
refer to this method based on the Kirchho↵ approximation formula as Method C.

Before describing Method C, we need to define the solution set for the domains that we
use in this problem. We define the space of strictly convex domains XNr,c ⇢ XNr such that

XNr,c = {xr : [0, 2⇡] ! R | xr(t) 2 XNr , (t) > 0 and xr(t) > 0, t 2 [0, 2⇡]} ,

where (t) is the curvature of the the domain @D with parameterization

x(t) = xr(t)(cos(t), sin(t)).

The outline of Method C for the inverse scattering problem is as follows:

1. Choose an initial guess @D(0) with parameterization x(0) = x
(0)

r (cos(t), sin(t)), with

x
(0)

r 2 XNr,c.

2. Repeat until the stopping criterion is reached:

(a) Use the two-step procedure based on Equation (72) with the parameterization

x(j) = x
(j)
r (cos(t), sin(t)), with x

(j)
r 2 XNr,c to obtain a new parameterization of

the domain x(j+1) = x
(j+1)

r (cos(t), sin(t)), updating x(j), such that x(j+1)

r 2 XNr,c.

Next, we describe the two-step procedure used by Method C:
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1. Suppose we have a parameterization x(j)(t) = x
(j)
r (t)(cos(t), sin(t)) approximating the

boundary @D. We calculate the specular points x(j)(⌧l) 2 x(j) for the vectors zl =
d�x̂l
|d�x̂l|

,

l = 1, . . . , Ñff , solving the problem

⌧l = argmin
⌧2@D+

zl

x(j)(⌧) · d� x̂l

|d� x̂l| , (73)

where @D+

zl
is the part illuminated by the vector zl. Since we are looking for the spec-

ular point on the illuminated part of a strictly convex object with boundary @D(j), the
solution for (73) is unique.

2. In the next step, using the specular points x(j)(⌧l) of the curve x(j) for the vectors
d�x̂l
|d�x̂l|

, define the residue function r̃ : XNr,c ! L2(⌦) as

r̃(xr) = Kxr(x̂)� u1(x̂),

where x(t) = xr(t)(cos(t), sin(t)), and the functional

f̃(xr) =
1

2
kr̃(xr)k2L2

(⌦)

.

We solve the following problem:

min
xr2XNr,c

f̃(xr), (74)

where XNr,c is the set of trigonometric polynomials for convex domains.

As we see, the two-step procedure of Method C is computationally much less expensive
than the two-step procedure used for Methods A and B. Finding the roots in the first
step of Method C is computationally less expensive than solving the integral equations
(3) for the first step of Methods A and B.

This problem is nonlinear, so instead of minimizing the function f̃(x), we minimize the

first order approximation around x
(j)
r ,

M̃ (j)(xr) = K
x
(j)
r

+ J̃(x(j)
r )(x� x(j)), (75)

where M̃ (j) : XNr,c ! L2(⌦) is the first-order model approximation of f̃ and J̃(x(j)
r ) is

the Fréchet derivative of Kxr with respect to the domain x(j).

To obtain the linear approximation of r̃(xr) around x
(j)
r , we have the following theorem:

Theorem 5.2.1 Suppose the curvature of the boundary of the scatterer @D is greater
than zero in the illuminated part @D+, which means that the part of the object illumi-
nated by the incoming plane wave is convex. The domain derivative of (72) considering
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the specular points to be fixed is given by

@x (Kx(x̂))h = �
p|d� x̂|

2
eik(d�x̂)·x(⌧)

(

ik [(d� x̂) · h]
p|(⌧)| +

3

2

x0 · h0
p|x0

1

x00
2

� x0
2

x00
1

||x0|

+
|x0|3/4
2

h00 · (x0
2

,�x0
1

) + x00 · (h0
2

,�h0
1

)

(x0
1

x00
2

� x0
2

x00
1

)3/2

)

, (76)

where x(t) = (x
1

(t), x
2

(t)), @x represents the domain derivative operator, and h =
(h

1

, h
2

) is very small.

Proof: Apply the definition of the Fréchet derivative, and the result follows from a
long series of calculations. ⇤

Approximating f̃(xr) by f(xr), where f(xr) is the right hand side of Equation (75),
we obtain the problem

min
xr2XNr,c

f(xr). (77)

The operator obtained using several values of x̂l is ill-posed. We must use a regular-
ization technique like in the previous section to solve Equation (77). Instead of solving
Equation (77), we define the Tikhonov functional

f(xr) =
1

2
kM̃ (j)(xr)k2L2

(⌦)

+
1

2
�kx� x(j)k2H1

(⌦)

,

where x(t) = xr(t)(cos(t), sin(t)), and solve the following problem:

min
xr2XNr,c

f(xr), (78)

where � > 0 is a regularization parameter, chosen such that the problem is not ill-posed.

In the same fashion as for Method B, to solve (78) we use a Gauss-Newton method
and obtain the update for each step

hr = �
⇣

J̃(x(j)
r )⇤J̃(x(j)

r ) + �(j)Ip
⌘�1

J̃(x(j)
r )⇤r̃(x(j)

r ), (79)

where Ip is the identity operator for the Hp-norm.

After finding hr, we must update x(j)
r = x

(j)
r +hr, but as there is no guarantee that the

new parameterization obtained by the polynomial x(j)
r + hr will yield a convex object,

we must project the obtained result onto the space XNr,c. We define the operator
PXNr,c

: XNr ! XNr,c as

PXNr,c
(x(j)

r + hr) 2 XNr,c.

The implementation of this operator is showed in detail in the next section.

We update the domain, setting x
(j)
r = PXNr,c

(x(j)
r + hr).
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5.2.2 Numerical implementation of Method C

Suppose we know the measures u1(x̂l) of the far field pattern at the points x̂l 2 ⌦, for
l = 1, . . . , Nff , where ⌦ is the unit circle. First, we show how to numerically implement the
two step procedure of Method C.

Assume that the object D can be parameterized x(j)(t) = x
(j)
r (t)(cos(t), sin(t)), with

x
(j)
r (t) 2 XNr,c.

1. For the first step, we solve Equation (73) to find the specular point for the vectors

zl =
d� x̂l

|d� x̂l| .

We find the shadow boundary points xl,s1 and xl,s2 , such that

⌫(xl,sj) · zl = 0,

for j = 1, 2. To solve this equation, we can apply a root-finding method, like the
secant method, the Newton method or the bisection method. We uniformly discretize
the domain [0, 2⇡] with the points tn = n2⇡/Nn. We apply this division of the domain
[0, 2⇡] in subintervals, and in each subinterval, we use the bisection method to verify
the existence of a root, followed by a Newton method on those intervals with roots.
Finding the two roots of the equation, we obtain the set @Dzl

+. This gives us our
constraint set for (73).

Since we are looking for the minimum of the function

x(j)(⌧) · d� x̂l

|d� x̂l| , (80)

we set its derivative equal to zero and find the root of the equation

�

x(j)
�0
(⌧) · d� x̂l

|d� x̂l| = 0. (81)

Once we obtain the roots for Equation (81) we apply our constraint that the point
must be in @D+

zl
. Since the object is strictly convex, our solution will be the unique

point x(⌧l) for each vector zl.

2. For the second step, we solve Equation (79) for each of the vectors zl and the respective
specular points ⌧l. This will give a total of Ñff equations. Putting those equations
together, we obtain the linear system

⇣

J̃(x(j)

r

)⇤J̃(x(j)

r

) + �(j)Iph
r

⌘

= �J̃(x(j)

r

)⇤r̃(x(j)

r

),

where
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• x
(j)

r

= (a(j)
0

, a
(j)
1

, . . . , a
(j)
Nr
, b

(j)
1

, . . . , b
(j)
Nr
) is the vector that has as components the

coe�cients of the polynomial x(j)
r (t) = a

(j)
0

+
PNr

n=1

⇣

a
(j)
n cos(nt) + b

(j)
n sin(nt)

⌘

;

• Ip is the matrix of the Hp-norm as in Chapter 4;

• r̃(x(j)

r

) is the vector with components r̃(x(j)
r (⌧l)), where ⌧l is the specular point for

zl for l = 1, . . . , Ñff ;

• J̃(x(j)

r

) is the Ñff ⇥Nr matrix with elements jln, where jln refers to the derivative
at the point ⌧l, l = 1, . . . , Ñff of the function related to the coe�cients of the
trigonometric polynomial x(j)(t), where n = 1, . . . , 2Nr + 1, as follows:

– n = 1 refers to the constant function 1;

– n = 2, . . . , Nr + 1 refers to the terms cos(nt); and

– n = Nr + 2, . . . , 2Nr + 1 refers to the terms sin(nt); and

• J̃(x(j)

r

)
⇤
is the adjoint matrix of J̃(x(j)

r

).

