
Extending Event Sequence Processing: New
Models and Optimization Techniques

by

Mo Liu

A Dissertation

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

in

Computer Science

by

March 6, 2012

APPROVED:

Prof. Elke A. Rundensteiner
Worcester Polytechnic Institute
Advisor

Prof. Murali Mani
University of Michigan, Flint
External Committee Member

Prof. Ismail Ari
Ozyegin University
External Committee Member

Prof. Daniel J. Dougherty
Worcester Polytechnic Institute
Committee Member

Prof. Yanlei Diao
University of Massachusetts, Amherst
External Committee Member

Prof. Craig E. Wills
Worcester Polytechnic Institute
Head of Department

To my parents.

i

Abstract

Complex event processing (CEP) has become increasingly important for tracking

and monitoring applications ranging from health care, supply chain management

to surveillance. Most of state-of-the art CEP systems assume events arrive in or-

der. However, imperfections in events delivery are common due to the variance in

the network latencies. Out-of-order event processing strategies must be designed

to achieve robust query processing. Monitoring applications submit a workload of

complex event queries to track sequences of events over different abstraction lev-

els. As these systems mature the need for increasingly complex queries supporting

nesting of sequence (SEQ), AND, OR and negation arises, while the state-of-the-

art CEP systems mostly support single flat sequence queries. New CEP models

supporting nested and multi-dimensional queries with associated efficient process-

ing techniques are essential to assure real-time responsiveness and scalability.

First, to lay the foundation of out-of-order event processing, we address the

problem of processing flat pattern queries on event streams with out-of-order data

arrival. State-of-the-art event stream processing technology experiences signifi-

cant challenges when faced with out-of-order data arrival including output block-

ing, huge latencies, memory resource overflow, and incorrect result generation. We

ii

design two alternate solutions: aggressive and conservative strategies respectively

to process sequence pattern queries on out-of-order event streams. The aggres-

sive strategy produces maximal output under the optimistic assumption that out-of-

order event arrival is rare. The conservative method works under the assumption

that out-of-order data may be common, and thus produces output only when its

correctness can be guaranteed. Our experimental study evaluates the robustness of

each method, and compares the respective scope of applicability with state-of-art

methods using workloads composed of flat sequence queries.

Second, to support queries over different abstraction levels, we propose a novel

E-Cube model which combines CEP and OLAP techniques for efficient multi-

dimensional flat sequence pattern analysis at different abstraction levels. Our anal-

ysis of the interrelationships in both concept abstraction and pattern refinement

among queries facilitates the composition of these queries into an integrated E-

Cube hierarchy. Based on this E-Cube hierarchy, strategies of drill-down (refine-

ment from abstract to more specific patterns) and of roll-up (generalization from

specific to more abstract patterns) are developed for the efficient workload evalu-

ation. The proposed execution strategies reuse intermediate results along both the

concept and the pattern refinement relationships between queries. Based on this

foundation, we design a cost-driven adaptive optimizer called Chase that exploits

the above reuse strategies for optimal E-Cube hierarchy execution. The experimen-

tal studies comparing alternate strategies on a real world financial data stream under

different workload conditions demonstrate the superiority of the Chase method. In

particular, our Chase execution in many cases performs ten fold faster than the

state-of-art strategy for real stock market query workloads.

Last, we tackle nested CEP query processing. Without the design of an opti-

iii

mized execution strategy for nested sequence queries, an iterative nested execution

strategy would typically be adopted by default. The rigid process of first undertak-

ing the construction of sequence results for the outer operators and then iteratively

for each outer result to construct sequence results for the inner operators is not ef-

ficient as it misses critical opportunities for optimization. Not only are substantial

resources wasted on first constructing subsequences just to be subsequently dis-

carded, but also opportunities for shared execution of nested subexpressions are

overlooked. As foundation, to overcome this shortcoming, we introduce NEEL,

a CEP query language for expressing nested CEP pattern queries composed of

sequence, negation, AND and OR operators. To allow flexible execution order,

we devise a normalization procedure that employs rewriting rules for flattening a

nested complex event expression. To conserve CPU and memory consumption, we

propose several strategies for efficient shared processing of groups of normalized

NEEL subexpressions. These strategies include prefix caching, suffix clustering

and customized “bit-marking” execution strategies. We design an optimizer to par-

tition the set of all CEP subexpressions in a NEEL normal form into groups, each

of which can then be mapped to one of our shared execution operators. Lastly, we

evaluate our technologies by conducting a performance study to assess the CPU

processing time using real-world stock trades data. Our results confirm that our

NEEL execution in many cases performs 100 fold faster than the traditional itera-

tive nested execution strategy for real stock market query workloads.

In summary, this dissertation innovates several techniques at the core of a scal-

able E-Analytic system to achieve efficient, scalable and robust methods for in-

memory multi-dimensional nested pattern analysis over high-speed event streams.

iv

Acknowledgments

The work presented in this thesis would not be what is today without the support

and contribution of many people. Foremost, I would like to express my gratitude

to my advisor, Prof. Elke A. Rundensteiner, for her great patience, understanding,

continuous support and encouragement. The many fruitful discussions with her

have shaped all aspects of this work.

My thanks also go to Prof. Dan Dougherty who spend lots of time guiding me

during my PhD study and give lots of valuable suggestions to my dissertation. I

also thank other members of my Ph.D. committee, Prof. Ismail Ari, Prof. Murali

Mani and Prof. Yanlei Diao, who provided important feedback to my disserta-

tion proposal, my comprehensive-exam and dissertation drafts. All these helped to

improve the presentation and content of this dissertation.

The friendship of Mingzhu Wei, Di Wang, Di Yang, Venkatesh Raghavan, Ab-

hishek Mukherji, Hao Loi, Xika Lin, Medhabi Ray, Lei Cao, Han Wang and all

the other previous and current DSRG members is much appreciated. The life in

Worcester becomes much more interesting with their company. I would like to

thank Denis Golovnya, Kajal Claypool and Luping Ding for their collaboration on

the ESPO project. I thank Medhabi Ray for her collaboration on the NestedCEP

v

project. They have contributed to many interesting and good-spirited discussions

related to this research.

I also thank Worcester Polytechnic Institute and the Computer Science Depart-

ment for giving me the opportunity to study and also providing TAship during my

studies. Especially, I thank HP Labs for their funding support via the HP Labs

Innovation Research Program. I would like to thank Dr. Chetan Gupta, Dr. Song

Wang, Dr. Umeshwar Dayal and Abhay Mehta for their collaboration on this re-

search and all their encouragement and feedback.

Last, but not least, I would like to thank my husband Ming Li for his under-

standing and love during the past few years. My parents receive my deepest grati-

tude and love for their dedication and the many years of unconditional support and

love.

vi

Contents

1 Introduction 1
1.1 Background and Motivation . 1
1.2 State-of-the-Art . 4
1.3 Research Challenges . 6
1.4 Contributions of This Dissertation 8
1.5 Dissertation Organization . 11

2 Complex Event Processing Basics 12
2.1 Event Model . 12
2.2 Pattern Query Language . 13
2.3 State-of-the-art Pattern Query Evaluation 14

3 Sequence Pattern Query Processing over Out-of-Order Event Streams 17
3.1 Motivation . 17
3.2 Out-of-Order Event . 20
3.3 Problems Caused By Out-Of-Order Data Arrival 20

3.3.1 Problems for WinSeq Operator 20
3.3.2 Problems for WinNeg Operator 22

3.4 Levels of Correctness . 23
3.5 Naive Approach: K-slack . 26
3.6 Proposed Aggressive and Conservative Strategies 27

3.6.1 Conservative Query Evaluation 27
3.6.2 Aggressive Query Evaluation 34

3.7 Disk-Based Extensions . 38
3.8 Related Work . 39

4 Multi-Dimensional Event Sequence Analysis Using Hierarchical Pat-
tern Query Sharing 42
4.1 Introduction . 43

CONTENTS vii

4.1.1 Motivation . 43
4.2 E-Cube model . 46
4.3 Optimal E-Cube Evaluation . 51

4.3.1 Problem Mapping to Weighted Directed Graph 53
4.3.2 Solution for Optimal Execution Ordering 56

4.4 Reuse-Based Pattern Evaluation Strategies 60
4.4.1 General-to-Specific with Pattern Changes 61
4.4.2 General-to-Specific with Concept Changes 63
4.4.3 General-to-Specific with Concept & Pattern Refinement . 64
4.4.4 Specific-to-General with Pattern Changes 65
4.4.5 Specific-to-General with Concept Changes 68
4.4.6 Specific-to-General with Concept & Pattern Refinement . 69

4.5 Plan Adaptation . 69
4.6 Performance Evaluation . 71

4.6.1 Experimental Setup . 71
4.6.2 Scenarios with Pattern Hierarchy Queries 72
4.6.3 Scenarios with Concept Hierarchy Queries 73
4.6.4 Scenarios with Representative Mixed Workloads 74

4.7 Related Work . 76

5 High-performance Nested CEP Query Processing over Event Streams 84
5.1 Introduction . 84

5.1.1 NEEL: The Nested Complex Event Language 87
5.1.2 NEEL Semantics . 90
5.1.3 Nested CEP Query Plan Generation 97
5.1.4 Nested CEP Query Execution 98

5.2 NEEL Event Expression Rewriting 103
5.2.1 Event Expression Rewriting Rules 103
5.2.2 Language Constraints . 103
5.2.3 Flattening rules . 104
5.2.4 Distributive Law . 113
5.2.5 Negation Push Down Rules 117
5.2.6 Normal Forms for CEP Expressions 127
5.2.7 NEEL Expression Flattening Procedure 128
5.2.8 Properties of the Rewriting System 130

5.3 Shared Optimized NEEL Pattern Execution 139
5.3.1 Subexpression Sharing 139
5.3.2 Advanced Sub-expression Sharing with Different Negative

Components . 141
5.4 Plan-Finder . 145

CONTENTS viii

5.4.1 Problem Definition of Finding Shared-Plans 146
5.4.2 Plan-Finder Search Space 147
5.4.3 Plan-Finder Search Algorithms 147

5.5 Performance Evaluation . 148
5.5.1 Experimental Setup . 149
5.5.2 Experimental Design Query Plans 149
5.5.3 Varying the Number of Children Queries 150
5.5.4 Varying the Length of Children Queries 153
5.5.5 Varying the Nesting Levels of Children Queries 153
5.5.6 Complex Workload . 155

5.6 Discussion: Query Decorrelation 156
5.6.1 Correlated Query Example 156
5.6.2 Decorrelation . 157
5.6.3 Magic Decorrelation . 160
5.6.4 Application to CEP . 166

5.7 Related Work . 186

6 Discussion of Solution Integration 190

7 Conclusions 194
7.1 Conclusions . 194
7.2 Future Work . 196

7.2.1 Generalizing ECube to Support Windows, Predicates and
Aggregates. 196

7.2.2 Different Window Constraints 197
7.2.3 E-Cube resource limitations 199
7.2.4 Supporting Join Predicates in NEEL Expression Rewriting. 200
7.2.5 Integration of Complex NEEL Queries within an Extended

E-Cube Analytics Framework. 200
7.2.6 Parallel and Distributive Processing for Normalized NEEL

Subexpressions . 201
7.2.7 Marrying SQL/CQL and NEEL 201
7.2.8 Decorrelation of NEEL 201
7.2.9 Caching of NEEL . 202
7.2.10 Extend Algebra of NEEL with for-all Semantics 202

ix

List of Figures

2.1 Stack Structure for q3 in Figure 4.1 16

3.1 Out-of-Order Event Arrival Example 21

4.1 Sample pattern queries organized hierarchically. 44
4.2 Concept Hierarchy of Primitive Event Types 47
4.3 Pattern Hierarchy . 48
4.4 Use of Gabow Algorithm in our Optimal Solution 58
4.5 Chase Executor . 59
4.6 General-to-Specific Evaluation in Pattern Hierarchy 61
4.7 Specific-to-General Evaluation in Pattern Hierarchy 66
4.8 Stack Structure for q3 and q6 in Figure 4.1 67
4.9 Stack Structure for q1 and q2 in Figure 4.1 69
4.10 Company Concept Hierarchy . 70
4.11 Controlled Workloads. 80
4.12 (a) Controlled Workload; (b)(c) Complex Query Workloads with

Both Refinement Relationships. 81
4.13 Controlled Workloads. 82
4.14 (a) Controlled Workload; (b)(c) Complex Query Workloads with

Both Refinement Relationships. 83

5.1 Example Query Q1 . 85
5.2 Basic Query Plan for Query Q1 in Figure 5.1 98
5.3 Prefix Caching Example . 140
5.4 Suffix Clustering Example . 141
5.5 Normalized Expression for Q1 144
5.6 Bit-Marking Example . 144
5.7 Sequence Compute with Run-Time Bit Marking 145
5.8 Plan-Finder Algorithm . 148
5.9 Sample Queries with Increased Children Number 150

LIST OF FIGURES x

5.10 Sample Queries with Increased Query Length 150
5.11 Sample Queries with Increased Nesting Levels 151
5.12 Complex Workload . 151
5.13 Nested and Flattened Execution with Increased Children Number . 151
5.14 Varying the Number of Children Queries 152
5.15 Comparing Total Computation Time vs. Children Computation

Time in Nested Execution with Increased Children Number 152
5.16 Varying the Length of Children Queries 152
5.17 Varying the Length of Children Queries 154
5.18 Varying the Levels of Children Queries 154
5.19 Varying the Levels of Children Queries 155
5.20 Complex Workload . 156
5.21 QGM Graph Example . 163
5.22 Pushing the Selection Condition 165
5.23 Removing Duplicates . 165
5.24 Removing the correlation between (1) and (3) 165
5.25 Starting point for box (2) . 166
5.26 Feed for Box (2) . 166
5.27 Absorb for box (2) . 166
5.28 Remove unnecessary C1 box . 167
5.29 Starting point for box (3) . 167
5.30 Absorb for box (3) . 167
5.31 Remove unnecessary Q8 input to DCO box 168
5.32 Remove unnecessary DCO box 168
5.33 QGM for Q7 . 173
5.34 Push Predicates . 175
5.35 Create Magic Box . 175
5.36 Creat DCO and CI Boxes . 176
5.37 Starting Point for Box 2 . 176
5.38 Feed Stage . 177
5.39 Absorb Stage . 178
5.40 Remove Unnecessary CI Box . 179
5.41 Starting Point for Box 3 . 179
5.42 Absorb Stage . 180
5.43 Remove Unnecessary Input . 180
5.44 Remove Unnecessary DCO Box 180
5.45 Final Decorrelated Graph . 181
5.46 Push Predicates, Create Magic, DCO, CI Boxes 183
5.47 Absorb Stage . 184
5.48 Remove Unnecessary DCO Input 185

LIST OF FIGURES xi

5.49 Remove Unnecessary DCO Box 186
5.50 Final Decorrelated Graph . 187

1

Chapter 1

Introduction

1.1 Background and Motivation

The recent advances in hardware and software have enabled the capture of dif-

ferent measurements of data in a wide range of fields. Applications that gener-

ate rapid, continuous and large volumes of event streams include readings from

sensors, such as physics, biology and chemistry experiments, weather sensors

[FJK+05, Mou03, Uni02], health sensors [SB03], network sensors [Uni02], on-

line auctions, credit card operations [Pet03], financial tickers [ZS02], web server

log records [AK00], etc. Given these developments, the world is poised for a sea-

change in terms of variety, scale and importance of applications enabled by the

real-time analysis and exploitation of such event streams - from dynamic traffic

management, environmental monitoring to health care alike. Clearly, the ability

to infer relevant patterns from these event streams in real-time to make near in-

stantaneous yet informed decisions is absolutely crucial for these mission critical

applications. Next let us motivate this need using several concrete example appli-

1.1. BACKGROUND AND MOTIVATION 2

cations.

• Shoplifting. Let us consider a popular application for tracking goods in

a retail store [WDR06] where RFID tags are attached to each product and

RFID readers are placed at strategic locations throughout the store, such as

shelves, checkout counters and the store exit. The path of one product from

the shelf to store exit can be tracked as it passes the different RFID readers,

and the events generated from the RFID readers can be analyzed to detect

theft. For example, if a shelf and a store exit readings for a product are read,

but the RFID tag is not read at any of the checkout counters prior to the store

exit, then a natural conclusion may be that the product is being shoplifted.

• Health care. Consider reporting unsafe medical equipments in a hospi-

tal. Let us assume that the tools for medical operations are RFID-tagged.

The system monitors the histories (e.g., records of surgical usage, washing,

sharpening, disinfection, etc.) of the tools. When a nurse puts a box of sur-

gical tools into a surgical table equipped with RFID readers, the computer

may display warnings such as “This tool must be disposed”. A query accom-

plishing this monitors is after being recycled and washed, a tool is being put

back into use without being first sharpened, disinfected and then checked for

quality assurance. Consider another example in preventing hospital-acquired

infections for healthcare workers [FK08] [JD02]. The system continuously

tracks healthcare workers and concurrently reminds the workers at the ap-

propriate moments to perform hand hygiene. A surveillance system may

want to monitor the hand hygiene violation caused by a healthcare worker

who exited a room but did not clean his hands within 15 seconds.

1.1. BACKGROUND AND MOTIVATION 3

• Tag-based evacuation systems. Consider an evacuation system where RFID

technology would be used to track the mass movement of people and other

objects during natural disasters. Tags are attached to people and other ob-

jects. Tags transmit position related information to a base station. Terabytes

of RFID data could be generated by such a tracking system. Facing such

a huge volume of RFID data, emergency personnel need to be able to per-

form pattern detection on various dimensions at different granularities in

real-time. In particular, one may need to monitor people movement and

traffic patterns of needed goods and resources (say, water and blankets) at

different levels of abstraction such as types of goods and types of locations

in order to ensure fast and optimized relief efforts. For example, federal gov-

ernment personnel may monitor movement of people from cities in Texas to

Oklahoma for global resource placement; while local authorities may focus

on people movement starting from the Dallas bus station, traveling through

the Tulsa bus station, and ending in the Tulsa hospital within 48 hours (a

time window) to determine the need for additional means of transportation.

The Problem of Complex Event Analysis. Common across the above scenarios is

a need to process complex queries over huge volumes, and potentially unbounded,

streaming data in real-time at various abstraction levels in a robust manner. Event

data may arrive out-of-order at the event processing engine. Stream speeds can

be extremely high on the order of megabytes per second or more [ZW07]. Fur-

thermore, streaming event data tends to have many dimensions (time, location, ob-

jects), with each dimension possibly hierarchical in nature. In addition, the query

requests can be nested in nature composed of negation, recursion, sequencing and

1.2. STATE-OF-THE-ART 4

other powerful operators to express the pattern of interest. To complicate matters

even further, such systems are typically faced with a huge number of pattern re-

quests, all specified to operate against the same high volume stream, while still

requiring near real-time responsiveness. Detecting complex patterns in high-rate

event streams requires substantial CPU resources. We target the efficient process-

ing of complex pattern queries which are nested or at multiple levels of abstraction

over extremely high-speed event streams. In short, these applications share the

common need for a special-purpose event stream technology capable of robust pro-

cessing of complex nested queries and analyzing vast amount of multi-dimensional

data to enable multi-faceted online, operational decision making.

1.2 State-of-the-Art

The naive method for dealing with out-of-order arrival of events, called K-slack [Shi04],

buffers the arriving data for K time units. However, as the average latencies change,

K may become either too large, thereby buffering un-needed data and introducing

unnecessary inefficiencies and delays for the processing, or too small, thereby be-

coming inadequate for handling the out-of-order processing of the arriving events

and resulting in inaccurate results. To handle out-of-order data arrival, the authors

in [LTS+08] propose to apply explicit stream progress indicators, such as punctu-

ation or heartbeats, to unblock and purge operators. The authors focus on out of

order handling for operators such as aggregation and join. However, the authors

don’t consider out-of-order handling for the sequence operator SEQ with negation

over event streams. Recently, the authors from MSR [CGM10] apply punctuation

and revision processing over disordered streams for dynamic patterns, where the

1.2. STATE-OF-THE-ART 5

pattern (query) itself can change over time.

Existing techniques such as traditional online analytical processing (OLAP)

systems are not designed for real-time pattern-based operations [CD97, HRU96,

GHQ95], while state-of-the-art Complex Event Processing (CEP) systems designed

for pattern matching tend to be limited in their expressive capability. More impor-

tantly they do not support OLAP operations [CKAK94, WDR06, BGAH07]. State-

of-the-art OLAP technology is set-based (i.e., unordered) aggregates over scalar

values [GHQ95]. Hence, in the context of event streams where the order of events

is important, OLAP is insufficient in supporting efficient event sequence analysis.

Thus in the dissertation, we set out to design a novel event analytics model that

effectively leverages CEP and OLAP techniques for efficient multi-dimensional

event pattern analysis at different abstraction levels. Given a workload of CEP

pattern queries, our event analytics technology would exploit interrelationships be-

tween CEP pattern queries in terms of both concept and pattern refinement among

these queries for optimized shared processing and maximal reuse of intermediate

results – thus saving critical computational and memory resources.

One of the most flexible features of a query language is the nesting of op-

erators [Kim82, MHM04]. Without this capability, users are severely restricted

in forming complex patterns in a convenient and succinct manner. Conceptu-

ally, the state-of-art CEP systems such as SASE [WDR06], ZStream [MM09] and

Cayuga system [BDG+07] support nested queries as negation could be viewed

as a special case of one-level deep nesting. However, because these systems uti-

lize two step execution method, namely, the results satisfying the non-negation

part are first constructed and then filtered if event instances which match the nega-

tion part exist, such forced execution ordering can miss optimization opportunities.

1.3. RESEARCH CHALLENGES 6

SASE+ [ADGI08] is a declarative language for specifying complex event patterns

over streams. The semantics of the language is rich, spanning three dimensions

in the Kleene closure definition as well as involving negation and composition.

SASE+ queries can be composed by feeding the output of one query as input to

another. However, the output of the first query is restricted to the atomic sim-

ple type. SASE+ does nested query processing and SASE+ doesn’t support nega-

tion over composite event type. K*SQL [MZZ10] can express complex patterns

on relational streams and sequences and can query data with complex structures,

e.g, XML and genomic data. However, they don’t support applying negation over

composite event types. While CEDR [BGAH07] allows applying negation over

composite event types within their proposed language, the execution strategy for

such nested queries is not discussed. A declarative query language LINQ [PR08]

used in Microsoft StreamInsight [Ae09] allows nested queries by composing query

templates. However, no optimization is introduced for processing negation over

composite event types.

1.3 Research Challenges

What is common across the motivating scenarios in Section 1.1 is a need to process

complex queries over huge volumes, and potentially unbounded, streaming data in

real-time at various abstraction levels in a robust manner. As analyzed in Section

1.2, we observe Complex Event Processing (CEP) faces several critical challenges:

Imperfections in Event Delivery. Events may arrive out-of-order to an CEP en-

gine. To handle imperfections in event delivery and define consistency guarantees

on the output is of great importance in robust query processing. When process-

1.3. RESEARCH CHALLENGES 7

ing sequence pattern queries, state-of-the-art event stream processing technology

[WDR06] experiences significant challenges with out-of-order data arrival includ-

ing output blocking, huge system latencies, memory resource overflow, and incor-

rect result generation. We need to devise techniques to solve these problems. One

commonly applied method is K-slack [Shi04]. It buffers the arriving data for K

time units which would incur large latency. Recently, the authors [LTS+08] pro-

pose to apply explicit stream progress indicators, such as punctuation or heartbeats,

to unblock and purge operators. However, the authors don’t consider out-of-order

handling for event streams and, in particular, not for order-sensitive operators such

as CEP sequences and negation.

Theory. One of the most interesting and flexible features of a query language is

the composition of operators to an arbitrary depth [Kim82, MHM04]. Without

this capability, users are severely restricted in forming complex patterns in a con-

venient and succinct manner. However, no clean syntax and semantics for nested

CEP queries is designed. Most of the existing CEP systems [WDR06, MM09]

only support flat pattern queries. Lacking a precise formal specification limits the

opportunities for query optimization and query rewrites.

Querying Multi-Dimensional Data. There are numerous emerging applications,

such as online financial transactions, IT operations management, and sensor net-

works that generate real-time streaming data. This streaming data has many dimen-

sions (time, location, objects) and each dimension can be hierarchical in nature.

One important common problem over such data is to be able to analyze multiple

pattern queries that exist at various abstraction levels in real-time. What is more, a

CEP system needs to support multi-dimensional analysis of event streams at differ-

ent abstraction levels. However, the state-of-art systems [CD97, HRU96, GHQ95,

1.4. CONTRIBUTIONS OF THIS DISSERTATION 8

CKAK94, WDR06, BGAH07] either don’t support pattern queries or don’t support

OLAP operations. Strategies for supporting queries at different concept and pattern

hierarchies must be devised and efficient computation and data sharing methods

among such queries need to be designed.

Multi-Query Optimization. Multiple queries can be evaluated more efficiently

together than independently, because it is often possible to share state and compu-

tation. Multi-query optimization (MQO) techniques are proposed to avoid eval-

uating shared query subexpressions more than once. Multiple-query optimiza-

tion [Sel88, RSSB00, Fin82] typically focuses on static relational databases. It

identifies common subexpressions among queries such as common joins or filters.

However, multiple expression sharing for stack-based pattern evaluation for CEP

queries has not yet been studied.

Nested Patterns. Processing nested patterns opens many new theoretical and prac-

tical directions such as designing processing strategies for such complex nested

pattern queries. Neither processing nor optimization mechanisms for nested CEP

queries have been proposed in the literature to date.

1.4 Contributions of This Dissertation

The dissertation aims to solve the core issues described in Section 1.3. The dis-

sertation focus on the design, implementation, and evaluation of a novel complex

event processing methodology that tackles several of the key shortcomings of ex-

isting technologies. The proposed method for in-memory multi-dimensional se-

quential pattern analysis over high-speed event streams is designed to be highly

efficient and scalable. The dissertation objective is to produce the detected patterns

1.4. CONTRIBUTIONS OF THIS DISSERTATION 9

quickly and improve computational efficiency by sharing results among queries us-

ing a unified processing infra-structure. The main contributions of this dissertation

include the following.

Sequence Pattern Query Processing over Out-of-Order Event Streams. The

above Nested CEP and E-Cube work assume events arrive in order. We break

this assumption and propose aggressive and conservative strategies respectively to

process flat sequence pattern queries on out-of-order event streams. The aggres-

sive strategy produces maximal output under the optimistic assumption that out-

of-order event arrival is rare. In contrast, to tackle the unexpected occurrence of an

out-of-order event and with it any premature erroneous result generation, appro-

priate error compensation methods are designed. The conservative method works

under the assumption that out-of-order data may be common, and thus produces

output only when its correctness can be guaranteed. A partial order guarantee

(POG) model is proposed under which such correctness can be guaranteed. For ro-

bustness under spiky workloads, both strategies are supplemented with persistent

storage support and customized access policies.

E-Cube: Multi-Dimensional Event Sequence Analysis Using Hierarchical

Pattern Query Sharing. Multi-dimensional analysis over event pattern queries

with concept and pattern refinement is supported. Given a set of queries, based

on interrelationships in terms of both concept and pattern refinement among these

queries, ECube composes the queries into an integrated E-Cube hierarchy. I de-

sign several alternate stream processing strategies that allow reuse of intermediate

results along both the concept and the pattern refinement relationships between

queries, thus saving computations and memory. Both strategies of drill-down (re-

finement from the abstract to the more specific pattern) and of roll-up (generaliza-

1.4. CONTRIBUTIONS OF THIS DISSERTATION 10

tion from the specific to the more abstract pattern) are developed for evaluation of

the given set of sequence pattern queries including negation. Design a cost-driven

optimizer for multi-query execution, called Chase, that exploits the above strate-

gies for ECube hierarchy execution. It determines an optimal global ordering for

maximal re-use.

High-performance Nested CEP Query Processing over Event Streams. I

identify the lack of nested CEP query syntax and of understanding their seman-

tics in the literature. I introduce the nested CEP language NEEL that supports the

flexible nesting of AND, OR, Negation and SEQ operators at any level. Formal

semantics for the NEEL language are proposed. A set of equivalence rules for

rewriting NEEL expressions satisfying our language constraints with simple pred-

icates, along with proofs of their correctness are provided. I propose a normaliza-

tion procedure that employs these rewriting rules to transform a nested CEP query

with simple predicates into an equivalent non-nested query. In addition, I show

proofs of its properties. By reducing forced ordering between the different level of

query expressions, the normalized expression exposes opportunities for query op-

timization. The sequence subexpressions produced when flattening a normalized

NEEL query are shown to often be similar. They share many common primitive

event types. I propose several strategies for physical operators that implement the

shared execution of a set of such similar yet not identical normalized subexpres-

sions, including prefix caching, suffix clustering and a customized “bit-marking”

method. These shared operators could potentially be applied to queries forming

a pattern hierarchy. The size of the search space for all possible expression parti-

tions exploiting sharing of partial computations is shown to be exponential. Thus,

we propose an effective cost-based search heuristic for establishing groupings of

1.5. DISSERTATION ORGANIZATION 11

subexpressions – each then mappable to one of the above shared execution physi-

cal operators. We thoroughly evaluate the optimized NEEL execution technology

through experiments comparing it to the state-of-the-art technique, namely itera-

tive nested execution. Our results confirm that our NEEL execution in many cases

performs 100 fold faster than the traditional execution for real stock market query

workloads.

1.5 Dissertation Organization

The remainder of this dissertation is organized as follows. Chapter 2 provides

the preliminaries of this dissertation proposal. Chapter 3 proposes the techniques

for sequence pattern query processing over out-of-order event streams. Chapter 4

discusses the proposed mechanisms for multi-dimensional event sequence analy-

sis using hierarchical pattern query sharing. Chapter 5 contains nested CEP query

language, rewriting rules, a normalization procedure and shared query processing

mechanism. Finally, Chapter 6 contains a discussion of the issues grouping an in-

tegration of nested, multi-dimensional and out-of-order event processing into one

powerful analysis system. Chapter 7 concludes the dissertation and points out fu-

ture work.

12

Chapter 2

Complex Event Processing Basics

2.1 Event Model

An event instance is an occurrence of interest denoted by lower-case letters (e.g.,‘e’).

An event instance can be either primitive (smallest, atomic occurrence of interest)

or composite (a list of constituent primitive event instances).

An event type E of an instance ei describes the essential features associated

with the event instance ei denoted by ei.type. Each event type is associated a

set of attributes; each attribute has a corresponding domain of possible values.

There are tw distinguished attributes, shared by all event types, called ts and te,

taking values in the natural numbers modeling time. Typically the domains will

have predicates defined over them; for example we can compare timestamps by ≼,

etc. There may be other, domain-specific attributes. A composite event instance is

(simply) a set of events. If S = {e1, . . . ,en} is a composite event instance, define

the start and end times for S as follows:S.ts = min{ei.ts | 1≤ i≤ n} and S.te =

max{ei.te | 1≤ i≤ n}.

2.2. PATTERN QUERY LANGUAGE 13

2.2 Pattern Query Language

In the following, I briefly present the language adopted from the literature [WDR06].

I will describe the proposed nested complex pattern query language in Chapter 5.

<Query>::= PATTERN <exp>
WITHIN <window>

[RETURN <set of primitive events>]

Table 2.1: Pattern Query Language

The PATTERN clause retrieves event instances specified in the event expres-

sion from the input stream. The PATTERN clause retrieves event instances spec-

ified in the event expression from the input stream. The qualification in the PAT-

TERN clause further filters event instances by evaluating predicates applied to po-

tential matching events. The WITHIN clause specifies a time period within which

all the events of interest must occur in order to be considered a match. The time

period is expressed as a sliding window, though other window semantics could

also be applied. A set of histories is returned with each history equal to one query

match, i.e., the set of event instances that together form a valid match of the query

specification. Clearly, additional transformation of each match could be plugged

in to the RETURN clause.

Operators in the PATTERN clause. The sequence operator SEQ(A a, B b) finds

results composed of a and b instances where the b instance of event type B follows

the a instance of event type A in an event stream within a specified time window.

The AND operator AND(A a, B b) finds results composed of a and b instances

within a specified time window, and their order does not matter. The OR operator

2.3. STATE-OF-THE-ART PATTERN QUERY EVALUATION 14

OR(A a, B b) returns results composed of either a or b within a specified time

window.

2.3 State-of-the-art Pattern Query Evaluation

I will describe the operator formal semantics in Section 5.1.2.Below, I briefly de-

scribe how to evaluate each operator.

State-of-the-art Stack Based Pattern Query Evaluation. First, each pattern

query qi is compiled into a query plan. Beyond commonly used relational-style

operators like select, project, join, group-by and aggregation, we support the Win-

dow Sequence operator (denoted by WinSeq(E1 ,..., En, window)), Window AND

operator (denoted by WinAND(E1 ,..., En, window)) and Window OR operator (de-

noted by WinOR(E1 ,..., En, window)). qi extracts all matches of instances within

the sliding stream window as specified in query qi.

WinSeq first extracts all matches to the generating expressions specified in

the query, and then filters out events based on boolean expressions as specified

in the query. We briefly describe the implementation strategy of the SEQ opera-

tor. We adopt the state-of-art stack-based strategy for execution [WDR06, Jag08,

GADI08]. An indexing data structure named SeqState associates a stack with each

event type in each operator node. Each received event instance is simply appended

to the end of the corresponding stack. If an event type occurs twice, we will make

two stacks of the same event type. Event instances are augmented with pointers

ptri to the most recent events in the previous stack to facilitate quick locating of

related events in other stacks during result construction. The arrival of an event

instance em of the last event type Em of a query qi in the topmost operator node

2.3. STATE-OF-THE-ART PATTERN QUERY EVALUATION 15

triggers the compute function of qi. The result construction is done by a depth first

search along instance pointers ptri rooted at that last arrived instance em. All paths

composed of edges “reachable” by that root em correspond to one matching event

sequence returned for qi. When boolean expressions are specified in WinSeq, then

during sequence construction any edges “reachable” from the root em are skipped

if an instance of the boolean expression ! Ei is found or no event instance of the

∃ Ei boolean constraint can be found in the corresponding stream position. Events

that are outdated based on the window constraints are purged from SeqState when

a new event instance arrives.

WinOr returns an event e if e matches one of the event expressions specified

in the WinOr operator. The implementation of WinOr operator is straight forward.

All events satisfying the event expressions listed in the WinOr operator are returned

if these events were not outputted before.

WinAnd is designed to work like a sort-merge join. A data structure called

AndState is utilized for the WinAnd operator. AndState associates a stack with

each positive event type. In each stack of type Ei, its instances are naturally sorted

from top to bottom in the order of their timestamps. All events of types listed in the

WinAnd operator are appended at the end of the corresponding stacks. Whenever

a new event instance ei is inserted, the WinAnd compute is initiated. The WinAnd

operator doesn’t distinguish between the ordering of event occurrences. In WinAnd,

we say a boolean expression ! E (∃ E) is satisfied for a match of the generating

expression if events of type E don’t (do) exist within the window scope of the

match. Purge of the WinAnd state removes all outdated event instances based on

window constraints. Any old event instance ei kept is purged from the bottom of

stack once an event instance ek with (ek.ts - ei.ts) > W is received.

2.3. STATE-OF-THE-ART PATTERN QUERY EVALUATION 16

(null) g1 (g1) a5

(g1) a6
G A

(null) g7

(a6) t9

T

(a6) t15

Figure 2.1: Stack Structure for q3 in Figure 4.1

Example 1 Figure 2.1 shows the event instance stacks for the pattern query q3

= SEQ(G g, A a, T t)). In each stack, its instances are naturally sorted from top

to bottom by their timestamps. When t15 of type Tulsa arrives, the most recent

instance in the previous stack of type Austin is a6. The pointer of t15 is a6, as shown

in the parenthesis preceding t15. As Tulsa is the last event type in q3, t15 triggers

result construction. Two results <g1, a5, t15> and <g1, a6, t15> are constructed

involving t15.

17

Chapter 3

Sequence Pattern Query

Processing over Out-of-Order

Event Streams

In this Chapter, we will discuss how to process out-of-order events for flat SEQ

queries expressed by the pattern query language in Table 3.1. The proposed tech-

niques have been implemented and experimentally evaluated in an event process-

ing system developed at WPI. This work has been published as one ICDE pa-

per [LLG+09] and one SIGMOD demo [WLL+09].

3.1 Motivation

Consider a networked RFID system where RFID reader R1 transmits its events to

the event processing system EPS over a Wi-Fi network,while reader R2 transmits

over a wireless network, and reader R3 transmits its events over a local area net-

3.1. MOTIVATION 18

work. The variance in the network latencies, from milliseconds in wired LANs

to 100s of seconds for a congested Wi-Fi network, often cause events to arrive

out-of-sync with the order in which they were tracked by the RFID readers. Fur-

thermore, machine or partial network failure or intermediate services such as filters,

routers, or translators may introduce additional delays. Intermediate query process-

ing servers also may introduce disorder [Mou03], e.g., when a window is defined

on an attribute other than the natural ordering attribute [Cha03], or due to data pri-

oritization [Vij99]. This variance in the arrival of events makes it imperative that

the EPS can deal with both in-order as well as out-of-order arrivals efficiently and

in real-time.

Out-of-order arrival of events1, when not handled correctly, can result in sig-

nificant issues as illustrated by the motivating example below. Let us consider

a popular application for tracking books in a bookstore [WDR06] where RFID

tags are attached to each book and RFID readers are placed at strategic locations

throughout the store, such as book shelves, checkout counters and the store exit.

The path of the book from the book shelf to store exit can be tracked as it passes

the different RFID readers, and the events generated from the RFID readers can

be analyzed to detect theft. For example, if a book shelf and a store exit regis-

ter the RFID tag for a book, but the RFID tag is not read at any of the checkout

counters prior to the store exit, then a natural conclusion may be that the book is

being shoplifted. Such a query can be expressed by the pattern query (S, !C, E)

which aims to find sequences of types SHELF-READING (S) and EXIT-READING

(E) with no events of type COUNTER-READING (C) between them. If events

1If an event instance never arrives at our system, our model assumes that it never actually hap-
pened. Event detection and transmission reliability in a network is not the focus of our work.

3.1. MOTIVATION 19

of type C (negative query components) arrive out-of-order, we cannot ever output

any results if we want to assure correctness of results. This holds true even if the

query has an associated window. So no shoplifting will be detected. Also, oper-

ators cannot purge any event instances which may match with future out-of-order

event instances. In the example above, no events of types SHELF-READING(S),

COUNTER-READING(C) and EXIT-READING(E) can be purged. This causes un-

bounded stateful operators which are impractical for processing long-running and

infinite data streams. Customized mechanisms are needed for event sequence query

evaluation to tackle these problems caused by out-of-order streams.

The only available method for dealing with out-of-order arrival of events, called

K-slack [Shi04], buffers the arriving data for K time units. A sort operator is applied

on the K-unit buffered input as a pre-cursor to in-order processing of events. The

biggest drawback of K-slack is rigidity of the K that cannot adapt to the variance in

the network latencies that exists in a heterogenous RFID reader network. For ex-

ample, one reasonable setting of K may be the maximum of the average latencies

in the network. However, as the average latencies change, K may become either too

large, thereby buffering un-needed data and introducing unnecessary inefficiencies

and delays for the processing, or too small, thereby becoming inadequate for han-

dling the out-of-order processing of the arriving events and resulting in inaccurate

results.

