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Abstract ​— There are many methods to analyze cell nuclei, but few can detect the presence of DNA 
damage, without labeling proteins. We have developed a process to detect and classify cell nuclei in the 
presence of DNA damage. This method uses the morphology of DNA-associated histone proteins, 
without proteins that specifically label or localize to sites of DNA damage. We discuss how and why we 
address this problem, followed by the specifics of the program pipeline, then our results and how it 
compares to other methods, and concluding about future additions.  

Keywords — Nuclei Detection; Foci Detection, Feature Detection, Random Forest, Convolutional 
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Introduction 

Researchers interested in the dynamics of DNA, tend to look at the response and efficiency of 
repair factors in the presence of damage. These researchers use a mix of manual and software assisted 
analysis. All known openly available software options fail to detect cell nuclei and foci in conjunction 
with classifying nuclei [1]. This has limited the utility of these software in the study of DNA damage 
acquisition and repair. Processing individual cells in high fidelity is a computationally expensive and 
time consuming process. This project has two goals: to enhance the ability to accurately identify damage 
foci in labeled immunofluorescent images, and identify morphological features in organization of DNA 
that indicate, without a priori knowledge of DNA damage status, which cells contain DNA damage. 
Successfully enhancing the detection and classification process will provide insight into possible 
correlation between morphological features from fluorescence images and important regulators of the 
process that may be altered in disease contexts such as cancer.  

Using varied libraries for image processing and artificial intelligence, we developed a tool for the 
ingestion, analysis, and classification of these cells. Our pipeline processes microscopic images of cell 
cultures whose DNA and damaged sites are labeled by proteins. This pipeline can process samples of 
varying fluorescence, and is extremely modular in practice, thus making it extensible for any use case 
between segmentation and unsupervised classification. Hot-swapping modules dependent on the use 
case is very feasible and easily achievable across different colored nuclei strains and feature vector 
additions.  

 
 

 



 

Background 

 The field of computer-aided microscopy has undergone much innovation due to advancements 
in imaging technology, and robust libraries for automated image analysis. Over the past few decades, 
researchers have utilized deep learning algorithms able to classify cells and nuclei based on descriptive 
features [2,3]. It is possible to differentiate cell type and determine cycle stage by shape and texture 
characteristics of cell nuclei [4,5]. These classifications focus on high phenotypic classifications that can 
also be detected with the human eye. Our research hopes to use nuclear morphology to classify damaged 
nuclei. Identifying such damage is not easily detectable to the human eye without labeling proteins.  

With regards to cell damage, biologists use computer aided diagnostics to process many images 
using tools such as FoCo and CellProfiler. These tools have built-in algorithms for the segmentation of 
large cultures of cells into individual images of cells for examining, as well as options to highlight and 
count marked foci inside the cells. However, these tools can be cumbersome when working with a large 
amount of images. We identified this issue and researched the currently used applications with the goal 
of identifying their flaws with respect to the datasets that will be examined. 

 A popular open-source tool used is CellProfiler [6], a “cell image analysis software” developed 
in 2003 by the Broad Institute of Harvard and MIT. While the software does provide updates compared 
to previous tools with respect to user interface, its core engine for doing image analysis proved 
ineffective for our dataset. Images would have dense amounts of cells clustered next to each other with 
each having their own foci, and CellProfiler proved unreliable in detecting these.  

To improve upon CellProfiler, FoCo [7] was developed to improve the nuclei detection and 
added the ability to outline foci. FoCo’s strengths lie in how versatile it is at identifying foci in cells with 
varying image quality, background noise, and fluorescence levels. FoCo’s processes became the basis 
for our automatic labeling system. Because of this, we were able to generate much more “training data”, 
which was used for training various neural network models for the classification of these nuclei.  

 

Methodology 

After observing the procedures developed through FoCo and CellProfiler, as well as conducting 
extensive research on recently published solutions for cell segmentation and analysis. In this section we 
will elaborate upon each one of these steps, as shown in Figure 1. One of the major factors that we 
wanted to keep in consideration was time to process. We identified from testing CellProfiler and FoCo 
that on average, CellProfiler took 15 minutes to load the image, run its algorithms, and output results in 
a table format. FoCo on the other hand, needed only 8 minutes to process the image and output results. 
The need for a program to automate detection of foci and classify the cells is apparent, as manual 
detection and labeling of the cells’ classes took hours of labor. Using our pipeline we were able to obtain 
a dataset of nuclei from a single frame in an average of 30 seconds. 

