
Software-Induced Fault Attacks on

Post-Quantum Signature Schemes

Saad Islam

A Dissertation
Submitted to the Faculty

of the
WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the

Degree of Doctor of Philosophy
in

Electrical and Computer Engineering

April 2022

APPROVED:

Professor Berk Sunar
Advisor
Worcester Polytechnic Institute

Assistant Professor Fatemeh Ganji
Committee Member
Worcester Polytechnic Institute

Dr. Mehmet Sinan Inci
Committee Member
NVIDIA Corporation

Abstract

A digital signature is a digital equivalent of a handwritten signature or

stamp which is used to validate the authenticity and integrity in digital com-

munications like an email, a credit card transaction, or a digital document.

Digital signatures are mathematical schemes whose security is based on con-

jectured hard problems like discrete log or RSA moduli factorization. Unfor-

tunately, these public-key cryptosystems are not quantum secure and large-

scale quantum computers will be able to solve the underlying hard problems.

In 2021, IBM has released “Eagle”, a 127-qubit quantum processor and has

a roadmap of 1K-1M+ qubits beyond 2024. NIST has already realized the

quantum threat and announced a competition for Post-Quantum Cryptogra-

phy Standardization Process in 2016. It is currently in round 3 and expected

to be finalized with the announcement of KEM and Digital Signature stan-

dards by 2022. Apart from algorithmic security, significant attention has

been given to implementation attacks such as side-channel and fault attacks.

To counter classical Differential Fault Attacks (DFA), which only work for

deterministic schemes, the schemes are now offering randomized versions.

The goal of this dissertation is to investigate these randomized post-

quantum signature schemes against fault attacks. The study has identified

a number of vulnerabilities in several post-quantum schemes in the NIST

i

competition. We are able to recover the entire key of the LUOV (round 2 fi-

nalist) signature scheme in less than 4 hours of Rowhammer attack, followed

by our novel bit-tracing algorithm and divide and conquer attack. We have

named this hybrid attack QuantumHammer. More recently, we have pro-

posed the “Signature Correction Attack” on the Dilithium signature scheme

(round 3 finalist) and successfully reduced its security strength from 2128 to

281. Rowhammer attack does not require physical access and poses a signifi-

cant threat to shared cloud servers. The identified vulnerabilities are however

generic and can work as long as required faulty signatures are collected using

any fault mechanism. The main idea of both bit-tracing and signature cor-

rection is to utilize a single faulty signature to mathematically trace back to

the fault, revealing the secret key bit. We achieve this by trying to correct a

faulty signature for all possible faults in the secret key using the verification

algorithm as an oracle. This technique does not need any correct signature

counterpart as needed in traditional DFA attacks.

In all of our Rowhammer experiments on post-quantum schemes, we have

used SPOILER for finding the contiguous memory required for double-sided

Rowhammer. SPOILER is a hardware bug we discovered in all Intel gener-

ations, starting from 1st Gen (2008) of Intel core processors, stemming from

the speculative load operations. SPOILER reveals critical physical address

information to userspace processes which boosts Rowhammer and cache at-

tacks.

ii

Acknowledgments

This work is supported by U.S. Department of State, Bureau of Educational

and Cultural Affair’s Fulbright Program and by the National Science Foun-

dation under grants CNS- 1814406 and CNS-2026913. It was a great expe-

rience of exchanging culture and education in the past five years of my PhD

program.

I would like to extend my sincere gratitude to Professor Berk Sunar for

his continuous support and guidance that made this dissertation possible. I

really acknowledge his frequent visits to the lab and having healthy discus-

sions which kept me on track and made me think that I can do it. He has

always taken a lot of interest in my work and helped me accomplish it. I

have learned from him to aim high and keep advancing toward my goals.

I have always felt very comfortable sharing any kind of problems with him

and his advice was always helpful. He is truly an inspiration and I will keep

following his words in the future.

I am very grateful to my dissertation committee members Professor Berk

Sunar, Professor Fatemeh Ganji, and Dr. Mehmet Sinan Inci for their invalu-

iii

able time and guidance. Their constructive feedback and suggestions have

substantially improved the quality of this work. Despite their busy schedules,

they have always responded whenever I needed them.

I would like to thank Professor Thomas Eisenbarth (Worcester Polytech-

nic Institute and the University of Lübeck) and his team Moritz Krebbel and

Ida Bruhns from the University of Lübeck, Germany, for working with me.

I am grateful to my co-authors Daniel Moghimi, Berk Gulmezoglu, Andreas

Zankl, M. Caner Tol, Koksal Mus, Ziming Zhang, Richa Singh, and Patrick

Schaumont. I thank Muhammad Ali Siddiqi, who worked with me on my first

research paper during my undergraduate, leading to the best paper award.

I feel lucky to be part of Vernam Lab and working with such amaz-

ing people around me. We have spent a lot of time together, had great

discussions, and always tried to help each other as a family. In not any

particular order, I would like to thank the faculty of Vernam Lab including

Yarkin Doröz, Thomas Eisenbarth, Fatemeh (Saba) Ganji, William J. Mar-

tin, Koksal Mus, Patrick Schaumont, Berk Sunar, Shahin Tajik, my fellow

students Andrew J. Adiletta, Ramazan Kaan Eren, Mohammad Hashemi,

Pantea Kiaei, Zhenyuan (Charlotte) Liu, Dev Mehta, Tahoura Mosavirik,

Dillibabu Shanmugam, Richa Singh, M. Caner Tol, Koray Yurtseven, Zane

Weissman, and alumni, Archanaa Santhana Krishnan, Jacob Grycel, Yuan

Yao, Daniel Moghimi, Berk Gulmezoglu, Gizem Selcan Cetin, Mehmet Sinan

Inci, Michael Moukarzel, Wei Dai and Cong Chen.

iv

Contents

1 Introduction 1

1.1 Contributions . 5

1.2 Outline . 8

2 Background 9

2.1 Computer Architecture . 9

2.1.1 Memory Management 9

2.1.2 Cache Hierarchy . 10

2.1.3 Prime+Probe Attack 11

2.1.4 Memory Order Buffer 12

2.1.5 Speculative Load Hazards 13

2.2 Software-Induced Fault Attacks 17

2.2.1 Rowhammer Attack . 17

2.2.2 Plundervolt Attack . 22

2.3 Post-Quantum Signature Schemes 23

2.3.1 Lifted Unbalanced Oil and Vinegar (LUOV) 24

v

2.3.2 CRYSTALS - Dilithium 29

3 SPOILER: Speculative Load Hazards Boost Rowhammer

and Cache Attacks 33

3.1 Motivation . 34

3.1.1 Contributions . 37

3.1.2 Related Work . 38

3.2 The SPOILER Attack . 40

3.2.1 Speculative Dependency Analysis 41

3.2.2 Leakage of the Physical Address Mapping 45

3.2.3 Evaluation . 46

3.2.4 Discussion . 50

3.3 SPOILER from JavaScript . 52

3.3.1 Efficient Eviction Set Finding 53

3.4 Rowhammer Attack using SPOILER 56

3.4.1 DRAM Bank Co-location 57

3.4.2 Contiguous Memory 59

3.4.3 Double-Sided Rowhammer with SPOILER 60

3.5 Tracking Speculative Loads With SPOILER 63

3.5.1 SPOILER Context Switch 65

3.5.2 Negative Result: SPOILER SGX 66

3.6 Mitigations . 68

3.6.1 Software Mitigations 68

vi

3.6.2 Hardware Mitigations 70

3.7 Conclusion . 70

4 QuantumHammer: A Practical Hybrid Attack on the LUOV

Signature Scheme 72

4.1 Contributions . 73

4.2 Related Work . 75

4.3 A Novel Bit-Tracing Attack on LUOV 79

4.3.1 Pre-processing Phase (Templating) 80

4.3.2 Online Phase (Rowhammer attack) 84

4.3.3 Post-processing Phase 86

4.3.4 Performance . 90

4.4 QuantumHammer . 92

4.4.1 Divide-and-Conquer Attack 92

4.4.2 Observations on the structure of Q2 93

4.4.3 A Practical Divide and Conquer Attack 94

4.5 Experimental Results . 99

4.6 Countermeasures . 102

4.7 Discussion . 103

4.8 Conclusion . 104

5 Signature Correction Attack on Dilithium Signature Scheme108

5.1 Contributions . 109

5.2 Related Work . 111

vii

5.3 Signature Correction Attack on Dilithium 112

5.3.1 Attacker Model . 113

5.3.2 Phases of the Signature Correction Attack 114

5.3.3 Signature Correction Algorithm for Dilithium 115

5.3.4 Templating Phase . 118

5.3.5 Online Phase . 123

5.4 Experimental Results . 126

5.4.1 Experimental Setup . 126

5.4.2 Key recovery with Signature Correction Attack 126

5.5 Estimating the Diminished Security Level of Dilithium 129

5.5.1 Lattice Security with Reduced Dimension 129

5.5.2 Exploiting the Redundant Encoding to Recover More

Coefficients . 132

5.5.3 Reducing the Norm of the Coefficients 136

5.6 Discussion . 138

5.6.1 Is the weakness inherent to Dilithium? 138

5.6.2 Further Reducing the Attack Complexity 141

5.7 Countermeasures . 142

5.7.1 Rowhammer Countermeasures 143

5.7.2 Algorithmic Countermeasures 145

5.7.3 Applicability on Glitching Attacks 148

5.8 Conclusion . 148

viii

6 Plundervolt Attack on Dilithium 150

6.1 Contributions . 151

6.2 Plundervolt Attack on Dilithium 151

6.2.1 Threat Model . 151

6.2.2 Experimental Setup . 152

6.2.3 Finding crash points 152

6.2.4 Temperature Variations 153

6.2.5 Experimental Results 153

6.3 Novel Observation of Plundervolt 154

6.4 Conclusion . 157

7 Conclusion 158

A SPOILER 183

A.1 Tested Hardware Performance Counters 183

A.2 Row conflict Side-Channel . 183

A.3 Memory Utilization and Contiguity 184

B QuantumHammer 188

B.1 Divide-and-Conquer Attack 188

B.2 LUOV - Build Augmented Matrix 192

C Plundervolt 193

C.1 Assembly version of C code in Listing 6.1 193

ix

List of Tables

3.1 1MB aliasing on various architectures 46

3.2 Comparison of different eviction set finding algorithms 56

3.3 Reverse engineering the DRAM memory mappings using

DRAMA tool . 58

3.4 DRAM modules susceptible to double-sided Rowhammer at-

tack using SPOILER . 62

4.1 Post computation times for bit-tracing attack on LUOV 90

4.2 Exhaustive search timing for different sizes of MQ(n, n) 99

4.3 Quadratic steps in our experimental QuantumHammer on

LUOV-7-57-197 . 106

4.4 Linear steps in our experimental QuantumHammer on

LUOV-7-57-197 . 107

5.1 CPU cycles and time taken by a typical Rowhammer instruc-

tion sequence . 123

5.2 Post computation times for Signature Correction Attack . . . 128

x

5.3 Recovering an additional bit by using recovered 2-bit info by

Rowhammer . 134

5.4 Number of additional full coefficient recoveries by 2-bit info . . 134

5.5 Distribution of bits recovered by Signature Correction Algo-

rithm in polynomial coefficients 135

5.6 Recovering an additional bit by using 1-bit recovered by

Rowhammer . 136

5.7 Number of additional bit recovery by 1-bit info 136

5.8 Recovered Information by Signature Correction up to the

number of coefficients . 139

5.9 The reduced security level of Dilithium using the Signature

Correction Attack . 140

5.10 An Overview of Countermeasures against Implementation At-

tacks on Lattice-Based Post-Quantum Cryptography 144

6.1 Number of faulty signatures in Dilithium 155

A.1 Counters profiled for correlation test 187

xi

List of Figures

2.1 MOB schematic according to Intel Patents 13

2.2 The speculative load demonstrated on a hypothetical proces-

sor with 7 pipeline stages . 14

2.3 The dependency check logic 16

2.4 DRAM Memory Densities Comparison [162]. 20

2.5 Public key and signature size comparison between PQC sig-

nature schemes and ECDSA 23

2.6 LUOV public and private key generation processes. 26

2.7 Signature generation algorithm explained in four steps. 28

3.1 SPOILER’s timing measurements and hardware performance

counters recorded simultaneously. 43

3.2 Correlation of SPOILER with HPCs 44

3.3 Step-wise peaks with 22 steps and a high latency can be ob-

served on some of the pages 47

3.4 Histogram of the measurement for the speculative load with

various store addresses . 49

xii

3.5 Reverse engineering physical page mappings in JavaScript . . 53

3.6 Bank co-location for various DRAM configurations 59

3.7 Relation between leakage peaks and the physical page numbers 61

3.8 Amount of bit-flips increases with the increase in number of

hammerings . 63

3.9 The depth of SPOILER leakage with respect to different in-

structions and execution units. 65

3.10 Execution time of mincore system call 67

3.11 The effect of SPOILER on TLB flush 68

4.1 Phases of novel bit-tracing attack on LUOV 79

4.2 Row conflicts for the pages from the detected contiguous memory 81

4.3 Number of bit-flips increases with the increase in number of

hammers . 82

4.4 Double-sided Rowhammer with different data patterns 83

4.5 Online phase of Rowhammer attack 84

4.6 Number of bits recovered per column of T 85

4.7 Bits recovered per column of T 100

5.1 Contiguous memory detection 121

5.2 Row-conflict side-channel . 122

5.3 The number of bit-flips increases with the number of hammers 123

5.4 Victim placement and double-sided Rowhammer 124

5.5 Recovered bits of secret key s1 for Dilithium 129

xiii

6.1 The crash voltage increases when the operating frequency is

set to a higher value . 154

A.1 Timings for accessing the aliased virtual addresses 184

A.2 Finding contiguous memory of 520 kB with increasing memory

utilization . 186

A.3 Finding contiguous memory of 520 kB with decreasing memory

utilization. 186

xiv

Chapter 1

Introduction

In recent years, quantum computers have made steady progress to the point

where they are considered a threat to traditional public-key cryptosystems

based on the conjectured hardness of problems such as integer factorization

and discrete logarithm. In a landmark result, Shor introduced an algorithm

[154] that can solve the classically conjectured hard problems of factorization

and discrete logarithm in polynomial time with the aid of a quantum com-

puter. Symmetric-key systems will also be affected, albeit to a lesser extent.

Using Grover’s algorithm [64] one may recover symmetric keys by search-

ing through the key-space with square-root time complexity. Hence one may

overcome Grover, by equivalently doubling key lengths of symmetric schemes

and output sizes of hash functions. As Key Encapsulation Mechanism (KEM)

uses public-key schemes to exchange the symmetric keys, there is a need to

develop schemes based on quantum-secure hard problems.

1

To aid the transition to post-quantum cryptography (PQC), the US NIST

announced a PQC standardization process in 2016 [129]. The process started

with 82 submissions for public-key encryption (PKE), KEM, and digital sig-

natures. 69 schemes were passed into Round 1, 26 were able to get into Round

2 and currently, there are seven finalists and eight alternate candidates in

Round 3 expected to be completed by the end of 2022. Similar schemes were

merged together and some were attacked by the cryptographic community

and were taken out of the competition [44, 147, 40, 63, 5, 156, 157, 136, 91].

There are five categories based on the underlying hard problems: lattice-

based, code-based, hash-based, isogeny-based, and multivariate schemes.

These schemes offer varying key sizes under varying performance figures.

Multivariate is known to be very efficient for resource constraint devices

but on the other hand, the key sizes are quite large. Lattice-based schemes

have comparatively compact keys and exhibit better performance. Five out

of seven finalists belong to the lattice category; two of the lattice schemes

Dilithium [49] and Falcon [54] are digital signatures. The only remaining

signature scheme is Rainbow, which is already attacked by Ward Beullens

[14] in 2022. Dilithium belongs to the CRYSTALS family having another

finalist KYBER which is a KEM. Both are based on the conjectured hard

module Learning With Errors (LWE) problem.

The cryptographic community as well as companies have started inte-

grating the finalists from the NIST competition into existing cryptographic

libraries like OpenSSL. An open-source project named Open Quantum Safe

2

(OQS) [159] aims to support the development and prototyping of quantum-

resistant cryptography. PQShield [141] is providing four different products

for hardware and firmware for embedded devices, SDK for mobile and server

technologies, and encryption solution for messaging platforms. Another com-

pany, QuSecure [144], is providing a software solution to protect the data at

rest. The transition from classic to post-quantum algorithms is urgently

needed to ensure forward secrecy.

According to the status report on the Second Round of the NIST PQC

standardization process [3], evaluation is based on three criteria: 1) Security.

2) Cost and performance. 3) Algorithm and implementation characteristics.

The third criterion is very important since even if a scheme is mathemat-

ically secure, it may succumb to side-channel and fault attacks targeting

the implementation. Indeed, in recent years, numerous side-channel attacks

e.g. [27, 137, 21, 145, 139, 142, 51, 41, 131, 7, 94, 98] and fault attacks

e.g. [126, 28, 146, 140, 105, 17, 50, 19, 147, 59] have been demonstrated

by the research community on PQC schemes. These include cache attacks,

power and EM side-channels, EM and laser injections, clock glitches, and the

Rowhammer attack. A major challenge in applying these attacks on PQC

schemes is that PQC schemes have massive key sizes (kB) while the attacks

can reveal only a few bits per attempt. Yet, even a few revealed key bits

may reduce the security strength below the level specified by the PQC stan-

dard. Another challenge for side-channel attacks is that all the finalists have

constant-time AVX2 implementations for example they do not have secret

3

dependent branches or other timing variations based upon the secret key.

Also, the schemes in Round 3 have withstood more than five years of crypt-

analysis by the cryptographic community and the underlying hard problems

have been analyzed for decades. For the fault attacks like Differential Fault

Attacks (DFA), PQC schemes already have mitigation by randomizing the

nonce values. The NIST Round 2 version of LUOV, specifically added a

random salt for every message and required randomly generated vinegars

to defend against the side-channel and fault injection attacks. To prevent

DFA, Round 2 Dilithium added signature randomization by using a random

nonce in every signature generation. DFA works on a principle of taking the

difference between the correct and faulty pair of output and mathematically

recovering the secret key. After this mitigation, the same message signed or

encrypted twice gives a different signature or ciphertext and the attacker is

unable to collect a faulty and correct pair of the same message.

In this dissertation, we show that nonce randomization mitigation is

insufficient for fault attacks. We have proposed bit-tracing attack for the

LUOV scheme and Signature Correction Attack for Dilithium scheme that

only needs faulty signatures. The main idea is to correct the faulty signature

for all possible bit-flips in the secret key by using verification algorithm as

an oracle. We achieve this by identifying the unique impact of every faulty

secret key bit on the signature and subtracting it from the faulty signature.

We keep verifying our tries using verification algorithm and end up recover-

ing the secret key bits. This technique recovers one secret key bit for one

4

faulty signature and may not be used to recover the full secret key. How-

ever, we have demonstrated that by analytical approaches and techniques,

we can amplify our attack to recover the full secret key in case of LUOV and

successfully reduced the security level of Dilithium from 2128 to 281.

Both bit-tracing and Signature Correction attacks are independent of the

fault mechanisms and only need faulty signatures with single-bit faults in the

secret keys. We have chosen Rowhammer to demonstrate these attacks which

is a software-induced fault mechanism, capable of injecting hardware faults

into the memory. Rowhammer does not require any physical access and can

be carried out remotely even in cloud scenarios [86, 55, 42, 89, 143, 167]. In

all of our Rowhammer experiments, we have used SPOILER for contiguous

memory detection. Contiguous memory is a requirement to efficiently imple-

ment the Rowhammer attack. Previous works use HugePages for the same

purpose but that needs special settings. However, SPOILER can detect con-

tiguous memory in normal settings and without any special privileges. The

Discovery of SPOILER in this dissertation has led us practically demonstrate

the Rowhammer attack on multiple post-quantum signature schemes.

1.1 Contributions

This dissertation investigates post-quantum signature schemes against

software-induced fault attacks. The schemes investigated in this work al-

ready incorporate nonce randomization fault countermeasure. However, this

5

research identifies a number of vulnerabilities in the implementations as well

as in the design of these schemes. The primary contributions of this disserta-

tion are summarized below and detailed contributions are mentioned in each

chapter:

• We have discovered a novel microarchitectural leakage named

SPOILER (CVE-2019-0162) in all generations of Intel Core processors

starting from the 1st generation (2008). It leaks critical physical ad-

dress information stemming from the false dependency hazards during

speculative load operations.

• We demonstrate that SPOILER can be used to find contiguous memory

with normal user-level privilege and without any special settings like

HugePages. Contiguous memory is required by double-sided Rowham-

mer attack to identify consecutive rows inside the DRAM banks.

• We have identified a number of DRAM modules, vulnerable to the

Rowhammer attack. These Rowhammer setups have helped us iden-

tify and practically demonstrate a number of vulnerabilities in post-

quantum signature schemes.

• We have introduced and implemented bit-tracing attack on the LUOV

signature scheme. The attack is purely mathematical that uses faulty

signatures to trace and recover secret key bits. We then amplify the

efficiency of our attack using an analytical approach for full key recovery

and call this hybrid attack as QuantumHammer.

6

• We practically demonstrate the Rowhammer attack on constant-time

AVX2 optimized implementation of LUOV and collect the faulty sig-

natures. Our attack induces hardware fault but through software, i.e.

we do not assume any physical access to the device. This also permits

remote attacks on shared cloud servers or in sandboxed environments.

• We have introduced and implemented Signature Correction Attack on

Dilithium signature scheme reducing its security strength from 2128 to

281. The attack makes use of the faulty signatures and mathematically

traces back to the secret key bits. The idea looks similar to the bit-

tracing attack, however, the mathematics is completely different. This

is because LUOV is a multivariate scheme and Dilithium is based on

lattices.

• We practically demonstrate the faults in the Dilithium scheme by

Rowhammer attack and collect the faulty signatures. The Signature

Correction Attack, however, still applies if the faulty signatures are

collected through some other fault mechanism. The only requirement

is that they must have single-bit faults in the secret key of Dilithium.

• We demonstrate faults in the Dilithium signature scheme by apply-

ing the Plundervolt attack. The attack is based on undervolting the

CPU voltages through software. We have successfully collected faulty

signatures on various CPU voltages.

• We have discovered an interesting behavior of Plundervolt which af-

7

fects the memory write operations stemming from the out-of-order

execution of a branch.

1.2 Outline

This dissertation is the result and combination of publications [86, 126, 87, 70,

168] in various top-tier peer-reviewed security conferences. First, we describe

the necessary background in Chapter 2. Chapter 3 presents SPOILER, a

collaborative work with Ahmad Moghimi, Ida Bruhns, Moritz Krebbel, Berk

Gulmezoglu, Thomas Eisenbarth and Berk Sunar. This work was published

in USENIX Security 2019. Chapter 4, QuantumHammer, is the result of

collaborative work with Koksal Mus and Berk Sunar, published in CCS 2020.

In Chapter 5, Signature Correction Attack is presented, a collaborative work

with Koksal Mus, Richa Singh, Patrick Schaumont, and Berk Sunar. This

work is accepted in EuroS&P 2022. Chapter 6 presents Plundervolt attack

on the Dilithium signature scheme and Chapter 7 concludes the dissertation.

We would like to mention our collaborative work with Berk Gulmezoglu et

al. on user privacy in mobile devices, published in ACM ASIACCS 2019 [70]

and with M. Caner Tol et al. on backdoor injection attacks on DNNs using

Rowhammer [168].

8

Chapter 2

Background

This dissertation implements software-induced fault attacks such as

Rowhammer and Plundervolt on post-quantum signature schemes. In this

chapter, first we provide background information on computer architecture

required to understand SPOILER. Then we explain the software-induced

fault attacks and finally the structure of the LUOV and Dilithium signature

schemes.

2.1 Computer Architecture

2.1.1 Memory Management

The virtual memory manager shares the DRAM across all running tasks by

assigning isolated virtual address spaces to each task. The assigned memory

is allocated in pages, which are typically 4 kB each, and each virtual page

9

will be stored as a physical page in DRAM through a virtual-to-physical

page mapping. Memory instructions operate on virtual addresses, which are

translated within the processor to the corresponding physical addresses. The

page offset comprising the least significant 12 bits of the virtual address is

not translated. The processor only translates the bits in the rest of the

virtual address, the virtual page number. The OS is the reference for this

translation, and the processor stores the translation results inside the TLB.

As a result, repeated translations of the same address are performed more

efficiently.

2.1.2 Cache Hierarchy

Modern processors incorporate multiple levels of caches to avoid the DRAM

access latency. The cache memory on Intel processors is organized into sets

and slices. Each set can store a certain number of lines, where the line size

is 64 Bytes. The 6 Least Significant Bits (LSBs) of the physical address are

used to determine the offset within a line and the remaining bits are used

to determine which set to store the cache line in. The number of physical

address bits that are used for mapping is higher for the LLC, since it has

a large number of sets, e.g., 8192 sets. Hence, the untranslated part of the

virtual address bits which is the page offset, cannot be used to index the

LLC sets. Instead, higher physical address bits are used. Further, each set

of LLC is divided into multiple slices, one slice for each logical processor.

The mapping of the physical addresses to the slices uses an undocumented

10

function [84]. When the processor accesses a memory address, a cache hit

or miss occurs. If a miss occurs in all cache levels, the memory line has

to be fetched from DRAM. Accesses to the same memory address would be

served from the cache unless other memory accesses evict that cache line.

In addition, we can use the clflush instruction, which follows the same

memory access check as other memory operations, to evict our own cache

lines from the entire cache hierarchy.

2.1.3 Prime+Probe Attack

In the Prime+Probe attack, the attacker first fills an entire cache set by

accessing memory addresses that are mapped to the same set, an eviction

set. Later, the attacker checks whether the victim program has displaced

any entry in the cache set by accessing the eviction set again and measuring

the execution time. If this is the case, the attacker can detect congruent

addresses, since the displaced entries cause an increased access time. How-

ever, finding the eviction sets is difficult due to the unknown translation of

virtual addresses to physical addresses. Since an unprivileged attacker has

no access to HugePages [80] or the virtual-to-physical page mapping such

as the pagemap file [113], knowledge about the physical address bits greatly

speeds up the eviction set search.

11

2.1.4 Memory Order Buffer

The processor manages memory operations using the Memory Order Buffer

(MOB). MOB is tightly coupled with the data cache. The MOB assures that

memory operations are executed efficiently by following the Intel memory

ordering rule [122] in which memory stores are executed in-order and mem-

ory loads can be executed out-of-order. These rules have been enforced to

improve the efficiency of memory accesses while guaranteeing their correct

commitment. Figure 2.1 shows the MOB schematic according to Intel [2, 1].

The MOB includes circular buffers, store buffer 1 and load buffer (LB). A

store will be decoded into two micro-ops to store the address and data,

respectively, in the store buffer. The store buffer enables the processor to

continue executing other instructions before commitment of the stores. As

a result, the pipeline does not have to stall for the stores to complete. This

further enables the MOB to support out-of-order execution of the load.

Store forwarding is an optimization mechanism that sends the store data

to a load if the load address matches any of the store buffer entries. This is

a speculative process, since the MOB cannot determine the true dependency

of the load on stores based on the store buffer. Intel’s implementation

of the store buffer is undocumented, but a potential design suggests that it

will only hold the virtual address, and it may include part of the physical

address [2, 1, 104]. As a result, the processor may falsely forward the data, al-

1Store buffer consists of Store Address Buffer (SAB) and Store Data Buffer (SDB). For
simplicity, we use Store Buffer to mention the logically combined SAB and SDB units.

12

PA [:0]

VA [11:0]PA [19:12]VA [:12]...
VA [11:0]PA [19:12]VA [:12]...

VA [11:0]PA [19:12]VA [:12]...

...

...
PA [:0]...

PA [:0]...

DATA...
DATA...

DATA...

... ...

LB

SABSDB

MOB

DATAVA[:0]PA[:0]...
...

PAB

TLB

PMH

index 0

index n

index 0

index n

index 0

index k

Stored Data μOp Store Address μOp

DCACHE

Figure 2.1: The Memory Order Buffer includes circular buffers SDB, SAB
and LB. SDB, SAB and PAB of the DCACHE have the same number of
entries. SAB may initially hold the virtual address and the partial physical
address. MOB requests the TLB to translate the virtual address and update
the PAB with the translated physical address.

though the physical addresses do not match. The complete resolution will be

delayed until the load commitment, since the MOB needs to ask the TLB for

the complete physical address information, which is time-consuming. Addi-

tionally, the data cache (DCACHE) may hold the translated store addresses

in a Physical Address Buffer (PAB) with an equal number of entries as the

store buffer.

2.1.5 Speculative Load Hazards

As we mentioned earlier, memory loads can be executed out-of-order and

before the preceding memory stores. If one of the preceding stores modi-

fies the content of a location in memory, the memory load address is referring

13

Hazard

store a → X
store b → Y
store c → Z
load d← W
inc d

F D X1 X2 X3 X4 C

Busy
Resource

Load Block
Bypasses Stores

Dependency Check
Before Commit

(State 1) (State 2) (State 3) (State 4)

Flush The Pipeline

Figure 2.2: The speculative load is demonstrated on a hypothetical processor
with 7 pipeline stages: F = Fetch, D = Decode, X1−4 = Executions, and C
= Commit. When the memory stores are blocked competing for resources
(State 1), the load will bypass the stores (State 2). The load block including
the dependent instructions will not be committed until the dependency of
the address W versus X,Y ,Z are resolved (State 3). In case of a dependency
hazard (State 4), the pipeline is flushed and the load is restarted.

to, out-of-order execution of the load will operate on stale data, which re-

sults in invalid execution of a program. This out-of-order execution of the

memory load is a speculative behavior, since there is no guarantee during

the execution time of the load that the virtual addresses corresponding to

the memory stores do not conflict with the load address after translation

to physical addresses. Figure 2.2 demonstrates this effect on a hypothetical

processor with 7 pipeline stages. As multiple stores may be blocked due to

limited resources, the execution of the load and dependent instructions in

the pipeline, the load block, will bypass the stores since the MOB assumes

the load block to be independent of the stores. This speculative behavior

improves the memory bottleneck by letting other instructions continue their

execution. However, if the dependency of the load and preceding stores is

not verified, the load block may be computed on incorrect data which is ei-

ther falsely forwarded by store forwarding (false dependency), or loaded from

14

a stale cache line (unresolved true dependency). If the processor detects a

false dependency before committing the load, it has to flush the pipeline and

re-execute the load block. This will cause observable performance penalties

and timing behavior.

Dependency Resolution

Dependency checks and resolution occur in multiple stages depending on the

availability of the address information in the store buffer. A load instruction

needs to be checked against all preceding stores in the store buffer to avoid

false dependencies and to ensure the correctness of the data. A potential

design [76, 104],2 suggests the following stages for the dependency check and

resolution, as shown in Figure 2.3:

1. Loosenet: The first stage is the loosenet check where the page offsets

of the load and stores are compared3. In case of a loosenet hit, the

compared load and store may be dependent and the processor will

proceed to the next check stage.

2. Finenet: The next stage, called finenet, uses upper address bits. The

finenet can be implemented to check the upper virtual address bits [76],

or the physical address tag [104]. Either way, it is an intermediate stage,

2The implementation of the MOB used in Intel processors is unpublished and therefore
we cannot be certain about the precise architecture. Our results agree with some of the
possible designs that are described in the Intel patents.

3According to Ld Blocks Partial:Address Alias Hardware Performance Counter
(HPC) event[81], loosenet is defined by Intel as the mechanism that only compare the
page offsets.

15

Yes

No

Loosenet
 Hit? No

Yes No

Finenet
 Hit?

Yes

No
Physical
Address
Match?

Block Load /
Forward Store

Proceed with
Load

Redispatch
Load

Yes

No
Partial

Physical Addr
Hit?

Figure 2.3: The dependency check logic: loosenet initially checks the least 12
significant bits (page offset) and the finenet checks the upper address bits,
related to the page number. The final dependency using the physical address
matching might still fail due to partial physical address checks.

and it is not the final dependency resolution. In case of a finenet hit, the

processor blocks the load and/or forwards the store data, otherwise,

the dependency resolution will go into the final stage.

3. Physical Address Matching: At the final stage, the physical ad-

dresses will be checked. Since this stage is the final chance to resolve

potential false dependencies, we expect the full physical address to be

checked. However, one possible design suggests that if the physical ad-

dresses are not available, the physical address matching returns true

and continues with the store forwarding [76].

Since the page offset is identical between the virtual and physical address,

loosenet can be performed as soon as the store is decoded. [2] suggests that

the store buffer only holds bit 19 to 12 of the physical address. Although

16

the PAB holds the full translated physical address, it is not clear in which

stage this information can be available to the MOB. As a result, the finenet

check may be implemented based on checking the partial physical address

bits. As we verify later, the dependency resolution logic may fail to resolve

the dependency at multiple intermediate stages due to the unavailability of

the full physical address.

2.2 Software-Induced Fault Attacks

In this section, we provide the background of two software-induced fault

mechanisms, Rowhammer and Plundervolt.

2.2.1 Rowhammer Attack

We are using Rowhammer as a tool to inject faults. We briefly review the

concept and operation of the Rowhammer attack, covering memory manage-

ment, DRAM organization, address translation and applicability on cloud

environments.