To address the above shortcomings, we propose two strategies positioned on

the two ends of the spectrum where out-of-order events are the norm on one end

and the exception in the other. In contrast to K-slack type solutions [SW04], our

proposed solutions can process out-of-order tuples as they arrive without being

forced to first sort them into a globally “correct” order. The conservative method

3.3. PROBLEMS CAUSED BY OUT-OF-ORDER DATA ARRIVAL 20

designed for the scenario where out-of-order events are the norm exploits runtime

streaming metadata in the form of partial order guarantee (POG) thereby permit-

ting the use of unbounded stateful operators and maximally unblocking operators.

Memory is effectively utilized to maintain potentially useful data. The aggressive

solution designed to handle mostly in-order events outputs sequence results imme-

diately without waiting for any potentially out-of-order events. For the unexpected

scenario that out-of-order events do arise, a compensation technique is utilized to

correct any erroneous results. This targets applications that require up-to-date re-

sults even at the risk of temporally imperfect results to assure delayed correctness.

3.2 Out-of-Order Event

Consider an event stream S: e1, e2, ..., en, where e1.ats < e2.ats < ... < en.ats. For

any two events ei and e j (1 ≤ i, j ≤ n) from S if ei.ts < e j.ts and ei.ats < e j.ats,

we say the stream is an ordered event stream. If however e j.ts < ei.ts and e j.ats

> ei.ats, then e j is flagged as an out-of-order event. Stream S in Figure 3.1(a) lists

events in their arrival order, thus event c9 received after d17 is an out-of-order event.

3.3 Problems Caused By Out-Of-Order Data Arrival

3.3.1 Problems for WinSeq Operator

Current event stream processing systems [WDR06, Ahm04] rely on purging of

the WinSeq operator to efficiently and correctly handle in-order event arrivals. An

event instance ei is purged when it falls out of the window W, i.e., when a new

event instance ek with ek.ts - ei.ts > W is received. This purging is considered

3.3. PROBLEMS CAUSED BY OUT-OF-ORDER DATA ARRIVAL 21

a c b a d f c d d

3 5 6 7 10 12 13 15 16

b

1

b

11

a c b a d f c d d

3 5 6 7 10 12 13 15 16 Received
Order

b

1

b

11

(a) Out-of-Order Event Arrival Example 1

a c b a d f c d d

3 5 6 7 10 12 13 15 16

b

1

b

11

(b) Out-of-Order Event Arrival Example 2

(c) Out-of-Order Event Arrival Example 3

c

9

a

0

d

2

d (or b)

8

d

17

d

17

d

17

Received
Order

Received
Order

a c b a d f c f f

3 5 6 7 10 12 13 15 16

b

1

b

11

(d) Out-of-Order Event Arrival Example 4

b

4

f

17 Received
Order

Figure 3.1: Out-of-Order Event Arrival Example

“safe” when all events arrive in-order. However, with out-of-order event arrivals

such a “safe” purge of events is no longer possible. Consider that an out-of-order

event instance e j (e j.ts < ek.ts) arrives after ek. In this scenario, if ek is purged

before the arrival of e j, potential result sequences wherein e j is matched with some

event ek are lost.

While this loss of results can be countered by not purging WinSeq state, in

practice this is not feasible as it results in storing infinite state for the WinSeq

operator.

Example 2 For the stream in Figure 3.1(c), suppose the out-of-order event d8 ar-

rives after d17 (d8.ats > d17.ats), d8 should form a sequence output <a3, b6, d8>

with a3 and b6. However WinSeq state purging would have already removed a3

thus destroying the possibility for this result generation.

Observation 1: A purge of the WinSeq state (SeqState) is “unsafe” for out-of-order

event arrivals resulting in loss of results. Not applying purge to SeqState results in

unbounded memory usage for the WinSeq operator.

3.3. PROBLEMS CAUSED BY OUT-OF-ORDER DATA ARRIVAL 22

3.3.2 Problems for WinNeg Operator

With out-of-order data arrival, window-based purge of NegState is also not “safe”,

because it may cause the generation of wrong results. A negative event instance

ei will be purged once an event ek with (ek.ts− ei.ts) > W is received. When an

out-of-order positive event instance e j (e j.ts < ek.ts) arrives after the purge of a

negative event instance ei, this may cause the WinSeq operator to generate some

incorrect sequence results that should have been filtered out by the negative in-

stance ei. Similarly, an out-of-order negative event instance ei may be responsible

for filtering out some sequence results generated by WinSeq previously. In short,

this negation state purge is unsafe, because it may cause unqualified out-of-order

event sequences to not be filtered out by WinNeg.

Example 3 For the stream in Figure 3.1(d), assume out-of-order event instance

b4 comes after f17. Suppose WinSeq sends up the out-of-order sequence <a3, b4,

d10> to WinNeg. WinNeg should determine that <a3, b4, d10> is not a qualified

sequence because of the negative event c5 between b6 and d8. However, if NegState

purge would already have removed c5, then this sequence would now wrongly be

output.

Observation 2. We observe the dilemma that on the one hand purging is essential

to assure that the state size of NegState does not grow unboundedly. On the other

hand, any purge on NegState is unsafe for out-of-order input event streams because

wrong sequence results may be generated.

Observation 3. WinNeg can never safely output any sequence results for out-of-

order input streams, because future out-of-order negative events may render any

earlier result incorrect. Hence, WinNeg is a blocking operator causing the queries

3.4. LEVELS OF CORRECTNESS 23

to never produce any results.

3.4 Levels of Correctness

We define criteria of output “correctness” for event sequence processing.

Ordered output. The ordered output property holds if and only if for any sequence

result t = <e1, e2, ..., en> from the system, we can guarantee that for every future

sequence result t’ = <e1’, e2’, ..., en’>, en.ts 6 e′n.ts. We refer to sequence results

that don’t satisfy the property as out-of-order output.

Immediate output. The immediate property holds if and only if every sequence

result will be output as soon as it can be determined that no current negative event

instance filters it out.

Permanently Valid. The property permanently valid holds if and only if at any

given time point tcur, all output result sequences from the system so far satisfy

the query semantics given full knowledge of the complete input sequence. That

is, for any sequence result t = <e1, e2, ..., en>, it should satisfy (1) the sequence

constraint e1.ts ≤ e2.ts ≤ e3.ts ... ≤ en.ts; (2) the window constraint (if any) as

en.ts - e1.ts ≤W ; (3) the predicate constraints (if any) and (4) the restriction on the

negation filtering (if there is a negative type Eneg between positive event type Ei

and E j then no current or future received event instance eneg of type Eneg satisfies

ei.ts ≤ eneg.ts ≤ e j.ts).

Eventually Valid. We define eventually valid property to be weaker than perma-

nently valid. At any time tcur, all output results meet conditions (1) to (3) from

above. Condition (4) is relaxed as follows: if in the query between event type Ei

and E j there is a negation pattern Eneg then (4.1’) no eneg of type Eneg exists in the

3.4. LEVELS OF CORRECTNESS 24

current NegState with ei.ts ≤ eneg.ts ≤ e j.ts and (4.2’) if in the future eneg of type

Eneg with eneg.ats > tcur satisfies ei.ts≤ eneg.ts≤ e j.ts, then results involving ei and

e j become invalid.

The permanently and eventually valid defined above are two different forms of

valid result output.

Complete output. If at time tcur a sequence result t = <e1, e2, ..., en> is known to

satisfy the query semantics defined in (1) to (4) in the permanently valid category

above or those defined in the eventually valid category then the sequence result t =

<e1, e2, ..., en> will also be output at time tcur by the system.

Based on this categorization, we now define several notions of output correct-

ness. Some combination of these categories can never arise. For example, it is not

possible that an execution strategy produces permanently correct un-ordered re-

sults immediately. The reason is that with out-of-order event arrivals, if sequence

results are output immediately then they cannot be guaranteed to remain correct in

the future. Similarly, it is not possible that output tuples produced are only eventu-

ally correct and at the same time are in order. The reason is that we cannot assure

that sequences sent by some later compensation computation do not lead to out-of-

order output. Also, it is not possible that out-of-order tuples can be output in order

yet immediately. The reason is that out-of-order event arrivals can lead to out-of-

order output. We now introduce four combinations as levels of output correctness

that query execution can satisfy:

• Full Correctness: ordered, immediate output, permanently valid and com-

plete output.

• Delayed Correctness: ordered, permanently valid and eventually complete

3.4. LEVELS OF CORRECTNESS 25

output.

• Delayed Unsorted Correctness: unordered, permanently valid, and com-

plete output.

• Convergent Unsorted Correctness: immediate output, eventually valid and

complete output.

Although full correctness is a nice output property, it is too strong a require-

ment and unnecessary in most practical scenarios. In fact, if events come out-of-

order, full correctness cannot be achieved and we must live with delayed correct-

ness.

In some applications delayed unsorted correctness may be equally accepted as

strict delayed but ordered correctness. Sequence results may correspond to inde-

pendent activities in most scenarios and the ordering of different outputs is thus

typically not important. For instance, if book1 or book2 was stolen first is not

critical to a theft detection application. Sorting the sequence results will cause

increased even possibly prohibitively large response time. Delayed Unsorted Cor-

rectness is thus a practical requirement. For example, in the RFID-based medicine

transportation scenario, between the medicine cabinet and usage in the hospital,

the medical tools cannot pass any area exposed to heat nor can they be near any

unsanitary location. In this scenario, correctness is of utmost importance while

some delay can be tolerated.

On the other hand, in applications where correctness is not as important as

system response time, then the convergence unsorted correctness may be a more

appropriate category. The detection of shoplifting of a high price RFID tagged

jewelry would require a quick response instead of a guaranteed valid one. Actions

3.5. NAIVE APPROACH: K-SLACK 26

can be taken to confront the suspected thief and in the worst case, an apology can

be given later if a false alarm is confirmed. In the rest of the paper, we design a

solution for each of the identified categories.

3.5 Naive Approach: K-slack

K-slack is a well-known approach for processing unordered data streams [Shi04].

We now classify K-slack approach into the delayed correctness category. As de-

scribed in the introduction, the K-slack assumption holds in situations when predic-

tions about network delay can be reliably assessed. Large K as required to assure

correction will add significant latency. We briefly review K-slack which can be

applied for situations when the strict K-slack assumption indeed holds. Our slack

factor is based on time units, which means the maximum out of orderness in event

arrivals is guaranteed to be K time units. With K so defined, proper ordering can be

achieved by buffering events in an input queue until they are at least K time units

old before allowing them to be dequeued. We set up a clock value which equals

the largest occurrence timestamp seen so far for the received events. A dequeue

operation is blocked until the smallest occurrence timestamp ts of any event in the

buffer is less than c - K, where c is the clock value.

The functionalities of WinSeq and WinNeq in the K-slack solution are the same

as those in the ordered input case because data from the input buffer would only be

passed in sorted order to the actual query system.

3.6. PROPOSED AGGRESSIVE AND CONSERVATIVE STRATEGIES 27

3.6 Proposed Aggressive and Conservative Strategies

3.6.1 Conservative Query Evaluation

Overview of Partial Order Guarantee Model We now propose a solution, called

conservative query evaluation, for the category of delayed unsorted correctness.

The general idea is to use meta-knowledge to safely purge WinSeq and WinNeg

states and to unblock WinNeg (addressing the problems in Section 3.3). Permanent

valid is achieved because results are only reported when they are known to be final.

Relative small memory consumption is achieved by employing purging as early as

possible.

To safely purge data, we need meta-knowledge that gives us some guarantee about

the nonoccurrence of future out-of-order data. A general method for meta-knowledge

in streaming is to interleave dynamic constraints into the data streams, sometimes

called punctuation [Lup04].

Partial Order Guarantee Definition. Here we now propose special time-

oriented metadata, which we call Partial Order Guarantee (POG). POGs guarantee

the future non-occurrence of a specified event type. POG has associated a special

metadata schema POG = <type, ts, ats> where type is an event type Ei, ts is an

occurrence timestamp and ats is an arrival timestamp. POG p j indicates that no

more event ei of type p j.type with an occurrence timestamp ei.ts less than p j.ts will

come in the stream after p j, i.e., (ei.ats > p j.ats implies ei.ts > p j.ts).

Many possibilities for generating POGs exist, ranging from source or sensor

intelligence, knowledge of access order such as an index, to knowledge of stream or

application semantics [Pet03]. In fact, it is easy to see that due to the monotonicity

of the time domain, such assertions about time stamps tend to be more realistic to

3.6. PROPOSED AGGRESSIVE AND CONSERVATIVE STRATEGIES 28

establish compared to guarantees about the nonoccurrence of certain content values

throughout the remainder of the possibly infinite stream. We note that network

protocols can for instance facilitate generation of this knowledge about timestamp

occurrence. Note that the TCP/IP network protocol guarantees in-order arrival of

packets from a single host. Further, TCP/IP’s handshake will acknowledge that

certain events have indeed been received by the receiver based upon which we

then can savely release the next POG into the stream. Henceforth, we assume a

logical operator, called punctuate operator [Pet03], that embeds POGs placed at

each stream source.

Using POGs is a simple and extremely flexible mechanism. If network latency

were to fluctuate over time, this can naturally be captured by adjusting the POG

generation without requiring any change of the query engine. Also, the query en-

gine design can be agnostic to particularities of the domain or the environment.

While it is conceivable that POGs themselves can arrive out-of-order, a punctuate

operator could conservatively determine when POGs are released into the stream

based on acknowledged receival of the events in question. Hence, in practice, out-

of-order POG may be delayed but would not arrive prematurely. Clearly, such

delay or even complete loss of a POG would not cause any errors (such as incor-

rect purge of the operator state), rather it would in the worst case cause increased

output latency. Fortunately, no wrong results will be generated because the WinNeg

operator would simply keep blocking until the subsequent POG arrives.

POG-Based Solution for WinSeq

POGSeq State. We add an array called POGSeq State to store the POGs received

so far with one array position for each positive event type in the query. For each

event type, we store the largest timestamp which is sufficient due to our assumption

3.6. PROPOSED AGGRESSIVE AND CONSERVATIVE STRATEGIES 29

of POG ordering (see Section 3.6.1).

Tuple Processing Insert. In-order events are inserted as before. The simple ap-

pend semantics is no longer applicable for the insertion of out-of-order positive

event instances into the state. Instead out-of-order event ei ∈ Ei will be placed into

the corresponding stack of type Ei in SeqState sorted by occurrence timestamp.

The PreEve field of the event instance ek in the adjacent stack with ek.ts > ei.ts

will be adjusted to ei if (ek.PreEve).ts is less than ei.ts.

Compute. In-order event insertion triggers computation as usual. The insertion

of an out-of-order positive event ei triggers an out-of-order sequence computation.

This is done by a backward and forward depth first search in the DAG. The forward

search is rooted at this instance ei and contains all the virtual edges reachable from

ei. The backward search is rooted at event instances of the accepting state and con-

tains paths leading to and thus containing the event ei. One final root-to-leaf path

containing the new ei corresponds to one matched event sequence. If ei belongs to

the accepting (resp. starting) state, the computation is done by a backward (resp.

forward) search only.

Purge. Tuple processing will not cause any state purging.

POGs Processing

Purge. The arrival of a POG pk on a positive event type triggers the safe purge of

the WinSeq State, as explained below.

Insert. If WinSeq receives a POG pk on a positive event type, we update the

corresponding POGSeq state POGSeq[i] := pk.ts if pk.ts is greater than the current

POG time for pk.type. If the positive event type is listed just before one negative

event type in a query, we pass pk to WinNeg. If WinSeq receives a POG pk on a

negative event type, we also pass pk to WinNeg.

3.6. PROPOSED AGGRESSIVE AND CONSERVATIVE STRATEGIES 30

Definition 1 A positive event ei is purge-able henceforth no valid sequence result

<e1, ..., ei, ..., en> involving ei can be formed.

POG-Triggered Purge. Upon arrival of a POG pk, we need to determine whether

some event ei with ei.type ̸= pk.type can be purged by pk. By Definition 1, we

can purge ei if it can’t be combined with either current active events or potential

out-of-order future events of type pk.type to form valid sequence results.

Algorithm 1 Singleton-POG-Purge
Input: (1) Event ei ∈ Ei (2) pk ∈ POG
Output: Boolean (indicating whether event ei was purged by pk

1 if (pk .ts<ei.ts) || (pk.type==ei.type)
2 then return false;
3 else
4 if (Ek = pk.type listed after Ei in query Q)
5 if (ei.ts is within [pk.ts - W, pk.ts])
6 then return false;
7 else
8 if (current events of type pk.type exist
9 within [ei.ts,ei.ts+W] in WinSeq)
10 then return false;
11 else purge event ei; return true; endif endif
12 else // Ek is listed before Ei in query Q
13 if (no events of pk.type exist within [ei.ts - W, ei.ts] in
WinSeq)
14 then purge event ei ∈ Ei; return true;
15 else return false; endif endif
16 endif

Algorithm 1 depicts the purge logic for handling out-of-order events using

POG semantics. In lines 1 and 2, we cannot purge ei because an event instance

ek of pk.type with ek.ts > pk.ts can still be combined with ei to form results. In

lines 4, 5 and 6, we cannot purge ei if ei.ts is within [pk.ts - W, pk.ts] for ei could

be composed with an event instance ek of pk.type with occurrence timestamp ek.ts

> pk.ts and ek.ats > pk.ats. In lines 8, 9, 10, we cannot purge ei for even though

pk can guarantee no out-of-order events of type pk.type can be combined with ei.

Some current event instance ek can still be combined with ei. To understand Algo-

3.6. PROPOSED AGGRESSIVE AND CONSERVATIVE STRATEGIES 31

rithm 1, let us look at the following example.

Example 4 Consider purging when evaluating sequence query SEQ(A, B, !C, D)

within 7 mins on the data in Figure 3.1(b). Assume after receiving events a0 and

d2 (both shaded), we receive a POG pk = <A, 1> indicating that no more events

of type A with timestamp less than or equal to 1 will occur. For there are no events

of type A before b1 in window W, we can safely purge b1.

Optimized POG-Triggered Purge. By examining only one POG pk at a time, Al-

gorithm 1 can guarantee an event ei can be purged successfully if no event instance

ek of type pk.type (ei. type ̸= pk.type) exists within window W. However, even

though events of different POG types exist, they may not satisfy the sequence con-

straint as specified in one query. We need to make use of the knowledge provided

by a set of POGs as together they may prevent construction of sequence results.

In Algorithm 2 from line 1 to 7, we check whether ei can form results with

event instances of type listed before Ei in Query Q. We update the checking value

once we find an instance of pk.type. We need to continue the instance search after

timestamp checking for the next type in the POGSeq state. The checking order

guarantees the sequential ordering constraint among existing event instances of

POG types. Similarly from line 8 to 15, the algorithm checks whether ei can form

results with event instances of type listed after Ei in Query Q. Example 5 illustrates

this.

Example 5 Given the data in Figure 3.1(d), let’s consider purging a7 for query

SEQ(B, A, B, D, F) within 10 mins. Assume after receiving b4, we receive two

POGs (p1 = <B,17>, p2 = <D,17>). b6 of type B exists before a7. b11 of type

B exists after a7. However, no existing event instances of type D exist in the time

3.6. PROPOSED AGGRESSIVE AND CONSERVATIVE STRATEGIES 32

interval [11, 7+10]. Due to p2, we know no future events of type D will fall into

[11, 7+10]. So a7 is purge-able.

Algorithm 2 POG-Set-Purge
Query Q: “SEQ(E1, E2 ,..., En) within W”;
Input: Event ei ∈ Ei
Output: Boolean (whether ei was purged by the existing POG
Set.)

1 int checking = ei.ts - W;
2 for (each POG pk in POGSeq that pk.type is before ei.type in
Q)
3 if (pk.ts > ei.ts)
4 if (no current event ek of pk .type in [checking, ei.ts])
5 then purge event ei ∈ Ei; return true;
6 else checking = min(ek.ts); endif endif
7 endfor
8 checking = ei.ts;
9 for (each POG pk in POGSeq that pk .type is after ei.type in Q)
10 if (pk .ts ≥ ei.ts + W)
11 if (no event ek of type pk .type in [checking, ei.ts + W])
12 then purge event ei ∈ Ei; return true;
13 else checking = min(ek .ts); endif endif
14 endfor
15 return false

POG-Based Solution for WinNeg

POGNeg State. An in-memory array called POGNeg State is used to store POGs

of negative event types sent to WinNeg. The length of POGNeg corresponds to the

number of negative event types in the query. For each negative event type, we only

store one POG with its largest timestamp so far. POGNeg[i] := pk.ts if pk.ts is

greater than the current POG time for pk.type.

Holding Set. A set named holding set is maintained in WinNeg to keep the candi-

date event sequences which cannot yet be safely output by WinNeg.

Tuple Processing Additional functionalities beyond WinNegare:

Insert. If WinNeg receives output sequence results from WinSeq, it stores them

in the holding set. If WinNeg receives a negative event, WinNeg stores it in the

3.6. PROPOSED AGGRESSIVE AND CONSERVATIVE STRATEGIES 33

negative stack.

Compute. When WinNeg receives sequence results, after the computation, WinNeg

will put candidate results in the holding set. When WinNeg receives an out-of-

order negative event, the negative event will remove some candidate results from

the holding set per the query semantics. No results are directly output in either

case.

POGs Processing

Insert. Once WinNeg receives a POG pk on a negative (resp. positive) event type,

it updates the POGNeg[i] = pk.ts.

Compute. Let us assume the sequence query SEQ(E1, E2, ..., Ei, !NE, E j, ..., En)

where NE is a negation event type. When we receive a POG pk = <NE, ts>, an

event sequence “e1, e2 ..., ei, e j, ... en” maintained in WinNeg can be output from

the holding set if e j.ts < pk.ts.

Now assume the negation type is at an end point of the query such as SEQ(E1,

E2,..., En, !NE). Then any output sequence <e1, e2, e3, ..., en> from WinSeq will

be put into the holding set of WinNeg if no NE event exists in NegState with a

time stamp within the range of [en.ts, e1.ts + W]. When we receive a POG pk =

<NE, ts> which satisfies pk.ts > e1.ts + W, this sequence can be safely output by

WinNeg.

Example 6 Given query SEQ(A, B, !C, D) and the data in Figure 3.1(c), when d10

is seen, WinSeq produces <a3, b6, d10> as output and sends it up to WinNeg. At

this moment, the NegState of WinNeg holds the event instance c5. c5.ts is not in

the range of [6,10]. However WinNeg cannot output this tuple because potential

out-of-order events may still arrive later. Assume after receiving event d17, we then

3.6. PROPOSED AGGRESSIVE AND CONSERVATIVE STRATEGIES 34

receive POG pi = <C,10>. So future out-of-order events of type C, if any, will

never have a timestamp less than 10. WinNeg can thus safely output sequence

result <a3, b6, d10>.

Purging. For the negative events kept in the WinNeg state, Algorithms 1 can be

utilized to safely purge WinNeg.

For illustration purposes, we discussed the processing of one negative event in

the query. Algorithms can be naturally extended to also handle queries with more

than one negation pattern.

3.6.2 Aggressive Query Evaluation

Overview We now propose the aggressive method to achieve convergent unsorted

correctness category. The goal is to send out results with as small latency as possi-

ble based on the assumption that most data arrives in time and in order. In the case

when out-of-order data arrival occurs, we provide a mechanism to correct the re-

sults that have already been erroneously output. Two requirements arise. One, tra-

ditionally streams are append-only [Dou92, GÖ05, Dan03, Arv03], meaning that

data cannot be updated once it is placed on a stream. A traditional append-only

event model is no longer adequate. So a new model must be designed. Two, to

enable correction at any time, we need access to historical operator states until safe

purging is possible. The upper bounds of K-slack could be used for periodic safe

purging of the states of WinSeq and WinNeg operators when event instances are out

of Window size + K. This ensures that data is kept so that any prior computation can

be re-computed from its original input as long as still needed. Further, WinSeq and

WinNeg operators must be equipped to produce and consume compensation tuples.

3.6. PROPOSED AGGRESSIVE AND CONSERVATIVE STRATEGIES 35

Given that any new event affects a limited subset of the output sequence results,

we minimize run-time overhead and message proliferation by generating only new

results. That is, we generate delta revisions rather than regenerating entire results.

We extend the common append-only stream model to support the correction of

prior released data on a stream. Two kinds of stream messages are used: Insertion

tuple <+, t> is induced by an out-of-order positive event, where “t” is a new

sequence result. Deletion tuple <-, t> is induced by an out-of-order negative

event, such that “t” consists of the previously processed sequence. Deletion tuples

cancel sequence results produced before which are invalidated by the appearance

of an out-of-order negative event. Applications can thus distinguish between the

types of tuples they receive.

Compensation-Based Solution for WinSeq

Insert. Same as the POG-based WinSeq Insert function.

Compute. In-order event insertion triggers computation as usual. If a positive

out-of-order event ei is received, ei will trigger the construction of sequence results

in WinSeq that contain the positive event. The computation is the same as the

Compute function introduced in Section 3.6.1. If a negative out-of-order event ei

is received, the negative event will trigger the construction of spurious sequence

results in WinSeq that have the occurrence of the negative instance between the

constituent positive instances as specified in a query. These spurious sequence

results will be sent up to the WinNeg operator followed by the negative event ei.

See Algorithm 3 for details.

Example 7 The query is SEQ(A, !C, B) within 10 mins. For the stream in Figure

3(a), when an out-of-order negative event c9 is received, new spurious sequence

3.6. PROPOSED AGGRESSIVE AND CONSERVATIVE STRATEGIES 36

results <a3, b11>, <a7, b11> are constructed in WinSeq for a3.ts < c9.ts < b11.ts

and a7.ts<c9.ts<b11.ts and sent to WinNeg.

Purge. If some maximal arrival delay K is known, then any event instance ei kept

in SeqState is safely purged once an event ek with (ek.ts - ei.ts) > window W + K is

received.

Algorithm 3 Out-of-order Processing in WinSeq
Query “EVENT SEQ(E1, E2, ..., Ei, !E j , Ek, .., En)”
within W
Input: Out-of-order Event et
Output: Results, Negative events

1 if (et .type==E j)
2 then
3 WinSeq generates spurious results <e1, e2, ..., ei,
ek, ..., en>
4 with ei.ts < et .ts < ek.ts and (en.ts - e1.ts ≤W)
5 and sends them to WinNeg along with ei
7 else //et .type ̸= E j
8 <+, e1, e2, ..., et , ..., en> with (en.ts - e1.ts ≤W)
9 is constructed by WinSeq and sent to WinNeg
10 endif

Compensation-Based Solution for WinNeg

Insert. When candidate results or negative instances are received, WinNeg will

insert them as usual.

Compute. If the WinNeg operator receives spurious results from the WinSeq opera-

tor, WinNeg first checks whether these spurious results would have been invalidated

by the negative event instances already in WinNeg before. If not, the WinNeg op-

erator will send out these spurious results as compensation tuples of the deletion

type.

Purge. Same as compensation-based WinSeq Purge.

Example 8 As in Example 7, <a3, b11> and <a7, b11> are sent to WinNeg as

3.6. PROPOSED AGGRESSIVE AND CONSERVATIVE STRATEGIES 37

Algorithm 4 Out-of-order Processing in WinNeg
Query “EVENT SEQ(E1, E2, ..., Ei, !E j , Ek, .., En)”
within W
Input: 1 Results sent from WinSeq; 2 Out-of-Order
Negative Event et
Output: Compensation tuple

1 if marked spurious results are received from WinSeq
2 boolean output = true;
3 for each <e1, e2, ..., ei, ek , ..., en> sent from
WinSeq
4 for each e j ∈ E j stored in WinNeg
5 if(ei.ts < e j .ts < ek.ts)
6 then output = false; break; endif
7 endfor
8 if output == true
9 then <-, e1, e2, ..., ei, ek, ..., en> is output.
10 endif
11 output = true; endfor
12 endif
13 if results are regular (not marked spurious)
14 then
15 boolean output = true;
16 for each <e1, e2, ..., ei, ek, ..., en> or <+, e1, e2,
..., ei,
17 ek , ..., en> sent from WinSeq
18 Compute in WinNeg) endfor
27 endif
28 Insert et into the negative stack.

3.7. DISK-BASED EXTENSIONS 38

marked spurious results. (a3, b11) was filtered by c5 in WinNeg for a3.ts<c5.ts<b11.ts.

So only <a7, b11> is sent out as compensation tuple <-, a7, b11>.

3.7 Disk-Based Extensions

Thus far we have assumed that sufficient memory was available. However, large

window sizes or bursty event streams might cause memory resource shortage dur-

ing query processing. In such rare cases, we would employ a disk spilling strategy,

where a block of oldest memory-resident event instances is chosen as victim and

flushed to disk when the memory utilization passes a set threshold. We store his-

torical information at the operator level, that is the states of WinSeq and WinNeg

are stored as frames indexed by time. To avoid context switching, we use two sep-

arate buffers. One stores newly incoming events, and the other is dedicated to load

temporarily events back from disk for out-of-order handling.

Whenever an event instance ei arrives out of order, and its event instances

within W are stored in disk, then we first need to load the event window frame

into SeqState and NegState. This incurs overhead due to extra I/O costs for bring-

ing the needed slices of the historical event stream into the buffer.

There is a tradeoff between the aggressiveness with which this process is run,

and the benefits obtained. To address the tradeoff, we design policies for mode

selection. One criteria we consider is the likelihood that many results would be

generated by this correction processing. Assuming uniformity of query match se-

lectivities, we use the number of out-of-order events that fall into the same logical

window (physical disk page) as indicator of expected result generation productiv-

ity. Further, we employ a task priority structure to record the yet to be handled

3.8. RELATED WORK 39

events and the correspondingly required pages.

For each page that is required to be used, we maintain the out-of-order events

yet to be processed. We also keep track of the expected execution time for each

page. If the total number of required times for one page is greater than the activa-

tion threshold α or the expected execution time is greater then some threshold β,

we load that page and trigger the execution of tuples in this batch.

3.8 Related Work

Most stream query processing research has assumed complete ordering of input

data [Shi04, Lup04]. Thus they tend to work with homogeneous streams (time-

stamped relations), meaning each stream contains only tuples of the same type.

The semantics of general stream processing which employs set-based SQL-like

queries is not sensitive to the ordering of the data. While clearly ordering is core

for the sequence matching queries we are targeting here.

There has been some initial work in investigating the out-of-order problem

for generic (homogenous-input) stream systems, with the most common model

being K-slack [Shi04, Dan03]. K-slack assume the data may arrive out-of-order

at most by some constant K time units (or K tuples). Using K-slacks for state

purge has limitations in practical scenarios as real network latencies tend to have a

long-tailed distribution. This means for any K value, there exits a probability that

the latency can go beyond the threshold in the future (causing erroneous results).

Furthermore K-slack has the shortcoming that WinSeq state would need to keep

events while considering only the worst case scenario (i.e., it must conservatively

go with the largest network delay). Our conservative solution could easily model

3.8. RELATED WORK 40

such K-slack assumption, yet freeing the query system from having to hard-code

such knowledge.

[BGAH07] proposes a spectrum of consistency levels and performance trade-

offs in response to out-of-order delivery. We borrow their basic ideas for our prob-

lem analysis, though their consistency levels are determined by the input stream

blocking time in an alignment buffer and state size.

Borealis [Est06] extends Aurora in numerous ways, including revision pro-

cessing. They introduce a data model to specify the deletion and replacement of

previously delivered results. But their work is not designed for event systems, nor

are any concrete algorithms shown for revision processing. They propose to store

historical information in connection points. To design efficient customized query

processing with out-of-order support, we instead store prior state information at

the operator level to assure minimal information as required for compensation pro-

cessing is maintained. The notion of negative tuples in [GÖ05] and revision tuples

in Borealis [RMCZ06] both correspond to models to communicate compensation.

Though [GÖ05] does not deal with out of order data.

[SW04] proposes heartbeats to deal with uncoordinated streams. They focus

on how heartbeats can be generated when sources themselves do not provide any.

Heartbeats are a special kind of punctuation. The heartbeats generation methods

proposed in [SW04] could be covered by our punctuate operator. But how heart-

beats can be utilized in out-of-order event stream processing is not discussed.

[Lup04, Pet03] exploit punctuations to purge join operator state. [Jin05]

leverages punctuations to unblock window aggregates in data streams. We pro-

pose partial order guarantee (POG) based on different namely occurrence related

punctuation semantics for event stream processing.

3.8. RELATED WORK 41

Our concept of classification of correctness has some relationships with levels

of correctness for warehouse view maintenance categories defined in [Yue95].

Lastly, our work adopts the algebraic query architecture designed for handling

sequence queries over event streams [Pra94, Mar99, WDR06]. These systems do

not focus on the out-of-order data arrival problem.

42

Chapter 4

Multi-Dimensional Event

Sequence Analysis Using

Hierarchical Pattern Query

Sharing

In this Chapter, we will discuss how to support multi-dimensional analysis over

flat SEQ pattern queries expressed by the pattern query language in Table 3.1 with

concept and pattern refinement. The proposed techniques have been implemented

and experimentally evaluated in an event processing system developed at WPI in

collaboration with HP Labs. This work has been published as one SIGMOD pa-

per [LRG+11b] and one ICDE demo [LRG+10a].

4.1. INTRODUCTION 43

4.1 Introduction

4.1.1 Motivation

There are numerous emerging applications, such as online financial transactions,

IT operations management, and sensor networks that generate real-time streaming

data. This streaming data has many dimensions (time, location, objects) and each

dimension can be hierarchical in nature. One important common problem over

such data is to be able to analyze multiple pattern queries that exist at various

abstraction levels in real-time.

One example is data from transportation systems. In many metropolitan areas

such as London, Moscow and Beijing, mass transit agencies issue their passengers

near-field contactless (NFC) or contact-based smart cards for fast payment and

convenient access to metros, buses, light-rails, and places such as museums. In

addition to people’s movements, these agencies are also beginning to continuously

track the position and status of their vehicles. The collected data continuously

flows to a central location in the form of structured event streams for storage. Un-

fortunately, their analysis lags. Officials are demanding tools that can help them

analyze the current status of these complex systems in real-time and over different

abstractions levels. Such knowledge would enable them to make strategic deci-

sions about issues such as resource scheduling, route planning, variable pricing,

etc. However today, they can only obtain aggregate (weekly, or even monthly)

statistics through offline analysis, thus missing critical opportunities that could be

gained via real-time analysis.

Another example is an evacuation system where RFID technology is used to

track mass movement of people and goods during natural disasters. Terabytes of

4.1. INTRODUCTION 44

RFID data could be generated by such a tracking system. Facing a huge volume

of RFID data, emergency personnel need to perform pattern detection on various

dimensions at different granularities in real-time. In particular, one may need to

monitor people movement and traffic patterns of needed resources (say, water and

blankets) at different levels of abstraction to ensure fast and optimized relief efforts.

Figure 4.1 lists several sample “pattern queries” for such a scenario. For example,

during hurricane Ike federal government personnel may monitor movement of peo-

ple from cities in Texas to Oklahoma represented by the pattern SEQ(TX, OK) for

global resource placement as in q1; while local authorities in Dallas may focus on

people movement starting from the Dallas bus station, traveling through the Tulsa

bus station, and ending in the Tulsa hospital within a 48 hours time window as

in q5 to determine the need for additional means of transportation. The rest of

the queries in Figure 4.1, including the concepts of negation, predicates and query

hierarchy refinements, will be elaborated upon later in Section 4.2.

q1: PATTERN SEQ(TX, OK)
WHERE TX.person_id = OK.person_id // [id]
GROUPBY age-group
AGG Count
WITHIN 48 h

q2: PATTERN SEQ(D, T)
WHERE [id]
GROUPBY age-group
AGG Count
WITHIN 48 h

q3: PATTERN SEQ(G, A, T)
WHERE[id]
GROUPBY age-group
AGG Count
WITHIN 48 h

q4: PATTERN SEQ(G, ! DBusStation, A, T)
WHERE[id]
GROUPBY age-group
AGG Count
WITHIN 48 h

q5: PATTERN SEQ(DBusStation,
TBusStation, THospital)
WHERE[id]
WITHIN 48 h

q6: PATTERN SEQ(G, A, D, T)
WHERE[id]
WITHIN 48h

q7: PATTERN SEQ(G, ! D, A, T)
WHERE[id]
WITHIN 48 h

pattern
concept

concept

pattern pattern pattern pattern concept

SEQ = sequence
! = negation

legend

concept

pattern

pattern
concept

Figure 4.1: Sample pattern queries organized hierarchically.

Common across the above scenarios is a need to process and query large vol-

umes of streaming sequence data in real-time at various abstraction levels. This is

4.1. INTRODUCTION 45

exactly the problem we tackle in this Chapter. Detecting complex patterns in high-

rate event streams requires substantial CPU resources. The authors in [GWYL05]

observe that with increasing stream arrival rates and large operator states, the com-

puting resources typically become strained before the memory does. Temporary

data flushing [LZR06] and highly efficient compressed data representations make

a memory-limited scenario less likely. Therefore, our E-Cube solution targets the

efficient processing of workloads of complex pattern detection queries at multi-

ple levels of abstraction over extremely high-speed event streams by effectively

leveraging their CPU resource utilization.

E-Cube leverages two existing technologies, OLAP and CEP. Traditional OLAP

aims to provide answers to analytical queries that are multi-dimensional in na-

ture via aggregation [CD97, HRU96, GHQ95]. Complex Event Processing (CEP)

systems demonstrate sophisticated capabilities for pattern matching [CKAK94,

DGP+07, WDR06] in real-time by processing huge volumes of complex stream

data. However, these technologies by themselves are not always sufficient. Cur-

rent CEP systems don’t support queries over different concept abstraction levels.

In addition, they don’t support the efficient computation for multiple such queries

at different concept and pattern hierarchies concurrently. In short, state-of-the-art

CEP systems do not support OLAP operations, and thus are not suitable for multi-

dimensional event analysis at different abstraction levels. The state-of-art OLAP

solutions [LKH+08, GHL06, HCD+05] either don’t support real-time streams at

all, or they do not tackle CEP sequence queries. Hence, in the context of event

streams where the order and sequence of events are important, OLAP is insuffi-

cient in supporting efficient event sequence analysis. Section 4.7 further discusses

deficiencies of the state of art.

4.2. E-CUBE MODEL 46

The rest of the Chapter is organized as follows: Section 4.2 introduces the de-

sign details of our E-Cube model and operations. Section 4.3 describes our optimal

algorithm called Chase for E-Cube evaluation. Section 4.4 introduce our reuse-

based pattern evaluation strategies. Section 4.5 presents plan adaption. Section 5.5

shows the evaluation results. Section 4.7 discusses related work.

Unordered (i.e., set-based) event pattern operators such as conjunctions (AND)

and disjunctions (OR) can be defined in a similar manner [MM09]. Expressions

with unordered event pattern operators can be rewritten into a normal form com-

posed of AND and SEQ operators [LRG+11a]. Compositions of SEQ operators

can also be used to generate more complex patterns, but for brevity we leave ex-

tensions to nested queries as future work here. Instead, we henceforth focus on

sequential pattern queries denoted by SEQ and their multi-dimensional analysis in

this Chapter.

In the literature, handling queries with different predicates, aggregates and win-

dow sizes has been addressed by previous research using sliced time windows and

shared data fragments [WRGB06, KWF06, LMT+05]. In this Chapter, we instead

focus on the combination of pattern and concept hierarchies as in Section 4.2.