 



 

 
Figure 1:​ This figure shows the general process used in our research. Starting with obtaining the nuclei 
videos, automatically generating a dataset, obtaining features, classifying the nuclei to finally analyzing 
the feature importance and relevance. 
 

Raw Data Acquisition 
Our dataset included 3 unique ND2 movies of fixed cells, named “Movie1”, “Movie2” and 

“Simple”. Simple was given its name due to the low amount of nuclei (about 5 - 40) in each image, 
allowing it to be a basis for manual labelling and cross-checking. The Simple dataset includes 24 frames 
from footage of cell nuclei over 2 hours with 5 minutes between each frame. The cells are filmed from 
16 different wells, and the images were split into 8 different XY coordinates. Movie1 and Movie2 
contain only one well and were not split into different coordinates, resulting in a much larger amount of 
nuclei as shown in Figure 2. For each of these movies, RFP was used to label nuclear DNA and GFP to 
indicate DNA damage and captured with a Zyla sCMOS camera mounted on a Nikon Ti-E microscope 
with a 20x CFI Plan Fluor objective such that each pixel is about .67um. The cultures shown in the 
movies have been tested to have uniform GFP presence however, there are intrinsic limits to detecting 
GFP indicative of DNA damage.  

 
 
 
 

 



 

   

 
Figure 2:​ This figure shows the first time step for each dataset, Movie1 [left], Movie2 [middle], and 
Simple [right]. Here it can be seen how Simple is split into wells based on the resolution of the frame 
and how it contains less nuclei in a single frame than the other movies. Additionally you can see the 
variety in haze among the datasets.  

PreProcessing  
From the given ND2 files when processed are compiled into separate TIFF images for each 

frame and for each color channel. As each image has empty values for the blue channels, storing the 
images in this method is very spatially intensive. To save space in memory, we merged the red and 
green channels of each corresponding image, and saved the resulting image with no additional 
compression to prevent data loss.  

A major issue that came up during the detection of foci was the presence of background 
fluorescence. The background noise made it difficult to autonomously pinpoint the foci locations due to 
the overwhelming presence of the green channel. We consulted using an inverse point spread function, 
in addition to global and local thresholding to reduce haze [8]. Taking time and complexity into 
consideration, we used mean global thresholding as it was easy to compute and only needed to be done 
once per frame. This allows the GFP within the nuclei to be normalized such that only nuclei with high 
enough GFP expression can be seen, as shown in Figure 3. Additionally, as the amount of fluorescence 
varies between nuclei we used gamma correction (1) to allow easier detection of the darker nuclei. 
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Figure 3:​ Before [left] and after [right] of global average de-hazing. Note that the background green 
‘haze’ is removed, and that nuclei with GFP presence are still visible.  

Dataset Generation 
From the Simple movie we produced a labeled non time dependent dataset. The dataset included 

20 frames from random wells and coordinates. To label the dataset we manually segmented each nucleus 
by looking at the overlaid frames to be ground truth of the edge of the nucleus. After manual and 
automated segmentation, we analyzed the nuclei to detect foci and GFP diffusion using FoCo. We 
labeled pixels that we deemed to be part of the nucleus red (FF000) if it contained no foci, green 
(00FF00) if it contained foci as shown in Figure 4.  

 

 
Figure 4:​ Original Image [Left], Single healthy nuclei mask [Middle], Single damaged nuclei mask 
[Right]. This figure shows masks for a damaged and undamaged nucleus that has been segmented and 
labeled from the original image. These masks are a single instance chosen from the masks generated 
from the original image. 
 

From here we sought to automate the labeling process by using various segmentation techniques, 
and FoCo for foci detection. To test the accuracy of an automatic labeling process, we generated a 
subset of the Simple set to be our training set. Our training labeled dataset included 20 unique frames for 
a total of 324 labeled nuclei. Of the labeled nuclei, 285 were deemed to have no DNA damage, and 41 

 



 

were damaged through our analysis in FoCo. We tested four different segmentation algorithms, Mean 
Shift, Chan-Vese, Otsu, Triangle and K-Means. These algorithms were chosen as they are used in 
software such as ImageJ and have previously shown to have good detection results in fluorescence 
images [9]. All of these tests were followed by watershed segmentation to separate nuclei that may be 
too close to each other, and all detected regions that were smaller than 150 pixels in area were removed. 
From our testing we chose to continue with Otsu thresholding. By using Otsu we can expect 
segmentations of at least 80% of nuclei in a frame, about 60% of the time as shown in Table 1. 
 