Every process has its own virtual address space which is divided into vir-

tual pages, typically of size 4 kB. Memory Management Unit (MMU) trans-

lates the virtual addresses into physical addresses and keeps track in form

of page tables. The memory controller integrated in modern processor then

translates these physical addresses into channels, ranks and banks inside

the DRAM. This DRAM addressing varies from system to system and is

17

not publicly disclosed for Intel CPUs, although the DRAM addressing was

reverse-engineered for some of the systems by Pessl et al. in 2016 [138]. Each

bank then further consists of rows and columns sharing the same row buffer.

A DRAM row consists of 64K cells and a cell is composed of a transistor

and a capacitor. Data is stored in these capacitors in form of charge and

interpreted as a zero or a one according to predefined threshold levels. As

capacitors leak charge over time, there is a refresh mechanism to restore the

charge of all the DRAM cells every 64ms.

As the DRAM manufacturers are trying to make memories more com-

pact, these rows of cells are getting physically closer leading to disturbance

errors from one DRAM row to another. If one row is accessed repeatedly, it

might cause electrical interference with the neighboring row due to insuffi-

cient insulation and the cells in the neighboring row may leak faster. If the

leakage is faster than the refresh frequency, the cells can not maintain their

state, which may lead to bit-flips. This is known as the Rowhammer effect

which was first introduced by Kim et al. in 2014 [100]. Using Rowhammer,

an attacker with access to a row next to the victim row in DRAM is able to

cause bit-flips in the victim’s memory, even when the attacker resides in a

process completely separate from the victim process. If the attacker hammers

one row which causes bit-flips in the neighboring row, it is called single-sided

Rowhammer.

After this discovery, Seaborn et al. [151] introduced the double-sided

Rowhammer which is far more effective than the earlier single-sided Rowham-

18

mer. In a double-sided Rowhammer, the attacker hammers two rows sand-

wiching the victim row, leaking the victim cells even faster. Veen et al. [173]

in 2016 showed that it is also applicable on mobile platforms. Gruss et al.

[65] introduced one-location hammering and achieved root access with op-

code flipping in sudo binary in 2018. Gruss et al. [67] and Ridder et al. [42]

have shown that Rowhammer can be applied through JavaScript remotely.

Tatar et al. [164] and Lip et al. [115] have proved that it can be executed over

the network. Rowhammer is also applicable in cloud environments [181, 36]

and heterogeneous FPGA-CPU platforms [176]. In 2020, Kwong et al. [107]

demonstrated that Rowhammer is not just an integrity problem but also a

confidentiality problem.

There have been many efforts on Rowhammer detection [85, 35, 186,

75, 133, 68, 9, 38] and neutralization [67, 173, 25]. Gruss et al. [65]

have shown that all of these countermeasures are ineffective. Some coun-

termeasures require hardware modification, bootloader or BIOS update

[25, 8, 97, 100, 61, 79] but they are not all implemented. Cojocar et al.

[37] in 2019 reverse-engineered the Error Correction Code (ECC) memories

showing that ECC countermeasure is not secure either. Another hardware

countermeasure Target Row Refresh (TRR) has also been recently bypassed

by Frigo et al. [57] using many-sided Rowhammer on DDR4 chips. The same

work has been extended by Ridder et al. [42] to attack TRR-enabled DDR4

chips from JavaScript. They claim that more than 80% of the DRAM chips

in the market are still vulnerable to the Rowhammer attack.

19

Impact of Technology Scaling

As the DRAM chip densities are increasing in every generation of DDR (see

Figure 2.4), they are becoming more vulnerable to Rowhammer vulnerability

[99, 127, 55]. The first Rowhammer attack by Kim et al. [100] was on DDR3

memories, whereas DDR and DDR2 do not have this vulnerability. Kim et

al. [99] have demonstrated that the minimum number of hammers required

to induce a bit-flip (Hammer Count) greatly reduces in newer DRAM chips

(From 69.2k to 22.4k in DDR3, 17.5k to 10k in DDR4, and 16.8k to 4.8k in

LPDDR4).

Figure 2.4: DRAM Memory Densities Comparison [162].

Cojocar et al. [37] have demonstrated that Memory Controller-based

20

ECC is susceptible to Rowhammer attack. Newer generations such as DDR5

and LPDDR4 now incorporate on-die ECC to reduce data corruption rates,

which operates entirely within the DRAM. It would be worth investigating

if on-die ECC memories have Rowhammer vulnerability [187]. DDR5 also

has an optional Refresh Management (RFM) as a mitigation for Rowhammer

attack. RFM is similar in concept to TRR in DDR4 which monitors excessive

activations (ACT) per row, RFM is instead based on ACT per bank. Another

concern with ECC is that DRAM manufacturers are relying on ECC for

memory integrity and lowering the DRAM refresh rate to save power [37]. A

lower refresh rate dramatically increases the number of bit-flips [100], making

it easier to bypass ECC [37].

Graphics DDR (GDDR) is a type of DRAM specifically designed for

applications requiring high bandwidth such as Graphics Processing Units

(GPUs). There are no Rowhammer bit-flips reported in literature so far on

GDDR memories. However, Zhang et al. [187] write in their future work to

mount an end-to-end attack against the DNN model of the victim tenant by

inducing bit-flips in GDDR5.

There is also a need to investigate latest 3D-stacked memory technologies

such as High Bandwidth Memory (HBM) [90]. 3D stacking enables stacking

of volatile memory like DRAM directly on top of a microprocessor, signif-

icantly reducing the transmission delay. It would be worth investigating if

there is any electromagnetic coupling between these vertically stacked DRAM

chips in this third dimension.

21

2.2.2 Plundervolt Attack

Dynamic voltage and frequency scaling (DVFS) has been introduced to man-

age heat and power consumption in modern systems. For this reason, the

CPUs exposed a privileged interface to software for dynamic voltage and

frequency scaling. In 2020, Murdock et al. [125] have shown that this inter-

face can be abused to compromise Intel SGX integrity, dubbed Plundervolt.

There is another similar concurrent work named V0LTpwn by Kenjar et al.

[96] which also attacks the Intel SGX. Both groups had a responsible disclo-

sure with Intel and a security advisory INTEL-SA-00289 / CVE-2019-11157

[82] has been assigned to the vulnerability. As a mitigation strategy, Intel

disabled the mailbox interface from the software and released microcode and

BIOS updates. However, Murdock et al. believe that this may not cover the

root cause for Plundervolt.

The idea of Plundervolt and V0LTpwn is not completely new, there was

a similar software-induced fault attack on ARM devices by Tang et al. [163]

in 2017, named as CLKscrew. However, it was unclear whether a similar

technique may work for Intel devices. Also, CLKscrew was based on fre-

quency changes, whereas Plundervolt is based on undervolting the CPUs.

Both however are capable of compromising the integrity of Trusted Exe-

cution Environments (TEE) and recovering secret keys from cryptographic

algorithms. This led to a new class of software-induced fault attacks that

does not require physical access to the victim machine and can be executed

remotely. As compared to the Rowhammer attack, which causes bit-flips in

22

memory, this new class of fault attacks is capable of inducing computation

faults which are also repeatable with high probability.

2.3 Post-Quantum Signature Schemes

In this section, we introduce two of the post-quantum signature schemes,

LUOV [15] and Dilithium [49]. Their key generation, signature generation

and verification algorithm are described briefly. To give an idea about the

massive key and signature sizes of post-quantum signature schemes, we have

compared the round 2 candidates with ECDSA in Figure 2.5.

4 6 8 10 12 14 16 18 20 22

Public Key (Log
2
n Bytes)

4

6

8

10

12

14

16

18

S
ig

n
a
tu

re
 S

iz
e
 (

L
o
g

2
n
 B

y
te

s
)

GeMSS

LUOV

MQDSS

Rainbow

Dilithium

Falcon

qTESLA

Picnic

SPHINCS+

ECDSA

Figure 2.5: Public key and signature size comparison between PQC signature
schemes and ECDSA. Both x-axis and y-axis are on logarithmic scale.

23

2.3.1 Lifted Unbalanced Oil and Vinegar (LUOV)

Consider a system of m Multivariate Quadratic (MQ) polynomials with n

variables x1, . . . , xn

pk(x1, . . . , xn) =
n∑

i=1

n∑
j=i

pkij · xixj +
n∑

i=1

pki · xi + pk0 (2.1)

Note that, since we are using boolean equations, we reserved the exponent

for use as an index.

Solving the MQ system is conjectured hard for sufficiently large m and n.

The MQ challenge by Yasuda et al. [184] gives a way to gauge the difficulty

of solving real-life MQ instances with moderate size instances. A multivari-

ate signature scheme may be built around the MQ system: the coefficients

represent the public key P , the system is solved for the hash of the message,

the variable values that satisfy the equation (the solution to the MQ system)

represents the signature. It is hard to solve this system and find a signature

for the desired message unless we have a trapdoor P = S ◦ F ◦ T , where

S and T are the secret invertible linear transformations and F is the secret

quadratic map having a special structure given as

fk(x1, . . . , xn) =
v∑

i=1

n∑
j=i

αk
ij · xixj +

n∑
i=1

βk
i · xi + γk

(2.2)

Here, n variables x1, . . . , xn are divided into two parts, x1, . . . , xv as the

vinegar variables and xv+1, . . . , xn as the m oil variables where n = v +m.

24

The parameters αk
ij, β

k
i and γk are chosen randomly from a finite field F

where k ranges from 1 to m. The specialty of this structure is that there

is no quadratic term with multiplication of two oil variables. So, if vinegar

variables are chosen randomly and inserted into the system, it collapses into a

linear system which can be easily solved for the remaining oil variables using

Gaussian elimination. Note that, oil variables are public whereas vinegars

are kept secret. The structure of F is then hidden using a secret linear

transformation T .

The first Oil and Vinegar scheme was proposed by Patarin [132] in 1997

which was broken by Kipnis and Shamir [102] in 1998. The modified version

of the scheme named UOV was then proposed by Kipnis et al. [101] in 1999.

The main difference was to unbalance the number of oil and vinegar variables

by increasing the number of vinegar variables to render the attack ineffective.

The public keys of UOV are prohibitively large to prevent wide-scale

deployment. This motivated another proposal named LUOV by Beullens et

al. [15]. LUOV was submitted to NIST for the PQC standardization process

and is a Round 2 finalist. One of the main innovations of LUOV is to reduce

the large key sizes in UOV in the way that keys are generated and stored.

Instead of storing and transferring large public keys every time, LUOV makes

use of the idea that generating the keys whenever needed using a sponge type

hash function and using a private seed for the private key and public seed

and additional Q2 ∈ Fm×m(m+1)/2
2 matrix for the public key. Here we give a

brief description of the LUOV scheme. A detailed description and supporting

25

documentation can be found in [16].

𝑄ଵ

Sponge Type
Hash

Function
ℋ

𝑝𝑟𝑖𝑣𝑎𝑡𝑒
𝑠𝑒𝑒𝑑 𝐶, 𝐿

 𝒯

𝑓𝑖𝑛𝑑𝑃ଵ
௞

𝑓𝑖𝑛𝑑𝑃ଶ
௞

𝑃ଷ
௞𝑃ଷ

௞ ൌ 𝑇்𝑃ଵ
௞𝑇 ൅ 𝑇்𝑃ଶ

௞ 𝑄ଶ

𝑝𝑢𝑏𝑙𝑖𝑐_𝑠𝑒𝑒𝑑𝑝𝑢𝑏𝑙𝑖𝑐
𝑠𝑒𝑒𝑑 𝒢

Private Key

𝑝𝑟𝑖𝑣𝑎𝑡𝑒_𝑠𝑒𝑒𝑑

Public Key
 𝑄ଶ
𝑝𝑢𝑏𝑙𝑖𝑐_𝑠𝑒𝑒𝑑

Figure 2.6: LUOV public and private key generation processes.

Key Generation

Key generation process is depicted in Figure 2.6. Briefly, private seed is

hashed by a sponge type hash function H generating public seed and v ×m

private binary secret linear transformation matrix T . Another hash function

G generates public parameters C ∈ Fm
2 , L ∈ Fm×n

2 and Q1 ∈ Fm×v(v+1)/2+vm
2

by hashing the public seed. A v × v upper triangular matrix P k
1 and v ×m

matrix P k
2 are generated by findP k

1 and findP k
2 algorithms respectively using

Q1 and an integer counter k. The details of the algorithms can be found in

[16]. In this dissertation, we do not need the details of generation of P k
1 and

P k
2 , hence, we will consider P

k
1 and P k

2 as given fixed random binary matrices.

P k
1 and P k

2 are given as:

P k
1 =



ak1,1 ak1,2 · · · ak1,v

0 ak2,2 · · · ak2,v
...

...
. . .

...

0 0 · · · akv,v


v,v

, P k
2 =



bk1,1 bk1,2 · · · bk1,m

bk2,1 bk2,2 · · · bk2,m
...

...
. . .

...

bkv,1 bkv,2 · · · bkv,m


v,m

26

Intermediate m×m matrix P k
3 is generated by the formula P k

3 = −T TP k
1 T +

T TP k
2 where k = 1, . . . ,m. Therefore, (i, j)th element of P k

3 is

pk3(i, j) =
v∑

α=1

tα,j

α∑
l=1

tl,ial,α +
v∑

γ=1

tγ,ibγ,j for i, j ∈ {1, · · · ,m}. (2.3)

m× m(̇m+1)
2

binary public key matrix Q2 is generated by Equation 2.4. It is

important to emphasize that P k
3 constitutes the kth row of Q2.

Q2(k,βi,j) =


pk3(i, j) , i = j

pk3(i, j)⊕ pk3(j, i) , i < j

(2.4)

where βi,j = (i − 1)m + j −
∑i−1

α=0 α, i, j, k ∈ {1, · · · ,m} and

βi,j = 1, . . . ,m(m+ 1)/2.

For instance the kth row of Q2 is of the following form:

(pk3(1, 1), p
k
3(1, 2)⊕ pk3(2, 1), p

k
3(1, 3)⊕ pk3(3, 1), · · · , pk3(2, 2),

pk3(2, 3)⊕ pk3(3, 2), · · · , pk3(3, 3), · · · , pk3(m,m)).

Key generation algorithm outputs private seed as the private key and

public seed and Q2 as the public key. Public map P needed for signature

verification is the concatenation of C, L, Q1 and Q2.

27

Signature Generation

Signature generation primitive of LUOV is shown in Figure 2.7 and explained

in Algorithm 1 which is divided into four parts, Parameter Generation, Aug-

mented Matrix Generation, Gaussian Elimination and Generation of the Sig-

nature for the sake of simplicity. It is important to note that o is publicly

available in the signature. Therefore, it is known to the adversary.

Algorithm 1 LUOV Signature Generation

Input: private seed , Message M
Output: Signature (S||salt)

1: Parameter Generation: Binary linear transformation T and
public seed are generated by the hash of random private seed. Then,
the hash of public seed outputs C, L and Q1. Concatenation of message
M and a random salt hashed by H produces message h to be signed.

2: Augmented Matrix Generation: Insert randomly chosen vinegar
variables v into the MQ system F(s′) = h which collapses to a linear
system. The augmented matrix generation algorithm is explained in Al-
gorithm 14.

3: Gaussian Elimination: Linear system can be easily solved by Gaus-
sian elimination which gives oil variables o. Note that, oil variables de-
pend on h and v since the other parameters are generated by the same
private seed.

4: Generation of the Signature: Signature S is the concatenation of
s = T · o+ v, o and salt.
return (s||o||salt)

M

private_seed, salt

𝐴||b
Parameter
Generation

Augmented
Matrix

Generation

Vinegar v

𝒯, 𝐶, 𝐿, 𝑄ଵ, ℎ Gaussian
Elimination

o Generation
of the

Signature
𝑆 = (𝑠||𝑜), 𝑠𝑎𝑙𝑡

𝒯, 𝑣, 𝑠𝑎𝑙𝑡

Figure 2.7: Signature generation algorithm explained in four steps.

28

Signature Verification

The verifier generates C, L and Q1 from the public seed using the hash

function G. These parts are then combined with the publicly available Q2

to form the public map P . Similar to the signing algorithm, the message M

and the salt are concatenated, then hashed using H to form the digest h. If

P(s) = h, then the signature is verified, otherwise rejected.

2.3.2 CRYSTALS - Dilithium

The Cryptographic Suite for Algebraic Lattices (CRYSTALS) consists of

two cryptographic schemes, Kyber [23], a KEM and Dilithium [49], a digital

signature algorithm. The suite has been submitted to the NIST PQC compe-

tition by the Crystals team and both the CRYSTALS are among the Round

3 finalists. These algorithms are based on hard problems over module lat-

tices. The security of Dilithium is based on two problems, namely, Learning

With Errors (LWE) problem and SelfTargetMSIS problem. Dilithium is es-

sentially based on Bai-Galbraith scheme proposed by Bai and Galbraith [10]

in 2014. The design of the scheme is based on “Fiat-Shamir with Aborts”

[120]. Dilithium has three security levels 2, 3 and 5 and also have AES

versions instead of SHAKE for performance purposes. We shall just briefly

explain the key generation, signing and verification algorithms of Dilithium

scheme. We refer the reader to the original specifications for details [49].

29

Key Generation

The secret key vectors s1 and s2 of lengths l and k are sampled randomly

from a uniform distribution. Each element of these vectors is a polynomial

in the ring Rq = Zq[X]/(Xn + 1) and the coefficients are of size η, where

q = 223 − 213 + 1 and n = 256. Next, a k × l matrix A is generated whose

entries are also from Rq with relatively larger coefficients in range q. Then

the LWE vector t is computed, part of which is kept secret as t0 while the

other part t1 is made public. The matrix A is also made public while s1 and

s2 are kept secret. Dilithium key generation process can be seen in Algorithm

2 where it outputs pk as public key and sk as secret key. Unlike the Bai-

Galbraith scheme, where the whole t was made public, Dilithium just makes

t1 public to reduce the size of the public key. The signature size however, is

relatively increased by a small factor.

Algorithm 2 Dilithium Key Generation [49]

1: Output: pk - Public Key, sk - Secret Key
2: ζ ← {0, 1}256
3: (ρ, ς,K) ∈ {0, 1}256×3 ← H(ζ)
4: (s1, s2) ∈ Sl

η × Sk
η ← H(ς)

5: A ∈ Rk×l
q ← ExpandA(ρ)

6: t← As1 + s2
7: (t1, t0)← Power2Roundq(t, d)
8: tr ∈ {0, 1}384 ← CRH(ρ∥t1)
9: return (pk = (ρ, t1), sk = (ρ,K, tr, s1, s2, t0))

30

Signature Generation

Dilithium signing has two modes of operation, deterministic which is the

default and randomized, recommended for side-channel and fault attacks

scenarios. The nonce y is generated using a seed ρ′ which is either determin-

istic or randomized depending upon the mode of operation. The signature

z is generated using the expression z = y + c · s1, where c is the challenge

vector derived as depicted in Algorithm 3. An important part of the signing

operation is the rejection sampling which checks if the signature z does not

leak any secret information. The rejection sampling loop runs for approxi-

mately 4 to 7 times until a secure signature is generated. There is a rejection

counter κ which is incremented in every loop to generate a different nonce y

in each iteration.

Signature Verification

The Dilithium verification algorithm computes the challenge vector c̃ and

compares it to the c̃ provided in the signature. Also, it checks the range

of coefficients of signature z and the weight of the hint h. If all the three

conditions are met, the signature is verified, otherwise rejected. The hint h

is not kept secret since it is needed by the verifier to makeup for t0. We refer

to the Dilithium specification for details [49].

31

Algorithm 3 Dilithium Signature Generation [49]

1: Input: sk - Secret Key, M - Message
2: Output: σ - Signature
3: A ∈ Rk×l

q ← ExpandA(ρ)
4: µ ∈ {0, 1}384 ← CRH(tr ∥M)
5: κ← 0, (z, h)←⊥
6: ρ′ ∈ {0, 1}384 ← CRH(K ∥ µ) (or ρ′ ← {0, 1}384 randomized)
7: while (z, h) =⊥ do
8: y ∈ Sl

γ1 ← ExpandMask(ρ′, κ)
9: w ← Ay

10: w1 ← HighBitsq(w, 2γ2)
11: c̃ ∈ {0, 1}256 ← H(µ ∥ w1)
12: c ∈ Bτ ← SampleInBall(c̃)
13: z ← y + c · s1
14: r0 ← LowBitsq(w − c · s2, 2γ2)
15: if ∥z∥ ≥ γ1 − β or ∥r0∥∞ ≥ γ2 − β then
16: (z, h)←⊥
17: else
18: h←MakeHintq(−c · t0, w − c · s2 + c · t0, 2γ2)
19: if ∥c · t0∥∞ ≥ γ2 or the # of 1’s in h > ω then
20: (z, h)←⊥
21: end if
22: end if
23: κ← κ+ l
24: end while
25: return σ = (z, h, c̃)

Algorithm 4 Dilithium Signature Verification [49]

1: Input: pk - Public Key, M - Message, σ - Signature
2: Output: Verify / Reject
3: A ∈ Rk×l

q ← ExpandA(ρ)
4: µ ∈ {0, 1}384 ← CRH(CRH(ρ ∥ t1 ∥M)
5: c← SampleInBall(c̃)
6: w′

1 ← UseHintq(h,Az − ct1 · 2d, 2γ2)
7: return [∥z∥∞ < γ1 − β] and [c̃ = H(µ ∥ w′

1)] and [# of 1’s in h ≤ ω]

32

Chapter 3

SPOILER: Speculative Load

Hazards Boost Rowhammer

and Cache Attacks

Modern microarchitectures incorporate optimization techniques such as spec-

ulative loads and store forwarding to improve the memory bottleneck. The

processor executes the load speculatively before the stores, and forwards

the data of a preceding store to the load if there is a potential dependency.

This enhances performance since the load does not have to wait for pre-

ceding stores to complete. However, the dependency prediction relies on

partial address information, which may lead to false dependencies and stall

hazards.

In this chapter, we show that the dependency resolution logic that serves

33

the speculative load can be exploited to gain information about the physical

page mappings. Microarchitectural side-channel attacks such as Rowhammer

and cache attacks like Prime+Probe rely on the reverse engineering of the

virtual-to-physical address mapping. We propose the SPOILER attack which

exploits this leakage to speed up this reverse engineering by a factor of 256.

Then, we show how this can improve the Prime+Probe attack by a 4096

factor speed up of the eviction set search, even from sandboxed environments

like JavaScript. Finally, we improve the Rowhammer attack by showing how

SPOILER helps to conduct DRAM row conflicts deterministically with up

to 100% chance, and by demonstrating a double-sided Rowhammer attack

with normal user’s privilege. The latter is due to the possibility of detecting

contiguous memory pages using the SPOILER leakage.

3.1 Motivation

Microarchitectural attacks have evolved over the past decade from attacks

on weak cryptographic implementations [13] to devastating attacks break-

ing through layers of defenses provided by the hardware and the Operating

System (OS) [170]. These attacks can steal secrets such as cryptographic

keys [12, 135] or keystrokes [112]. More advanced attacks can entirely sub-

vert the OS memory isolation to read the memory content from more priv-

ileged security domains [114], and to bypass defense mechanisms such as

Kernel Address Space Layout Randomization (KASLR) [66, 52]. Rowham-

34

mer attacks can further break the data and code integrity by tampering with

memory contents [100, 151]. While most of these attacks require local access

and native code execution, various efforts have been successful in conducting

them remotely [164] or from within a remotely accessible sandbox such as

JavaScript [130].

Memory components such as DRAM [100] and cache [134] are not the

only microarchitectural attack surfaces. Spectre attacks on the branch pre-

diction unit [103, 121] imply that side-channels such as caches can be used

as a primitive for more advanced attacks on speculative engines. Speculative

engines predict the outcome of an operation before its completion, and they

enable execution of the following dependent instructions ahead of time based

on the prediction. As a result, the pipeline can maximize the instruction

level parallelism and resource usage. In rare cases where the prediction is

wrong, the pipeline needs to be flushed resulting in performance penalties.

However, this approach suffers from a security weakness, in which an adver-

sary can fool the predictor and introduce arbitrary mispredictions that leave

microarchitectural footprints in the cache. These footprints can be collected

through the cache side-channel to steal secrets.

Modern processors feature further speculative behavior such as memory

disambiguation and speculative loads [48]. A load operation can be executed

speculatively before preceding store operations. During the speculative exe-

cution of the load, false dependencies may occur due to the unavailability of

physical address information. These false dependencies need to be resolved

35

to avoid computation on invalid data. The occurrence of false dependencies

and their resolution depend on the actual implementation of the memory

subsystem. Intel uses a proprietary memory disambiguation and dependency

resolution logic in the processors to predict and resolve false dependencies

that are related to the speculative load. We discover that the dependency

resolution logic suffers from an unknown false dependency independent of

the 4K aliasing [123, 161]. The discovered false dependency happens during

the 1MB aliasing of speculative memory accesses which is exploited to leak

information about physical page mappings.

The state-of-the-art microarchitectural attacks [83, 138] either rely on

knowledge of physical addresses or are significantly eased by that knowledge.

Yet, knowledge of the physical address space is only granted with root priv-

ileges. Cache attacks such as Prime+Probe on the Last-Level Cache (LLC)

are challenging due to the unknown mapping of virtual addresses to cache

sets and slices. Knowledge about the physical page mappings enables more

attack opportunities using the Prime+Probe technique. Rowhammer [100]

attacks require efficient access to rows within the same bank to induce fast

row conflicts. To achieve this, an adversary needs to reverse engineer layers

of abstraction from the virtual address space to DRAM cells. Availability

of physical address information facilitates this reverse engineering process.

In sandboxed environments, attacks are more limited, since in addition to

the limited access to the address space, low-level instructions are also inac-

cessible [67]. Previous attacks assume special access privileges only granted

36

through weak software configurations [83, 113, 173] to overcome some of these

challenges. In contrast, SPOILER only relies on simple operations, load and

store, to recover crucial physical address information, which in turn enables

Rowhammer and cache attacks, by leaking information about physical pages

without assuming any weak configuration or special privileges.

3.1.1 Contributions

We have discovered a novel microarchitectural leakage that reveals critical

information about physical page mappings to userspace processes. The leak-

age can be exploited by a limited set of instructions, which is visible in all

Intel generations starting from the 1st generation of Intel Core processors,

independent of the OS and also works from within virtual machines and

sandboxed environments. In summary, this chapter:

1. exposes a previously unknown microarchitectural leakage stemming

from the false dependency hazards during speculative load operations.

2. proposes an attack, SPOILER, to efficiently exploit this leakage to

speed up the reverse engineering of virtual-to-physical mappings by a

factor of 256 from both native and JavaScript environments.

3. demonstrates a novel eviction set search technique from JavaScript and

compares its reliability and efficiency to existing approaches.

4. achieves efficient DRAM row conflicts and the first double-sided

37

Rowhammer attack with normal user-level privilege using the contigu-

ous memory detection capability of SPOILER.

5. explores how SPOILER can track nearby load operations from a more

privileged security domain right after a context switch.

3.1.2 Related Work

Kosher et al. [103] and Maisuradze et al. [121] have exploited vulnerabilities

in the speculative branch prediction unit. Transient execution of instructions

after a fault, as exploited by Lipp et al. [114] and Bulck et al. [170], can

leak the memory content of protected environments. Similarly, transient be-

havior due to the lazy store/restore of the FPU and SIMD registers can leak

register contents from other contexts [160]. New variants of both Meltdown

and Spectre have been systematically analyzed [29]. The Speculative Store

Bypass (SSB) vulnerability [77] is a variant of the Spectre attack and relies

on the stale sensitive data in registers to be used as an address for specu-

lative loads which may then allow the attacker to read this sensitive data.

In contrast to previous attacks on speculative and transient behaviors, we

discover a new leakage in the undocumented memory disambiguation and de-

pendency resolution logic. SPOILER is not a Spectre attack. The root cause

for SPOILER is a weakness in the address speculation of Intel’s proprietary

implementation of the memory subsystem which directly leaks timing be-

havior due to physical address conflicts. Existing spectre mitigations would

38

therefore not interfere with SPOILER.

The timing behavior of the 4K aliasing false dependency on Intel proces-

sors has been studied [53, 183]. MemJam [123] uses this behavior to perform

a side-channel attack, and Sullivan et al. [161] demonstrate a covert channel.

These works only mention the 4K aliasing as documented by Intel [81], and

the authors conclude that the address aliasing check is a two stage approach:

Firstly, it uses page offset for the initial guess. Secondly, it performs the final

resolution based on the exact physical address. On the contrary, we discover

that the undocumented address resolution logic performs additional partial

address checks that lead to an unknown, but observable aliasing behavior

based on the physical address.

Several microarchitectural attacks have been discovered to recover vir-

tual address information and break KASLR by exploiting the Translation

Lookaside Buffer (TLB) [78], Branch Target Buffer (BTB) [52] and Transac-

tional Synchronization Extensions (TSX) [88]. Additionally, Gruss et al. [66]

exploit the timing information obtained from the prefetch instruction to

leak the physical address information. The main obstacle to this approach

is that the prefetch instruction is not accessible in JavaScript, and it can

be disabled in native sandboxed environments [185], whereas SPOILER is

applicable to sandboxed environments including JavaScript.

Knowledge of the physical address enables adversaries to bypass OS pro-

tections [95] and ease other microarchitectural attacks [113]. For instance,

the procfs filesystem exposes physical addresses [113], and HugePages al-

39

locate contiguous physical memory [116, 83]. Drammer [173] exploits the

Android ION memory allocator to access contiguous memory. However, ac-

cess to the aforementioned primitives is restricted on most environments by

default. We do not have any assumptions about the OS and software con-

figuration, and we exploit a hardware leakage with minimum access rights

to find virtual pages that have the same least significant 20 physical address

bits. GLitch [56] detects contiguous physical pages by exploiting row conflicts

through the GPU interface. In contrast, our attack does not rely on a specific

integrated GPU configuration, and it is widely applicable to any system run-

ning on an Intel CPU. We use SPOILER to find contiguous physical pages

with a high probability and verify it by producing row conflicts. SPOILER

is particularly helpful for attacks in sandboxed low-privilege environments

such as JavaScript, where previous methods require a time-consuming brute-

forcing of the memory addresses [130, 151, 67].

3.2 The SPOILER Attack

The attack model for SPOILER is the same as Rowhammer and cache attacks

where the attacker’s code is needed to be executed on the same underlying

hardware as of the victim. As described in Section 2.1.5, speculative loads

may face other aliasing conditions in addition to the 4K aliasing, due to

the partial checks on the higher address bits. To confirm this, we design

an experiment to observe timing behavior of a speculative load based on

40

higher address bits. For this purpose, we propose Algorithm 5 that executes

a speculative load after multiple stores and further makes sure to fill the

store buffer with addresses that cause 4K aliasing during the execution of the

load. Having w as the window size, the algorithm iterates over a number

of different memory pages, and for each page, it performs stores to that

page and all previous w pages within a window. Since the size of the store

buffer varies between different processor generations, we choose a big enough

window (w = 64) to ensure that the load has 4K aliasing with the maximum

number of entries in the store buffer and hence maximum potential conflicts.

Following the stores, we measure the timing of a load operation from a

different memory page, as defined by x. Since we want the load to be

executed speculatively, we can not use a store fence such as mfence before

the load. As a result, our measurements are an estimate of execution time

for the speculatively load and nearby microarchitectural events. This may

include a negligible portion of overhead for the execution of stores, and/or

any delay due to the dependency resolution. If we iterate over a diverse set

of addresses with different virtual and physical page numbers, but the same

page offset, we should be able to monitor any discrepancy.

3.2.1 Speculative Dependency Analysis

In this section, we use Algorithm 5 and Hardware Performance Counters

(HPC) to perform an empirical analysis of the dependency resolution logic.

HPCs can keep track of low-level hardware-related events in the CPU. The

41

Algorithm 5 Address Aliasing

1: for p from w to PAGE COUNT do
2: for i from w to 0 do
3: data

store−−−→ buffer[(p− i)× PAGE SIZE]
4: end for
5: t1 = rdtscp()

6: data
load←−− buffer[x× PAGE SIZE]

7: t2 = rdtscp()
8: measure[p]← t2 − t1
9: end for

10: return measure

counters are accessible via special purpose registers and can be used to ana-

lyze the performance of a program. They provide a powerful tool to detect

microarchitectural components that cause bottlenecks. Software libraries

such as Performance Application Programming Interface (PAPI) [165] sim-

plifies programming and reading low-level HPC on Intel processors. Initially,

we execute Algorithm 5 for 1000 different virtual pages. Figure 3.1(a) shows

the cycle count for each iteration with a set of 4 kB aliased store addresses.

Interestingly, we observe multiple step-wise peaks with a very high latency.

Then, we use PAPI to monitor 30 different performance counters listed in

Table A.1 in the Appendix while running the same experiment. At each it-

eration, only one performance counter is monitored alongside the aforemen-

tioned timing measurement. After each speculative load, the performance

counter value and the load time are both recorded. Finally, we obtain the

timings and performance counter value pairs as depicted in Figure 3.1.

To find any relation between the observed high latency and a particular

42

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

C
y
c
le

s

rdtsc

(a) Step-wise peaks with a very high latency can be observed on some of the virtual pages

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

C
y
c
le

s

Stalls_Ldm_Pending

(b) Affected HPC event: Cycle Activity:Stalls Ldm Pending

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

D
e
p
e
n
d
e
n
c
y

Address_Alias

(c) Affected HPC event: Ld Blocks Partial:Address Alias

Figure 3.1: SPOILER’s timing measurements and hardware performance
counters recorded simultaneously.

event, we compute correlation coefficients between counters and the timing

measurements. Since the latency only occurs in the small region of the trace

where the timing increases, we only need to compute the correlation on these

regions. When an increase of at least 200 clock cycles is detected, the next s

values from timing and the HPC traces are used to calculate the correlations,

where s is the number of steps from Table 3.1 and 200 is the average execution

time for a load.