With respect to the projection operator PXNr,c
, we implement a heuristic algorithm to

obtain a convex parameterization for the domain @D(j). The procedure is the following:

• We discretize the domain [0, 2⇡] with N
obj

points, getting tm = m2⇡/N
obj

, for
m = 1, . . . , N

obj

� 1.

• Next, we obtain the points x(j)(tm) = x
(j)
r (tm)(cos(tm), sin(tm)), using the points

tm. Let us say that we obtain an N
obj

⇥ 2 matrix where the first column has
respectively the values of the x and y coordinates of the points x(j)(tm).

• We apply the MATLAB function convhull to obtain the convex hull of the points
x(j)(tm) 2 R2. This function uses the the quickhull algorithm, of which a de-
tailed description can be found in [72]. The convhull function gives us the points
that form the convex hull of the domain @D(j); this set of points, called CV(@D(j)),
forms a subset of the original set of points x(j)(tm).

• We create the N
obj

⇥2 matrix P, with elements such that if x(j)(tm) 2 CV(@D(j)),

then Pm,1 = x
(j)
r (tm) cos(tm) and Pm,2 = x

(j)
r (tm) sin(tm). For the components

such that x(j)(tm) /2 CV(@D(j)), we make a linear extrapolation of the points. In
detail, if we have two consecutive points in the convex hull x(j)(tm1) and x(j)(tm2),
we perform the following:

– If tm2 = tm1 + 2⇡/N
obj

, we do not take any action.

– If tm2 > tm1 + 2⇡/N
obj

, we calculate the number of the initial x(j)(tm) points
that are not included in the set CV(@D(j)). Say we have Ñ

obj

points between
the points tm1 and tm2 . Since we have a star-shaped object, there is a one-to-
one relation between the Ñ

obj

points that are not in the set CV(@D(j)) and
the straight line between the points x(j)(tm1) and x(j)(tm2). We call those
points x(j)(tm), from m = m

1

+1, . . . ,m
2

� 1. Finally, we set for those points
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Pm,1 = x(j)
r (tm) cos(tm) and Pm,2 = x(j)

r (tm) sin(tm).

• Given the polynomial x̃(j)
r (t) = a

0,p+
PNr

m=1

(am,p cos(mt) + bm,p sin(mt)), we have

the equations x̃(j)
r (tm) cos(tm) = Pm,1 and x̃

(j)
r (tm) sin(tm) = Pm,2, that give a sys-

tem of 2N
obj

equations in Nr variables, the coe�cients of the polynomial x̃(j)
r . To

solve this system, we use the least squares method. (Remembering to always use
N

obj

> Nr.)

Remark 5.2.1 This algorithm does not necessarily give us a convex object. If we
want to improve the results, we can apply this algorithm iteratively, until we are satis-
fied with the result. A problem with this algorithm occurs when we try to approximate
the points Pm by the trigonometric polynomial x̃(j)

r . It is very di�cult to control the
oscillatory behavior of the trigonometric polynomial. To overcome this problem, one
can use a trigonometric polynomial with a low Nr. Again, there is no guarantee that
the object obtained is convex.

Remark 5.2.2 Another choice is to use B-splines instead of using trigonometric poly-
nomials. The results obtained su↵er from the same problem as those obtained using
trigonometric polynomials. We believe that is possible to obtain a better projection al-
gorithm using B-splines, but it would be necessary to develop a CAD tool to generate
convex objects.

Remark 5.2.3 With respect to the choice of the parameter �, we advise choosing the
residue times 2✏x̂/Nff .

After presenting the two-step procedure, we summarize Method C.

Algorithm 5.2.1 (Method C)

1. Choose an initial guess for the domain @D(0)

with a parameteri-

zation x(0) = x
(0)

r

(cos(t), sin(t)).

2. Repeat the two-step procedure to update x

(j+1) = P

Nr,c(x
(j) + h

r

)

until the stopping criteria are reached.

Figure 5.4: Implementation of the iterative method for solving the inverse problem for
an object D with Dirichlet boundary conditions using single frequency far field pattern
measures.
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Remark 5.2.4 With respect to the stopping criteria, the same ones used in the previous
chapters can be applied. Another criterion that can be applied is that if the quality of the
approximation decreases in a certain number of steps, which means that the residue increases
in those steps, we could stop the method.

5.2.3 The special case of the circle with fixed center

We consider the special case in which the object D that we try to reconstruct is the circle of
radius R and center at the origin. We choose the initial guess to solve this problem as the
circle with parameterization x(0) = x

(0)

r (cos(t), sin(t)), where we have x
(0)

r = a
(0)

0

2 R. We
search for the solution in the space

X
0

= {xr(t)(cos(t), sin(t)) : xr(t) = a
0

2 R} . (82)

Since we are looking for solutions in the space of circles, the solution of the Equation (73) is
constant and equal to

⌧l =
d� x̂l � ⇡

2
+ n⇡, (83)

where n 2 Z, x(j)(⌧l) 2 @D(j),+, for l = 1, . . . , Nff , where @D(j),+ is the illuminated part of
the object @D(j) by the vector with direction zl =

d�x̂l
|d�x̂l|

.

Since the specular points are the same in all steps, the method becomes only the solution
of the second step of the two-step procedure. The problem becomes the application of the
Newton method for a one dimensional parameter.

The curvature of the object is constant and equal to 1/a(j)
0

. We also have that

(d� x̂l) · y(⌧) = �2a(j)
0

cos(n⇡) cos(✓l) sin

✓

✓d � ✓l
2

◆

, (84)

where ✓d = arctan(d), ✓l = arctan(x̂l) and n 2 Z.

Using (83) and (84), the operator Kx at the point x̂l becomes

Kxr(x̂l) = �1

2

q

a
(j)
0

|d� x̂l|e�ik2a
(j)
0 cos(n⇡) cos(✓l) sin

⇣
✓d�✓l

2

⌘

,

and its derivative Jxr = @x (Kxr) with respect to the domain variable is

J
x

(j)
r
(x̂) = �A(x̂, d)e

�ik2a

(j)
0 cos(n⇡) cos(✓l) sin

⇣
✓d�✓l

2

⌘
2

4

1

2

q

a
(j)

0

� 2ik cos(n⇡)

q

a
(j)

0

cos(✓
l

) sin

✓

✓
d

� ✓
l

2

◆

3

5 ,

where

A(x̂, d) =

p|d� x̂l|
2

.
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Since we seek the radius of the circle, we must restrict our search to a positive real value.
We have Nff measures for the far field pattern u1 of the object, and as each measure is in
C, this constitutes 2Nff equations for our problem in R. This gives us an overdetermined
system of equations. The real and imaginary parts of the operator Jx(j)(x̂) are

Re
⇣

J
x
(j)
r

⌘

(x̂) = �A(x̂, d)



cos(2rk cos(n⇡))

2
p
r

� 2k cos(n⇡)
p
r sin(2rk cos(n⇡))

�

,

and

Im
⇣

J
x
(j)
r

⌘

(x̂) = A(x̂, d)



sin(2rk cos(n⇡))

2
p
r

+ 2k cos(n⇡)
p
r cos(2rk cos(n⇡))

�

,

for any x̂. If we take the real and imaginary parts of J
x
(j)
r
(x̂) for all x̂l, we obtain a vector

with 2Nff components.