Table 1:​ This table shows the mean average precision of select segmentation method with a threshold of 
0.8 for true positives. Meaning, that in a given frame we can expect the algorithm will have an average 
IOU score of at least 0.8 for all nuclei. 

 Mean Shift Chan-Vese Otsu K-Means Triangle 

Mean Average 
Precision (TP = 0.8)  

0.054 0.202 0.598 0.526 0.212 

 
 

To prevent classification or feature extraction algorithms from having bias towards 
non-biological factors such as orientation or location, we normalized each nucleus [10]. To normalize a 
nucleus we cropped the image to a minimum the bounding box relative to its contours, and found the 
angle or orientation. We then rotated each nucleus to be standardized at 0​o​ such that the nucleus is 
vertical along its major axis. Each crop of a nucleus was then padded with zeros uniformly to make them 
150x150 in size.  

Feature Extraction 
For each detected nucleus region we have calculated 15 major features. More specifically, 9 

features concerning the shape of the region and 6 textural features for the enclosed area. As some of our 
major features are a collection of features or transformed images, each pixel is defined as a feature, 
making a total of 91,093 features as shown in Table 2. However, the contribution of each feature is 
different in the categorization of the data.  
 
 
 
 
 
 
 

 



 

Table 2: ​This table shows a list of features analyzed. The left column contains features that are primarily 
used as shape descriptors. The right column contains features that are primarily used as texture 
descriptors. The number next to the feature represents the size of the feature. 

Shape Based Features Texture Based Features 

● Major Axis Length (1) 
● Minor Axis Length (1) 
● Ratio Between Axis (1) 
● Eccentricity (1) 
● Solidity (1) 
● Roundness (1)  
● Extent (1) 
● Histogram of Oriented Gradients 

(22500) 
● Hu Moments (7) 

● Zern-like Moments (24) 
● Haralick Texture (13) 
● Linear Binary Patterns (256)  
● Scale Invariant Feature Transform 

(768) 
● Laplacian of Gaussian (22500) 
● Gabor Wavelet (22500) 
● Cropped Image (22500) 

 

Shape features 
As the shape of a cell’s nucleus changes through the cell cycle and due to aggressive damage, we 

included 9 features to help describe the spatial rearrangements of chromatin. By using the major axis, 
minor axis and the ratio between them to define the size of the nuclei. The extent of a nuclei, or the ratio 
between the nuclei contour and minimum bounding box, serves as a supplement for a circularity 
descriptor. The roundness of nuclei [11], was chosen as it has been shown to be a structural feature to 
predict aggressive phenotypes. We test the eccentricity and solidity of nuclei, as they project the 
curvature and compactness of nuclei which also may be affected under strong phenotypes. Hu moments 
detect variations in scale, translation, rotation, and reflection. We chose this feature as a stabilizer to 
help the classifier test between similar nuclei. The use of Histogram of Oriented Gradients (HoG) allows 
us to obtain an approximation of the perimeter of the nuclei, as it is limited to large gradients and 8 
orientations. HoG does not only detect the perimeter of nuclei, it also detects the orientation and trends 
throughout the whole image, and it may double as a texture descriptor depending on the harshness of the 
fluorescent gradients of a nuclei. 

Textural features 
The texture analysis of the detected regions is based on the statistical properties of the intensity 

histogram in the red channel. This allows local binary patterns (LBP) of the pre-interpolated image to be 
analyzed for all 256 bins of the histogram. For each segmented nuclei we calculated 13 Haralick texture 
descriptors [12]. Those being, angular second moment, contrast, correlation, sum of squares variance, 
inverse difference moment, sum average, sum variance, sum entropy, entropy, difference variance, 

 



 

difference entropy, and measure of correlations 1 and 2. Additionally, to analyze the inside of the nuclei 
with spatial relevance, we used Laplacian of Gaussian (LoG). The second derivative of the image 
obtained through a LoG filter, shows harsh drops in intensities and gives us a clear image of the rates of 
change in the nuclei spactialy, most notably in the perimeter. The use of Gabor Wavelets [13] have been 
shown to be useful in improving classifiers. Lastly we use the unique feature identifiers, Zern-like 
Moments and SIFT, in hopes to provide a trend between the possible identifiers and DNA damage. For 
visual reference, the image based features are shown in Figure 5. 
 