43

-1

-0.5

0

0.5

1

C
o
rr

e
la

ti
o
n
 C

o
e
ff
ic

ie
n
t

0 5 10 15 20 25 30

Counter Number

Figure 3.2: Correlation with HPCs listed in Table A.1
in the Appendix. Ld Blocks Partial:Address Alias and
Cycle Activity:Stalls Ldm Pending (both dotted red) have strong
positive and negative correlations, respectively.

As shown in Figure 3.2, two events have a high correlation with

the leakage: Cycle Activity:Stalls Ldm Pending has the highest correla-

tion of 0.985. This event shows the number of cycles for which the

execution is stalled and no instructions are executed due to a pending

load. Ld Blocks Partial:Address Alias has an inverse correlation with

the leakage. This event counts the number of false dependencies in

the MOB when loosenet resolves the 4K aliasing condition. Separately,

Exe Activity:Bound on Stores increases with more number of stores within

the inner window loop in Algorithm 5, but it does not have a correla-

tion with the leakage. The reason behind this behavior is that the store

buffer is full, and additional store operations are pending. However, since

there is no correlation with the leakage, this shows that the timing behav-

ior is not due to the stores delay. We also attempt to profile any exist-

ing counters related to the memory disambiguation. However, the events

44

Memory Disambiguation.Success and Memory Disambiguation.Reset are not

available on the modern architectures that are tested.

3.2.2 Leakage of the Physical Address Mapping

In this experiment, we evaluate whether the observed step-wise latency has

any relationship with the physical page numbers by observing the pagemap

file. As shown in Figure 3.3, we observe step-wise peaks with a very high

latency which appear once in every 256 pages on average.The 20 least signifi-

cant bits of physical address for the load matches with the physical addresses

of the stores where high peaks for virtual pages are observed. In our exper-

iments, we always detect peaks with different virtual addresses, which have

the matching least 20 bits of physical address. This observation clearly dis-

covers the existence of 1MB aliasing effect based on the physical addresses.

This 1MB aliasing leaks information about 8 bits of mapping that were un-

known to the user space processes.

Matching this observation with the previously observed

Cycle Activity:Stalls Ldm Pending with a high correlation, the specu-

lative load has been stalled to resolve the dependency with conflicting

store buffer entries after the occurrence of a 1MB aliased address. This

observation verifies that the latency is due to the pending load. When the

latency is at the highest point, Ld Blocks Partial:Address Alias drops to

zero, and it increments at each down step of the peak. This implies that the

loosenet check does not resolve the rest of the store dependencies whenever

45

CPU Model Architecture Steps SB Size

Intel Core i7-8650U Kaby Lake R 22 56
Intel Core i7-7700 Kaby Lake 22 56

Intel Core i5-6440HQ Skylake 22 56
Intel Xeon E5-2640v3 Haswell 17 42
Intel Xeon E5-2670v2 Ivy Bridge EP 14 36
Intel Core i7-3770 Ivy Bridge 12 36

Intel Core i7-2670QM Sandy Bridge 12 36
Intel Core i5-2400 Sandy Bridge 12 36
Intel Core i5 650 Nehalem 11 32

Intel Core2Duo T9400 Core N/A 20
Qualcomm Kryo 280 ARMv8-A N/A *
AMD A6-4455M Bulldozer N/A *

Table 3.1: 1MB aliasing on various architectures: The tested AMD and
ARM architectures, and Intel Core generation do not show similar effects.
The Store Buffer (SB) sizes are gathered from Intel Manual [81] and wi-
kichip.org [177, 179, 178].

there is a 1MB aliased address in the store buffer.

3.2.3 Evaluation

In the previous experiment, the execution time of the load operation that

is delayed by 1MB aliasing decreases gradually in each iteration (Figure

3.3). The number of steps to reach the normal execution time is consistent

on the same processor. When the first store in the window loop accesses a

memory address with the matching 1MB aliased address, the latency is at its

highest point, marked as “1” in Figure 3.3. As the window loop accesses this

address later in the loop, it appears closer to the load with a lower latency

like the steps marked as 5, 15 and 22. This observation matches the carry

46

0 100 200 300 400 500 600 700 800 900 1000

Page Number

0

500

1000

1500

C
y
c
le

5

1

22

15

Figure 3.3: Step-wise peaks with 22 steps and a high latency can be observed
on some of the pages (Core i7-8650U processor).

chain algorithm described by Intel [76] where the aliasing check starts from

the most recent store. As shown in Table 3.1, experimenting with various

processor generations shows that the number of steps has a linear correlation

with the size of the store buffer which is architecture dependent. While the

leakage exists on all Intel Core processors starting from the first generation,

the timing effect is higher for the more recent generations with a bigger store

buffer size. The analyzed ARM and AMD processors do not show similar

behavior1.

As our time measurement for speculative load suggests, it is not possible

to reason whether the high timing is due to a very slow load or commitment

of store operations. If the step-wise delay matches the store buffer entries,

this delay may be either due to the dependency resolution logic performing

a pipeline flush and restart of the load for each 4 kB aliased entry starting

from the 1MB aliased entry, or due to the load waiting for all the remaining

1We use rdtscp for Intel and AMD processors and the clock gettime for ARM pro-
cessors to perform the time measurements.

47

stores to commit because of an unresolved hazard. To explore this further,

we perform an additional experiment with all store addresses replaced with

non-aliased addresses except for one. This experiment shows that the peak

disappears if there is only a single 4 kB and 1MB aliased address in the store

buffer.

Lastly, we run the same experiments on a shuffled set of virtual addresses

to assure that the contiguous virtual addresses may not affect the observed

leakage. Our experiment with the shuffled virtual addresses exactly matches

the same step-wise behavior suggesting that the upper bits in virtual ad-

dresses do not affect the leakage behavior, and the leakage is solely due to

the aliasing on physical address bits.

Comparison of Address Aliasing Scenarios

We further test other address combinations to compare additional address

aliasing scenarios using Algorithm 5. As shown by Figure 3.4, when stores

and the load access different cache sets without aliasing, the load is executed

in 30 cycles, which is the typical timing for an L1 data cache load including

the rdtscp overhead. When the stores have different memory addresses

with the same page offset, but the load has a different offset, the load

takes 100 cycles to execute. This shows that even memory addresses in the

store buffer having 4K Aliasing conditions with each other that are totally

unrelated to the speculative load create a memory bottleneck for the load. In

the next scenario, 4K aliasing between the load and all stores, the average

48

Figure 3.4: Histogram of the measurement for the speculative load with
various store addresses. Load will be fast, 30 cycles, without any dependency.
If there exists 4K aliasing only between the stores, the average is 100. The
average is 200 when there is 4K aliasing of load and stores. The 1MB
aliasing has a distinctive high latency.

load time is about 200 cycles. While the aforementioned 4K aliasing scenarios

may leak cross-domain information about memory accesses (Section 3.5), the

most interesting scenario is the 1MB aliasing which takes more than 1200

cycles for the highest point in the peak. For simplicity, we refer to the 1MB

an aliased address as aliased address, in the rest of the chapter.

49

3.2.4 Discussion

The Curious Case of Memory Disambiguation

The processor uses an additional speculative engine, called the memory dis-

ambiguator [48, 106], to predict memory false dependencies and reduce the

chance of their occurrences. The main idea is to predict if a load is inde-

pendent of preceding stores and proceed with the execution of the load by

ignoring the store buffer. The predictor uses a hash table that is indexed with

the address of the load, and each entry of the hash table has a saturating

counter. If the pre-commitment dependency resolution does not detect false

dependencies, the counter is incremented, otherwise, it will be reset to zero.

After multiple successful executions of the same load instruction, the predic-

tor assumes that the load is safe to execute. Every time the counter resets

to zero, the next iteration of the load will be blocked to be checked against

the store buffer entries. Mispredictions result in performance overhead due

to pipeline flushes. To avoid repeated mispredictions, a watchdog mechanism

monitors the success rate of the prediction, and it can temporarily disable

the memory disambiguator.

The predictor of the memory disambiguator should go into a stable state

after the first few iterations, since the memory load is always truly inde-

pendent of any aliased store. Hence the saturating counter for the target

speculative load address passes the threshold, and it never resets due to a

false prediction. As a result, the memory disambiguator should always fetch

50

the data into the cache without any access to the store buffer. However,

since the memory disambiguation performs speculation, the dependency res-

olution at some point verifies the prediction. The misprediction watchdog is

also supposed to only disable the memory disambiguator when the mispre-

diction rate is high, but in this case, we should have a high prediction rate.

Accordingly, the observed leakage occurs after the disambiguation and dur-

ing the last stages of dependency resolution, i.e., the memory disambiguator

only performs prediction on the 4K aliasing at the initial loosenet check, and

it cannot protect the pipeline from 1MB aliasing that appears at a later

stage.

Hyperthreading Effect

Similar to the 4K Aliasing [123, 161], we empirically test whether the 1MB

aliasing can be used as a covert/side-channel through logical processors. Our

observation shows that when we run our experiments on two logical proces-

sors on the same physical core, the number of steps in the peaks is exactly

halved. This matches the description by Intel [81] where it is stated that

the store buffer is split between the logical processors. As a result, the 1MB

aliasing effect is not visible and exploitable across logical cores. [104] sug-

gests that loosenet checks mask out the stores on the opposite thread.

51

3.3 SPOILER from JavaScript

Microarchitectural attacks from JavaScript have a high impact as drive-by

attacks in the browser can be accomplished without any privilege or phys-

ical proximity. In such attacks, co-location is automatically granted by the

fact that the browser loads a website with malicious embedded JavaScript

code. The browsers provide a sandbox where some instructions like clflush

and prefetch and file systems such as procfs are inaccessible, limiting the

opportunity for attack. Genkin et al. [60] showed that side-channel attacks

inside a browser can be performed more efficiently and with greater portabil-

ity through the use of WebAssembly.Yet, WebAssembly introduces an addi-

tional abstraction layer, i.e. it emulates a 32-bit environment that translates

the internal addresses to virtual addresses of the host process (the browser).

WebAssembly only uses addresses of the emulated environment and similar

to JavaScript, it does not have direct access to the virtual addresses. Using

SPOILER from JavaScript opens the opportunity to puncture these abstrac-

tion layers and to obtain physical address information directly. Figure 3.5

shows the address search in JavaScript using SPOILER. Compared to native

implementations, we replace the rdtscp measurement with a timer based

on a shared array buffer [73]. We cannot use any fence instruction such as

lfence, and as a result, there remains some negligible noise in the JavaScript

implementation. However, the aliased addresses can still be clearly seen, and

we can use this information to improve the state-of-the-art eviction set cre-

52

0 50 100 150 200

Page Number

25

30

35

40

45

50

T
im

e
r

V
a

lu
e

Figure 3.5: Reverse engineering physical page mappings in JavaScript. The
markers point to addresses having same 20 bits of physical addresses being
part of the same eviction set.

ation for both Rowhammer and cache attacks.

3.3.1 Efficient Eviction Set Finding

We use the algorithm proposed in [60]. It is a slight improvement to the

former state-of-the-art brute force method[130] and consists of three phases:

• expand : A large pool of addresses P is allocated with the last twelve

bits of all addresses being zero. A random address is picked as a witness

t and tested against a candidate set C. If t is not evicted by C, it is

added to C and a new witness will be picked. As soon as t gets evicted

by C, C forms an eviction set for t.

• contract : Addresses are subsequently removed from the eviction set. If

the set still evicts t, the next address is removed. If it does not evict

53

t anymore, the removed address is added back to the eviction set. At

the end of this phase, we have a minimal eviction set of the size of the

set associativity.

• collect : All addresses mapping to the already found eviction set are

removed from P by testing if they are evicted by the found set. Af-

ter finding 128 initial cache sets, this approach utilizes the linearity

property of the cache: For each found eviction set, the bits 6-11 are

enumerated instead. This provides 63 more eviction sets for each found

set, leading to full cache coverage.

We test this approach on an Intel Core i7-4770 with four physical cores

and a shared 8MB 16-way L3 cache with Chromium 68.0.3440.106, Firefox

62 and Firefox Developer Edition 63. The approach yields an 80% accuracy

rate to find all 8192 eviction sets when starting with a pool of 4096 pages.

The entire eviction set creation process takes an average of 46 s. We improve

the algorithm by 1) using the addresses removed from the eviction set in

the contract phase as a new candidate set and 2) removing more than one

address at a time from the eviction set during the contract phase. The

improved eviction set creation process takes 35 s on average.

Evaluation

The probability of finding a congruent address is P (C) = 2γ−c−s, where c

is the number of bits determining the cache set, γ is the number of bits

54

attackers know, and s is the number of slices[174]. Since SPOILER allows

us to control γ ≥ c bits, we are only left with uncertainty about a few

address bits that influence the slice selection algorithm [84]. In theory, the

eviction set search is sped up by a factor of 4096 by using aliased addresses

in the pool, since on average one of 28 instead of one of 220 addresses is

an aliased address. Additionally, the address pool is much smaller, where

115 addresses are enough to find all the eviction sets. In native code, the

overhead involved in finding the aliased addresses is negligible, less than a

second in our experiments. However, in JavaScript, due to the noise, it takes

9s for finding aliased addresses and then 3s for eviction set as compared to

the baseline of 46s for classic method in Table 3.2. Success rate however is

100% with SPOILER as compared to 80% for the classic method. Besides,

success rate of the classical method can be affected by the availability and

consumption of memory on the system.

From each aliased address pool, 4 eviction sets can be found (correspond-

ing to the 4 slices which are the only unknown part in the mapping). These

can be enumerated again to form 63 more eviction sets since we still kept the

bits 6-11 fixed. To accomplish full cache coverage, the aliased address pool

has to be constructed 32 times. The SPOILER variant for finding eviction

sets is more susceptible to system noise, which is why it needs more repe-

titions i.e. R rounds to get reliable values. On the other hand, it is less

prone to values deviating largely from the mean, which is a problem in the

classic eviction set creation algorithm. The classic method does not succeed

55

Algorithm R ttotal tAAS tESS Success

Classic[130] 3 46s - 100% 80%
Improved [60] 3 35s - 100% 80%
AA (ours) 10 10s 54% 46% 67%
AA (ours) 20 12s 75% 25% 100%

Table 3.2: Comparison of different eviction set finding algorithms on an
Intel Core i7-4770. Classic is the method from [130], improved is the same
method with slight improvement, Aliased Address (AA) uses SPOILER. tAAS

is the time percentage used for finding aliased addresses. tESS is the time
percentage for finding eviction sets. R is the number of Rounds.

about one out of five times in our experiments, as shown in Table 3.2. The

unsuccessful attempts occur due to aborts if the algorithm takes much longer

than statistically expected. As a result, SPOILER can be incorporated in an

end-to-end attack such as drive-by key-extraction cache attacks by Genkin

et al. [60]. SPOILER increases both speed and reliability of the eviction set

finding and therefore the entire attack.

3.4 Rowhammer Attack using SPOILER

To perform a Rowhammer attack, the adversary needs to efficiently access

DRAM rows adjacent to a victim row. In a single-sided Rowhammer attack,

only one row is activated repeatedly to induce bit-flips on one of the nearby

rows. For this purpose, the attacker needs to make sure that multiple virtual

pages co-locate on the same bank. The probability of co-locating on the same

bank is low without the knowledge of physical addresses and their mapping

to memory banks. In a double-sided Rowhammer attack, the attacker tries

56

to access two different rows n + 1 an n − 1 to induce bit-flips in the row

n placed between them. While double-sided Rowhammer attacks induce

bit-flips faster due to the extra charge on the nearby cells of the victim

row n, they further require access to contiguous memory pages. In this

section, we show that SPOILER can help boost both single and double-sided

Rowhammer attacks by its additional 8-bit physical address information and

resulting detection of contiguous memory.

3.4.1 DRAM Bank Co-location

DRAMA [138] reverse engineered the memory controller mapping. This re-

quires elevated privileges to access physical addresses from the pagemap file.

The authors have suggested that prefetch side-channel attacks [66] may be

used to gain physical address information instead. SPOILER is an alterna-

tive way to obtain partial address information and is still feasible when the

prefetch instruction is not available, e.g. in JavaScript. In our approach,

we use SPOILER to detect aliased virtual memory addresses where the 20

LSBs of the physical addresses match. The memory controller uses these bits

for mapping the physical addresses to the DRAM banks [138]. Even though

the memory controller may use additional bits, the majority of the bits are

known using SPOILER. An attacker can directly hammer such aliased ad-

dresses to perform a more efficient single-sided Rowhammer attack with a

significantly increased probability of hitting the same bank. As shown in

Table 3.3, we reverse engineer the DRAM mappings for different hardware

57

System Model DRAM Configuration # of Bits

Dell XPS-L702x 1 x (4GB 2Rx8) 21
(Sandy Bridge) 2 x (4GB 2Rx8) 22
Dell Inspiron-580 1 x (2GB 2Rx8) (b) 21

(Nehalem) 2 x (2GB 2Rx8) (c) 22
4 x (2GB 2Rx8) (d) 23

Dell Optiplex-7010 1 x (2GB 1Rx8) (a) 19
(Ivy Bridge) 2 x (2GB 1Rx8) 20

1 x (4GB 2Rx8) (e) 21
2 x (4GB 2Rx8) 22

Table 3.3: Reverse engineering the DRAM memory mappings using DRAMA
tool, # of Bits represents the number of physical address bits used for the
bank, rank and channel [138].

configurations using the DRAMA tool, and only a few bits of physical address

entropy beyond the 20 bits will remain unknown.

To verify if our aliased virtual addresses co-locate on the same bank, we

use the row conflict side-channel as proposed in [56] (timings in the Appendix,

Section A.2). We observe that whenever the number of physical address bits

used by the memory controller to map data to physical memory is equal to

or less than 20, we always hit the same bank. For each additional bit the

memory controller uses, the probability of hitting the same bank is divided

by 2 as there is one more bit of entropy. In general, we can formulate that

our probability p to hit the same bank is p = 1/2n, where n is the number

of unknown physical address bits in the mapping. We experimentally verify

the success rate for the setups listed in Table 3.3, as depicted in Figure

3.6. In summary, SPOILER drastically improves the efficiency of finding

58

200

400

600
C

y
c
le

s

(a) 19 bits used by memory controller, no unknown bits

200

400

600

C
y
c
le

s

(b) 21 bits used by memory controller, 1 unknown bit

200

400

600

C
y
c
le

s

(c) 22 bits used by memory controller, 2 unknown bits

200

400

600

C
y
c
le

s

0 20 40 60 80 100

Peak Number

(d) 23 bits used by memory controller, 3 unknown bits

Figure 3.6: Bank co-location for various DRAM configurations (a), (b), (c)
& (d) from Table 3.3. The regularity of the peaks shows that the allocated
memory was contiguous, which is coincidental.

addresses mapping to the same bank without administrative privilege or

reverse engineering the memory controller mapping.

3.4.2 Contiguous Memory

For a double-sided Rowhammer attack, we need to hammer rows adjacent to

the victim row in the same bank. This requires detecting contiguous mem-

59

ory pages in the allocated memory, since the rows are written to the banks

sequentially. Without contiguous memory, the banks will be filled randomly

and we will not be able to locate neighboring rows. We show that an attacker

can use SPOILER to detect contiguous memory using 1 MB aliasing peaks.

For this purpose, we compare the physical frame numbers to the SPOILER

leakage for 10000 different virtual pages allocated using malloc. Figure 3.7

shows the relation between 1 MB aliasing peaks and physical page frame

numbers. When the distance between the peaks is random, the trend of

frame numbers also changes randomly. After around 5000 pages, we observe

that the frame numbers increase sequentially. The number of pages between

the peaks remains constant at 256 where this distance comes from the 8 bits

of physical address leakage due to 1 MB aliasing.

We also compare the accuracy of obtaining contiguous memory detected

by SPOILER, by analyzing the actual physical addresses from the pagemap

file. By checking the difference between physical page numbers for each de-

tected virtual page, we can determine the accuracy of our detection method:

the success rate for finding contiguous memory is above 99% disregarding

the availability of the contiguous pages. For detailed experiment on the

availability of the contiguous pages, see Section A.3 in the Appendix.

3.4.3 Double-Sided Rowhammer with SPOILER

As double-sided Rowhammer attacks are based on the assumption that rows

within a bank are contiguous, we mount a practical double-sided Rowham-

60

0

500

1000
C

y
c
le

s

0 2000 4000 6000 8000 10000

Page Numbers

1.5

2

F
ra

m
e
 N

u
m

b
e
rs 10

6

5641 5642 5643 5644 5645
1.982464

1.982466

1.982468
106

Figure 3.7: Relation between leakage peaks and the physical page numbers.
The dotted plot shows the leakage peaks from SPOILER. The solid plot
shows the decimal values of the physical frame numbers from the pagemap

file. Once the peaks in the dotted plot become regular, the solid plot is
linearly increasing, which shows contiguous memory allocation.

mer attack on several DRAM modules using SPOILER without any root

privileges. First, we use SPOILER to detect a suitable amount of contiguous

memory. If enough contiguous memory is available in the system, SPOILER

finds it, otherwise a double-sided Rowhammer attack is not feasible. In our

experiments, we empirically configure SPOILER to detect 10MB of contigu-

ous memory. Second, we apply the row conflict side-channel only to the

located contiguous memory, and get a list of virtual addresses which are

contiguously mapped within a bank. Finally, we start performing a double-

sided Rowhammer attack by selecting 3 consecutive addresses from our list.

While we have demonstrated the bit-flips in our own process, we can free that

memory which can then be assigned to a victim process by using previously

61

DRAM Model Architecture Flippy

M378B5273DH0-CK0 Ivy Bridge ✓
M378B5273DH0-CK0 Sandy Bridge ✓
M378B5773DH0-CH9 Sandy Bridge ✓
M378B5173EB0-CK0 Sandy Bridge ×

NT2GC64B88G0NF-CG Sandy Bridge ×
KY996D-ELD Sandy Bridge ×

M378B5773DH0-CH9 Nehalem ✓
NT4GC64B8HG0NS-CG Sandy Bridge ×
HMA41GS6AFR8N-TF Skylake ×

Table 3.4: DRAM modules susceptible to double-sided Rowhammer attack
using SPOILER

known techniques like spraying and memory waylaying [65]. As the bit-flips

are highly reproducible, we can again flip the same bits in the victim process

to demonstrate a full attack. Table 3.4 shows some of the DRAM modules

susceptible to Rowhammer attack.

The native version of Rowhammer is also applicable in JavaScript. The

JavaScript-only variant implementation of Rowhammer by Gruss et al. [67],

named rowhammer.js2, can be combined with SPOILER to implement an

end-to-end attack. In the original rowhammer.js, 2MB HugePages were as-

sumed to get a contiguous chunk of physical memory. With SPOILER, this

assumption is no longer required as explained in Section 3.4.3.

Figure 3.8 shows the number of hammers compared to the amount of bit-

flips for configuration (e) in Table 3.3. We repeat this experiment 30 times

for every measurement and the results are then averaged out. On every

2https://github.com/IAIK/rowhammerjs

62

https://github.com/IAIK/rowhammerjs

0 1 2 3 4 5 6

Number of Hammers 10
8

0

5

10

15

20

25
A

m
o

u
n

t
o

f
B

it
 F

lip
s

1h, 5m

10h, 50m

21hr, 40m

1d, 9h

1d, 19h

2d, 6h 2d, 17h

Figure 3.8: Amount of bit-flips increases with the increase in number of
hammerings. The timings do not include the time taken for reboots and 1
minute sleep time.

experiment, the system is rebooted using a script because once the memory

becomes fragmented, no more contiguous memory is available. The number

of bit-flips increases with more number of hammerings. Hammering for 500

million times is found to be an optimal number for this DRAM configuration,

as the continuation of hammering is not increasing bit-flips.

3.5 Tracking Speculative Loads With

SPOILER

Single-threaded attacks can be used to steal information from other security

contexts running before/after the attacker code on the same thread [33, 124].

Example scenarios are I) context switches between processes of different

63

users, or II) between a user process and a kernel thread, and III) Intel Soft-

ware Guard eXtensions (SGX) secure enclaves [124, 172]. In such attacks,

the adversary puts the microarchitecture to a particular state, waits for the

context switch and execution of the victim thread, and then tries to ob-

serve the microarchitectural state after the victim’s execution. We propose

an attack where the adversary 1) fills the store buffer with arbitrary ad-

dresses, 2) issues the victim context switch and lets the victim perform a

secret-dependent memory access, and 3) measures the execution time of the

victim. Any correlation between the victim’s timing and the load address

can leak secrets [183]. Due to the nature of SPOILER, the victim should

access the memory while there are aliased addresses in the store buffer, i.e.

if the stores are committed before the victim’s speculative load, there will

be no dependency resolution hazard.

We first perform an analysis of the depth of the operations that can be

executed between the stores and the load to investigate the viability of

SPOILER. In this experiment, we repeat a number of instructions between

stores and the load that are free from memory operations. Figure 3.9

shows the number of stall steps due to the dependency hazard with the added

instructions. Although nop is not supposed to take any cycle, adding 4000

nop will diffuse the timing latency. Then, we test add and leal, which use

the Arithmetic Logic Unit (ALU) and the Address Generation Unit (AGU),

respectively. Figure 3.9 shows that only 1000 adds can be executed between

the stores and load before the SPOILER effect is lost. Since each add

64

0 500 1000 1500 2000 2500 3000 3500 4000
0

10

20 nop

0 100 200 300 400 500 600 700 800 900 1000
0

10

20 add

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of Operations

0

10

20

N
u
m

b
e
r

o
f
S

te
p
s

leal

Figure 3.9: The depth of SPOILER leakage with respect to different instruc-
tions and execution units.

typically takes about 1 cycle to execute, this roughly gives a 1000 cycle

depth for SPOILER. Considering the observed depth, we discuss potential

attacks that can track the speculative load in the following two scenarios.

3.5.1 SPOILER Context Switch

In this attack, we are interested in tracking a memory access in the priv-

ileged kernel environment after a context switch. First, we fill the store

buffer with addresses that have the same page offset, and then execute a

system call. During the execution of the system call, we expect to observe

a delayed execution if a secret load address has aliasing with the stores.

We utilize SPOILER to iterate over various virtual pages, thus some of the

pages have more noticeable latency due to the 1MB aliasing. We analyze

65

multiple syscalls with various execution times. For instance, Figure 3.10

shows the execution time for mincore. In the first experiment (red/1 MB

Conflict), we fill the store buffer with addresses that have aliasing with a

memory load operation in the kernel code space. The 1MB aliasing de-

lay with 7 steps suggests that we can track the address of a kernel memory

load by the knowledge of our arbitrary filled store addresses. The blue (No

Conflict) line shows the timing when there is no aliasing between the target

memory load and the attackers store. Surprisingly, only by filling the store

buffer, the system call executes much slower: the normal execution time for

mincore should be around 250 cycles (cyan/No Store). This proof of concept

shows that SPOILER can be used to leak information from more privileged

contexts, however, this is limited only to loads that appear at the beginning

of the next context.

3.5.2 Negative Result: SPOILER SGX

In this experiment, we try to combine SPOILER with the CacheZoom [124]

approach to create a novel single-threaded side-channel attack against SGX

enclaves with high temporal and spatial resolution (4-Byte) [123]. We use

SGX-STEP [171] to precisely interrupt every single instruction. Neme-

sis [172] shows that the interrupt handler context switch time is dependent on

the execution time of the currently running instruction. On our test platform,

Core i7-8650U, each context switch on an enclave takes about 12000 cycles

to execute. If we fill the store buffer with memory addresses that match the

66

0 50 100 150 200 250 300

Page Number

200

400

600

800

1000

1200

1400
C

y
c
le

1 MB Conflict

No Conflict

No Store

Figure 3.10: Execution time of mincore system call. When a kernel load
address has aliasing with the attacker’s stores (red/1MB Conflict), the step-
wise delay will appear. These timings are measured with Kernel Page Table
Isolation disabled.

page offset of a load inside the enclave in the interrupt handler, the context

switch timing is increased to about 13500 cycles. While we cannot observe

any correlation between the matched 4 kB or 1MB aliased addresses, we do

see unexpected periodic downward peaks with a similar step-wise behavior as

SPOILER (Figure 3.11). We later reproduce a similar behavior by running

SPOILER before an ioctl routine that flushes the TLB on each call. Intel

SGX also performs an implicit TLB flush during each context switch. We

can thus infer that the downward peaks occur due to the TLB flush, espe-

cially since the addresses for the downward peaks do not have any address

correlation with the load address. This suggests that the TLB flush opera-

tion itself is affected by SPOILER. This effect eliminates the opportunity to

67

200 300 400 500 600 700 800 900 1000

Page Number

800

1000

1200

1400

1600

1800

2000

C
y
c
le

Figure 3.11: The effect of SPOILER on TLB flush. The execution cycle
always increases for 4 kB aliased addresses, except for some of the virtual
pages inside in the store buffer where we observe step-wise hills.

observe any potential correlation due to the speculative load. As a result, we

can not use SPOILER to track memory accesses inside an enclave. Further

exploration of the root cause of the TLB flush effect can be carried out as

future work.

3.6 Mitigations

3.6.1 Software Mitigations

The attack exploits the fact that when there is a load instruction after a

number of store instructions, the physical address conflict causes a high

timing behavior. This happens because of the speculatively executed load

68

before all the stores are finished executing. There is no software mitigation

that can completely erase this problem. While the timing behavior can be

removed by inserting store fences between the loads and stores, this cannot

be enforced to the user’s code space, i.e., the user can always leak the physical

address information. Another yet less robust approach is to execute other

instructions between the loads and stores to decrease the depth of the

attack. However, both of the approaches are only applicable to defend against

attacks such as the one described in Section 3.5.

As for most attacks on JavaScript, removing accurate timers from the

browser would be effective against SPOILER. Indeed, some timers have been

removed or distorted by jitters as a response to attacks [114]. There is how-

ever a wide range of timers with varying precision available, and removing

all of them seems impractical [150, 56].

When it is not possible to mitigate the microarchitectural attacks, de-

velopers can use dynamic tools to at least detect the presence of such

leakage [35, 186, 26]. One of the dynamic approaches is gained by mon-

itoring hardware performance counters in real-time. As explained in Sec-

tion 3.2.1, two of the counters Ld Blocks Partial:Address Alias and

Cycle Activity:Stalls Ldm Pending have high correlations with the leak-

age.

69

3.6.2 Hardware Mitigations

The hardware design for the memory disambiguator may be revised to pre-

vent such physical address leakage, but modifying the speculative behavior

may cause performance impacts. For instance, partial address comparison

was a design choice for performance. Full address comparison may address

this vulnerability, but will also impact performance. Moreover, hardware

patches are difficult to be applied to legacy systems and take years to be

deployed.

3.7 Conclusion

In this chapter, we introduced SPOILER, a novel approach for gaining phys-

ical address information by exploiting a new information leakage due to spec-

ulative execution. To exploit the leakage, we used the speculative load be-

havior after jamming the store buffer. SPOILER can be executed from user

space and requires no special privileges. We exploited the leakage to re-

veal information on the 8 least significant bits of the physical page number,

which are critical for many microarchitectural attacks such as Rowhammer

and cache attacks. We analyzed the causes of the discovered leakage in detail

and showed how to exploit it to extract physical address information.

Further, we showed the impact of SPOILER by performing a highly tar-

geted Rowhammer attack in a native user-level environment. We further

demonstrated the applicability of SPOILER in sandboxed environments by

70

constructing efficient eviction sets from JavaScript, an extremely restrictive

environment that usually does not grant any access to physical addresses.

Gaining even partial knowledge of the physical address will make new at-

tack targets feasible in browsers even though JavaScript-enabled attacks are

known to be difficult to realize in practice due to the limited nature of the

JavaScript environment. Broadly put, the leakage described in this chapter

will enable attackers to perform existing attacks more efficiently, or to devise

new attacks using the novel knowledge. The source code for SPOILER is

available on GitHub3.

Responsible Disclosure We informed the Intel Product Security Incident

Response Team (iPSIRT) of our findings. iPSIRT thanked for reporting the

issue and for the coordinated disclosure. iPSIRT then released the public

advisory and CVE. Here is the time line for the responsible disclosure:

• 12/01/2018: We informed our findings to iPSIRT.

• 12/03/2018: iPSIRT acknowledged the receipt.

• 04/09/2019: iPSIRT released public advisory (INTEL-SA-00238) and

assigned CVE (CVE-2019-0162).

3https://github.com/saadislamm/SPOILER

https://github.com/UzL-ITS/Spoiler

71

https://github.com/saadislamm/SPOILER
https://github.com/UzL-ITS/Spoiler

Chapter 4

QuantumHammer: A Practical

Hybrid Attack on the LUOV

Signature Scheme

Multivariate signatures is one of the main categories in NIST’s post-quantum

cryptography competition. Among the four round 2 candidates in this cat-

egory, the LUOV and Rainbow schemes are based on the Oil and Vinegar

scheme, first introduced in 1997 which has withstood over two decades of

cryptanalysis. Beyond mathematical security and efficiency, security against

side-channel attacks is a major concern in the competition. The current sen-

timent is that post-quantum schemes may be more resistant to fault-injection

attacks due to their large key sizes and the lack of algebraic structure. We

show that this is not true.

