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Abstract 

 

 The goal of this project was to determine remedial strategies for the former landfill in 

Holden, MA to reduce mobility and toxicity of metals. To meet this goal, 16 groundwater and 5 

surface water samples were collected at the landfill site. Physical and chemical water quality 

tests showed reducing conditions (favorable for arsenic dissolution) at 4 of the 16 groundwater 

wells. Samples were analyzed for arsenic, manganese, lead, iron, and cadmium. Dissolved 

arsenic was above drinking water standards at one well, but below groundwater standards in all 

wells. Most of the arsenic was in the particulate form. Remedial strategies to reduce mobility of 

arsenic were evaluated based on criteria such as cost and long-term effectiveness. The no 

action/monitor strategy is recommended for this site. 
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Executive Summary 

 

Groundwater and soil contamination is a common issue at current and former landfill 

sites. Contaminants such as arsenic, iron, manganese, lead, and cadmium can dissolve from soil 

and waste material into groundwater in a process known as leaching. The dissolution of these 

metals is based on the chemistry of the water and the soil. Factors that affect metal mobility 

include pH, dissolved oxygen (DO), oxidation-reduction potential (ORP), specific conductivity, 

temperature, and soil conditions (McLean et al., 1992). This contamination may be difficult and 

costly to clean up, but remedial strategies that reduce metal mobility and toxicity are available.  

 In the town of Holden, Massachusetts there is a former sanitary landfill, which is possibly 

causing metal contamination. The former Holden landfill (the landfill) was open from 1955 to 

1987 as a municipal landfill for the town of Holden. Between 1980 and 1981 it was noted that 

there was leaching from the landfill area. This was investigated by the United States 

Environmental Protection Agency (U.S. EPA) and detectible levels of contamination were found. 

Between 1980 and 1985, 38 groundwater wells were installed in order to monitor the site. An 

additional consideration at the landfill site is that the groundwater in the area discharges to the 

Quinapoxet River, a tributary to the Wachusett Reservoir, which serves as a water supply for 

greater Boston. In the fall of 2004, Corporate Environmental Advisors Inc. (CEA) began 

monitoring and working at the former Holden landfill site along with the Massachusetts 

Department of Environmental Protection (MassDEP) (CEA, 2011). CEA’s goals for the landfill 

site are to further understand the extent of impacts of the landfill as well as to assess the risks 

posed by the contaminants found at the site.  

 The Worcester Polytechnic Institute (WPI) chemical engineering major qualifying project 

(MQP) team assisted CEA in accomplishing their goals. The WPI team’s goals were to 

understand the metals and concentrations present at the landfill site and evaluate remedial 

strategies in order to determine the most feasible options for the landfill site.  

The WPI team participated in the fall 2011 sampling event and collected 16 groundwater 

samples and 5 surface water samples with the assistance of CEA. At the time of collection, water 

parameters were recorded including pH, ORP, DO, specific conductivity, and temperature. The 

unpreserved groundwater samples were taken to the WPI environmental laboratory and analyzed 

for turbidity, color, metal concentrations, and inorganic anion concentrations. The groundwater 

samples were tested for both dissolved and digested metal concentrations of arsenic, manganese, 

lead, iron, and cadmium using an atomic absorption spectrometer. Dissolved metal 

concentrations refer to the samples tested without the addition of an acid or preservative. 

Digested metal concentrations refer to the samples treated with 10 M nitric acid which dissolves 

particulates and provided a total metals concentration. The metal concentrations for the dissolved 

samples were compared to both U.S. EPA drinking water standards and to MassDEP 

Groundwater category-3 (GW-3) standards. The digested metal concentrations were not directly 

compared to these standards, because the samples were acidified.  In this study, arsenic was of 

greatest concern for both the dissolved and digested samples since it is the most toxic metal 

studied.  
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 For the dissolved samples, one groundwater well had arsenic at 45 parts per billion (ppb), 

which was above the drinking water standard of 10 ppb, but below the GW-3 standard of 900 

ppb. In the digested samples, total arsenic was below detection limits in eight samples.  In the 

remaining 13 samples, levels ranged from 7.049 to 1084 ppb. 

 A correlation analysis was conducted between all the physical parameters, metal 

concentrations and inorganic anion concentrations. There was a positive correlation between the 

depth to the bottom of the well and two parameters, pH and ORP.  A geographical analysis was 

also performed using an analysis of variance (ANOVA) by dividing the samples into three 

geographical regions: west of the landfill by the River, over the landfill, and east of the landfill. 

Bromide and ORP were significantly different by region.  