Remark 5.2.5 As we are approximating the object by a circle at each step, it is not nec-
essary to project the solution into a convex object.

Suppose our incident plane wave has direction d = (1, 0). Since we are looking only for
one variable (the radius), it su�ces to use one measure of the far field pattern; then we take
Nff = 1. We use the measure of the far field pattern at x̂

1

= (�1, 0), which gives us a
system of two equations and one unknown. For this problem, z

1

= (1, 0), and its specular
point is ⌧

1

= ⇡.

In this particular setting, we prove a result relating the frequency of the incident wave to
the size of the region where we choose our initial guess and obtain convergence to the right
solution with the method. We start by presenting a general result by Kantorovich for the
Newton method:

Theorem 5.2.2 (Newton-Kantorovich)
Let X and Y be Banach spaces and F : D ⇢ X ! Y . Suppose that on an open convex set
D

0

⇢ D, F is Fréchet di↵erentiable and

kF 0(x)� F 0(y)k  Lkx� yk, x, y 2 D
0

. (85)

For some x
0

2 D
0

, assume that �
0

⌘ [F 0(x
0

)]�1 is defined on all of Y and that h ⌘ �L⌘ 
1/2, where k�

0

k  � and k�
0

Fx
0

k  ⌘. Set

t⇤ =
1

�K

⇣

1�p
1� 2h

⌘

t⇤⇤ =
1

�K

⇣

1 +
p
1� 2h

⌘

and suppose that S = {x|kx� x
0

k  t⇤} ⇢ D
0

. Then the Newton iterates xk+1

= xk �
[F 0(xk)]

�1, k = 0, 1, . . ., are well defined, lie in S, and converge to a solution x⇤ of Fx = 0
that is unique in D

0

\ {x|kx
0

� xk < t⇤⇤}. Moreover, if h < 1/2, the order of convergence is
at least quadratic.
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Proof: The proof can be found in [73–75]. ⇤

For the sake of notation, let us define the operator K : I ⇢ R+ ! R such that

K(x) = (Re (Jx))
2 + (Im (Jx))

2 .

From simple calculations we have that

K(x) =
1

2

✓

1

4x
+ 4k2x

◆

.

We have the following lemmas regarding properties of the function K:

Lemma 5.2.1 For the function K in the open convex set I = [a, b], where a, b > 0, the
following inequality holds:

|K(x)�K(y)|  L|x� y|, (86)

where

L =
1 + 32k2a2b

8a2
. (87)

Proof: We have that

|K(x)�K(y)| =
1

2

�

�

�

�

1

4x
+ 4k2x2 �

✓

1

4y
+ 4k2y2

◆

�

�

�

�

 1

8

�

�

�

�

1

x
� 1

y

�

�

�

�

+ 2k2

�

�x2 � y2
�

�

 1

8|xy| |x� y|+ 2k2 |x+ y| |x� y|


✓

1

8|xy| + 2k2 |x+ y|
◆

|x� y| .

⇤
Lemma 5.2.2 Consider �

0

= [K(x
0

)]. We have the following inequality regarding �
0

in
the open convex set I = [a, b], where a, b > 0, for the point x

0

2 D:

�  1

2x
0

k2

,

where � = |�
0

|.
Proof: We have that

|�
0

| =
�

�

�

[K(x
0

)](�1)

�

�

�

=
8x

0

1 + 16k2x2

0

 1

2k2x
0

.

⇤
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Lemma 5.2.3 For the far field pattern ũ1(x̂), its Euclidean norm kũ(x̂)k, and the function

F (x) =
⇥

Re (Jx) Im (Jx)
⇤



Re (K(x)� ũ1)
Im (K(x)� ũ1)

�

,

we have that k�
0

F (x
0

)k  ⌘, where

⌘ =
1

2k2x
0

"

1

4
+ kx

0

+

 p
2

4
p
x
0

+ k
p
2r

!

kũx̂k
#

.

Proof: The proof follows from Lemma 5.2.2 and the fact that

k�
0

Fx
0

k 
"

1

4
+ kx

0

+

 p
2

4
p
x
0

+ k
p
2r

!

kũx̂k
#

. (88)

⇤

Suppose that the object D is a circle of radius R centered at the origin. We have the
following theorem concerning our method.

Theorem 5.2.3 The size of the interval S on which the presented method converges is
O(1/k).

Proof: We apply Lemmas 5.2.1, 5.2.2, 5.2.3 and simple calculations to the formulas for t⇤

and t⇤⇤ in the Newton-Kantorovich Theorem.

We have that �L = O(1) and h ⌘ �L⌘ = O(1/k). Using this in the formulas for t⇤ and
t⇤⇤, and using the Taylor expansion series for the square roots, we obtain

t⇤ = O
✓

1

k

◆

,

and

t⇤⇤ = C �O
✓

1

k

◆

,

where C is a real constant. ⇤

Next, we present an example showing the dependence of the interval of convergence of
Method C on the inverse of the wavenumber.

Example 5.2.1 Checking the influence of the wavenumber on the interval of convergence.

To illustrate the dependence of the convergence interval on the wavenumber of the incidence
plane wave, consider the following scenario. The object D that we want to reconstruct is
the circle with center at the origin and radius R. The incident plane wave has wavenumber
k and incidence direction d = (1, 0). We have one far field pattern measure at the point
x̂
1

= (�1, 0). We consider two types of measures for the far field pattern: u1 given by the
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k Radius = 1 Radius = 2 Radius = 4 Radius = 8
1 (0.00,2.57) (0.66,3.57) (2.50,5.57) (6.46,9.57)
2 (0.33,1.78) (1.25,2.78) (3.23,4.78) (7.22,8.78)
4 (0.63,1.39) (1.62,2.39) (3.61,4.39) (7.61,8.39)
8 (0.81,1.19) (1.81,2.19) (3.81,4.19) (7.81,8.19)
16 (0.90,1.10) (1.90,2.10) (3.90,4.10) (7.90,8.10)
32 (0.95,1.05) (1.95,2.05) (3.95,4.05) (7.95,8.05)

Table 5.1: We consider the reconstruction of the circle with radius R and center at the
origin. We have the far field at the point x̂ = (�1, 0) generated by an incident plane wave
with incidence direction d = (1, 0) and wavenumber k. We present for the radius R = 1, 2, 4
and 8 and the wavenumbers k = 1, 2, 4, 8, 16 and 32 the interval of convergence of Method
C, using as the far field pattern measurement u1 the measure generated using the integral
equations of Chapter 2.

k Radius = 1 Radius = 2 Radius = 4 Radius = 8
1 (0.00,2.67) (0.71,3.63) (2.53,5.60) (6.48,9.58)
2 (0.36,1.81) (1.27,2.80) (3.24,4.79) (7.23,8.79)
4 (0.63,1.40) (1.62,2.39) (3.62,4.39) (7.61,8.39)
8 (0.81,1.20) (1.81,2.20) (3.81,4.20) (7.81,8.20)
16 (0.90,1.10) (1.90,2.10) (3.90,4.10) (7.90,8.10)
32 (0.95,1.05) (1.95,2.05) (3.95,4.05) (7.95,8.05)

Table 5.2: We consider the reconstruction of the circle with radius R and center at the
origin. We have the far field at the point x̂ = (�1, 0) generated by an incident plane wave
with incidence direction d = (1, 0) and wavenumber k. We present for the radius R = 1, 2, 4
and 8 and the wavenumbers k = 1, 2, 4, 8, 16 and 32 the interval of convergence of Method
C, using as the far field pattern measurement ũ1 the measure generated using the Kirchho↵
approximation formula (72).

integral equations of Chapter 2 and ũ1 given by the Kirchho↵ approximation formula. We
consider the radius R = 1, 2, 4 and 8 and the wavenumbers k = 1, 2, 4, 8, 16 and 32. We
obtained for each combination of radius R and wavenumber k the interval of convergence
of the method, which means that if we choose as initial guess for the radius of the circle
to approximate this problem a value in this interval, it will converge to the solution. In
Table 5.1, we present for each wavenumber k and radius R the interval of convergence using
Method C with Nr = 0 and the far field pattern u1. In Table 5.2, we present for each
wavenumber k and radius R the interval of convergence using Method C to find the circle
using Nr = 0 and the far field pattern ũ1.