4.2 E-Cube model

Based on the CEP query model introduced in Chapter 2, we now define our E-

Cube model. A concept hierarchy is commonly used to summarize information at

different levels of abstraction [HCC92]. Here, we focus on event specific features

and thus on concept hierarchies over event types. A concept hierarchy applies to

primitive event types in the same way as it applies to other concepts in the litera-

4.2. E-CUBE MODEL 47

ture [HCC92]. Event concept hierarchies for primitive event types are predefined

by system administrators using domain knowledge.

Definition 2 An event concept hierarchy is a tree where nodes correspond to

event types. The most specific event types reside at the leafs of the tree, while

progressively more general event types reside higher and higher in the tree, with

the most general event type residing at the apex of the tree. An event type Ek that is

a descendent (resp. ancestor) of an event type E j in an event concept hierarchy is

at a finer (resp. coarser) level of abstraction than E j, denoted by Ek <c E j (resp.

Ek >c E j)

TX Oklahoma

Galveston Austin Dallas Oklahoma City Tulsa
GBusStation
GShelter
GHospital

ABusStation
AShelter
AHospital

DBusStation
DShelter
DHospital

OBusStation
OShelter
OHospital

TBusStation
TShelter
THospital

Figure 4.2: Concept Hierarchy of Primitive Event Types

Figure 4.2 shows an example event concept hierarchy for primitive event types

in our RFID-based tracking scenario. We can use different dimensions to create

event types that belong to a concept hierarchy 1. For example, event types in

our sample application incorporate semantics of both geographical locations and

service station types (hospital, bus, shelter) into one hierarchy. Event instances can

be interpreted to be of types at different abstraction levels in such an event concept

hierarchy. For example, an instance of type DBusStation can also be interpreted

to be of the more coarse types Dallas or TX. The refinement relationships among

1Composing over sequences does not preclude traditional set based aggregates over attribute val-
ues, but that is not our focus here.

4.2. E-CUBE MODEL 48

composite event types are defined by Definitions 3 and 4. A financial concept

hierarchy is given later in Figure 4.10.

q2 Pattern SEQ(D, T)

q6 Pattern SEQ(G, A, D, T)

q3 Pattern SEQ(G, A, T)

patternpattern

q7 Pattern SEQ(G, ! D, A, T)

pattern

Figure 4.3: Pattern Hierarchy

Definition 3 Query Concept Refinement. A pattern query qk = SEQ(E1k ,..., !

Ehk ,..., Emk) is coarser than q j = SEQ(E1 j ,..., ! Eh j ,..., Em j), denoted by qk >c q j,

if (I) for all negative event types Ehk and Eh j, Eh j >c Ehk ∨ Eh j.type == Ehk.type

and (II) for all positive event types Eik and Ei j, Eik >c Ei j ∨ Eik.type == Ei j.type

and (III) for 1 ≤ l ≤ m, ∃ (Elk, El j) such that Elk.type ̸= El j.type.

The non-existence (existence) of a negative (positive) event type at a coarser

(finer) concept level enforces more constraints as compared to a negative (positive)

event type at a finer (coarser) concept level. In Figure 4.1, q1 is at a coarser concept

level than q2, denoted by q1 >c q2 because TX >c D and OK >c T. q4 is at a coarser

concept level than q7, denoted by q4 >c q7, as the negative type D in q4 is coarser

than DBusStation in q7 (D >c DBusStation).

Definition 4 Query Pattern Refinement. A pattern query qk = SEQ(E1k ,..., Eik

,..., Emk) is coarser than q j = SEQ(E1 j ,..., Ei j ,..., En j), denoted by qk >p q j, if (I)

∀ Elk ∈ qk, ∃ Eh j ∈ q j with Elk.type == Eh j.type and (II) ∀ (Elk, Etk) pairs ∈ qk

with l < t, then ∃ (Ev j, Ew j) pair ∈ q j with v < w such that Elk.type == Ev j.type

and Etk.type == Ew j.type and (III) ∃ Ev j such that Ev j ∈ q j, Ev j /∈ qk.

4.2. E-CUBE MODEL 49

In other words, we can roll-up a pattern qk to a coarser (finer) level by deleting

(inserting) one or more event types from (into) qk. For example, in Figure 4.3,

which contains a subset of the SEQ queries from Figure 4.1, the pattern query q3 is

at a coarser level than q6, denoted by q3 >p q6, because q6 enforces the existence of

more event types and associated sequential event relationships than q3. Similarly,

the pattern query q3 is at a coarser level than q7, denoted by q3 >p q7, because q7

includes one extra negative event type D. All event types in Figure 4.3 are at the

same concept level, but at different levels in the pattern hierarchy.

Definition 5 An E-Cube hierarchy is a directed acyclic gra-ph H where each

node corresponds to a pattern query qi and each edge corresponds to a pairwise

refinement relationship between two pattern queries as defined in Definitions 3

and 4. Each directed edge <qi, q j> is labeled with either the label “concept” if qi

<c q j by Definition 3, “pattern” if qi <p q j by Definition 4 or both to indicate the

refinement relationship among the two queries qi and q j.

Definition 5 says that a pattern query qi can be rolled up into another pattern

query q j by either changing one or more positive (negative) event types to a coarser

(finer) level along the event concept hierarchy of that event type (by Def. 3), chang-

ing the pattern to a coarser level (by Def. 4), or both. Figure 4.1 shows an example

E-Cube hierarchy. The E-Cube hierarchy helps us to achieve better performance

in multi-query evaluation because it provides a blue-print for shared online pattern

filtering and rapid result sharing2, as will be explained in Section 4.4.

2As observed in [HCD+05], for streaming data, it is not feasible to materialize the full cube over
the space of multi-level sequences. Instead we only materialize cuboids corresponding to the user
queries.

4.2. E-CUBE MODEL 50

Definition 6 E-Cube is an E-Cube hierarchy (see Definition 5) where each pattern

query is associated with its query result instances. Each individual pattern query

along with its result instances in E-Cube is called an E-cuboid.

Operations on E-Cube. We propose an extension of OLAP operations, namely,

pattern-drill-down, pattern-roll-up, concept-roll-up and concept-drill-down for pat-

tern queries in our E-Cube hierarchy. OLAP-like operations on E-Cube allow users

to navigate from one E-cuboid to another in E-Cube.

[Pattern-drill-down] The operation pattern-drill-down(qm, list

[Typei j, Posk j]) applied to qm inserts a list of n event types with the event type

Typei j into the position Posk j of qm (1 ≤ j ≤ n).

[Concept-drill-down] The operation concept-drill-down(qm, list

[(Typem j, Typen j), Posk j]) applied to qm j drills down a list of event types from

Typem j to Typen j (Typem j >c Typen j) at the position Posk j of qm (1 ≤ j ≤ n).

[Pattern-roll-up] The operation pattern-roll-up(qm, list[Typei j, Posk j]) applied to

qm deletes a list of n event types with the event type Typei j from the position Posk j

of qm (1 ≤ j ≤ n).

[Concept-roll-up] The operation concept-roll-up(qm, list[(Typem j, Typen j), Posk j])

applied to qm rolls up a list of event types from Typem j to Typen j (Typem j <c

Typen j) at the position Posk j of qm (1 ≤ j ≤ n).

Example 9 In Figure 4.1, we apply a pattern-drill-down operation on q3 = SEQ(G,

A, T) specified by pattern-drill-down(q3, [(!D, 2)]) and we get q7 = SEQ(G, !D, A,

T). We can apply a concept-drill-down operation on q1 = SEQ(TX, OK) specified

by concept-drill-down(q1, [(TX, D, 1)]) and we get q2 = SEQ(D, T). Similarly, we

apply a pattern-roll-up operation on q6 = SEQ(G, A, D, T) specified by pattern-

4.3. OPTIMAL E-CUBE EVALUATION 51

roll-up(q6, [(G, 1), (A, 2)]) and we get q2 = SEQ(D, T). Also, we apply a concept-

roll-up operation on q2 = SEQ(D, T) by concept-roll-up(q2, [(D, TX, 1)]) and we

get q1 = SEQ(TX, OK).

The results of pattern-drill-down (pattern-roll-up) can be computed by our

general-to-specific (specific-to-general) reuse with only pattern changes as intro-

duced in Section 4.4.1 (Section 4.4.4). The results of concept-drill-down (concept-

roll-up) can be computed by our general-to-specific (specific-to-general) evaluation

with only concept changes as introduced in Section 4.4.2 (Section 4.4.5).

Hierarchical Event Storage. We design compact hierarchical instance stacks

(HIS) to hold event instances processed by E-Cube. HIS provides shared storage

of events across different concept and pattern abstraction levels. Each instance is

stored in only one single stack even though it may semantically match multiple

event types in an event type concept hierarchy, namely, the finest one in E-Cube

hierarchy. HIS is populated with event instances as the stream data is consumed.

The stack based query evaluation in Section 2.3 could be easily extended to access

event instances in hierarchical stacks instead of flat stacks.

4.3 Optimal E-Cube Evaluation

Our objective is to produce query results quickly and improve computational ef-

ficiency by sharing results among queries in a unified query plan. Instead of pro-

cessing each pattern in our E-Cube hierarchy independently using the stack-based

strategy explained in Section 2.3, we now design strategies to compute one pattern

from other previously computed patterns within the E-Cube hierarchy.

More precisely, we set out to exploit the concept and pattern relationships be-

4.3. OPTIMAL E-CUBE EVALUATION 52

tween queries identified by the E-Cube model to promote reuse and to reduce re-

dundant computations among queries. In particular, we consider two orthogonal

aspects as in the table below, namely, (1) abstraction detection: drill down vs. roll

up in E-Cube hierarchy, and (2) refinement type: pattern or concept refinement.

More precisely, we consider the following cases: (a-b) general-to-specific with

only pattern or concept changes respectively; (c) general-to-specific with simulta-

neous pattern and concept changes; (d-e) specific-to-general with only pattern or

concept changes respectively; (f) specific-to-general with simultaneous pattern and

concept changes.

Direction of Reuse

Refinement Type General→Specific Specific→General

Pattern Only Section 4.4.1 Section 4.4.4

Concept Only Section 4.4.2 Section 4.4.5

Both Refinements Section 4.4.3 Section 4.4.6

Given a workload of pattern queries, our E-Cube system will first translate

them into an E-Cube hierarchy H, and then design a strategy to determine an opti-

mal evaluation ordering for all queries in the E-Cube hierarchy such that the total

execution cost is minimized. To achieve our goal of finding the best overall exe-

cution strategy for the complete workload captured by the E-Cube hierarchy, we

consider three choices when evaluating each query qi in H;

• (I) compute q j independently by stack-based join, denoted by Ccompute(q j);

• (II) conditionally compute q j from one of its ancestors qi by general-to-

specific evaluation, denoted by Ccompute(q j|qi);

4.3. OPTIMAL E-CUBE EVALUATION 53

• (III) conditionally compute q j from one of its descendants qi by specific-to-

general evaluation, denoted by Ccompute(q j|qi).

Cqi represents the computation cost which is either Ccompute(qi) or Ccompute(qi|q j)

for some qi in H. We will analyze all pairwise opportunities and detailed physical

strategies of how to achieve reuse in each case along with cost models in Sec-

tions 4.4.

4.3.1 Problem Mapping to Weighted Directed Graph

Given the three alternatives (I), (II) and (III) described above, a valid execution

ordering of a query workload expressed by an E-Cube hierarchy H is defined as

below.

Definition 7 An execution ordering Oi(H) for queries in an E-Cube hierarchy H

represents a partial order of n computation strategies for the n queries in H, Oi(H)

= < Oi1 ,..., Oi j ,..., Oin> such that for 1 ≤ j ≤ n, Oi j selects one of the three

computation strategies (I), (II) or (III) for a query q j ∈ H. If q j’s computation

method is a conditional computation Ccompute(q j|qi) then qi must be listed before q j

in Oi. Each query q j is computed exactly once. Each execution ordering Oi(H)

for H has an associated computation cost, denoted by Cost(Oi(H)) as shown in

Equation 4.1.

4.3. OPTIMAL E-CUBE EVALUATION 54

Cost(Oi(H)) =
n,q j∈H

∑
j=1

Cq j

where Cq j is equal to the cost to compute q j

as selected by Oi j;

(4.1)

For an execution ordering Oi(H), each query q j in H is either computed from

scratch or from another query qi in H. Put differently, each query q j has one and

only one computation source. Thus clearly no computation circles can exist in an

Oi(H) ordering. Let us prove this by contradiction. Given two queries qi and q j,

assume qi were computed from q j and q j were computed from qi. Then no qi

and q j results could ever be computed as the two queries would deadlock waiting

indefinitely to compute results from each other.

Definition 8 The optimal execution ordering, denoted by O-opt(H), is the exe-

cution ordering O-opt such that ∀ i, Cost(O-opt(H)) ≤ Cost(Oi(H)) with Cost()

defined in Equation 4.1.

Problem 1 Given an E-Cube hierarchy H, the E-Cube optimization problem is

to find an optimal execution ordering O-opt(H) for all queries in H as defined in

Definition 8.

We now illustrate that the E-Cube optimization problem as defined in Prob-

lem 1 can be mapped into a well-known graph problem. Given this re-formulation

as shown in Definition 9, we can reuse solutions from the literature to efficiently

find an optimal solution to our problem.

4.3. OPTIMAL E-CUBE EVALUATION 55

Definition 9 Graph Mapping. Given an E-Cube hierarchy H, we define a di-

rected weighted graph G = (V, E) where |V|= |queries ∈ H| + 1; |E|= 2× |edges

∈ H| + |queries ∈ H|. A mapping from the graph H to G, m: H → G, is defined

as follows: (I) ∀ qi ∈ H, there is a one-to-one mapping to one vertex vi in G. To

include the option of self-computation into G, we add one special vertex v0 as root

into V, called virtual ground. (II) ∀ <qi, q j> refinement relationships in H, there

exist two edges e(vi, v j) and e(v j, vi) ∈ E. ∀ vi ∈ G where vi ̸= v0, we insert a

directed edge e(v0, vi) into E to model that node vi is computed from “the ground”

v0 (i.e., from scratch). (III) Computation costs are assigned as weights on each

corresponding directed edge according to our cost model (see Section 4.4 and Ap-

pendix). Each directed edge e(v0, vi) ∈ E is assigned an associated weight w(v0,

vi) equal to Ccompute(qi) (choice I). Each directed edge e(vi, v j) ∈ E with vi ̸= v0 and

v j ̸= v0 is assigned a weight w(vi, v j) to denote Ccompute(q j|qi) (choices II/III).

Lemma 1 All pattern and concept refinement relationships in H along with their

respective computation costs are captured as edges and weights in the graph G,

respectively. All possibilities of self-computation for all queries in H, along with

their respective computation costs, are captured as edges and weights in the graph

G.

Proof Sketch: All independent and conditional computation relationships are

captured by directed edges between vertices. Computation costs are attached to

these directed edges. Thus all possible alternative solutions of computing all queries

in H are now represented by G.

Example 10 Figure 4.4(a) shows the weighted directed graph G for modeling the

E-Cube hierarchy H shown in Figure 4.1. Each vertex with the number i denotes

4.3. OPTIMAL E-CUBE EVALUATION 56

the query qi from Figure 4.1. In total, eight nodes are created in the graph G

representing q1-q7 and the virtual ground v0. The arrow labeled with 12 from the

virtual ground to v3 represents the fact that the cost to compute q3 from scratch

is 12. The arrow labeled with 5 from v1 to v3 represents the fact that the cost to

compute q3 from q1 is 5.

4.3.2 Solution for Optimal Execution Ordering

After constructing the directed graph G, Lemma 2 and Theorem 4.2 are defined as

below to solve Problem 1.

Lemma 2 After mapping an E-Cube hierarchy H to a weighted directed graph G

by Definition 9, an optimal execution ordering Oi(H) for H is equal to a minimum

cost spanning tree MST over G.

Proof: Consider a directed graph, G(V, E), where V and E are the set of vertices

and edges, respectively. Associated with each edge e(vi, v j) is a cost weight w(vi,

v j). The MST problem is to find a rooted directed spanning tree MST of G such

that the sum of costs associated with all edges in the MST is the minimum cost

among all possible spanning trees. An MST is a graph which connects, without

any cycle, all vertices of V in G with |V| - 1 edges, i.e., each vertex, except the

root, has one and only one incoming edge. For the optimal execution ordering O-

opt(H), except the virtual ground v0 (root), every query (vertex) has one and only

one computation source modeled by an incoming edge in MST. By Definition 7,

no computation circles exist in O-opt(H). For each of the |V| - 1 queries (virtual

ground not included), one computation source (incoming edge) is selected. |V| - 1

edges are selected such that the sum of computation costs (edge associated costs)

4.3. OPTIMAL E-CUBE EVALUATION 57

is the minimum among all possible execution ordering Oi(H). In summary, finding

an optimum execution plan with lowest cost for H is equivalent to finding an MST

in G [GGST86, Edm67].

Theorem 4.1 Solving Problem 1 for an E-Cube hierarchy H is equivalent to solv-

ing the MST problem for the corresponding G created by the mapping from H

defined by Definition 9.

Proof sketch: Proof naturally follows from Lemma 2.

Since there are many solutions in the literature for solving the well-known min-

imum spanning tree MST graph problem, any of these MST algorithms that works

on (cyclic) directed graphs could be applied. Our optimizer, called Chase (Cost-

based Hybrid Adaptive Sequence Evaluation), applies the Gabow algorithm [GGST86]

in detecting the MST over a directed graph. The pseudocode for our Chase strategy

is given in Figure 4.5. Line 02 in Figure 4.5 applies the Gabow algorithm [GGST86].

The key idea of the Gabow algorithm is to find edges which have the minimum cost

to eliminate cycle(s) if any. The algorithm consists of two phases. The first phase

uses a depth-first strategy to choose roots for growth steps. The second phase con-

sists of expanding the cycles formed during the first phase, if any, in reverse order

of their contraction, discarding one edge from each cycle to form a spanning tree

in the original graph. The algorithm recursively finds the tree in the new graph

until no circles exist. By braking the cycle into a tree, an MST is guaranteed to be

returned eventually. For details see [GGST86].

Example 11 The example in Figure 4.4 illustrates our use of the Gabow algo-

rithm. The algorithm finds the edge(s) which have the minimum cost to eliminate

4.3. OPTIMAL E-CUBE EVALUATION 58

1

3

4

5

2
7

1

Virtual
ground

(2)

8
4

6

3
20
17

6

12

19

15

11
S ={(1,2), (2, 5), (4, 3), (3, 6), (3, 7), (7, 4)}

S ={(1,2), (2, 5), (1, 3), (3, 6), (3, 7), (7, 4)}

(a)

(b)

6

5
10

2

5

9

7

16

14

16
18

21

1

5

2

1

Virtual
ground

(2)

8

20
17

6

11

16

15

11

6

4
10

2

5

9

7

16

14

15

14

17

17

8

8

Figure 4.4: Use of Gabow Algorithm in our Optimal Solution

cycle(s) if any. For each vertex, the incoming edge with the minimum cost is se-

lected (bold arrow) in Figure 4.4(a). We observe that vertices representing queries

q3, q4 and q7 form a circle in the Gabow algorithm. In Figure 4.4(b), we observe

that the edge from vertex 1 to the cycle has the minimum cost among all the in-

going edges to the circle. And vertex 1 points to vertex 3 in the cycle. Thus, the

contraction technique finds the minimum cost replacing edge e(4, 3) by edge e(1,

3). Hence the cycle is eliminated.

Theorem 4.2 The execution ordering decided by our Chase executor (Figure 4.5)

is guaranteed to find the optimal solution for the E-Cube optimization defined in

Problem 1.

Proof sketch: Since the MST algorithm [GGST86] is guaranteed to find the optimal

MST solution, so is Chase.

Theorem 4.3 The time complexity of the Chase algorithm is O(E + VlogV) [GGST86].

4.3. OPTIMAL E-CUBE EVALUATION 59

Chase Evaluation (
Q={q1 ,..., qi ,..., qn}--Queries;
Wi j-- The weight for the edge from vi to v j;
Rqi--Results of qi)
01 G graph = DirectedGraphConstruction(Q)

// construct weighted directed graph for Q (Section 4.3.1)
02 MinimumSpannigTree(G, w) (Section 4.3.2);

i = 0;
// compute optimum execution ordering
// and store in optArray

03 while(i <= optArray.size)
04 {if (compute qi independently)
05 compute qi by stack-based join
06 if(compute qi from its child q j)
07 compute qi by specific-to-general

(Sections 4.4.4 4.4.5 4.4.6)
08 if(compute qi from its parent qk)
09 compute qi by general-to-specific

(Sections 4.4.1 4.4.2 4.4.3)
10 cache Rqi; i++; }

Figure 4.5: Chase Executor

Proof sketch: As we map our optimization problem into the MST problem, the

complexity of our Chase strategy is the same as that of the MST algorithm we

deploy [GGST86].

Chase automatically yet efficiently optimizes the execution of a set of queries in

E-Cube. Doing this operation manually would not only be time consuming but also

difficult for humans to detect the optimal solution for larger E-Cube hierarchies. On

the other hand, the Chase strategy clearly scales even for larger number of queries

in the E-Cube hierarchy. Therefore, Chase contributes to both performance and

scalability of our E-Cube system.

4.4. REUSE-BASED PATTERN EVALUATION STRATEGIES 60

Table 4.1: Terminology Used in Cost Estimation
Term Definition
Ccompute(qi|q j) The evaluation cost for query qi basing on eval-

uation results for q j

Ccompute(qi) The cost of computing results for a query qi in-
dependently

|Si| Number of tuples of type Ei that are in time
window TWP. This can be estimated as RateE
* TWP * PE

TWP Time window specified in a pattern query P
RateE Rate of primitive events for the event type E
PE Selectivity of all single-class predicates for

event class E. This is the product of selectivity
of each single-class predicate of E.

PtEi,E j Selectivity of the implicit time predicate of sub-
sequence (Ei,E j). The default value is set to
1/2.

PEi,E j Selectivity of multi-class predicates between
event class Ei and E j . If E1 and E2 do not have
predicates, it is set to 1.

|RE | Number of results for the composite event E
Ctype The unit cost to check type of one event in-

stance
qi.length The number of event types in a query qi

NumE Number of total events received so far
NumRE Number of relevant events received of the types

in query set Q
Caccess The cost of accessing one event
Capp The unit cost of appending one event to a stack

and setting up pointers for the event
Cct The unit cost to compare timestamp of one

event instance with another one

4.4 Reuse-Based Pattern Evaluation Strategies

We now address the six alternative scenarios of reuse indicated in Section 4.3 by de-

signing customized execution strategies for query processing that maximally reuse

the previously computed results. Challenges related to partial sharing of subpat-

terns, extraction of non-matches via event negation, and redundancy elimination

are tackled. Cost models for each of the strategies are developed.

4.4. REUSE-BASED PATTERN EVALUATION STRATEGIES 61

General-to-specific evaluation with only pattern changes (
qi and q j are queries in a pattern hierarchy
with qi >p q j; Rqi -- the results of qi)
01 Rq j = Rqi

02 for every negative Ek ∈ q j but Ek /∈ qi
03 Rq j = checkNegativeE(Rq j, Ek, q j)
04 for every positive Ei ∈ q j but Ei /∈ qi
05 if(joining events in Rq j and Ei are

sorted and pointers exist)
06 Rq j = stack-based-join(Rq j, Ei);
07 else if(events are sorted with no pointers)
08 Rq j = merge-join(Rq j, Ei);
09 else Rq j = sorted-merge-join(Rq j, Ei);
checkNegativeE(Rq j , Ek, q j)
01 for each result ri ∈ Rq j

02 if(Ek events exist in the specified interval)
remove ri

Figure 4.6: General-to-Specific Evaluation in Pattern Hierarchy

4.4.1 General-to-Specific with Pattern Changes

Considering only pattern changes, the computation of the lower level query can be

optimized by reusing results from the upper level query. The two sharing cases

are stated as below. Given queries qi and q j (qi >p q j) in a pattern hierarchy and

the results of qi, then the results for q j can be constructed as bellow. In case I:

Differ by positive types, we join the results of qi with the events of positive types

listed in q j but not in qi. In case II: Differ by negative types we filter the results

from qi that don’t satisfy the sequence constraints formed by negative event types

listed in q j but not in qi. Figure 4.6 depicts the pseudocode for general-to-specific

evaluation guided by the pattern hierarchy.

For case I above, the costs for the compute operation depend on two key fac-

tors, namely (1) if pointers exist between joining events and (2) if the re-used re-

4.4. REUSE-BASED PATTERN EVALUATION STRATEGIES 62

sult is ordered or not on the joining event type. Assume two pattern queries qi =

SEQ(Ei, E j, Ek) and q j = SEQ(Ei, E j, Ek, Em, En) differ by two positive event types

Em and En. Also, let us assume pointers exist between events of type Em and En. To

compute q j, we first construct results for SEQ(Em, En) by an efficient stack-based

join. These results will by default be sorted by En’s timestamp. We then join these

results with qi results using the most appropriate join method. Table 4.1 shows the

factors used in the cost estimation in Equation 4.2.

Ccompute(q j|qi).gp =|Sm| ∗ |Sn| ∗PtEm,En ∗PEm,En

+ |RSEQ(Em,En)|log|RSEQ(Em,En)|

+ |Rqi| ∗ |RSEQ(Em,En)| ∗PtEk,Em

∗PEk,Em + |RSEQ(Em,En)|+ |Rqi|

(4.2)

For case II, assume two pattern queries qi = SEQ(Em, En) and q j = SEQ(Em, !

Ek, En) differ by one negative event type Ek. For every qi result, it can be returned

for q j if no Ek events are found between the particular interval in q j. The cost

formula is shown in Equation 4.3.

Ccompute(q j|qi).gp =|Sm| ∗ |Sn| ∗PtEm,En ∗PEm,En∗

(1−PtEm,Ek ∗PtEk,En)

(4.3)

Besides this computation sharing, we can also achieve online pattern filtering

and thus potentially save the computation costs of qi completely (Ccompute(qi)). The

idea is that, if a pattern qi is at a coarser level than a pattern q j, and a matching

4.4. REUSE-BASED PATTERN EVALUATION STRATEGIES 63

attempt with qi fails, then there is no need to carry out the evaluation for q j. That

is, q j being stricter is guaranteed to fail as well.

Example 12 Given pattern queries q3, q6 and q7 in Figure 4.1, q3 and q6 differ by

one event type D and q3 and q7 differ by one event type !D. We check the results

for q3 first. If no new matches are found, then we know that the results for q6 and

q7 would also be negative. Thus, we can skip their evaluation. If new matches for

q3 are found, as no pointers exist between results of q3 and events of type D. Yet

the joining attributes for T and D, namely, D.ts and T.ts are sorted on timestamps.

We thus can apply the fairly efficient merge join to compute q6.

4.4.2 General-to-Specific with Concept Changes

Considering only concept changes, composite results constructed involving events

of the highest event concept level are a super set of pattern query results below it in

a E-Cube hierarchy. The lower level query can be computed by reusing and further

filtering the upper query results.

Given two pattern queries qi and q j with only concept changes (qi >c q j) on

positive event types, our cost model is formulated in Equation 4.4. For each result

of qi, we interpret the event types for the constructed composite event instances

to determine which of them indeed match a given lower level type. The strategy

becomes less efficient as the number of results to be re-interpreted increases.

Ccompute(q j|qi).gc = |Rqi| ∗Ctype ∗qi.length (4.4)

4.4. REUSE-BASED PATTERN EVALUATION STRATEGIES 64

Example 13 In Figure 4.1, from q1 to q2 only the concept hierarchy level is changed.

q1 is computed before q2 and the results are cached. As all results of q2 satisfy q1,

q2 can be computed simply by re-interpreting the q1 results. If one result with com-

ponent events of types T X and OK is also a composite event with types D and T ,

that particular result will be returned for q2. Otherwise, the result will be filtered

out.

Given two pattern queries qi = SEQ(Em, ! Ek1, En) and q j = SEQ(Em, ! Ek,

En) with only concept changes (qi >c q j) on negative event types where Ek is a

super concept of Ek1 in the event concept hierarchy. To facilitate query sharing, we

rewrite q j into the expression shown in Equation 4.5. For every qi result, it can be

returned for q j if no Ek2, Ek3 ... and Ekn events are found between the position in

specified query.

SEQ(Em, !Ek,En) = SEQ(Em, !Ek1∧ ...!∧Ekn,En) (4.5)

Example 14 In Figure 4.1, when computing q7 from q4 , each q4 result is qualified

for q7 if no DHospital and DShelter events exist between G and A events.

4.4.3 General-to-Specific with Concept & Pattern Refinement

Given qi and q j in an E-Cube hierarchy with simultaneous concept and pattern

changes (qi >cp q j), the cost to compute the child q j from the parent qi corre-

sponds to Equation 4.6. The main idea is to consider this as a two step process that

composes the strategies for concept and then pattern-based reuse (or, vice versa)

4.4. REUSE-BASED PATTERN EVALUATION STRATEGIES 65

effectively with minimal cost.

Ccompute(q j|qi) =min
p
(Ccompute(p|qi)+Ccompute(q j|p))

where p has either only concept or only

pattern changes from qi and q j, respectively.

(4.6)

4.4.4 Specific-to-General with Pattern Changes

Given queries qi and q j (qi >p q j) in a pattern hierarchy and the results of q j, then

qi can be computed by reusing q j results and unioning them with the delta results

not captured by q j. Our compute operation includes two key factors, namely, re-

sult reuse and delta result computation. Figure 4.7 depicts the pseudocode for the

specific-to-general evaluation.

In general, assume qi = SEQ(Ei, E j, Ek) is refined by an extra event Em into

q j = SEQ(Ei, Em, E j, Ek). q j results are reused for qi and SEQ(Ei, ! Em, E j,

Ek) results are the delta results. The cost model is given in Equation 4.7. This

specific-to-general computation for a pattern hierarchy would need to check the

non-existence of a possibly long intermediate pattern for delta result computation

when two queries differing by more than one event type. These overhead costs in

some cases may not warrant the benefits of such partial reuse. When two queries

differ by negative event types, the specific-to-general method is similar to above

except that during delta result computation we need to compute some additional

sequence results filtered in the specific query due to the existence of events of

negative types.

4.4. REUSE-BASED PATTERN EVALUATION STRATEGIES 66

Specific-to-general evaluation with only pattern changes (
qi and q j are queries in a pattern hierarchy
with qi >p q j; Rqi -- the results of qi)
01 Rqi = ReuseSubpatternResult(qi, q j, Rq j)
02 Rqi = Rqi ∪ ComputeDeltaResults(qi, q j)
ReuseSubpatternResult(qi, q j, Rq j)
01 for each result rk ∈ Rq j

02 for each component ei ∈ rk
if(ei.type /∈ q j ∧ ei.type ∈ qi)
remove ei from rk;

ComputeDeltaResults(qi, q j)
01 for each positive event type Ei or

SEQ(Ei ,..., Ek)∈ q j but /∈ qi
02 construct results for qi with events failed

in q j due to non-existence of Ei or
SEQ(Ei, E j, ..., Ek) events

03 for each negative event type Ei ∈ q j but /∈ qi
04 construct results for qi with events

failed in q j due to existence of Ei events

Figure 4.7: Specific-to-General Evaluation in Pattern Hierarchy

Ccompute(qi|q j).sp =|Rq j| ∗Ctype ∗q j.length+ |Sk| ∗ |S j|

∗PtE j,Ek ∗PE j,Ek + |Sk| ∗ |S j|

∗PtE j,Ek ∗PE j,Ek ∗ |Si| ∗PEi,E j

∗PEi,E j ∗ (1−PEi,E j ∗PEm,E j∗

PEi,E j ∗PEm,E j)

(4.7)

Example 15 Figure 4.8 shows the hierarchical instance stacks for pattern queries

q3 and q6 in Figure 4.1. Result reuse and delta result computation for q3 are

explained below.

4.4. REUSE-BASED PATTERN EVALUATION STRATEGIES 67

(null) g1

(g1) a5
(g1) a6

G

A

(null) g7

(a6) d10

D

(a6) d12 (a6, null) t9

T

(a6 ,d12) t15

Figure 4.8: Stack Structure for q3 and q6 in Figure 4.1

ReuseSubpatternResult. q3 is computed from the results of q6 by subtracting

subsequences composed of positive event types G, A and T . For example, in Fig-

ure 4.8, the result < g1,a5,d10, t15 > for q6 is first generated using the stack-based

join method. Then < g1,a5, t15 > is prepared for q3 by removing the event d10 of

the event type D, because D is not listed in q3. Lastly, we check whether this result

is duplicated before returning it for q3.

ComputeDeltaResults. Some sequences may not have been constructed for q6

due to the non-existence of events of type D. However, such sequence results must

now be constructed for q3. In this case, each instance of type T has one pointer

to an A event for q3 and another pointer to a D event for q6. Hence, for a T

event that doesn’t point to any D event, we can infer that a sequence involving this

T event would not have been constructed for q6. This T event thus should trig-

ger its sequence construction for q3 by a stack-based join. If one T event points

to both an A and a D event, then the A and D events may still not satisfy the

time constraints. If the timestamp of the A event is greater than the timestamp of

the D event, sequence construction is triggered by such T event for q3. In Fig-

ure 4.8, we observe that t9 doesn’t point to any D event. Hence sequence results

< g1,a5, t9 > and < g1,a6, t9 > are constructed for t9 by a stack-based join. The

conditional cost to compute q3 includes the costs of result reuse and the cost to

compute SEQ(G,A, !D,T) results.

4.4. REUSE-BASED PATTERN EVALUATION STRATEGIES 68

4.4.5 Specific-to-General with Concept Changes

The result set of a higher concept abstraction level is a super set of all the results

of pattern queries below it. Thus upper level query can be computed in part by

reusing the lower level query results. The lower level pattern query is computed

first. Then all these results are also returned for the upper level pattern. In addition,

the events of the higher event type concept level not captured by the lower queries

must also be constructed. Such specific-to-general computation requires no extra

interpretation costs as compared to the general-to-specific evaluation. Given two

pattern queries qi and q j with only concept changes (qi >c q j), our cost model is

formulated by Equation 4.8.

Ccompute(qi|q j).sc =Ccompute(qi)−Ccompute(q j) (4.8)

Example 16 Figure 4.9 shows the hierarchical instance stacks for q1 to q2 in Fig-

ure 4.1. From q1 to q2 only concept relationships are refined. Results for q2 { dh10,

ts33}, {dh16, ts33} are computed first. And these results are also returned for q1.

Next, we need to compute the delta results belonging to q1 that were not captured

by q2. In Figure 4.9, the pointers between D and T are already traversed during

the evaluation of q2. The other pointers between D and OK, T X and OK, T X

and T need now to be traversed. Results {ah12,oh15}, {ah10,oh15}, {ah12,oh38},

{as18,os38}, {dh10,os38}, {dh18,os38}, {ah12, ts33}, {as18, ts33} are constructed

for q1.

4.5. PLAN ADAPTATION 69

D T

dh10

ah12
TX OK

dh16 (ah18,dh16)ts33

as18
(ah12,dh10)oh15
(ah18,dh16)os38

Figure 4.9: Stack Structure for q1 and q2 in Figure 4.1

4.4.6 Specific-to-General with Concept & Pattern Refinement

Given qi and q j in an E-Cube hierarchy with simultaneous concept and pattern

changes (qi >cp q j), we first find one intermediate query p with either only concept

or pattern changes from q j so that query p minimizes Equation 4.9. As above, we

then compute results in two stages from q j to p and from p to qi by using specific-

to-general evaluation with first only pattern and then only concept changes or vice

versa effectively with minimal cost.

Ccompute(qi|q j) =min
p
(Ccompute(p|q j)+Ccompute(qi|p))

where p has either only concept or only

pattern changes from qi and q j, respectively.

(4.9)

4.5 Plan Adaptation

High variability in input stream rates and selectivities may render an initially op-

timal execution ordering not optimal or possibly even ineffective after some time.

A query could be added to or removed from the system as well. To recompute the

query execution order on the fly, we maintain a running estimate of the statistics.

4.5. PLAN ADAPTATION 70

When the statistics vary by more than some error threshold θ, we re-run the Chase

optimizer in a separate system thread to generate a new ordering recommendation.

If the performance improvement predicted by the cost model is greater than a given

performance threshold γ, we then install the new updated plan.

To change the execution ordering on the fly, we would need to simply switch

from utilizing one result buffer to another buffer space for conditional computa-

tion. The process for changing the query execution ordering on-line thus uses the

following steps:

1. Discard intermediate results based on the execution ordering after finishing the

result computation for the current input event ei;

2. Rebuild intermediate results based on the newly determined execution ordering

as if it were the first round before starting to process the next instance ei+1 from

input stream. No results are output during this preparation stage.

The advantage of our adaptation method is its simplicity. More sophisticated

adaptive strategies that may incrementally reuse some of the intermediate results

to minimize the recalculation effect [ZRH04] could be designed. However, the

complexity of such a method may offset its potential gains. We thus leave this

analysis as future work.

Company

OREL

Computer co. Finance co. Educational co.

INTC MSFT DELL QQQ FCF ROM EFC ANAT

Figure 4.10: Company Concept Hierarchy

4.6. PERFORMANCE EVALUATION 71

4.6 Performance Evaluation

The primary objective of our experimental study is to compare four different strate-

gies, namely, state-of-the-art, a pure top-down, a pure bottom-up and our opti-

mized Chase strategies for E-Cube evaluation, and to determine their respective

scope of applicability. As explained in Section 2.3, the state-of-the-art method pro-

cesses queries independently using stack-based query evaluation [WDR06]. The

top-down (bottom-up) method proceeds by evaluating general (specific) patterns

first and then iteratively processing patterns lower (higher) in the E-Cube hierarchy

(Section 4.4). Finally, the Chase method applies the Chase optimizer to construct

and then utilize the optimal cost-based reuse strategy (Section 4.3).

4.6.1 Experimental Setup

We implement our proposed E-Cube framework inside the X3 stream management

system [GWA+09a] using Java. We ran the experiments on Intel Pentium IV CPU

2.8GHz with 1GB RAM. We evaluated our techniques using real stock trades data

from [sto]. The data contained stock ticker, timestamp and price information. We

used sliding window of size 1 second in the experiments. The portion of the trace

we used contained 10000 unique event instances. The arrival rate was set to 2000

tuples/sec. Stock data is served all up “immediately”. But data is processed in

terms of time windows based on the application timestamp attached. A concept

hierarchy for stock companies is built as in Figure 4.10. The performance met-

ric result latency is the accumulative time difference between the sequence output

time and the arrival time of the latest event instance composed into the sequence

3name removed for sigmod anonymous reviewing.

4.6. PERFORMANCE EVALUATION 72

result. We compared the result latency of various strategies using different pattern

query sets. Specifically, the financial sector is very sensitive to query result latency

and uses extensive CPU resources to achieve this goal. We start with controlled

query sets where we control one single parameter (pattern or concept) and later

also conduct larger typical workloads mixed the two types of workloads to demon-

strate a more realistic concurrent CEP query processing scenario. The results are

extremely encouraging showing benefits of using our adaptive Chase strategy over

all other methods.