 Typical remedial strategies were evaluated for their effectiveness and applicability to the 

landfill site. The remedial strategies that were considered for this project included no 

action/monitor, recapping, filtration, solidification/stabilization/precipitation, interceptor drain, 

cut-off trench, permeable wall treatment, ion exchange, chemical treatments, and soil washing. 

Using the U.S. EPA guidelines for evaluating remedial strategies these strategies were ranked 

based on the criteria of cost, long term effectiveness, commercial availability, ability to reduce 

metal mobility, ability to reduce toxicity, and site specific implementation. It was determined 

that no action/monitor is the recommended remedial strategy for the landfill site. Recapping, 

filtration, interceptor drains, and ion exchange were recommended if higher concentrations are 

detected in the future or if a risk assessment concludes that a more aggressive remedial approach 

is warranted.  

 Prior to implementing any remedial strategies, it is recommended that the risks posed to 

human health and the environment by contamination attributable to the landfill be further 

assessed.  It is also recommended that an arsenic background evaluation be performed to 

determine the naturally occurring concentrations of arsenic.  Lastly, the specific type of arsenic 

compounds present should be determined in order to better characterize risks from metal 

contamination at the landfill. 
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Chapter 1: Introduction 

 

 Solid and hazardous waste can be disposed of in multiple ways, including recycling, 

composting, and landfilling.  Landfills are engineered areas in which solid waste is placed 

directly into an open area of land (U.S. EPA, 2012).  There are currently 3,091 active landfills in 

the U.S. and over 10,000 former municipal landfills (Zerowaste, 2012).  Landfills that were 

opened after 1950 are of particular concern due to the highly toxic chemicals that have been 

produced, and likely dumped in landfills, since the 1940s (Zerowaste, 2012).  Federal 

regulations, such as the 1984 Hazardous and Solid Waste Amendments to the Resource 

Conservation and Recovery Act, have improved landfills by monitoring their design, location, 

operation, and closing (U.S. EPA, 2011g).   

The former River Street Sanitary landfill in Holden, MA is located 1,100 feet south of the 

Quinapoxet River, which serves as a tributary to the Wachusett Reservoir.  The former Holden 

landfill operated between 1955 and 1987, receiving approximately 200 tons of solid waste per 

week.  Between 1955 and 1970, the waste was dumped on the southern side of the site and was 

burned.  The burning stopped after this time frame and solid waste was then dumped on the 

northern portion of the site until 1987 when the landfill was closed.  The United States 

Environmental Protection Agency (U.S. EPA) noticed leachate from the landfill entering the 

Quinapoxet River around 1981 during the construction of Route 190.  Further investigation was 

completed between 1980 and 1985 to determine the sources of contamination and potential 

impacts.  The landfill was closed in 1987 and then capped in 1988 (CEA, 2011).     

Corporate Environmental Advisors, Inc. (CEA) was hired by the town of Holden to 

investigate and monitor the former Holden landfill site.  CEA monitors groundwater around the 

landfill and in groundwater seep tributaries to the Quinapoxet River on a semi-annual basis.  

From past water quality results, three groundwater wells have consistently shown concentrations 

of arsenic higher than the groundwater standards set by the Massachusetts Department of 

Environmental Protection (MassDEP, 2011).    

In this project, WPI worked with CEA to evaluate the potential impacts from the former 

Holden landfill and to identify remediation alternatives.  This project focused specifically on 

understanding conditions that promote leaching of metals into groundwater.  The main objectives 

of this project were: 

1. To understand the metals and concentrations present at the site; and  

2. To evaluate remediation strategies to reduce metal mobility at the former Holden 

landfill site, thus reducing potential risk to humans and the environment. 

These recommendations were made considering various criteria, including the ability to 

effectively impede metal leaching, cost, and long-term applicability. By accomplishing these 

objectives, the team presented CEA with remedial alternatives deemed most feasible for the 

former Holden landfill site. 
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Chapter 2: Background 

 

Leaching of metals into groundwater from natural or anthropogenic sources has resulted 

in concentrations that exceed regulatory standards for drinking water.  This chapter describes the 

chemical and physical properties of five metals: arsenic, manganese, lead, iron, and cadmium.  

Also, this chapter explains natural and anthropogenic sources of these metals. The processes by 

which the metals leach into the groundwater are described, as well as conditions that affect 

mobilization. Lastly, this chapter presents a case study of a Massachusetts landfill to better 

understand the impacts metals contamination in groundwater can have on a community and 

potential remedial strategies. 