72

We introduce a novel hybrid attack, QuantumHammer, and demon-

strate it on the constant-time implementation of LUOV (round 2 finalist).

TheQuantumHammer attack is a combination of two attacks, a bit-tracing

attack enabled via Rowhammer fault injection and a divide and conquer at-

tack that uses bit-tracing as an oracle. Using bit-tracing, an attacker with

access to faulty signatures collected using Rowhammer attack, can recover

secret key bits albeit slowly. We employ a divide and conquer attack which

exploits the structure in the key generation part of LUOV and solves the sys-

tem of equations for the secret key more efficiently with few key bits recovered

via bit-tracing.

We have demonstrated the first successful in-the-wild attack on LUOV

recovering all 11K key bits with less than 4 hours of an active Rowhammer

attack. The post-processing part is highly parallel and thus can be trivially

sped up using modest resources. QuantumHammer does not make any

unrealistic assumptions, only requires software co-location (no physical ac-

cess), and therefore can be used to target shared cloud servers or in other

sandboxed environments.

4.1 Contributions

We have discovered a practical technique that recovers all secret key bits

in LUOV. QuantumHammer proceeds by injecting faults, collecting faulty

signatures, followed by the divide and conquer attack. The faults are achieved

73

using a realistic software only approach via a Rowhammer attack. In sum-

mary, in this chapter:

1. We introduce a simple technique that uses faulty signatures to mathe-

matically trace and recover key bits. Each faulty signature yields a key

bit. While not efficient, the technique gives us a tool we then amplify

the efficiency of our attack using an analytical approach.

2. The analytical attack exploits structures in the generation of the public

key using a small number of recovered key bits (using a modest number

of faults injections), the complexity of attacking the overall multivariate

system is reduced to a number of much smaller MV problems, which

are tractable with modest resources using brute force.

3. Our attack is software only, i.e. we do not assume any physical access

to the device. This also permits remote attacks on shared cloud servers

or in browsers. We assume that the memory module is susceptible to

Rowhammer and that faulty signatures can be recovered.

4. Earlier fault attacks on post-quantum schemes assumed hypotheti-

cal faults. We present a successful end-to-end Rowhammer attack

on constant-time AVX2 optimized implementation of the multivariate

post-quantum signature scheme LUOV.

5. We have demonstrated full key recovery of 11,229 bits for LUOV-7-57-

197 in less than 4 hours of online Rowhammer attack and 49 hours of

74

offline post-processing.

6. This attack is applicable to all the variants of LUOV Scheme including

the updates [175] after Ding et al. attack [47].

4.2 Related Work

In 2019, Ding et al. [47, 44] presented a (purely) algebraic attack on LUOV,

i.e. the subfield differential attack. Without any side-channel information,

the attack managed to significantly reduce the security level of LUOV. Specif-

ically, for LUOV-8-58-237, the complexity is reduced from 2146 to 2105 which

is lower than the minimum security level criteria established by NIST for

the post-quantum competition. The updated version of LUOV now uses fi-

nite fields GF (2r), where r is a prime, which renders the subfield differential

attack inapplicable1.

On Rainbow-like schemes, Ding et al. [46] introduced an algebraic Rec-

onciliation attack as an early work in 2008. Afterward, as for fault attacks

on multivariate schemes, only a few results exist: In 2011 by Hashimoto et

al. [74] on Big Field type and Stepwise Triangular System (STS) including

UOV and Rainbow. In 2019, Kramer et al. [105] have also worked on UOV

and Rainbow extending the earlier work. We will only talk about UOV and

Rainbow in this section and not the Big Field type schemes. Reconciliation

is an algebraic attack whereas the other two works assume physical fault at-

1The updated version is available at the author’s website [175].

75

tacks, first introduced by Boneh et al. [20] but there are no details on fault

injection technique. Kramer et al. claimed that randomness of vinegar vari-

ables and also the layers in Rainbow provide good protection against fault

attacks. These studies consider three attack scenarios:

Scenario 1 (Algebraic Attack) In this scenario [46], a purely algebraic

attack improves on brute force but does not assume any physical fault or any

side-channel information. Specifically, the aim is to invert the public map

P by finding a sequence of change of basis matrices. P is decomposed into

a series of linear transformations which are recovered step by step which

significantly reduces the security level.

Scenario 2 (Central Map) It assumes that a coefficient of the secret

quadratic central map F has been faulted. By signing randomly chosen mes-

sages with the faulty F ′ and verifying the signatures with the correct public

key P , partial information about the secret linear transformation matrix S

can be recovered using δ = S ◦ (F ′−F)◦T , where T is another secret linear

transformation matrix. As (F ′ − F) is sparse, S can be partially recovered.

At leastm−1 faults are required to recover some part of the secret key matrix

S, where m is the number of equations in the system. Both [74] and [105]

have an assumption that the attack can induce faults in either S, F or T

and provided the success probabilities of hitting the central map F . Kramer

et al. have additionally assumed a stronger attacker who can directly attack

F or even specific coefficients of F to avoid unwanted scenarios. Kramer et

al. [105] refute a claim made earlier by Hashimoto et al. [74] and claim that

76

UOV is immune to the fault attack on the central map. It is because the

attack is recovering part of S and not T , which is not present in the UOV

scheme.

Scenario 3 (Fixed Vinegar) This scenario assumes that the attacker is

able to fix part of randomly chosen vinegar variables from (xv−u+1, . . . , xv),

where u is the number of vinegar variables fixed out of total v vinegar

variables during multiple signature computation sessions. After that, mes-

sage/signature pairs are generated and utilized to recover the secrets. n−u+1

pairs are needed to recover part of T . As the attack recovers partial infor-

mation about T , it is applicable to both the UOV and Rainbow schemes but

still not sufficient to recover the secret key.

Shim et al. [153] have presented an algebraic fault analysis attack on the

UOV and Rainbow schemes. They have assumed a similar scenario of fixed

(reused) vinegar but they have two more scenarios as well: revealed and set to

zero vinegar. They are also assuming physical faults and there are no details

on how the faults are injected. Based upon the number of faulty vinegar

values, they give the complexities of the attacks. For UOV, 59 Bytes of

faulty vinegar are needed for full key recovery. They also provide the results

for LUOV which are the only fault attack results so far on LUOV scheme.

Due to the large parameter sizes, the results are not very promising to obtain

a practical attack to target real life deployments. Assuming 171 Bytes and

169 Bytes of faulty vinegar values for LUOV-8-63-256 and LUOV-8-49-242,

the complexities drop from 2181 and 2192 to 2127 and 2109, respectively.

77

The authors have not demonstrated the fault attack. In practice, fixing

a large contiguous portion of vinegar values by physical fault injection or

Rowhammer is very hard to achieve if at all possible.

Our attack scenario is different from those presented in existing works

[46, 74, 105, 20]. We are inducing faults in the last stage of the signing al-

gorithm in the linear transformation T of LUOV scheme. We have actually

verified the assumption, i.e., we implemented an attack that induces bit-flips

in T . Note that the attack does not have any control in the position of the

bit-flips within T as assumed by our attack scenario. Also, we have the abil-

ity to detect if the bit-flip was in T or not. We have practically demonstrated

this model by inducing the bit-flips using the Rowhammer attack and not just

assuming the faults as in previous research. To the best of our knowledge,

this is the first work that actually induces bit-flips (faults) through software

in post-quantum cryptographic schemes. The goal here is to make use of the

faulty signatures to track back to the flipped bits and leak the secret bits of

T . We do not need any correct and faulty signature pairs. Rather we are

able to correct the faulty signature by modifying the public signature values

and verifying the modified signatures using signature verification mechanism

as an oracle. Some recovered bits from this bit-tracing attack are used to de-

crease the complexity of the solution of Multivariate Quadratic (MQ) system

to a practically solvable smaller MQ and Multivariate Linear (ML) systems

by using a divide and conquer attack to recover the rest of the private key

bits. We call this hybrid attack as QuantumHammer.

78

4.3 A Novel Bit-Tracing Attack on LUOV

In this section we outline a novel fault injection attack on LUOV. The at-

tack succeeds in efficiently recovering secret key bits from faulty signatures

whereas faults may be injected through software only Rowhammer attack.

The attack consists of three main phases, pre-processing, online and post-

processing phase.

Post-processing
(offline on any other
machine / cluster)

1. Bit tracing attack

Online Attack
(when the victim is present / signing)
1. Placing victim at flippy addresses.
2. double-sided Rowhammer.

Pre-processing
(while co-located on victim machine
before the victim is present)
1. Contiguous memory detection.
2. Finding DRAM row conflicts.
3. double-sided Rowhammer.
4. Freeing flippy addresses.

flippy physical
addresses

faulty
signatures key bits

Pre-processing Phase
(Templating)

Online Phase
(Rowhammer Attack) Post-processing PhaseFaulty signaturesTarget addresses

1. Contiguous memory detection
2. Finding DRAM row conflicts
3. Double-sided Rowhammer
4. Freeing target addresses

1. Placing victim at flippy addresses
2. Double-sided Rowhammer

Key bits

Figure 4.1: Phases of novel bit-tracing attack on LUOV

The pre-processing phase which includes templating, needs to be carried

out on the same machine on which the victim will be running. The purpose

of this phase is to collect the physical addresses of the memory locations

susceptible to Rowhammer. The victim does not need to be present or run-

ning in the pre-processing phase. The victim can then be placed at those

addresses in the online phase when the victim process starts running. In the

online phase, the victim is first forced to be placed at the target addresses

and then the Rowhammer attack induces bit-flips in a particular area of the

victim while the victim is carrying out the signing operations. This causes

the victim to generate faulty signatures which are public and collected by

the attacker. After collecting a number of faulty signatures, our novel bit

tracing algorithm is carried out in the post-processing phase which can be

79

done offline on any other machine or cluster.

The DRAM modules installed in the system are susceptible to Rowham-

mer attack. The attacker and victim processes are co-located on the same

DRAM chip. The attacker can induce bit-flips in the linear transformation

T of LUOV scheme and is able to collect the faulty signatures. The attacker

has no control or knowledge over the position of the bit-flips within T and

the T matrix is huge e.g. 11,229 bits for LUOV-7-57-197 [175]. Also, the

attacker does not know the value of the flipped bit. The target of the at-

tacker is to trace back to the position of the flipped bit as well as to recover

the value of the bit by just using the faulty signatures. The attacker has no

knowledge of the correct signatures and can only use the public parameters

to perform the attack. Moreover, the attacker is not using HugePages for

contiguous memory. Also, she does not have any knowledge of the DRAM

mappings which convert physical addresses to DRAM ranks, banks, rows and

columns. The bit-tracing is summarized in Figure 4.1 and then each step is

explained in detail along-with results.

4.3.1 Pre-processing Phase (Templating)

The pre-processing (templating) phase of the attack is carried out on the

machine where the attacker and the victim are co-located, sharing the same

DRAM module. The victim does not need to be present or running in this

phase. As double-sided Rowhammer requires contiguous chunk of physical

memory, we allocate a 256MB buffer and look for an 8MB of contiguous

80

0 20 40 60 80 100 120 140 160 180 200

Page Number

250

300

350

400

450

C
y
c
le

s

Figure 4.2: Row conflicts for the pages from the detected contiguous memory.
The higher timings indicate that the pages are mapped to the same DRAM
bank which are the target for the Rowhammer attack.

memory using SPOILER [86]. After that, row conflicts are found to identify

the virtual addresses mapped to the same DRAM bank. This is achieved

using a side-channel since the data coming from the same bank will take

longer as compared to the data coming from the other banks. As the data

from the row buffer needs to be copied back to the original row before the

data from another row within the same bank is loaded into the row buffer,

it creates additional delay. The measurements are shown in Figure 4.2 and a

threshold value of 380 cycles is set in our experiments. This threshold value

may vary from one machine to another.

Once we find the virtual addresses mapped to the same DRAM bank,

we start the process of double-sided Rowhammer to find the DRAM rows

suitable for Rowhammer. We found 125 rows in 8MB of contiguous memory

which are mapped to the same bank. Our results indicate that the rows in

81

0 1 2 3 4 5 6 7 8 9 10

Number of Hammers 10
7

0

50

100

150

200

250

N
u
m

b
e
r

o
f
B

it
 F

lip
s

1 0 flips

0 1 flips

Total flips

Figure 4.3: Number of bit-flips increases with the increase in number of
hammers. The experiment is repeated 30 times for each number of hammers
on an 8MB contiguous chunk of memory and the results are then averaged
out.

the DRAM are ordered sequentially if the targeted memory is contiguous.

These rows are then taken 3 at a time with aggressor rows on the sides and

the victim row in the middle and aggressor rows are accessed (hammered)

repeatedly to get flips in the victim row. The number of bit-flips found

within this contiguous chunk can be seen in Figure 4.3 against the number

of hammers. It is observed that the number of bit-flips increases with the

number of hammers. To find the susceptible memory locations in the pre-

processing phase we set a value for number of hammers as 106. The other

observation is that there is not much difference between the number of 1 −→ 0

flips and 0 −→ 1 flips. To achieve bidirectional flips, we fill the aggressor rows

with all zeros and the victim row with all ones for 1 −→ 0 flips and aggressor

rows with all ones and the victim with all zeros for 0 −→ 1 flips as explained

82

0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 1 1 0 1 1 1 ... 1 1 1 1 1 1 1 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 0

...

...

(1→0 bit flips)

Aggressor Row

Aggressor Row

Victim Row

1 1 1 1 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 1 1 1 1 1

0 0 0 1 0 0 0 0 0 1 0 ... 0 0 0 0 0 1 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 1 1 1 1 1

...

...

(0→1 bit flips)

Aggressor Row

Aggressor Row

Victim Row

Figure 4.4: Double-sided Rowhammer with different data patterns. If the
attacker rows are filled with all zeros, the bit-flips occur in 1 −→ 0 direction
and if the attacker rows are filled with all ones, the bits are flipped from
0 −→ 1. This strategy helps to recover the values of the bit positions of T
traced by the bit-tracing attack.

in Figure 4.4.

The final step of the pre-processing phase is to free the vulnerable memory

pages from the attacker process so that the victim can be placed at that

location for the online attack. We do this by using munmap instruction for

every 8 kB row. As the bit-flips are highly reproducible, Rowhammer will

flip the same bits again but in the victim process in the online phase.

The experiments are carried out on a Haswell system with DDR3 mem-

ory, running Ubuntu OS. 17,129 vulnerable physical addresses are found in

83

5.7 hours. These experiments are done repeatedly using a script as 8MB of

contiguous memory is not enough for gathering these many addresses. So,

256MB of memory is allocated again and again out of which 8MB of contigu-

ous chunk is detected. Each chunk is then checked for all possible bit-flips.

A big single chunk of contiguous memory is hard to find in a live system

running various processes.

4.3.2 Online Phase (Rowhammer attack)

1 Hour

1334 bits

10 20 30 40 50

20

40

60

80

100

120

140

160

180

R
o
w

s
 o

f
T

1
9

7
5

7

2 Hours

2511 bits

10 20 30 40 50

4 Hours

4323 bits

10 20 30 40 50

Columns of T
197 57

8 Hours

6737 bits

10 20 30 40 50

16 Hours

8902 bits

10 20 30 40 50

Figure 4.5: Online phase of Rowhammer attack. The plot depicts the bit-
flips in the T matrix in the form of pixels, where white pixels indicate the
flipped bits. Approximately 80% of the key bits are flipped in 16 hours.

The pre-processing phase gives a list of vulnerable physical addresses and

the goal of the online phase is to first place the target linear transformation T

84

10 20 30 40 50

Column number of T
197 57

50

100

150

B
it
s
 r

e
c
o
v
e
re

d
 p

e
r

c
o
l
o
f
T

1
9
7

5
7

16h

8h

4h

2h

1h

Figure 4.6: Number of bits recovered per column of T in 16 hours of online
phase.

of LUOV scheme at one of those physical addresses and then do the double-

sided rowhammer again to get bit-flips in T . For experimental purposes, we

achieve this by keep allocating memory pages for the T with in the victim

process until it either gets in one of the target addresses or one page next to

a target address. This is because one DRAM row comprises 8 kB having two

4 kB pages and the size of the T matrix is less than a 4 kB page. For LUOV-7-

57-197, the size of the linear transformation matrix T is (57×197)/8 = 1, 404

Bytes. Hence, if T gets in either of the two pages of the target row, we can

start doing the Rowhammer attack. This process is time consuming as a

large number of memory pages are allocated until T is mapped to the desired

target address.

The placement of victim can also be achieved by using other techniques

85

present in the literature like spraying [67, 151, 181], grooming [173] and

memory-waylaying [65, 182, 107]. Figure 4.5 shows the number of T bits

flipped against time. The number of bit-flips do not increase linearly with

time as we start getting the same bit-flips over and over again. Out of 25,335

bit-flips, only 8,902 were unique in 16 hours of the online phase. We can

see that in the first hour we get 1,334 bit-flips, little less than a double

in two hours and after that the bit-flips are getting repeated more often.

Still, we are able to recover approximately 80% of the T bits in 16 hours.

Figure 4.6 indicates the number of bit-flips per column of T which will be

used by QuantumHammer in Section 4.4. The working of the attack is

verified when the victim and attacker process are running independently in

different terminals but due to the system crashes, memory constraints, disk

errors and synchronization problems, the attacker and the victim process are

combined as we needed to run the experiments for l6 hours continuously.

For example, in a 2GB memory in which only 25% memory is available in a

running system, two separate processes start taking the swap partition. This

makes the system slow and unresponsive.

4.3.3 Post-processing Phase

The post-processing phase takes the faulty signatures collected in the online

phase and is able to recover the key bits of T . We consider it a weakness

of the LUOV scheme because the faulty public signatures should not lead

back to the secret key bits of T . In the LUOV scheme, if T is recovered,

86

the secret central map F can be easily computed using the public map P , as

P = F ◦T . Thus, recovering T is enough to break the scheme and forge any

signature. The bit-tracing algorithm can be executed offline on any other

system or cluster independently.

In the last stage of LUOV, there is a linear transformation T which gives

the signature as the output. The intuition behind the bit-tracing attack is to

flip bits in T and observe the effect on the signature values. Once we get a

faulty signature, the signature verification algorithm is utilized as an oracle

to correct the signature by iteratively modifying the faulty signature. When

the correct signature is found and the verification test is passed, bit-tracing

algorithm mathematically tracks back to the flipped bit and is able to get

information about the position of the flipped bit. By filling the attacker rows

with all ones and the victim row with all zeros, we can tell that the flipped

bit was a zero or vice versa.

We target the last part of the signature generation algorithm of LUOV

which is a linear transformation sv×1 = Tv×m × om×1 ⊕ vv×1 or in the matrix

form as Equation 4.1.


s1
...

sv

 =


t11 . . . t1m
...

. . .
...

tv1 . . . tvm

×

o1
...

om

⊕

v1
...

vv

 (4.1)

Our bit-tracing algorithm for LUOV is given in Algorithm 6 which takes

v × m signature verifications to trace 1 bit of T for 1 bit-flip. The inputs

87

to the algorithm are all public parameters: 1) the faulty signature S which

we get after flipping the bit using Rowhammer attack, 2) the message M , 3)

public map P . The algorithm finds the correct signature by replacing each

element of s with the XOR of itself and each element of the oil variables.

On successful verification, the indexes of the bit-flip (r, c) in T are returned

which indicates the bit-flip position in T .

Algorithm 6 Bit-tracing algorithm for LUOV - Offline

1: procedure Tracebit(S, salt)
Input: (S, salt) ▷ Faulty signature
M - Message , P - Public map
Output: Returns (r, c) ▷ Recovered bit-flip position in T

2: h ←− H(M ||0x00||salt)
3: for r from 1 to v do
4: for c from 1 to m do
5: S[r]←− S[r]⊕ S[c+ v]
6: if P (S) ̸= h then
7: S[r]←− S[r]⊕ S[c+ v]
8: else
9: return r, c

10: break
11: end if
12: end for
13: end for
14: end procedure

If there is a bit-flip somewhere in T , say at index (r, c), multiplication

of rth row of T and o results in a difference in s which is oc at the term sc.

As the o and s are public, we can try all potential differences which are the

elements of o XORed with all elements of the s to check which one of the oil

variable caused the error due to a bit-flip in T . We achieve this by replacing

88

each element of s with its XOR of all elements of o one by one and pass it

to the signature verification oracle. Once, the signature gets verified, we get

the indexes of the flipped bit in T , which are (r, c). The value of the bit can

be recovered by knowing the direction of the bit-flip. A 0 −→ 1 flip means

that the key bit was originally 0 and a 1 −→ 0 bit-flip means that the key bit

was 1. The amount of time needed for this offline post-processing bit-tracing

algorithm is shown in Table 4.1 for all variants of LUOV AVX2 optimized

implementations.

For 2-bit scenario, Algorithm 6 can be modified to recover 2 bits of T if

v×m verifications fail to correct the signature. In this scenario, there are two

cases. First one is that 2 bit-flips are in the different rows of T which requires

us to take all combinations of elements of s, 2 at a time which is
(
v
2

)
. For

each combination, we need m2 verifications by XORing both elements of the

combination with all elements of o. The first scenario hence needs m2 ×
(
v
2

)
verifications. For 2 bit-flips in the same row, the error is just in one element

of s. For each element of s, we need to XOR all combinations of o, 2 at a

time with the element of s, until we find the correct signature. This scenario

requires v×
(
m
2

)
verifications. In total, we need vm+m2

(
v
2

)
+v

(
m
2

)
signature

verifications for 1 bit and 2 bit scenarios combined. If there are multiple

bit-flips in T in the online phase, they can be controlled by changing the

data patterns in the aggressor rows and turning on and off certain bit-flips.

We have successfully tested this method via an independent experiment. But

found that it increases the duration of the online phase. It was more efficient

89

to just ignore the rare cases of more than 2 bit-flips.

Table 4.1: Post computation times for bit-tracing attack, Algorithm 6 on
LUOV. This computation is done offline and can easily be parallelized and
distributed. The measurements are taken on a single machine with a Skylake
Intel Core i5-6440HQ CPU @2.6GHz processor. Note that these timings are
for v ×m verifications which is the worst case scenario. In practice, the bits
are traced in fewer iterations depending upon the position of the bit-flip in
T .

Implementation LUOV Variant 1-bit Tracing
Offline(Sec)

AVX2 luov-7-57-197-chacha 1.58
luov-7-57-197-keccak 11.44
luov-7-83-283-chacha 10.46
luov-7-83-283-keccak 58.22
luov-7-110-374-chacha 35.19
luov-7-110-374-keccak 239.34

AVX2 luov-7-57-197-chacha 0.36
(precompute) luov-7-57-197-keccak 0.36

luov-7-83-283-chacha 1.64
luov-7-83-283-keccak 1.63
luov-7-110-374-chacha 4.98
luov-7-110-374-keccak 4.99

4.3.4 Performance

Table 4.1 summarizes the time it takes to perform the post-processing time,

i.e. the bit-tracing step. The computation is performed offline and can easily

be parallelized since all this step does is to search for the fault location

using the faulty signature. Enabled by Rowhammer, the bit-tracing attack

manages to effectively recover bits of T , the secret key matrix. Assuming

90

single faults, each recovered secret key bit requires a successful Rowhammer

fault injection, which takes significant amount of time, i.e. we get about 23

flips per minute on our target platform in the first hour, while the flipping

performance degrades with time, see Figure 4.5. Remember that for LUOV-

7-57-197, we have 11,229 key bits to recover. Recovering the entire signature

key bit-by-bit would take more than 16 hours of live observation which is

unrealistic.

Alternatively, if we try to reduce the complexity of the LUOV MQ equa-

tion system to enable SAT solving then the best strategy would be to target

specific rows of T using Rowhammer. Using each fully recovered row, we can

recover a vinegar variable. As the original oil and vinegar scheme with an

equal number of oil and vinegar variables already was shown to be breakable

by Patarin, we need to eliminate v −m variables which means v −m rows

of T need to be recovered using Rowhammer attack. This approach too is

costly.

Rather than trying to recover the entire key or to eliminate vinegar vari-

ables until the security collapses, we introduce a novel attack, i.e., Quan-

tumHammer as described in the following section, that uses the bit-tracing

attack as an oracle.

91

4.4 QuantumHammer

We present QuantumHammer attack that significantly reduces the com-

plexity of the LUOV MQ system by splitting it into smaller MQ problems.

This is achieved by using the bit-tracing attack as an oracle to recover a

small number of specifically chosen key bits. Overall attack complexity is

drastically reduced compared to an attack that only uses bit-tracing. Next

we delve into the details of the LUOV construction. Specifically, we analyze

the key generation process to obtain a simpler formulation.

4.4.1 Divide-and-Conquer Attack

Let MQ(v,m) and ML(v,m) represent systems of m quadratic and m linear

equations of v unknowns, respectively. Our aim is to attack key generation

part of LUOV explained in Section 2.3.1 and recover boolean private linear

transformation matrix T . The public parameter Q2 is generated from the

intermediatem×m the boolean matrix P k
3 by Equation 2.4. P k

3 is formulated

in terms of P k
1 , P

k
2 and T where P k

1 and P k
2 are publicly re-generatable from

public parameter Q1. Therefore, for a direct attack, we need to solve a

MQ(v ·m, m
3+m2

2
) in which equations are from Equation 2.4 and unknowns

are the elements of T . For the NIST Round 2 submission LUOV-7-57-197,

with parameters m = 57 and v = 197 solving the overall quadratic system

appears infeasible unless there is a major breakthrough.

Instead of trying to attack the mv-bit secret key matrix T as a whole,

92

or recovering some part of T by bit-tracing attack and applying exhaustive

search to the rest, we gain a more powerful attack, QuantumHammer, by

exploiting the relation between the public matrices P k
1 , P

k
2 , Q2, where k from

1 to m and private linear transformation matrix T (remember the LUOV key

generation process in Figure 2.6).

We start by making some observations on the structure of Q2.

4.4.2 Observations on the structure of Q2

Even though Q2 yields a large MQ(v ·m, m
3+m2

2
) system, one can divide Q2

column by column and consider it as a set of combination of discrete, smaller

MQ systems in terms of columns of T , i.e., set of MQ(v,m) and MQ(2v,m)

systems by Equation 2.4 and 2.3.

Assuming bit-tracing attack recovers x bits from a column of T , it is pos-

sible to reduce the related systems into one of MQ(v − x,m), ML(v − x,m)

and ML(v,m) systems. These equations have certain structure that we wish

to exploit to recover the entire T , column by column. The following defini-

tions and observations will lead us to divide and conquer attack:

1. Define Ai as the set of m equations of v variables, MQ(v,m) where

equations are Q2k,βi,i
= pk3(i, i) for k from 1 to m and variables are the

ith column of T , i.e., t1i, · · · , tvi.

2. Suppose x elements of ith column of T are known/recovered. Define

Ai(x) as a reduced system of Ai by inserting the x recovered bits into

93

Ai. Note that, inserting x variables into Ai reduces the system to

MQ(v − x,m) from MQ(v,m).

3. Define Bi,j as the set of m equations of 2v variables, MQ(2v,m) where

the equations are Q2(k,βi,j) = pk3(i, j) ⊕ pk3(j, i) for k from 1 to m and

variables are the ith and jth columns of T , i.e., t1i, · · · , tvi, t1j, · · · , tvj.

4. Suppose ith column of T , i.e. t1i, · · · , tvi, is known. Inserting these vari-

ables into Bi,j reduces the system from quadratic MQ(2v,m) system

to a linear ML(v,m) system, where the unknowns are t1j, · · · , tvj. We

denote the insertion of the ith column of T into Bi,j by Bi,j(ti, 0). Note

that, this reduces the hard problem MQ(2v,m) into underdetermined

linear ML(v,m) system.

5. Suppose x elements of the jth column of T and the entire ith column

of T are known. Inserting these known variables into Bi,j reduces the

system from MQ(2v,m) to ML(v − x,m). The new system is denoted

by Bi,j(ti, x). If x ≥ v−m then the system reduces to an overdetermined

linear system from an underdetermined one. Therefore, the new system

has a unique solution and is efficiently solvable.

4.4.3 A Practical Divide and Conquer Attack

We are going to use bit-tracing attack as an oracle to recover some bits

of some column in matrix T . Informally, QuantumHammer proceeds as

94

follows:

Bit-tracing (Section 4.3):

Suppose x bits in some column of T is enough to reduce MQ(v,m) system

into a solvable MQ(v − x,m) system. When x bits are recovered via bit-

tracing in some column, we stop bit-tracing and recover the bits as explained

in Section 4.3. Apply bit-tracing attack, and recover bits of T until the

highest number of recovered bits from a column is v −m. Pick the highest⌈
v
m

⌉
columns. Assume the highest number of recovered bits are x1, x2, x3

and x4 bits in α1, α2, α3 and αth
4 columns of T , respectively. Note that,

bit-tracing recovers additional bits from different columns of T . But, having⌈
v
m

⌉
columns of T is enough to reduce the MQ systems into ML systems and

can efficiently solve it. Therefore, we do not need to use the remaining bits

recovered by bit-tracing in different columns of T .

95

Quadratic Steps (Algorithm 7):

Algorithm 7 Quadratic Steps

1: procedure QuadSteps((α1, x1),· · · ,(ακ, xκ))

Input: High recovered columns from Bit-tracing

Output: (tαi
, · · · , tακ) ▷ entire columns of input vectors

2: Aα1(x1)←MQ Gen(α1, x1) ▷ Algorithm 10 in Appx

3: tα1 ← Eqn Solver(Aα1(x1), ∅) ▷ Algorithm 12 in Appx

4: for i from 2 to κ =
⌈

v
m

⌉
do

5: Aαi
(xi)←MQ Gen(αi, xi). ▷ Quadratic Step

6: for j from 1 to i-1 do

7: Bαi,αj
(xi, tj)←ML Gen((αi, xi), (αj, tj))

▷ Algorithm 11 in Appx

8: end for

9: ti ← Eqn Solver(Aαi
(xi),

⋃i−1
j=1 Bαi,αj

(xi, tj))

10: end for

11: end procedure

1. Consider Aα1 , more specifically, consider the elements of βα1,α1 =

(α1 − 1)m + α1(α1+1)
2

th
column of Q2 which are pk3(α1, α1) terms of

P k
3 for k from 1 to m and α1 is the highest column of T . Inserting

x1 recovered bits into the system Aα1 reduces the MQ(v,m) system

into MQ(v − x1,m). We recover the remaining v − x1 elements of αth
1

column T which are t1α1 , · · · , tvα1 .

96

2. Insert recovered αth
1 column of T into Bα1,α2 and x2 recovered bits of

αth
2 column of T into the systems Bα1,α2 and Aα2 reducing the sys-

tems into Bα1,α2(tα1,x2) and Aα2(x2), respectively. Thus, the system

reduces to practically solvable MQ(v − x2,m)
⋃
ML(v − x2,m). The

solution of the reduced system gives the full αnd
2 column of T which are

t1α2 , · · · , tvα2 . Note that, even though solving MQ(v − x2,m) is harder

than solving MQ(v − x1,m), there are m additional linear equations

from ML(v − x2,m) which decrease the number of unknowns from

v − x2 to v − x2 − m. Therefore, MQ(v − x2,m)
⋃
ML(v − x2,m)

is a much easier system to solve than MQ(v − x1,m).

3. Apply the same strategy to αth
3 column of T , i.e., insert α1 and

αth
2 columns of T which are recovered in the first two steps, into

the systems Bα1,α3 , Bα2,α3 and Aα3 . The complexity reduces to

Bα1,α3(t1, x3)
⋃
Bα2,α3(t2, x3)

⋃
Aα3(x3). Thus, the system reduces

to ML(v − x3, 2m)
⋃

MQ(v − x3,m) which has the solution of xth
3

unknowns from the α3 column which are t1α3 , · · · , tvα3 . Note

that, the solution of the system is equivalent to the solution of

MQ(v − x3 − 2m,m) which is much easier than the previous steps.

4. The same strategy can be applied to recover αth
4 column of T by using

previously recovered columns of T in addition to recovered x4 bits of

the αth
4 column in bit-tracing attack. Inserting the known elements will

reduce the complexity to ML(v − x4, 3m)
⋃
MQ(v − x4,m). This is

97

a solvable system since it is equivalent to MQ(v − x4 − 3m,m). The

solution gives us αth
4 column elements t1α3 , · · · , tvα3 .

After
⌈

v
m

⌉
steps,

⌈
v
m

⌉
recovered columns of T are enough to reduce the

smaller MQ systems of remaining columns into overdetermined ML systems.

In the following steps, we are going to explain how one can reduce any small

MQ system to a ML if
⌈

v
m

⌉
columns are recovered.

Linear Steps (Algorithm 8):

Algorithm 8 Linear Steps

1: procedure LinearSteps((α1, tα1),· · · ,(ακ, tακ))

Input: Recovered Columns

Output: (t1, · · · , tm) ▷ columns of T

2: for i from 1 to m do ▷ except {α1, · · · , ακ}

3: for j from 1 to κ do

4: Bi,αj
(∅, tαj

)←ML Gen((i, ∅), (αj, tαj
)) ▷ ML(v,m)

5: end for

6: ti ← Eqn Solver(∅,
⋃κ

j=1 Bi,αj
(0, tαj

)) ▷ ML(v, κ ·m)

7: end for

8: return ti

9: end procedure

Suppose there are
⌈

v
m

⌉
recovered columns of T from the quadratic steps.