We first tested the cost models (Equations 4.2-4.9) to verify that they accu-

rately reflect the system performance. We ran these experiments on all the pattern

query workloads given below. We found that the estimates produced by our cost

model for the four methods correctly reflected the actual system behavior of the

four alternative methods (state-of-the-art, top-down, bottom-up and Chase).

4.6.2 Scenarios with Pattern Hierarchy Queries

In this first experiment, we compare the four methods (state-of-the-art, top-down,

bottom-up and Chase) evaluating queries forming a pure pattern hierarchy (i.e., no

concept changes). The root query size is increased from 3 to 5 in the workloads

1, 2 and 3. Figure 4.11(a) shows the average result latency (ms) of the four meth-

ods and speedup of the top-down (chase) method over the state-of-the-art method.

Figure 4.11(b) shows the accumulative result latency for workload 2. We observe

that the top-down method generates results faster than the state-of-the-art and the

bottom-up methods. It outperforms the others because it avoids result recomputa-

tion by applying conditional computation. We also notice that the average latency

difference between the state-of-the-art method and the top down increases as the

4.6. PERFORMANCE EVALUATION 73

result sharing length increases from 3 to 5 due to reuse and computational sav-

ings. The speed-up factor of the method chosen by Chase over the state-of-the-art

method starts at x8 at length 3, increasing to x10 and x28 for lengths 4 and 5, re-

spectively. The bottom up method generates results slower than the other methods,

because it introduces an extra delta result computation cost (see Section 4.4.4 for

explanation).

Workload 1 (shared length 3):

q1 = SEQ(INTC, ! MSFT, FCF)

q2 = SEQ(INTC, ! MSFT, FCF, ROM)

q3 = SEQ(INTC, ! MSFT, FCF, EFC)

q4 = SEQ(INTC, ! MSFT, FCF, ANAT)

q5 = SEQ(INTC, ! MSFT, FCF, OREL)

Workload 2 (shared length 4):

q6 = SEQ(DELL, INTC, ! MSFT, FCF)

q7 = SEQ(DELL, INTC, ! MSFT, FCF, ROM)

q8 = SEQ(DELL, INTC, ! MSFT, FCF, OREL)

q9 = SEQ(DELL, INTC, ! MSFT, FCF, ANAT)

q10= SEQ(DELL, INTC, ! MSFT, FCF, QQQ)

Workload 3(shared length 5):

q11 = SEQ(QQQ, DELL, INTC, ! MSFT, FCF)

q12 = SEQ(QQQ, DELL, INTC, ! MSFT, FCF, ROM)

q13 = SEQ(QQQ, DELL, INTC, ! MSFT, FCF, ANAT)

q14 = SEQ(QQQ, DELL, INTC, ! MSFT, FCF, OREL)

q15 = SEQ(QQQ, DELL, INTC, ! MSFT, FCF, EFC)

4.6.3 Scenarios with Concept Hierarchy Queries

Next, we compare methods for evaluating query workloads with only concept

changes. We ran experiments on workloads 4, 5 and 6 below. Figure 4.11(c)

4.6. PERFORMANCE EVALUATION 74

shows the average result latency of the three methods for each workload and Fig-

ure 4.12(a) shows the accumulative result latency for workload 4. We observe that

the bottom up method now produces results faster than the other methods. This

is because results from q17, q18 and q19 are reused for q16. The top down method

is better than the state-of-the-art method in workload 4 because a large percentage

of q16 results match the child query q17 (only one concept change). The top down

method does even worse than the state-of-the-art method in workloads 5 and 6.

This is because in the top down method, we need to check the types of component

events for each result of q16. When only a small percentage of q16 results match

children queries q18 and q19, direct result computation (state-of-the-art method) is

better than result interpretation (top down method) in the concept hierarchy.

Workload 4:

q16 = SEQ(Computer, Finance, Education)

q17 = SEQ(Computer, Finance, EFC)

Workload 5:

q16 = SEQ(Computer, Finance, Education)

q18 = SEQ(Computer, QQQ, EFC)

Workload 6:

q16 = SEQ(Computer, Finance, Education)

q19 = SEQ(INTC, QQQ, EFC)

4.6.4 Scenarios with Representative Mixed Workloads

We compare the four methods with workloads involving both concept and pattern

changes. This Chase optimizer took 16 ms to find the optimal execution order-

4.6. PERFORMANCE EVALUATION 75

ing. We designed workloads 7 and 8 to be representative and interesting mixes of

changes. DELL stock belongs to Computer and QQQ, FCF, ROM stocks belong

to Finance. EFC, ANAT and OREL stocks belong to Education. Figures 4.12(b)

and 4.12(c) show the accumulative result latency of the four methods, respectively.

As expected, Chase produces results faster than the others. On closer analysis in

Chase for workload 7, q20 is executed first and its results are reused for q27 using

the bottom up method and for q21, q22, q23 and q24 by the general-to-specific eval-

uation. Results of q24 are reused for q25 using the general-to-specific evaluation.

Results of q27 are reused for q26 and q16 by the specific-to-general evaluation and

for q28 by the general-to-specific evaluation. Workload 8 is similar to workload 7.

In other words, Chase carefully selects the optimal combination of execution and

reuse strategies.

Workload 7:

q20 = SEQ(DELL, QQQ, ANAT)

q21 = SEQ(DELL, QQQ, ANAT, ROM)

q22 = SEQ(FCF, DELL, QQQ, ANAT)

q23 = SEQ(DELL, QQQ, ANAT, OREL)

q24 = SEQ(DELL, QQQ, ANAT, INTC)

q25 = SEQ(DELL, QQQ, ANAT, INTC, EFC)

q16 = SEQ(Computer, Finance, Education)

q26 = SEQ(Computer, Finance, ANAT)

q27 = SEQ(DELL, Finance, ANAT)

q28 = SEQ(QQQ, DELL, Finance, ANAT)

Workload 8:

q16 = SEQ(Computer, Finance, Education)

q29 = SEQ(Computer, Finance, OREL)

q30 = SEQ(INTC, QQQ, Education)

q31 = SEQ(INTC, QQQ, EFC)

4.7. RELATED WORK 76

q32 = SEQ(MSFT, INTC, QQQ, EFC)

q33 = SEQ(INTC, QQQ, EFC, DELL)

q34 = SEQ(Computer, ROM, Education)

q35 = SEQ(Computer, ROM, ANAT)

q36 = SEQ(INTC, ROM, ANAT)

Accumulative CPU processing time means the wall clock time for processing

an item ei in stock trades measured by (Tend.ei - Tstart.ei) where Tstart.ei represents

the system time when our processing engine starts processing the data item ei and

Tend.ei represents the system time when the engine finishes processing the data item

ei. It is an atomic process, i.e., our processing engine won’t stop processing that

tuple until it is fully processed. In a complementary set of experiments we mea-

sure the CPU-only execution time as shown in Figures 4.13-4.14. These experi-

ments were conducted using the same workloads 1-8. This finding shows that the

strategies are mostly CPU-bound and not I/O bound. Other findings include (1)

The top down method runs on average 10 fold faster than the state-of-the-art and

the bottom up methods for queries with only pattern changes as depicted in Fig-

ures 4.13(a), 4.13(b). (2) The bottom up method runs on average 2 times faster

than the state-of-the-art and the top down methods for queries with only concept

changes as in Figure 4.13(c), 4.14(a). (3) For a mixed workload, the Chase method

constantly outperforms the other methods as shown in Figures 4.14(b), 4.14(c).

4.7 Related Work

Traditional OLAP focuses on static pre-computed and indexed data sets and aims

to quickly provide answers to analytical queries that are multi-dimensional in na-

4.7. RELATED WORK 77

ture [CD97, HRU96, GHQ95]. OLAP techniques allow users to navigate the data at

different abstraction levels. However, the state-of-the-art OLAP technology tends

to be set-based instead of sequence based [GHQ95]. Further, aggregation (count,

sum, max, ave) is conducted over scalar values, namely, the set of values within a

single column such as salary, and not over ordered sequences. Hence, in the con-

text of event patterns where the order of events is important, OLAP is insufficient

in supporting efficient multi-dimensional event sequence analysis.

The state-of-art OLAP solutions [LKH+08, GHL06, HCD+05] either don’t

support real-time streams at all, or they do not tackle CEP sequence queries. The

work that is most closely related to ours is Sequence OLAP [LKH+08] which

proposed to support OLAP operations for sequences. However, sequence OLAP

does not support the notion of concept refinement for pattern queries as done in

our work. Second, sequence OLAP preprocesses all data off-line, and then inserts

the data into inverted indices. Thereafter, the results are joined using the inverted

indices. In short, Sequence OLAP neither supports incremental maintenance of its

precomputed index, nor streaming, nor negation in sequence - while these are all

contributions of our work. Such (static) techniques used in Sequence OLAP are

inappropriate in a stream setting.

A second related work is Flow Cube [GHL06] which constructs a data ware-

house of RFID-tagged commodity flow. The commodity flowgraph captures the

major movement trends and significant deviations of the items over time. It can be

viewed at multiple levels by changing the level of abstraction of path stages. How-

ever, it neither support streaming data nor concept hierarchies. Furthermore, it does

not consider any optimization algorithms for hierarchical pattern query evaluation

such as sequence reuse nor the cost-driven Chase method which is our core contri-

4.7. RELATED WORK 78

bution. This line of work also does not consider event negation, which is covered in

our system. Lastly, Stream Cube [HCD+05] has recently been proposed to facili-

tate online multi-dimensional analysis of stream data. However, it provides neither

result reuse strategies nor any cost analysis for pattern queries including neither

sequence nor negation.

Complex Event Processing (CEP) systems demonstrate sophisticated capabili-

ties for pattern matching [CKAK94, DGP+07, WDR06]. Yet, they do not support

OLAP-like operations for multi-dimensional event sequence analysis at different

abstraction levels. We borrow a variety of techniques from CEP, including stack-

based joins [WDR06] and cost models for stack-based joins [MM09]. However,

work in CEP has not studied hierarchical pattern refinement relations, such as con-

cept hierarchies as proposed in our work. CEP systems such as Cayuga [DGP+07,

HRK+09], SASE [WDR06] and ZStream [MM09] focus on event sequence detec-

tion over streams. However, these systems do not address the issue of supporting

queries at different concept and pattern hierarchies nor do they design efficient

computation strategies for processing multiple such queries. Recently, work in

CEP has considered pushing negation into sequence processing [MM09]. We ex-

ploit this as part of our proposed solution for determining if additional delta results

must be generated in the specific-to-general reuse.

Multiple-query optimization (MQO) in databases [Sel88, RSSB00, Fin82], typ-

ically focussed on static relational databases. MQO identifies common subexpres-

sions among queries such as common joins or filters. Multiple-query optimization

(MQO) for stack-based pattern evaluation for CEP queries has not yet been stud-

ied, in particular, sharing for CEP queries with negation and concept refinements

was an open problem prior to our work.

4.7. RELATED WORK 79

Lastly, [CHC+06] proposes sharing among XML queries, in particular, prefix

sharing and suffix clustering. However, they neither consider concept nor pattern

hierarchies.

4.7. RELATED WORK 80

Length State-of-
the-art

Top down
(Chase)

Bottom up Speedup

3 0.835 0.11 1.29 7.59

4 96.415 9.71 136.39 9.93

5 5252.5 188.16 11593 27.92
(a) Workload with only Pattern Changes: Average Result Latency (ms/result)

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

50 100 150

A
cc

um
ul

at
iv

e
R

es
ul

t L
at

en
cy

 (
m

s)

Result Number (x 1000)

State-of-the-art
Top down (Chase)

Bottom up

(b) Workload with only Pattern Changes

State-of-the-art

State-of-the-art State-of-the-artBottom up

Bottom up Bottom up

Top down
Top down Top down

0
20
40
60
80

100
120
140
160
180

1 2 3

Av
era

ge
 R

esu
lt L

ate
nc

y (
ms

/re
su

lt)

(c) Workload with only Concept Changes

Figure 4.11: Controlled Workloads.

4.7. RELATED WORK 81

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

500 700 900 1100

A
cc

um
ul

at
iv

e
R

es
ul

t L
at

en
cy

 (
m

s)

Result Number (x 1000)

State-of-the-art
Top down

Bottom up (Chase)

(a) Workload with only Concept Changes

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

500 1000 1500A
cc

um
ul

at
iv

e
R

es
ul

t L
at

en
cy

 (
m

s)

Result Number (x 1000)

State-of-the-art
Top down
Bottom up

Chase

(b) Workload 7

State-of-the-art
Top down
Bottom up

Chase

(c) Workload 8

Figure 4.12: (a) Controlled Workload; (b)(c) Complex Query Workloads with Both
Refinement Relationships.

4.7. RELATED WORK 82

Length State-of-
the-art

Top down
(Chase)

Bottom up

3 0.28 0.04 0.31

4 7.77 1.2 7.87

5 384.8 17.75 426.57
(a) Workloads 1-3 with only Pattern Changes: Average CPU Processing Time
(ms/result)

 0

 100000

 200000

 300000

 400000

 500000

 600000

500 1000 1500 2000

C
P

U
 P

ro
ce

ss
in

g
T

im
e

(m
s)

Result Number (x 1000)

State-of-the-art
Top down (Chase)

Bottom up

(b) Workload 2 with only Pattern Changes

State-of-the-art

State-of-the-art State-of-the-art

Bottom up
Bottom up Bottom up

Top down

Top down

Top down

0

5

10

15

20

25

30

1 2 3

Av
era

ge
 CP

U P
roc

es
sin

g T
im

e (
ms

)

(c) Workloads 4-6 with only Concept Changes

Figure 4.13: Controlled Workloads.

4.7. RELATED WORK 83

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

500 700 900 1100

C
P

U
 P

ro
ce

ss
in

g
T

im
e

(m
s)

Result Number (x 1000)

State-of-the-art
Top down

Bottom up (Chase)

(a) Workload 4 with only Concept Changes

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

500 1000 1500

C
P

U
 P

ro
ce

ss
in

g
T

im
e

(m
s)

Result Number (x 1000)

State-of-the-art
Top down
Bottom up

Chase

(b) Workload 7

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

1000 1500 2000

C
P

U
 P

ro
ce

ss
in

g
T

im
e

(m
s)

Result Number (x 1000)

Top down
Bottom up

Chase
State-of-the-art

(c) Workload 8

Figure 4.14: (a) Controlled Workload; (b)(c) Complex Query Workloads with Both
Refinement Relationships.

84

Chapter 5

High-performance Nested CEP

Query Processing over Event

Streams

The proposed techniques have been implemented and experimentally evaluated

in an event processing system developed at WPI in collaboration with HP. This

work has been published as one ICDE paper [LRG+11c] and two workshop pa-

pers [LRR+10, LRG+10b].

5.1 Introduction

Complex event processing (CEP) has become increasingly important in modern ap-

plications ranging from supply chain management for RFID tracking to real-time

intrusion detection [WDR06, BDG+07, MM09]. CEP must be able to support so-

phisticated pattern matching on real time event streams including the arbitrary nest-

5.1. INTRODUCTION 85

ing of sequence (SEQ), AND, OR and the flexible use of negation in such nested

patterns. For example, consider reporting contaminated medical equipments in

a hospital [BP02, SrCL+05, TFR+09]. Let us assume that the tools for medical

operations are RFID-tagged. The system monitors the histories of the equipment

(such as, records of surgical usage, washing, sharpening and disinfection). When

a healthcare worker puts a box of surgical tools into a surgical table equipped with

RFID readers, the computer would display warnings such as “The tool must be

disposed”. Query Q1 (Figure 5.1) expresses this critical condition that after being

recycled and washed, a surgery tool is being put back into use without first being

sharpened, disinfected and then checked for quality assurance. Such complex se-

quence queries may contain complex negation specifying the non-occurrence of

composite subpatterns, such as negating the composite event of sharpened, disin-

fected and checked subsequences.

PATTERN SEQ(Recycle r, Washing w,
! SEQ(Sharpening s, Disinfection d, Checking c),
Operating o, o.ins-type="surgery")

WITHIN 1 hour

Figure 5.1: Example Query Q1

One of the most interesting and flexible features of a query language is the

nesting of operators to an arbitrary depth [Kim82, MHM04]. Without this capabil-

ity, users are severely restricted in forming complex patterns in a convenient and

succinct manner. From certain point of view, the state-of-art CEP systems such as

SASE [WDR06], ZStream [MM09] and Cayuga system [BDG+07] support nested

5.1. INTRODUCTION 86

queries as negation could be viewed as a special case of one-level deep nesting.

However, these systems use two step execution method. Namely, the results satis-

fying the non-negation part are first constructed and then filtered if event instances

which math the negation part exist. Such forced execution ordering misses opti-

mization opportunities. SASE+ [ADGI08] extended from SASE supports Kleene

Closure and provides a special syntax for allowing (i.e., skipping) irrelevant tuples

in between those that match a given pattern. K*SQL [MZZ10] can express com-

plex patterns on relational streams and sequences and can query data with more

complex structures, e.g, XML and genomic data. However, they don’t support

applying negation over composite event types. While CEDR [BGAH07] allows

applying negation over composite event types within their proposed language, the

execution strategy for such nested queries is not discussed. A declarative query lan-

guage LINQ [PR08] used in Microsoft StreamInsight [Ae09] allows nested queries

by composing query templates. However, no optimization is introduced for pro-

cessing negation over composite event types.

Without the design of an optimized execution strategy for nested sequence

queries, an iterative nested execution strategy would typically be adopted by de-

fault [SPL96, LRR+10, BKMH06]. Namely, first all component events matching

the outer query are identified. In our example, we thus would compute all matching

composite events consisting of SEQ(Recycle, Washing, Operating) subsequences.

Thereafter, for each outer SEQ(Recycle, Washing, Operating) match, the results for

the nested inner subsequences are iteratively computed, i.e., in this case, (Sharpen-

ing, Disinfection, Checking) subsequences. As last step, each outer candidate se-

quence result will be filtered by the non-existence of the inner subsequence match

between the Washing reading and Operating reading. This process of first rigidly

5.1. INTRODUCTION 87

undertaking the construction of sequence results for the outer operators and then

constructing sequence results for the inner operators is not efficient as it misses

critical opportunities for optimization as illustrated below.

Problem 1: Candidate sequence results generated may later simply be discarded

– thus wasting precious resources. For example in the above query Q1, the gener-

ation of the sequence results for the outer subexpression SEQ(Recycle, Washing,

Operating) may all be wasted as during normal medical procedures as inner se-

quences of type (Sharpening, Disinfection, Checking) would indeed exist between

all event pairs of Washing and Operating. This unnecessary event generation to be

later discarded wastes precious memory and CPU processing resources.

Problem 2: Full results satisfying the nested negated subexpression, such as in-

stances that match the subsequence SEQ(Sharpening s, Disinfection d, Checking

c) in Q1 will be repeatedly constructed and processed for each outer candidate.

However, knowing the existence of only one (Sharpening s, Disinfection d, Check-

ing c) event between Washing and Operating events would be sufficient for filtering

a candidate.

5.1.1 NEEL: The Nested Complex Event Language

We now briefly introduce the NEEL1 query language for specifying complex nested

event pattern queries as an extension of basic non-nested languages from the liter-

ature [WDR06, DGP+07]. Its BackusNaur Form (BNF) syntax is shown in Table

3.1 while an example query using this syntax has been shown in the introduction,

namely, query Q1 in Figure 5.1. NEEL supports the nesting of AND, OR, Negation

and SEQ at any level.

1NEEL stands for Nested Complex Event Query Language.

5.1. INTRODUCTION 88

<Query>::= PATTERN <generating exp>
WITHIN <window>

[RETURN <set of primitive events>]

<generating exp> ::=
SEQ(X, [<qual>])
| AND(X, [<qual>])
| OR((<generating exp>)+, [<qual>])
| (<primitive-event type>, [<var>], [<qual>])

X ::= (boolean expression,)∗, generating exp, query∗

query ::= generating exp | boolean exp
boolean exp :: = ! <generating exp> | ∃ <generating exp> | boolean exp ∨ boolean exp
<primitive-event type> ::= E1 | E2 | ...
<var> ::= event variable ei

<qual>::= (<elemqual> ;)∗

<elemqual> ::= <var>.attr <op> constant
<op> ::= < | > | ≤ | ≥ | = | ! =
<window>::= time duration w | tuple count c

Table 5.1: Event Expression for NEEL Query Language

Event expressions fall into two categories: generating and boolean expres-

sions. Generating expressions return event histories and boolean expressions return

boolean values (see Definition 12). The symbol “!” before an event expression Exp

expresses the negation of Exp and indicates that Exp is not allowed to appear in

the specified position [WDR06]. If Exp is a generating expression, ! Exp and ∃

Exp are boolean expressions. More precisely, it turns Exp into a boolean filter that

checks if the result set returned by the sub-pattern preceded by ! is an empty set.

The symbol “∃” before an event expression Exp indicates that Exp must exist in

the specified position.

Nested expressions. If Exp is an event expression, an application of SEQ, AND

5.1. INTRODUCTION 89

and OR over Exp is again an event expression [CKAK94]. As shown below, Expi

,..., Expn are outer expressions of Expi−1. And Exp1 ,..., Expi−1 are inner expres-

sions of Expi. Assume Expi = op(Expi−1 ,..., E j e j, Ek ek ,..., En en). The variable

scope for primitive event instances such as e j, ek and en in Expi is within Expi and

inner expressions of Expi.

Exp2 = op(Exp1 ,...,)

Exp3 = op(Exp2 ,...,)

...

Expi-1 = op(Expi-2 ,...,)

Expi = op(Expi-1, ,...,)

...

Expn = op(Expn-1 ,...,)

where op = SEQ, AND or OR;

Nested Boolean Expressions. A boolean expression Exp can be used as an inner

expression to filter out the construction of an outer event expression. For exam-

ple, in Q2 the boolean expression Disinfection is a subexpression of the boolean

expression ! SEQ(Sharpening s, ! Disinfection d, Checking c). The latter in turn is

a subexpression of the outermost SEQ expression of Q2. Q2 states that < r,w,o >

is a valid match if either no Sharpening and Checking event pairs exist in the in-

put stream between our Washing w and Operating o events in the outer match

< r,w,o >, or otherwise if they do exist, then disinfection events must also exist

between all Sharpening and Checking event pairs.

Q2 = PATTERN SEQ(Recycle r, Washing w,

5.1. INTRODUCTION 90

! SEQ(Sharpening s, ! Disinfection d, Checking c),

Operating o)

Predicate Specification. The optional qualification [<qual>] in the PATTERN

clause contains one or more predicates. In an expression Exp, we consider a simple

predicate that only refers to a single event instance e j of a primitive event type Ei

in Exp. Simple predicates in an expression Exp are specified directly inside Exp.

The treatment of join predicates are omitted. Join predicates on negation is am-

biguous in semantics. Consider the query Q below. Q = PATTERN SEQ(Recycle

r, ! Washing w, Operating o, r.attr1 + w.attr1 = o.attr1). It is not clear when the

predicate r.attr1 + w.attr1 = o.attr1 is satisfied for a given event pair {r, o}, if we

should return {r, o}. The reason we should return {r, o} is the predicate involv-

ing r and o are satisfied. However, we could not return {r, o} as a Washing event

instance w with the specified predicate exists.

5.1.2 NEEL Semantics

Event History with Basic Operations

Definition 10 Event history H is an ordered set of primitive event instances. Time

constraint event history H[ts, te] is an ordered set of primitive event instances from

history H with timestamps less than te and greater than ts.

H[ts, te] = {e|∀e ∈ H ∧ (ts≤ e.ts≤ e.te≤ te)}. (5.1)

Assume the window size for an event expression is w. For sliding window

5.1. INTRODUCTION 91

semantics, at any time t, we apply a query to the window constraint event history

Hw = H[ts, te] with te := t and ts := t - w where w is an integer representing the

sliding window size.

Definition 11 Ei[Hw] selects events of type Ei from window constrained event his-

tory Hw.

Ei[Hw] = {e|e ∈ Hw∧ (e ∈ Ei)}. (5.2)

Notations

1). The notation −→e1,n denotes an ordered sequence of event instances e1, e2, ... ,

en such that for all pairs (ei, e j) with i < j in the sequence, ei.ts ≤ ei.te <

e j.ts ≤ e j.te holds.

2). The notation seto f (e1,n) denotes the set {e1, ...,en}.

3). The notation seto f (−→e1,n) denotes the set {e1, ...,en} with e1.ts ≤ e1.te < ... <

en.ts ≤ en.te.

4). The notation ΠE1,n denotes the cross product of event histories from E1 to

En. Namely, ΠE1,n[Hw] = E1[Hw] × E2[Hw] × ... Ei[Hw] × . . . × En[Hw].

5). We use the notation <P1(e1), ... , Pn(en)> to refer to a set of simple predi-

cates applied to event instances e1, . . . , en respectively. For ease of use, we

use P as a shorthand for <P1(e1), ... , Pn(en)>.

5.1. INTRODUCTION 92

Operator Semantics

Definition 12 Generating expressions return event histories while boolean expres-

sions return boolean values. ! Exp[Hw] = T iff Exp[Hw] = /0. ∃ Exp[Hw] = T iff

Exp[Hw] ̸= /0.

Definition 13 [SEQ operator]. SEQ specifies a particular order in which the

event instances of interest e1, e2 ,..., en must occur in order to correspond to a valid

match. The event instances that satisfy specified time ordering and predicates are

returned. ΠE1,n[Hw] and P are denoted in Section 5.1.2. The meaning of a SEQ

expression (with boolean expressions) can be defined recursively in terms of the

meanings of the subexpressions. Namely, in Equation 5.3 below, for 1 < i < n, Ei

is a primitive event type.

SEQ(E1 e1,E2 e2, ...,Ei ei, . . . ,En en,P)[Hw]

= {seto f (
−→e1,n)|(−→e1,n ∈ΠE1,n[Hw])∧ (P== true)}.

(5.3)

Example 17 Given SEQ(Recycle r, Washing w) and H3 = {r1,w2,w3}, SEQ(Recycle

r, Washing w)[H3] generates 2 event histories: {r1,w2} and {r1,w3}.

Definition 14 SEQ with Negation !. Equation 5.4 below defines the SEQ opera-

tor with negation in the middle of a list of event types. We first identify {e1 ,..., ei,

ei+1 ,..., en} matching the generating event expression satisfying associated predi-

cates. We then verify the non-existence of X instances between ei and ei+1 events.

5.1. INTRODUCTION 93

SEQ(E1 e1, ...,Ei ei, !X ,Ei+1 ei+1, ...,En en,P)[Hw]

= {seto f (
−→e1,n)|−→e1,n ∈ (ΠE1,n[Hw])∧ (P== true)

∧X [H[ei.te,ei+1.ts]] = /0}.

(5.4)

SEQ(E1 e1 ,..., Ei ei, ! X , Ei+1 ei+1 ,..., En en, P)[Hw] is the set of all those

sequences {e1 ,..., ei, ei+1 ,..., en} such that

(i) The time ordered event set {e1 ,..., ei, ei+1 ,..., en} is in SEQ(E1 e1 ,..., Ei ei,

Ei+1 ei+1 ,..., En en , P)[Hw], and

(ii) X [H’] is empty, where H’ is the sub-history of [Hw] determined by the end-

time of ei and the start time of ei+1 if Ei and Ei+1 are positive primitive event types.

Otherwise, the left bound of H’ is determined by the end-time of the event instance

of the first positive event type from Ei, Ei−1 ,..., to E1. If Ei, Ei−1 ,..., and E1 are

all negative, the left bound of H’ is the same as the left bound of Hw. Similarly,

the right bound of H’ is determined by the start-time of the event instance of the

first positive event type from Ei+1, Ei+2 ,..., to En. If Ei+1, Ei+2 ,..., and En are all

negative, the right bound of H’ is the same as the right bound of Hw.

Multiple negations could exist inside a SEQ. Negation could equally exist at

the start or the end of the SEQ operator. Given a Hw, if negation exists at the

start, the non-existence left time bound would be min(en.te−w, Hw.ts). Similarly, if

negation exists at the end, the non-existence right time bound would be max(e1.ts+

w, Hw.te). If negations are specified at both the start and the end of the SEQ

operator, no negation match exists in either scopes of size w. Namely, the non-

existence left time bound would be min(en.te−w, Hw.ts) and the right time bound

5.1. INTRODUCTION 94

would be max(e1.ts+w, Hw.te).

If the specified events of the boolean expression ! E don’t exist in the stream

at the specified location, then we find a match for the event expression with nega-

tion(s). Multiple boolean expression ! E could also be specified in the SEQ op-

erator. For example SEQ(Washing w, ! (Sharpening s, s.id = 1), Disinfection d, !

(Checking c, c.id = 2)).

Definition 15 SEQ with Exists ∃. Equation 5.5 defines the SEQ operator with

∃ before event expressions. We first identify {e1 ,..., ei, ei+1 ,..., en} matching

the generating event expression satisfying associated predicates. We then verify

the existence of X instances between ei and ei+1 events of each candidate match

history.

SEQ(E1 e1, ...,Ei ei,∃X ,Ei+1 ei+1, ...,En en,P)[Hw]

= {seto f (
−→e1,n)|−→e1,n ∈ΠE1,n[Hw]∧ (P== true)∧X [H[ei.te,ei+i.ts]] ̸= /0}.

(5.5)

SEQ(E1 e1 ,..., Ei ei, ∃ X , Ei+1 ei+1 ,..., En en, P)[Hw] are the sets {e1 ,..., ei,

ei+1 ,..., en} such that

(i) The time ordered event instance set {e1 ,..., ei, ei+1 ,..., en} is in SEQ(E1 e1

,..., Ei ei, Ei+1 ei+1 ,..., En en, P)[Hw], and

(ii) X [H’] is not empty, where H’ is the sub-history of [Hw] determined by the

end-time of ei and the start time of ei+1 if Ei and Ei+1 are positive primitive event

types. Otherwise, the left bound of H’ is determined by the end-time of the event

instance of the first positive event type from Ei, Ei−1 ,..., to E1. If Ei, Ei−1 ,..., and E1

5.1. INTRODUCTION 95

are all negative, the left bound of H’ is the same as the left bound of Hw. Similarly,

the right bound of H’ is determined by the start-time of the event instance of the

first positive event type from Ei+1, Ei+2 ,..., to En. If Ei+1, Ei+1 ,..., and En are all

negative, the right bound of H’ is the same as the right bound of Hw.

Definition 16 [AND operator]. We don’t require event timestamp ordering among

e1, e2 ,..., en in {e1,e2, ...,en} in Equation 5.6. The meaning of a AND expression

(with boolean expressions) can be defined recursively in terms of the meanings of

the subexpressions. Namely, in Equation 5.6 below, for 1 < i < n, Ei is a primitive

event type.

AND(E1 e1,E2 e2, ...En en,P)[Hw]

= {seto f (e1,n)|(seto f (e1,n) ∈ΠE1,n[Hw])∧ (P== true)}.
(5.6)

Example 18 Given AND(Recycle r, Washing w) and the partial input stream {w1,

r2, w3} within the window. Then {{r2, w1}, {r2, w3}} is generated.

Definition 17 AND with Negation ! Equation 5.7 defines the AND operator with

negation. Negation ! X works like a filter. Each AND candidate result is returned

if X[Hw] = /0.

AND(E1 e1, ...,Ei ei, !X ,Ei+1 ei+1, ...,En en,P})[Hw]

= {seto f (e1,n)|seto f (e1,n) ∈ΠE1,n[Hw]∧ (P== true)∧X [Hw] = /0}.
(5.7)

AND(E1 e1 ,..., Ei ei, ∃ X , Ei+1 ei+1 ,..., En en, P)[Hw] is the set of all those

5.1. INTRODUCTION 96

{e1 ,..., ei, ei+1 ,..., en} such that

(i) {e1 ,..., ei, ei+1 ,..., en} is in AND(E1 e1 ,..., Ei ei, Ei+1 ei+1 ,..., En en ,

P)[Hw], and

(ii) X [Hw] is nonempty,

Multiple negation could exist in AND. Positions of ! E in AND doesn’t matter.

AND operator must contain at least one positive expression.

Example 19 Given AND(Recycle r, Washing w, ! Checking c) and the partial input

stream {c1, w2, r3}, no results are generated due to the existence of the event c1 ∈

Checking within the window constraint history.

Definition 18 AND with Exists ∃. Equation 5.8 defines the AND operator with

∃. ∃ X works like a filter. Each AND candidate result is returned if X[Hw] is not

empty.

AND(E1 e1, ...,Ei ei,∃X ,Ei+1 ei+1, ...,En en,P)[Hw]

= {seto f (e1,n)|seto f (e1,n) ∈ΠE1,n[Hw]∧ (P== true)∧X [Hw] ̸= /0}.
(5.8)

AND(E1 e1 ,..., Ei ei, ∃ X , Ei+1 ei+1 ,..., En en , P)[Hw] is the set of all those

{e1 ,..., ei, ei+1 ,..., en} such that

(i) {e1 ,..., ei, ei+1 ,..., en} is in AND(E1 e1 ,..., Ei ei, Ei+1 ei+1 ,..., En en ,

P)[Hw], and

(ii) X [Hw] is nonempty.

Definition 19 [OR operator]. Formally, the set-operator OR is defined as follows.

An event history is returned for the OR operator.

5.1. INTRODUCTION 97

OR(E1 e1 , ...,En en,P)[Hw]

= {{e1}|{e1} ∈ E1[Hw]∧ (P1(e1) == true)}∪ ...∪

{{en}|{en} ∈ En[Hw]∧ (Pn(en) == true)}

(5.9)

OR with Boolean Expressions.

Boolean expressions including ! E and ∃ E are not allowed in the OR operator

as OR connects generating expressions.

Example 20 Assume that the query Q2 = OR(Checking, Sharpening, Checking.insType

= “scalpels”; Sharpening.insID = 15)[H4]. The event history H = {c1, c2, c6, s8}

where c1.insType = “forceps”, c2.insType = “scalpels”, c6.insType = “scalpels”

and s8.insID = 15. Then Q2 returns a result history {{c6}, {s8}}.

5.1.3 Nested CEP Query Plan Generation

A query expressed by a NEEL specification is one-to-one translated into a default

nested algebraic query plan composed of the following algebraic operators: Win-

dow Sequence (WinSeq), Window And (WinAnd) and Window Or (WinOr). The

same window w is as default applied to all operator nodes. During query trans-

formation, each expression in the event pattern is mapped to one operator node

in the query plan. For queries expressed by NEEL, predicates are placed into the

positions as already specified by the NEEL expressions.

5.1. INTRODUCTION 98

OperatingRecycle Washing

WinSeq(Recycle r, Washing w, , Operating o)

WinSeq(Sharpening s, Disinfection d, Checking c)

Sharpening Disinfection Checking

(r.id = w.id = o.id and o.ins_type = surgery”)

(s.id = d.id = c.id=o.id)
!

RFID readings

Complex Events

Figure 5.2: Basic Query Plan for Query Q1 in Figure 5.1

5.1.4 Nested CEP Query Execution

Traditional Execution Strategy. Following the principle of top down iterative

nested query execution for nested SQL queries [SC75], the outer query is evaluated

first as context followed by its inner sub-queries. For every outer partial query

result, a constrained window is passed down for processing each of its children sub-

queries. These sub-queries compute results involving events within the constrained

window. Qualified result sequences of the inner operators are passed up to the

parent operator and the outer operator then joins its own local results with that of

its generating sub-expressions. The outer sequence result is filtered if the result set

of any of its boolean expressions ! E is not empty or the results of a boolean ∃ sub-

query is empty. Finally, the process repeats when the outer query consumes the

next instance e. We omit the detailed discussion and examples for nested queries

with negation and predicates. Please refer to [LRR+10] for details.

Discussion. Such nested query evaluation methodology suffers from several inef-

ficiencies. For Q1 in Figure 5.2, first, candidate results of SEQ(Recycle r, Washing

w, Operating o) initially generated may later be discarded. Another potential per-

formance waste is that full results for the inner boolean expression SEQ(Sharpening

s, Disinfection d, Checking c) are constructed. These cases were also highlighted in

5.1. INTRODUCTION 99

problems 1 and 2 in the introduction. The just introduced nested query evaluation

does not solve these problems. To overcome such inefficiencies, in Section 5.2, we

will explore query rewriting techniques to flatten and optimize nested CEP expres-

sions.

Rule

FR (1) SEQ(SEQ(E1 e1 ,..., Ei ei, P), E j e j ,..., En en)
= SEQ(E1 e1 ,..., Ei ei ,..., En en, P).

(2) SEQ(SEQ(E1 e1 ,..., ∃ (Ei−1 ei−1), E j e j, P), E j+1 e j+1 ,..., En en)
= SEQ(E1 e1 ,..., ∃ (Ei−1 ei−1), E j e j ,..., En en, P)

(3) AND(AND(E1 e1 ,..., E j e j, P), E j+1 e j+1 ,..., En en)
= AND(E1 e1 ,..., E j e j ,..., En en, P).

(4) AND(AND(E1 e1 ,..., ! (Ei ei, Pi(ei)), E j e j, P), E j+1 e j+1 ,..., En en)
= AND(E1 e1 ,..., ! (Ei ei, Pi(ei)) E j e j,..., En en, P).