2.1 Regulations for Drinking Water and Groundwater 

The United States Environmental Protection Agency (U.S. EPA) ensures human and 

environmental safety through regulations, including those that protect drinking water.  The Safe 

Drinking Water Act (SDWA) sets enforceable limits on various contaminants that may be found 

in drinking water.  The National Primary Drinking Water Regulations (NPDWRs) establish 

maximum contaminant levels (MCLs) designed to be protective of public health.  The National 

Secondary Standards are secondary maximum contaminant levels (SMCLs) that provide 

guidelines based on aesthetics and are not enforceable (U.S. EPA, 2011d). Table 1 summarizes 

U.S. EPA drinking water standards for the five metals of concern in this project. 

Table 1: Contaminant Standards in Drinking Waters (U.S. EPA, 2011e) 

Metal Concentration 

Limit (ppb) 

Type of Limit 

Arsenic 10  MCL 

Manganese 50  Secondary standard 

Lead 15  Action level* 

Iron 300 Secondary standard 

Cadmium 5 MCL 

Notes: ppb = parts per billion (micrograms per liter or µg/L) 

*The action level is the point at which the water requires a treatment technique (TT) in order 

to reduce the amount of contamination.   

 

The Massachusetts Department of Environmental Protection (MassDEP) has defined 

groundwater standards in three categories.  The first category, GW-1, defines standards for 

groundwater that is currently, or will be used as a drinking water source in the near future.  The 

second category, GW-2, includes groundwater that has volatile materials that could potentially 

migrate into indoor air.  Lastly, GW-3 standards exist to monitor possible environmental impacts 

that contaminated groundwater could have if it was discharged to surface water (MassDEP, 

1994).  The third category, GW-3, are the standards of interest to this project and are included in 

Table 2. 
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Table 2: Groundwater 3 Concentration Standards (MassDEP, 2011) 

 

 

2.2 Metal Contamination in Water 

Metal contamination in water is a global issue that has affected millions of people. This 

section describes the chemical properties of five metals, including how they react with other 

elements, as well as the potential impacts each metal has on human health and the environment.  

2.2.1  Arsenic 

Arsenic (As) is a highly toxic, semi-metal element that is naturally occurring (Lenntech, 

2011a; U.S. EPA, 2011a).  Arsenic has an atomic number of 33, with eight possible isotopes.  It 

is most commonly found in its three allotropic forms, which are yellow, black, and grey.  The 

most stable form is a grey, crystalline solid that tarnishes quickly in air and is brittle (Lenntech, 

2011b).  Arsenic can readily combine with other elements, and inorganic arsenic compounds are 

formed when arsenic combines with elements such as oxygen, chloride, and sulfur (OSHA, 

2004).  The arsenic found in groundwater and drinking waters is inorganic arsenic, typically 

either trivalent arsenate (As (III)) or pentavalent arsenate (As (V)) (Lenntech, 2011c).    

When arsenic is in water, oxidation-reduction reactions, coagulation, and adsorption may 

occur.  Adsorption causes arsenic to precipitate with aluminum or iron hydroxides, causing 

sediments.  Arsenic most commonly reacts with moist air, and rarely reacts with dry air. For 

example, orpiment, an arsenic compound, reacts in water to form arsenious acid and hydrogen 

sulfide as shown in Reaction 1. 

 

                                          As2S3 + 6 H2O   2 H3AsO3 + 3 H2S       (Reaction 1) 

 

Arsenic in its elemental form does not have a high solubility, but arsenic compounds are more 

likely to be soluble and therefore arsenic exists in various water-based solutions (Lenntech, 

2011a). 

2.2.1.1 Health and Environmental Impacts 

Exposure to levels of arsenic higher than 10 ppb can result in chronic health effects, 

including cancer of the bladder, lung, skin, kidney, nasal passages, liver, and prostate.  This 

exposure can occur through skin contact and ingestion, but is most often through inhalation. 

Metal GW-3 Concentration Limit 

(ppb) 

Arsenic 900 

Manganese N/A 

Lead 10 

Iron N/A 

Cadmium 4 
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Non-life threatening effects include stomach pain, nausea, vomiting, diarrhea, partial paralysis, 

and blindness (U.S. EPA, 2011b).  Being exposed to high arsenic levels can also result in skin 

lesions and anemia.  The toxicity of compounds containing arsenic varies, with arsine gas being 

the most toxic, followed by inorganic arsenic, and then organic arsenic (Gehle, 2009). The lethal 

dose of inorganic arsenic is 100 parts per million (ppm), whereas the lethal dose of arsine gas is 

as low as 10 ppm (OriGen, 2000).   

2.2.1.2 Populations Affected 

Arsenic, stemming from both natural and anthropogenic sources, has been found in 

groundwater used as drinking water sources.  The World Health Organization estimates that over 

57 million people in Bangladesh alone drink water that is contaminated with arsenic (Sever, 

2011).  Natural arsenic contamination in well water has been discovered in over 19 countries, 

including the United States and Canada (Gehle, 2009).  