 

 
Figure 5:​ This figure shows the original crop or red channel of a nuclei [far left] in comparison to the 
gabor wavelet [middle left], LoG [middle right], and HoG [far right]. Here you can see how different 
filters represent the same nuclei in different ways. 
 

Classification Methods 
Much of the success behind deep learning techniques for classification comes from their use of 

layering techniques to learn more complex features over time across these layers. However, a very 
common issue in this is “overfitting”, or constraining a model too specifically to the training data that it 
is unable to predict for data it hasn’t seen before (i.e. testing data). There comes a trade-off then, that if a 
network has too many layers, it tends to overfit too much to training data. In our project, overfitting was 
a real concern due to the extreme homogeneity of the training and testing data. There are techniques that 
aim to minimize this (regularization, etc.), however the issue can still persist, as depicted in Figure 6.  

 
 
 

 

 



 

 

 
Figure 6​: He et al.’s graph showing the dropoff of how more layers doesn’t provide higher accuracy. 
The 56-layer network ends up having more errors in training [left] and testing [right] [14, Fig. 1].  
 

He et al.’s research from 2015 showed that it’s possible to design neural networks that use a 
variable amount of layers depending upon the use case [14]. They designed the concept of a “residual 
block” visualized in Fig. 7 which resolves many issues involved with training deep-layered networks.  

 
Figure 7: ​Model of the residual block [14, Fig. 2]. 

 
The residual block is capable of circumventing many issues with training deep networks because 

of how it allows the convoluted output of the previous layer to be added to the next. Subsequently, the 
input ​x​ and transformation function ​F(x) ​[14, eq. (2)] can be modeled as shown in (2).  
 

(2)  
 

 



 

When implemented in convolutional networks, this allows for the output of the previous convolution to 
be passed along. Because of its implementation, this residual network was able to increase layer count 
while minimizing on error, as shown in Figure 8. Because of this residual block architecture, we are able 
to implement deep networks analyzing many features while reducing potential error due to the 
subsequent many hyperparameters.  
 

 
    ​Figure 8​: Thin curves denote training error, and bold curves denote validation error of the center 
crops. ResNets of 18 and 34 layers. [14, Fig. 4].  
 

To analyze the image based features we used ResNet, a Semi-Supervised Convolutional Neural 
Network (CNN). ResNet was chosen as it and other CNN based learning algorithms have shown to have 
a strong use case in single-label medical image classification [15]. We used ResNet in four instances 
(cropped nuclei, Hog image, LoG image, and Gabor wavelet image) to produce four probabilities of a 
given nucleus being damaged or undamaged based on the given feature. As the amount of nuclei that 
have been classified as damaged is much less than the amount classified as undamaged, we weighed the 
damaged class training instances 3x more than those unweighted. This prevents the classifier from 
classifying everything as undamaged. 

Another approach we used was random forest without imaged based features. Random forest is a 
classification algorithm consisting of many decision trees and uses feature randomness to build 
individual trees to try to create an uncorrelated forest of trees [16]. The random forest method utilizes 
bootstrap aggregation/bagging as an ensemble algorithm to randomly select data and create new training 
samples (bags) with which it feeds into the trees. After training, the random forest algorithm calculates 
predictions on all testing/unseen data ​ x’ ​by averaging all ​b ​predictions given by the individual trees as in 
equation (3). 

(3)  

 



 

 
This allows prediction by a series of trees which is more accurate than that of an individual tree. 

We used 100 estimators with max depth of 10 to prevent overfitting. To measure the purity of our input 
in the random forest we used Gini impurity (4) measure to analyze the degree in which a feature best 
quantifies DNA damage, and optimize the random forest accordingly.  The Gini impurity [of a set ​n​] is 
the probability of a randomly selected sample being classed incorrectly if that sample was labeled by the 
general distribution of samples inside that set. Equation 4 [16, eq. (1)] shows the Gini impurity of a set 
with ​J ​number classes on the percentage of each class ​p​i​, ​squared. 

 

 (4) 
 

Interpreting the Gini impurity leads to insights regarding data misclassification. With a Gini 
value of 0, we are confident that each set/bag is “pure” in that there is no misclassification happening. 
This has tradeoffs in interpretation as it could mean that our model is overfitting to the training data. We 
want to have a low Gini impurity as it helps us decide how many decision trees are needed in the 
random forest.  