Inserting the bits of recovered columns into the related systems will give us

98

the following reduced ML system:

⌈ v
m⌉⋃
i=1

Bαi,β(ti, 0)

where αi’s are the column numbers of recovered columns of T and β is the

column number of attacked column of T . This gives us an overdetermined

ML(v,
⌈

v
m

⌉
·m) system which can be solved efficiently.

Note that, by the linear steps, we can recover the rest of T columns one by

one in m−
⌈

v
m

⌉
steps.

4.5 Experimental Results

Table 4.2: Exhaustive search timing for different sizes of MQ(n, n) taken on
Nvidia GTX 1080Ti GPU.

n = m Time n = m Time n = m Time
40 2.7s 52 1h 32m 55 6h 15m
43 12s 53 3h 3m 56 24h 45m
49 11m 33s 54 3h 6m 57 49h 30m

Bit-tracing:

We have attacked the constant-time AVX2 optimized implementation of

LUOV-7-57-197 [175] on a Haswell system equipped with Intel Core i7-4770

CPU @ 3.40GHz, 2GB DDR3 DRAM, model Samsung (M378B5773DH0-

CH9). Pre-processing (templating) step is performed in 5.7 hours to find

99

17,129 physical addresses vulnerable to Rowhammer. After that, 16 hours

of online phase is carried out in which the victim is running and perform-

ing signing operations. Using bit-tracing attack, we recover 4,116 bits with

3 hours and 49 minutes of online observation. The faulty signatures are

processed offline on a separate machine to recover the key bits 2.

Note that the attack recovers up to 140 bits in any column of T which is

enough for a successful QuantumHammer attack. The distribution of the

bits in the 57 columns of T is given in Figure 4.7. Some columns of T have

been located in DRAM buffers that are more flippy than others.

140
135133 131

5 10 15 20 25 30 35 40 45 50 55

Column number of T
197 57

50

100

150

B
it
s
 r

e
c
o
v
e
re

d
 p

e
r

c
o
l
o
f
T

1
9
7

5
7 Attack Instance - 3h 49m

Highest - Col 5

2
nd

 Highest - Col 23

3
rd

 Highest - Col 7

4
th

 Highest - Col 21

Figure 4.7: Bit-tracing attack recovers up to 140 key bits per column of
T in less than 4 hours of Rowhammer on a 2GB DDR3 Samsung DRAM
(M378B5773DH0-CH9).

Quadratic Steps:

2The source code for QuantumHammer is made available at http://github.com/

VernamLab/QuantumHammer.

100

http://github.com/VernamLab/QuantumHammer
http://github.com/VernamLab/QuantumHammer

In preparation for QuantumHammer, pk3(i, j) were generated by the Equa-

tion 2.3 using the coefficients from P k
1 and P k

2 . MQ systems are generated

by Equation 2.4 using pk3(i, j) equations. To solve the generated system of

equations, we focused on
⌈

v
m

⌉
=

⌈
197
57

⌉
= 4 columns with the highest num-

ber of recovered bits: columns 5, 23, 7 and 21 with 140, 135, 133 and 131

recovered bits, respectively. In every step of quadratic and linear steps, we

recover a column of T . Experimental results of quadratic steps are given in

Table 4.3.

It is important to note that, in the first step, we recover the 5th column

of T , by solving a MQ(57, 57) system reduced from the underdetermined

MQ(197, 57) thanks to 140 recovered bits obtained by the bit-tracing attack.

Without it, it would not be possible to recover the rest of the 5th column.

The system is solved by exhaustive search in roughly 49 hours on i7 Intel

CPU with Nvidia GTX 1080 Ti GPU. In Table 4.2 exhaustive search timing

for different sizes of MQ(n, n) is given. We used the GPU implementation of

[24] compiled using the Nvidia CUDA 10.0 framework. The offline exhaustive

search can be trivially sped up by employing multiple GPUs since the search

is fully parallelizable.

In the second step, we targeted 23rd column with the 135 bits recov-

ered bits from bit-tracing. With these 135 bits, the system starts out as

MQ(62, 57). Next, we insert the values obtained from the 5th column to

reduce the complexity to MQ(5, 57). We can instantly solve this system

via exhaustive search. At this point, by inserting the recovered bits in the

101

first two steps, we reduced the remaining equations into (over-defined) linear

systems only.

Linear Steps:

In the quadratic steps, we recovered 4 columns of T . Inserting these values

into remaining equations will give us an underdetermined ML(197, 57) sys-

tem. We end up with 228 linear equations with 197 unknowns which can be

solved via Gaussian elimination. Even though we can generate more linear

equations by using more bits of T previously recovered by bit-tracing, we

do not need any extra equations to solve the system. In 53 steps, all the

remaining columns of T are recovered as summarized in Table 4.4.

4.6 Countermeasures

The effectiveness of QuantumHammer requires us to consider practical

countermeasures at various levels:

Preventing Rowhammer: The most effective solution to prevent any

Rowhammer fault-injection attack is to implement stronger isolation, such

as using dedicated instances for any sensitive processes. If isolation is not

possible, an effective alternative approach to reduce the impact of Rowham-

mer is increasing the DRAM row refresh rate. DDR3 and DDR4 refresh each

row at least every 64 ms. That said many systems permit the refresh rates

at 32 or 16 ms for better memory stability.

Online Detection of Rowhammer: One may also seek to employ active

102

countermeasures for online detection of Rowhammer. For this, Hardware

Performance Counters (HPCs) can be used to monitor counters like cache

hits and cache misses to detect Rowhammer.

Suppressing Faulty Signatures: Another way to counter faults in the

signature schemes is to verify the signatures at sender side before sending

it but that will involve additional processing. A faster approach can be to

repeat the final linear transformation stage of the signing operation with an

independently generated T and check if the signatures are identical. Clearly,

in this case one must ensure that the checking mechanism itself does not

become a target itself.

4.7 Discussion

The first algebraic attack targeting UOV type schemes that does not require

any physical access is Reconciliation attack introduced by Ding et al. [46].

The attack aims to invert the public map. Decomposing the public map

P into the multiplication of a series of specific linear transformations allows

the attacker to recover every transformation one-by-one by exhaustive search

algorithms such as F4/F5 or FXL. The result is a purely algebraic attack that

significantly reduces the assumed security margin of LUOV.

In the Divide-and-Conquer Attack, we follow a similar approach in the

sense that we exploit one of the innovations of LUOV, i.e. the structure of the

public key Q2. Being empowered by Rowhammer and the bit-tracing attack,

103

we take the attack further into full recovery of all key bits. This is achieved by

converting the MQ system into smaller under-determined MQ systems which

are in the same form as the original MQ system. Instead of decomposing the

matrix, we regroup the equations into a discrete set of variables. Without

the amplification of the fault attack, it would not be possible to solve the

smaller MQ systems since they are underdetermined. In this sense, our

overall QuantumHammer attack represents a novel approach.

Preventing Algebraic Collapse: What enables QuantumHammer is

that the MQ equations use a small subset of the key bits in the way the key

generation primitive is defined for LUOV. Hence, recovering a small fraction

of the key bits via Rowhammer and the bit-tracing attack was sufficient

to collapse the MQ system to smaller size tractable MQ systems. In many

scenarios, a small fraction of the key bits may be recovered using side-channel

attacks. Hence this attack poses a serious threat to real-life deployments. To

prevent such collapse it would be prudent to check the resulting MQ system

underlying the security of the scheme at design time under the assumption

that any fixed size subset of the key bits are compromised.

4.8 Conclusion

This chapter shows that both hardware and cryptographic security are of

utmost importance for cryptosystems. LUOV signature scheme, a round 2

finalist of NIST’s PQC standardization process is based on the well known

104

oil and vinegar scheme which withstood over two decades of cryptanalysis.

We have analyzed the scheme both mathematically and implementation wise

and found weaknesses in both areas. The QuantumHammer attack com-

bines both weaknesses to launch a successful attack recovering the full secret

key of the scheme. There is a need to evaluate the hardware and software

implementations of the cryptosystems in combination with the mathematical

evaluation.

105

T
ab

le
4.
3:

Q
u
ad

ra
ti
c
st
ep
s
in

ou
r
ex
p
er
im

en
ta
l
Q
u
a
n
t
u
m
H
a
m
m
e
r
on

L
U
O
V
-7
-5
7-
19
7.

In
ev
er
y
st
ep
,
ta
b
le

li
st
s
th
e
ta
rg
et
ed

co
lu
m
n
of
T
,
n
u
m
b
er

of
re
co
ve
re
d
b
it
s
d
u
ri
n
g
b
it
-t
ra
ci
n
g,

si
ze

of
M
L

sy
st
em

ob
ta
in
ed

af
te
r
in
se
rt
in
g
p
re
v
io
u
sl
y
re
co
ve
re
d
co
lu
m
n
s,
co
m
p
le
x
it
y
of

th
e
so
lu
ti
on

fo
r
th
e
li
n
ea
r
p
ar
t,
n
u
m
b
er

of
li
n
ea
r

eq
u
at
io
n
s
an

d
u
n
k
n
ow

n
s,
p
ar
am

et
er
s
fo
r
th
e
q
u
ad

ra
ti
c
p
ar
t,
an

d
th
e
co
m
p
le
x
it
y
of

th
e
ov
er
al
l
sy
st
em

af
te
r

u
si
n
g
M
L
to

re
d
u
ce

th
e
u
n
k
n
ow

n
s
in

q
u
ad

ra
ti
c
p
ar
t.

S
te
p
T
ar
ge
t

C
ol

N
u
m
.

of R
ec
.

b
it
s

L
in
ea
r
P
ar
t

Q
u
ad

ra
ti
c
P
ar
t

O
ve
ra
ll

C
om

p
le
x
it
y

In
sr
td

C
ol

E
q
u
at
io
n

S
y
st
em

C
om

p
le
x
it
y

M
L
S
y
st
em

E
q
u
at
io
n

S
y
st
em

C
om

p
le
x
it
y

M
Q

S
y
st
em

L
in
ea
r

E
q
n
s

U
n
k

Q
u
ad

E
q
n
s

U
n
k

1
5

14
0

-
-

-
-

-
A

5
(1
40
)

M
Q
(5
7,
57
)

57
57

M
Q
(5
7,
57
)

2
23

13
5

5
B 5

,2
3
(1
97
,1
35
)

M
L
(6
2,
57
)

57
62

A
2
3
(1
35
)

M
Q
(6
2,
57
)

5
62

M
Q
(5
,5
7)

3
7

13
3

5
B 5

,7
(1
97
,1
33
)

M
L
(6
4,
57
)

11
4

64
A

7
(1
33
)

M
Q
(6
4,
57
)

57
64

M
L
(6
4,
11
4)

23
B 2

3
,7
(1
97
,1
33
)

M
L
(6
4,
57
)

4
21

13
1

5
B 5

,2
1
(1
97
,1
31
)

M
L
(6
6,
57
)

17
1

66
A

2
1
(1
31
)

M
Q
(6
6,
57
)

57
66

M
L
(6
6,
17
1)

23
B 2

3
,2
1
(1
97
,1
31
)

M
L
(6
6,
57
)

7
B 7

,2
1
(1
97
,1
31
)

M
L
(6
6,
57
)

106

T
ab

le
4.
4:

L
in
ea
r
st
ep
s
in

ou
r
ex
p
er
im

en
ta
l
Q
u
a
n
t
u
m
H
a
m
m
e
r
on

L
U
O
V
-7
-5
7-
19
7.

In
ev
er
y
st
ep
,
ta
b
le

li
st
s
th
e
ta
rg
et
ed

co
lu
m
n

of
T
,
in
se
rt
ed

co
lu
m
n
s
u
se
d

to
ge
n
er
at
e
M
L

sy
st
em

,
an

d
re
su
lt
an

t
eq
u
at
io
n

sy
st
em

s,
th
e
si
ze

of
th
e
ge
n
er
at
ed

M
L
sy
st
em

s,
an

d
th
e
n
u
m
b
er

of
eq
u
at
io
n
s
an

d
u
n
k
n
ow

n
s
in

th
e
ov
er
al
l

li
n
ea
r
sy
st
em

an
d
ov
er
al
l
co
m
p
le
x
it
y
ar
e
gi
ve
n
.

S
te
p

N
m
b
r
T
ar
ge
t

C
ol

L
in
ea
r
P
ar
t

O
ve
ra
ll

C
om

p
le
x
it
y

In
se
rt
ed

C
ol

E
q
u
at
io
n

S
y
st
em

E
q
u
iv
al
en
t

S
y
st
em

M
L
S
y
st
em

L
in
ea
r
E
q
u
at
io
n
s

U
n
k
n
ow

n
s

5
1

5
B 5

,1
(1
97
,0
)

M
L
(1
97
,5
7)

22
8

19
7

M
L
(1
97
,2
28
)

23
B 2

3
,1
(1
97
,0
)

M
L
(1
97
,5
7)

7
B 7

,1
(1
97
,0
)

M
L
(1
97
,5
7)

21
B 2

1
,1
(1
97
,0
)

M
L
(1
97
,5
7)

. . .
. . .

. . .
. . .

. . .

57
57

5
B 5

,5
7
(1
97
,0
)

M
L
(1
97
,5
7)

22
8

19
7

M
L
(1
97
,2
28
)

23
B 2

3
,5
7
(1
97
,0
)

M
L
(1
97
,5
7)

7
B 7

,5
7
(1
97
,0
)

M
L
(1
97
,5
7)

21
B 2

1
,5
7
(1
97
,0
)

M
L
(1
97
,5
7)

107

Chapter 5

Signature Correction Attack on

Dilithium Signature Scheme

In this chapter, we introduce a novel Signature Correction Attack that not

only applies to the deterministic version but also to the randomized version

of Dilithium and is effective even on constant-time implementations using

AVX2 instructions. The Signature Correction Attack exploits the mathemat-

ical structure of Dilithium to recover the secret key bits by using faulty sig-

natures and the public-key. It can work for any fault mechanism which can

induce single bit-flips. For demonstration, we are using Rowhammer induced

faults. Thus, our attack does not require any physical access or special priv-

ileges, and hence could be also implemented on shared cloud servers. Using

Rowhammer attack, we inject bit-flips into the secret key s1 of Dilithium,

which results in incorrect signatures being generated by the signing algo-

108

rithm. Since we can find the correct signature using our Signature Correc-

tion algorithm, we can use the difference between the correct and incorrect

signatures to infer the location and value of the flipped bit without needing

a correct and faulty pair. To quantify the reduction in the security level, we

perform a thorough classical and quantum security analysis of Dilithium and

successfully recover 1,851 bits out of 3,072 bits of secret key s1 for security

level 2. Fully recovered bits are used to reduce the dimension of the lattice

whereas partially recovered coefficients are used to to reduce the norm of

the secret key coefficients. Further analysis for both primal and dual attacks

shows that the lattice strength against quantum attackers is reduced from

2128 to 281 while the strength against classical attackers is reduced from 2141

to 289. Hence, the Signature Correction Attack may be employed to achieve

a practical attack on Dilithium (security level 2) as proposed in Round 3 of

the NIST post-quantum standardization process.

5.1 Contributions

We introduce the Signature Correction Attack on the Dilithium signature

scheme which recovers secret key bits using only the faulty signatures and

the public key. The attack works by first inducing bit-flips in the signing

process, then collecting the faulty signatures and finally recovers the secret

key bits while trying to correct the faulty signature using verification algo-

rithm as an oracle. The faults are induced using a practical and software

109

only Rowhammer attack to produce the faulty signatures. In summary, in

this chapter:

1. We introduce the Signature Correction Attack on Dilithium signature

scheme on both randomized as well as deterministic version. The Sig-

nature Correction Attack only requires faulty signatures and the public

key to mathematically locate single-bit faults on the secret key and to

reveal the exact value of the bit-flip independent of the fault mechanism

used.

2. We practically demonstrate the Rowhammer attack as a fault injection

mechanism for Signature Correction on constant-time AVX2 implemen-

tation of Dilithium to generate the faulty signatures. Unlike physical

fault mechanisms like EM, laser or clock-glitches, Rowhammer does

not require any physical access which permits remote attacks on shared

servers and is also applicable through JavaScript.

3. We recover partial secret key of 883 bits out of 3,072 bits for Dilithium

security level 2 in about 2 hours of online Rowhammer attack and

negligible amount of post-processing.

4. Careful analysis of the encoding of the secret key allows us to increase

the number of recovered bits from 883 to 1,522. Additionally, analysis

on the positions of the recovered bits reveal an additional 329 bits hence

significantly extending the key material. Detailed analysis is given in

Section 5.5.

110

5. Further analysis of lattice attacks shows a much reduced security for

Dilithium security level 2 below the NIST’s requirements, i.e. from

2128 to 281. Hence a partial key material collection and recovery with

Signature Correction Attack followed by a lattice attack may indeed

compromise Dilithium level 2 in practice.

6. Our Signature Correction Attack is applicable to all variants of

Dilithium currently in Round 3 including the randomized versions rec-

ommended for side-channel and fault attacks.

7. We propose countermeasures to detect and prevent the Signature Cor-

rection Attack by temporal and spatial redundancy techniques as well

as through Rowhammer mitigations.

5.2 Related Work

To the best of our knowledge, we are the first to demonstrate a fault attack on

the randomized version of Dilithium in Round 3, which is also applicable to

the deterministic version. Previous fault attacks on Dilithium [28, 146, 147]

are only applicable to the deterministic version of Dilithium in Round 1.

DFA requires a pair of faulty and correct signatures which can be collected

by signing the same message twice and faulting in the second iteration. To

prevent this DFA, Round 2 Dilithium introduced signature randomization by

using a different nonce for every signature generation. Our proposed Signa-

111

ture Correction Attack is independent of the nonce and hence applicable to

both randomized and deterministic versions of Dilithium. Bruinderink et al.

[28] based their analysis on hypothetical faults without experimental confir-

mation. Ravi et al. [146, 147] have experimented using EM fault injection

on the reference implementation for ARM-Cortex-M4. All of these attacks

require physical access to induce the faults.

We propose Signature Correction Attack on Dilithium and demonstrate

it on the constant-time AVX2 implementation using a Rowhammer attack.

Our Signature Correction Attack can work with any single fault injection

mechanism. We have chosen Rowhammer, because it is a software-only fault

attack that can be launched remotely. Also, it has not been mitigated and

can be dangerous in cloud scenarios where different users shares the same

DRAM [181, 36].

5.3 Signature Correction Attack on

Dilithium

To the best of our knowledge, there is no published work yet summarizing a

fault attack on Dilithium that can work on randomized version of Dilithium.

The randomized version randomly generates the nonce for each signing oper-

ation, which gives a different signature every time we sign the same message.

Hence a standard DFA is not possible in case of randomized Dilithium as the

attacker cannot recover a faulty and another correct signature for the same

112

message for the same nonce. Our novel Signature Correction Attack however

is independent of the nonce, hence it is applicable to both randomized and

deterministic versions of Dilithium.

The Signature Correction Attack exploits the mathematical structure of

Dilithium to recover the secret key bits by using just the faulty signatures

and the public key. Thus the attack can be executed offline after collecting

sufficiently many faulty signatures from an active fault attack. The attack is

independent of the concrete fault injection technique. The only requirement

is that the faults should be single bit and induced before the signing step 13

of Algorithm 3 in secret key s1. First we define the attacker model and then

explain the phases of our Signature Correction Attack.

5.3.1 Attacker Model

When multiple tenants in cloud environments reside on the same server, they

may share the same DRAM. The Rowhammer attack requires the attacker

process and victim process to share a DRAM. The attacker process can then

induce bit-flips by just reading its own memory repeatedly [181, 36, 176].

Moreover, the DRAMmust be vulnerable to Rowhammer attack which means

that its memory cells must be susceptible to the hammering effect. Most

types of DRAMs have been shown to be vulnerable in [57, 42]. We are

not using HugePages for contiguous memory as most of the servers are not

configured to use HugePages. We will explain how we detect contiguous

memory in Section 5.3 as it is required for the double-sided Rowhammer to

113

locate the neighboring rows in a DRAM bank. Also, the attacker has no

knowledge of the DRAM mapping which is different for different memory

controllers and DRAM configurations. The DRAM mapping maps physical

addresses to actual DRAM ranks, banks, rows and columns which can be

used by the attacker to co-locate with the victim in the same DRAM bank.

In Section 5.3, we will explain how we use the row conflict side-channel for

bank co-location. The attacker can induce bit-flips in the secret key s1 of

Dilithium but she has no control over the position of bit-flip within the s1.

For security level 2 for example, the size of s1 is 4 kB and the attacker has

no knowledge of location of the bit-flip within this 4 kB memory. Also, she

has no idea of the value of the flipped bit. The attacker can just induce bit-

flips from her own process and is able to collect the faulty signatures from

the victim. She can only use these faulty signatures along with the pubic

parameters to recover the secret key bits.

5.3.2 Phases of the Signature Correction Attack

There are three phases in the Signature Correction Attack. First, we identify

vulnerable memory locations called as templating. Then, we perform double-

sided Rowhammer attack on the victim in the online phase and collect the

faulty signatures. Finally, we post-process the faulty signatures and recover

the flipped secret key bits by Signature Correction algorithm.

114

1. Templating Phase: In a pre-processing phase of the Rowhammer

attack, the attacker will identify vulnerable memory locations. The

victim needs not to be present during this phase.

2. Online Phase: In the online phase, the victim process is forced to map

onto the identified vulnerable memory locations from the templating

phase. Then the attacker induces bit-flips inside the victim process and

collects the faulty signatures generated by the victim.

3. Post-processing Phase: In this phase, the attacker uses the faulty

signatures and the public key to recover the secret key bits using the

Signature Correction algorithm. This phase can be carried out offline

and can be parallelized and run on distributed systems for performance.

We will first explain our novel Signature Correction algorithm. Next,

we describe the templating and online phase of Rowhammer to practically

demonstrate the fault injection.

5.3.3 Signature Correction Algorithm for Dilithium

Signature Correction is a way to recover the flipped secret key bits using

faulty signatures. Since challenge c is public, the generated error in the

signature can be used to find the position of the flipped bit in the secret

key. The error in the faulty signature can be some certain multiples of c.

Therefore, if we somehow correct the faulty signature, we are able to find

the position of the bit-flip. The main idea of Signature Correction is to

115

find the faulted bit in the secret key by the process of correcting the faulty

signature by checking it using signature verification algorithm. The main

difference between the standard DFA and Signature Correction Attack is

that the attacker does not need to know the original signature. Finding the

position of the flipped bit by the fault is different for every algorithm. In

Algorithm 9, we explain it specifically for Dilithium.

How to trace back to the flipped bit using a faulty signature

s1 is defined in Sl
η in Algorithm 2 step 4. Let s1 = (s

(1)
1 , · · · , s(l)1) in vector

form where s
(i)
1 = Σn−1

j=0a
(i)
j xj and −η ≤ a

(i)
j ≤ η, 1 ≤ i ≤ l and 0 ≤ j ≤ n−1.

In Algorithm 3 step 13, signature is generated by z = y + c · s1 where c =

Σn−1
j=0 cjx

j is a constant challenge vector. If one bit in s1 is flipped before the

signature generation, it faults the output signature z̄ = y + c · s̄1. Then, the

difference of the faulty and original signatures is ∆z = z+ z̄ = c · (s1+ s̄1) =

c·∆s1. Since just one bit is flipped in s1, ∆z has just one non-zero component

which is ctā
(i)
r xt+r, where ā

(i)
r is the one bit difference, xr is the position of

the flip in si1 and ct is the relevant component of the flipped bit in c. Note

that, because of xr term, c shifts to the right r times. Additionally, ār is a

power of 2 since it is the 1-bit difference.

For instance, if the flip is in the first coefficient of s1, the changes in

z appear at the same indices at which c is non-zero. If it is in the second

coefficient of s1, the changes appear at the non-zero indexes of one bit shifted

version of c and so on. This observation makes it possible to trace back to

116

the faulty bit by just using the faulty signature and the public key. We can

not only locate the position of the bit-flip but also the value of the flipped

bit because both have a unique effect on the error.

To recover the secret key bit by just using the faulty signature σ′, first

we unpack the faulty signature to get the unpacked faulty signature z′ and

the challenge information c̃. Next we sample c̃ to get the challenge vector

c and copy it to a temporary variable c as we will need to modify it. The

idea is to add all n shifted versions of c in the faulty signature z′ one by one

and try to correct the faulty signature. We can verify the correctness using

the Dilithium verification, Algorithm 4, as an oracle. When the signature

with the attempted correction verifies, we can tell that this is the index of

the flipped coefficient. We can also tell the value of the flipped bit by trying

both addition and subtraction of the shifted versions of c. We need to repeat

this step for all of the L elements of s1 to trace the flipped bit for any of the

elements of s1.

This procedure works if the bit-flip occurs in the LSB of the coefficients.

If the flip is the second or third LSB, we need to add a multiplier, which

is 2bit index. This multiplier is first multiplied with the shifted version of the

challenge vector c and then added to the faulty signature z′. In the Dilithium

implementation, the coefficients of s1 are stored as int32 t, but the values

of the coefficients range up to four bits depending upon the security level.

Hence, we need to check up to three or four bits, we call this number as

B. The algorithm however is capable of going further but there is no useful

117

information on the MSB side as the remaining bits are the same as last

useful LSB. So, we need to keep modifying the public challenge c, multiply

it with the multiplier, add it to the faulty signature z′ and verify to see if

the signature is corrected using the verification oracle. If the signature is

correct, the algorithm returns the recovered bit of secret key s1 as output.

The algorithm needs at most 2×B×L×n number of verification to recover

one bit of secret key. In practice however, the code breaks earlier upon finding

the location. Algorithm 9 summarizes our attack.

5.3.4 Templating Phase

Signature Correction Attack needs a fault mechanism that can provide faulty

signatures. We are practically inducing faults using Rowhammer, a software-

only technique that does not require any physical access to the target ma-

chine. Recent research has shown that it can be applied over the network

[164, 115] and even remotely through JavaScript [67, 42]. There is no effec-

tive countermeasure to prevent Rowhammer completely in DRAM chips so

far. Recent research has demonstrated that it is possible to apply Rowham-

mer even on DDR4 memories with TRR [57] mitigation as well as on ECC

memories [37]. Templating phase involves three steps: contiguous memory

detection, bank co-location and double-sided hammering.

118

Algorithm 9 Novel Signature Correction Algorithm for Dilithium

1: Input: σ′ - Faulty Signature, M - Message, pk - Public Key
2: Output: (row, col, bit index, value) - Recovered secret key bit
3: (z′, h, c̃)← unpack(σ′)
4: c← SampleInBall(c̃)
5: c← c
6: for bit index from 1 to 32 do
7: multiplier ← 2bit index−1

8: for row from 1 to L do
9: for col from 1 to N do

10: z[row]← z′[row] +multiplier × c
11: σ ← pack(z, h, c)
12: if sig verify(pk,M, σ) = true then
13: return (row, col, bit index, 1)
14: else
15: c← circ shift right(c)
16: end if
17: end for
18: for col from 1 to N do
19: z[row]← z′[row]−multiplier × c
20: σ ← pack(z, h, c)
21: if sig verify(pk,M, σ) = true then
22: return (row, col, bit index, 0)
23: else
24: c← circ shift right(c)
25: end if
26: end for
27: end for
28: end for

119

Contiguous Memory Detection

For a double-sided Rowhammer, the attacker needs to allocate the rows ex-

actly one above and one below around the victim in the actual DRAM. For

this purpose, contiguous memory is a requirement for double-sided Rowham-

mer. It can be achieved using HugePages but that requires special con-

figuration and privileges. We achieve contiguous memory detection using

Spoiler [86] from normal user space without any special privileges. When

the SPOILER peaks become equally distant apart, the physical addresses

become contiguous. Figure 5.1 shows the frame numbers of memory pages

inside a buffer. We can see the contiguous memory where the frame numbers

are linearly increasing. A detailed description of this approach can be found

in [86].

Bank Co-location

A DRAM is organized in banks and every bank has a row buffer. Rowhammer

attack works when both the attacker and the victim are sharing the same

bank. To find the virtual addresses mapping to the same bank, we use a

side-channel which is based on the row conflict. When two addresses from

the same bank are accessed, it takes longer as compared to the accesses from

different banks. This is because one row loaded inside the row buffer needs

to be written back to its original position before loading another row. The

CPU cycles taken for accessing one address and the remaining are shown in

Figure 5.2. Depending on the maximum values of the peaks, we can set a

120

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Page Numbers

1

1.2

1.4

1.6

1.8

2

2.2

2.4
F

ra
m

e
 N

u
m

b
e
rs

10
6

Contiguous Memory

Figure 5.1: Contiguous memory detection. x-axis shows the page numbers of
the allocated memory buffer, each page being 4 kB. On y-axis are the frame
numbers of these pages in integer form. The straight line shows a linear
increase in frame numbers; it is not a horizontal line.

threshold to extract the addresses mapped to the same bank.

Double-sided Hammering

Once we identify the contiguous memory within a bank, we can start taking

three rows at a time from this memory and apply double-sided Rowhammer

on them. We hammer the top and bottom row and expect the bit-flips in the

middle row. In our experiments, we have kept the number of hammers equal

to 106. While keeping the record of the vulnerable rows, we keep moving

onto the next three rows until for our identified contiguous memory. We

have used the typical Rowhammer instruction sequences without the mfence

as shown in Listing 5.1. Without the mfence, the number of bit-flips are more

as compared to with mfence. This is because the DRAM accesses become

121

0 20 40 60 80 100 120 140 160 180 200

Page Number

250

300

350

400

450
C

y
c
le

s

Figure 5.2: When two DRAM rows are accessed which reside in the same
bank, we get a peak due to the row conflict. A threshold can be set to
separate these rows using this side-channel information. In our experiments,
we have set the THRESHOLD ROW CONFLICT value as 380 cycles.

Listing 5.1: Typical Rowhammer instruction sequence [36]

loop :
movzx rax , BYTE PTR [rcx]
movzx rax , BYTE PTR [rdx]
c l f l u s h BYTE PTR [rcx]
c l f l u s h BYTE PTR [rdx]
mfence
jmp loop

faster which results in quicker leakage of the charge stored in the memory

cells. The number of flips with and without mfence are compared in Figure

5.3. The number of CPU cycles and the time taken by one Rowhammer

instruction sequence is given in Table 5.1.

122

0 1 2 3 4 5 6 7 8 9 10

Number of Hammers 10
7

0

500

1000

1500

2000

2500

3000
N

u
m

b
e
r

o
f
B

it
 F

lip
s

with mfence

without mfence

Figure 5.3: The number of bit-flips in 1MB of memory in a DRAM bank
out of the 8MB contiguous chunk spread across 8 banks as a function of the
number of hammers. The number of bit-flips increases with the number of
hammers and without mfence sequence gives much more bit-flips. Approxi-
mately 0.03% of the DRAM cells are found to be vulnerable to Rowhammer
attack on the DRAM model we profiled.

Table 5.1: CPU cycles and time taken by a typical Rowhammer instruction
sequence on our platform.

Instruction Sequence (mV) CPU Cycles Time (µs)
With mfence 635 0.18

Without mfence 480 0.14

5.3.5 Online Phase

As the Rowhammer attack is highly reproducible, we first place the victim

into our target vulnerable location inside the memory and repeat the double-

sided Rowhammer attack by hammering the neighboring addresses. This

induces the bit-flips in the actual victim, and faulty signatures are produced

by the victim in response. The online phase consists of two steps, first is the

123

Aggressor Row (8 KB)

Victim Page (4 KB)

Aggressor Row (8 KB)

...

...

Row Buffer

X X X X X X X X

Figure 5.4: Victim placement and double-sided Rowhammer. To flip the bits
from 1→ 0 inside the victim page, the attacker rows are needed to be filled
with all zeros and for 0 → 1 flips, the attacker rows must be filled with all
ones. Empirically, cells which flip both ways are very rare. Hence, a 0 → 1
flip may not happen in a 1→ 0 bad cell and vice versa.

victim placement and the second is the double-sided Rowhammer.

Victim Placement

Once the attacker finds vulnerable DRAM rows, it frees the row using munmap.

Now it can either wait for the victim page to take that space in the memory

or use standard techniques like spraying [67, 151, 181], grooming [173] or

memory waylaying [65, 107, 182] to force the victim to come at the target

address. We achieve this by repeatedly mapping the secret key s1 of the

victim until it lands on the target page as shown in Figure 5.4. The physical

addresses are checked using the pagemap file.

124

Double-sided hammering

When the victim is mapped to the attacker’s desired vulnerable memory

location, the attacker can now apply the double-sided Rowhammer again.

While the victim is signing the messages, the attacker now hammers the

same rows that she found in the offline phase but this time it flips the bits

in the victim process. This is because of the fact that Rowhammer effect is

highly reproducible which means if you have found the vulnerable cells once,

their values can be flipped again later. Finally, the victim starts producing

the faulty signatures due to the bit-flips in the secret key which are collected

by the attacker.

When a bit is flipped on the MSB side of s1, it is likely that the rejection

sampling condition in step 15 of Algorithm 3 repeatedly becomes true or takes

too many iterations to output a faulty signature. This can create a denial

of service scenario and can cause the victim to stuck in a loop and never

output a signature unless the victim is moved to another memory location

in the DRAM, making our attack harder. To counter this situation, we have

set a limit on κ in Algorithm 3 to prevent the victim from going into an

infinite loop. However, if there is a side-channel attack running in parallel

is collecting side information, this scenario can be useful as the nonce y is

changing in each iteration.