Figure 1 shows the arsenic concentrations in groundwater throughout the United States.   

Arsenic is found at the highest concentration (50 micrograms per liter, µg/L, also known as ppb) 

in areas of California, Oregon, Nevada, Texas and Alaska.  Concentrations around 10 µg/L are 

found throughout western states, the central states, and the northeast, as well as near geothermal 

activity.  These concentration levels were found in at least 25% of samples obtained at each site 

(Gehle, 2009).  

 

 
Figure 1: U.S. Geological Survey Map of Arsenic in Groundwater (Gehle, 2009) 

2.2.2  Manganese 

Manganese is a pinkish-gray chemically active element with an atomic number of 25 and 

7 known isotopes.  Johann Gahn discovered this hard, brittle metal in 1774.  Manganese is easily 

oxidized because it is highly reactive in its pure form.  For example, manganese powder will 
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burn in the presence of oxygen, will rust in water similar to iron, and will dissolve in dilute acids.  

Manganese is one of the most abundant metals that are naturally present in soils (Lenntech, 

2011g).  Within soils, manganese is typically present as oxides and hydroxides, which vary with 

oxidation-reduction reactions affected by the pH (Scheffer et al., 1989). 

Manganese has various useful applications.  Manganese is used in the formation of 

inexpensive stainless steel and can be used to decolorize glass.  More than 25 million tonnes of 

manganese are mined every year. Potassium permanganate is a strong oxidizing agent and 

disinfectant, and is used in drinking water treatment.  Lastly, manganese oxide is used in 

fertilizers, which ensures that plants receive the proper intake that they need to function 

(Lenntech, 2011g).   

2.2.2.1 Health and Environmental Impacts 

Manganese is necessary for human survival but toxic when consumed at high 

concentrations.  The secondary standard set by the U.S. EPA for aesthetics is 50 ppb.  

Manganese is most commonly consumed by eating spinach, grains and rice, eggs, green beans, 

nuts, and oysters. Manganese deficiency can lead to health issues, including obesity, glucose 

intolerance, low cholesterol, and blood clotting (Lenntech, 2011g).   

Excess manganese can result in adverse health effects.  These effects occur in the 

respiratory tract and in the brain, where symptoms include hallucinations, forgetfulness, nerve 

damage, bronchitis, schizophrenia, weak muscles, insomnia and manganism. Manganism is a 

disease that resembles Parkinson’s disease. Chronic poisoning has been observed with prolonged 

inhalation of manganese dust and fumes. Exposure can result in permanent disability (Lenntech, 

2011g).   

2.2.2.2 Populations Affected 

There is an increased risk of exposure to high manganese concentrations for workers in 

mines and factories if they are working around manganese dusts and fumes.  Manganese fumes 

are released from welding and this chronic exposure can result in neurological effects (U.S. 

EPA, 2011e).  

2.2.3  Lead 

Lead was discovered by humans thousands of years ago, however, it is impossible to say 

the exact date. It is the heaviest element in the carbon family on the periodic table of elements, 

although it does not share many chemical properties with carbon. Lead was used in the United 

States in pipes to carry water until 1930, which is believed to cause many harmful health effects 

(Chemistry Explained, 2011). 

Lead is a soft blue-white metal with an atomic number of 82. It is a dense, malleable and 

ductile metal. Lead does not conduct electricity well (Lenntech, 2011f). It is shiny when first cut, 

but it tarnishes over time. Lead dissolves quickly into hot acidic compounds. Lead dissolves 

slowly into water and acidic compounds. Lead does not burn nor does it react readily with 

oxygen (Chemistry Explained, 2011). 



 

 

6 

2.2.3.1 Health and Environmental Impacts 

Lead has many potential negative effects on human health. Although very low amounts 

of lead may not be harmful there are known benefits of ingesting any amount of lead. Lead can 

be either inhaled or ingested. Lead has been known to dissolve from lead solders into drinking 

water. Water can cause corrosion in pipes containing lead and this risk is increased by water that 

is slightly acidic. For this reason, the U.S. EPA guideline for pH in public water treatment 

systems is 6.5 to 8.5. Some of the harmful effects of lead ingestion or inhalation are anemia, high 

blood pressure, kidney damage, miscarriages, nervous system damage, brain damage, and 

behavioral and learning disruptions in children (Lenntech, 2011f). Symptoms of lead poisoning 

include nausea, vomiting, fatigue, and high blood pressure and in more extreme cases, brain 

damage.  These can be chronic or acute health effects (Chemistry Explained, 2011). 