(5) OR(OR(E1 e1 ,..., Ei ei), E j e j ,..., En en)
= OR(E1 e1 ,..., Ei ei, E j e j ,..., En en)

(6) SEQ(∃ SEQ(E1 e1 ,..., Ei ei, P), E j e j ,..., En en)
= SEQ(∃ (E1 e1) ,..., ∃ (Ei ei), E j e j ,..., En en, P)

(7) AND(∃ AND(E1 e1 ,..., Ei ei, P), E j e j ,..., En en)
= AND(∃ (E1 e1) ,..., ∃ (Ei ei), E j e j ,..., En en, P)

Table 5.2: Rewriting Rules: FR(Flattening Rule)

5.1. INTRODUCTION 100

Rule

DR (1) SEQ(E1 e1, OR(E2 e2 ,..., Ei ei, P), E j e j ... En en)
= OR(SEQ(E1 e1, E2 e2, E j e j ,..., En en, P2(e2))[Hw] , ... ,
SEQ(E1 e1, Ei ei, E j e j ,..., En en, Pi(ei)))

(2) AND(E1 e1, OR(E2 e2 ,..., Ei ei, P) ,..., En en)
= OR(AND(E1 e1, E2 e2 ,..., En en, P2(e2)) ,...,
AND(E1 e1, Ei ei ,..., En en, Pi(ei)))

(3) SEQ(E1 e1, ∃ E2 e2 ∨,..., ∨ ∃ Ei ei, E j e j ... En en)
= OR(SEQ(E1 e1, ∃ E2 e2, E j e j ,..., En en) ,...,
SEQ(E1 e1, ∃ Ei ei, E j e j ,..., En en))

(4) AND(E1 e1, ∃ E2 e2 ∨ ,..., ∨ ∃ Ei ei ,..., En en)
= OR(AND(E1 e1, ∃ E2 e2 ,..., En en) ,..., AND(E1 e1, ∃ Ei ei ,..., En en))

(5) SEQ(∃ OR(E1 e1 ,..., Ei ei), E j e j ,..., En en)
= OR(SEQ(∃ (E1 e1), E j e j ,..., En en) ,..., SEQ(∃ (Ei ei), E j e j ,..., En en))

(6) AND(∃ OR(E1 e1 ,..., Ei ei), E j e j ,..., En en)
= OR(AND(∃ (E1 e1), E j e j ,..., En en) ,..., AND(∃ (Ei ei), E j e j ,..., En en))

Table 5.3: Rewriting Rules: DR(Distributive Rule)

5.1. INTRODUCTION 101

Rule

NPDR (1) ! SEQ(E1 e1 ,..., Ei−1 ei−1, Ei ei) (right-to-left unroll)
= ! (Ei ei) ∨ ∃ SEQ(! SEQ(E1 e1 ,..., Ei−1 ei−1), Ei ei1, ! (Ei ei2))

(2) ! SEQ(E1 e1, E2 e2 ,..., Ei ei) (left-to-right unroll)
= ! (E1 e1) ∨ ∃ SEQ(! (E1 e11), E1 e12, ! (SEQ(E2 e2 ,..., Ei ei)))

(3) ! AND(E1 e1 ,..., Ei ei, P) = ! (E1 e1, P1(e1)) ∨ ... ∨ ! (Ei ei, Pi(ei))

(4) ! AND(E1 e1 ,..., ! (Ei ei, Pi(ei)) ,..., E j e j, P)
= ! (E1 e1, P1(e1)) ∨ ... ∨ ∃ (Ei ei, Pi(ei)) ... ∨ ! (E j e j, Pj(e j))

(5) ! OR(E1 e1 ,..., Ei ei, P) = ! (E1 e1, P1(e1)) ∧ ... ∧ ! (Ei ei, Pi(ei))

(6) ! SEQ(E1 e1 ,..., ∃ (Ei ei) ,..., En en, P)
= ! SEQ(E1 e1 ,..., Ei ei ,..., En en, P)

(7) ! AND(E1 e1 ,..., ∃ (Ei ei) ,..., En en, P)
= ! AND(E1 e1 ,..., Ei ei ,..., En en, P)

Table 5.4: Rewriting Rules: NPDR(Negation Push Down Rule)

5.1. INTRODUCTION 102

<Query>::= PATTERN <generating exp>
WITHIN <window>

[RETURN <set of primitive events>]

<generating exp> ::=
<generating exp in SEQ>

| <generating exp in AND>

| <generating exp in OR>

XO = <generating exp in SEQ> ::= SEQ(XI, [<qual>])
| OR((<generating exp in SEQ>)+, [<qual>])
| (<primitive-event type>, [<var>], [<qual>])
XI ::= (boolean expression in SEQ,)∗, generating exp in SEQ, query in SEQ∗

query in SEQ ::= generating exp in SEQ | boolean exp in SEQ
boolean exp in SEQ :: =
! <generating exp in SEQ> if XO and outer expressions of XO are not of the form ! XO
| ∃ <generating exp in SEQ>

| boolean exp in SEQ∨ boolean exp in SEQ

<generating exp in AND> ::=
| AND(Y, [<qual>])
| AND(SEQ(XO, [<qual>]))
| OR((<generating exp in AND>)+, [<qual>])
| (<primitive-event type>, [<var>], [<qual>])
Y ::= (boolean expression in AND,)∗, generating exp in AND, query in AND∗

query in AND ::= generating exp in AND | boolean exp in AND
boolean exp in AND :: = ! <generating exp in AND>

| ∃ <generating exp in AND>

| boolean exp in AND∨ boolean exp in AND

<generating exp in OR> ::=
SEQ(XI, [<qual>])
| AND(Y, [<qual>])
| OR((<generating exp in OR>)+, [<qual>])
| (<primitive-event type>, [<var>], [<qual>])
Z ::= (boolean expression in OR,)∗, generating exp in OR, query in OR∗

query in OR ::= generating exp in OR | boolean exp in OR
boolean exp in OR :: = ! <generating exp in OR>
| ∃ <generating exp in OR>
| boolean exp in OR∨ boolean exp in OR

<primitive-event type> ::= E1 | E2 | ...
<var> ::= event variable ei

<qual>::= (<elemqual> ;)∗

<elemqual> ::= <var>.attr <op> constant
<op> ::= < | > | ≤ | ≥ | = | ! =
<window>::= time duration w | tuple count c

Table 5.5: Event Expression for Class Lcons

5.2. NEEL EVENT EXPRESSION REWRITING 103

5.2 NEEL Event Expression Rewriting

Our system can process all queries expressed by NEEL in Section 5.1.1 [LRR+10].

But only some subset satisfying our language constraints described in Section 5.2.2

can be optimized using our rewriting techniques presented below. NEEL logical

query optimizer needs to analyze if optimization is applicable. By flattening a

nested NEEL expression, we could avoid the problem of forced execution ordering

described in Section 5.1.

5.2.1 Event Expression Rewriting Rules

Our proposed rewriting rules fall into three categories: flattening rules, distributive

rules and negation push down rules. Tables 3.2, 3.3 and 3.4 list our proposed NEEL

rewriting rules for nested CEP expressions. Two expressions connected by “=”

generate the same results. Namely, generating expressions return the same event

history under any possible event history input and boolean expressions evaluate to

the same boolean value.

5.2.2 Language Constraints

The rewriting system is only defined over some Class Lcons of expressions defined

in Table 3.5. Theorem 3 in Section 5.2.8 proves that Class LC is closed under

rewriting.

Class Lcons Design Decision.

• When an outer expression is SEQ, SEQ(∃ AND) and SEQ(AND) don’t be-

long to Class Lcons. When an outer expression is AND, AND(∃ SEQ) and

AND(! SEQ) don’t belong to Class Lcons. It is because AND operator can’t

5.2. NEEL EVENT EXPRESSION REWRITING 104

always be expressed by SEQ operator. Namely, AND(Exp1, Exp2)[Hw] !=

SEQ(Exp1, Exp2) ∨ SEQ(Exp2, Exp1)[Hw]. The SEQ operator requires

strict time ordering among Exp1 and Exp2 instances. Hence, it misses sev-

eral cases such as overlapping intervals among Exp1 and Exp2 instances

which are captured by AND operator. Class Lcons containing SEQ(SEQ),

SEQ(∃ SEQ), AND(AND), AND(∃ AND) or OR(OR) can be rewritten by

the flattening rules.

• Lcons doesn’t contain double negation on SEQ, !SEQ(!). It is because under

our nested CEP model, we don’t have an operator to support “for all” seman-

tics. For example, Given input {a1, b2, d4, c6, d8, e10}. Assume qk = SEQ(A

a, ! SEQ(B b, ! (C c), D d), E e). qk will return {a1,e10} if All {bi,d j} pairs

with 1< i< j < 10 have C instances in between. {b2, d4} has no C instances

in between. qk will not return {a1, e10}.

5.2.3 Flattening rules

The inner SEQ, AND or OR subexpression is merged into the outer SEQ, AND or

OR expression respectively.

Rule 1 After applying FR1, the nested SEQ(SEQ()) is equivalent to SEQ().

SEQ(SEQ(E1 e1, ...,Ei ei,P),E j e j, ...,En en)

= SEQ(E1 e1, ...,Ei ei, ...,En en,P).

(5.10)

Proof:

5.2. NEEL EVENT EXPRESSION REWRITING 105

Assume Expinner = SEQ(E1 e1 ,..., Ei ei, P) and the event instance matching

Expinner is e. Using Equation 5.3 (Definition of SEQ), the left hand side of Equa-

tion 5.10 can be written as

SEQ(SEQ(E1 e1, ...,Ei ei,P),E j e j, ...,En en)[Hw]

= {{e,e j, ...,en}|{e,e j, ...,en} ∈ SEQ(E1 e1, ...,Ei ei,P)[Hw]×E j[Hw]

× ...×En[Hw]∧ (ei.te < e j.ts < ... < en.ts)}

(5.11)

Let the inner expression be denoted as Expinner = SEQ(E1 e1 ,..., Ei ei, P).

Using Equation 5.3 (Definition of SEQ), we can write Expinner as

SEQ(E1 e1, ...,Ei ei,P)[Hw]

= {seto f (
−→e1,i)|(−→e1,i ∈ΠE1,i[Hw])∧ (P== true)}.

(5.12)

According to Equation 5.12, the event instance e matching Expinner can be

expressed by {e1, ...,ei} and these events are ordered (−→e1,i). Thus for the right hand

of Equation 5.11, we have

{{e,e j, ...,en}|{e,e j, ...,en} ∈ SEQ(E1 e1, ...,Ei ei,P)[Hw]×E j[Hw]

× ...×En[Hw]∧ (e.te < e j.ts... < en.ts)}

= {{e1, ...,ei,e j, ...,en}|{e1, ...,ei,e j, ...,en} ∈ SEQ(E1 e1, ...,Ei ei,

P)[Hw]×E j[Hw]× ...×En[Hw]∧ (ei.te < e j.ts... < en.ts)}

(5.13)

The subexpression SEQ(E1 e1 ,..., Ei ei, P)[Hw] can be substituted by the right

hand side of Equation 5.12. According to Equation 5.2 (Definition of Ei[Hw]),Ei[Hw]

5.2. NEEL EVENT EXPRESSION REWRITING 106

can be substituted by {ei|ei ∈ Ei[Hw]}. For the right hand side of Equation 5.13,

we have

{{e1, ...,ei,e j, ...,en}|{e1, ...,ei,e j, ...,en} ∈ SEQ(E1 e1, ...,Ei ei,P)[Hw]

×E j[Hw]× ...×En[Hw]∧ (ei.te < e j.ts... < en.ts)}

= {{e1, ...,ei,e j, ...,en}|{e1, ...,ei,e j, ...,en} ∈ {{e1, ...,ei}|({e1, ...,ei} ∈ΠE1,i[Hw])∧

(P== true)}×{e j|e j ∈ E j[Hw]}× ...×{en|en ∈ En[Hw]}∧ (ei.te < e j.ts... < en.ts)}

(5.14)

According to Cross Product, for the right hand side of Equation 5.14, we have

{seto f (
−→e1,n)|−→e1,n ∈ {seto f (

−→e1,i)|(−→e1,i ∈ΠE1,i[Hw])∧ (P== true)}×

{e j|e j ∈ E j[Hw]}× ...×{en|en ∈ En[Hw]}∧ (ei.te < e j.ts... < en.ts)}

= {seto f (
−→e1,n)|−→e1,n ∈ΠE1,i[Hw]×E j[Hw]× ...×En[Hw]∧ (P== true)}

= {seto f (
−→e1,n)|−→e1,n ∈ΠE1,n[Hw]∧ (P== true)}

(5.15)

For the right hand side of Equation 5.10, using Equation 5.3 (Definition of

SEQ), we can write it as

SEQ(E1 e1, ...,Ei ei,E j e j, ...,En en,P)[Hw]

= {seto f (
−→e1,n)|{−→e1,n} ∈ΠE1,n[Hw]∧ (P== true)}.

(5.16)

5.2. NEEL EVENT EXPRESSION REWRITING 107

So the expressions on the left side of Equation 5.10 as now defined in Equation

5.15 and the right side of Equation 5.10 as now defined in Equation 5.16 are equiv-

alent. The position of the inner subexpression doesn’t affect the application of the

flattening rule FR1. 2

Rule 2 After applying FR2, SEQ(SEQ(!)) is equivalent to SEQ(!).

SEQ(SEQ(E1 e1, ..., !(Ei ei,Pi(ei)),E j e j),E j+1 e j+1, ...,En en)

= SEQ(E1 e1, ..., !(Ei ei,Pi(ei)),E j e j, ...,En en)

(5.17)

We omit the proof for Rule FR2 as it is similar to FR1.

Discussion. Flattening Rule 2 still holds if ! Ei or ∃ Ei exists at the end of the

inner sub-expression or if ! E j ∃ Ei exists at the start of the outer sub-expression.

For example, for SEQ(A a, SEQ(B b, C c, !D d), E e, F f), the inner subexpression

SEQ(B b, C c, !D d) is bounded by A and E instances in the outer expression

which is not changed after rewriting. Similarly, the D instance is bounded by C

and E instances which is not changed after rewriting. Also for SEQ(A a, SEQ(B

b, C c, D d), ! E e, F f), the inner subexpression SEQ(B b, C c, D d) is bounded

by A and F instances in the outer expression which is not changed after rewriting.

Similarly, E instance is bounded by D and F instances which is not changed after

rewriting.

Rule 3 After applying FR3, AND(AND) is equivalent to AND().

AND(AND(E1 e1, ...,E j e j,P),E j+1 e j+1, ...,En en)

= AND(E1 e1, ...,E j e j, ...,En en,P).

(5.18)

Proof:

5.2. NEEL EVENT EXPRESSION REWRITING 108

Assume Expinner = AND(E1 e1, ...,E j e j,P). By Equation 5.6 (Definition of

AND), we can write Expinner as

AND(E1 e1, ...,E j e j,P)[Hw]

= {seto f (e1, j)|(seto f (e1, j) ∈ΠE1, j[Hw])∧ (P== true)}.
(5.19)

According to Equation 5.19, the event instance matching Expinner can be ex-

pressed by seto f (e1, j). Using AND operator Definition 16, we have

AND(AND(E1 e1, ...,E j e j,P),E j+1 e j+1, ...,En en)[Hw]

= {seto f (e1,n)|seto f (e1,n) ∈ AND(E1 e1, ...,E j e j,P)[Hw]×ΠE j+1,n[Hw]}

(5.20)

By substituting AND(E1 e1 ,..., E j e j, P)[Hw] with the right hand side in Equa-

tion 5.19, for the right hand side of Equation 5.20, we have

{seto f (e1,n)|seto f (e1,n) ∈ AND(E1 e1, ...,E j e j,P)[Hw]×ΠE j+1,n[Hw]}

= {seto f (e1,n)|seto f (e1,n) ∈ {seto f (e1, j)|(seto f (e1, j) ∈ΠE1, j[Hw])

∧ (P== true)}×ΠE j+1,n[Hw]}

(5.21)

Using event history cross product, for the right hand side of Equation 5.21, we

have

5.2. NEEL EVENT EXPRESSION REWRITING 109

{seto f (e1,n)|seto f (e1,n) ∈ {{e1, ...,e j}|({e1, ...,e j,e j+1, ...,en} ∈ΠE1, j[Hw])

∧ (P== true)}×ΠE j+1,n[Hw]}

= {seto f (e1,n)|seto f (e1,n) ∈ (ΠE1, j[Hw]×E j+1[Hw])××En[Hw]∧P== true}

= {seto f (e1,n)|(seto f (e1,n)) ∈ΠE1,n[Hw]∧ (P== true)}.

(5.22)

On the right side, by Equation 5.6 (Definition of AND)

AND(E1 e1, ...,E j e j,E j+1 e j+1, ...,En en,P)[Hw]

= {seto f (e1,n)|(seto f (e1,n)) ∈ΠE1,n[Hw]∧ (P== true)}.
(5.23)

So the expressions on the left side defined in Equation 5.20 and the right side

by Equation 5.23 are equivalent. By induction, we can prove the correctness of

Flattening Rule 3. 2

Rule 4 After applying FR4, AND(AND(!)) is equivalent to AND(!).

AND(AND(E1 e1, ..., !(Ei ei,Pi(ei)),E j e j,P),E j+1 e j+1, ...,En en)

= AND(E1 e1, ..., !(Ei ei,Pi(ei)),E j e j, ...,En en,P).

(5.24)

Proof:

Suppose e refers to an event instance of the inner subsequence Expinner[Hw] =

AND(E1 e1 ,..., ! (Ei ei, Pi(ei)), E j e j, P)[Hw]. On the left side of Equation 5.24,

the semantics of the expression corresponds to:

5.2. NEEL EVENT EXPRESSION REWRITING 110

AND(AND(E1 e1, ..., !(Ei ei,Pi(ei)),E j e j,P),E j+1 e j+1, ...,En en)[Hw]

= {{e,e j+1, ...,en}|{e,e j+1, ...,en} ∈ Expinner[Hw]×ΠE j+1,n[Hw]}.
(5.25)

Further expanding the inner sub-expression Expinner[Hw] by Equation 5.7 we

get

AND(E1 e1, ..., !(Ei ei,Pi(ei)),E j e j,P)[Hw]

= {{e1, ...,ei−1,e j}|{e1, ...,ei−1,e j} ∈ (ΠE1,i−1[Hw]×E j[Hw]))

∧P== true∧ (@ei where(ei ∈ Ei[Hw]∧Pi(ei) == true))}.

(5.26)

By plugging Equation 5.26 into Equation 5.25, we get:

AND(AND(E1 e1, ..., !(Ei ei,Pi(ei)),E j e j,P),E j+1 e j+1, ...,En en)[Hw]

= {{e1, ...,ei−1,e j,e j+1, ...,en}|{e1, ...,ei−1,e j+1, ...,en} ∈ΠE1,i−1[Hw]×ΠE j+1,n[Hw]

∧ (P== true)∧ (@ei where(ei ∈ Ei[Hw]∧Pi(ei) == true))}.

(5.27)

On the right side, according to Equation 5.7,

AND(E1 e1, ..., !(Ei ei,Pi(ei)),E j e j, ...,En en,P)[Hw]

= {{e1, ...,ei−1,e j, ...,en}|{e1, ...,ei−1,e j, ...,en} ∈ΠE1,i−1[Hw]×ΠE j,n[Hw]

∧ (P== true)∧ (@ei where(ei ∈ Ei[Hw]∧Pi(ei) == true))}.

(5.28)

5.2. NEEL EVENT EXPRESSION REWRITING 111

So the expressions of the left side (Equation 5.27) and the right side (Equation

5.28) are equivalent. 2

By Equation 5.7 (Definition of AND with negation), AND has at least one

generating expression. Hence the flattened AND also has at least one generating

expression.

Rule 5 After applying FR5, OR(OR) is equivalent to OR().

OR(OR(E1 e1, ...,Ei ei),E j e j, ...,En en)

= OR(E1 e1, ...,Ei ei,E j e j, ...,En en).

(5.29)

Proof:

On the left side of Equation 5.29, according to Equation 5.9,

OR(OR(E1 e1, ...,Ei ei),E j e j, ...,En en)[Hw]

= {{e}|{e} ∈ OR(E1 e1, ...,Ei ei)[Hw]}∪ ...∪{{e j}|{e j} ∈ E j[Hw]}...

{{en}|{en} ∈ En[Hw]}

(5.30)

On the right side, according to Equation 5.9,

OR(E1 e1 , ...,Ei ei, ...,En en)[Hw]

= {{e1}|{e1} ∈ E1[Hw]}∪ ...{{ei}|{ei} ∈ Ei[Hw]}...∪

{{en}|{en} ∈ En[Hw]}

(5.31)

So the expressions of the left side (Equation 5.30) and the right side (Equation

5.31) are equivalent. Equation 5.29 is correct. 2

5.2. NEEL EVENT EXPRESSION REWRITING 112

Rule 6 After applying FR6, SEQ(∃ SEQ) is equivalent to SEQ(∃ Ei).

SEQ(E1 e1,∃SEQ(E2 e2, ..., !(Ei ei,Pi(ei)),E j e j),E j+1 e j+1, ...,En en)

= SEQ(E1 e1,∃E2 e2, ..., !(Ei ei,Pi(ei)),∃E j e j,E j+1 e j+1, ...,En en).

(5.32)

Proof:

On the left side of Equation 5.32, according to Equation 5.4,

SEQ(E1 e1,∃SEQ(E2 e2, ..., !(Ei ei,Pi(ei)),E j e j),E j+1 e j+1, ...,En en)[Hw]

= {{e1,e j+1, ...,en}|{e1,e j+1, ...,en} ∈ (E1[Hw]×ΠE j+1,n[Hw])∧

(SEQ(E2 e2, ..., !(Ei ei,Pi(ei)),E j e j)[H[e1.te,e j+1.ts]]! = /0)}.

(5.33)

According to Equation 5.4, SEQ(E2 e2 ,..., ! (Ei ei, Pi(ei)), E j e j)[H[e1.te,

e j+1.ts]] != /0 in the right side of Equation 5.33 implies E2 [H[e1.te, e j+1.ts]] != /0 ∧

... ∧ Ei−1 [H[ei−2.te, e j+1.ts]] != /0 ∧ E j [H[ei−1.te, e j+1.ts]] != /0 ∧ Ei [H[ei−1.te,

e j.ts]] = /0. Thus we have:

SEQ(E1 e1,∃E2 e2, ...,∃Ei−1 ei−1, !(Ei ei,Pi(ei)),∃E j e j,E j+1 e j+1, ...,En en)[Hw]

= {{e1,e j+1, ...,en}|{e1,e j+1, ...,en} ∈ (E1[Hw]×ΠE j+1,n[Hw])∧

E2[H[e1.te,e j+1.ts]]! = /0∧ ...∧Ei−1[H[ei−2.te,e j+1.ts]]! = /0∧

E j[H[ei−1.te,e j+1.ts]]! = /0∧Ei[H[ei−1.te,e j.ts]] = /0}.

(5.34)

On the right side of Equation 5.32, according to Equation 5.4,

5.2. NEEL EVENT EXPRESSION REWRITING 113

SEQ(E1 e1,∃E2 e2, ...,∃Ei−1 ei−1, !(Ei ei,Pi(ei)),∃E j e j,E j+1 e j+1, ...,En en)[Hw]

= {{e1,e j+1, ...,en}|{e1,e j+1, ...,en} ∈ (E1[Hw]×ΠE j+1,n[Hw])∧

E2[H[e1.te,e j+1.ts]]! = /0∧ ...∧Ei−1[H[ei−2.te,e j+1.ts]]! = /0∧

E j[H[ei−1.te,e j+1.ts]]! = /0∧Ei[H[ei−1.te,e j.ts]] = /0}.

(5.35)

So the expressions of the left side (Equation 5.34) and the right side (Equation

5.35) are equivalent. 2

Rule 7 After applying FR7, AND(∃ AND) is equivalent to AND(AND).

AND(∃AND(E1 e1, ..., !(Ei ei,Pi(ei)),E j e j,P),E j+1 e j+1, ...,En en)

= AND(∃E1 e1, ..., !(Ei ei,Pi(ei)),E j e j, ...,En en,P).

(5.36)

The proof for Rule FR7 is similar to the proof for Rule FR6. Thus the details

are omitted.

5.2.4 Distributive Law

Each event type in the inner OR expression is distributed into the outer SEQ and

AND expressions.

Rule 8 After applying DR1, SEQ(OR) is equivalent to OR(SEQ).

5.2. NEEL EVENT EXPRESSION REWRITING 114

SEQ(E1 e1,OR(E2 e2, ...,Ei ei,P2(e2), ...,Pi(ei)),E j e j, ...,En en)

= OR(SEQ(E1 e1,E2 e2,E j e j, ...,En en,P2(e2)), ...,

SEQ(E1 e1,Ei ei,E j e j, ...,En en,Pi(ei)))

(5.37)

Proof: Suppose e refers to an event instance of the inner subsequence Expinner[Hw]

= OR(E2 e2 ,..., Ei ei, P2(e2) ,..., Pi(ei))[Hw]. According to Equation 5.9 (Definition

of OR), we get Expinner[Hw]:

OR(E2 e2 , ...,Ei ei,P2(e2), ...,Pi(ei))[Hw]

= (E2[Hw],P2(e2))∪ ...∪ (Ei[Hw],Pi(ei))

= {e2|e2 ∈ E2[Hw]∧P2(e2) == true}∪ ...∪{ei|ei ∈ Ei[Hw]∧Pi(ei) == true}.

(5.38)

According to Equation 5.3 (Definition of SEQ), the semantics of the left side

of Rule 8 (Equation 5.37) corresponds to:

SEQ(E1 e1,OR(E2 e2, ...,Ei ei,P2(e2), ...,Pi(ei)),E j e j, ...,En en)[Hw]

= {{e1,e,e j, ...,en}|({e1,e,e j, ...,en}) ∈ (E1[Hw]×Expinner[Hw]×ΠE j,n[Hw]))}

(5.39)

By plugging Equation 5.38 into Equation 5.39, we get

5.2. NEEL EVENT EXPRESSION REWRITING 115

SEQ(E1 e1,OR(E2 e2, ...,Ei ei,P2(e2), ...,Pi(ei)),E j e j, ...,En en)[Hw]

= {{e1,e2,e j, ...,en}|({e1,e2,e j, ...,en} ∈ E1[Hw]×E2[Hw]×E j[Hw]× ...

×En[Hw])∧P2(e2) == true}∪ ...∪{{e1,ei,e j, ...,en}|({e1,ei,e j, ...,en}

∈ E1[Hw]×Ei[Hw]×E j[Hw]× ...×En[Hw])∧Pi(ei) == true}

(5.40)

On the right side, according to SEQ operator semantics in Equation 5.3 we get:

OR(SEQ(E1 e1,E2 e2,E j e j, ...,En en,P2(e2)) ...

SEQ(E1 e1,Ei ei,E j e j, ...,En en,Pi(ei)))[Hw]

= {{e1,e2,e j, ...,en}|({e1,e2,e j, ...,en} ∈ E1[Hw]×E2[Hw]×E j[Hw]× ...×

En[Hw])∧P2(e2) == true}∪ ...∪{{e1,ei,e j, ...,en}|({e1,ei,e j, ...,en} ∈ E1[Hw]

×Ei[Hw]×E j[Hw]× ...×En[Hw])∧Pi(ei) == true}

(5.41)

So the left side of Equation 5.37 as defined in Equation 5.40 and the right side

of Equation 5.37 as defined in Equation 5.41 are equivalent. 2

Rule 9 After applying DR2, AND(OR) is equivalent to OR(AND).

5.2. NEEL EVENT EXPRESSION REWRITING 116

AND(E1 e1,OR(E2 e2, ...,Ei ei,P2(e2), ...,Pi(ei)),E j e j, ...,En en)

= OR(AND(E1 e1,E2 e2,E j e j, ...,En en,P2(e2)) ...

AND(E1 e1,Ei ei,E j e j, ...,En en,Pi(ei)))

(5.42)

The proof for Rule 9 is similar to the proof for Rule 8. Thus the details are

omitted.

Rule 10 After applying DR3, SEQ(∨) is equivalent to OR(SEQ).

SEQ(E1 e1,∃(E2 e2,P2(e2))∨, ...,∨∃(Ei ei, ...,Pi(ei)),E j e j...En en)

= OR(SEQ(E1 e1,∃(E2 e2,P2(e2)),E j e j, ...,En en) ...

SEQ(E1 e1,∃(Ei ei,Pi(ei)),E j e j, ...,En en))

(5.43)

The proof for Rule 11 is similar to the proof for Rule 8. Thus the details are

omitted.

Rule 11 After applying DR4, AND(∨) is equivalent to OR(AND).

AND(E1 e1,∃(E2 e2,P2(e2)) ∨, ...,∨ ∃(Ei ei, ...,Pi(ei)), ...,En en)

= OR(AND(E1 e1,∃(E2 e2,P2(e2)), ...,En en) ...

AND(E1 e1,∃(Ei ei,Pi(ei)), ...,En en))

(5.44)

The proof for Rule 5.44 is similar to the proof for Rule 8. Thus the details are

omitted.

5.2. NEEL EVENT EXPRESSION REWRITING 117

Rule 12 After applying DR5, SEQ(∃ OR) is equivalent to OR(SEQ).

SEQ(E1 e1,∃OR(E2 e2, ...,Ei ei,P2(e2), ...,Pi(ei)),E j e j, ...,En en)

= OR(SEQ(E1 e1,∃E2 e2,E j e j, ...,En en,P2(e2)) , ...,

SEQ(E1 e1,Ei ei,E j e j, ...,En en,Pi(ei)))

(5.45)

The proof for Rule 5.45 is similar to the proof for Rule 8. Thus the details are

omitted.

Rule 13 After applying DR6, AND(∃ OR) is equivalent to OR(AND).

AND(E1 e1,∃OR(E2 e2, ...,Ei ei,P2(e2), ...,Pi(ei)),E j e j, ...,En en)

= OR(AND(E1 e1,∃(E2 e2,P2(e2)),E j e j, ...,En en) ...

AND(E1 e1,∃(Ei ei,Pi(ei)),E j e j, ...,En en))

(5.46)

The proof for Rule 5.46 is similar to the proof for Rule 8. Thus the details are

omitted.

5.2.5 Negation Push Down Rules

For negation (!) in expressions satisfying our language constraint in Section 5.2.2,

negation (!) is pushed into the inner AND, SEQ or OR subexpression so that ! is

before each primitive even type.

5.2. NEEL EVENT EXPRESSION REWRITING 118

Rule 14 After applying NPDR1 (right-to-left unroll), ! SEQ is equivalent to push-

ing negation (!) into the inner SEQ subexpression. The preconditions of NPD1 are

for 1 ≤ j ≤ i, E j must be primitive and E j is not a boolean expression ! E j.

−−−−−−−−−−→
E1,e1,Ei−1,ei−1 denotes E1, e1, E2, e2 ,..., Ei−1, ei−1.

!SEQ(
−−−−−−−−−−→
E1,e1,Ei−1,ei−1,Ei ei)

=!(Ei ei)∨

∃SEQ(!(Ei−1 ei−1),Ei ei1, !(Ei ei2))∨

∃SEQ(!(Ei−2 ei−2),Ei−1 ei−1, !(Ei−1 ei−1),Ei ei1, !(Ei ei2))∨

...

∃SEQ(!(E1 e1),E2 e21, !(E2 e22), ...,Ei ei1, !(Ei ei2))

Assume that for 2 ≤ j ≤ i, E j must be primitive and for 1 ≤ k ≤ i-1

Ek is not a boolean expression ! Ek.

(5.47)

Proof: Let us prove Equation 5.48 first. Equation 5.47 can be proven by applying

Equation 5.48 i times.

!SEQ(
−−−−−−−−−−→
E1,e1,Ei−1,ei−1,Ei ei)[Hw]

=!(Ei ei)[Hw]∨

∃SEQ(!SEQ(
−−−−−−−−−−→
E1,e1,Ei−1,ei−1),Ei ei1, !(Ei ei2))[Hw]

Assume that the last event type Ei must be primitive and Ei−1 is not ! E.

(5.48)

5.2. NEEL EVENT EXPRESSION REWRITING 119

[Proof for →] First, let us prove if the left hand side is true, then the right hand

side is true.

If the left hand side is true, then the one of the following must hold. (II) Ei

instances are missing; (I) At least one instance of E1 ,..., Ei−1 is missing; or (III)

while none is missing but event instance ordering in sequence query is not satisfied

among events of types E1 ... Ei.

Now for each case we will prove that the right hand ride is true.

Case I: Ei instances are missing; According to Definition 12, ! (Eiei)[Hw] =

true. Thus, the right side of Equation 5.48 is true.

Case II: E1 ... or Ei−1 instances are missing. SEQ(E1, e1, E2, e2 ,..., Ei−1,

ei−1)[Hw] = /0. Two cases exist for Ei: Ei is also missing or Ei exists. If no Ei

events exist, the case falls into Case I. Thus, the right side of Equation 5.48 is true.

Otherwise, the last ei in Hw among these event instances of the type Ei matches Ei

ei, ! (Ei ei) as no more ei of type Ei exists after the last one. According to Equation

5.4 (Definition of SEQ with Negation), SEQ(! SEQ(
−−−−−−−−−−→
E1,e1,Ei−1,ei−1), Ei ei, ! (Ei

ei))[Hw] returns an event history which contains the last ei ∈ Ei[Hw]. Thus accord-

ing to Definition 12 for boolean expressions, ∃ SEQ(! SEQ(
−−−−−−−−−−→
E1,e1,Ei−1,ei−1), Ei

ei1, ! (Ei ei2))[Hw] = true. Thus, the right side of Equation 5.48 is true.

Case III: None is missing but ordering is not satisfied. If the ordering between

e1 ,..., ei−1 events is not satisfied, SEQ(
−−−−−−−−−−→
E1,e1,Ei−1,ei−1) = /0. ! SEQ(

−−−−−−−−−−→
E1,e1,Ei−1,ei−1)

= true. The result is the same as Case II. According to Case II above, the right side

of Equation 5.48 is true. Otherwise, if the the ordering between ei−1 and ei events

is not satisfied, it mean no sequences e1 ,..., ei−1 exist before ei. According to

Equation 5.4 (Definition of SEQ with Negation), SEQ(! SEQ(
−−−−−−−−−−→
E1,e1,Ei−1,ei−1),

Ei ei, ! (Ei ei)) returns an event history contains the last Ei event instance in Hw. ∃

5.2. NEEL EVENT EXPRESSION REWRITING 120

SEQ(! SEQ(
−−−−−−−−−−→
E1,e1,Ei−1,ei−1), Ei ei1, ! (Ei ei2))[Hw] = true. Thus, the right side

of Equation 5.48 is true.

We require that Ei−1 is not a boolean expression ! E. The non-existence seman-

tics is changed otherwise. Please refer to Example 21 below. To guarantee SEQ(Ei

ei, ! Ei, ei)[Hw] represent the last Ei (no Ei instances exist after a matching Ei in-

stance) in the input stream, Ei must be primitive. Problems would occur otherwise

(see Example 22).

[Proof for ←] Next, let us prove that if the right hand side is true, then the left

hand side is also true.

For the expression on the right side of Equation 5.48, if it is evaluated to be

true, either (I) !EiH[ts, te] = true. No events of type Ei exist in H[ts, te] or (II)

Before the last Ei event in H[ts, te], no sequence results for SEQ(
−−−−−−−−−−→
E1,e1,Ei−1,ei−1)

exist. The above two cases mean the event history for SEQ(
−−−−−−−−−−→
E1,e1,Ei−1,ei−1, Ei

ei))[H[ts, te]] is empty. Thus, the expression on the left side of Equation 5.48 is

true. We prove Equation 5.48 is correct. 2

Example 21 Assume a query Q4 = SEQ(Recycle r, ! SEQ(Sharpening s, ! (Dis-

infection d), Checking c), Operating o). After applying Rule NPD1 (right-to-left

unroll), we get Q′4 = SEQ(Recycle r, ! (Checking c) ∨ ∃ SEQ(! SEQ(Sharpening

s, ! (Disinfection d)), Checking c, ! (Checking c), Operating o). Q4 requires the

existence of Disinfection instances between every Sharpening and Checking in-

stance pair. However, Q′4 requires the existence of Disinfection instances between

every Sharpening and the last Checking instance pair (represented by Checking c,

! (Checking c)). The precondition requiring the event type before Checking is not

a boolean expression ! E (! Disinfection here) is produced on purpose.

5.2. NEEL EVENT EXPRESSION REWRITING 121

Example 22 SEQ(Ei ei1, ! Ei ei2) will return the last Ei instance in stream if

Ei is a primitive event type. However, if Ei is a composite event type, the event

instance returned by SEQ(Ei ei1, ! Ei ei2) may not be the last Ei in the stream. As-

sume Ei is a composite event type SEQ(Checking c, Operating o) with input events

{c2,c3,o4,o5}. The last Ei event should be {c3,o5}. However, {c2,o4} would also

match SEQ(Ei, ! Ei) as we can’t find another Ei event that occurs strictly after it.

The reason is that {c2,o4} and {c3,o5} are overlapping with {c2,o4}.te = 4 and

{c3,o5}.ts = 3.

Basing on above proof, we have shown that Equation 5.48 is true. 2

Rule 15 After applying NPDR2 (left-to-right unroll), ! SEQ is equivalent to push-

ing negation (!) into the inner SEQ subexpression. The preconditions are for 1 ≤ j

≤ i type E j must be primitive and E j is not a boolean expression ! E j.

Below,
−−−−−−−−−→
E2,e2, ...,Ei,ei denotes E2, e2 ,..., Ei, ei.

!SEQ(E1 e1,
−−−−−−−→
E2,e2,Ei,ei)

= !(E1 e1)∨

∃SEQ(!(E1 e11), E1 e12, !(E2,e2))∨

...

∃SEQ(!(E1 e11), E1 e12, ... !(Ei−1 e1i−1),Ei−1 e2i−1, !(Ei ei))

Assume that for 2 ≤ j ≤ i type E j must be primitive and for 1 ≤ k ≤ i-1,

Ek is not a boolean expression ! Ek.

(5.49)

5.2. NEEL EVENT EXPRESSION REWRITING 122

Proof: Let us prove Equation 5.50 first. Equation 5.49 can be proven by applying

Equation 5.50 i times.

!SEQ(E1 e1,
−−−−−−−→
E2,e2,Ei,ei)

= !(E1 e1)∨

∃SEQ(!(E1 e11), E1 e12, !SEQ(
−−−−−−−→
E2,e2,Ei,ei))

given that the first event type E1 must be primitive and E2 is not a boolean expression ! E.

(5.50)

[Proof for→]. First, let us prove if the left hand side of Equation 5.50 is true, then

the right hand side is true.

If the left hand side is true, then the one of the following must hold. (I) If E1 is

missing; (II) At least one instance of E2 ... Ei is missing; or (III) If none is missing,

then their ordering is not satisfied.

Now for each case we will prove that the right hand ride is true.

Case I E1 is missing; ! (E1 e1)[Hw] = true. Thus the right hand side of Equa-

tion 5.50 is true.

Case II If at least one instance of E2 ... Ei is missing, SEQ(E2, e2 ,..., Ei,

ei) = /0. SEQ(! (E1 e1), E1 e1)[Hw] represents the first E1 event in Hw as before a

matching E1 event instance, no more E1 event instances exist in Hw. If E1 instances

exist in Hw, SEQ(! (E1 e1), E1 e1, ! SEQ(E2, e2 ,..., Ei, ei))[Hw] returns the first

Ei instance. Thus the right hand side of Equation 5.50 is true. Otherwise, if E1

instances do not exist in Hw, (E1 e1)[Hw] = /0. ! (E1 e1)[Hw] = true. Thus the right

hand side of Equation 5.50 is true.

5.2. NEEL EVENT EXPRESSION REWRITING 123

Case III If none is missing but their ordering in sequence query is not satisfied.

If the orderng among e2 ,..., ei is not satisfied, SEQ(E2, e2 ,..., Ei, ei) = /0. The result

is the same to Case II. Otherwise, if the ordering between e1 and e2 is not satisfied,

it mean no sequences e2 ,..., ei exist after e1 of type E1. According to Equation 5.4

(Definition of SEQ with Negation), SEQ(! (E1 e1), E1 e1, ! SEQ(
−−−−−−−→
E2,e2,Ei,ei))

returns an event history contains the first E1 event in Hw. ∃ SEQ(! (E1 e11), E1

e12, ! SEQ(
−−−−−−−→
E2,e2,Ei,ei))[Hw] = true. Thus, the right side of Equation 5.50 is true.

To guarantee SEQ(! E1 e1, E1 e1)[Hw] represent the first E1 in the input stream,

E1 must be primitive. We also require that E2 is not a boolean expression ! E. The

reasons for these requirements are the same as the requirements for Rule NPD1.

[Proof for←] For the expression on the right side of Equation 5.50, if it is evalu-

ated to be true, either (I) No E1 events exist in Hw or (II) After the first E1 event in

Hw, no sequence results for SEQ(
−−−−−−−→
E2,e2,Ei,ei) exist. Thus it means the event his-

tory for SEQ(
−−−−−−−→
E1,e1,Ei,ei)[Hw] is empty. Thus the boolean expression on the left

side of Equation 5.50 is true. We thus have proven that Equation 5.50 is correct. 2

Based on above proof, we have proven that Equation 5.50 is true. 2

Rule 16 After applying NPDR3, ! AND is equivalent to pushing negation (!) into

the inner AND subexpression.

!AND(E1 e1, ...,Ei ei,P) = !(E1 e1,P1(e1)) ∨ ...∨ !(Ei ei,Pi(ei)) (5.51)

Proof: We prove that if the left hand side holds true, then the right hand side also

holds true and vice versa.