125

5.4 Experimental Results

In this Section, first we mention our Rowhammer experimental setup and

then mention the results of our Signature Correction Attack experiments1.

5.4.1 Experimental Setup

All the Rowhammer experiments are performed on a Haswell system with

Intel(R) Core(TM) i7-4770 CPU @ 3.4GHz with 2GB Samsung DDR3 part

number M378B5773DH0-CH9. We have used Haswell because the AVX2

support start from Haswell and it also supports DDR3 memories. Our un-

derlying operating system is Ubuntu 16.04 LTS.

We have performed all the post-processing on a Skylake system with In-

tel(R) Core(TM) i5-6440HQ CPU @ 2.60GHz having 8GB DDR4 memory

running Ubuntu 16.04 LTS using only a single core. The post-processing per-

formance can be improved using multicore, GPUs or distributed computing.

5.4.2 Key recovery with Signature Correction Attack

We have successfully applied Rowhammer on s1 of size 1024 × 32 bits for

the AVX2 implementation of the Dilithium security level 2. After collecting

6,853 single-bit faulty signatures in 2.19 hours of online Rowhammer attack,

we have recovered 3,735 unique bits of secret key s1 using our Signature

Correction algorithm as shown in Figure 5.5. Note that, the faults we can

1The source code for Signature Correction Attack is made available at
http://github.com/VernamLab/SignatureCorrection.

126

http://github.com/VernamLab/SignatureCorrection

inject are far from uniform. In fact, there are locations that are unflippable.

The spatial bias is highly dependent on the technology of the DRAM. In

our target DRAM (M378B5773DH0-CH9), we observed heavy spatial corre-

lations (dark vertical stripes in Figure 5.5). Also rejection sampling prevents

faulty signatures with flips at higher locations to be released. Hence, even

if we force s1 to relocate in memory as explained in Section 5.3.5, this does

not allow recovery of all s1 bits. We start recovering the same key bits and

while others that wander through unflippable locations are never recovered.

Therefore, we stop the online phase and do post-processing after all flippy

locations are recovered. Among the 3,735 recovered bits, 2,454 are the 0’s

(green pixels) and 1,281 are the 1’s (red pixels). Each sub-figure represents

an element (polynomial) of s1 up to l = 4 for Dilithium security level 2.

Each polynomial has 256 coefficients on y-axis and 32 bits per coefficient on

the x-axis. Every faulty signature gives one bit of secret key. The difference

of 3,118 bits is because of the repetition of the faults at the same memory

location as the attacker has no control over the locations within the s1. 883

out of these 3,735 bits reside in the first three LSBs which should contain

the actual key information. The rest of the bits from bit 4 to bit 32 are

redundant, same as bit 3.

However, as the remaining bits from bit 4 to bit 32 are all same as bit 3

for each coefficient, if any of the bits are recovered from this region, we can

consider it a bit recovery for LSB 3. This increases our useful bit recovery

number significantly from 883 to 1,522 bits. Finally, we can say that by

127

Table 5.2: Post computation times for Signature Correction Attack on a
single CPU. These offline computations can be performed on a distributed
system or GPUs for performance improvement.

AVX2 Average CPU Cycles Time (Sec)
Implementations (1 Verification) (1 Signature Correction)

dilithium2 36595 0.094
dilithium3 70397 0.267
dilithium5 67719 0.263

dilithium2-AES 28901 0.071
dilithium3-AES 47614 0.177
dilithium5-AES 49479 0.200

analyzing the positions of recovered bits in the coefficient, we can increase

the number of recovered bits from 1,522 to 1,851, see Section 5.5.2 and Section

5.5.3 for details. As a summary, we have successfully recovered 1,851 bits

out of the total 3,072 bits of s1, 3-bits each of 1024 coefficients. The results

and distribution of recovered bits up to the secret key coefficients is provided

in Table 5.8.

Table 5.2 shows the offline computation time needed to trace one bit

of secret key for all the variants of Dilithium. These timings are for the

worst case scenario of 2 × B × L × n verification as explained in Section

5.3. The search is however stopped earlier once a bit is located. We have

computed the post-computation times for all variants but demonstrated the

Rowhammer attack on only Dilithium security level 2. However our Signature

Correction Attack is applicable to all variants, modes and security levels of

Dilithium Round 3, where modes are randomized and deterministic, variants

are SHAKE and AES and the security levels 2, 3 and 5.

128

Bits per Coefficient

C
o
e
ff
ic

ie
n
ts

Polynomial s
1

(1)

11632

1

32

64

96

128

160

192

224

256

Polynomial s
1

(2)

11632

1

32

64

96

128

160

192

224

256

Polynomial s
1

(3)

11632

1

32

64

96

128

160

192

224

256

Polynomial s
1

(4)

11632

1

32

64

96

128

160

192

224

256

Figure 5.5: Recovered bits of secret key s1 for Dilithium (security level 2).
3,735 in total with 2,454 0’s (green pixels) and 1,281 1’s (red pixels).

5.5 Estimating the Diminished Security

Level of Dilithium

5.5.1 Lattice Security with Reduced Dimension

The Signature Correction Attack can be used iteratively to recover the secret

key-bits. There are however two caveats in applying Signature Correction in

practice:

• Each Signature Correction recovers only one secret key bit. For full-key

129

recovery we need at least 1024 × 3 unique faulty signatures which is

rather time-consuming.

• As described below in practice we inject faults using Rowhammer,

which prevents precise targeting of bits. Thus, we need many more Sig-

nature Correction iterations (and time consuming page re-allocations)

in practice.

To overcome both problems, we instead opt to recover only a fraction of

the key-bits to diminish the security level of Dilithium to a point where the

remaining key bits can be recovered using lattice attacks.

Here we estimate the new security level of Dilithium by exploiting the

recovered bits by Signature Correction Attack. Briefly, Dilithium is based

on the hardness of the MLWE and MSIS problems under the Strong Un-

forgeability under Chosen Message Attack (SUF-CMA) model. We follow

the cost estimation approach of [4, 49], i.e., the MLWE problem is analyzed

as an LWE problem and the security level is estimated using standard lattice

hardness estimation techniques. Specifically, we base our estimate on the so-

called primal and dual attacks [34, 149] and use BKZ for lattice reduction.

Cost estimation of the attacks are given in [4, 49]. Note that these estimates

ignore SVP oracle calls. Instead, core-SVP hardness which is the cost of one

call to an SVP oracle in dimension b is taken into account. For Quantum at-

tacks, the Sieve algorithm is used to estimate the core hardness of underlying

open problem. For the quantum sieve algorithm the heuristic complexity is

130

√
3/2

b+O(b) ≈ 20.292b [11, 108]. Grover’s quantum search algorithm reduces

the complexity down to 20.265b [109, 110]. Cost of solving SVP in classical

attack bound is 20.2075b ≈ 239 for the best-known algorithm [34].

The Signature Correction Attack allows us to recover certain number of

bits of the private key s1. By analyzing the distribution of the recovered bits,

we can recover additional bits. We follow the general methodology from

[4, 22] to analyze the reduced security of Dilithium with side information

recovered using the Signature Correction Attack as described in Section 5.3.

The reduced security levels can be determined by following the analysis in

[49, 4, 22]. The analysis converts the equation system into an LWE instance of

dimensions 256 · l and 256 ·k by taking the coefficients of polynomial elements

in the MLWE problem as the vectors of coefficients in LWE problem. Hence,

the problem is reduced to finding the coefficient vectors

s1 , s2 ∈
(
Z256·l × Z256·k)

from Ā and coefficient vector of t. Here Ā ∈ Z256·k×256·l
q is obtained by

replacing all entries aij ∈ Rq of A by the rotation of the coefficient vectors

of aij. One can show that the private key coefficients recovered using the

Signature Correction Attack can be used to reduce the dimension n of the

lattice formed by the equation system

As1 + s2 = t (5.1)

131

by inserting the recovered coefficients of the secret key into its polynomial

form. Moreover, inserting the recovered bits which are not used to find the

coefficients can also reduce the norm of the coefficient vector. The security

estimates for the scheme reduced for a given number of coefficients recovered

using Signature Correction is given in Table 5.9. From the table, we deduce

that recovering 8 coefficients of secret key reduces the attack complexity to

around half of the overall complexity on average. In other words, recovering

approximately 320 coefficients by Signature Correction Attack is enough to

reduce the attack complexity to a practical level, i.e. 80 bits. Note that,

we take the norm of secret key coefficients as ζ =
√
10. Estimated time to

recover is given in Section 5.4.2. 2

To recover 320 coefficients, we need 960 bits in the same coefficients.

Therefore, we cannot conclude that any 960-bit recovery is enough to break

the scheme since we do not have any control on the location of the recovered

bits.

5.5.2 Exploiting the Redundant Encoding to Recover

More Coefficients

In this section, we focus on how we can use the recovered bits in the most

effective way to diminish the security level of Dilithium. For this purpose,

we divide the coefficients of the secret key polynomial into 3 groups:

2The script “scripts/PQsecurity.py” which estimates the cost of primal and dual attacks
can be found at [4].

132

• Group 1 has the fully recovered coefficients, i.e, 3 out of 3 bits are

known in the coefficients. Number of recovered coefficients in Group 1

can directly be used to reduce the dimension n of the LWE system

(Section 5.5.2).

• Group 2 consists the coefficients in which 1 or 2 out of 3 bits are

known in each coefficient. The recovered bits in this category fall short

in reducing the LWE dimension further, yet they can still be used

to reduce the norm of the secret key coefficients, i.e, unique SVP

solution in LWE system (Section 5.5.3).

• Group 3 is the collection of coefficients with no recovered bits. hence

yielding no information about the coefficients.

When we estimate the security level, our calculations are based on the

number of recovered coefficients and the norm of the remaining unknown

coefficients. Secret key is defined as an l dimensional vector of nth de-

gree polynomials with coefficients in the range [−η, η]. In our experi-

ments, we consider Dilithium security level 2 in which parameters are set

to η = 2, l = 4 and n = 256 [49], i.e., Each coefficient of the secret key

is in {−2,−1, 0, 1, 2} but is encoded in the reference implementation as 32-

bit words {1 · · · 1110, 1 · · · 1111, 0 · · · 0000, 0 · · · 0001, 0 · · · 0010}, respectively.

Therefore we have a highly redundant representation, where the per coef-

ficient entropy of secret key encoding is only 2.25 bits (in 32 logical bits).

The recovered bits are distributed over the last three bits of 1024 coefficients

133

Table 5.3: Recovering an additional bit by using recovered 2-bit info by
Rowhammer. Shaded rows has the additional bit recovery, i.e., full coefficient
is recovered by 2-bit info.

Known bits Possible # of possible
of xyz coefficients coefficients
00z 00z 2
01z 010 1
10z N/A 0
11z 11z 2
0y0 0y0 2
0y1 001 1
1y0 110 1
1y1 111 1
x00 000 1
x01 001 1
x10 x10 2
x11 111 1

Table 5.4: Number of additional full coefficient recoveries by 2-bit info. High-
lighted bit shows the additional bit recovery.

xyz Rec Coeffs s
(1)
1 s

(2)
1 s

(3)
1 s

(4)
1 Total

01z 010 10 11 6 5 32
0y1 001 12 5 6 8 31
1y0 110 7 7 6 9 29
1y1 111 10 9 5 11 35
x00 000 1 0 0 0 1
x01 001 0 0 0 0 0
x11 111 0 0 0 1 1
Total # of Rec Coeffs 40 32 23 34 129

134

Table 5.5: Distribution of 1,522 bits recovered by Signature Correction Algo-
rithm to the # secret key in polynomial coefficients. Total of 99 coefficients
are recovered with another 857 coefficients yielding only partial information.

s
(1)
1 s

(2)
1 s

(3)
1 s

(4)
1 #bits #coefs

No recovery 19 14 18 17 0 68
1 bit rec 122 126 131 110 489 489
2 bits rec 95 89 86 98 736 368
Full rec 20 27 21 31 297 99
Total 372 385 366 399 1522 1024

given in Figure 5.5. Additionally, distribution of number of recovered bits

up to the coefficients is given in Table 5.5.

Even though the recovered 1,522 bits are expected to give us information

for about 507 coefficients, just 99 coefficients fully recovered, since only 297

out of 1,522 bits are concentrated in 99 coefficients. The remaining 1,423 bits

are distributed over the remaining 857 different coefficients. On the other

hand, 2-bit recovered in any coefficient yields either 0 or 1 bits of information

on a coefficient as summarized in Table 5.3. Here coefficients are represented

by xyz where z denotes the least significant bit (LSB) of the coefficient, and

x represents the most significant bit (MSB) if we represent the coefficients

by the last three bits. All higher order bits will be identical to x, i.e. the

sign bit of the coefficient. In certain cases, with a 2-bit information of a

coefficient we can recover the full 3-bit coefficient as shown in Table 5.3. For

instance, if we recovered the first two bits as in the case of 01z, then due to

the encoding the only possible value z can take is 0. We can fully recover

a coefficient from 2-bits of information in 7 out of 12 cases as shown in the

135

Table 5.6: Recovering an additional bit by using 1-bit recovered by Rowham-
mer. Shaded rows yield an extra bit.

Known bit Possible # of possible
of xyz coefficients coefficients
1yz 11z 2
0yz 00z or 010 3
x1z 11z or 010 3
x0z 00z 2
xy1 001 or 111 2
xy0 x10 or 000 3

Table 5.7: Number of additional bit recovery by 1-bit info. Highlighted bit
shows the recovered bit.

xyz Rec Coeffs s
(1)
1 s

(2)
1 s

(3)
1 s

(4)
1 Total

1yz 11z 51 46 56 37 190
x0z 00z 2 1 2 0 5
xy1 xx1 2 1 1 1 5
Total # of Rec bits 55 48 59 38 200

shaded rows in Table 5.3. With this approach, we managed to recover an

additional 129 coefficients of the secret key as summarized in Table 5.4. The

total number of recovered coefficients is increased significantly, i.e. from 99

to 228. You can find the number of recovered coefficients in Table 5.8.

5.5.3 Reducing the Norm of the Coefficients

In cases where we recover 1-bit out of a coefficient the information is not

sufficient to recover the entire coefficient. However, we can still gain infor-

mation useful in reducing the attack complexity. Specifically, we can reduce

136

the norm of the target vector by removing known bits from it. This reduces

the complexity of the lattice search problem.

Further in certain cases the 1-bit knowledge may facilitate recovery of an

additional bit of the coefficient. In Table 5.6, these special cases are shown

in shaded rows. Analyzing the experimentally recovered bits gives us 200

of these special cases, i.e., two bits of 200 coefficients are recovered by 1-

bit information. In Table 5.7, the number of coefficients in which extra bit

recovery is possible is shown. By analyzing the recovered bits, we recovered 1

bit of 289 coefficients and 2 bits of 439 coefficients. There are 68 coefficients

that we have no extra information about. Number of recovered bits and

coefficients by Rowhammer and extra bit recovery method is given in Table

5.8. When we insert these recovered bits into the Lattice formulation the

norm of secret key coefficients in the reduced system is decreased to

ζ =
68

796
× 3 +

289

796
× 2 +

439

796
× 1 = 1.53392.

By analyzing the encoding (Section 5.4.2), we increased the number of

recovered bits from 883 to 1,522. This was achieved by taking recovered

bits from 4 to 32 as the sign bit, i.e. x. Then we further increased from

1,522 to 1,851 by considering the positions in the recovered bits in the last 3

bits of the coefficient. In total, the number of fully recovered coefficients are

increased from 99 to 228, and the number of coefficients with 2 bits known

are increased from 368 to 439. By analyzing the encoding, we partially or

137

fully recovered 956 coefficients of 1024 secret key coefficients, in total. The

breakdown is given in Table 5.8.

The diminished security level of Dilithium with the fully recovered coef-

ficients (reduced dimension n̄) and reduced average norm ζ is listed in Table

5.9. Note that with the fully recovered coefficients the reduced security level

is 124-bits for classical and 112-bits for quantum attackers. By also exploit-

ing the encoding to increase the fully recovered coefficients from 99 to 228

and partially recovered coefficients to reduce the norm from ζ =
√
10 to

ζ = 1.53392, we managed to significantly degrade the security level: 89-bits

(classical) and 81-bits (quantum).

5.6 Discussion

5.6.1 Is the weakness inherent to Dilithium?

In our attack we exploited the linear structure of Step 13 in the Dilithium

Signing Algorithm:

z ← y + c · s1 .

To this end, we compute and check possible fault patterns as they would ap-

pear as additive terms in the faulty signature z̄. This approach is enabled by

the linearly additive secret mask y and the publicly known challenge vector c.

Clearly, the presented signature correction algorithm is specific to Dilithium.

However, we have also tried to produce a similar technique in the GeMSS

138

Table 5.8: Recovered Information by Signature Correction up to the number
of coefficients. Highlighted rows show the number of coefficients with addi-
tional bit recovery.

s
(1)
1 s

(2)
1 s

(3)
1 s

(4)
1 #coefs

Group 3: Coefficients with no bit recovery.
68 coefficients in total.

No recovery 19 14 18 17 68

Group 2: Coefficients with 1 bit recovery.
289 bits in 289 coefficients in total.

1 bit rec by 1 bit 67 78 72 72 289
Group 2: Coefficients with 2 bit recovery.

878 bits in 439 coefficients in total.
2 bits rec by 1 bit 55 48 59 38 200
2 bits rec by 2 bits 55 57 63 64 239

Group 1: Full coefficient recovery.
684 bits in 228 coefficients in total.

Full Coef rec by 2 bits 40 32 23 34 129
Full Coefs rec by 3 bits 20 27 21 31 99

Total#recbits(1851) 467 465 448 471 1024

139

T
ab

le
5.
9:

T
h
e
re
d
u
ce
d
se
cu
ri
ty

le
ve
l
of

D
il
it
h
iu
m

u
si
n
g
th
e
S
ig
n
at
u
re

C
or
re
ct
io
n
A
tt
ac
k
.
T
h
e
va
lu
e
n̄

d
en
ot
es

th
e
re
d
u
ce
d

la
tt
ic
e
d
im

en
si
on

,
b
th
e
b
lo
ck

d
im

en
si
on

of
B
K
Z
,
an

d
m

th
e
n
u
m
b
er

of
sa
m
p
le
s.

C
os
t
is

gi
ve
n

in
lo
g
b
as
e
2
an

d
is

th
e
sm

al
le
st

co
st

fo
r
al
l
p
os
si
b
le

ch
oi
ce
s
of

m
an

d
b.

S
h
ad

ed
ro
w
s

sh
ow

im
p
ro
ve
m
en
ts
:
12
4-
b
it
s
(c
la
ss
ic
al
)
an

d
11
2-
b
it
s
(q
u
an

tu
m
)
w
it
h
p
la
in

S
ig
n
at
u
re

C
or
re
ct
io
n
,
89
-b
it
s

(c
la
ss
ic
al
)
an

d
81
-b
it
s
(q
u
an

tu
m
)
b
y
al
so

ex
p
lo
it
in
g
th
e
en
co
d
in
g
in

ad
d
it
io
n
to

S
ig
n
at
u
re

C
or
re
ct
io
n
.

D
il
it
h
iu
m

S
ec
u
ri
ty

L
ev
el

II
(1
28

b
it
)
p
ar
am

et
er
s:

q
=

22
3
−

21
3
+
1,

n
=

10
24

P
ri
m
al

A
tt
ac
k

D
u
al

A
tt
ac
k

#
R
ec

co
eff

s
n̄

ζ
m

b
C
la
ss
ic
al

Q
u
an

tu
m

m
b

C
la
ss
ic
al

Q
u
an

tu
m

0
10
24

ζ
=
√
10

10
90

48
5

14
1

12
8

10
89

48
4

14
1

12
8

0
10
24

ζ
=

1.
53
39
2

10
01

42
9

12
5

11
3

10
27

42
8

12
5

11
3

R
ed
u
ce
d
C
om

p
le
x
it
ie
s
w
it
h
#

R
ec
ov
er
ed

co
effi

ci
en
ts

an
d
R
ed
u
ce
d
N
or
m

1
10
23

ζ
=
√
10

11
29

48
4

14
1

12
8

11
32

48
3

14
1

12
8

2
10
22

ζ
=
√
10

10
75

48
4

14
1

12
8

10
74

48
3

14
1

12
8

4
10
20

ζ
=
√
10

10
62

48
3

14
1

12
8

10
62

48
2

14
0

12
7

8
10
16

ζ
=
√
10

10
89

48
0

14
0

12
7

10
90

47
9

14
0

12
7

64
96
0

ζ
=
√
10

10
25

44
6

13
0

11
8

10
37

44
5

13
0

11
8

99
92
5

ζ
=
√
10

98
1

42
5

12
4

11
2

99
7

42
4

12
4

11
2

12
8

89
6

ζ
=
√
10

93
3

40
8

11
9

10
8

94
7

40
7

11
9

10
7

19
2

83
2

ζ
=
√
10

91
9

36
9

10
7

97
88
5

36
9

10
7

97

22
8

79
6

ζ
=
√
10

86
3

34
8

10
1

92
84
3

34
8

10
1

92

28
8

73
6

ζ
=
√
10

79
9

31
3

91
83

78
8

31
3

91
83

32
0

70
4

ζ
=
√
10

74
4

29
5

86
78

81
0

29
4

86
78

35
2

67
2

ζ
=
√
10

74
5

27
6

80
73

74
2

27
6

80
73

99
92
5

ζ
=

1.
53
39
2

90
2

37
5

10
9

99
95
7

37
4

10
9

99
22
8

79
6

ζ
=

1.
53
39
2

78
2

30
6

89
81

77
3

30
6

89
81

140

[30] and Rainbow [45] schemes which gave insufficient partial information.

While the approach is generic, the particulars of the signing algorithm may

still make it hard to trace the fault to the output without causing the search

space to grow exponentially, thus preventing efficient signature correction.

While the presented attack utilizes faulty signatures to recover secret key

bits we have also exploited the highly redundant encoding of the coefficients

to gain significant advantage in reducing the security level of Dilithium. This

weakness is not rooted in the algorithm itself, but rather due to the choice

of representation used in the implementation.

5.6.2 Further Reducing the Attack Complexity

Dachman-Soled et al. [40] introduced a framework for cryptanalysis of lattice-

based schemes when side-information in the form of “hints” about the secret

and/or error is available. The framework allows the primal lattice reduction

attack and allows progressive integration of hints before running a lattice

reduction step. What we refer to as “recovered coefficient” and “partially re-

covered coefficient” correspond to “Modular hints” and “Approximate hints”,

respectively. Along with the framework the authors introduced techniques

for progressively sparsifying the lattice, projecting onto and intersecting with

hyperplanes, and/or altering the distribution of the secret vector. One may

apply these more advanced techniques to gain advantage and further degrade

the security level.

141

5.7 Countermeasures

Every novel attack sheds light onto how to strengthen a cryptographic

scheme, and in this perspective, a discussion on countermeasures is very

important. We can find considerable work on countermeasures against fault

attacks on PQC schemes [28, 146, 50, 17]. In particular, Bindel et al. [19]

have written an exhaustive literature review on countermeasures for fault

attacks on lattice-based signature schemes.

For our Signature Correction Attack, there are two ways to detect and

prevent the fault attack. First, we can prevent or detect the fault injection

mechanism, which means that we would prevent or detect Rowhammer faults.

Second, we can prevent or detect the exploitation of an injected fault. This

requires an algorithmic countermeasure, such as preventing faulty signatures

from being returned by the signer. Algorithmic countermeasures are required

because our attack is independent of the fault mechanism used. In the fol-

lowing, we discuss the Rowhammer countermeasures followed by algorithmic

countermeasures. Then, we provide a literature review of countermeasures

against implementation attacks on lattice-based signature and encryption

schemes in Table 5.10. In this table, we have shown countermeasures that

work against timing, cache and fault attacks with a green tick mark and which

don’t work with a red cross mark. We show that post-quantum schemes are

broadly vulnerable to three kinds of fault attacks, DFA, Instruction Skip

and single-bit trace analysis. The table describes how countermeasures help

142

against these known attacks, which include an attack on an older round-2

PQ scheme [126] as well as our proposed Signature Correction.

5.7.1 Rowhammer Countermeasures

We discuss two approaches to counter Rowhammer attack. One technique

detects the Rowhammer attack through hardware monitors, while the second

technique prevents Rowhammer from happening in the first place.

Hardware Performance Counters (HPC) HPCs are special purpose

registers that store the hardware events inside the CPU like cache hits and

cache missed. As the Rowhammer bypasses the cache and directly hits the

DRAM, there will be a significant increase in the number of cache misses

which can be used to detect the Rowhammer attack. These HPCs, when

paired with machine learning techniques, can detect Rowhammer attack with

high accuracy. Gulmezoglu et al. [69] have shown an accuracy of 100% using

the performance counter LLC Miss.

Increasing DRAM Refresh Rate DDR3 and DDR4 specifications re-

quire that each DRAM row must be refreshed after at least 64ms to retain

its values [158]. However, as we have seen this refresh rate is not sufficient

in Rowhammer scenarios where hammering the neighboring rows cause the

cells to leak faster than normal and are unable to retain their charge. So,

an immediate mitigation can be to decrease the refresh interval to 32ms or

143

T
ab

le
5.
10
:

A
n

O
ve
rv
ie
w

of
C
ou

n
te
rm

ea
su
re
s
ag
ai
n
st

Im
p
le
m
en
ta
ti
on

A
tt
ac
k
s
on

L
at
ti
ce
-B

as
ed

P
os
t-

Q
u
an

tu
m

C
ry
p
to
gr
ap

h
y
;
✓
C
ou

n
te
rm

ea
su
re

w
or
k
s,

✗
C
ou

n
te
rm

ea
su
re

d
o
es
n
’t
w
or
k

C
o
u
n
te
rm

e
a
su

re
s

Im
p
le
m
e
n
ta
ti
o
n

A
tt
a
ck

s

T
im

in
g

[1
52
,

15
5,

41
]

C
a
ch

e
[2
7,

13
7,

15
2,

18
]

F
a
u
lt

D
F
A

[3
1,

28
]

In
st
ru

ct
io
n

S
k
ip

[1
47
,
28
,

14
6,

17
,

50
,
18
0,

16
9,

93
]

Q
u
a
n
tu

m
H
a
m
m
e
r

[1
26
]

(L
U
O
V

R
ou

n
d
2)

S
ig
n
a
tu

re
C
o
rr
e
ct
io
n

A
tt
a
ck

(t
h
is
w
or
k
)

C
o
n
st
a
n
t
ru

n
-t
im

e
&

d
a
ta
-o
b
li
v
io
u
s
a
cc

e
ss
e
s
[2
7]

✓
✓

✗
✗

✗
✗

K
e
y
-i
n
d
e
p
e
n
d
e
n
t
co

n
tr
o
l
fl
o
w

&
m
e
m
o
ry

a
cc

e
ss
e
s
[1
52
]

✗
✓

✗
✗

✗
✗

N
o
n
ce

R
a
n
d
o
m
iz
a
ti
o
n
[2
8,

14
6]

✗
✗

✓
✓

✗
✗

T
e
m
p
o
ra

l
R
e
d
u
n
d
a
n
cy

[3
1,

14
6,

92
]

✗
✗

✓
✓

✗
✗

S
p
a
ti
a
l
R
e
d
u
n
d
a
n
cy

[3
1,

92
]

✗
✗

✓
✗

✓
✓

V
e
ri
fy
-a
ft
e
r-
si
g
n
[3
1,

14
6]

✗
✗

✓
✓

✓
✓

H
P
C

[6
9]

✗
✗

✗
✗

✓
✓

D
R
A
M

R
e
fr
e
sh

R
a
te

[1
28
]

✗
✗

✗
✗

✓
✓

144

16ms. Many systems allow this configuration from the BIOS for better mem-

ory stability. However, there are two downsides for this approach. The first

one is that the power consumption will increase and the second one is the

reduction of data transfer rate. This is because while the cells are refreshed,

the data can not be read or written. Also, the Rowhammer can not be fully

mitigated by this countermeasure. At most, one can significantly reduce the

chances of getting bit-flips. Mutlu et al. [128] have shown that to fully mit-

igate Rowhammer using the refresh rate, one needs to set the refresh rate

as 8.2 ms which is 7.8 times lower than 64 ms. This will cause significant

burden on power consumption and quality of service which researchers are

already trying to improve [32, 117].

5.7.2 Algorithmic Countermeasures

Here, we discuss algorithmic countermeasures for PQC signature schemes,

specifically Dilithium against general fault attacks as well as our Signature

Correction Attack. These countermeasures include adding randomization,

temporal and spatial redundancy techniques and verify-after-sign approach.

Randomized Signing Due to the fault attacks based on determinism like

[28, 146], Dilithium added this mitigation in Round 2 for DFAs as listed in

step 6 of Algorithm 3. Here, the nonce y is generated randomly instead of

generating using the message M , recommended for side-channel and fault

attacks [49]. The idea is that if the attacker can not collect the faulty and

145

correct signature pair for the same message, the DFA will not work. However,

this mitigation will not work for our Signature Correction Attack as it is

independent of the nonce y. Whatever the value of the y is, we get the same

error in the faulty signature depending upon the position of the fault in secret

key s1.

Temporal Redundancy Temporal Redundancy requires re-execution of

same task after a certain amount of time and comparing their results. If they

don’t match then the output of the algorithm is disabled in order to prevent

the attacker from accessing any information from the faulty signature. It

makes it harder for the attacker to inject the same fault in redundant com-

putations. However, as the Rowhammer attack faults the memory and can

induce permanent faults, if multiple signatures are generated using the same

faulty secret key in memory, they will still match, fault remains undetected.

An algorithm with such a countermeasure can provide fault tolerance against

transient faults but not permanent faults. Hence, it is recommended to add

spatial redundancy.

Spatial Redundancy Spatial Redundancy involves simultaneous execu-

tion of N instances of a critical task for N level of redundancy and comparing

their results for fault detection. If we store redundant copies of the original

secret key during the key generation process at different memory locations,

they can be used in parallel computations of signature generation using spa-

tial redundancy technique. To bypass this approach, the attacker will need

146

to fault the same exact bits at both memory locations which will be much

harder because every cell in the DRAM is not faulty. An important point

here is that for deterministic version of Dilithium, this approach can work in

a straightforward manner because the same nonce y is generated for the same

message signed twice. However, for the randomized version, we will also need

to store a copy of the nonce y for redundant computation. On the perfor-

mance side, computation based on spatial redundancy will have significant

overhead than the normal computation because of the increased complexity

of the algorithm. Therefore, the level of spatial redundancy needed to detect

faults should be taken into consideration.

Verify-after-Sign If there is any bit-flip in the secret key s1 of Dilithium,

it will generate a faulty signature which will not be verified by the verifi-

cation algorithm. Hence, the verification can be used as a fault detection

mechanism and if done on the signing side, the sender can easily detect the

existence of the attacker. As compared to double signing, this approach is

approximately three times faster as the verification algorithm takes less time

as compared to the signing algorithm. There is still a possibility that the

attacker also faults the verification in a way that results in a valid signature

but to the best of our knowledge, there has not been such an algorithm de-

veloped so far for Dilithium. This approach may also fail if the comparison

instruction is skipped using an instruction skip fault similar to [146]. Verify-

after-sign can also detect instruction skip faults on signing step 13 and the

147

rejection sampling step 15 in Algorithm 3 [146]. Rejection sampling step is

critical because if it is bypassed without a mitigation in place, it can reveal

information about the secret key [49].

5.7.3 Applicability on Glitching Attacks

It would be worth investigating these countermeasures against glitching at-

tacks. Glitching attacks are capable of faulting both instructions and data by

introducing physical disturbances. Glitches can be injected by changing the

supply voltage, optical probing with lasers, clock glitches or introducing an

electromagnetic pulse. Precise glitches may lead to instruction skipping at-

tacks which can be applied to bypass for example kernel’s signature check [43]

or to disable secure boot [39, 166]. Glitches have been leveraged to compro-

mise gaming consoles such as XBOX 360 [6], Playstation 3 [111], Playstation

Vita [119], Nintendo Switch [148, 58, 72] and tracking devices such as Apple’s

AirTag [71].

5.8 Conclusion

In this chapter, we have proposed the Signature Correction Attack target-

ing Dilithium a Round 3 finalist in the NIST PQC competition. The at-

tack requires single bit-flips in the secret key vector, which we have imple-

mented using Rowhammer targeting the constant-time AVX2 implementa-

tion of Dilithium. By analyzing the faulty signatures and exploiting redun-

148

dancy in the secret key encoding, our attack successfully recovered 1,851 bits

(out of 3,072 bits) of the secret key. This enabled us to reduce the post-

quantum security level to 81-bits (quantum) and 89-bits (classical) for both

primal and dual lattice attacks. The attack is also applicable to other vari-

ants and security levels. We have demonstrated the first fault attack which

works on randomized as well as deterministic versions of Dilithium. Our Sig-

nature Correction Attack is independent of the fault mechanism but we have

used Rowhammer to demonstrate the attack as it is a software only attack

and does not need physical access. This can be very critical in case of cloud

scenarios where the attacker can launch an attack remotely and leak secret

information by using only faulty signatures. We have shown how few bits of

secret key significantly reduce the security strength of Dilithium using the

lattice attacks especially when the secret key encoding is exploited. Further,

randomizing the nonce, a countermeasure commonly implemented in the de-

sign of signature schemes to thwart fault attacks, is not sufficient in practice

as demonstrated by our attack.