We see that in both tables the size of the interval of convergence decreases with the
wavenumber at a rate of 1/k. The results are very similar for both choices of the measures
used for the far field pattern.
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5.3 Globalization technique for frequencies out of the

resonance region

5.3.1 Generating synthetic data

As seen in the previous section and also in Chapter 3, the choice of the initial guess is re-
lated to the frequency of the data available. If we have low frequency data from the far
field, we can approximate the object with a simple initial guess that is not necessarily close
to the desired object. On the other hand, if the far field pattern of the object is generated
by a higher frequency incident plane wave, our initial guess must be close to the object to
provide an accurate reconstruction of the shape of the object. In Chapter 3, we present a
multi-frequency method that was able to reconstruct the detailed shape of an object using
far field data generated by incident waves with di↵erent frequencies.

Unfortunately, far field data from several frequencies is not always available. Sometimes,
we have an even more restrictive situation, where we have only a few measurements of the
far field data for frequencies out of the resonance region. Solving the inverse problem of
shape reconstruction of the object using this data would require an initial guess very close
to the object. This initial guess is not available most of the time.

In this section, we present a procedure to generate synthetic low frequency far field data
using a pair of measures of the far field pattern obtained at frequencies out of the resonance
region. In this procedure, we use an extrapolation operator based on the approximated for-
mula for the Kirchho↵ approximation to generate a low frequency far field pattern from the
given frequencies far field patterns, where those frequencies are out of the resonance region.
The quality of the data generated by this extrapolation operator is better in the illuminated
part of the object.

Using the far field formula (71) obtained from the application of the Kirchho↵ approxima-
tion, we calculate the ratio of the far field pattern generated by the Kirchho↵ approximation
for two wavenumbers k and k + �k, �k > 0, and obtain:

q̃k,k+�k =
ũk+�k
1
ũk
1

= ei[(d�x̂)·x(⌧)]�k. (89)

In Equation (71), notice that according to our approximation, in some range for the
frequency, we can assume that the amplitude of the far field pattern is constant and has the
value

A(uk
1) = �1

2

s

|d� x̂|
(⌧)

. (90)

If we choose a k
new

big enough, we can say that the value of the amplitude of the generated
far field data is equal to (90).
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Using the ratio of the two frequencies (89), and supposing that �k is smaller than the
order of magnitude of the size of the object, we can obtain the approximation ũknew

1 of the
far field pattern at frequency k

new

by setting

ũknew
1 = A(uk

1)(earg(qk,k+�k))knew/�k. (91)

The function g(⌧) = (d � x̂) · x(⌧) in (89) is continuous on the illuminated part of the
object and since the object is strictly convex, all its values of g have the same sign if x̂ 6= d.

We have �kg(⌧) = 2ng(⌧)⇡ + ✓g(⌧), where ✓g(⌧) 2 [0, 2⇡] and ng(⌧) 2 Z. Depending on
the value of �k, we obtain di↵erent values for the integer ng(⌧). If we have ng(⌧) 6= 0 then
e2ng(⌧)⇡+✓g(⌧) = e✓g(⌧) , which can be a problem because we can lose the information on ng(⌧)

and consequently obtain the wrong phase when raising the argument of the ratio qk,k+�k to
the power k

new

/�k.

To address this problem, we must choose our �k such that 0 < |(d� x̂) · x(⌧)| �k  2⇡.
For x(t) = xr(t)(cos(t), sin(t)), the idea is to choose �k > 0 such that

�k  2⇡

max |d� x̂|max xr(t)
.

Choosing �k in the interval
h

0, 2⇡
max|d�x̂|maxxr(t)

i

gives us ng(⌧) = 0. In this case, there is

no danger of having jumps in the phase of the generated data. Normally, we do not pos-
sess accurate estimates of the size of the object, in which case we advise the use of a small �k.

Finally, we define the extrapolation operator:

Definition 5.3.1 Suppose we have far field pattern measurements ũ
kj
1 at the points x̂l, for

j = 1, 2 and l = 1, . . . , Ñff , where k
1

= k and k
2

= k + �k are frequencies outside of the
resonance region. We define the operator Ĩk

new

k,�k : C2 ! C such that

Ĩk
new

k,�k (ũ
k
1, uk+�k

1 ) = A(uk
1)(earg(qk,k+�k))knew/�k = ũk

new

1 (92)

that takes as input the two far field measures for k
1

and k
2

and gives as a result an estimation
ũk

new

1 of the far field pattern generated by the deflection of an incident plane wave with
frequency k

new

, and measured at the points x̂l, for l = 1, . . . , Ñff , using formula (91).

The extrapolation operator is supposed to yield an approximation of the far field pattern
at the wavenumber k

new

, as we were calculating the far field pattern at this wavenumber
using the Kirchho↵ approximation.

We do not know the measures ũk
1 and ũk+�k

1 given by the Kirchho↵ approximation;
instead, we are given measures of the far field patterns uk

1 and uk+�k
1 . In this case, we

calculate the ratio

qk,k+�k =
uk+�k
1
uk
1

=
ũk+�k
1 +O( 1

k+�k
)

ũk
1 +O( 1

k
)

. (93)
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If k ! 1 then qk,k+�k ! q̃k,k+�k.

Instead of using the operator Ĩknew
k,�k to obtain an estimation of the far field pattern at the

wavenumber k
new

, we define the operator Iknew
k,�k : C2 ! C such that

Iknew
k,�k (u

k
1, uk+�k

1 ) = A(uk
1)(earg(qk,k+�k))knew/�k. (94)

We define the right hand side of (94) as uknew
1 . From now on we use u1 to refer to the far

field pattern obtained using the data generation procedure presented in this section.

Note here that if we use the ratio q̃k,k+�k in the operator Iknew
k,�k , we obtain the operator

Ĩknew
k,�k , hence the data obtained is exactly the same as if we were calculating the far field

pattern using the Kirchho↵ approximation formula (71).

Remark 5.3.1 This approximation works only in the illuminated part of convex objects.
The quality of the approximation of the synthetic data is better in the illuminated part closer
to the specular point, whereas close to the shadow boundary and to the shadowed part, the
approximation is not of good quality.

Next, we show examples of this approximation for di↵erent objects.

Example 5.3.1 Comparison of the far field pattern generated by the extrapolation operator
and obtained by the Nyström method.

We present the following scenario for di↵erent convex objects D in this example. We have
incident plane waves with fixed incidence direction d = (1, 0), and wavenumbers ka and
kb. We obtain the far field pattern at the points x̂l = 2l⇡/Nff , Nff = 2048. Using the
extrapolation operator (92), we generate the approximation ukm

1 , with km, for m = 0, 1, 2
at the same points x̂l. We also calculate the far field pattern using the Nyström method
for comparison with the results obtained with our extrapolation operator. We compare the
generated data by the procedure presented in this section with the data obtained using the
Nyström method presented in Chapter 3 and the data obtained by the Kirchho↵ formula
(71). We show the absolute error for the real and imaginary parts of the data generated
with respect to the far field pattern given by the Nyström method, respectively:

eRe

abs

= |Re(u1)� Re(u1)| and eIm
abs

= |Im(u1)� Im(u1)|,

and the relative error for the real and imaginary parts of the data generated with respect to
the far field pattern given by the Nyström method, respectively:

eRe

rel

=
|Re(u1)� Re(u1)|

|u1| , and eIm
rel

=
|Im(u1)� Im(u1)|

|u1| ,
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We also show the absolute error for the real and imaginary parts of the data generated with
respect to the far field pattern given by the Kirchho↵ approximation, respectively:

ẽRe

abs

= |Re(ũ1)� Re(u1)| and ẽIm
abs

= |Im(ũ1)� Im(u1)|,
and the relative error for the real and imaginary parts of the data generated with respect to
the far field pattern given by the Kirchho↵ approximation, respectively:

ẽRe

rel

=
|Re(ũ1)� Re(u1)|

|u1| , and ẽIm
rel

=
|Im(ũ1)� Im(u1)|

|u1| .