2.2.3.2 Populations Affected 

Lead poisoning can affect anyone, but children are at much greater risk of lead poisoning 

than adults because their immune systems are weaker. Children also may put foreign objects in 

their mouths that may be coated with dirt or paint chips. Lead was used in paints until 1978. In 

1978, the United States government banned the use of lead based paint in homes. Many houses 

built before 1978 still have lead paint on the interior and exterior surfaces and children who 

ingest this paint may develop lead poisoning. Lead can also be transferred from the exterior of 

the house to the soil, and it is also possible for children to come in contact with or ingest this soil, 

and thus the lead it contains.  Lead can also accumulate in the body over time and symptoms 

may not present themselves until a later time. This is most common in factory workers where 

lead is used in some processes. This type of lead poisoning can also cause nerve or muscle 

damage (Chemistry Explained, 2011).  

2.2.4  Iron 

Iron is a silver grey metal with an atomic number of 26. Iron is primarily found as 

bivalent iron (II), known as ferrous, and trivalent iron (III), known as ferric. Bivalent and 

trivalent iron react differently and have different properties. In soils, iron is typically found in the 

trivalent form. When in a soil saturated with water, it is converted to the bivalent form and is 

capable of being absorbed by plants (Lenntech, 2011e). 

Iron reacts with water, air, and dilute acids. Iron will not dissolve in pure water or dry air. 

When both water and oxygen are present, iron oxidizes, precipitates out of solution and forms 

rust as shown in Reaction 2. 

 

                                                                      

 

Rust is a red-brown color precipitate. In the presence of dilute acids, iron will also 

dissolve. This contributes to water contamination because iron present in solution is more mobile 

(Lenntech, 2011e).    
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The four main types of iron are ferrous (clear water) iron, ferric (red water) iron, iron 

bacteria and organic iron. Ferrous iron is the iron most commonly found in drinking water from 

wells and aquifers. Water containing ferrous iron is clear; however, if it sits for a period time the 

ferrous iron will precipitate out of the solution due to the oxygen present. Ferric iron is insoluble 

in water and is noticeably a red brown color when exposed to the atmosphere. Iron bacteria 

naturally occur in soil and are also found in plumbing, where they form a slimy red-brown 

substance within the water. They are non-pathogenic and most commonly found under the toilet 

tank. Finally, organic iron combines with other natural occurring metals and forms large 

complexes. It is typically found in shallow drinking wells (Colter et al., 2006).  

2.2.4.1 Health and Environmental Impacts 

Humans can have negative health effects from ingesting too much or too little iron. If 

drinking water contains a concentration of 3 milligrams per liter (mg/L, also known as parts per 

million or ppm) or more, it will exhibit rust color, an odor and leave residue on clothes and food; 

however, this concentration is not harmful to health (Colter et al., 2006). Humans need a certain 

amount of iron in their diets. On a daily basis, women need 11 grams of iron and men need 7 

grams. When people do not ingest enough iron they are anemic. Anemia can cause tiredness, 

headaches and loss of concentration. If people ingest too much iron, it is stored in the pancreas, 

liver, spleen and heart. High concentrations of iron in these organs can cause major damage. 

Typically this only occurs when people ingest water with iron concentrations above 200 mg/L. 

Iron can cause toxic effects if more than 200 mg is ingested and becomes lethal at doses of 10-50 

grams. Also, inhaling iron dust may lead to lung disease (Lenntech, 2011e). 

2.2.4.2 Populations Affected 

There are few activities that increase the risk of exposure to high iron levels.  Populations 

around areas of mining have an increased risk.  The work from mining these areas can cause iron 

to enter the soil, potentially contaminating the ground water (Lenntech, 2011e).  

2.2.5  Cadmium 

Cadmium is a silver-white malleable metal with a molecular weight of 112.4 g/mol and 

atomic number of 48. Cadmium was discovered by Fredrich Stromeyer in 1817 and is similar to 

zinc and mercury.  Cadmium occurs naturally in the earth’s crust as well as being introduced to 

the environment in fertilizers and pesticides.  Cadmium is also part of most zinc compounds and 

is released into the environment during zinc processing. The main use of cadmium is in batteries. 

It is also used for coatings, plating, and in the production of plastics (Lenntech, 2011d).  

2.2.5.1 Health and Environmental Impacts 

Cadmium is a hazardous chemical.  Cadmium buildup in the kidneys hinders their 

filtration systems. This problem can persist because cadmium does not exit the kidneys very 

quickly and will begin to accumulate. This can ultimately lead to kidney failure. Other adverse 

health effects from cadmium include stomach pains and infertility, and cadmium is considered a 

carcinogen.  It can also harm the central nervous and immune systems as well as damage DNA.  
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Inhalation of cadmium can lead to severe damage of the lungs and even death (Lenntech, 2011d).  