5.2. NEEL EVENT EXPRESSION REWRITING 124

[Proof for→] If the boolean expression on the left side of Equation 5.51 is evalu-

ated to be true, AND(E1 ,..., Ei, P)[Hw] = /0. It means ∃ Ei[Hw] = /0. Thus at least

one subexpression on the right side of Equation 5.51 holds true.

[Proof for←] According to Equation 5.9, the right side of Equation 5.51 requires

in [Hw], ∃ Ei, !(Ei ei,Pi(ei))[Hw] = true. The implies not all E1 ,...., Ei instances

exist in [Hw]. So the left side of Equation 5.51 is true. So the Rule 17 is correct. 2

Rule 17 After applying NPDR4, ! AND is equivalent to pushing negation (!) into

the inner AND subexpression with boolean expressions.

!AND(E1 e1, ..., !(Ei ei,Pi(ei)), ...,∃E j e j,P)

=!(E1 e1,P1(e1))∨ ...∨∃(Ei ei,Pi(ei))...∨!(E j e j,Pj(e j))

(5.52)

The proof for NPD4 is similar to the proof for NPD3. Thus the details are

omitted.

Rule 18 After applying NPDR5, ! OR is equivalent to pushing negation (!) into

the inner OR subexpression. All E1 ,..., Ei in OR are generating subexpressions.

!OR(E1 e1,E2 e2, ...,Ei ei,P)

=!(E1 e1,P1(e1)) ∧ !(E2 e2,P2(e2)) ∧ ... ∧ !(Ei ei,Pi(ei))

(5.53)

Proof:

5.2. NEEL EVENT EXPRESSION REWRITING 125

On the left side of Equation 5.53,

!OR(E1 e1, E2 e2, ...,Ei ei,P)[Hw]

=!({{e1} ∈ E1[Hw]∧P1(e1)}∪ ...∪{{ei} ∈ Ei[Hw]∧Pi(ei)})
(5.54)

For the expression on the right hand side of Equation 5.54 to be true, {{e1} ∈

E1[Hw]∧P1(e1)} ,..., {{ei} ∈ Ei[Hw]∧Pi(ei)} all return empty. Thus for the right

hand side of Equation 5.54, we have

= (@e1 ∈ E1[Hw]∧P1(e1) == true)∧ ...∧ (@ei ∈ Ei[Hw]∧Pi(ei) == true)

(5.55)

We now prove Equation 5.55 is true. If the left hand side of Equation 5.55 is

true, (e1 ∈ E1[Hw] ∧ P1(e1) ∪ ... ∪ ei ∈ Ei[Hw] ∧ Pi(ei)) = /0. Namely, E1[Hw] = ...

= Ei[Hw] = /0. Thus the right hand side of Equation 5.55 is true. If the right hand

side of Equation 5.55 is true, (@ e1 ∈ E1[Hw] ∧ P1(e1) == true) = true ,..., (@ ei ∈

Ei[Hw] ∧ Pi(ei) == true) = true. Thus e1 ∈ E1[Hw] ∧ P1(e1) = /0 ,..., ei ∈ Ei[Hw] ∧

Pi(ei) = /0. Thus the left hand side of Equation 5.55 is true.

On the right side of Equation 5.53,

!(E1 e1,P1(e1))[Hw] ∧ !(E2 e2,P2(e2))[Hw] ∧ ..., !(Ei ei,Pi(ei))[Hw]

= (@e1 ∈ E1[Hw]∧P1(e1) == true)∧ ...∧ (@ei ∈ Ei[Hw]∧Pi(ei) == true)

(5.56)

The left side of Equation 5.54 is equal to the right side of Equation 5.56. So

the Rule 18 is correct. 2

5.2. NEEL EVENT EXPRESSION REWRITING 126

Rule 19 After applying NPDR6, pushing negation (!) into the inner SEQ expres-

sion with exist ∃ boolean subexpressions is equivalent to ! SEQ with all generating

subexpressions.

!SEQ(E1 e1, ...,∃Ei ei, ...,En en,P) = !SEQ(E1 e1, ...,Ei ei, ...,En en,P) (5.57)

Proof. We prove that if the left hand side holds true, then the right hand side also

holds true and vice versa.

[Proof for→] If the boolean expression on the left side of Equation 5.57 is evalu-

ated to be true, SEQ(E1 e1 ,..., ∃ Ei ei ,..., En en, P) = /0. Two cases are possible:

(I) No results matching SEQ(E1 e1 ,..., Ei−1 ei−1, Ei+1 ei+1 ,..., En en, P). (II)

No ei ∈ Ei exists with ei−1.ts ≤ ei.ts ≤ ei+1.ts. Thus the expression on the right

side of Equation 5.57 holds true.

[Proof for←] If the boolean expression on the right side of Equation 5.57 is evalu-

ated to be true, SEQ(E1 e1 ,..., Ei ei ,..., En en, P) = /0. Two cases are possible: (I)

No results matching SEQ(E1 e1 ,..., Ei−1 ei−1, Ei+1 ei+1 ,..., En en, P). (II) No

ei ∈ Ei exists with ei−1.ts ≤ ei.ts ≤ ei+1.ts. Thus the expression on the left side of

Equation 5.57 holds true. So the Rule NPD6 is correct. 2

Rule 20 After applying NPD7, pushing negation (!) into the inner AND expression

with exist ∃ boolean subexpressions is equivalent to ! AND with all generating

subexpressions.

5.2. NEEL EVENT EXPRESSION REWRITING 127

!AND(E1 e1, ...,∃Ei ei, ...,En en,P) = !AND(E1 e1, ...,Ei ei, ...,En en,P) (5.58)

The proof for NPD7 is similar to the proof for NPD6. Thus the details are

omitted.

5.2.6 Normal Forms for CEP Expressions

Rewriting aims to flatten nested NEEL expressions as much as possible to over-

come the two problems described in Section 5.1. In addition, sharable subexpres-

sions would be easily identified in flattened expressions. We distinguish between

two normal forms for NEEL expressions of Class Lcons defined in Table 3.5: dis-

junctive normal form (DNF) and conjunctive normal form (CNF).

Definition 20 A NEEL event expression E is said to be in disjunctive normal

form if it is of the form (E OR E OR ... OR E) with each query conjunct E a

sequential pattern specified with one SEQ or AND formed by primitive event types.

Example 23 q = SEQ(Recycle r, Washing w) OR SEQ(Recycle r, ∃ Washing w,

Sharpening) OR SEQ(Recycle r, ! Washing w, Sharpening s) is in disjunctive nor-

mal form as defined in Definition 20.

Definition 21 A NEEL event expression E is said to be in conjunctive normal

form if it is of the form (E AND E AND ... AND E) with each query disjunct E a

sequential pattern specified with one SEQ formed by primitive event types.

5.2. NEEL EVENT EXPRESSION REWRITING 128

Example 24 q = SEQ(Recycle r, Washing w) AND SEQ(Recycle r, ∃ Washing w,

Sharpening) AND SEQ(Recycle r, ! Washing w, Sharpening) is in conjunctive nor-

mal form.

5.2.7 NEEL Expression Flattening Procedure

Not all expressions expressed by NEEL can be rewritten as described by our lan-

guage constraints in Section 5.2.2. We can only rewrite expressions defined by

Class Lcons in Table 3.5. We can’t rewrite nested SEQ and AND (e.g., SEQ(AND),

SEQ(∃ AND), AND(∃ SEQ), AND(SEQ), AND(!SEQ)) and double negation on

SEQ (e.g., ! SEQ(!)). Double negation over AND and OR could be removed

(see Section 5.2.2). After applying negation push down over AND and OR until

no longer applicable, if double negation on SEQ (e.g., ! SEQ(!)), nested SEQ and

AND (e.g., SEQ(AND), SEQ(∃AND), AND(∃ SEQ), AND(SEQ) and AND(!SEQ))

still exist, such nested expressions can’t be flattened under our current model.

Input: An event expression Expin which satisfies the language constraints in Sec-

tion 5.2.2.

Output: A normalized expression Expout of expression type as in Definitions 20

and 21 (Section 5.2.6).

• Step 1: Apply Flattening Rules until they are no longer applicable (flattening

rules 1-3).

• Step 2: Push ! into expressions recursively by applying the Negation Push

Down Rules (NPDR 1-6).

– Step 2.1: Apply Negation over OR/AND until they are no longer ap-

plicable.

5.2. NEEL EVENT EXPRESSION REWRITING 129

– Step 2.2: Apply Negation over SEQ(left-to-right/right-to-left) rules un-

til they are no longer applicable;

• Step 3: Apply Distributive Rules until they are no longer applicable (dis-

tributive rules 1-3).

• Step 4: If the rewritten expression is in one of the normal forms, stop the

procedure. Otherwise, iterate to Step 1.

Example 25 Given the NEEL expression Q6 = SEQ(E1, ! SEQ(E2, E3), E4, SEQ(!

AND(E5, E6), E7))

• By step 1 applying flattening rule, we get Q6 =

SEQ(E1, ! SEQ(E2, E3), E4, ! AND(E5, E6), E7)

• By step 2.1 applying the negation push down rule over AND, we get Q6 =

SEQ(E1, ! SEQ(E2, E3), E4, ! E5 ∨ ! E6, E7);

• By step 2.2 applying the negation push down rule over SEQ, we get Q6 =

SEQ(E1, !E2 ∨ ∃ SEQ(!E2, E2, !E3), E4, !E5 ∨ !E6, E7);

• By step 3 applying distributive rule, we get Q6 =

OR(SEQ(E1, ! E2, E4, ! E5, E7),

SEQ(E1, ! E2, E4, ! E6, E7),

SEQ(E1, ∃SEQ(! E2, E2, ! E3), E4, ! E5, E7),

SEQ(E1, ∃SEQ(! E2, E2, ! E3), E4, ! E6, E7));

As Q6 is not in any of the normal forms, apply step 1 again iteratively:

• By step 1 applying the flattening rule, we get Q6 =

SEQ(E1, ! E2, E4, ! E5, E7) OR

5.2. NEEL EVENT EXPRESSION REWRITING 130

SEQ(E1, ! E2, E4, ! E6, E7) OR

SEQ(E1, ! E2, ∃E2, ! E3, E4, ! E5, E7) OR

SEQ(E1, ! E2, ∃E2, ! E3, E4, ! E6, E7);

As Q6 is in the disjunctive normal form as defined in Definition 20, the rewrit-

ing procedure is stopped.

5.2.8 Properties of the Rewriting System

Before we show the properties of our rewriting system, we quantify the complexity

of a nested CEP expression by the nesting levels. For operators and boolean con-

nectors, we have SEQ, AND, OR, !, ∃, ∨, ∧. We have the following combinations

which are covered by cases in Table 5.2.8 below with the operators SEQ, AND and

OR as the outer operator respectively.

5.2. NEEL EVENT EXPRESSION REWRITING 131

Inner Expression Cases Considered for an Outer SEQ operator

primitive event type Ei

[1] Ei

[2] ∃ Ei

[3] ! Ei

SEQ operator [4] SEQ(Exp1 ,..., Expn)

OR operator [5] OR(Exp1 ,..., Expi ,...., Expn)

AND operator [6] AND(Exp1 ,..., Expn)

∃ SEQ operator [7] ∃ SEQ(Exp1 ,..., ! Expi ,..., ∃ Expk ,...., Expn)

∃ OR operator [8] ∃ OR(Exp1 ,..., Expi ,...., Expn)

∃ AND operator [9] ∃ AND(Exp1 ,..., Expi ,...., Expn)

! SEQ operator [10] ! SEQ(Exp1 ,..., Expi ,...., Expn)

! OR operator [11] ! OR(Exp1 ,..., Expi ,...., Expn)

! AND operator [12] ! AND(Exp1 ,..., ! Expi ,...., Expn)

Boolean Connectors
[13] ∃ Exp1 ∧ ... ∧ ! Expn

[14] ! Exp1 ∨ ... ∨ ∃ Expn

5.2. NEEL EVENT EXPRESSION REWRITING 132

Inner Expression Cases Considered for an Outer AND operator

primitive event type Ei

[1] Ei

[2] ∃ Ei

[3] ! Ei

SEQ operator [4] SEQ(Exp1 ,..., Expi ,...., Expn)

OR operator [5] OR(Exp1 ,..., Expi ,...., Expn)

AND operator [6] AND(Exp1 ,..., Expn)

∃ SEQ operator [7] ∃ SEQ(Exp1 ,..., Expi ,...., Expn)

∃ OR operator [8] ∃ OR(Exp1 ,..., Expi ,...., Expn)

∃ AND operator [9] ∃ AND(Exp1 ,..., Expi ,...., Expn)

! SEQ operator [10] ! SEQ(Exp1 ,..., ! Expi ,...., Expn)

! OR operator [11] ! OR(Exp1 ,..., Expi ,...., Expn)

! AND operator [12] ! AND(Exp1 ,..., ! Expi ,...., Expn)

Boolean Connectors
[13] ∃ Exp1 ∧ ... ∧ ! Expn

[14] ! Exp1 ∨ ... ∨ ∃ Expn

5.2. NEEL EVENT EXPRESSION REWRITING 133

Inner Expression Cases Considered for an Outer OR operator

primitive event type Ei

[1] Ei

[2] ∃ Ei

[3] ! Ei

AND operator [4] AND(Exp1 ,..., Expn)

SEQ operator [5] SEQ(Exp1 ,..., Expn)

OR operator [6] OR(Exp1 ,..., Expi ,...., Expn)

Definition 22 For a query q, α represents the maximum operator nesting levels

of q. α is designed such that for an expression Exp in one of our normal forms,

α(Exp) = 0. For the cases shown in Table 5.2.8 with SEQ as the outer operator. α

is computed according to the following equation:

5.2. NEEL EVENT EXPRESSION REWRITING 134

α(Exp) =



0 if Exp = Case[1-3]

MAX(α(Expi)+1,1≤ i≤ n) if Exp = Case[4-6]

MAX(α(Expi)+2,1≤ i≤ n) if Exp = Case[7-9]

MAX(α(Expi)+3,1≤ i≤ n) if Exp = Case[10-12]

MAX(β(Expi),1≤ i≤ n) if Exp = Case[13-14]

if Expi is primitive Ei

β(Expi) = al pha(Expi)

if Expi is SEQ(), AND(), OR()

β(Expi) = al pha(Expi) + 2

For the cases shown in Table 5.2.8 with AND as the outer operator. α is com-

puted according to the following equation:

5.2. NEEL EVENT EXPRESSION REWRITING 135

α(Exp) =



0 if Exp = Case[1-3]

MAX(α(Expi),1≤ i≤ n) if Exp = Case[4]

MAX(α(Expi)+1,1≤ i≤ n) if Exp = Case[5-6]

MAX(α(Expi)+2,1≤ i≤ n) if Exp = Case[7-9]

MAX(α(Expi)+3,1≤ i≤ n) if Exp = Case[10-12]

MAX(β(Expi),1≤ i≤ n) if Exp = Case[13-14]

if Expi is primitive Ei

β(Expi) = al pha(Expi).

if Expi is SEQ(), AND(), OR()

β(Expi) = al pha(Expi) + 2.

For the cases shown in Table 5.2.8 with OR as the outer operator, α is computed

according to the following equation:

α(Exp) =


0 if Exp = Case[1-3]

MAX(α(Expi),1≤ i≤ n) if Exp = Case[4-5]

MAX(α(Expi)+1,1≤ i≤ n) if Exp = Case[6]

α(Exp) = 0 if Exp is in one of the normal forms in Section 5.2.6. Primitive

event types doesn’t increase the nesting level α. Subexpressions with ! AND, !

SEQ and ! OR increase the nesting level α by 3. We don’t increase α for expres-

5.2. NEEL EVENT EXPRESSION REWRITING 136

sions with AND(SEQ()) as it exists in CNF. We don’t increase α for expressions

with OR(SEQ()) and OR(AND()) as they exist in DNF. We now explain Defini-

tion 22 by the following examples.

Example 26 To compute α(SEQ(SEQ(E1, !AND(E3,E4)),AND(E5,E6))), we have:

• α(SEQ(SEQ(E1, !AND(E3,E4)),AND(E5,E6)))

= MAX(α (SEQ(E1, ! AND(E3, E4))) + 1, MAX(α(E5) + 1, α(E6) + 1))

(cases 4, 6 with SEQ as the outer operator)

• α(E5) = α(E6) = 0 (case 1 with AND as the outer operator);

• α (SEQ(E1, ! AND(E3, E4))) = MAX(α (E1), MAX(α(E3) + 3, α(E4) + 3)) =

3 (cases 1 and 12 with SEQ as the outer operator);

• α (E1) = α (E3) = α (E4) = 0 (case 1)

Thus α(SEQ(SEQ(E1, !AND(E3,E4)),AND(E5,E6))) = 4.

Definition 23 For an event expression Exp, Nnest(Exp) = α(Exp) where α is de-

fined in Definition 22

Theorem 1 An event expression q is in a normal form iff Nnest(q) = 0.

Proof Sketch: If Nnest(q) = 0, then α(q) = 0. If a subexpression Expi in q is ex-

pressed by SEQ, Expi doesn’t include subexpression in cases [4-12] which would

make Nnest(q) > 0. In cases [13-14], for 1 ≤ i ≤ n, Expi shouldn’t be expressed by

SEQ, AND or OR which would make Nnest(q) > 0. Thus Expi belongs to the cases

[1-3] in Table 5.2.8 with SEQ as the outer operator. SEQ(E1 ,..., ! Ei ,..., En) is in

a normal form. If Expi is expressed by AND, Expi doesn’t include subexpressions

5.2. NEEL EVENT EXPRESSION REWRITING 137

in cases [5-12] which would make Nnest(q) > 0. In cases [13-14], for 1 ≤ i ≤ n,

Expi shouldn’t be expressed by SEQ, AND or OR which would make Nnest(q) >

0. Thus Expi belongs to cases [1-4] in Table 5.2.8 with AND as the outer operator.

Expi could be AND(E1 ,..., ! Ei ,..., En) and AND(SEQ(E1, E2) ,..., Ei ,..., En)

which are in a normal form. If Expi is expressed by OR, Expi doesn’t include the

subexpression OR(OR) which would make Nnest(q) > 0. Expi could be expressed

by OR(AND) and OR(SEQ) but no other operators should exist inside AND and

SEQ which would make Nnest(q) > 0. OR(AND(E1 ,..., En), SEQ(E1 ,..., En)) is in

DNF. Thus the event expression q is in a normal form.

If q is in a normal form, namely, CNF (see Definition 21), DNF (see Defini-

tion 20), then α (q) = 0. Thus Nnest(q) = 0.

We have proven an event expression q is in a normal form iff Nnest(q) = 0. 2

.

Theorem 2 Rewriting decreases Nnest(q).

Proof Sketch: First, we show that Nnest(q) is decreased after each successfully

applied rewriting step. In Table 5.1.4, for FR1 and FR2, α(q) is decreased by 1

as the inner SEQ is removed. Similarly, for FR3 and FR4, α(q) is decreased by 1

as the inner AND is removed. For FR5, α(q) is decreased by 1 as the inner OR is

removed. For FR6, α(q) is decreased by 2 as the inner ∃ SEQ is removed. For FR7,

α(q) is decreased by 2 as the inner ∃ AND is removed. For DR1 and DR2, α(q) is

decreased by 1 as the inner OR is removed. Similarly, For DR3 and DR4, α(q) is

decreased by 1 as the inner ∨ is removed. For DR5 and DR6, α(q) is decreased by

1 as the inner OR is removed. For NPDR1 and NPDR2, α(q) is decreased by 1 as !

SEQ is removed with ∃ SEQ introduced. For NPDR3 and NPDR4, α is decreased

5.2. NEEL EVENT EXPRESSION REWRITING 138

by 1 as ! AND is removed with ∨ introduced. For NPDR5, α is decreased by 1 as

! OR is removed with ∧ introduced. 2

Theorem 3 For q satisfying our language constraints in Section 5.2.2, if Nnest (q)

> 0, then q can be rewritten.

Proof Sketch: Nnest(q) = α(q). Given α(q) > 0 with q satisfying our language

constraints expressed by Class Lcons in Table 3.5, I will show q can be rewritten

and the expression after rewriting q is still of Class Lcons. Table 5.2.8 covers all

possible subexpression cases. If q is expressed by SEQ as the outer operator, q

may contain the following expressions: ! SEQ(primitive event types) (rewritten

by NPDR), !SEQ(OR) (rewritten by DR and NPDR), ! SEQ(SEQ) (rewritten by

FR and NPDR), SEQ(SEQ) (rewritten by FR), SEQ(OR)(rewritten by DR), SEQ(∃

SEQ) (rewritten by FR), SEQ(! SEQ) (rewrite by NPDR, DR and FR), SEQ(∃ OR)

(rewritten by DR), SEQ(∃ SEQ ∨ ∃ OR) (rewritten by DR and FR).

If q is expressed by AND as the outer operator, q may contain the following

expressions: AND(AND) (rewritten by FR), AND(!AND) (rewritten by NPDR

and DR), AND(SEQ) (in CNF), AND(OR)(rewritten by DR), AND(∃ OR) (rewrit-

ten by DR), AND(∃ AND) (rewritten by FR), AND(! OR) (rewritten by NPDR),

AND(!AND) (rewritten by NPDR), AND(∃(!) AND ∨ ∃ (!) OR) (rewritten by

DR, FR and NPDR)).

If q is expressed by OR as the outer operator, q may contain the following

expressions: OR(SEQ)(in DNF), OR(AND)(in DNF), OR(OR)(rewritten by flat-

tening rule).

For all the above expression rewriting, no ! SEQ(!) and SEQ(AND) are intro-

duced in each rewriting step. Namely, after rewriting, the above expressions are

5.3. SHARED OPTIMIZED NEEL PATTERN EXECUTION 139

still within scope of Class Lcons. 2

Theorem 4 If an event expression q satisfies our language constraint, q can be

rewritten into a normal form.

Proof Sketch: Given q let q0, q is rewritten into q0 by several steps and q0 cannot

be rewritten. By Theorem 3, we have Nnest(q) = 0. By Theorem 1, q is in a normal

form q0. 2

5.3 Shared Optimized NEEL Pattern Execution

Once a normalized expression has been constructed by our rewriting procedure de-

scribed in Section 5.2.7, multiple sharing opportunities among subexpressions have

been exposed. Below, we introduce the strategies we have designed for subex-

pression sharing among query conjuncts, disjuncts and leaf components2 in the

normalized forms defined in Definitions 20 and 21.

5.3.1 Subexpression Sharing

Sharing with Prefix Caching. First, expressions with a common prefix can share

the same cached prefix results. It is wasteful for sequence construction to traverse

the same set of stacks repeatedly. Thus the prefix caching method is designed to

cache such results in the PreCache. This enables future sequence construction

involving the same set of stacks to reuse these cached results. The common prefix

is computed first before computing each expression. The buffered result e can be

deleted after an event ei with ei.ts - e.ts > window w is received.

2In the query plan expressed by a nested AND/SEQ expression, we call the bottommost event
expressions leaf components.

5.3. SHARED OPTIMIZED NEEL PATTERN EXECUTION 140

SharpeningWashingRecycle

Operating

CheckingDisinfection

r1r2 w3 s7
s10 d12d15 c16c17

o20(a) Shared Instance Stack

<r2, w3, s7, d12><r2, w3, s10, d12>
<r1, w3, s10, d12>
<r1, w3, s10, d12>
<r2, w3, s7, d15><r2, w3, s10, d15>
<r1, w3, s10, d15>
<r1, w3, s10, d15>

(b) PreCache after Arrival of d15

(Recycle, Washing, Sharpening, Disinfection)Prefix Caching

Figure 5.3: Prefix Caching Example

Example 27 Assume we get a disjunctive normal form with two conjuncts E1 =

SEQ(Recycle, Washing, Sharpening, Disinfection, Checking) OR E2 = SEQ(Recycle,

Washing, Sharpening, Disinfection, Operating). Their common prefix is SEQ(Recycle,

Washing, Sharpening, Disinfection). To avoid re-constructing results for the com-

mon prefix, such shared results (ordered by end timestamps) are stored in PreCache

as shown in Figure 5.3. E1 and E2 results can then be computed simply by joining

the results in the PreCache with events in Checking and Operating stacks respec-

tively.

Sharing with Suffix Clustering. Since event traversals for result construction

typically start from events of the last event type in a pattern [WDR06, CHC+06],

shared suffices also eliminate redundant event traversals. Queries sharing the same

suffices would then be evaluated concurrently by processing their shared suffices

until the common part has been treated. Thereafter, each query is finished up by

joining the suffix results with other events in the respective query to form final

results.

Example 28 Assume we get a conjunctive normal form with two disjuncts E1 =

SEQ(Recycle, Washing, Sharpening, Disinfection, Checking) AND E2 = SEQ(Operating,

Washing, Sharpening, Disinfection, Checking). Figure 5.4 shows the stacks shared

5.3. SHARED OPTIMIZED NEEL PATTERN EXECUTION 141

SharpeningWashingRecycle CheckingDisinfection

r1 w3 s7
s10 d12d15 c16c17

Operating

o2

Suffix Clustering

Figure 5.4: Suffix Clustering Example

among E1 and E2. Once the event c16 or c17 of type Checking arrives, the shared

result construction for the suffix sub-pattern (Washing, Sharpening, Disinfection,

Checking) is initiated.

Sharing among queries with shared middle sub-expressions can be similarly

achieved. Results for such middle sub-expressions should be pre-computed and

cached. Again, such cached results may need to be joined with other events that

exist in the respective query to form final results.

5.3.2 Advanced Sub-expression Sharing with Different Negative Com-

ponents

Beyond prior work [WDR06, BDG+07, MM09], we now also tackle the case of

sub-expression sharing with different negative components. Namely subpatterns

contain the same projected positive event types while their negative event types

may differ. Besides saving CPU resources, we achieve the added benefit that one

sequence result may satisfy several such expressions. If we construct the results

for such normalized event expressions of a nested query separately, we may in-

advertently produce duplicate results namely one for each of these different event

5.3. SHARED OPTIMIZED NEEL PATTERN EXECUTION 142

expressions. This then would not only waste CPU resources for re-computation

but also incurs the costs associated with duplication removal.

We observe that such event expressions with common positive event types re-

turn the same results yet only apply different negation filters. The main idea is that

we record the constraints of non-occurrence and non-projected occurrence for each

expression at compile time. At run time, as we construct each sequence result, we

keep track of which of the given constraints are satisfied (or, rather violated). We

stop the evaluation early for unsatisfied event expressions.

Expression-vs-Negative Map (EMap). To facilitate the advanced sequence re-

sult generation, we design a data structure EMap that records the negative compo-

nents and non-projected positive components of an expression with their positions.

Columns in the map correspond to negative components and non-projected positive

components with positions in the shared expressions while rows list the expression

identifiers. If the same negative component or non-projected positive component

exists in different positions in an expression, such negative component is listed

multiple times in EMap. At compile time, a cell entry indicated by its row and col-

umn Map[i, j] is assigned a “1” if the negative event type as indicated by column j

is listed in the specified position in an expression Ei and a “0” otherwise. Possibly

one negative component may exist in more than one location in different queries.

Result Vector Indicator (RVI). For each partial sequence result, we maintain a

Result Vector Indicator (RVI) which is represented by a bit array. The columns of

RVI are the same as the ones in EMap. During query execution, a RVI is maintained

to check if the current partial result is indeed a correct match. We mark the cell

entry <i, j> for a column that corresponds to a negative component or a non-

projected positive component as “1” if at run time the negative component or the

5.3. SHARED OPTIMIZED NEEL PATTERN EXECUTION 143

non-projected positive component assigned with that column evaluates to true in

the specified position in an event stream (not found for the negative component and

found for the non-projected positive component).

Lemma 3 We stop query evaluation early for one sub-expression Ei if logical

AND-ing the bit vectors of the row for Ei in EMap with the RVI for the partial

result is “0”.

Proof: When the logical AND-ing of the bit vectors of the row for Ei in EMap

with the RVI for the partial result is “0”, as the bits in EMap are all “1”, it indicates

at least one bit in RVI is “0”. So we can conclude that at least either one negative

component is evaluated to false (found) or one non-projected positive component

is evaluated to false (not found). According to the semantics of SEQ operator with

negation 5.4, such partial result is not satisfied. 2

Example 29 The normalization procedure rewrites Q1 = SEQ(Recycle, Washing,

! SEQ(Sharpening, Disinfection, Checking), Operating) into the expression in Fig-

ure 5.5. Figure 5.6(a) shows the shared instance stacks for all three expressions.

Figures 5.6(b) and 5.6(c) show the EMap and RV I structures respectively. The

negative component for E1 is ! Checking, for E2 (! Disinfection, Checking) (Check-

ing is not a positive component as it is not listed in the projection list) and for E3 (!

Sharpening, Disinfection, Checking). When event instance o20 of type Operating

arrives, the sequence construction is initiated. When evaluating the partial result

< w5,o20 >, we mark the cell “1” under (! S, D, C) in RV I as < d6,c16 > exists

between w5 and o20 and no Sharpening events si with 5 < i < 6 exist. Similarly, the

(! D, C) AND (! C) cells are marked with “0”. The partial result < w5,o20 > can

5.3. SHARED OPTIMIZED NEEL PATTERN EXECUTION 144

continue the result construction for E3 because the AND of the bits in the result

vector RVI in Figure 5.6 (c) with the row for E3 in the EMAP in Figure 5.6 (b)

is “1”. Result computation for E1 and E2 stopped early by Lemma 3 because the

AND of such bits is “0”.

SEQ(Recycle, Washing, ! Checking, Operating) OR
ProjR, W, O SEQ(Recycle, Washing, ! Disinfection, Checking, Operating) OR
ProjR, W, OSEQ(Recycle, Washing, ! Sharpening, Disinfection, Checking, Operating)

Figure 5.5: Normalized Expression for Q1

Bit-Marking

Sharpening

WashingRecycle Operating

CheckingDisinfection

r1r2 w5
s4
s10 d6 c16

o20
s12

1

1

1

(W, O) !C!D,C!S,D, C
E1

E2

E3

(b) Expression-vs-Negative Map (EMap)

(a) Shared Instance Stacks

Evaluate Partial Result: <w5, o20>

(c) Result Vector Indicator (RVI)

1 0 0
!C!D,C!S,D, C

j = 0 j = 1 j = 2

i = 0
i = 1
i = 2

Figure 5.6: Bit-Marking Example

Lemma 4 No duplicate results will be produced because we conduct sequence

construction only once for all expressions in a group.

Proof: We will output a sequence result for a group of shared expressions S if

and only if ∃ Ei in S for which the logical bit by logical AND-ing the bit vectors

of the row for the sub-expression Ei with the current result’s RVI is “1”. Each

sequence result is only outputted once for a group of shared expressions. It implies

that all the non-existence constraints in at least one of the clustered expressions are

satisfied. 2

5.4. PLAN-FINDER 145

The pseudo-code for the shared logic bit-marking based sequence construc-

tion strategy is presented in Figure 5.7. Given flattened event expressions (query

disjuncts/conjuncts/leaf components) with the same positive components and one

or more different negative components, EMap is first constructed. Then, we con-

duct the sequence construction process for every event instance e j of the accepting

state in the rightmost stack, traversing back along the event pointers. During se-

quence construction, RVI is filled for each partial sequence result to conduct the

sequence validation process. We compare the RVI of each partial result with each

row of EMap continuously after evaluating each negative component or each non-

projected positive component. We stop or continue the sequence construction for

each partial result based on Lemmas 3 and 4.

SequenceCompute Algorithm: output sequence results

1: Boolean out← true;
2: while (out ∧ stackIndex != 0) do
3: Sequence s = Connect(SConstruction(), s); // Recursively call sequence con-

struction until the first stack is reached.
4: RVI rvi = BitMarking(); // Mark jth cell “1” if RVI(j) holds true.
5: out = SequenceValidation(rvi); // Check filled result vector with EMap.
6: stackIndex –;
7: end while

Figure 5.7: Sequence Compute with Run-Time Bit Marking

5.4 Plan-Finder

When a set of normalized CEP expressions S share some of the same positive

components, several options may arise for grouping them to obtain better shared

execution plans. Consider for example the normalized expression S = SEQ(A, B,

5.4. PLAN-FINDER 146

D) OR SEQ(A, B, ! C, D) OR Pro j(A,B,D)SEQ(A, B, ! E, C, D) OR SEQ(A, B, D,

E, F) OR SEQ(A, B, D, E, G). The first three conjuncts share the same projected

pattern SEQ(A, B, D). The bit-marking algorithm in Section 5.3.2 could be applied

to them. Or, alternatively, the first and the last two conjuncts also share the common

prefix SEQ(A, B, D). Prefix caching as in Section 5.3.1 could be applied to them.

We must make a good choice among these options in the plan space.

5.4.1 Problem Definition of Finding Shared-Plans

Given a set of normalized CEP expressions S, an expression partition Pi = {g1, g2

,..., gi} satisfies the following constraints:

• Full coverage: ∀ expression E j in S, ∃ gi that E j ∈ gi;

• Non-overlapping: ∀ gi, g j, gi ∩ g j = /0;

• Each group gi is mapped to one shared physical operator in Section 5.3, i.e.,

each gi is implementable.

A partition Pi is valid if it satisfies full coverage and non-overlapping con-

straints. We aim to find an expression partition Pi with the minimum execution cost

among all possible partitions. Based on our cost analysis for nested and flattened

execution plans [LRG+10c], the Plan-Finder constructs an optimized execution

strategy for the normalized form as defined by Definitions 20 and 21 by selecting

among possible alternatives.

5.4. PLAN-FINDER 147

5.4.2 Plan-Finder Search Space

We now analyze how many possible partitions the Plan-Finder would have to enu-

merate through to find the best one. To find an optimal solution requires us to enu-

merate all possible expression partitions. The Bell number [Kla03], or the number

of different partitions Pi of a set S of n elements, describes the size of such a search

space, i.e., the total number of all possible partitions for a set of expressions. The

problem is challenging, as the complexity of the Plan-Finder O(Bn) is exponential

as shown in Equation 5.59 where Bn represents the upper-bound of all possible

multi-route configurations for the set T . The Stirling number S(n,k) in Bn is the

number of the partitions of n with exactly k blocks.

Bn =
n

∑
k=1

S(n,k) =
n

∑
k=1

(
1
k!

k

∑
j=1

(−1)k− j
(

n
k

)
jn

)
(5.59)

5.4.3 Plan-Finder Search Algorithms

Due to the prohibitive exponential complexity of the search space, we adopt a

cost-based heuristic for finding a good quality solution in reasonable time without

enumerating the entire search space. While many heuristics are possible, below we

sketch one using an iterative refinement methodology:

Selecting a Start Solution. We adopt the strategy to group all event subexpressions

with the same projected event types into one group to achieve aggressive sharing;

though other start heuristics are possible.

Search Strategy: We adopt the iterative improvement method due to its simplicity

(see pseudocode in Figure 5.8). A single basic transformation (e.g., a split of a

group or merge of two groups) would transition from a partition solution Pi to its

5.5. PERFORMANCE EVALUATION 148

neighbor Pj. gi represents a group in the start partition solution. e.g., “g1g2/g3/g4”

→ “g1/g2/g3/g4” represents a split of two groups g1 and g2 while “g1/g2/g3/g4”→

“g1g2/g3/g4” represents a merge of two groups g1 and g2.

Selecting a Stop Condition: In general, the search may stop when either k itera-

tions have gone by, or the solution did not improve in the last several rounds, i.e.,

the search process reaches a plateau. Alternatively, the search can be bounded by

resources such as time.

Plan-Finder Algorithm: output best plan

1: partition← start solution; best-partition← start solution;
2: while (not stop condition) do
3: while (not local minimum(partition)) do
4: partition’← find random solution in NEIGHBORS(partition)
5: if (cost(partition’) < cost(partition)) then
6: partition← partition’
7: end if
8: end while
9: if (partition.cost < cost(best-partition)) then

10: best-partition← partition
11: end if
12: end while
13: return best-partition;

Figure 5.8: Plan-Finder Algorithm

5.5 Performance Evaluation

The primary objective of our experimental evaluation is to study the accumulative

CPU processing time of the traditional iterative nested execution [LRR+10] and

our proposed optimized NEEL execution strategy with different workloads.

5.5. PERFORMANCE EVALUATION 149

5.5.1 Experimental Setup

We have implemented all strategies within the HP stream management system

CHAOS [GWA+09b] using Java. We ran the experiments on Intel Pentium IV

CPU 2.8GHz with 4GB RAM. We evaluated our techniques using the real stock

trades data from [sto]. The data contained stock ticker, timestamp and price infor-

mation. The portion of the trace we used contained 10,000 unique event instances.

We used sliding windows with a size of 10ms. In our experiments, the y axis de-

notes the CPU processing time. CPU processing time means the wall clock time for

processing an item ei in stock trades measured by (Tend.ei - Tstart.ei) where Tstart.ei

represents the system time when our processing engine starts processing the data

item ei and Tend.ei represents the system time when the engine finishes processing

the data item ei. It is an atomic process, i.e., our processing engine won’t stop

processing that tuple until it is fully processed.

5.5.2 Experimental Design Query Plans

We first evaluate queries by varying three parameters as shown in Figures 5.9, 5.10

and 5.11. In Figures 5.9, the number of sub-queries is increased from 1 to 3. In

Figure 5.10, we then keep the sub-query number as 1 and increase the sub-query

length from 2 to 4. In addition, in Figure 5.11 we keep the number and the length of

sub-queries the same and we change sub-query nesting levels from 1 to 3. Lastly,

we evaluate our system with one complex workload in Figure 5.12.

We have implemented all strategies within the stream management system

CHAOS [GWA+09b] using Java. We ran the experiments on Intel Pentium IV

CPU 2.8GHz with 4GB RAM. We evaluated our techniques using the real stock

5.5. PERFORMANCE EVALUATION 150

SEQ(MSFT, , ORCL, IPIX, INTC)

SEQ(RIMM, AMAT)!

SEQ(MSFT, , ORCL, ,IPIX, INTC)

SEQ(YHOO, DELL)!SEQ(RIMM, AMAT)!

SEQ(MSFT, , ORCL, , IPIX, ,INTC)

SEQ(YHOO, DELL)!SEQ(RIMM, AMAT)! SEQ(CSCO,QQQ)!

(a)1 child (b)2 children

(c)3 children

Figure 5.9: Sample Queries with Increased Children Number

SEQ(MSFT, , ORCL, INTC)

SEQ(RIMM, AMAT)!

SEQ(MSFT, , ORCL, INTC)

SEQ(RIMM, AMAT, YHOO)!

SEQ(MSFT, , ORCL, INTC)

SEQ(RIMM, AMAT,YHOO,DELL)!

(a) Length 2 (b) Length 3 (c) Length 4

Figure 5.10: Sample Queries with Increased Query Length

trades data from [sto]. The data contained stock ticker, timestamp and price infor-

mation. The portion of the trace we used contained 10,000 unique event instances.

The arrival rate was set to 4,000 tuples/sec. We used sliding windows with a size

of 10ms.