1. First, we consider the object D to be the ellipse with parameterization

x(t) = (3 cos(t), 4 sin(t)),

with t 2 [0, 2⇡]. We take the wavenumbers of the given data to be ka = 19 and
kb = 20, and we generate the far field data for wavenumbers km = 2+6m. We present
the results in Figure 5.5. We have the real and imaginary parts respectively of the far
field patterns u1, u1 and ũ1 in (a) and (b) for k = 2, (c) and (d) for k = 8, and
(e) and (f) for k = 14. In Figure 5.6, we present the graphs of the absolute error for
the real and imaginary parts with respect to the far field obtained using the Nyström
method of the data generated in (a) for k = 2, (c) for k = 8 and (e) for k = 14. In the
same figure, we have the relative error for the real and imaginary parts with respect to
the far field obtained using the Nyström method of the data generated in (b) for k = 2,
(d) for k = 8 and (f) for k = 14. In Figure 5.7, we present the graphs of the absolute
error for the real and imaginary parts with respect to the Kirchho↵ approximation of
the data generated in (a) for k = 2, (c) for k = 8 and (e) for k = 14. In the same
figure, we have the relative error for the real and imaginary parts with respect to the
Kirchho↵ approximation of the data generated in (b) for k = 2, (d) for k = 8 and (f)
for k = 14.

2. Next, suppose D has the parameterization x(t) = xr(t)(cos(t), sin(t)), with xr(t) = and
t 2 [0, 2⇡]. From now on, we refer to this object as the Egg. We take the wavenumbers
of the given data to be ka = 11 and kb = 12, and we generate the far field data for
wavenumbers km = 2 + 4m. The results are in Figure 5.8. We have the real and
imaginary parts respectively of the far field patterns u1, u1 and ũ1 in (a) and (b) for
k = 2, (c) and (d) for k = 6, and (e) and (f) for k = 10. In Figure 5.9, we present the
graphs of the absolute error for the real and imaginary parts with respect to the far
field obtained using the Nyström method of the data generated in (a) for k = 2, (c)
for k = 6 and (e) for k = 10. In the same figure, we have the relative error for the real
and imaginary parts with respect to the far field obtained using the Nyström method
of the data generated in (b) for k = 2, (d) for k = 6 and (f) for k = 10. In Figure
5.10, we present the graphs of the absolute error for the real and imaginary parts with
respect to the Kirchho↵ approximation of the data generated in (a) for k = 2, (c) for
k = 6 and (e) for k = 10. In the same figure, we have the relative error for the real and
imaginary parts with respect to the Kirchho↵ approximation of the data generated in
(b) for k = 2, (d) for k = 6 and (f) for k = 10.
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3. Finally, we assume the object D to be the Kite. For the sake of simplicity and to keep
the incidence direction d = (1, 0) constant in this example, we rotate the Kite 180
degrees. In this configuration, the illuminated part of the Kite is convex. We take the
wavenumbers of the given data to be ka = 14 and kb = 15, and we generate data for
wavenumbers km = 2 + 5m. We present the results in Figure 5.11. We have the real
and imaginary parts respectively of the far field patterns u1, u1 and ũ1 in (a) and (b)
for k = 2, (c) and (d) for k = 7, and (e) and (f) for k = 12. In Figure 5.12, we present
the graphs of the absolute error for the real and imaginary parts with respect to the far
field obtained using the Nyström method of the data generated, in (a) for k = 2, (c)
for k = 7 and (e) for k = 12. In the same figure, we have the relative error for the real
and imaginary parts with respect to the far field obtained using the Nyström method
of the data generated in (b) for k = 2, (d) for k = 7 and (f) for k = 12. In Figure
5.13, we present the graphs of the absolute error for the real and imaginary parts with
respect to the Kirchho↵ approximation of the data generated in (a) for k = 2, (c) for
k = 7 and (e) for k = 12. In the same figure, we have the relative error for the real and
imaginary parts with respect to the Kirchho↵ approximation of the data generated in
(b) for k = 2, (d) for k = 7 and (f) for k = 12.

Note that in the figures depicting the errors, we use the log-scale on the y-axis, also, since
the object is symmetric, we present the results only for half of the domain, in this case for
[0, ⇡], we do the same for the other figures in this example, with the exemption of the figures
relative to the Kite. Since the object is not convex, we used the domain interval [⇡/2, ⇡] in
the figures related to the configuration with the Kite.

We see from this example that the quality of the data generated depends on the wavenum-
ber k

new

at which we are generating the new data and the position x̂ for which we are gen-
erating the data with relation to the illuminated part of the object.

With respect to the frequency, the data generated is better for higher frequencies than for
low frequencies; this is a consequence of the fact that the Kirchho↵ approximation formula
used for generating the data is used for the approximate calculation of the field for high
frequencies.

The data generated is of better quality close to the point where the incident plane wave
hits the object, and in an area around it that increases with frequency. The quality of the
data generated deteriorates going to the shadow boundary, and in our case, completely de-
teriorates outside the interval [⇡/2, 3⇡/2]. This is due to the e↵ect of the di↵raction of the
incident wave, which is not accounted for by the Kirchho↵ approximation.

5.3.2 Inverse problem for multiple frequency using Kirchho↵ ap-
proximation

In this section, we consider the solution of Problem 3, where we know the far field pattern u
kj
1

at the points x̂l 2 ⌦, l = 1, . . . , N
inc

generated by the deflection of two incident waves with
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wavenumbers ka and kb, with ka < kb, and incidence direction d, and we want to reconstruct
the shape of a sound-soft convex obstacle D. The frequency of the two incident plane waves
are assumed to be outside of the resonance region of the object.

Since Methods A and B presented in Chapter 4 and Method C presented in this chapter
are iterative methods related to the Newton method, it is very important to have an initial
guess close enough to obtain a good approximation of the object. By Theorem 2.2.3, there
is a relation between the size of the interval for choosing the initial guess and the frequency
used to solve the inverse problem. This means that if the frequency is too high, we need to
have an initial guess very close to the object as seen in Chapter 4. We intend to use the far
field data generator of the previous section to remedy this setback.

Due to the high quality of approximation of the generated data uknew
1 , it is possible to

use our data generating procedure together with the RLA presented in Chapter 4 to obtain
a good approximation of convex objects.

First, we intend to use the operators Ikm
kNinc+1,kNinc+2

to generate the far field pattern ukm
1

at the points x̂l for m = 1, . . . , N
inc

and l = 1, . . . , Nff , such that k
1

< k
2

< · · · < kNinc <
kNinc+1

< kNinc+2

.

Since the generated far field data is not of good quality for all values of x̂ in the domain
⌦, we choose a positive real constant ✏x̂ such that we use the data generated at the points
x̂l = (cos(tl), sin(tl)) with ✓ � ✏x̂  tl  ✓ + ✏x̂, where the angle ✓ ⌘ ✓d + ⇡ (mod 2⇡) and
✓d is the angle such that the incidence plane wave direction is d = (cos(✓d), sin(✓d)). Using
this restriction, we have the far field generated data at the points x̂

˜l, for l̃ = 1, . . . , Ñff for
solving the inverse problem.

This new data ukm
1 can be considered the data generated by the object in case we used

the Kirchho↵ approximation formula. It makes sense, then, to use the method developed in
Section 5.2.1 to solve the inverse problem with the data generated by the Kirchho↵ formula.

We propose a method based on the RLA method of Chapter 4.

Algorithm 5.3.1 Method RLA-C:

1. We start by choosing an initial guess x(0) = x
(0)

r (cos(t), sin(t)) and an initial solution
set X

N
(1)
r ,c

.