As the amount of features is too high in comparison to the size of our dataset, we do not use the 
cropped nuclei, HoG, LoG, or Gabor Wavelets for Random Forest alone. Instead, we use an ensemble of 
ResNets to quantify each of these features to a likelihood. This reduces the size of each of these features 
to 1. As all of the features are reduced to a single description vector, we can then use mRMR to remove 
the redundant and irrelevant features from our feature space. The resulting features are then used for the 
final classification detailed in Figure 9. 
 
 
 
 
 
 

 



 

 
Figure 9​: This figure shows what features were used with what classification methods. The non-image 
based beatures that were selected from mRMR were used as a random forest. Whereas the image based 
features were used in ResNet and returned as four features dictating the probability of damage. These 
features were then analyzed through random forest again to produce a final classification. 

Assessment Protocols 
Measuring our segmentation performance, we made use of the Average Precision (AP) 

confidence measure [17]. From calculating the Jaccard Index between nuclei (5) we computed the 
precision (6) of a given frame then the average precision of all the frames within our segmentation 
dataset. This can be seen in pseudo code in Figure 10. 
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Pseudocode for Our implementation of AP: 
Input: ​Set of predicted and ground truth masks 
Output: ​Average Precision of an algorithm over a whole dataset. 
For each frame: 

For each nuclei in a frame 
Compute Precision where: 

TP = IOU ≥ 0.8 
FP = IOU < 0.8 

Precision = Precision from all nuclei. 
AP = Average Precision of all frames 
 

Figure 10​: This figure shows the pseudo code for AP. In our test we used a constant 0.8 
threshold to ensure that our resulting segmentation algorithm of choice, produced a high 
frequency of accurate segmentations. 
 

 
 
For the selection of the most discriminative features, a feature selection technique is employed 

which is based on the minimal-Redundancy–Maximum-Relevance (mRMR) criteria [18]. The mRMR 
criteria allows the features chosen to be ranked in a range beginning from the most powerful 
discriminative feature to the feature with the least discriminative power. This will allow us to determine 
the maximum relevancy (7) of a feature [18, eq. (4)]. As the Max-Relevance  can include redundant 
features, or features that rely on each other. Using Minimum Redundancy (8) we can select mutually 
exclusive features [18, eq. (5)]. By optimizing these two parameters simultaneously (9) we can obtain an 
optimal feature set [18, eq. (6)]. To rank the features, mRMR discretizes each feature into 3 positions, 
the mean value of the feature ± its standard deviation. This method does assume that our features follow 
a unimodal-like distribution. 

 
 

(7)  

(8)  

 



 

(9)  
 
To measure the rigidity and thoroughness of our classification techniques we used the k-fold 

cross validation [19]. Cross validation is a set of techniques used in machine learning to estimate its 
accuracy on new data. It is widely used in the field due to how it minimizes bias and variance. The 
dataset is split into ​k​ subsets  For our experiment we chose k = 10 as it is a standard metric. This 
technique was used to get a more accurate estimate of our classifier’s performance, as we want to 
prevent overfitting our classifier to the particular data being tested. Thus, shuffling the data amongst 10 
sets and training it separately would give a more realistic answer into the accuracy when applied to new 
data. The pseudocode for k-fold cross validation can be seen in Figure 11. 

 
 

Pseudocode for k-fold cross validation: 
Input:​ Shuffled ​Dataset with validation labels 
Output: ​Average test scores of an algorithm over a whole dataset. 
K =10 
For ki in K folds: 

Set fold Ki as test set 
Train model on remaining K-Ki  
Evaluate model performance on fold Ki 

Calculate average performance over K folds 
 

Figure 11​: Pseudocode for k-fold cross validation. Our dataset is shuffled and separated into k equal 
subsets. By using k-1 of those sets to train our classifiers, we then use the remaining part for testing. 
This is repeated k times using a different testing part each time. 