Cadmium has to be ingested or inhaled to be harmful to humans. There are no health effects if 

cadmium is touched (Illinois Department of Public Health, 2011).   

2.2.5.2 Populations Affected 

Humans can be exposed to cadmium by food that contains large amounts of it such as 

liver, cocoa powder, and shellfish. People are typically exposed to cadmium when working in 

factories that refine cadmium or zinc and lead, for which cadmium is a byproduct. People who 

live near waste dumps for cadmium can also be at a high risk of exposure (Lenntech, 2011d).   

People who smoke cigarettes absorb more cadmium in their bodies.  The tobacco helps 

the cadmium travel into the lungs.  People who live in agricultural regions are likely to be 

exposed to high levels of cadmium because the land may have been fertilized with cadmium or 

the crops may have been sprayed with cadmium pesticides. The United States is one of the main 

producers of cadmium (Lenntech, 2011d).  

2.3  Metals in the Environment 

Anthropogenic (man-made) and natural sources of metals in the environment are 

discussed in this section. The metal with the most significant health effects that was explored in 

this project was arsenic. Therefore, sources of arsenic are discussed in depth in this section. The 

sources of other metals of interest including manganese, lead, iron, and cadmium are discussed 

as well. 

2.3.1  Natural Sources 

Metals occur naturally within the environment. They can be found in rock, soils, 

groundwater, surface water, and the air. This section focuses on the natural presence of arsenic in 

the environment. Arsenic is the most relevant metal to the project and other metals are discussed 

briefly.  

2.3.1.1 Arsenic 

There are three main types of arsenic in nature: airborne, inorganic, and organic. 

Different sources of arsenic produce different forms of arsenic. Airborne arsenic comes mostly 

from volcanic activity. Airborne arsenic can have detrimental health effects by polluting the air 

that people breathe, but it is unlikely to have an effect on drinking water. Organic arsenic can be 

found in living organisms. Inorganic arsenic compounds contain arsenic as well as other 

elements however they do not contain carbon. Inorganic arsenic typically originates from 

geological sources, such as bedrock, and leaches into ground water. Therefore inorganic arsenic 

is of greatest concern for drinking water (Greenfacts, 2011). 

Arsenic can be found in any type of bedrock. Bedrock is classified by the type of 

chemical compound it contains. Some chemicals found in bedrock react with arsenic and can 

mobilize it by allowing it to dissolve in water. The seven major types of bedrock include:  

1. Carbonate bearing metasedimetary rocks 
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2. Primarily noncalcareous, clastic deposition rocks with restricted deposition in discrete 

fault-bounded sedimentary basins of Mississippian or younger age 

3. Primarily noncalcareous, clastic sedimentary rocks at or above biotite grade of regional 

metamorphism 

4. Mafic igneous rocks and their metamorphic equivalents 

5. Ultramafic rocks 

6. Felsic igneous rocks and their metamorphic equivalents 

7. Unconsolidated and poorly consolidated sediment (Ayotte et al., 2011) 

 

In two studies done in New England, it was discovered that arsenic commonly occurs in 

calcareous (containing calcium carbonate) metasedimentary rocks. According to a study by 

Nielsen et al. (2001), arsenic was detected in calcareous metasedimentary rocks at a 49% 

frequency, while in all other types of bedrock aquifer it was detected less than 25% of the time. 

In a similar study in New England, arsenic at levels of 5,000 ppb or greater was detected in 44% 

of the wells in the lithogeochemical group of metasedimentary bedrock that contained slightly to 

moderately calcareous and calc-silicate rocks (Ayotte et al., 2011). Twenty eight percent (28%) 

of the other lithogeochemical groups contained arsenic at those levels. Inorganic arsenic 

compounds can be found in many different geological sources, but areas where ground waters 

are surrounded by calcareous metasedimentary rocks are at greater risk because the geochemistry 

is better for arsenic leaching. 

2.3.1.2 Other Metals 

Manganese is commonly found in the form of pyrolusite (MnO2) and also, although less 

often, as rhodochrosite (MnCO3). It is one of the most abundant metals found in soil (Lenntech, 

2011g). Lead can be found naturally in the environment, but pure lead from natural sources is 

very rare. Zinc, silver and copper ores which contain lead are found much more commonly in the 

environment than pure lead. Most lead is extracted along with these metals. Lead containing 

minerals are mined frequently to produce new lead. Some of these minerals include galena (the 

most abundant lead mineral, chemical formula PbS), cerrussite and anglesite (Lenntech, 2011f). 

Iron makes up 34.6% of the earth’s mass making it the most abundant element on earth and 

therefore iron occurs naturally all over the world. About 5% of the earth’s outer crust is iron. 