2. For m = 1 to N
inc

do

• Given the generated far field pattern ukm
1 at the points x̂

˜l, for l̃ = 1, . . . , Ñff , use

Method C to obtain an approximation x(m) = x
(m)

r (cos(t), sin(t)) with the initial
guess x(m�1).

3. Choose the final solution set X
N

(2)
r

and project the solution onto that space.
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4. For m = N
inc

+ 1 to m = N
inc

+ 2 do

• Given the generated far field pattern ukm
1 at the points x̂l, for l = 1, . . . , Nff , use

Method B to obtain an approximation x(m) = x
(m)

r (cos(t), sin(t)) with the initial
guess x(m�1).

The RLA-C method can be seen as a procedure for obtaining a good initial guess to
use in the RLA method with wavenumbers kNinc+1

and kNinc+2

: we can even consider it a
globalization technique for the RLA method. In the next section, we present some results
for the RLA-C method. We also try to implement an alternative to the RLA-C method
where we would use Method B instead of Method C for the single frequency problems at
wavenumbers k

1

, . . . , kNinc . This alternative method did not present satisfactory results and
these results are not considered here.

5.3.3 Numerical results using the RLA-C method

In this section, we present some results obtained from our method and compare them to
those obtained using the multi-frequency method presented in Chapter 4.

Example 5.3.2 Results for the RLA-C method

We assume two incident plane waves with fixed incidence direction d = (1, 0) and
wavenumbers ka and kb on the object D. We measure the far field pattern uka

1 and ukb
1

at points x̂l, for l = 1, . . . , Nff . We choose a positive real constant ✏x̂ and use the data
generating procedure from Section 5.3.1 to generate the far field data ukm

1 for the frequencies
km, for m = 1, . . . , N

inc

at the points x̂
˜l, for l̃ = 1, . . . , Ñff . We solve the problem for the

generated data using the solution space X
N

(1)
r ,c

and the initial guess parameterization x(0).
For the given data, we solve the problem using the solution space X

N
(2)
r

and the initial guess
as the solution found using the generated data. For Method B, we use as � the L

2

-norm
of the residue at each step, while for Method C, we use as � the L

2

-norm of the residue
multiplied by the constant 2✏x̂/Ñff .

We consider three scenarios with the configuration above:

• We take the object D to be the ellipse with parameterization x(t) = (3 cos(t), 4 sin(t))
and the wavenumbers of the incident waves to be ka = 50 and kb = 51. The far field
is given at points x̂l = (2l � 1)⇡/Nff , for l = 1, . . . , Nff , and we have Nff = 32.
For the generated data, we choose ✏x̂ = ⇡/2. We generate data for the wavenumbers
km = m, for m = 1, . . . , 49. The initial guess x(0) is the circle centered at the origin
with radius 1.3. With respect to the solution space, we choose N

(1)

r = 3 and N
(2)

r = 5.
We present the results in Figure 5.14. In Figure 5.14(a), we present the result obtained
applying Method C to the generated data, the object D, and the initial guess used in
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the RLA-C method, and in Figure 5.14(b), we present the result obtained using the
RLA-C method, the object D, and the answer obtained using Method C.

• We take the object D to be the Egg and the wavenumbers of the incident waves to
be ka = 55 and kb = 56. The far field is given at points x̂l = (2l � 1)⇡/Nff , for
l = 1, . . . , Nff , and we have Nff = 32. For the generated data, we choose ✏x̂ = ⇡/2.
We generate data for the wavenumbers km = m, for m = 1, . . . , 54. The initial guess
x(0) is the circle centered at the origin with radius . With respect to the solution space,
we choose N

(1)

r = 3 and N
(2)

r = 5. We present the results in Figure 5.15. In Figure
5.15(a), we present the result obtained applying Method C to the generated data, the
object D, and the initial guess used in the RLA-C method, and in Figure 5.15(b), we
present the result obtained using the RLA-C method, the object D, and the answer
obtained using Method C.

• We take the object D to be the rotated Kite and the wavenumbers of the incident
waves to be ka = 45 and kb = 46. The far field is given at points x̂l = (2l � 1)⇡/Nff ,
for l = 1, . . . , Nff , and we have Nff = 32. For the generated data, we choose ✏x̂ = ⇡/2.
We generate far field data for the wavenumbers km = m, for m = 1, . . . , 44. The initial
guess x(0) is the circle centered at the origin with radius 0.2. With respect to the so-
lution space, we choose N

(1)

r = 3 and N
(2)

r = 5. We present the results in Figure 5.16.
In Figure 5.16(a), we present the result obtained applying Method C to the generated
data, the object D, and the initial guess used in the RLA-C method, and in Figure
5.16(b), we present the result obtained after using the RLA-C method, the object D,
and the answer obtained using of Method C.

We see in all scenarios of Example 5.3.2 that using the RLA-C method, we are able to
reconstruct the illuminated part of the object using an initial guess that is not close to the
object that we want to reconstruct. If we had tried to solve the same problem using the
RLA method with the far field pattern given for the frequencies ka and kb using the same ini-
tial guesses, the method would fail. We can consider our procedure a globalization technique.

We have tried to use Method B instead of Method C in the RLA-C method, to solve
the inverse problem for the generated far field pattern data. Unfortunately, we have not yet
been able to obtain convergence of this alternative method in a general framework.

Example 5.3.3 Influence of the choice of ✏x̂

We assume two incident plane waves with fixed incident direction d = (1, 0) and wavenum-
bers ka = 40 and kb = 41 on the Egg. We measure the far field pattern uka

1 and ukb
1 at points

x̂l, for l = 1, . . . , Nff . We vary the parameter ✏x̂ and use the data generating procedure from
Section 5.3.1 to generate the far field data ukm

1 for the wavenumbers km, for m = 1, . . . , N
inc

at the points x̂
˜l, for l̃ = 1, . . . , Ñff . We solve the problem for the generated data using the
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solution space X
N

(1)
r ,c

, where the initial guess parameterization x(0) is the circle of radius 1.2
centered at the origin. For the given data, we solve the problem using the solution space
X

N
(2)
r

and the initial guess as the solution found using the generated data.

As ✏x̂ increases, the quality of the reconstruction obtained improves when using Method
C. Overall, the quality of the reconstruction in the illuminated part of the object obtained
by the RLA-C method improves with the increase of ✏x̂.
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Figure 5.5: Comparison of the far field pattern obtained for the ellipse with k
a

= 19 and k
b

= 20 and

d = (1, 0) by the Nyström method, labeled here as the Integral Equation, by the Kirchho↵ approximation

and by the our data generating procedure. In (a), (c) and (e) we have the real part of the far field patterns

Re(u1), Re(u1) and Re(u1), where black is used for the Nyström method, Re(u1), the red pattern ‘-.’

for the data generating procedure, Re(u1), and the red pattern ‘–’ is used for the Kirchho↵ approximation,

Re(ũ1), respectively for k = 2, k = 8 and k = 14. In (b), (d) and (f) we have the real part of Re(u1),

Re(u1) and Re(ũ1), where black is used for the Nyström method, Re(u1), the red pattern ‘-.’ for the

data generating procedure Re(u1), and the red pattern ‘–’ is used for the Kirchho↵ approximation, Re(ũ1),

respectively for k = 2, k = 8 and k = 14. 107
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Figure 5.6: Absolute and relative error with respect to the far field obtained with the Nyström method of

the data generating procedure for the ellipse using k
a

= 19 and k
b

= 20. We have the absolute error for the

real part in black and the imaginary part in the red pattern ‘-.’ respectively for the frequencies: (a) k = 2,

(c) k = 8 and (e) k = 14. In the other figures, the relative error for the real part is in black and for the

imaginary part in the red pattern ‘-.’, respectively for the frequencies: (b) k = 2, (d) k = 8 and (f) k = 14.