5.5.3 Varying the Number of Children Queries

The first experiment studied queries with increasing numbers of sub-queries as

depicted in Figure 5.9. In Figure 5.14, we observe that our proposed optimized

NEEL execution runs on average 5 fold faster than the more traditional nested

execution. In the optimized NEEL execution, we don’t need to compute results

for SEQ(RIMM, AMAT), SEQ(Y HOO, DELL) and SEQ(CSCO, QQQ). In Fig-

ure 5.15, we observe that in the nested execution, most of the time is used for

computing children query results because for each outer partial result, we need

to compute children results. This observation also holds true for queries used in

5.5. PERFORMANCE EVALUATION 151

SEQ(MSFT, , ORCL, INTC)

SEQ(IPIX, QQQ)!

(a) 2 Levels

SEQ(MSFT, , ORCL, INTC)

SEQ(IPIX, ,QQQ)!

(b) 3 Levels

SEQ(RIMM,AMAT)

SEQ(MSFT, , ORCL, INTC)

SEQ(IPIX, ,QQQ)!

(c) 4 Levels

SEQ(RIMM, ,AMAT)

SEQ(YHOO,DELL)

Figure 5.11: Sample Queries with Increased Nesting Levels

SEQ(MSFT, , ORCL, INTC)

AND(RIMM, IPIX, QQQ)!

SEQ(, DELL, AMAT, MSFT, ORCL)

OR(RIMM, IPIX)

SEQ(CSCO, , YHOO, QQQ)

SEQ(IPIX, RIMM)!

OR(, ,)

Figure 5.12: Complex Workload

Figure 5.13: Nested and Flattened Execution with Increased Children Number

Figures 5.10 and 5.11.

Next, we compare the CPU processing times among the queries in Figure 5.9

with results shown in Figure 5.13. We observe that the query with 3 children

generates the least number of results for both nested and flattened execution, be-

cause it has more constraints and more outer SEQ(MSFT , ORCL, IPIX , INTC)

results are filtered in the nested execution. In addition, the query with 3 children

uses the most CPU processing time among the three queries because of processing

5.5. PERFORMANCE EVALUATION 152

(a) 1 child

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 500 1000 1500 2000

C
P

U
 P

ro
ce

ss
in

g
T

im
e

(m
s)

Result Number

Nested Execution
Flattened Execution

(b) 2 children
(c) 3 children

Figure 5.14: Varying the Number of Children Queries

(a) 1 child (b) 2 children (c) 3 children

Figure 5.15: Comparing Total Computation Time vs. Children Computation Time
in Nested Execution with Increased Children Number

(a) Length 2 (b) Length 3 (c) Length 4

Figure 5.16: Varying the Length of Children Queries

more sub-queries. This consumes more CPU processing time. These results match

our expectation as clearly the computation time increases with the number of sub-

5.5. PERFORMANCE EVALUATION 153

queries and also the probability of finding patterns decreases with an increasing

number of event types, i.e., query constraints.

5.5.4 Varying the Length of Children Queries

This second experiment processes the queries depicted in Figure 5.10 with sub-

query lengths varying from 2 to 4. Results are shown in Figure 5.16. We observe

that our proposed optimized NEEL execution runs on average several hundreds

fold faster than the more traditional nested execution. In the flattened execution,

we don’t need to construct the children query results for SEQ(RIMM, AMAT),

SEQ(RIMM, AMAT , Y HOO) and SEQ(RIMM, AMAT , Y HOO, DELL).

Next, we compare the CPU processing time among queries in Figure 5.10 with

results shown in Figure 5.17. The subquery with length 4 generates the largest

number of results. As expected, it has less outer SEQ(MSFT , ORCL, INTC) re-

sults filtered as the existence of a longer pattern is relatively less likely as compared

to the other queries with shorter patterns. In addition, it uses the most CPU pro-

cessing time among the three queries because it includes the sub-query with the

longest length which consumes more computational processing resources.

5.5.5 Varying the Nesting Levels of Children Queries

The third experiment processes queries with varying sub-query nesting levels (Fig-

ure 5.11). Results are shown in Figure 5.18. Our proposed optimized NEEL ex-

ecution consistently takes less time as compared to nested query execution. It is

because the flattened execution doesn’t need to construct the children query re-

sults for SEQ(IPIX , QQQ), SEQ(RIMM, AMAT) and SEQ(Y HOO, DELL). Thus

significant CPU processing resources are saved.

5.5. PERFORMANCE EVALUATION 154

N
N
N

Nest
Nest
Nest

(a) Nested Execution

Flat
Flat
Flat

(b) Flat Execution

Figure 5.17: Varying the Length of Children Queries

Next, we compare the CPU processing time among queries in Figure 5.11 with

results shown in Figure 5.19. The query with the largest nesting levels generates

the most number of results and uses the most CPU processing time among the three

queries for both nested and flattened execution. It is because the query includes the

sub-query with the largest nesting levels which consumes more time to be com-

puted. In the nested execution, less outer SEQ(MSFT , ORCL, INTC) results are

filtered as to filter one result, we need to at least find a sequence satisfying more

constraint.

(a) Level 2 (b) Level 3 (c) Level 4

Figure 5.18: Varying the Levels of Children Queries

5.5. PERFORMANCE EVALUATION 155

N
N
N

(a) Nested Execution

Flat
Flat
Flat

(b) Flat Execution

Figure 5.19: Varying the Levels of Children Queries

5.5.6 Complex Workload

The last experiment processes the complex query in Figure 5.12. The normalized

expression E = E1 (SEQ(MSFT, ! IPIX, ORCL, INTC)) OR E2 (SEQ(MSFT,

! QQQ, ORCL, INTC)) OR E3 (SEQ(MSFT, ! RIMM, ORCL, INTC)) OR E4

(SEQ(RIMM, DELL, AMAT, MSFT, ORCL)) OR E5 (SEQ(IPIX, DELL, AMAT,

MSFT, ORCL)) OR E6 (Pro j CSCO,Y HOO,QQQ SEQ(CSCO, ! RIMM, YHOO, QQQ))

OR E7 (Pro j CSCO,Y HOO,QQQ SEQ(CSCO, ! IPIX, RIMM, YHOO, QQQ)). The

partition returned by the planFinder is {[E1, E2, E3], [E4, E5], [E6, E7]}. [E1, E2,

E3] is mapped to the operator in Section 5.3.2 as these subexpressions share the

same positive event types (MSFT, ORCL, INTC) while the negative event types

are different. Similarly, [E6, E7] is also mapped to the operator in Section 5.3.2.

[E4, E5] is mapped to the operator in Section 5.3.1 as they share the same suffix

(DELL, AMAT, MSFT, ORCL). As expected, our proposed NEEL execution takes

less time as compared to iterative nested execution as shown in Figure 5.20.

5.6. DISCUSSION: QUERY DECORRELATION 156

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

1 2 3 4 5

C
P

U
 P

ro
ce

ss
in

g
T

im
e

(m
s)

Result Number (x 100000)

Nested Execution
Flattened Execution

Figure 5.20: Complex Workload

5.6 Discussion: Query Decorrelation

Complex SQL queries used in decision support applications often include corre-

lated subqueries. SQL queries may contain multiple correlated subqueries, possi-

bly across several levels of nesting. Their efficient execution is important. In this

section, we will review the state-of-the art in query optimization via decorrelation.

And we will briefly discuss its applicability to nested CEP queries.

5.6.1 Correlated Query Example

The sample query Q1 is an example of correlation based on the employees and

departments. Q1 finds young employees who are paid more than the average salary

in their department. Each SELECT-FROM-WHERE component is a query block.

The column E.did used inside the nested subquery block is drawn from the outer

enclosing query block. A nested query block is correlated if it uses a value from an

enclosing query block.

Q1 = SELECT *

5.6. DISCUSSION: QUERY DECORRELATION 157

FROM Emp E

WHERE E.age < 30

AND E.sal > (SELECT AVG(E1.sal)

FROM Emp E1

WHERE E1.did = E.did)

A subquery can be either aggregate or non-aggregate. An aggregate subquery

has an aggregate function in its SELECT clause; it always returns a single value

as the result. A non-aggregate subquery is linked to the outer query by one of the

following operators: EXISTS, NOT EXISTS, IN, NOT IN, θ, SOME/ANY, and θ

ALL, where θ ∈ {<,≤,>,≥,=, ̸=}; the result is either a set of values or empty.

5.6.2 Decorrelation

Due to the perceived inefficiencies in Nested Iteration, techniques have been pro-

posed to avoid the tuple-at-a-time evaluation imposed by nested iteration [SPL96].

A correlated SQL query is transformed into an equivalent query that is no longer

correlated. This process is called decorrelation. Significant research efforts have

been devoted to the optimization of nested queries.

Logic of Decorrelation As pointed out in [SPL96] based on this decorrelation

technique, any correlated subquery block can be modeled as a function CS(x)

whose parameters x are the correlation values. In the sample query Q2, the cor-

related subquery is a function that uses the value E.did as a parameter, and returns

a table containing a single tuple, which holds the average salary in that department.

The evaluation of the outer query block using Nested Iteration can be represented

by the following pseudo-code.

5.6. DISCUSSION: QUERY DECORRELATION 158

precomputation...;

for each (x in X) {

SubQueryResult = CS (x);

Process(SubQueryResult);

}

postcomputation ...;

where X represents the set of values with which the correlated subquery is

invoked. The precomputation and postcomputation represent the portions of the

evaluation before and after the region of interest to this discussion. The purpose of

decorrelation is to overcome the drawbacks of Nested Iteration; to eliminate dupli-

cate invocations of the subquery with identical correlation values and to reduce the

redundant work done in each subquery invocation using set-oriented techniques,

and to minimize the interference between the computation of the outer query block

and the subquery block [Ses98]. Decorrelation can decouple the execution of CS

from the execution of the outer query block. The following is described by the

authors in [Ses98]:

“Consider some set X1, such that X ∈ X1. Obviously, (x ∈ X) implies (x ∈ X1).

Let us define a new table DS (i.e. “Decoupled Subquery) such that DS = {(x,y) | x

∈ X1 ∧ y ∈ CS(x) }. In other words, DS computes CS(x) for all values x in X1. ”

Now consider the following version of the pseudo-code of the outer block eval-

uation:

precomputation ...;

determine X1;

compute DS using X1;

5.6. DISCUSSION: QUERY DECORRELATION 159

for each (x in X) {

SubQueryResult = {y1 |(x1, y1) in DS and x = x1 };

Process(SubQueryResult);

} The computation of DS is decoupled from that of

the outer block.

postcomputation ...;

The condition x = x1 maintains the correlating relationship between the value

of x in each pass through the loop, and the values selected from DS during that

pass. It is easy to prove that the modified outer block produces the same answers

as the original query block, as long as computing CS(x) and DS does not change

any data in the rest of the system. This abstraction represents the basic idea behind

all decorrelation algorithms. Compare this modification of the query evaluation

with nested iteration [Ses98]:

• Since DS is computed using a set of X1 of parameters of interest, there are

no duplicate invocations, thereby resulting in a performance improvement.

• Since the entire set X1 is available, the computation of DS can use effi-

cient set-oriented techniques that reduce the amount of redundant work per-

formed, thereby improving performance.

• The computation of DS is decoupled from that of the outer block. Conse-

quently, there is no interference between the two.

5.6. DISCUSSION: QUERY DECORRELATION 160

5.6.3 Magic Decorrelation

The basic idea is to rewrite a correlated query in such a way that outer references

no longer exist in the inner subquery. All the possible results from the sub-query

are materialized. Later, the materialized results are joined with the outer query

block on the outer reference values.

The result of applying Magic Decorrelation to the example query Q2 is shown

as below. The steps are then explained in detail.

View Definitions

CREATE VIEW PreComputation AS

(SELECT E.eid, E.sal, E.did

FROM Emp E, Dept D

WHERE E.did = D.did AND E.age < 30

AND D.budget >100, 000)

CREATE VIEW FILTER_X1 AS

(SELECT DISTINCT P.did

FROM PreComputation P);

CREATE VIEW DecorrSubQuery_DS AS

(SELECT F.did, AVG(E1.sal) as avgsal

FROM Filter_X1 F, Emp E1

WHERE E1.did = F.did

GROUPBY F.did);

5.6. DISCUSSION: QUERY DECORRELATION 161

Outer Query Block

SELECT P.eid, P.sal

FROM PreComputation P, DecorrSubQuery_DS V

WHERE P.did = V.did

AND P.sal > V.avgsal

The PreComputation table represents the computation in the outer query block

until the point that the subquery invocations begin. The Filter-X1 table represents

the (duplicate-free) set X1 of correlation values with which the subquery will be

invoked. SELECT DISTINCT is used to eliminate duplicates. DecorrSubQuery-

DS is the table generated by decorrelating the subquery using the Filter-X1 table.

It contains one tuple per value of F.did (i.e., one tuple per correlation value). Note

that the Filter-X1 table has been added to the FROM clause of the original sub-

query. That is, the nested dependencies has now been replaced by a join. Finally,

in the outer query block, the preComputation table P is joined with the decorre-

lation subquery to form the rest of the post-computation, and produce the desired

answers. The join predicate P.did = V.did enforces the correlating relationship.

The following Set(X), X1 and DS are described in Section 5.6.2.

1. Set(X) is computed and used as X1; obviously, there will be no unnecessary

subquery computation.

2. DS is computed by adding X1 to the FROM clause of the original correlated

subquery and converting the predicate using the correlation value to a join predi-

cate.

5.6. DISCUSSION: QUERY DECORRELATION 162

3. The correlating relationship between the computation in the outer query block

and the answers in DS is enforced by adding DS to the FROM clause of the outer

query block and adding an equi-join predicate on the correlation values.

Query Graph Model. In IBM DB2, queries are internally represented in a Query

Graph Model (QGM). The goal of QGM is to provide a conceptually more man-

ageable representation of queries in order to reduce the complexity of query com-

pilation and optimization.

Terms. A box B is directly correlated to box A, if B contains a correlation that

references a column col from a table in the FROM clause of A. The column col is

said to be the correlation column. A box C is (recursively) said to be correlated to

box A, if C or one of Cs descendants is directly correlated to box A. For example,

in Figure 5.21, Box (3) is directly correlated to Box (1) as it uses the input from

(1). Box (3) and Box (2) are said to be correlated to Box (1) because at least one

of the descendants of (3) and (2) are directly correlated to (1). q1.Building is the

correlation column. We traverse the QGM in depth first order. For our example,

visit the boxes in the order (1), (2), (3).

Each Box has a head and a body. Head is a declarative description of the output

with schema (list of output columns) and property. Body specifies how to compute

the output. The body of a box contains a graph. The vertices of this graph represent

quantified tuple variables or quantifiers: F represents a regular tuple variable, e.g.,

FROM R AS r. E represents an existential quantifier, e.g., IN (subquery), or = ANY

(subquery). SQL’s predicate EXISTS, IN, ANY and SOME are true if at least one

tuple of the subquery satisfies the predicate. The quantifiers associated with such

subqueries have type E. A represents the universal quantifier, e.g., > ALL (sub-

query) and S represents a scalar subquery, e.g., = (subquery). The body of every

5.6. DISCUSSION: QUERY DECORRELATION 163

box has an attribute called distinct which has a value of ENFORCE, PRESERVE,

or PERMIT. ENFORCE means that the operation must eliminate duplicates in or-

der to enforce head.distinct = TRUE. PRESERVE means that the operation pre-

serves the number of duplicates it generates. This could be because head.distinct

= FALSE, or because head.distinct = TRUE and no duplicates could exist in the

output of the operation even without duplicate elimination. PERMIT means that

the operation is permitted to eliminate (or generate) duplicates arbitrarily.

(1)

(2)

(3)

Figure 5.21: QGM Graph Example

Example 30 We perform the decorrelation by a top-down traversal of the QGM

tree as shown in Figure 5.21. For each box, it looks at its iterators (inputs to the

box) in some order. It checks whether the iterator is correlated, and if so, whether it

can be decorrelated. This decorrelation for the (box, iterator) is done in two steps.

In the FEED step, a set of bindings that the subquery (iterator) needs are generated

5.6. DISCUSSION: QUERY DECORRELATION 164

and these bindings are now used by the subquery. As pointed out in [SPL96], when

the rewrite rule is applied to the subquery (i.e. when the subquery is treated as the

CurBox), it decorrelates the subquery using the correlation values. This is called

the ABSORB stage because the subquery absorbs the correlation bindings resulting

in a decorrelated query.

Removing Decorrelation. We first visit box (1). It has a descendant box, that

is correlated to it. So we perform the feed step on Box (1) is not correlated to an

ancestor box, so there is no absorb. Let us see how feed for box (1) is performed.

Feed for Box (1). Check if there is any condition on the “correlation” column

in Box (1). If yes, push the selection condition before Box (1) (see Figure 5.46).

Create another box, which removes duplicate values of the correlation column (see

Figure 5.47). Create 2 boxes as in Figure 5.48. DCO (Decorrelated Output) box

takes the above values as input while box (3) will now depend on this box. CI (Cor-

related Input) box takes output of DCO box, is correlated to Box (1) and performs

the equi-join. Decorrelating Box (2). Box (3) is correlated to the parent DCO box

of Box (2). So we perform the feed (see Figure 5.26). Push select conditions. In

this case here, we have none. Next, we need to remove duplicates if any. In this

case here, we have none. Create a DCO box and a CI box. Box (2) is correlated

to its parent DCO box. So we perform the absorb (see Figure 5.27). For an aggre-

gate operator, absorb includes a group by, followed by a LOJ. In this case, we end

up with an unnecessary CI box. Remove it (see Figure 5.28). Decorrelating Box

(3). There is no descendant box that is correlated to box (3) or its ancestor exists.

Therefore, no feed. Box (3) is correlated to its parent DCO box. So we perform the

absorb (see Figure 5.30). Absorb for SPJ box means just remove the correlation,

and feed the box directly as input to the SPJ box. Remove unnecessary Q8 input to

5.6. DISCUSSION: QUERY DECORRELATION 165

DCO box (see Figure 5.31). Remove unnecessary DCO box (see Figure 5.32).

DSRG, WPI 12

(1)

(2)

Figure 5.22: Pushing the Selection Condition

(1)

(2)

Figure 5.23: Removing Duplicates

(1)

(2)

Figure 5.24: Removing the correlation between (1) and (3)

5.6. DISCUSSION: QUERY DECORRELATION 166

(2)

(3)

Figure 5.25: Starting point for box (2)

(2)

(3)

Figure 5.26: Feed for Box (2)

(2)

(3)

Figure 5.27: Absorb for box (2)

5.6.4 Application to CEP

Query decorrelation includes joining materialized results with an outer query block.

In principle, such problem could also be applied to advanced CEP queries. In our

5.6. DISCUSSION: QUERY DECORRELATION 167

(2)

(3)

Figure 5.28: Remove unnecessary C1 box

(3)

Figure 5.29: Starting point for box (3)

(3)

Figure 5.30: Absorb for box (3)

model, we do not consider ”views/caches” and joins between separate views and a

query. Hence in our work, we don’t allow this path. Instead, we leave it for future

work. In this section, we explore potential decorrelation techniques in the CEP

5.6. DISCUSSION: QUERY DECORRELATION 168

(3)

Figure 5.31: Remove unnecessary Q8 input to DCO box

(3)

Figure 5.32: Remove unnecessary DCO box

context if we have to support joining between separate views.

Correlated CEP Query Examples. Q7, Q8 and Q9 are sample correlated CEP

queries. We will use them as running examples for the CEP query decorrelation.

Q7 = SEQ(R r, S s, T t, t.attr1 > 100, t.attr2 >

(AGG(Count(*)

SEQ(U u, V v, t.attr5 = u.attr5))

))

WITHIN 1 hour

Q8 = SEQ(R r, S s, SEQ(U u, V v, u.attr3 = s.attr3),

T t, t.attr1 > 100, s.attr2 < 50)

5.6. DISCUSSION: QUERY DECORRELATION 169

WITHIN 1 hour

Q9 = SEQ(R r, S s, T t, t.attr1 > 100, s.attr2 < 50,

EXIST (

SEQ(U u, V v, u.attr3 = s.attr3,

u.ts > s.ts and v.ts < t.ts)))

WITHIN 1 hour

Q9 = SEQ(R r, S s, T t, t.attr1 > 100, t.attr2 >

(AGG(Count(*)

SEQ(U u, V v, t.attr5 = u.attr5))))

WITHIN 1 hour

Q10 = SEQ(R r, S s, SEQ(U u, V v, u.attr3 = s.attr3),

T t, t.attr1 > 100, s.attr2 < 50)

WITHIN 1 hour

Q11 = SEQ(R r, S s, T t, t.attr1 > 100, s.attr2 < 50,

EXIST (SEQ(U u, V v, u.attr3 = s.attr3,

u.ts > s.ts and v.ts < t.ts)

WITHIN 1 hour))

WITHIN 1 hour

Q12 = SEQ(R r, S s, T t, t.attr1 > 100, s.attr2 < 50,

NOT EXIST (SEQ(U u, V v, u.attr3 = s.attr3,

u.ts > s.ts and v.ts < t.ts)

WITHIN 1 hour))

WITHIN 1 hour

5.6. DISCUSSION: QUERY DECORRELATION 170

CEP Query with Aggregate subquery

NEEL Query Rewrite. The QGM construction method for NEEL is similar to

the one for SQL. Namely, each event expression formed by a SEQ and an aggre-

gate corresponds to a query block in the QGM. Window constraints are omitted in

QGM.

Query Decorrelation Procedure. The magic decorrelation rewrite rule is applied

to this CEP QGM in a top-down fashion, transforming one box at a time. CurBox

corresponds to the box currently being processed.

For aggregate CEP query decorrelation, no CEP specific procedure needs to

be designed. The reason is the correlated attributes between outer and inner query

blocks are not pattern specific. We first describe the CEP query decorrelation pro-

cedure the same as the one described in Example 30 for SQL query decorrelation.

And Feed and Absorb stages are explained further by Example 31.

Remove Correlation for CurBox.

• Traverse QGM in depth first order.

• For each current box A, check if a (descendant) box B is correlated to A/A’s

ancestor.

– If yes, then feed the correlation to its child (if any). In the FEED stage,

we determine if the child box is correlated. If so, it generates the set of

correlation bindings that can be used to decorrelate the box.

– If A is correlated to an (ancestor) box, then Absorb the correlation for

box A Recall that Absorb will be different depending on whether the

box is an aggregate box or an SPJ box. In the ABSORB stage, when

5.6. DISCUSSION: QUERY DECORRELATION 171

the rewrite rule is applied to the subquery, it decorrelates the subquery

using the correlation values.

Feed Stage for CurBox.

• Check if there is any condition on the “correlation” attribute in CurBox. If

yes, push the selection condition before CurBox (see 5.6.2).

• Create another box (corresponding to the “magic” expression), which re-

moves duplicate values of the correlation attribute. A unique set of corre-

lation bindings is projected into results for the “magic” expression for the

child.

• The final step of the FEED stage is to decouple the CurBox from the child

box. This is accomplished by creating 2 boxes DCO and CI:

– DCO (Decorrelated Output) box: To decouple the CurBox from the

child box, a DCO box is introduced immediately above the child, to

produce a decorrelated view of the child to the parent. The DCO box

has an iterator Qm over the magic table of the child and an iterator Qc

over the child, and computes the cross product of the two.

– CI (Correlated Input) box: A CurBox needs a correlated view of the

subquery to retain the relationship between each correlation value and

the corresponding answer from the decorrelated subquery. A Corre-

lated Input (CI) box is introduced immediately above the DCO box,

with a correlated predicate that provides this view to the CurBox. CI

box takes output of DCO box. CI box is correlated to CurBox and

performs the appropriate join method.

5.6. DISCUSSION: QUERY DECORRELATION 172

Absorb Stage for CurBox. It is usually possible to eliminate the Decorrelated

Output (DCO) box entirely. This happens when rewrite rules are applied to the

child box (which is now treated as the CurBox). There is a DCO box immediately

above the CurBox with an iterator over its magic expression. During the ABSORB

stage, the CurBox needs to absorb the correlation bindings that are available in the

magic expression. In this Section, we only consider decorrelate aggregate CEP

query. So if the CurBox is not SEQ box (e.g. it is an aggregate box), absorb

includes adding the correlation attribute to the output, and a grouping by that at-

tribute, followed by a left outer join (LOJ). Namely, for non-SEQ box, the actual

correlation is usually contained in some descendant of the CurBox. Therefore, the

correlation bindings in the magic expression should be fed to the children of the

CurBox, so that they can be decorrelated. Once the children have been decorre-

lated, the CurBox can absorb the correlation bindings from the children.

Example 31 Queries expressed by NEEL can be converted to SQL queries such

as Q7SQL below. After converting NEEL with join predicates to SQL, we can

apply existing query decorrelation technique to optimize the execution of NEEL

expressions.

Q7 = SEQ(R r, S s, T t, t.attr1 > 100, t.attr2 >

(AGG(Count(*)

SEQ(U u, V v, t.attr5 = u.attr5)

)))

WITHIN 1 hour

Q7SQL =

SELECT r, s, t

5.6. DISCUSSION: QUERY DECORRELATION 173

FROM R,S,T

WHERE t.te - r.ts < 1 hour and t.attr1 > 100 and t.attr2 >

(SELECT count(*)

FROM U, V

WHERE U.ts < V.ts and t.attr5 = u.attr5)

R S

U V

t.attr1 > 100 and
t.attr 2 > Q1 and
r.ts < s.ts < t.ts

u.ts < v.ts

r s Q1

u v

Count(*)T

t.att5 =
u.att5

t

SEQ(R r, S s, T t,
t.attr1 > 100, t.attr 2 > Q1)

SEQ(U u, V v
t.att5 = u.att5)

Q2
Agg(Count(*))

count

Q2

(1)

(2)

(3)

Figure 5.33: QGM for Q7

QGM for Q7 is shown in Figure 5.33. We first visit box (1). It has a descendant

box, that is correlated to it. So we perform the feed. Box (1) is not correlated

to an ancestor box, so there is no absorb. Let us see how feed for box (1) is

performed. The predicate (t.attr1 > 100) is pushed before Box(1) (see Figure 5.34).

We create another box magic1 which removes duplicated t.attr2 (see Figure 5.35).

DCO and CI boxes are created (see Figure 5.36). DCO box takes magic1 and

box 3 as input. Box (3) will now depend on this box. CI box takes output of

5.6. DISCUSSION: QUERY DECORRELATION 174

DCO box. CI box performs the equi-join. Next, let us decorrelate Box (2). The

starting point for box (2) is shown in Figure 5.37. Box (3) is correlated to the

parent DCO Box (2). So we perform the feed (see Figure 5.38). A DCO box and

a CI box are created as before. Box (2) is correlated to its parent DCO box. We

must perform the absorb (see Figure 5.39). We end up with an unnecessary CI box

and we remove it (see Figure 5.40). Last, we decorrelate Box (3). The starting

point for Box (3) is shown in Figure 5.41. There is no feed stage for Box (3) as

no descendant box that is correlated to Box (3) or its ancestor exists. Thus, we

can simply perform the absorb for Box (3) as it is correlated to its parent DCO

box (see Figure 5.42). The iterator Q7 over the magic table in the DCO box is

now redundant as the correlation bindings (Q10.att5) from the magic table iterator

are added to the output of the CurBox and can be removed, leaving the CurBox

decorrelated as in Figure (see Figure 5.43). Lastly the unnecessary DCO box is

removed (see Figure 5.44). Figure 5.45 shows the final decorrelated query.

Discussion. Techniques to decorrelate SEQ queries could be applied to nested

CEP queries with aggregate sub-queries. Decorrelation techniques for CEP queries

are identical. Outer and inner CEP subexpressions are correlated involving event

attributes. And we could treat a SEQ query as a special join. Decorrelation tech-

niques help us improve performance. In our final decorrelated query, we only

compute the aggregation result once for each distinct t.attr5.

CEP Query with Non-aggregate subquery

Decorrelation techniques presented in [SPL96] mainly focus on CEP queries with

aggregate subqueries. Let us re-consider the drawbacks that magic techniques

5.6. DISCUSSION: QUERY DECORRELATION 175

T

S

t.attr 2 > Q1
r.ts < s.ts < t.ts

r Q1

Count(*)

t

SEQ(R r, S s, T t, t.attr 2 > Q1)

Q2
Agg(Count(*))

t.attr1 > 100 (T t, t.attr1 >100)

s

R
count

Q2

(1)

(2)

Figure 5.34: Push Predicates

T

S

t.attr 2 > Q1
r.ts < s.ts < t.ts

r Q1

Count(*)

t

SEQ(R r, S s, T t, t.attr 2 > Q1)

Q2
Agg(Count(*))

t.attr1 > 100 (T t, t.attr1 >100)

s

distinct

MAGIC_1

R

attr5

Dinstinct t.attr5

count

Q2

(1)

(2)

Figure 5.35: Create Magic Box

avoided. As mentioned earlier, the drawbacks of nested iteration are threefold: (1)

duplicate invocations, (2) redundant work in each invocation, and (3) interference

with processing in outer query block.

Non-aggregate CEP Query Optimization.

5.6. DISCUSSION: QUERY DECORRELATION 176

T

S

t.attr 2 > Q1
r.ts < s.ts < t.ts

r Q1

Count(*)

t

t.attr1 > 100

s

distinct

MAGIC_1

R

attr5

DCO BOX

CI BOX Q3

Q4 Q5

t.att5 = Q3.att5

attr5
count

count

(1)

(2)

Figure 5.36: Creat DCO and CI Boxes

Count(*)

MAGIC_1

attr5

DCO BOX Q4 Q5

attr5
count

U V

u.ts < v.ts

u v

Q4.att5 =
u.att5

SEQ(U u, V v
Q4.att5 = u.att5)

count
Q2

(2)

(3)

attr5

Figure 5.37: Starting Point for Box 2

First, we apply magic techniques for such queries. The steps are similar to Sec-

tion 5.6.4. The differences are: (1) To capture the temporal subsequence context,

5.6. DISCUSSION: QUERY DECORRELATION 177

Count(*)

MAGIC_1

attr5

DCO BOX Q4 Q5

attr5
count

U V

u.ts < v.ts

u v

Q7.att5 =
u.att5

SEQ(U u, V v
Q7.att5 = u.att5)

MAGIC_2

DCO BOX

CI BOX
Q6

Q7 Q8

Q4.att5 = Q6.att5

attr5

Q7 Q8

Q6

count
Q2

(2)

(3)

Figure 5.38: Feed Stage

the magic box contains distinct temporal pairs instead of distinct single values.

(2) To minimize redundant work, we need to materialize results for each distinct

temporal pair. (3) To eliminate duplicate invocations, we only compute results for

correlated subqueries when answers were not materialized.

The IntervalConstraints (distinct temporal pairs) is computed for each sub-

query given an outer query result triggered by an event e. It is given by the time-

stamps of the events which bound the sub-queries. For each parent expression

match, results of its subexpression are computed. The same triggering event e

may generate multiple results for each subexpression with overlapping intervals.

For example, assume one temporal pair pair1 = [1, 5] and the other temporal pair

pair2 = [1, 10]. Cache results for pair2 contain cache results for pair1. We apply

5.6. DISCUSSION: QUERY DECORRELATION 178

Count(*)

MAGIC_1

attr5

DCO BOX Q4 Q5

attr5
count

U V

u.ts < v.ts

u v

Q7.att5 =
u.att5

SEQ(U u, V v
Q7.att5 = u.att5)

MAGIC_2

DCO BOX

CI BOX
Q6

Q7 Q8
attr5

Q7.attr5 Q8

Q6

count
Q2
GROUPBY attr5
Return attr5, Count (*)

LOJ(Magic_1, Q4)
Q4.att5 = Q5.attr5

Q2

(2)

(3)

Figure 5.39: Absorb Stage

the set-based option to pre-compute table of magic decorrelation. To avoid re-

computation of results occurring in the same interval, distinct temporal pairs are

maintained in MAGIC box. Such meta-data “interval” is attached to the respective

cache to indicate the time period for which its results are cached for. All possible

results for each subexpression occurring within each interval (temporal pair) are

stored in the respective cache.

As CEP queries work on sliding windows, it is easy to see that many inter-

mediate results would continue to be valid from one sliding window to the next.

Previously calculated results of the previous window should be cached and then be

reused in the new window. We propose to cache and incrementally maintain the

inner query results. So we could modify the cache maintenance method above for

5.6. DISCUSSION: QUERY DECORRELATION 179

Count(*)MAGIC_1

attr5

U V

u.ts < v.ts

u v

Q7.att5 =
u.att5

SEQ(U u, V v
Q7.att5 = u.att5)

MAGIC_2

DCO BOX
Q7 Q8attr5

Q7.attr5 Q8

Q2
GROUPBY attr5
Return attr5, Count (*)

Q2.attr5
count

Q2

(2)

(3)

Figure 5.40: Remove Unnecessary CI Box

U V

u.ts < v.ts

u v

Q7.att5 =
u.att5

SEQ(U u, V v
Q7.att5 = u.att5)

MAGIC_2

DCO BOX
Q7 Q8attr5

Q7.attr5 Q8

(3)

Figure 5.41: Starting Point for Box 3

more result reuse. In addition, we could consider batch processing.

Final Outer Result Generation. The generation of the final outer results depends

on the type of the inner subqueries. Namely, if the subquery is a positive compo-

nent in an event expression (e.g., Q8), for each outer sequence result, it will join

5.6. DISCUSSION: QUERY DECORRELATION 180

U V

u.ts < v.ts

u v

Q10.att5 = u.att5
SEQ(U u, V v,
Q7.att5 = u.att5)

MAGIC_2

DCO BOX
Q7 Q8

attr5

Q7.attr5 Q8

attr5

Q10

(3)

Figure 5.42: Absorb Stage

U V

u.ts < v.ts

u v

Q10.att5 = u.att5
SEQ(U u, V v,
Q7.att5 = u.att5)

MAGIC_2

DCO BOX
Q8

Q8

attr5

Q10

Q10.attr5, SEQ(U, V)

(3)

Figure 5.43: Remove Unnecessary Input

U V

u.ts < v.ts

u v

Q10.att5 = u.att5
SEQ(U u, V v,
Q7.att5 = u.att5)

MAGIC_2
attr5

Q10

Q10.attr5, SEQ(U, V)
(3)

Figure 5.44: Remove Unnecessary DCO Box

5.6. DISCUSSION: QUERY DECORRELATION 181

T

S

t.attr 2 > Q1
SEQ(R, S, T)

r Q1t

t.attr1 > 100

s

distinct
MAGIC_1

R

attr5

CI BOX Q3
t.att5 = Q3.att5

U V

SEQ(U, V)

u v

Q10.att5 = u.att5
SEQ(U u, V v,
Q10.att5 = u.att5)

attr5

Q10

Q10.attr5,
SEQ(U, V)

Count(*) GROUPBY attr5
Return attr5, Count (*)

Q2.attr5
count

Q2

(1)

(2)

(3)

(4)

(5)

Figure 5.45: Final Decorrelated Graph

with cache results (if exist) using the most appropriate method (e.g., merge join).

When the subquery is connected by <Eop> <Query> to the outer expression,

then if Eop is “EXIST”, for each outer sequence result, it is to be returned if the

inner subquery result set is not empty (e.g., Q9).

Example 32 Queries expressed by NEEL can be converted to SQL queries such

as Q8SQL below. After converting NEEL with join predicates to SQL, we can

apply existing query decorrelation technique to optimize the execution of NEEL

expressions.

Q8 = SEQ(R r, S s, SEQ(U u, V v, u.attr3 = s.attr3), T t,

t.attr1 > 100, s.attr2 < 50)

WITHIN 1 hour

5.6. DISCUSSION: QUERY DECORRELATION 182

Q8SQL =

SELECT r, s, Qinner, t

FROM R, S, Qinner, T

WHERE R.ts < S.ts < T.ts and t.attr1 > 100 and s.attr2 < 50 and t.ts-r.ts < 1 hour

and Qinner IS IN SELECT u, v

FROM U, V

WHERE u.attr3 = s.attr3 and v.ts < t.ts and s.ts < u.ts

We create a magic1 box which removes duplicates [s.ts, t.ts] pairs. DCO and

CI boxes are created (see Figure 5.46). DCO box takes magic1 and box (2) as

input. CI box takes output of DCO box and it is correlated to box (1). Next, we

decorrelate Box (2). There is no feed stage for Box (2) as no descendant box that is

correlated to box (2) or its ancestor exists. We perform the absorb for Box (2) as it

is correlated to its parent DCO box (see Figure 5.47). Box(2) adds the magic table

as its input iterator. The source for correlation predicates is now the magic table

iterator in Box(2). Unnecessary input from MAGIC-1 to DCO box is removed (see

Figure 5.48) and unnecessary DCO box is removed (see Figure 5.49). The final

graph after applying magic technique is shown in Figure 5.50. For each distinct

[s.ts, t.ts] time pair, inner SEQ(U u, V v) results are materialized if predicates

u.attr3 = s.attr3, u.ts > s.ts and v.ts < t.ts are satisfied. In streaming context, for

every new constructed SEQ(R r, S s, T t) result, we check for [s.ts, t.ts] if the

corresponding inner SEQ(U u, V v) results are computed before. If yes, we use

materialized results. Otherwise, we compute it from scratch.

Example 33 Q9 = SEQ(R r, S s, T t, t.attr1 > 100, s.attr2 < 50,

EXIST (

5.6. DISCUSSION: QUERY DECORRELATION 183

R S

T

U V

r.ts < s.ts < t.ts

u.ts < v.ts

r s Q1 t

u v

distinct pair
MAGIC_1

DCO BOX

CI Box

u, vs, t

r.attr1 > 100 s.attr2 < 50

(1)

(2)

u.ts > s.ts
v.ts< t.ts (3)

(4)

Figure 5.46: Push Predicates, Create Magic, DCO, CI Boxes

SEQ(U u, V v, u.attr3 = s.attr3, u.ts > s.ts

and v.ts < t.ts)

WITHIN 1 hour))

WITHIN 1 hour

Q9SQL =

SELECT r, s, t

FROM R, S, T

WHERE R.ts < S.ts < T.ts and t.attr1 > 100 and s.attr2 < 50 and and t.ts-r.ts < 1 hour

EXIST (SELECT u, v

FROM U, V

WHERE u.attr3 = s.attr3 and U.ts < V.ts and U.ts > S.ts

5.6. DISCUSSION: QUERY DECORRELATION 184

U V

u v

distinct pair
MAGIC_1

DCO BOX

u.ts >s.ts, v.ts < t.s
u.ts < v.ts, s.attr3 = u.attr3

(s, t)

(u, v)

Q2

(4)

(2)

Figure 5.47: Absorb Stage

and V.ts < T.ts)

Consider the above correlated query Q9 which can also be expressed by Q9SQL.

The optimization steps are similar to Example 32. The final result construction is

different. As the subquery SEQ(U u, V v, u.attr3 = s.attr3, u.ts > s.ts and v.ts <

t.ts) WITHIN 1 hour is connected by “EXIST”, for each outer sequence result <r,

s, t>, it could be returned if the inner subquery result set is not empty.

Novel Issues of Decorrelation Technique in CEP Context. A few novel issues

are explored as listed below.

• The magic table in magic decorrelation deals with distinct attribute values.

5.6. DISCUSSION: QUERY DECORRELATION 185

U V

u v

distinct pair
MAGIC_1

DCO BOX

u.ts >s.ts, v.ts < t.s
u.ts < v.ts, s.attr3 = u.attr3

(s, t)

(u, v)

Q2

(4)

(2)

Figure 5.48: Remove Unnecessary DCO Input

However, in the nested CEP context, we need to extend it with distinct tem-

poral pairs to capture stringent windows.