Iron is usually found in the form of iron oxides. Some common iron containing minerals are 

hematite, magnetite, and taconite (Lenntech, 2011e). Cadmium occurs naturally in the earth’s 

crust. Cadmium is always found along with zinc. Cadmium is also contained in rocks and can be 

released into rivers through weathering of rocks. 
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2.3.2  Anthropogenic Sources 

Metals that are found naturally in the environment can also be released into the 

environment by humans, often in higher concentrations than they occur in nature. Metals can be 

released into the environment via burning of fuels, use of pesticides, disposal practices, and as by 

products or waste products from chemical processes, such as metal processing. 

2.3.2.1 Arsenic 

Arsenic and other metals have been introduced into the environment from anthropogenic 

sources.  These sources include past and current production and use of pesticides and wood 

preservatives.  Sources also include metals from mining, such as copper, poultry farming, and 

sewage sludge disposal (ATSDR, 2007).  Figure 2 shows the three major producers of arsenic 

over the last hundred (Peryea, 2004). 

 

 
Figure 2: Top Three Producers of Arsenic in U.S. (Welch et al., 2000) 

 

Pesticides are substances used to remove and help prevent pests.  Pests include insects, 

bacteria, rodents, weeds and fungi.  Arsenic based substances, such as arsenic sulfides, have been 

used as insecticides since as early as A.D. 900 in China.  The first arsenic-based pesticide used in 

the United States was copper acetoarsenite pigment, also known as Paris green. Paris green was 

used to repel the potato beetle in Colorado in the mid-nineteenth century (Peryea, 2004).   

The most commonly used arsenical insecticide was lead arsenate.  Lead arsenate was 

used to kill gypsy moths which are common agricultural pests.  It was first used in Massachusetts 

in 1892 and was found to be more effective than Paris green because it adhered to plants longer 

and better repelled the gypsy moths.  In the 1910s, calcium arsenate and aluminum arsenate were 

introduced as less expensive alternatives to lead arsenate salts.  However, lead arsenate was still 

the most effective insecticide. In 1919, it was discovered that food cleaning methods were not 

removing arsenic and therefore an alternative to lead arsenate was needed (Peryea, 2004).   

In 1948, dichlorodiphenyltrichloroethane (DDT) was developed. Lead arsenate was still 

used sparingly; however, it was less effective than DDT because most of the moths developed 
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immunity to lead arsenate.  In August of 1988, lead arsenate was banned from use in the United 

States.  Even though this arsenical pesticide was banned, other less frequently used pesticides 

containing arsenic are still used sparingly today, including cacodylic acid, ammoniacal cooper 

zinc arsenate (ACZA), and monosodium or disodium methanearsonate (MSMA, DSMA). Figure 

3 demonstrates the limited use of cacodylic acid in 2002 (Welch et al., 2000).  

After the ban on lead arsenate in 1988, the major function of arsenic was wood 

preservation. Chromated copper arsenate (CCA) was the main chemical used for wood treatment 

until it was banned in the U.S. in 1996 (Vaajasaari, 2008). Arsenic is also used in the form of 

arsanilic acid in animal feed to control pathogens.  This contributes to high levels of arsenic in 

fields and agricultural areas that use animal manure as fertilizer.  Since pigs and chickens do not 

metabolize arsenic, most of it is deposited in their feces.  The amount of arsenic generated by 

animal waste has not been documented extensively (Welch et al., 2000).   

 

 
Figure 3: Map of Use of Cacodylic Acid Pesticide in U.S. (USGS, 2002) 

 

Agricultural soils throughout the United States that have been exposed to arsenicals for 

over 20-40 years have been found to have arsenic concentrations exceeding 100 mg/kg which is 

80 mg/kg higher than the MassDEP risk characterization standards (Nelson et al., 2007).  

Locations that have not been exposed to anthropogenic sources of arsenic will have low 

concentrations of arsenic within the magnitude of 10 mg/kg or less. Contaminated areas can be 
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problematic for development and clean-up especially since arsenic will settle deep into the soil 

(Welch et al., 2000).  

2.3.2.2 Other Metals 

Manganese, lead, iron and cadmium are introduced into the environment from various 

anthropogenic sources. Manganese is commonly found in fertilizers and fungicides as well as 

released when steel and iron products are manufactured (Herbal Life Product, 2011). The most 

common sources of anthropogenic lead are from gasoline automobile exhaust and lead based 

paint. The volatilized lead can pollute the air as well as the ground via polluted rainfall 

(Lenntech, 2011f). Iron is used in steel processing, pesticides and herbicides (Suwandana et al., 

2011). Cadmium is typically found with zinc which causes it to be released during zinc 

extraction. Cadmium is also released during manufacturing of pesticides (Lenntech, 2011d).  