Note that we have a log scale on the y-axis of those graphs.
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(c) Absolute errors for k = 8
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(e) Absolute errors for k = 14
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Figure 5.7: Absolute and relative error with respect to the Kirchho↵ approximation of the data generating

procedure for the ellipse using k
a

= 19 and k
b

= 20. We have the absolute error for the real part in black

and the imaginary part in the red pattern ‘-.’ respectively for the frequencies: (a) k = 2, (c) k = 8 and (e)

k = 14. In the other figures, the relative error for the real part is in black and for the imaginary part in the

red pattern ‘-.’, respectively for the frequencies: (b) k = 2, (d) k = 8 and (f) k = 14. Note that we have a

log scale on the y-axis of those graphs.
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(b) Im(u1), Im(u1) and Im(ũ1), k = 2
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(c) Re(u1), Re(u1) and Re(ũ1), k = 6
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(d) Im(u1), Im(u1) and Im(ũ1), k = 6
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(e) Re(u1), Re(u1) and Re(ũ1), k = 10
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Figure 5.8: Comparison of the far field pattern obtained for the Egg with k
a

= 11 and k
b

= 12 and

d = (1, 0) by the Nyström method, labeled here as the Integral Equation, by the Kirchho↵ approximation

and by the our data generating procedure. In (a), (c) and (e) we have the real part of the far field patterns

Re(u1), Re(u1) and Re(ũ1), where black is used for the Nyström method, Re(u1), the red pattern ‘-.’

for the data generating procedure, Re(u1), and the red pattern ‘–’ is used for the Kirchho↵ approximation,

Re(ũ1), respectively for k = 2, k = 6 and k = 10. In (b), (d) and (f) we have the real part of Re(u1),

Re(u1) and Re(ũ1), where black is used for the Nyström method, Re(u1), the red pattern ‘-.’ for the

data generating procedure Re(u1), and the red pattern ‘–’ is used for the Kirchho↵ approximation, Re(ũ1),

respectively for k = 2, k = 6 and k = 10. 110
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(c) Absolute errors for k = 6
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(d) Relative errors for k = 6
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(e) Absolute errors for k = 10
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Figure 5.9: Absolute and relative error with respect to the far field obtained with the Nyström method of

the data generating procedure for the Egg using k
a

= 11 and k
b

= 12. We have the absolute error for the

real part in black and the imaginary part in the red pattern ‘-.’ respectively for the frequencies: (a) k = 2,

(c) k = 6 and (e) k = 10. In the other figures, the relative error for the real part is in black and for the

imaginary part in the red pattern ‘-.’, respectively for the frequencies: (b) k = 2, (d) k = 6 and (f) k = 10.

Note that we have a log scale on the y-axis of those graphs.

111



0 0.5 1 1.5 2 2.5 3
10−6

10−5

10−4

10−3

10−2

10−1

100

101

 

 

Error real part
Error complex part

(a) Absolute errors for k = 2

0 0.5 1 1.5 2 2.5 3
10−6

10−5

10−4

10−3

10−2

10−1

100

101

 

 

Error real part
Error complex part
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(c) Absolute errors for k = 6
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(d) Relative errors for k = 6
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(e) Absolute errors for k = 10
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Figure 5.10: Absolute and relative error with respect to the Kirchho↵ approximation of the data generating

procedure for the Egg using k
a

= 11 and k
b

= 12. We have the absolute error for the real part in black

and the imaginary part in the red pattern ‘-.’ respectively for the frequencies: (a) k = 2, (c) k = 6 and (e)

k = 10. In the other figures, the relative error for the real part is in black and for the imaginary part in the

red pattern ‘-.’, respectively for the frequencies: (b) k = 2, (d) k = 6 and (f) k = 10. Note that we have a

log scale on the y-axis of those graphs.
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Figure 5.11: Comparison of the far field pattern obtained for the Kite rotated in 180 degrees with k
a

= 14

and k
b

= 15 and d = (1, 0) by the Nyström method, labeled here as the Integral Equation, by the Kirchho↵

approximation and by the our data generating procedure. In (a), (c) and (e) we have the real part of the

far field patterns Re(u1), Re(u1) and Re(ũ1), where black is used for the Nyström method, Re(u1), the

red pattern ‘-.’ for the data generating procedure, Re(u1), and the red pattern ‘–’ is used for the Kirchho↵

approximation, Re(ũ1), respectively for k = 2, k = 7 and k = 12. In (b), (d) and (f) we have the real part

of Re(u1), Re(u1) and Re(ũ1), where black is used for the Nyström method, Re(u1), the red pattern ‘-.’

for the data generating procedure Re(u1), and the red pattern ‘–’ is used for the Kirchho↵ approximation,

Re(ũ1), respectively for k = 2, k = 7 and k = 12. 113
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(c) Absolute errors for k = 7
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1.6 1.8 2 2.2 2.4 2.6 2.8 3
10−4

10−3

10−2

10−1

100

 

 

Error real part
Error complex part

(e) Absolute errors for k = 12
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Figure 5.12: Absolute and relative error with respect to the far field obtained with the Nyström method

of the data generating procedure for the rotated Kite using k
a

= 14 and k
b

= 15. We have the absolute error

for the real part in black and the imaginary part in the red pattern ‘-.’ respectively for the frequencies: (a)

k = 2, (c) k = 7 and (e) k = 12. In the other figures, the relative error for the real part is in black and

for the imaginary part in the red pattern ‘-.’, respectively for the frequencies: (b) k = 2, (d) k = 7 and (f)

k = 12. Note that we have a log scale on the y-axis of those graphs. The domain of these figures go from

⇡/2 to ⇡ since it is not possible to take the Kirchho↵ approximation from 0 to ⇡ because the object is not

convex for those values.
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(a) Absolute errors for k = 2
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(b) Relative errors for k = 2
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(c) Absolute errors for k = 7
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(d) Relative errors for k = 7
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(e) Absolute errors for k = 12

1.6 1.8 2 2.2 2.4 2.6 2.8 3
10−5

10−4

10−3

10−2

10−1

100

 

 

Error real part
Error complex part

(f) Relative errors for k = 12

Figure 5.13: Absolute and relative error with respect to the Kirchho↵ approximation of the data generating

procedure for the rotated Kite using k
a

= 14 and k
b

= 15. We have the absolute error for the real part in

black and the imaginary part in the red pattern ‘-.’ respectively for the frequencies: (a) k = 2, (c) k = 7 and

(e) k = 12. In the other figures, the relative error for the real part is in black and for the imaginary part

in the red pattern ‘-.’, respectively for the frequencies: (b) k = 2, (d) k = 7 and (f) k = 12. Note that we

have a log scale on the y-axis of those graphs. The domain of these figures go from ⇡/2 to ⇡ since it is not

possible to take the Kirchho↵ approximation from 0 to ⇡ because the object is not convex for those values.
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Figure 5.14: We use the RLA-C method to solve the inverse problem for the ellipse with parameterization
x(t) = (3 cos(t), 4 sin(t)). We have the far field pattern at the points x̂

l

= (2l� 1)⇡/N
ff

, for l = 1, . . . , N
ff

,
withN

ff

= 32, generated by the scattering of two incident plane waves with incidence direction d = (1, 0) and
wavenumbers k

a

= 50 and k
b

= 51. We generate far field data for wavenumbers k
m

= m, for m = 1, . . . , 49.
We use the parameter ✏

x̂

= ⇡/2 to decide the generated far field pattern that we use for Method C. The
initial guess x(0) for the RLA-C method is the circle with center at the origin and radius 1.3. In (a) we
present the result obtained applying Method C to the generated data, the object D, and the initial guess
used in the RLA-C method, and in (b) we present the result obtained using the RLA-C method, the object
D, and the answer obtained using Method C.
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(b) Solution using the given data