• The current decorrelation techniques only support static data. We consider

streaming data for nested CEP queries.

• The Query Graph Model (QGM) is designed for SPJ queries. We have ex-

tended QGM for nested CEP queries with time correlation.

• We design optimization techniques for correlated CEP subqueries.

5.7. RELATED WORK 186

U V

u v

distinct pair
MAGIC_1

u.ts > s.ts, v.ts < t.ts
u.ts < v.ts, s.attr3 = u.attr3

(u, v)

Q2

(2)

Figure 5.49: Remove Unnecessary DCO Box

5.7 Related Work

To the best of our knowledge, existing CEP systems [WDR06, BDG+07, MM09,

BGAH07, LLG+09] mostly support the execution of only flat sequence queries.

While CEDR [BGAH07] allows applying negation over composite event types

within their proposed language, the execution strategy for such nested queries is

not discussed. In addition, no work has been reported on tackling the performance

deficiency when applying negation over composite event types.

SASE [WDR06, GADI08] supports novel language features such as negation,

and demonstrates performance gain in processing complex event queries compared

to traditional data stream processing system TelegraphCQ. We borrow from SASE

5.7. RELATED WORK 187

R S

T

r.ts < s.ts < t.ts

r s Q1 t

distinct pair
MAGIC_1

r.attr1 > 100 s.attr2 < 50

(1)

U V

u v

u.ts > s.ts, v.ts < t.ts
u.ts < v.ts, s.attr3 = u.attr3

(u, v)

(2)
Q2

Figure 5.50: Final Decorrelated Graph

query syntax and algebra operators. However, the event (query) language of SASE

is not composable, which restricts the set of queries expressible in the system.

SASE [WDR06, GADI08] considers only flat queries and negation is applied as

a final filtration step. Cayuga [BDG+07] is able to inline one automaton into an-

other automaton that reads the output of the former. For example, a Cayuga query

(S1;S2);S3 can be naively implemented by two automata as follows. The first au-

tomaton A implements S1;S2, and produces an intermediate stream S’. The second

automaton B implements S’;S3. In this case, Cayuga can inline A into B, by re-

placing the forward edge of the start state of B with A, eliminating the need for

producing the intermediate stream S’. This is supported in Cayuga as query plans

are composable. However, Cayuga doesn’t discuss applying negation over com-

posite event types. ZStream [MM09] considers the ordering of execution for CEP

5.7. RELATED WORK 188

queries using a tree-based query plan – similar to join ordering in traditional re-

lational databases. It only supports negation over primitive event types. ZStream

doesn’t consider optimization over multiple expressions nor of nested CEP ex-

pressions. In short, no processing mechanisms nor optimization methods for CEP

queries with nested complex negation have been proposed in the literature to date.

Complex pattern queries often contain common or similar sub-expressions within

a single query or also among multiple distinct queries. Multiple-query optimization

in databases [Sel88, RSSB00, Fin82] typically focus on static relational databases

and identifies common subexpressions among queries such as common joins or fil-

ters. However, multiple expression sharing for stack-based pattern evaluation for

CEP queries has not yet been studied. In particular, our work is the first to share

the processing of CEP expressions with the same positive event types interleaved

with different negative event types.

STREAM’s CQL query language [ABW06] extends SQL with support for win-

dow queries. Like SQL itself, CQL is declarative. However, it is not clear whether

CQL is suitable for realtime event detection and composition. Similar to SQL,

the data model underlying these stream query languages is unordered, and so in

order to pin-point the i-th tuple within a set of N tuples returned by a window op-

erator, an N-way self-join with temporal constraints on these N tuples is required.

In [LWZ04], it is shown that SQL lacks expressive power for continuous queries

on data streams, and the authors in [WZL03] extend SQL with features to support

data mining and data streams. CQL offers only little explicit support for queries

that involve temporal relationships between events (or tuples). They don’t support

events occurring over time-intervals explicitly. In CQL, time is primarily treated in

two ways: (I) it’s an attribute and as such can be involved in any predicates such as

5.7. RELATED WORK 189

x1.ts < x2.ts, and (II) for time-based window.

Work on temporal and sequence database systems has emphasized static datasets

instead of data streams [RDR+98, SZZA01, SLR95]. As pointed by [ME04], there

are several proposals to extend the database query languages with means to search

for sequential patterns. The specifics of the event data such as the event instance

selection and consumption policies are not considered.

190

Chapter 6

Discussion of Solution Integration

Recent years have witnessed a rapid increase in attention in CEP systems [WDR06,

MM09, DGP+07, GADI08, Jag08] that extract flat patterns from event streams

and make informed decisions in real-time. Efficient, scalable and robust methods

for in-memory multi-dimensional nested pattern analysis over high-speed event

streams need to be designed for CEP engines. These research challenges tackled

in my dissertation are categorized into the following: (I) Lack of Nested Pattern

Query Language; (II) Lack of processing strategies and optimization methods for

nested pattern queries; (III) Lack of event model for pattern queries over different

abstraction levels; (IV) Lack of processing strategies and optimization methods for

Pattern Queries over Different Abstraction Levels; (V) Lack of mechanisms for

out-of-order event handling.

This dissertation focuses on extending event sequence processing with new

models and optimization techniques by meeting the above research challenges. As

mentioned earlier in Chapters 3), 4 and 5 respectively, the techniques proposed

to tackle these research challenges have each been addressed in isolation. For

CHAPTER 6. DISCUSSION OF SOLUTION INTEGRATION 191

example, the out-of-order event handling framework introduced in Chapter 3 in-

cludes K-slack, conservative and aggressive methods with limited query support

(flat SEQ queries). In the proposed ECube framework (Chapter 4), assumptions of

in-order events and flat SEQ queries are made. In the proposed nestedCEP frame-

work (Chapter 5), we assume events arrive in order. Clearly, in a practical system,

our proposed techniques need to work together within an integrated system to solve

more complex scenarios. In the following we study the extensions for the proposed

techniques which make an integrated system possible.

E-Cube with Out-of-Order Event Streams.

Again by the same arguments as above, the K-slack method would work cor-

rectly with the proposed ECube framework (Chapter 4). E-Cube concept hierar-

chy and event pattern query hierarchy are orthogonal to supporting out-of-order

events as they are defined independently of event arrivals. To apply the conser-

vative method to E-Cube, we need to extend metadata (Partial Order Guarantee

(POG)) to support event types in an event concept hierarchy. For example, we

could have a POG notification specifying no more event instances with event type

USA will come. Similarly, we could only have POG specified for a particular state

in USA. Since correct results are guaranteed to be generated even when events

arrive out of order, we can still apply the existing conditional computation mech-

anism. To apply the aggressive method to E-Cube, a revision tuple propagation

strategy should be taken care of between queries with conditional computation.

For example, consider two queries qi = SEQ(A, B, C) and q j = SEQ(A, B, C, D,

E) with pattern changes in E-Cube. Assume a ck event of type C arrives out-of-

order. Revision tuples such as < ai,b j,ck > are constructed for qi for the general

to specific method. Such revision tuple needs to further join with D and E events

CHAPTER 6. DISCUSSION OF SOLUTION INTEGRATION 192

in q j. Similarly, when a ai event of type A or a b j event of type B arrives out of

order, revision tuples are constructed for qi involving ai or b j and are propagated to

q j. When a d j event of type D or a ek event of type E arrives out of order, revision

tuples are constructed for q j by joining SEQ(D, E) results involving d j or ek with

stored SEQ(A, B, C) results.

Nested CEP Query Processing for Out-of-Order Event Streams.

NEEL syntax, semantics of operators we defined, rewriting rules, optimization

methods are orthogonal. They are all independent of out-of-order handling meth-

ods because the correctness of them is not impacted by out-of-order handling. They

are defined independently of event arrivals. The only issue is related to execution it-

self. The nested CEP query processing framework introduced in Chapter 5 includes

the iterative nested execution strategy and the shared optimized NEEL pattern ex-

ecution. The K-slack method in literature works correctly with the nested complex

CEP query processing framework without any changes. The reason is out-of-order

events are sorted in the buffer and CEP systems process in order events as usual. To

apply the conservative and aggressive methods, we first need to extend our out-of-

order processing to also support AND and OR operators. The mechanism would

be rather similar to SEQ. Essentially, the nested execution strategy computes flat

subexpressions at each level. The conservative methods developed for flat CEP

expressions can be directly applied to the subexpression at each nesting level. For

the aggressive method, we need to take care of the revision result propagation be-

tween levels. For shared NEEL pattern execution, as queries are flattened, existing

techniques to compute results for common subexpressions could be applied. For

example, two expressions SEQ(A, B, C) and SEQ(A, B, C, D) share the common

prefix SEQ(A, B, C). Assume we apply the aggressive method and the event b12 of

CHAPTER 6. DISCUSSION OF SOLUTION INTEGRATION 193

type B arrives out of order. SEQ(A, B, C) results involving b12 such as {ai,b12,ck}

are computed first using existing techniques. These results will be joined with D

events in window to form revision tuples. As another example, two expressions

SEQ(A, !B, C, D) and SEQ(A, C, !E, D) share the common generating expression

SEQ(A, C, D). When an event c10 of type C arrives out of order, SEQ(A, C, D)

results involving c10 such as {ai,c10,dk} are computed first using the existing tech-

niques. The bit-marking method is the same. Namely, for each {ai,c10,dk} result,

we check the existence of B (E) events between ai and c10 (c10 and dk).

E-Cube for Nested CEP Queries.

Similar to SEQ, we need to extend the current ECube model with additional

query refinement and reuse support for queries containing AND, OR and boolean

expressions. To process nested CEP queries over multiple abstraction levels, we

first rewrite these nested CEP queries into a normal form [LRG+11a]. Then we

could apply E-Cube techniques to normalized sub-expressions. For example, as-

sume B is at a coarser level than b in a concept hierarchy and after rewriting, we

get qi = SEQ(A, B, D) OR SEQ(A, b, D) OR SEQ(A, b, D, ∃ E). SEQ(A, B, D) is

at a coarser level as compared to SEQ(A, b, D) with concept changes. SEQ(A, b,

D) should be coarser than SEQ(A, b, D, ∃ E) with pattern changes. We thus could

apply reuse and optimization methods in E-Cube for these subexpressions. Reuse

among queries would be for particular components of these queries.

194

Chapter 7

Conclusions

7.1 Conclusions

Objectives of the dissertation focus on extending event sequence processing with

new models and optimization techniques by meeting the four research challenges

motivated in Chapter 6. This dissertation innovates several techniques to achieve

efficient, scalable and robust methods for in memory multi-dimensional nested pat-

tern analysis over high-speed event streams. The dissertation research is as de-

scribed below.

In part I, we address the problem of processing pattern queries on event streams

with out-of-order data arrival in our E-Analytic system. We analyze the problems

state-of-the-art event processing technology experiences when faced with out-of-

order data arrival including blocking, resource overflow, and incorrect result gen-

eration. We propose two complimentary solutions that cover alternative ends of

the spectrum from norm to exception for out of orderness. Our experimental study

demonstrates the relative scope of effectiveness of our proposed approaches, and

7.1. CONCLUSIONS 195

also compares them against state-of-art K-slack based methods. Most current event

processing systems either assume in order data arrivals or employ a simple yet in-

flexible mechanism (K-slack) which as our experiments confirm will induce high

latency. Our work is complementary to existing event systems. Thus they can em-

ploy our proposed conservative or aggressive solutions according to their targeted

application preferences.

In part II, our proposed E-Cube combines OLAP and CEP functionalities. We

apply E-Cube techniques in our E-Analytic system to allow users to efficiently

query large amounts of event stream data in multiple dimensions and at multiple

abstraction levels. To the best of our knowledge, no prior work combines CEP

and OLAP techniques for multi-dimensional pattern analysis over event streams as

described in this Chapter. Our E-Cube solution improves computational efficiency

for multi-dimensional event pattern detection by sharing results among queries in

a unified query plan. Based on this foundation, we design a cost-driven adaptive

optimizer called Chase which delivers optimal results. In the Chase method, our

E-Cube optimization problem is mapped into a well-known graph problem. Our

Chase method in many cases performs ten fold faster than the state-of-art strategy.

Interesting future work includes supporting additional query features like recursion

and closure as well as deployment on the cloud. Combining OLAP and CEP tech-

nologies requires both theoretical and practical contributions. On the theoretical

front, we develop the solid foundation of a combined concept and pattern hierar-

chy. On the practical front, we present a methodology to efficiently process queries

on streaming data over this hierarchy.

In part III, we describe the first work on comprehensively supporting nested

query specification and execution in the CEP context. The CEP query language

7.2. FUTURE WORK 196

NEEL in our E-Analytic system allows users to specify fairly complex queries in a

compact manner with both temporal relationships and negation well-supported. A

query plan for the execution of nested CEP queries is designed. This nested query

plan model permits a direct implementation of nested CEP queries following the

principle of nested query execution for SQL queries. However, such direct query

execution suffers from several performance deficiencies. We thus design a normal-

ization procedure converting a nested event expression into a normal form. We

propose prefix caching, suffix clustering and a customized “bit-marking” physical

execution strategy that efficiently process a group of similar subexpressions. An

optimizer that employs iterative improvement capturing the optimal shared execu-

tion method is also designed. As demonstrated by our experiments, in many cases

our optimized NEEL execution performs 100 fold faster than the traditional itera-

tive nested execution. Our goal is to design nested CEP processing and optimiza-

tion strategies that overcome the above identified shortcomings – thus significantly

saving CPU processing resources.

7.2 Future Work

7.2.1 Generalizing ECube to Support Windows, Predicates and Ag-

gregates.

Queries can have different window sizes, predicates and aggregates. These are

interesting, related, but orthogonal topics that have been addressed by previous

research using sliced time windows and shared data fragments [WRGB06, KWF06,

LMT+05]. In this chapter, we focus on the combination of pattern and concept

hierarchies, while below we briefly sketch the application and extension of these

7.2. FUTURE WORK 197

existing ideas on sharing windows, predicates and aggregates across our E-Cube

model.

7.2.2 Different Window Constraints

Assume window slides one tuple at a time and we partition stacks based on dif-

ferent window sizes. Each stack is partitioned into a continuous sequence of hi-

erarchical slices. Assume two pattern queries qi = SEQ(Ei, E j) with window size

wi and q j = SEQ(Ei, E j, Ek) with window size w j. The corresponding stacks for

the event types Ei and E j that are shared across the queries are partitioned into two

slices, from 0 to wi, and from wi to w j, assuming wi ≤ w j. Events in the first wi

partition are logically also contained in the w j partition. The hierarchy of slices is

implemented by simple reference pointers wi and w j to the appropriate positions in

the Ei data structure, i.e., the Ei stack. These window reference pointers are incre-

mentally adjusted when new events of type Ei arrive as part of the regular insertion

and purging process.

To reuse qi results for q j in the general-to-specific evaluation, qi results are

passed down to q j in an intermediate buffer. The state is sorted by the minimum

timestamp e.ts among all components of each result tuple e. By sorting on such

minimum timestamp for intermediate result tuples, we can efficiently purge re-

sults and determine result window ranges. For other reuse-based pattern evaluation

strategies in E-Cube, similar variations of this state-slice idea can be applied.

Predicate Evaluation. Clearly as in traditional SQL OLAP cubes, if the join and

select predicates for all queries are the same in E-Cube, then predicates over single

positive event types can be pushed down to the WinSeq operator, filtering irrele-

vant events and preventing them from being placed into the corresponding stacks.

7.2. FUTURE WORK 198

However, if the predicates are not the same, for events within the same window

state-slice, we observe that queries with the same event pattern construct the same

sequence results yet are filtered by different predicates. We apply customized “bit-

marking” method for predicate evaluation [MSHR02]. The main idea of our strat-

egy is to record the predicates applicable for each query at compile time. Informa-

tion about queries that accept or reject a sequence result is encoded in the sequence

result itself. We allocate a bitmap, queriesCompleted, with one bit per query, and

store it in the sequence result. If a query’s bit is set, it indicates that this sequence

result has already been output or rejected by the query. Then the sequence result

does not need to be output to that query. A completionMask list contains a bit mask

for each query. Each completionMask indicates which operators in the operators

list need to process a sequence result before it can be output. At run time, as we

construct each sequence result, we keep track of which of the given predicate filters

are satisfied by a sequence result via a bit marking. Then the correct tuple results

are sent to the corresponding queries or stored in the corresponding intermediate

states for future reuse.

Aggregation Processing.

If the aggregation function is incrementally computable such as count, we

avoid retaining and re-processing tuples by maintaining partial aggregates [LMT+05].

The aggregate operator needs to store partial aggregates for not expired bins. At

the beginning, a special “init” bin is labeled with -∞. Each result sequence sets

up new start and end bins. Then the appropriate bins are updated. If the aggre-

gation function is not incrementally computable, we need to materialize the actual

sequence results so to be able to process the aggregation results.

Following our E-Cube model, queries with the same event pattern even if dif-

7.2. FUTURE WORK 199

fering in window sizes, predicates or aggregates are grouped together. For the

Chase evaluation in Section 4.4, the weight of each edge in MST would now cor-

respond to the group computation costs of all pattern queries modeled by the same

E-cuboid based on the results of another group. Given our reuse-based pattern

evaluation strategies sketched above, the ordering among query groups decided by

Chase would continue to be optimal. It is the straightforward extension of our

E-Cube model. While the above indicates the compatibility of handling alternate

windows, predicates and aggregation as part of E-Cube, we leave the discussion of

more sophisticated techniques for integration into E-Cube such as pipelining and

partial aggregation push-in as future work.

7.2.3 E-Cube resource limitations

The core E-Cube work assumes we have enough memory and the computing re-

sources typically become strained before the memory does. So for a query, we

would select conditional computation over self computation if the requirements for

the optimal execution ordering are satisfied. In conditional computation, we need

extra memory to store results which may be reused for other queries. If the cache

storage space is limited, we can completely eliminate the use of cache or can use

cache replacement policies to keep an upperbound on the number of cached pat-

terns, maximizing the utilization of the cache. In addition, we could explore the

idea of pipelining results. For example, for qi = SEQ(A, B, C) and q j = SEQ(B, C),

In the top-down evaluation, we don’t need to store q j results. Instead, q j results

(bi, c j) can be pipelined to qi as all A events with timestamps less than bi.ts are

store in the system.

7.2. FUTURE WORK 200

7.2.4 Supporting Join Predicates in NEEL Expression Rewriting.

Currently, only simple predicates are supported for NEEL expression rewriting.

We need to extend the rewriting system to support join predicates in NEEL ex-

pressions. For join predicates on negation, there is ambiguity which subexpression

join predicates belong to. Suppose there is an attribute f that takes integer values.

query1 = SEQ((A x), !(B y), (C z), (x.f ≤ y.f) ∧ (y.f ≤ z.f)). Consider the history

H = {a1,b2,c3,c0} with a1.type = A, b2.type = B, c3.type = C, c0.type = C, a1.f

= 1, b2.f = 2, c3.f = 3 and c0.f = 0. query1 on this H returns {a1,c0}. But now

let query2 = SEQ((A x), !(B y), (C z), (x.f ≤ y.f) ∧ (y.f ≤ z.f) ∧ (x.f ≤ z.f)).

A consequence of the condition in query1 is added in query2. But query2 cannot

return {a1,c0}. The problem is that in query1 we see that y is defined inside a “!”

and so we understand the (x.f ≤ y.f) and (y.f ≤ z.f) formula to be in the context

“not there exists y such that (x.f ≤ y.f) and (y.f ≤ z.f)”. But in query2, the (x.f ≤

z.f) part doesn’t mention y at all and so is interpreted naively. The syntax lets us

split off the conditions, such as (x.f ≤ y.f) ∧ (y.f ≤ z.f) from the place where the

variables are declared !(B y).

7.2.5 Integration of Complex NEEL Queries within an Extended E-

Cube Analytics Framework.

Currently, the E-Cube system only supports flattened SEQ queries. To extend E-

Cube system to support nested queries composed of SEQ, AND, OR and Negation,

we could flatten a nested query to a normalized flattened query using the techniques

proposed in Chapter 5. We need to extend event pattern query hierarchy to support

queries with AND and OR operators. Computation sharing is achieved between

7.2. FUTURE WORK 201

subexpressions in the normalized query.

7.2.6 Parallel and Distributive Processing for Normalized NEEL Subex-

pressions

To make a CEP system scale in handling complex queries, pattern queries across

a set of machines or use the existing resources more efficiently. Through NEEL

query rewriting, a complex query is rewritten into a normalized expression. Each

subexpression of such a normal form could then be executed in a parallel and dis-

tributive manner.

7.2.7 Marrying SQL/CQL and NEEL

As Law et al. [LWZ04] show, SQL lacks expressive power for continuous queries

on data streams. CQL [ABW06] extends SQL with operators that read or write

streams. These operators work as adapters to convert streams into relations, and

vice versa. Since CQL is based on SQL, a relation in CQL is an (unordered) set

of tuples. During query processing, the temporal ordering of tuples in the input

stream may be lost. It is not clear whether SQL based language with set semantics

are suitable for real-time event detection and composition. As one of the potential

next steps, we could study how to marry SQL/CQL and NEEL.

7.2.8 Decorrelation of NEEL

SQL queries may contain multiple correlated subqueries. When executing nested

SQL queries using nested iteration, redundant work is performed largely because

of duplicate invocation of the correlated subquery with identical correlation values.

7.2. FUTURE WORK 202

SQL query decorrelation techniques have been proposed to avoid the tuple-at-a-

time evaluation imposed by nested iteration. As the inefficiency of executing nested

CEP queries is caused by similar reasons as nested SQL queries, we could borrow

the state-of-art SQL query decorrelation for CEP queries.

7.2.9 Caching of NEEL

The iterative execution of nested CEP expressions often results in the repeated

recomputation of the same or similar results for nested subexpressions as the win-

dow slides over the event stream. We can optimize NEEL execution performance

by caching intermediate results.

7.2.10 Extend Algebra of NEEL with for-all Semantics

When rewriting double negation over SEQ such as ! SEQ(A, !B, C), we require

for all (A, C) events during some time interval, B events must exist in between.

Extending algebra of NEEL with for-all semantics may help us in rewriting queries

with double negation.

203

Bibliography

[ABW06] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The cql con-
tinuous query language: semantic foundations and query execution.
VLDB J., 15(2):121–142, 2006.

[ADGI08] Jagrati Agrawal, Yanlei Diao, Daniel Gyllstrom, and Neil Immer-
man. Efficient pattern matching over event streams. In SIGMOD,
pages 147–160, 2008.

[Ae09] Mohamed Ali and etc. Microsoft cep server and online behavioral
targeting. In VLDB, pages 147–160, 2009.

[Ahm04] Ahmed Ayad et al. Static optimization of conjunctive queries with
sliding windows over infinite streams. In SIGMOD Conference,
pages 419–430, 2004.

[AK00] Balachander Krishnamurthy Att and Balachander Krishnamurthy.
On network-aware clustering of web clients. In ACM SIGCOMM,
pages 97–110, 2000.

[Arv03] Arvind Arasu et al. Stream: The stanford stream data manager. IEEE
Data Engineering Bulletin, 26(1), 2003.

[BDG+07] Lars Brenna, Alan J. Demers, Johannes Gehrke, Mingsheng Hong,
Joel Ossher, Biswanath Panda, Mirek Riedewald, Mohit Thatte, and
Walker M. White. Cayuga: a high-performance event processing
engine. In SIGMOD Conference, pages 1100–1102, 2007.

[BGAH07] Roger S. Barga, Jonathan Goldstein, Mohamed H. Ali, and Ming-
sheng Hong. Consistent streaming through time: A vision for event
stream processing. In CIDR, pages 363–374, 2007.

[BKMH06] Matthias Brantner, Carl-Christian Kanne, Guido Moerkotte, and
Sven Helmer. Algebraic optimization of nested xpath expressions.
In ICDE, page 128, 2006.

BIBLIOGRAPHY 204

[BP02] J. M. Boyce and D. Pittet. Guideline for hand hygiene in healthcare
settings. MMWR Recomm Rep., 51:1–45, 2002.

[CD97] Surajit Chaudhuri and Umeshwar Dayal. An overview of data ware-
housing and OLAP technology. SIGMOD Record, 26(1):65–74,
1997.

[CGM10] Badrish Chandramouli, Jonathan Goldstein, and David Maier. High-
performance dynamic pattern matching over disordered streams.
PVLDB, pages 220–231, 2010.

[Cha03] Charles D. Cranor et al. Gigascope: A stream database for network
applications. In SIGMOD Conference, pages 647–651, 2003.

[CHC+06] K. Selçuk Candan, Wang-Pin Hsiung, Songting Chen, Jun’ichi Tate-
mura, and Divyakant Agrawal. AFilter: Adaptable XML filtering
with prefix-caching and suffix-clustering. In VLDB, pages 559–570,
2006.

[CKAK94] Sharma Chakravarthy, V. Krishnaprasad, Eman Anwar, and S.-K.
Kim. Composite events for active databases: Semantics, contexts
and detection. In VLDB, pages 606–617, 1994.

[Dan03] Daniel J. Abadi et al. Aurora: a new model and architecture for data
stream management. The VLDB Journal, 12(2):120–139, August
2003.

[DGP+07] Alan J. Demers, Johannes Gehrke, Biswanath Panda, Mirek Riede-
wald, Varun Sharma, and Walker M. White. Cayuga: A general pur-
pose event monitoring system. In CIDR, pages 412–422, 2007.

[Dou92] Douglas B. Terry et al. Continuous queries over append-only
databases. In SIGMOD, pages 321–330, 1992.

[Edm67] J. Edmonds. Optimum branchings. In J. Research of the National
Bureau of Standards, pages 233–240., 1967.

[Est06] Esther Ryvkina et al. Revision processing in a stream processing
engine: A high-level design. In ICDE, page 141, 2006.

[Fin82] Sheldon Finkelstein. Common expression analysis in database appli-
cations. In SIGMOD, 1982.

BIBLIOGRAPHY 205

[FJK+05] Michael J. Franklin, Shawn R. Jeffery, Sailesh Krishnamurthy, Fred-
erick Reiss, Shariq Rizvi, Eugene Wu 0002, Owen Cooper, Anil
Edakkunni, and Wei Hong. Design considerations for high fan-in
systems: The hifi approach. In CIDR, pages 290–304, 2005.

[FK08] Ellison R Fitzpatrick K. Compliance of healthcare workers with in-
fection control contact precaution procedures. In Annual meeting
of the Society for Healthcare Epidemiology of America, pages 1–45,
2008.

[GADI08] Daniel Gyllstrom, Jagrati Agrawal, Yanlei Diao, and Neil Immer-
man. On supporting kleene closure over event streams. In ICDE,
pages 1391–1393, 2008.

[GGST86] Harold N. Gabow, Zvi Galil, Thomas H. Spencer, and Robert Endre
Tarjan. Efficient algorithms for finding minimum spanning trees in
undirected and directed graphs. Combinatorica, 6(2):109–122, 1986.

[GHL06] Hector Gonzalez, Jiawei Han, and Xiaolei Li. Flowcube: Construc-
tuing RFID FlowCubes for multi-dimensional analysis of commodity
flows. In VLDB, pages 834–845, 2006.

[GHQ95] Ashish Gupta, Venky Harinarayan, and Dallan Quass. Aggregate-
query processing in data warehousing environments. In VLDB, pages
358–369, 1995.

[GÖ05] Lukasz Golab and M. Tamer Özsu. Update-pattern-aware model-
ing and processing of continuous queries. In SIGMOD Conference,
pages 658–669, 2005.

[GWA+09a] Chetan Gupta, Song Wang, Ismail Ari, Ming C. Hao, Umeshwar
Dayal, Abhay Mehta, Manish Marwah, and Ratnesh K. Sharma.
Chaos: A data stream analysis architecture for enterprise applica-
tions. In CEC, pages 33–40, 2009.

[GWA+09b] Chetan Gupta, Song Wang, Ismail Ari, Ming C. Hao, Umeshwar
Dayal, Abhay Mehta, Manish Marwah, and Ratnesh K. Sharma.
Chaos: A data stream analysis architecture for enterprise applica-
tions. In CEC, pages 33–40, 2009.

[GWYL05] Bugra Gedik, Kun-Lung Wu, Philip S. Yu, and Ling Liu. Adaptive
load shedding for windowed stream joins. In CIKM, pages 171–178,
2005.

BIBLIOGRAPHY 206

[HCC92] Jiawei Han, Yandong Cai, and Nick Cercone. Knowledge discovery
in databases: An attribute-oriented approach. In VLDB, pages 547–
559, 1992.

[HCD+05] Jiawei Han, Yixin Chen, Guozhu Dong, Jian Pei, Benjamin W. Wah,
Jianyong Wang, and Y. Dora Cai. Stream Cube: An architecture for
multi-dimensional analysis of data streams. Distributed and Parallel
Databases, 18(2):173–197, 2005.

[HRK+09] Mingsheng Hong, Mirek Riedewald, Christoph Koch, Johannes
Gehrke, and Alan J. Demers. Rule-based multi-query optimization.
In EDBT, pages 120–131, 2009.

[HRU96] Venky Harinarayan, Anand Rajaraman, and Jeffrey D. Ullman. Im-
plementing data cubes efficiently. In SIGMOD, pages 205–216,
1996.

[Jag08] Jagrati Agrawal et al. Efficient pattern matching over event streams.
In SIGMOD, pages 147–160, 2008.

[JD02] Boyce JM and Pittet D. Guideline for hand hygiene in healthcare
settings. In MMWR Recomm Rep, pages 1–45, 2002.

[Jin05] Jin Li et al. Semantics and evaluation techniques for window ag-
gregates in data streams. In SIGMOD Conference, pages 311–322,
2005.

[Kim82] Won Kim. On optimizing an sql-like nested query. ACM Trans.
Database Syst., 7(3):443–469, 1982.

[Kla03] Martin Klazar. Bell numbers, their relatives, and algebraic differen-
tial equations. J. Comb. Theory, Ser. A, pages 63–87, 2003.

[KWF06] Sailesh Krishnamurthy, Chung Wu, and Michael J. Franklin. On-the-
fly sharing for streamed aggregation. In SIGMOD, pages 623–634,
2006.

[LKH+08] Eric Lo, Ben Kao, Wai-Shing Ho, Sau Dan Lee, Chun Kit Chui, and
David W. Cheung. OLAP on sequence data. In SIGMOD Confer-
ence, pages 649–660, 2008.

[LLG+09] Mo Liu, Ming Li, Denis Golovnya, Elke A. Rundensteiner, and Ka-
jal T. Claypool. Sequence pattern query processing over out-of-order
event streams. In ICDE, pages 784–795, 2009.

BIBLIOGRAPHY 207

[LMT+05] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A.
Tucker. Semantics and evaluation techniques for window aggregates
in data streams. In SIGMOD, pages 311–322, 2005.

[LRG+10a] Mo Liu, Elke A. Rundensteiner, Kara Greenfield, Chetan Gupta,
Song Wang, Ismail Ari, and Abhay Mehta. E-cube: Multi-
dimensional event sequence processing using concept and pattern
hierarchies. In ICDE, pages 1097–1100, 2010.

[LRG+10b] Mo Liu, Elke A. Rundensteiner, Kara Greenfield, Chetan Gupta,
Song Wang, Ismail Ari, and Abhay Mehta. NEEL: The nested com-
plex event language for real-time event analytics. in BIRTE, 2010.

[LRG+10c] Mo Liu, Elke A. Rundensteiner, Kara Greenfield, Chetan Gupta,
Song Wang, Ismail Ari, and Abhay Mehta. Nested complex sequence
pattern query processing over event streams: Rewriting and compact-
ing. Worcester Polytechnic Institute, Technical Report in progress,
2010.

[LRG+11a] Mo Liu, Elke Rundensteiner, Kara Greenfield, Chetan Gupta, Song
Wang, Ismail Ari, and Abhay Mehta. High-performance nested cep
query processing over event streams. In ICDE, 2011.

[LRG+11b] Mo Liu, Elke A. Rundensteiner, Kara Greenfield, Chetan Gupta,
Song Wang, Ismail Ari, and Abhay Mehta. E-cube: Multi-
dimensional event sequence analysis using hierarchical pattern query
sharing. SIGMOD, 2011.

[LRG+11c] Mo Liu, Elke A. Rundensteiner, Kara Greenfield, Chetan Gupta,
Song Wang, Ismail Ari, and Abhay Mehta. High-performance nested
cep query processing over event streams. ICDE, 2011.

[LRR+10] Mo Liu, Medhabi Ray, Elke A. Rundensteiner, Chetan Gupta, Song
Wang, Ismail Ari, and Abhay Mehta. Processing nested complex
sequence pattern queries over event streams. In DMSN, 2010.

[LTS+08] Jin Li, Kristin Tufte, Vladislav Shkapenyuk, Vassilis Papadimos,
Theodore Johnson, and David Maier. Out-of-order processing: a new
architecture for high-performance stream systems. PVLDB, pages
274–288, 2008.

[Lup04] Luping Ding et al. Joining punctuated streams. In EDBT, pages
587–604, 2004.

BIBLIOGRAPHY 208

[LWZ04] Yan-Nei Law, Haixun Wang, and Carlo Zaniolo. Query languages
and data models for database sequences and data streams. In VLDB,
pages 492–503, 2004.

[LZR06] Bin Liu, Yali Zhu, and Elke A. Rundensteiner. Run-time operator
state spilling for memory intensive long-running queries. In SIG-
MOD, pages 347–358, 2006.

[Mar99] Marcos Kawazoe Aguilera et al. Matching events in a content-based
subscription system. In PODC, pages 53–61, 1999.

[ME04] Joris Mihaeli and Opher Etzion. Event database processing. In AD-
BIS (Local Proceedings), 2004.

[MHM04] Norman May, Sven Helmer, and Guido Moerkotte. Nested queries
and quantifiers in an ordered context. In ICDE, pages 239–250, 2004.

[MM09] Yuan Mei and Samuel Madden. Zstream: a cost-based query proces-
sor for adaptively detecting composite events. In SIGMOD, pages
193–206, 2009.

[Mou03] Moustafa A. Hammad et al. Scheduling for shared window joins over
data streams. In VLDB, pages 297–308, 2003.

[MSHR02] Samuel Madden, Mehul A. Shah, Joseph M. Hellerstein, and Vi-
jayshankar Raman. Continuously adaptive continuous queries over
streams. In SIGMOD Conference, pages 49–60, 2002.

[MZZ10] Barzan Mozafari, Kai Zeng, and Carlo Zaniolo. Efficient pattern
matching over event streams. In VLDB, 2010.

[Pet03] Peter A. Tucker et al. Exploiting punctuation semantics in continuous
data streams. IEEE Trans. Knowl. Data Eng., 15(3):555–568, 2003.

[PR08] Paolo Pialorsi and Marco Russo. Programming microsoft linq. 2008.

[Pra94] Praveen Seshadri et al. Sequence query processing. In SIGMOD,
pages 430–441, 1994.

[RDR+98] Raghu Ramakrishnan, Donko Donjerkovic, Arvind Ranganathan,
Kevin S. Beyer, and Muralidhar Krishnaprasad. Srql: Sorted rela-
tional query language. In SSDBM, pages 84–95, 1998.

BIBLIOGRAPHY 209

[RMCZ06] Esther Ryvkina, Anurag Maskey, Mitch Cherniack, and Stanley B.
Zdonik. Revision processing in a stream processing engine: A high-
level design. In ICDE, page 141, 2006.

[RSSB00] Prasan Roy, S. Seshadri, S. Sudarshan, and Siddhesh Bhobe. Ef-
ficient and extensible algorithms for multi query optimization. In
SIGMOD, pages 249–260, 2000.

[SB03] Heiko Schuldt and Gert Brettlecker. Sensor data stream processing
in health monitoring. In Mobilität und Informationssysteme, 2003.

[SC75] John Miles Smith and Philip Yen-Tang Chang. Optimizing the per-
formance of a relational algebra database interface. Commun. ACM,
18(10):568–579, 1975.

[Sel88] Timos K. Sellis. Multiple-query optimization. ACM Trans. Database
Syst., 13(1):23–52, 1988.

[Ses98] Praveen Seshadri. Query processing techniques for correlated
queries. Technical Report RJ 10129, 1998.

[Shi04] Shivnath Babu et al. Exploiting k-constraints to reduce memory over-
head in continuous queries over data streams. ACM Trans. Database
Syst., 29(3):545–580, 2004.

[SLR95] Praveen Seshadri, Miron Livny, and Raghu Ramakrishnan. Seq: A
model for sequence databases. In ICDE, pages 232–239, 1995.

[SPL96] Praveen Seshadri, Hamid Pirahesh, and T. Y. Cliff Leung. Complex
query decorrelation. In ICDE, pages 450–458, 1996.

[SrCL+05] Victor Shnayder, Bor rong Chen, Konrad Lorincz, Thaddeus R.
F. Fulford Jones, and Matt Welsh. Sensor networks for medical care.
In SenSys, page 314, 2005.

[sto] I. inetats. stock trade traces. http://www.inetats.com/.

[SW04] Utkarsh Srivastava and Jennifer Widom. Flexible time management
in data stream systems. In PODS, pages 263–274, 2004.

[SZZA01] Reza Sadri, Carlo Zaniolo, Amir M. Zarkesh, and Jafar Adibi. Opti-
mization of sequence queries in database systems. In PODS, 2001.

BIBLIOGRAPHY 210

[TFR+09] Dante I. Tapia, Juan A. Fraile, Sara Rodrı́guez, Juan Francisco
de Paz, and Javier Bajo. Wireless sensor networks in home care.
In IWANN (1), pages 1106–1112, 2009.

[Uni02] Stanford University. Stream query repository,http://www-
db.stanford.edu/stream/sqr/. 2002.

[Vij99] Vijayshankar Raman et al. Online dynamic reordering for interactive
data processing. In VLDB, pages 709–720, 1999.

[WDR06] Eugene Wu, Yanlei Diao, and Shariq Rizvi. High-performance com-
plex event processing over streams. In SIGMOD, pages 407–418,
2006.

[WLL+09] Mingzhu Wei, Mo Liu, Ming Li, Denis Golovnya, Elke A. Runden-
steiner, and Kajal T. Claypool. Supporting a spectrum of out-of-
order event processing technologies: from aggressive to conservative
methodologies. In SIGMOD, pages 1031–1034, 2009.

[WRGB06] Song Wang, Elke A. Rundensteiner, Samrat Ganguly, and Sudeept
Bhatnagar. State-slice: New paradigm of multi-query optimization
of window-based stream queries. In VLDB, pages 619–630, 2006.

[WZL03] Haixun Wang, Carlo Zaniolo, and Chang Luo. Atlas: A small but
complete sql extension for data mining and data streams. In VLDB,
pages 1113–1116, 2003.

[Yue95] Yue Zhuge et al. View maintenance in a warehousing environment.
In SIGMOD, pages 316–327, 1995.

[ZRH04] Yali Zhu, Elke A. Rundensteiner, and George T. Heineman. Dy-
namic plan migration for continuous queries over data streams. In
SIGMOD, pages 431–442, 2004.

[ZS02] Yunyue Zhu and Dennis Shasha. Statstream: Statistical monitoring
of thousands of data streams in real time. In VLDB, pages 358–369,
2002.

[ZW07] Qi Zhang and Wei Wang. A fast algorithm for approximate quantiles
in high speed data streams. In SSDBM, page 29, 2007.