149

Chapter 6

Plundervolt Attack on

Dilithium

Apart from Rowhammer attack, Plundervolt and V0LTpwn come in the cat-

egory of software-induced fault attacks. Although Intel has released a patch

for the attacks relying on undervolting, it is still important to see the ef-

fect of these attacks on post-quantum schemes. Only the software access to

modify the MSR register has been taken which is used to undervolt. If the

system is undervolted through hardware or the undervolting gets re-enabled

by an attack in future or a post-quantum scheme is running on a different

hardware than Intel, we should know the effects of undervolting on these

schemes. In this chapter, we have successfully induced fault attacks in AVX2

implementation of Dilithium in Round 3.

150

6.1 Contributions

We have demonstrated that a well-known software-induced fault attack Plun-

dervolt is capable of producing faulty signatures in Dilithium. Although

Plundervolt is patched through software, the root cause still exists. In this

chapter:

1. We demonstrate computation faults in Dilithium signature scheme and

successfully collected faulty signatures at different CPU voltage levels

using Plundervolt.

2. We have discovered another interesting behavior of Plundervolt which

affects the memory write operations because of the out-of-order exe-

cution of a branch.

6.2 Plundervolt Attack on Dilithium

6.2.1 Threat Model

For the Plundervolt attack, the attacker and the victim both need to reside on

the same machine. The microcode and BIOS update for Plundervolt should

not be installed and the attacker must have the root access to modify the

MSR register values in order to undervolt the system. The assumption of root

access can be made in case of TEE like Intel SGX where the adversary should

not be able to get any secret information from inside the enclave even if the

151

operating system is compromised. The attacker should be able to collect the

messages signed by the victim.

6.2.2 Experimental Setup

First we needed to find a system that is vulnerable to the Plundervolt attack

and checked if the undervolting is working. A list of CPUs has been given

by Intel [82]. Then we reproduced the Plundervolt faults in multiplications

which required tuning some parameters like operands, start voltage, end

voltage, iterations etc. Our Plundervolt system is Kaby Lake with Intel(R)

Core(TM) i7-7700 CPU @ 3.6GHz. It has a 16GB DDR4 memory and the

operating system is Ubuntu 20.01.1 LTS. The microcode version is 0xde,

CPU ID 906E9 and the BIOS version 1.0.4.

6.2.3 Finding crash points

After setting up a system for Plundervolt, the first thing to do is to estimate

the crash points of the system. This is important because we should remain

below the crash point during our experiments to avoid any system halts. As

the operating voltage of the CPU varies by varying the operating frequency,

we have found the crash points for the whole range of our CPU starting from

0.8GHz to 3.6GHz as shown in Figure 6.1. Once we have found the crash

points, we can safely operate on any frequency by undervolting the CPU

while keeping some margin with the crash point. If the system gets halted,

152

the only solution is to hard reboot by pressing the power button. Sometimes,

the system just reboots at the crash point but then it is still operating on the

same voltage and crashes again. While working remotely, we use MSNSwitch

Remote Power Switch (Model 622B) to reboot the machine.

6.2.4 Temperature Variations

As mentioned in the previous research [125, 96], the CPU temperature has

an effect on the faults and the crash points. In our experiments, if a freshly

booted system has a CPU temperature of 40◦C, it increases up to 45◦C while

running the experiments which affects the results. If the weather is cold and

the window is left open, it is hard to find any fault. We kept the windows

shut and relied on room’s temperature control to minimize the temperature

variations.

6.2.5 Experimental Results

The attacker starts undervolting the system while the victim is running the

Dilithium AVX2 signing operations and expect the faulty signatures. Under

the current setup, the attacker starts undervolting the system from -170mV

while the signing operations are running in parallel by the victim. For -

170mV undervolting, 4 out of 1 million signatures get faulted as depicted in

Table 6.1. Then the attacker starts reducing the CPU voltage by 2mV step

at a time. As the operating voltage gets lower and lower, the number of faults

153

0.8 1.2 1.6 2 2.4 2.8 3.2 3.6

Operating Frequency (GHz)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

C
ra

s
h
 V

o
lt
a
g
e
 (

V
)

-186mV undervolting

Figure 6.1: The crash voltage increases when the operating frequency is set
to a higher value. It also depends upon the CPU temperature. Here the
CPU temperature was ranging from 40-45◦C. The temperature variations
are hard to control, hence the results may vary if tried to reproduce. In our
experiments, the operating frequency is always set to 2GHz.

increases. At -182mV however, the system crashes which is 4mV below the

crash point corresponding to 2GHz frequency in Figure 6.1. This is due to

the dilithium signing process is running, which raises the crash point. The

more processes are running on a system, the more the crash point is affected.

6.3 Novel Observation of Plundervolt

Apart from the known fault behaviors in multiplications and AES-NI ex-

tensions in Plundervolt attack [125] or the AVX instruction sequences in

V0LTpwn [96], we have discovered a special instruction sequence that is ca-

pable of faulting the write operations. The C code of this sequence is listed

154

Table 6.1: Number of faulty signatures in Dilithium. In our experiments,
we have set the operating frequency to 2GHz and the corresponding voltage
is set automatically by DVFS to 0.81V. Blue values till -176mV represent
that it is safe to operate on these voltages whereas we do experience crashes
beyond that (red values).

Undervolting Number of Faulty Signatures

(mV) out of 106

-170 4

-172 25

-174 53

-176 183

-178 281

-180 10306

-182 crash

in Listing 6.1 and its assembly version can be seen in Appendix C.1 for deeper

understanding.

In the code sequence in Listing 6.1, we have declared a character array

of size 8,000,000. We are writing characters ‘a’, ‘b’ and ‘c’ in a for loop in

each element of the array on the same index in a for loop. Then we check if

the last value which is ‘c’ is correctly written or not. This procedure is run

in a while loop and should run forever under normal scenario as the branch

should never be taken. However, we see that due to undervolting, the code

does return the character ‘b’ which is very interesting.

To understand this behavior, we performed several experiments. First, we

put an mfence before the if statement to make sure that it does not execute

out of order. As a result, we did not see any faults. This indicates that the

155

Listing 6.1: Novel Observation with Undervolting

1 : int main () {
2 : char ar r [SIZE] ;
3 : while (1) {
4 : for (int i = 0 ; i < SIZE ; i++) {
5 : a r r [i] = ’ a ’ ;
6 : a r r [i] = ’b ’ ;
7 : a r r [i] = ’ c ’ ;
8 : i f (a r r [i] != ’ c ’) {
9 : return ar r [i] ;

10 : }
11 : }
12 : }
13 : }

if statement is executed out of order before the character ‘c’ is written in

the array. Then we turned off the undervolting inside the if statement and

printed out arr[i] multiple times to see if the character ‘c’ gets written after

some delay but it did not. Character ‘b’ was permanently stored in the arr[i]

causing a permanent memory violation. We also flushed the cache line to

make sure that the character ‘b’ is not just being read from the cache but

it is actually written in the DRAM. Further, we removed the if statement

and just returned the sum of all the array elements and verified if the sum

is equal to the expected value or not. It was always equal indicating that

the fault is occurring due to the out-of-order execution of the branch. We

repeated the experiments for malloc instead of an array and found similar

results. Finally, other than je we tried other variants of conditional jumps

like jle, jg and jne and found that we get faults with all of them.

156

6.4 Conclusion

In this chapter, we have demonstrated successful fault injection in Dilithium

signature scheme using Plundervolt attack and collected the faulty signa-

tures. Plundervolt is a software-induced fault mechanism but different in

nature as compared to Rowhammer. It induces faults in the computations

such as multiplications, unlike memory faults in case of Rowhammer. We

have discovered another interesting behavior of Plundervolt affecting write

operations, which stems from the out-of-order execution of a branch.

157

Chapter 7

Conclusion

In this dissertation, we have investigated randomized post-quantum signa-

ture schemes from the NIST’s Post-Quantum Cryptography Standardization

Process against fault attacks. The research has identified a number of vul-

nerabilities and practically demonstrated successful key recovery attacks on

these schemes. We have utilized Rowhammer attack as our fault mechanism

and utilized the faulty signatures to algebraically recover the secret key bits.

In all of our Rowhammer experiments, we have used SPOILER for contigu-

ous memory detection. SPOILER is a hardware vulnerability, we discovered

in Intel processors. Intel has released a public advisory (INTEL-SA-00238)

and assigned CVE (CVE-2019-0162).

The SPOILER vulnerability stems from the dependency resolution logic

that serves the speculative loads. It leaks 8-bits of physical address infor-

mation from the userspace without any special privileges. We have demon-

158

strated how this information is useful in microarchitectural attacks such as

Prime+Probe attack. Software-induced fault attacks such as Rowhammer at-

tack requires contiguous memory which we locate using SPOILER. We have

demonstrated double-sided Rowhammer without HugePages and pagemap

with just normal user privileges. We have identified a number of DRAM

chips vulnerable to Rowhammer attack and developed a software tool to

induce bit-flips in these chips. As the DRAM is shared between multiple

processes in cloud environments, process isolation is very critical. However,

Rowhammer has the capability to cross the process boundaries by inducing

bit-flips in the neighboring DRAM rows. There have been a number of mit-

igations such as TRR and ECC but the Rowhammer problem has not been

completely solved so far.

With the rise of quantum threat, NIST is running a Post-Quantum Cryp-

tography Standardization Process for KEMs and Digital Signatures. Apart

from algorithmic security, they are giving significant importance to side-

channel and fault attacks. In this dissertation, we have proposed and demon-

strated a novel bit-tracing attack for a multivariate signature scheme, LUOV

(round 2 finalist). The main idea of bit-tracing is to use single-bit faulty

signatures and mathematically trace back the location of the fault. We have

used Rowhammer attack to practically induce the bit-flips in the signing

process of LUOV. We are able to fully recover the secret of LUOV signature

scheme by bit-tracing attack, followed by an analytical approach. We call

this hybrid approach as QuantumHammer. We have investigated a sim-

159

ilar approach on Dilithium (round 3 finalist), a completely different scheme

based on lattices. We have successfully identified a technique to trace the

faults in Dilithium and we call it Signature Correction Attack. The at-

tack significantly reduces the security strength of the scheme from 2128 to

281. Finally, we have successfully injected faults in Dilithium with another

software-induced fault mechanism Plundervolt.

We conclude that only algorithmic security is not sufficient for the secu-

rity of the scheme. Fault injection or side-channel attacks, if combined with

algebraic attacks may lead to successful hybrid attacks. Apart from inde-

pendently analyzing the algorithm and its implementation, there is a need

to investigate in a hybrid fashion.

160

Bibliography

[1] Jeffery M Abramson, Haitham Akkary, Andrew F Glew, Glenn J Hin-
ton, Kris G Konigsfeld, and Paul D Madland. Method and apparatus
for performing a store operation, April 23 2002. US Patent 6,378,062.

[2] Jeffrey M Abramson, Haitham Akkary, Andrew F Glew, Glenn J Hin-
ton, Kris G Konigsfeld, Paul D Madland, David B Papworth, and
Michael A Fetterman. Method and apparatus for dispatching and ex-
ecuting a load operation to memory, February 10 1998. US Patent
5,717,882.

[3] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper,
Quynh Dang, John Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moody,
Rene Peralta, et al. Status report on the second round of the nist
post-quantum cryptography standardization process. US Department
of Commerce, NIST, 2020.

[4] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe.
Post-quantum key Exchange—A new hope. In 25th USENIX Security
Symposium (USENIX Security 16), pages 327–343, Austin, TX, August
2016. USENIX Association.

[5] Daniel Apon, Ray Perlner, Angela Robinson, and Paolo Santini. Crypt-
analysis of ledacrypt. In Annual International Cryptology Conference,
pages 389–418. Springer, 2020.

[6] Free60 Wiki archive. The Xbox 360 reset glitch hack. https://free60.
org/Reset_Glitch_Hack/.

[7] Amund Askeland and Sondre Rønjom. A side-channel assisted attack
on ntru. Cryptology ePrint Archive, 2021.

161

https://free60.org/Reset_Glitch_Hack/
https://free60.org/Reset_Glitch_Hack/

[8] Jedec Solid State Technology Association. Low Power Double
Data Rate 4 (LPDDR4), January 2020. https://www.jedec.org/

standards-documents/docs/jesd209-4b.

[9] Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek, Rui Qiao, Reetu-
parna Das, Matthew Hicks, Yossi Oren, and Todd Austin. Anvil:
Software-based protection against next-generation rowhammer attacks.
ACM SIGPLAN Notices, 51(4):743–755, 2016.

[10] Shi Bai and Steven D Galbraith. An improved compression technique
for signatures based on learning with errors. In Cryptographers’ Track
at the RSA Conference, pages 28–47. Springer, 2014.

[11] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New di-
rections in nearest neighbor searching with applications to lattice siev-
ing. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA ’16, page 10–24, USA, 2016.
Society for Industrial and Applied Mathematics.

[12] Naomi Benger, Joop van de Pol, Nigel P. Smart, and Yuval Yarom.
“ooh aah... just a little bit” : A small amount of side channel can go a
long way. In Cryptographic Hardware and Embedded Systems – CHES
2014, pages 75–92, Berlin, Heidelberg, 2014. Springer.

[13] Daniel J Bernstein. Cache-timing attacks on aes, 2005.

[14] Ward Beullens. Breaking rainbow takes a weekend on a laptop. Cryp-
tology ePrint Archive, 2022.

[15] Ward Beullens and Bart Preneel. Field lifting for smaller uov public
keys. In International Conference on Cryptology in India, pages 227–
246. Springer, 2017.

[16] Ward Beullens, Alan Szepieniec, Frederik Vercauteren, and Bart Pre-
neel. Luov: Signature scheme proposal for nist pqc project.

[17] Nina Bindel, Johannes Buchmann, and Juliane Krämer. Lattice-based
signature schemes and their sensitivity to fault attacks. In 2016 Work-
shop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pages
63–77. IEEE, 2016.

162

https://www.jedec.org/standards-documents/docs/jesd209-4b
https://www.jedec.org/standards-documents/docs/jesd209-4b

[18] Nina Bindel, Johannes Buchmann, Juliane Krämer, Heiko Mantel,
Johannes Schickel, and Alexandra Weber. Bounding the cache-side-
channel leakage of lattice-based signature schemes using program se-
mantics. In International Symposium on Foundations and Practice of
Security, pages 225–241. Springer, 2017.

[19] Nina Bindel, Juliane Kramer, and Johannes Schreiber. Special ses-
sion: hampering fault attacks against lattice-based signature schemes-
countermeasures and their efficiency. In 2017 International Confer-
ence on Hardware/Software Codesign and System Synthesis (CODES+
ISSS), pages 1–3. IEEE, 2017.

[20] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the impor-
tance of checking cryptographic protocols for faults. In Walter Fumy,
editor, Advances in Cryptology — EUROCRYPT ’97, pages 37–51.
Springer, 1997.

[21] Jonathan Bootle, Claire Delaplace, Thomas Espitau, Pierre-Alain
Fouque, and Mehdi Tibouchi. Lwe without modular reduction and im-
proved side-channel attacks against bliss. In International Conference
on the Theory and Application of Cryptology and Information Security,
pages 494–524. Springer, 2018.

[22] Joppe Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig,
Valeria Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo:
Take off the ring! practical, quantum-secure key exchange from lwe. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 1006–1018, 2016.

[23] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyuba-
shevsky, John M Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. Crystals-kyber: a cca-secure module-lattice-based kem. In 2018
IEEE European Symposium on Security and Privacy (EuroS&P), pages
353–367. IEEE, 2018.

[24] Charles Bouillaguet, Hsieh-Chung Chen, Chen-Mou Cheng, Tung
Chou, Ruben Niederhagen, Adi Shamir, and Bo-Yin Yang. Fast ex-
haustive search for polynomial systems in F2. In Stefan Mangard and
François-Xavier Standaert, editors, Cryptographic Hardware and Em-
bedded Systems, CHES 2010, pages 203–218. Springer, 2010.

163

[25] Ferdinand Brasser, Lucas Davi, David Gens, Christopher Liebchen,
and Ahmad-Reza Sadeghi. Can’t touch this: Software-only mitigation
against rowhammer attacks targeting kernel memory. In 26th USENIX
Security Symposium (USENIX Security 17), pages 117–130, Vancouver,
BC, 2017. USENIX Association.

[26] Samira Briongos, Gorka Irazoqui, Pedro Malagón, and Thomas Eisen-
barth. Cacheshield: Detecting cache attacks through self-observation.
In Proceedings of the Eighth ACM Conference on Data and Application
Security and Privacy, CODASPY ’18, pages 224–235, New York, NY,
USA, 2018. ACM.

[27] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval
Yarom. Flush, gauss, and reload–a cache attack on the bliss lattice-
based signature scheme. In International Conference on Cryptographic
Hardware and Embedded Systems, pages 323–345. Springer, 2016.

[28] Leon Groot Bruinderink and Peter Pessl. Differential fault attacks on
deterministic lattice signatures. IACR Transactions on Cryptographic
Hardware and Embedded Systems, pages 21–43, 2018.

[29] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Ben-
jamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin,
and Daniel Gruss. A systematic evaluation of transient execution at-
tacks and defenses. arXiv preprint arXiv:1811.05441, 2018.

[30] Antoine Casanova, Jean-Charles Faug‘ere, Gilles Macario-Rat, Jacques
Patarin, Ludovic Perret, and Jocelyn Ryckeghem. GeMSS: A Great
Multivariate Short Signature. PhD thesis, PhD thesis, UPMC-Paris 6
Sorbonne Universités, 2017.

[31] Laurent Castelnovi, Ange Martinelli, and Thomas Prest. Grafting
trees: a fault attack against the sphincs framework. In International
Conference on Post-Quantum Cryptography, pages 165–184. Springer,
2018.

[32] Kevin Kai-Wei Chang, Donghyuk Lee, Zeshan Chishti, Alaa R
Alameldeen, Chris Wilkerson, Yoongu Kim, and Onur Mutlu. Improv-
ing dram performance by parallelizing refreshes with accesses. In 2014

164

IEEE 20th International Symposium on High Performance Computer
Architecture (HPCA), pages 356–367. IEEE, 2014.

[33] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang
Lin, and Ten H Lai. Sgxpectre attacks: Stealing intel secrets from sgx
enclaves via speculative execution. arXiv preprint arXiv:1802.09085,
2018.

[34] Yuanmi Chen and Phong Q. Nguyen. Bkz 2.0: Better lattice security
estimates. In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in
Cryptology – ASIACRYPT 2011, pages 1–20, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

[35] Marco Chiappetta, Erkay Savas, and Cemal Yilmaz. Real time detec-
tion of cache-based side-channel attacks using hardware performance
counters. Applied Soft Computing, 49:1162–1174, 2016.

[36] Lucian Cojocar, Jeremie Kim, Minesh Patel, Lillian Tsai, Stefan
Saroiu, Alec Wolman, and Onur Mutlu. Are we susceptible to rowham-
mer? an end-to-end methodology for cloud providers. In 2020 IEEE
Symposium on Security and Privacy (SP), pages 712–728. IEEE, 2020.

[37] Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and Herbert Bos.
Exploiting correcting codes: On the effectiveness of ecc memory against
rowhammer attacks. In 2019 IEEE Symposium on Security and Privacy
(SP), pages 55–71. IEEE, 2019.

[38] Jonathan Corbet. Defending against Rowhammer in the kernel, Octo-
ber 2016. https://lwn.net/Articles/704920/.

[39] Ang Cui and Rick Housley. {BADFET}: Defeating modern secure
boot using {Second-Order} pulsed electromagnetic fault injection. In
11th USENIX Workshop on Offensive Technologies (WOOT 17), 2017.

[40] Dana Dachman-Soled, Léo Ducas, Huijing Gong, and Mélissa Rossi.
Lwe with side information: attacks and concrete security estimation. In
Annual International Cryptology Conference, pages 329–358. Springer,
2020.

165

https://lwn.net/Articles/704920/

[41] Jan-Pieter D’Anvers, Marcel Tiepelt, Frederik Vercauteren, and In-
grid Verbauwhede. Timing attacks on error correcting codes in post-
quantum schemes. In Proceedings of ACM Workshop on Theory of
Implementation Security Workshop, TIS’19, page 2–9, New York, NY,
USA, 2019. Association for Computing Machinery.

[42] Finn de Ridder, Pietro Frigo, Emanuele Vannacci, Herbert Bos, Cris-
tiano Giuffrida, and Kaveh Razavi. SMASH: Synchronized many-sided
rowhammer attacks from JavaScript. In 30th USENIX Security Sympo-
sium (USENIX Security 21), pages 1001–1018. USENIX Association,
August 2021.

[43] Eric DeBusschere and Mike McCambridge. Modern game console ex-
ploitation. Technical Report, Department of Computer Science, Uni-
versity of Arizona, 2012.

[44] Jintai Ding, Joshua Deaton, Kurt Schmidt, Vishakha, and Zheng
Zhang. Cryptanalysis of the lifted unbalanced oil vinegar signa-
ture scheme. Cryptology ePrint Archive, Report 2019/1490, 2019.
https://eprint.iacr.org/2019/1490.

[45] Jintai Ding and Dieter Schmidt. Rainbow, a new multivariable poly-
nomial signature scheme. In International conference on applied cryp-
tography and network security, pages 164–175. Springer, 2005.

[46] Jintai Ding, Bo-Yin Yang, Chia-Hsin Owen Chen, Ming-Shing
Chen, and Chen-Mou Cheng. New differential-algebraic attacks and
reparametrization of rainbow. In Applied Cryptography and Network
Security, pages 242–257. Springer, 2008.

[47] Jintai Ding, Zheng Zhang, Joshua Deaton, Kurt Schmidt, and
F Vishakha. New attacks on lifted unbalanced oil vinegar. In The
2nd NIST PQC Standardization Conference, 2019.

[48] Jack Doweck. Inside intel® core microarchitecture. In Hot Chips 18
Symposium (HCS), 2006 IEEE, pages 1–35. IEEE, 2006.

[49] Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky, Pe-
ter Schwabe, Gregor Seiler, and Damien Stehlé. Crystals-dilithium: A
lattice-based digital signature scheme. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, pages 238–268, 2018.

166

https://eprint.iacr.org/2019/1490

[50] Thomas Espitau, Pierre-Alain Fouque, Benôıt Gérard, and Mehdi Ti-
bouchi. Loop-abort faults on lattice-based fiat-shamir and hash-and-
sign signatures. In International Conference on Selected Areas in Cryp-
tography, pages 140–158. Springer, 2016.

[51] Thomas Espitau, Pierre-Alain Fouque, Benôıt Gérard, and Mehdi Ti-
bouchi. Side-channel attacks on bliss lattice-based signatures: Exploit-
ing branch tracing against strongswan and electromagnetic emanations
in microcontrollers. In Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security, pages 1857–1874,
2017.

[52] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh.
Jump over aslr: Attacking branch predictors to bypass aslr. In The
49th Annual IEEE/ACM International Symposium on Microarchitec-
ture, MICRO-49, pages 40:1–40:13, Piscataway, NJ, USA, 2016. IEEE
Press.

[53] Agner Fog. The microarchitecture of intel, amd and via cpus: An
optimization guide for assembly programmers and compiler makers.
Copenhagen University College of Engineering, pages 02–29, 2012.

[54] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyuba-
shevsky, Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor
Seiler, William Whyte, and Zhenfei Zhang. Falcon: Fast-fourier lattice-
based compact signatures over ntru. Submission to the NIST’s post-
quantum cryptography standardization process, 36(5), 2018.

[55] P. Frigo, E. Vannacc, H. Hassan, V. der Veen, O. Mutlu, C. Giuffrida,
H. Bos, and K. Razavi. Trrespass: Exploiting the many sides of target
row refresh. In 2020 IEEE Symposium on Security and Privacy (SP),
pages 747–762, 2020.

[56] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.
Grand pwning unit: Accelerating microarchitectural attacks with the
gpu. In Grand Pwning Unit: Accelerating Microarchitectural Attacks
with the GPU, page 0, Washington, DC, USA, 2018. IEEE, IEEE Com-
puter Society.

167

[57] Pietro Frigo, Emanuele Vannacc, Hasan Hassan, Victor Van Der Veen,
Onur Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. Tr-
respass: Exploiting the many sides of target row refresh. In 2020 IEEE
Symposium on Security and Privacy (SP), pages 747–762. IEEE, 2020.

[58] Andreas Galauner. Glitching the Switch, June 2018. https://media.
ccc.de/v/c4.openchaos.2018.06.glitching-the-switch.

[59] Aymeric Genêt, Matthias J Kannwischer, Hervé Pelletier, and Andrew
McLauchlan. Practical fault injection attacks on sphincs. IACR Cryp-
tology ePrint Archive, 2018:674, 2018.

[60] Daniel Genkin, Lev Pachmanov, Eran Tromer, and Yuval Yarom.
Drive-by key-extraction cache attacks from portable code. In Inter-
national Conference on Applied Cryptography and Network Security,
pages 83–102. Springer, 2018.

[61] Mohsen Ghasempour, Mikel Lujan, and Jim Garside. Armor: A run-
time memory hot-row detector, 2015.

[62] Mel Gorman. Understanding the Linux Virtual Memory Manager.
Prentice Hall, London, 2004.

[63] Aurélien Greuet, Simon Montoya, and Guénaël Renault. Attack on
lac key exchange in misuse situation. In International Conference on
Cryptology and Network Security, pages 549–569. Springer, 2020.

[64] Lov K Grover. A fast quantum mechanical algorithm for database
search. arXiv preprint quant-ph/9605043, 1996.

[65] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas
Juffinger, Sioli O’Connell, Wolfgang Schoechl, and Yuval Yarom. An-
other flip in the wall of rowhammer defenses. In 2018 IEEE Symposium
on Security and Privacy (SP), pages 245–261. IEEE, 2018.

[66] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and
Stefan Mangard. Prefetch side-channel attacks: Bypassing smap and
kernel aslr. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’16, pages 368–379, New
York, NY, USA, 2016. ACM.

168

https://media.ccc.de/v/c4.openchaos.2018.06.glitching-the-switch
https://media.ccc.de/v/c4.openchaos.2018.06.glitching-the-switch

[67] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowham-
mer.js: A remote software-induced fault attack in javascript. In Detec-
tion of Intrusions and Malware, and Vulnerability Assessment, pages
300–321. Springer, 2016.

[68] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Man-
gard. Flush+flush: a fast and stealthy cache attack. In International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, pages 279–299. Springer, 2016.

[69] Berk Gulmezoglu, Ahmad Moghimi, Thomas Eisenbarth, and Berk
Sunar. Fortuneteller: Predicting microarchitectural attacks via unsu-
pervised deep learning. arXiv preprint arXiv:1907.03651, 2019.

[70] Berk Gulmezoglu, Andreas Zankl, M Caner Tol, Saad Islam, Thomas
Eisenbarth, and Berk Sunar. Undermining user privacy on mobile de-
vices using ai. In Proceedings of the 2019 ACM Asia Conference on
Computer and Communications Security, 2019.

[71] hackaday. APPLE AIRTAG SPILLS ITS SECRETS,
May 2021. https://hackaday.com/2021/05/10/

apple-airtag-spills-its-secrets.

[72] hackaday. EM-GLITCHING FOR NINTENDO DSI BOOT
ROMS, September 2021. https://hackaday.com/2021/09/11/

em-glitching-for-nintendo-dsi-boot-roms.

[73] Lars T Hansen. Shared memory: Side-channel information leaks, 2016.

[74] Yasufumi Hashimoto, Tsuyoshi Takagi, and Kouichi Sakurai. Gen-
eral fault attacks on multivariate public key cryptosystems. In Bo-Yin
Yang, editor, Post-Quantum Cryptography, pages 1–18, Berlin, Heidel-
berg, 2011. Springer Berlin Heidelberg.

[75] N Herath and A Fogh. These are not your grand daddys cpu perfor-
mance counters–cpu hardware performance counters for security. Black
Hat Briefings, 2015.

[76] Sebastien Hily, Zhongying Zhang, and Per Hammarlund. Resolving
false dependencies of speculative load instructions, October 13 2009.
US Patent 7,603,527.

169

https://hackaday.com/2021/05/10/apple-airtag-spills-its-secrets
https://hackaday.com/2021/05/10/apple-airtag-spills-its-secrets
https://hackaday.com/2021/09/11/em-glitching-for-nintendo-dsi-boot-roms
https://hackaday.com/2021/09/11/em-glitching-for-nintendo-dsi-boot-roms

[77] Jann Horn. speculative execution, variant 4: speculative store bypass,
2018.

[78] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical timing side
channel attacks against kernel space aslr. In 2013 IEEE Symposium on
Security and Privacy, pages 191–205. IEEE, 2013.

[79] IBM. Ibm chipkill memory: Advanced ecc memory for the ibm netfin-
ity 7000 m10, 2019. http://ps-2.kev009.com/pccbbs/pc_servers/
chipkilf.pdf.

[80] Mehmet Sinan İnci, Berk Gulmezoglu, Gorka Irazoqui, Thomas Eisen-
barth, and Berk Sunar. Cache attacks enable bulk key recovery on
the cloud. In Cryptographic Hardware and Embedded Systems – CHES
2016, pages 368–388, Berlin, Heidelberg, 2016. Springer.

[81] Intel. Intel® 64 and IA-32 Architectures Optimization Reference Man-
ual.

[82] Intel. Intel® Processors Voltage Settings Modification Advi-
sory, October 2019. https://www.intel.com/content/www/us/en/

security-center/advisory/intel-sa-00289.html.

[83] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. S$a: A shared
cache attack that works across cores and defies vm sandboxing – and
its application to aes. In Proceedings of the 2015 IEEE Symposium on
Security and Privacy, SP ’15, pages 591–604, Washington, DC, USA,
2015. IEEE Computer Society.

[84] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Systematic re-
verse engineering of cache slice selection in intel processors. In 2015
Euromicro Conference on Digital System Design (DSD), pages 629–
636. IEEE, 2015.

[85] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Mascat: Pre-
venting microarchitectural attacks before distribution. In Proceedings
of the Eighth ACM Conference on Data and Application Security and
Privacy, CODASPY ’18, page 377–388, New York, NY, USA, 2018.
Association for Computing Machinery.

170

http://ps-2.kev009.com/pccbbs/pc_servers/chipkilf.pdf
http://ps-2.kev009.com/pccbbs/pc_servers/chipkilf.pdf
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00289.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00289.html

[86] Saad Islam, Ahmad Moghimi, Ida Bruhns, Moritz Krebbel, Berk Gul-
mezoglu, Thomas Eisenbarth, and Berk Sunar. SPOILER: Speculative
load hazards boost rowhammer and cache attacks. In 28th USENIX Se-
curity Symposium (USENIX Security 19), pages 621–637, Santa Clara,
CA, August 2019. USENIX Association.

[87] Saad Islam, Koksal Mus, Richa Singh, Patrick Schaumont, and Berk
Sunar. Signature correction attack on dilithium signature scheme.
arXiv preprint arXiv:2203.00637, 2022.

[88] Yeongjin Jang, Sangho Lee, and Taesoo Kim. Breaking kernel address
space layout randomization with intel tsx. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Secu-
rity, pages 380–392. ACM, 2016.

[89] Patrick Jattke, Victor van der Veen, Pietro Frigo, Stijn Gunter, and
Kaveh Razavi. Blacksmith: Scalable rowhammering in the frequency
domain. In 2022 IEEE Symposium on Security and Privacy (SP), vol-
ume 1, 2022.

[90] Spec JEDEC. High bandwidth memory (hbm) dram. JESD235, pages
0018–9340, 2013.

[91] Daniel Kales and Greg Zaverucha. Forgery attacks on mqdssv2. 0,
2019.

[92] A. A. Kamal and A. Youssef. Strengthening hardware implementations
of ntruencrypt against fault analysis attacks. Journal of Cryptographic
Engineering, 3:227–240, 2013.

[93] Abdel Alim Kamal and Amr M. Youssef. Fault analysis of the ntrusign
digital signature scheme. Cryptography Commun., 4(2):131–144, June
2012.

[94] Emre Karabulut and Aydin Aysu. Falcon down: Breaking falcon post-
quantum signature scheme through side-channel attacks. In 2021 58th
ACM/IEEE Design Automation Conference (DAC), pages 691–696,
2021.

171

[95] Vasileios P Kemerlis, Michalis Polychronakis, and Angelos D
Keromytis. ret2dir: Rethinking kernel isolation. In USENIX Security
Symposium, pages 957–972, 2014.

[96] Zijo Kenjar, Tommaso Frassetto, David Gens, Michael Franz, and
Ahmad-Reza Sadeghi. V0ltpwn: Attacking x86 processor integrity
from software. In 29th {USENIX} Security Symposium ({USENIX}
Security 20), pages 1445–1461, 2020.

[97] Dae-Hyun Kim, Prashant J Nair, and Moinuddin K Qureshi. Architec-
tural support for mitigating row hammering in dram memories. IEEE
Computer Architecture Letters, 14(1):9–12, 2014.

[98] Il-Ju Kim, Taeho Lee, Jaeseung Han, Bo-Yeon Sim, and Dong-Guk
Han. Novel single-trace ml profiling attacks on nist 3 round candidate
dilithium. IACR Cryptol. ePrint Arch., 2020:1383, 2020.

[99] Jeremie S Kim, Minesh Patel, A Giray Yağlıkçı, Hasan Hassan, Ro-
knoddin Azizi, Lois Orosa, and Onur Mutlu. Revisiting rowhammer:
An experimental analysis of modern dram devices and mitigation tech-
niques. In 2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA), pages 638–651. IEEE, 2020.