Figure 5.15: We use the RLA-C method to solve the inverse problem for the Egg. We have the far field
pattern at the points x̂

l

= (2l � 1)⇡/N
ff

, for l = 1, . . . , N
ff

, with N
ff

= 32, generated by the scattering
of two incident plane waves with incidence direction d = (1, 0) and wavenumbers k

a

= 55 and k
b

= 56.
We generate far field data for wavenumbers k

m

= m, for m = 1, . . . , 54. We use the parameter ✏
x̂

= ⇡/2
to decide the generated far field pattern that we use for Method C. The initial guess x(0) for the RLA-C
method is the circle with center at the origin and radius 1.2. In (a) we present the result obtained applying
Method C to the generated data, the object D, and the initial guess used in the RLA-C method, and in
(b) we present the result obtained using the RLA-C method, the object D, and the answer obtained using
Method C.
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Figure 5.16: We use RLA-C method to solve the inverse problem for the rotated Kite. We have the far
field pattern at the points x̂

l

= (2l�1)⇡/N
ff

, for l = 1, . . . , N
ff

, with N
ff

= 32, generated by the scattering
of two incident plane waves with incidence direction d = (1, 0) and wavenumbers k

a

= 45 and k
b

= 46. We
generate far field data for wavenumbers k

m

= m, for m = 1, . . . , 44. We use the parameter ✏
x̂

= ⇡/2 to
decide the generated far field pattern that we use for Method C. The initial guessx(0) for the RLA-C method
is the circle with center at the origin and radius 0.2. In (a) we present the result obtained applying Method
C to the generated data, the object D, and the initial guess used in the RLA-C method, and in (b) we
present the result obtained using the RLA-C method, the object D, and the answer obtained using Method
C.
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(f) Final solution using ✏
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Figure 5.17: We use the RLA-C method to solve the inverse problem for the Egg. We have the far field

pattern at the points x̂
l

= (2l � 1)⇡/N
ff

, for l = 1, . . . , N
ff

, with N
ff

= 32, generated by the scattering

of two incident plane waves with incidence direction d = (1, 0) and wavenumbers k
a

= 40 and k
b

= 41. We

generate far field data for wavenumbers k
m

= m, for m = 1, . . . , 44. We vary the parameter ✏
x̂

that we use

to decide the generated far field pattern that we use for Method C. The initial guess x(0) for the RLA-C

method is the circle with center at the origin and radius 1.2. We have the result obtained applying Method

C in the generated data, the object D, and the initial guess used in the RLA-C method for (a) ✏
x̂

= ⇡/2,

(c) ✏
x̂

= ⇡/4, and (e) ✏
x̂

= ⇡/8, and we have the result obtained after using the RLA-C method, the object

D, and the answer obtained using Method C for (b) ✏
x̂

= ⇡/2, (d) ✏
x̂

= ⇡/4, and (f) ✏
x̂

= ⇡/8.
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Chapter 6

Conclusion

In this thesis, we first presented Method B for the solution of the inverse sound-soft acoustic
scattering problem, which is a variation of Johansson and Sleeman’s method (Method A)
proposed in [16], that shows to be less computationally expensive than Method A. Method
B is based on a two-step procedure like Method A, however, it repeats the second step of the
two-step procedure until stopping criteria are reached. The advantage of Method B is that
it solves the system in the first step fewer times than it solves the system in the second step,
and size of the system in the first step is proportional to the frequency of the incident plane
wave, which makes it much larger than the size of the system in the second step, which is
proportional to the number of degrees of freedom of the solution to describe the object D
that we seek to reconstruct. In all the examples, we reconstructed star-shaped objects of
the form x(t) = xr(t)(cos(t), sin(t)), and found the function xr(t) in two types of solution
space: trigonometric polynomials, seen in the work of [3] and many others; and B-splines.
Apparently the solutions obtained in the two spaces are very similar, however finding the
solution in the trigonometric space seems to be much less computationally expensive than
in the space of B-splines. The advantage of the space of B-splines would be the fact that it
would not need as many degrees of freedom as the trigonometric polynomials and it would
be compatible with CAD tools.

Next, with the objective of obtaining detailed reconstructions of objects, we presented the
RLA algorithm proposed in [21] for inhomogeneous media and later shown for Dirichlet prob-
lems in [23]. This is a multi-frequency algorithm that, starting from a simple initial guess,
solves the inverse problem for each frequency. Instead of using Newton’s method recursively
at each frequency, we use Method B. We were able to obtain detailed approximations of the
illuminated part of the object using this algorithm, but the quality of the reconstruction of
the shadowed part of the object was not satisfactory. To address this problem, using ideas
in a work in progress of Sini and Nguyen, we inserted objects in our configuration that are
able to reflect the incident plane wave back to the shadowed part of the unknown object.
Applying this procedure, we were able to recover the shadowed part of the object.

Subsequently, we studied the problem for convex objects at frequencies out of the reso-
nance region. We started by presenting the Kirchho↵ approximation to calculate the far field
pattern of the convex object (see [31]). Next, we presented the two-step Method C for solving
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the inverse problem to reconstruct the convex object. We showed that this method works
for the case of approximating a circle, and that the region of convergence of the method
is inversely proportional to the frequency. The biggest problem of the method presented is
that we require that the approximation in each step be a convex object. We had problems
devising an algorithm to obtain a convex approximation of the object, and we proposed an
heuristic that works most of the time, but may not be the best solution.

Next, we developed a globalization technique to obtain better initial guesses for convex
obstacles for solving the inverse scattering problem at frequencies out of the resonance region.
For use in this globalization technique, we presented a procedure based on the Kirchho↵ ap-
proximation to generate synthetic data given a pair of measures of the far field pattern of
a convex obstacle. The quality of the results obtained depends on the frequency at which
we are approximating the far field pattern, and on the position x̂. The results are better for
higher frequencies and close to the point where d · x̂ is minimal.

Finally, we considered the problem of reconstructing a convex object given two frequen-
cies that are not in the resonance region of the object, which means that the wavelengths are
bigger than the size of the scatterer. We know that for these frequencies, if we apply any of
the single frequency methods presented in Chapter 2, we need an initial guess very close to
the solution. We do not have such a close initial guess, so to address this problem, we gener-
ated data using our procedure for low frequencies. We used a multi-frequency method based
on the RLA. We presented a method that uses the generated data together with Method
C to obtain an approximation of the object. This approximation can be used as an initial
guess for Method B with the given data, and we call this the RLA-C method. We obtain
good reconstructions of the illuminated part of the object with an initial guess that is not
very close to the object.

For future work, there are several other directions to pursue. We intend to obtain some
convergence results for Method B. There is also the opportunity to try to adapt the ideas
of [23] and [22] to try to obtain convergence results for Method B used in the RLA method.
We also want to obtain more general results related to the convergence of Method C, not
only for the circle, and to use these results together with the multi-frequency ideas to obtain
convergence results.

Another path to pursue is the construction of a better algorithm for reconstructing convex
objects. We believe that the use of B-splines is the key to obtaining the desired convexity.
We might need to understand more properties of B-splines to try to obtain an algorithm for
reconstructing a convex object.

Another subject that would be interesting is to use the ideas of [26] and [27] to obtain
faster solvers for direct problems at frequencies out of the resonance region. We have already
started our work in this area, and have seen that this approach is very e↵ective for very high
frequencies. We can still use the RLA-C method and apply those ideas for the last two
frequencies to solve the inverse problem with the given data.
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With respect to the RLA-C method, it would be interesting to devise a method for ob-
jects that have curvature close to zero, positive or even negative, with the idea that these
objects do not reflect the wave onto themselves too much. We can try to adapt the RLA-C
method for those situations, which would allow us to solve a problem like the pear.

We can adapt all the methods presented here for the sound-hard obstacle (Neumann
boundary condition) and for the impedance case (Robin boundary condition). The scatter-
ing of time-harmonic electromagnetic waves from infinitely long cylinders with polarization
parallel to the cylinder axis also reduces to the two-dimensional Helmholtz equation. There-
fore, all the methods presented in this thesis can be adapted for use in inverse electromagnetic
scattering problems.

Finally, it is our belief that we can use the algorithms developed in this thesis to test the
use of di↵erent coatings around objects to achieve an e↵ect of invisibility, or of substantial
change of the reconstructed object.
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