 
We took into account the average False Positive Rates (10), False Negative Rates (11), 

Specificity (12), Accuracy (13), Recall (14), Precision (6) and F1-score (15) of all k tests, to measure the 
classification algorithms’ performance [20]. Due to the greater amount of non damaged nuclei to 
damaged nuclei in our dataset we wanted to prevent the classifiers from just detecting them all as 
non-damaged. F1-score allows us to focus on the classifiers accuracy as it is the harmonic mean of 
precision and recall. When classifying a dataset of this nature, it is important to weigh false negatives 
highly as it is a greatly unwanted result due to false relations that may be drawn. However it is also 
possible, although unlikely, that the nuclei in the dataset was not was not provided enough GFP to 
indicate damage. False positives may be passable due to weak phenotypes that may not be visible to a 
human. As such we look at the averages of these metrics to rate our classifiers. 
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Results 

Using our nuclei detection pipeline, we generated a dataset of cropped nuclei. This dataset 
included 1036 nuclei, 285 of which were considered to have DNA damage, 751 of which were 
considered to have no DNA damage. These nuclei were cropped from non time dependent frames such 
between the 3 movie datasets, such that no nuclei is represented more than once. Although some nuclei 
are still cropped close together, or cut in half due to watershed, these crops were kept as part of our 
analysis, as we did not have a lot of data points in comparison to the number of features.  

From our tests using Resnet with each image based feature, it is important to note that although 
the use of a HOG did provide greater average F-Score, it is in no way the best metric. Our 
implementation of ResNet given the HoG feature tended to classify all nuclei as Healthy as it was the 
class with the most data points, despite us valuing damaged nuclei as 3 times more during training. 
Additionally, all the ResNet Classifiers are about 50% accurate as shown in Table 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 
 
 

 

Table 3:​ This table shows the F-score, accuracy, specificity, false negative rate, and false positive rates 
for all classifiers mentioned. Here true positive indicates that an undamaged nuclei was accurately 
predicted to not have damage. 

Classifier / 
Metric  

ResNet 
(Crop) 

ResNet 
(HOG) 

ResNet 
(LoG) 

ResNet 
(Gabor) 

Random 
Forest 

Ensemble 
 

Ensemble 
(+mRMR) 

F-Score 0.262 0.468 0.340 0.298 0.511 0.540 0.591 

Accuracy 0.596 0.330 0.527 0.509 0.727 0.740 0.759 

Specificity 0.775 0 0.643 0.574 0.871 0.876 0.861 

False 
Negative 
Rate 

0.658 0.670 0.683 0.688 0.377 0.347 0.349 

False 
Positive 
Rate 

0.753 0 0.624 0.608 0.558 0.530 0.452 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Classified as Damaged Classified as Undamaged 

  

Figure 12:​ This shows a sample of 288 instances of nuclei that have been classified by our ensemble + 
mRMR as damaged [left] and undamaged [right]. All images shown are of only the original red channel. 
The nuclei color shifted to green are instances that have foci, but not the foci themselves. Ideally the left 
image would be of only green nuclei and the right image would have red nuclei. Here you can see 
examples of nuclei that were wrongly classified by our classifier.  

Using an ensemble of Random Forest and ResNet, we were able to classify between the two 
classes with an average accuracy of 74% which is better than that of any feature alone. This is better 
visualized as shown in Figure 12. Expanding upon this, by removing unnecessary features (keeping the 
top 20) with mRMR we were able to reduce false positive rate by 8%. When constructing the Ensemble 
tree we looked at GINI purity features to show what features were most indicative of damage. In Table 
4, you can see that the Haralick textures and Gabor Wavelets produce high factors (in comparison to 
others) to distinguish between classes. Although it is important to know that these features are not the 
only ones as features importances are sensitive to biases and features that still correlate receive lower 
scores. 

 

 

 

 



 

 

Table 4:​ This figure shows the top 5 features for distinguishing between the classes based on their GINI 
scores, and the top 5 features deemed relevant by mRMR. In both cases Haralick features make a great 
showing providing evidence for its importance in detecting damage. 

GINI Feature Score mRMR Feature  Score 

Contrast 0.168 Sum Variance 0.585 

Diff. Variance 0.105 HoG 0.066 

Gabor Wavelet 0.081 Entropy 0.098 

Correlation 0.066 Sum of Squares: Variance 0.121 

Extent 0.046 Sum entropy 0.071 

 

To expand upon the feature’s distinguishability, we put the features through Primary Component 
Analysis as shown in Figure 13. To do this, all features were scaled between 0 and 1 to prevent variance 
maximization errors. We do not use this method for segmentation, we use it as a visualization of our 
results through the random forest ensemble. Through these figures you can see that the misinterpretation 
of the ground truth happens uniformly through the dataset, and that there is a slight distinction between 
the two classes. This leads us to believe that there may be other features to classify these nuclei more 
appropriately or our ensemble may have underfit our classification methods.  