[100] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flip-
ping bits in memory without accessing them: An experimental study
of dram disturbance errors. In ACM SIGARCH Computer Architecture
News, volume 42, pages 361–372. IEEE Press, 2014.

[101] Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced oil
and vinegar signature schemes. In International Conference on the
Theory and Applications of Cryptographic Techniques, pages 206–222.
Springer, 1999.

[102] Aviad Kipnis and Adi Shamir. Cryptanalysis of the oil and vinegar sig-
nature scheme. In Annual International Cryptology Conference, pages
257–266. Springer, 1998.

[103] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike
Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael

172

Schwarz, and Yuval Yarom. Spectre attacks: Exploiting speculative
execution. ArXiv e-prints, January 2018.

[104] Steffen Kosinski, Fernando Latorre, Niranjan Cooray, Stanislav
Shwartsman, Ethan Kalifon, Varun Mohandru, Pedro Lopez, Tom
Aviram-Rosenfeld, Jaroslav Topp, Li-Gao Zei, et al. Store forward-
ing for data caches, November 29 2016. US Patent 9,507,725.

[105] Juliane Krämer and Mirjam Loiero. Fault attacks on uov and rainbow.
In Ilia Polian and Marc Stöttinger, editors, Constructive Side-Channel
Analysis and Secure Design, pages 193–214, Cham, 2019. Springer In-
ternational Publishing.

[106] Evgeni Krimer, Guillermo Savransky, Idan Mondjak, and Jacob
Doweck. Counter-based memory disambiguation techniques for se-
lectively predicting load/store conflicts, October 1 2013. US Patent
8,549,263.

[107] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom. Ram-
bleed: Reading bits in memory without accessing them. In IEEE Sym-
posium on Security and Privacy (S&P), 2020.

[108] Thijs Laarhoven. Sieving for shortest vectors in lattices using angular
locality-sensitive hashing. In Rosario Gennaro and Matthew Robshaw,
editors, Advances in Cryptology – CRYPTO 2015, pages 3–22, Berlin,
Heidelberg, 2015. Springer Berlin Heidelberg.

[109] Thijs Laarhoven. Search problems in cryptography: from fingerprinting
to lattice sieving. PhD thesis, Mathematics and Computer Science,
February 2016. Proefschrift.

[110] Thijs Laarhoven, Michele Mosca, and Joop Pol. Finding shortest lat-
tice vectors faster using quantum search. Des. Codes Cryptography,
77(2–3):375–400, December 2015.

[111] Nate Lawson. How the ps3 hypervisor was
hacked, 2010. https://rdist.root.org/2010/01/27/

how-the-ps3-hypervisor-was-hacked/.

[112] Moritz Lipp, Daniel Gruss, Michael Schwarz, David Bidner, Clémentine
Maurice, and Stefan Mangard. Practical keystroke timing attacks in

173

https://rdist.root.org/2010/01/27/how-the-ps3-hypervisor-was-hacked/
https://rdist.root.org/2010/01/27/how-the-ps3-hypervisor-was-hacked/

sandboxed javascript. In Computer Security – ESORICS 2017, pages
191–209. Springer, 2017.

[113] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice,
and Stefan Mangard. Armageddon: Cache attacks on mobile devices.
In 25th USENIX Security Symposium (USENIX Security 16), pages
549–564, Austin, TX, 2016. USENIX Association.

[114] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading ker-
nel memory from user space. In 27th USENIX Security Symposium
(USENIX Security 18), Baltimore, MD, 2018. USENIX Association.

[115] Moritz Lipp, Michael Schwarz, Lukas Raab, Lukas Lamster,
Misiker Tadesse Aga, Clémentine Maurice, and Daniel Gruss. Netham-
mer: Inducing rowhammer faults through network requests. In 2020
IEEE European Symposium on Security and Privacy Workshops (Eu-
roS&PW), pages 710–719. IEEE, 2020.

[116] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee.
Last-level cache side-channel attacks are practical. In Proceedings of
the 2015 IEEE Symposium on Security and Privacy, SP ’15, pages
605–622, Washington, DC, USA, 2015. IEEE Computer Society.

[117] Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu. Raidr:
Retention-aware intelligent dram refresh. ACM SIGARCH Computer
Architecture News, 40(3):1–12, 2012.

[118] Errol L. Lloyd and Michael C. Loui. On the worst case performance of
buddy systems. Acta Informatica, 22(4):451–473, Oct 1985.

[119] Yifan Lu and Davee. Viva la Vita Vida: Hacking the most se-
cure handheld console, December 2018. https://media.ccc.de/v/

35c3-9364-viva_la_vita_vida.

[120] Vadim Lyubashevsky. Fiat-shamir with aborts: Applications to lattice
and factoring-based signatures. In Mitsuru Matsui, editor, Advances
in Cryptology – ASIACRYPT 2009, pages 598–616, Berlin, Heidelberg,
2009. Springer Berlin Heidelberg.

174

https://media.ccc.de/v/35c3-9364-viva_la_vita_vida
https://media.ccc.de/v/35c3-9364-viva_la_vita_vida

[121] Giorgi Maisuradze and Christian Rossow. ret2spec: Speculative
execution using return stack buffers. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Secu-
rity, pages 2109–2122. ACM, 2018.

[122] Intel 64 Architecture Memory Ordering White Paper. http://www.cs.
cmu.edu/~410-f10/doc/Intel_Reordering_318147.pdf, 2008. Ac-
cessed: 2018-11-26.

[123] Ahmad Moghimi, Thomas Eisenbarth, and Berk Sunar. Memjam: A
false dependency attack against constant-time crypto implementations
in SGX. In Topics in Cryptology - CT-RSA 2018 - The Cryptographers’
Track at the RSA Conference 2018, San Francisco, CA, USA, April
16-20, 2018, Proceedings, pages 21–44, 2018.

[124] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth.
Cachezoom: How sgx amplifies the power of cache attacks. In Crypto-
graphic Hardware and Embedded Systems – CHES 2017, pages 69–90.
Springer, 2017.

[125] Kit Murdock, David Oswald, Flavio D Garcia, Jo Van Bulck, Daniel
Gruss, and Frank Piessens. Plundervolt: Software-based fault injection
attacks against intel sgx. In 2020 IEEE Symposium on Security and
Privacy (SP), pages 1466–1482. IEEE, 2020.

[126] Koksal Mus, Saad Islam, and Berk Sunar. Quantumhammer: A prac-
tical hybrid attack on the luov signature scheme. In Proceedings of the
2020 ACM SIGSAC Conference on Computer and Communications
Security, pages 1071–1084, 2020.

[127] Onur Mutlu. The rowhammer problem and other issues we may face
as memory becomes denser. In Design, Automation Test in Europe
Conference Exhibition (DATE), 2017, pages 1116–1121, 2017.

[128] Onur Mutlu and Jeremie S Kim. Rowhammer: A retrospective. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 39(8):1555–1571, 2019.

[129] NIST. Post-quantum cryptography standardization. https:

//csrc.nist.gov/projects/post-quantum-cryptography/

post-quantum-cryptography-standardization, 2017.

175

http://www.cs.cmu.edu/~410-f10/doc/Intel_Reordering_318147.pdf
http://www.cs.cmu.edu/~410-f10/doc/Intel_Reordering_318147.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization

[130] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and An-
gelos D. Keromytis. The spy in the sandbox: Practical cache attacks
in javascript and their implications. In Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communications Security, CCS
’15, pages 1406–1418, New York, NY, USA, 2015. ACM.

[131] Aesun Park, Kyung-Ah Shim, Namhun Koo, and Dong-Guk Han. Side-
channel attacks on post-quantum signature schemes based on multivari-
ate quadratic equations. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, pages 500–523, 2018.

[132] Jacques Patarin. The oil and vinegar signature scheme. In Dagstuhl
Workshop on Cryptography September, 1997, 1997.

[133] Mathias Payer. Hexpads: a platform to detect “stealth” attacks. In
International Symposium on Engineering Secure Software and Systems,
pages 138–154. Springer, 2016.

[134] Colin Percival. Cache missing for fun and profit, 2005.

[135] Cesar Pereida Garćıa, Billy Bob Brumley, and Yuval Yarom. ”make
sure dsa signing exponentiations really are constant-time”. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS ’16, pages 1639–1650, New York, NY, USA,
2016. ACM.

[136] Ray Perlner and Daniel Smith-Tone. Rainbow band separation is better
than we thought. Cryptology ePrint Archive, 2020.

[137] Peter Pessl, Leon Groot Bruinderink, and Yuval Yarom. To bliss-b
or not to be: Attacking strongswan’s implementation of post-quantum
signatures. In Computer and Communications Security, pages 1843–
1855. ACM, 2017.

[138] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and
Stefan Mangard. Drama: Exploiting dram addressing for cross-cpu
attacks. In USENIX Security Symposium, pages 565–581, 2016.

[139] Peter Pessl and Robert Primas. More practical single-trace attacks
on the number theoretic transform. In International Conference on

176

Cryptology and Information Security in Latin America, pages 130–149.
Springer, 2019.

[140] Peter Pessl and Lukas Prokop. Fault attacks on cca-secure lattice
kems. IACR Transactions on Cryptographic Hardware and Embedded
Systems, pages 37–60, 2021.

[141] PQShield. Think openly, build securely post-quantum standards ready.
https://pqshield.com, 2021.

[142] Robert Primas, Peter Pessl, and Stefan Mangard. Single-trace side-
channel attacks on masked lattice-based encryption. In International
Conference on Cryptographic Hardware and Embedded Systems, pages
513–533. Springer, 2017.

[143] Salman Qazi, Yoongu Kim, Nicolas Boichat, Eric Shiu, and Mattias
Nissler. Introducing half-double: New hammering technique for dram
rowhammer bug, 2021.

[144] QuSecure. Scalable cybersecurity for the post-quantum enterprise.
https://www.qusecure.com, 2021.

[145] Prasanna Ravi, Mahabir Prasad Jhanwar, James Howe, Anupam
Chattopadhyay, and Shivam Bhasin. Side-channel assisted existential
forgery attack on dilithium-a nist pqc candidate. IACR Cryptology
ePrint Archive, page 821, 2018.

[146] Prasanna Ravi, Mahabir Prasad Jhanwar, James Howe, Anupam Chat-
topadhyay, and Shivam Bhasin. Exploiting determinism in lattice-
based signatures: practical fault attacks on pqm4 implementations of
nist candidates. In Proceedings of the 2019 ACM Asia Conference on
Computer and Communications Security, pages 427–440, 2019.

[147] Prasanna Ravi, Debapriya Basu Roy, Shivam Bhasin, Anupam Chat-
topadhyay, and Debdeep Mukhopadhyay. Number “not used” once-
practical fault attack on pqm4 implementations of nist candidates. In
International Workshop on Constructive Side-Channel Analysis and
Secure Design, pages 232–250. Springer, 2019.

177

https://pqshield.com
https://www.qusecure.com

[148] Gauvain Tanguy Henri Gabriel Roussel-Tarbouriech, Noel Menard,
Tyler True, Tini Vi, et al. Methodically defeating nintendo switch
security. arXiv preprint arXiv:1905.07643, 2019.

[149] C. P. Schnorr and M. Euchner. Lattice basis reduction: Improved
practical algorithms and solving subset sum problems. Math. Program.,
66(2):181–199, September 1994.

[150] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Stefan Man-
gard. Fantastic timers and where to find them: high-resolution mi-
croarchitectural attacks in javascript. In International Conference on
Financial Cryptography and Data Security, pages 247–267. Springer,
2017.

[151] Mark Seaborn and Thomas Dullien. Exploiting the dram rowhammer
bug to gain kernel privileges. Black Hat, 15, 2015.

[152] Johanna Sepulveda, Andreas Zankl, and Oliver Mischke. Cache at-
tacks and countermeasures for ntruencrypt on mpsocs: Post-quantum
resistance for the iot. In 2017 30th IEEE International System-on-Chip
Conference (SOCC), pages 120–125, 2017.

[153] K. Shim and N. Koo. Algebraic fault analysis of uov and rainbow
with the leakage of random vinegar values. IEEE Transactions on
Information Forensics and Security, pages 1–1, 2020.

[154] Peter W Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM review, 41(2):303–
332, 1999.

[155] Joseph H. Silverman and William Whyte. Timing attacks on ntru-
encrypt via variation in the number of hash calls. In Masayuki Abe,
editor, Topics in Cryptology – CT-RSA 2007, pages 208–224, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg.

[156] Yongha Son. A note on parameter choices of round5. IACR Cryptol.
ePrint Arch., 2019:949, 2019.

[157] Yongha Son and Jung Hee Cheon. Revisiting the hybrid attack on
sparse and ternary secret lwe. IACR Cryptol. ePrint Arch., 2019:1019,
2019.

178

[158] JEDEC Standard. Double data rate (ddr) sdram specification. JEDEC
Solid State Technology Assoc, 2005.

[159] Douglas Stebila and Michele Mosca. Post-quantum key exchange for
the internet and the open quantum safe project. In International Con-
ference on Selected Areas in Cryptography, pages 14–37. Springer, 2016.

[160] Julian Stecklina and Thomas Prescher. Lazyfp: Leaking fpu reg-
ister state using microarchitectural side-channels. arXiv preprint
arXiv:1806.07480, 2018.

[161] Dean Sullivan, Orlando Arias, Travis Meade, and Yier Jin. Microar-
chitectural minefields: 4k-aliasing covert channel and multi-tenant de-
tection in iaas clouds. In Network and Distributed Systems Security
(NDSS) Symposium. The Internet Society, 2018.

[162] Synopsys. DDR5/4/3/2: How Memory Density and Speed Increased
with each Generation of DDR, April 2022. https://blogs.synopsys.
com.

[163] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo.
CLKSCREW: Exposing the perils of security-oblivious energy
management. In 26th USENIX Security Symposium (USENIX
Security 17), pages 1057–1074, Vancouver, BC, 2017. USENIX
Association.

[164] Andrei Tatar, Radhesh Krishnan, Elias Athanasopoulos, Cristiano
Giuffrida, Herbert Bos, and Kaveh Razavi. Throwhammer: Rowham-
mer attacks over the network and defenses. In 2018 USENIX Annual
Technical Conference (USENIX ATC 18), Boston, MA, 2018. USENIX
Association.

[165] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. Col-
lecting performance data with papi-c. In Tools for High Performance
Computing 2009, pages 157–173. Springer, 2010.

[166] Niek Timmers and Albert Spruyt. Bypassing secure boot using fault
injection. Black Hat Europe, 2016, 2016.

[167] Y. Tobah, A. Kwong, I. Kang, D. Genkin, and K. G. Shin. Specham-
mer: Combining spectre and rowhammer for new speculative attacks.

179

https://blogs.synopsys.com
https://blogs.synopsys.com

In 2022 2022 IEEE Symposium on Security and Privacy (SP) (SP),
pages 1362–1379, Los Alamitos, CA, USA, may 2022. IEEE Computer
Society.

[168] M. Caner Tol, Saad Islam, Berk Sunar, and Ziming Zhang. An opti-
mization perspective on realizing backdoor injection attacks on deep
neural networks in hardware. CoRR, abs/2110.07683, 2021.

[169] Felipe Valencia, Tobias Oder, Tim Güneysu, and Francesco Regazzoni.
Exploring the vulnerability of r-lwe encryption to fault attacks. In
Proceedings of the Fifth Workshop on Cryptography and Security in
Computing Systems, CS2 ’18, page 7–12, New York, NY, USA, 2018.
Association for Computing Machinery.

[170] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F Wenisch, Yuval
Yarom, and Raoul Strackx. Foreshadow: Extracting the keys to the
intel sgx kingdom with transient out-of-order execution. In Proceedings
of the 27th USENIX Security Symposium. USENIX Association, 2018.

[171] Jo Van Bulck, Frank Piessens, and Raoul Strackx. Sgx-step: A practi-
cal attack framework for precise enclave execution control. In Proceed-
ings of the 2Nd Workshop on System Software for Trusted Execution,
SysTEX’17, pages 4:1–4:6, New York, NY, USA, 2017. ACM.

[172] Jo Van Bulck, Frank Piessens, and Raoul Strackx. Nemesis: Studying
microarchitectural timing leaks in rudimentary cpu interrupt logic. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 178–195. ACM, 2018.

[173] Victor Van Der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel
Gruss, Clémentine Maurice, Giovanni Vigna, Herbert Bos, Kaveh
Razavi, and Cristiano Giuffrida. Drammer: Deterministic rowham-
mer attacks on mobile platforms. In Proceedings of the 2016 ACM
SIGSAC conference on computer and communications security, pages
1675–1689. ACM, 2016.

[174] Pepe Vila, Boris Köpf, and José Francisco Morales. Theory and practice
of finding eviction sets. arXiv preprint arXiv:1810.01497, 2018.

180

[175] Beullens Ward, Preneel Bart, Szepieniec Alan, and Vercauteren
Fréderik. LUOV - MQ signature scheme, 2020. https://www.esat.

kuleuven.be/cosic/pqcrypto/luov/.

[176] Zane Weissman, Thore Tiemann, Daniel Moghimi, Evan Custodio,
Thomas Eisenbarth, and Berk Sunar. Jackhammer: Efficient rowham-
mer on heterogeneous fpga-cpu platforms. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2020(3):169–195, Jun.
2020.

[177] WikiChip. Ivy Bridge - Microarchitectures - Intel. https:

//en.wikichip.org/wiki/intel/microarchitectures/ivy_

bridge_(client). Accessed: 2019-02-05.

[178] WikiChip. Kaby Lake - Microarchitectures - Intel. https://en.

wikichip.org/wiki/intel/microarchitectures/kaby_lake. Ac-
cessed: 2019-02-05.

[179] WikiChip. Skylake (client) - Microarchitectures - Intel.
https://en.wikichip.org/wiki/intel/microarchitectures/

skylake_(client). Accessed: 2019-02-05.

[180] Keita Xagawa, Akira Ito, Rei Ueno, Junko Takahashi, and Naofumi
Homma. Fault-injection attacks against nist’s post-quantum cryptog-
raphy round 3 KEM candidates. IACR Cryptol. ePrint Arch., page
840, 2021.

[181] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodorescu.
One bit flips, one cloud flops: Cross-vm row hammer attacks and priv-
ilege escalation. In USENIX Security Symposium, pages 19–35, 2016.

[182] Lai Xu, Rongwei Yu, Lina Wang, and Weijie Liu. Memway:
in-memorywaylaying acceleration for practical rowhammer attacks
against binaries. Tsinghua Science and Technology, 24(5):535–545,
2019.

[183] Yuval Yarom, Daniel Genkin, and Nadia Heninger. CacheBleed: a tim-
ing attack on OpenSSL constant-time RSA. Journal of Cryptographic
Engineering, 7(2):99–112, 2017.

181

https://www.esat.kuleuven.be/cosic/pqcrypto/luov/
https://www.esat.kuleuven.be/cosic/pqcrypto/luov/
https://en.wikichip.org/wiki/intel/microarchitectures/ivy_bridge_(client)
https://en.wikichip.org/wiki/intel/microarchitectures/ivy_bridge_(client)
https://en.wikichip.org/wiki/intel/microarchitectures/ivy_bridge_(client)
https://en.wikichip.org/wiki/intel/microarchitectures/kaby_lake
https://en.wikichip.org/wiki/intel/microarchitectures/kaby_lake
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)

[184] Takanori Yasuda, Xavier Dahan, Yun-Ju Huang, Tsuyoshi Takagi, and
Kouichi Sakurai. Mq challenge: Hardness evaluation of solving multi-
variate quadratic problems. IACR Cryptology ePrint Archive, 2015:275,
2015.

[185] Bennet Yee, David Sehr, Gregory Dardyk, J Bradley Chen, Robert
Muth, Tavis Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Ful-
lagar. Native client: A sandbox for portable, untrusted x86 native
code. In Security and Privacy, 2009 30th IEEE Symposium on, pages
79–93. IEEE, 2009.

[186] Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee. Cloudradar: A real-
time side-channel attack detection system in clouds. In Research in
Attacks, Intrusions, and Defenses, pages 118–140. Springer, 2016.

[187] Zhi Zhang, Jiahao Qi, Yueqiang Cheng, Shijie Jiang, Yiyang Lin, Yan-
song Gao, Surya Nepal, and Yi Zou. A retrospective and future-
spective of rowhammer attacks and defenses on dram. arXiv preprint
arXiv:2201.02986, 2022.

182

Appendix A

SPOILER

A.1 Tested Hardware Performance Counters

A list of tested performance counters is given in Table A.1.

A.2 Row conflict Side-Channel

The row conflict side-channel retrieves the timing information of the CPU

while doing direct accesses (using clflush) from the DRAM. A higher timing

indicates that the two addresses are mapped to the same bank in the DRAM

because reading an address from the same bank forces the row buffer to

copy the previous contents back to the original row and then load the newly

accessed data into the row buffer. Whereas, a low timing indicates that two

addresses are not in the same bank (not sharing the same row buffer) and

183

Figure A.1: Timings for accessing the aliased virtual addresses (random ad-
dresses where 20 LSB of the physical address match). Row hits (orange/low
timings) are clearly distinguishable from row conflicts (blue/high timings).

are loaded into separate row buffers. Figure A.1 shows a wide gap (around

100 cycles) between row hits and row conflicts.

A.3 Memory Utilization and Contiguity

The probability of obtaining contiguous memory depends on memory uti-

lization of the system. We conduct an experiment to examine the effect of

memory utilization on availability of contiguous memory. In this experiment,

1GB memory is allocated. During the experiment, the memory utilization of

the system is increased gradually from 20% to 90%. We measure the prob-

ability of getting the contiguous memory with two methods. The first one

184

is checking the physical frame numbers from pagemap file to look for 520 kB

of contiguous memory. The second method is using SPOILER to find the

520 kB of contiguous memory. This 520 kB is required to get three consecu-

tive rows within a bank for a DRAM configuration having 256 kB row offset

and 8 kB row size.

Figure A.2 and Figure A.3 show that when the memory has been frag-

mented after intense memory usage, it gets more difficult to allocate a con-

tiguous chunk of memory. Even decreasing the memory usage does not help

to get a contiguous block of memory. Figure A.3 depicts that after the

memory utilization has been decreased from 70% to 60% and so on, there is

not enough contiguous memory to mount a successful double-sided Rowham-

mer attack. Until the machine is restarted, the memory remains fragmented

which makes a double-sided Rowhammer attack difficult, especially on tar-

gets like high-end servers where restarting is impractical.

The observed behavior can be explained by the binary buddy allocator

which is responsible for the physical address allocation in the Linux OS [62].

This type of allocator is known to fragment memory significantly under cer-

tain circumstances [118]. The Linux OS uses a SLAB/SLOB allocator in

order to circumvent the fragmentation problems. However, the allocator

only serves the kernel directly. Userspace memory therefore still suffers from

the fragmentation that the buddy allocator introduces. This also means that

getting the contiguous memory becomes more difficult if the system under

attack has been active for a while.

185

20 30 40 50 60 70 80 90

System Memory Consumption (%)

0

20

40

60

80

100

C
o

n
ti
g

u
o

u
s
 M

e
m

o
ry

 (
%

)

520KB Contiguous Memory from pagemap File

520KB Contiguous Memory from Leakage Peaks

Figure A.2: Finding contiguous memory of 520 kB with increasing memory
utilization. The overlap between the red and blue plot indicates the high
accuracy of the contiguous memory detection capability of SPOILER as ver-
ified by the pagemap file.

2030405060708090

System Memory Consumption (%)

0

5

10

15

20

25

C
o

n
ti
g

u
o

u
s
 M

e
m

o
ry

 (
%

) 520KB Contiguous Memory from pagemap File

520KB Contiguous Memory from Leakage Peaks

Figure A.3: Finding contiguous memory of 520 kB with decreasing memory
utilization.

186

Counters Correlation

UNHALTED CORE CYCLES 0.3077

UNHALTED REFERENCE CYCLES 0.1527

INSTRUCTION RETIRED 0.2718

INSTRUCTIONS RETIRED 0.2827

BRANCH INSTRUCTIONS RETIRED 0.3143

MISPREDICTED BRANCH RETIRED 0.0872

CYCLE ACTIVITY:CYCLES L2 PENDING -0.0234

CYCLE ACTIVITY:STALLS LDM PENDING 0.9819

CYCLE ACTIVITY:CYCLES NO EXECUTE 0.2317

RESOURCE STALLS:ROB 0

RESOURCE STALLS:SB -0.0506

RESOURCE STALLS:RS -0.0044

LD BLOCKS PARTIAL:ADDRESS ALIAS -0.9511

IDQ UOPS NOT DELIVERED -0.1455

IDQ:ALL DSB CYCLES ANY UOPS 0.0332

ILD STALL:IQ FULL 0.1021

ITLB MISSES:MISS CAUSES A WALK 0

TLB FLUSH:STLB THREAD 0

ICACHE:MISSES 0

ICACHE:IFETCH STALL 0

L1D:REPLACEMENT 0.3801

L2 DEMAND RQSTS:WB HIT 0.2436

LONGEST LAT CACHE:MISS 0.0633

CYCLE ACTIVITY:CYCLES L1D PENDING -0.0080

LOCK CYCLES:CACHE LOCK DURATION 0

LOAD HIT PRE:SW PF 0

LOAD HIT PRE:HW PF 0

MACHINE CLEARS:CYCLES 0

OFFCORE REQUESTS BUFFER:SQ FULL 0

OFFCORE REQUESTS:DEMAND DATA RD 0.1765

Table A.1: Counters profiled for correlation test

187

Appendix B

QuantumHammer

B.1 Divide-and-Conquer Attack

Algorithm 10 MQ Generator

1: procedure MQ Gen(i, x)

i: column# in T

x: known elements in ith column of T

Output: Ai(x)

2: Ai ← GenMQ(i) ▷ use Equation 2.3 for i = j

3: Ai(x)← InsertV ec(Ai, x) ▷ Section 4.4.2, Item 2

4: return Ai(x)

5: end procedure

188

Algorithm 11 ML Generator

1: procedure ML Gen((i, x),(j, y))

i, j: column# in T ,

x: known elements in the xth column of T

y: known elements in the yth column of T

Output: Bi,j(x, y)

2: Bi,j ← EqnGen(i, j) ▷ Section 4.4.2, Item 3

3: Bi,j(x, y)← InsertV ec(Bi,j, x, y) ▷ Section 4.4.2,Item 5

4: return Bi,j(x, y)

5: end procedure

189

Algorithm 12 Equation Solver

1: procedure Eqn Solver(Ai(x),
⋃i−1

j=1 Bi,j(x, yj))

Output: tj or fail

2: if v − x ≤ m then

Solve Ai(x) ▷ ∼MQ(v − x,m)

3: else if v − x− (i− 1)m ≤ 0 then

Solve
⋃i−1

j=1 Bi,j(x, yj) ▷ ∼MQ((i− 1)m, v − x)

4: else if 0 ≤ v − x− (i− 1)m ≤ m then

Solve Ai(x) ∪
⋃i−1

j=1 Bi,j(x, yj) ▷ ∼MQ(v − x−m,m)

5: else

6: return fail ▷ Not a solvable system

7: end if

8: return tj

9: end procedure

190

Algorithm 13 Coefficient Matrix Generator

1: procedure Matrix Gen(Q1)

Output: P 3
k , Q2

2: Pk1← findPk1(Q1, k) ▷ [16]

3: Pk2← findPk2(Q1, k) ▷ [16]

4: Pk3← GenPk3(Pk1, Pk2, k) ▷ ∼MQ(v − x, v − x)

5: Q2 ← GenQ2(Pk3) ▷ Equation 2.4

6: return P 3
k , Q2

7: end procedure

191

B.2 LUOV - Build Augmented Matrix

Algorithm 14 LUOV - Build Augmented Matrix

1: procedure BuildAugmented(C,L,Q1, T , h, v)

Output: LHS||RHS = (A||b)

2: RHS ←− h− C − Ls(v||0)T

3: LHS ←− L

−T
1m


4: for k from 1 to m do

5: Pk1 ←− findPK1(k,Q1)

6: Pk2 ←− findPK2(k,Q1)

7: RHS[k]←− RHS[k]− vtPk,1v

8: Fk,2 ←− (Pk,1 + P T
k,1)T + Pk,2

9: LHS[k]←− LHS[k] + vFk,2

10: end for

11: return LHS||RHS

12: end procedure

192

Appendix C

Plundervolt

C.1 Assembly version of C code in Listing 6.1

Listing C.1: Assembly version of code sequence in Listing 6.1

0 : endbr64

4 : push rbp

5 : mov rbp , rsp

8 : lea r11 , [rsp−0x7a1000]

10 : sub rsp , 0 x1000

17 : or QWORDPTR [r sp] , 0 x0

1c : cmp rsp , r11

1 f : jne 10 <main+0x10>

21 : sub rsp , 0 x220

28 : mov rax ,QWORDPTR fs : 0 x28

31 : mov QWORDPTR [rbp−0x8] , rax

35 : xor eax , eax

193

37 : mov DWORDPTR [rbp−0x7a1214] , 0 x0

41 : jmp a5 <main+0xa5>

43 : mov eax ,DWORDPTR [rbp−0x7a1214]

49 : cdqe

4b : mov BYTE PTR [rbp+rax∗1−0x7a1210] , 0 x61

53 : mov eax ,DWORDPTR [rbp−0x7a1214]

59 : cdqe

5b : mov BYTE PTR [rbp+rax∗1−0x7a1210] , 0 x62

63 : mov eax ,DWORDPTR [rbp−0x7a1214]

69 : cdqe

6b : mov BYTE PTR [rbp+rax∗1−0x7a1210] , 0 x63

73 : mov eax ,DWORDPTR [rbp−0x7a1214]

79 : cdqe

7b : movzx eax ,BYTE PTR [rbp+rax∗1−0x7a1210]

83 : cmp al , 0 x63

85 : je 9e <main+0x9e>

87 : mov eax ,DWORDPTR [rbp−0x7a1214]

8d : mov rdx ,QWORDPTR [rbp−0x8]

91 : xor rdx ,QWORDPTR fs : 0 x28

9a : je b8 <main+0xb8>

9c : jmp b3 <main+0xb3>

9e : add DWORDPTR [rbp−0x7a1214] , 0 x1

a5 : cmp DWORDPTR [rbp−0x7a1214] , 0 x7a11 f f

a f : j l e 43 <main+0x43>

b1 : jmp 37 <main+0x37>

b3 : ca l l b8 <main+0xb8>

b8 : leave b9 : ret

194

	Introduction
	Contributions
	Outline

	Background
	Computer Architecture
	Memory Management
	Cache Hierarchy
	Prime+Probe Attack
	Memory Order Buffer
	Speculative Load Hazards

	Software-Induced Fault Attacks
	Rowhammer Attack
	Plundervolt Attack

	Post-Quantum Signature Schemes
	Lifted Unbalanced Oil and Vinegar (LUOV)
	CRYSTALS - Dilithium

	SPOILER: Speculative Load Hazards Boost Rowhammer and Cache Attacks
	Motivation
	Contributions
	Related Work

	The SPOILER Attack
	Speculative Dependency Analysis
	Leakage of the Physical Address Mapping
	Evaluation
	Discussion

	SPOILER from JavaScript
	Efficient Eviction Set Finding

	Rowhammer Attack using SPOILER
	DRAM Bank Co-location
	Contiguous Memory
	Double-Sided Rowhammer with SPOILER

	Tracking Speculative Loads With SPOILER
	SPOILER Context Switch
	Negative Result: SPOILER SGX

	Mitigations
	Software Mitigations
	Hardware Mitigations

	Conclusion

	QuantumHammer: A Practical Hybrid Attack on the LUOV Signature Scheme
	Contributions
	Related Work
	A Novel Bit-Tracing Attack on LUOV
	Pre-processing Phase (Templating)
	Online Phase (Rowhammer attack)
	Post-processing Phase
	Performance

	QuantumHammer
	Divide-and-Conquer Attack
	Observations on the structure of Q2
	A Practical Divide and Conquer Attack

	Experimental Results
	Countermeasures
	Discussion
	Conclusion

	Signature Correction Attack on Dilithium Signature Scheme
	Contributions
	Related Work
	Signature Correction Attack on Dilithium
	Attacker Model
	Phases of the Signature Correction Attack
	Signature Correction Algorithm for Dilithium
	Templating Phase
	Online Phase

	Experimental Results
	Experimental Setup
	Key recovery with Signature Correction Attack

	Estimating the Diminished Security Level of Dilithium
	Lattice Security with Reduced Dimension
	Exploiting the Redundant Encoding to Recover More Coefficients
	Reducing the Norm of the Coefficients

	Discussion
	Is the weakness inherent to Dilithium?
	Further Reducing the Attack Complexity

	Countermeasures
	Rowhammer Countermeasures
	Algorithmic Countermeasures
	Applicability on Glitching Attacks

	Conclusion

	Plundervolt Attack on Dilithium
	Contributions
	Plundervolt Attack on Dilithium
	Threat Model
	Experimental Setup
	Finding crash points
	Temperature Variations
	Experimental Results

	Novel Observation of Plundervolt
	Conclusion

	Conclusion
	SPOILER
	Tested Hardware Performance Counters
	Row conflict Side-Channel
	Memory Utilization and Contiguity

	QuantumHammer
	Divide-and-Conquer Attack
	LUOV - Build Augmented Matrix

	Plundervolt
	Assembly version of C code in Listing 6.1