 

 



 

 

Figure 13:​ This figure shows the relationships between 2 primary components. These two graphs 
show our dataset predicted as damage or undamaged. This method gives us a visualization of our 
features and how they segregate nuclei. The first graph shows our ensemble attempt at 
segregating the nuclei where positive is healthy (red) nuclei, negative is damaged (green) nuclei, 
false positives are blue and false negatives are yellow. The second graph shows only the ground 
truths for easy comparison. 

 

Discussion 

Initially we experimented with a Bayesian approach, and found that it was an unsuitable 
algorithm for our use case. Mostly due to how more often than not, it would mark a cell's nucleus as 
unhealthy, despite them being healthy. The reasoning for this ties back into how Naive Bayes is strong 
at detecting variations in one feature in datasets. The fact with our dataset is that each cell, more often 
than not, varies from others in more than one attribute. The Bayesian classifier, while promising strong 
extensibility, is simply unusable due to the varying nature of cells. 

We also attempted an unsupervised approach through the development of a Generative 
Adversarial Network (GAN). Although GAN proved to be an excellent use for image classification in 
bone marrow tests [21], our use case was too complex and resulted in negligible results. The approach is 
interesting because users don’t define what makes up each label- the neural network does. This would 
aid us in identifying some of the key features that separate healthy nuclei from damaged ones without 

 



 

the need of the green channel, while providing the service of the cell classification. This approach may 
be worth revisiting upon obtaining a larger resolution dataset.  

On the other hand, the semi-supervised learning approach through the CNN is leading promising 
results after being able to train on a relatively limited input dataset and differentiating the 2 classes well. 
The convolutional neural network structure was used as it was proven in Lundervold’s experiment in 
2018 [22] to be a strong classifier for damage in brain images via MRI analysis. The strength lies in the 
flexibility of the neural network architecture- the variable number of layers and the ReLu activation 
layers allows for a myriad number of input variations, and our dataset was one such example. 

By the nature of our dataset there are many features that can distinguish between nuclei. Beyond 
the shape and texture features used, we hoped to capture features such as the current stage in the cell 
cycle. Although the morphology may be used to determine a nucleus's state in the cell cycle, we have 
not explicitly added the state as a feature. By not explicitly identifying nuclei by cell state it is 
impossible to obtain metrics about the distribution of visible damage between states in our dataset. 

 

Future Work 

To improve upon our work, we could have used more accurate segmentation techniques, and 
implement stronger textural features [23,24]. Due to the extreme lack of homogeneity in nuclear 
morphology, more advanced processing power leads to enhanced segmentation and cropping features, 
which in turn makes training classifiers all the easier of a task. Enhanced optics also means that the 
texture of the nuclei can be examined at a much higher degree. The improved quality of texture could be 
used as another feature to classify damage. 

Furthermore, there is a possibility in improvements with the aid of 3-dimensional modeling [25]. 
These nuclei can be analyzed with more features and detail that will make the analysis much more 
definite. As deep learning becomes more prevalent in the medical community we hope that our insights 
derived through this paper can be interpreted for use across datasets of varying cell types so that 
chromosome damage and nuclear damage as a whole can be understood further.  

The impact of time on nuclear damage was observed in the dataset. Further analysis of the 
tracking of cells throughout time allows more detailed insights to be drawn regarding the deterioration 
of nuclear morphology with respect to the passing of time. This would allow partially time based 
segmentation techniques such as U-NET to be utilized [26,27].  

Beyond improvements in segmentation and feature selection there are many other points of 
interest to be extracted from our dataset. Instead of a binary (healthy/damaged) classification, future 
work should look towards obtaining a larger dataset to transform the labels into an interval scale based 
on the number of damage sites present. Recent work has shown success in separating Circulating Tumor 
Cells from healthy nuclei using SqueezeNet, obtaining a false positive rate of 3.270% [28]. Additionally, 
more features should be considered as, cell cycle stage or looking at the parent nuclei.  

 



 

Ultimately, developments in optics and machine learning lead to higher degrees of feature 
engineering. In a system so complex as biomedical imaging analysis, more resolution creates more 
pixels to be analyzed, and subsequently more features to be created and sought after. Enhanced ability to 
detect and monitor DNA damage response and repair will greatly facilitate the identification and 
characterization of important regulators of the process that may be altered in disease contexts such as 
cancer. 
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