2.3.3  Determining Sources of Arsenic 

According to a study conducted to determine whether or not arsenic in a certain area is 

naturally occurring or due to a release from an anthropogenic source, three conditions must be 

demonstrated at the site.  The three conditions that must be demonstrated to confirm that the 

presence of arsenic in the groundwater is naturally occurring are: No past or present 

anthropogenic sources of arsenic are present at the site; the soil and/or bedrock at the site contain 

arsenic-bearing minerals or weathering products; and the geochemical parameters in the aquifer 

are favorable for dissolution of arsenic-bearing minerals and mobilization of arsenic into 

groundwater (Nelson et al., 2007).  

2.4  Metal Leaching Process 

The dissolution of metals into ground waters is affected by soil and water conditions. The 

primary conditions that affect metal solubility are: pH, oxidation/reduction potential, 

anion/cation exchange, and precipitation and dissolution of metals. Once dissolved in water, 

metals can be taken up by plants or migrate with the water. Mobile metals have potential to cause 

contamination issues (McLean et al., 1992).  

Oxidation/reduction (redox) reactions are chemical reactions in which valence electrons 

are transferred between two molecules or ions. The metal that gains electrons is reduced and the 

metal that loses electrons is oxidized. Redox reactions affect the mobility of metals in the 

subsurface which is dictated by the redox potential of the subsurface. An absence of oxygen in 

the subsurface, when metals are gaining electrons, indicates reducing conditions. An excess of 

oxygen in the subsurface, when metals are losing electrons, indicates oxidizing conditions. In 

general, oxidizing subsurface conditions favor the retention of metals in soil and reducing 

conditions increase the mobility of metals (McLean et al., 1992).   

The oxidation state of metals impact whether the metals are solid or soluble. For 

example, Fe (II) is highly soluble while Fe (III) adsorbs to the soil, causing it to precipitate as a 

solid. Depending on the conditions of the subsurface, Fe can be mobile or stationary. This is also 

the case for chromium. Hexavalent chromium [Cr (VI)] is highly toxic and soluble; however, 

http://scialert.net/asci/author.php?author=Endan&last=Suwandana
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trivalent chromium [Cr (III)] is insoluble and less toxic. The mobility of metals in soil and water 

is also dictated by the oxygen availability of the subsurface (McLean et al., 1992).  

The pH of the subsurface affects the mobility of the metals by affecting the 

sorption/desorption of metals, precipitation/dissolution, complex formation and 

oxidation/reduction reactions that take place in the subsurface. In general, pH conditions above 7 

promote retention of cations in soil and pH conditions less than 7 promote retention of anions 

(McLean et al., 1992).  In an experiment conducted to evaluate the effect of fly ash on the 

subsurface, it was observed that at pH conditions below 9 the soil cation exchange capacity was 

reduced and the mobility of Cd and Ni was increased (Chirenje, 1999).  Also observed in this 

experiment was that in a low subsurface pH, the calcium concentration was increased. The low 

pH allowed CaCO3, which is typically a precipitate, to dissolve. As a consequence of this the 

concentrations of Cd, Ni, Se, and As increased because they adsorbed to CaCO3 (Chirenje, 

1999). As these metals dissolve in water their mobility is significantly increased. From this 

experiment and other generalizations made by the U.S. EPA, it can be concluded that soils with 

low pH conditions favor metal leaching (Chirenje, 1999).  

 The pH of the subsurface also affects adsorption sites.  As the pH decreases, the number 

of negative sites for cation adsorption diminishes and the number of sites for anion adsorption 

increases (McLean et al., 1992). At a decreased pH, metal cations also compete for available 

adsorption sites with Al
+3

 and H
+
. Certain solid compounds such as Fe and Mn hydrous oxides 

allow metals to adsorb to soil. When these hydrous oxides dissolve into the water it greatly 

decreases the ability of metals to adsorb to soil and remain in solid forms. These hydrous oxides 

dissolve at a pH below 6 and therefore metal leaching is increased at low pH (McLean et al., 

1992).  

Metals are present in soil in various forms, including uncomplexed metal ions, soluble 

complexes with ligands, and mobile inorganic and organic colloidal species.  A complex is a 

unit, in which various atoms or molecules are bonded to a centralized metal ion, forming a 

geometric pattern.  The atoms or molecules attached to the metal ion are called ligands.  

Complexes can be formed with both inorganic and organic ligands, although it is more common 

that metal ions combine with inorganic ligands.  Complexes can exist with an overall positive, 

negative, or neutral charge, but the metal ion itself will have a lower oxidation state than the free 

metal. The characteristics of a complex can affect mobility, bioavailability, and toxicity of the 

metal.  Metals that easily form stable complexes are likely to be mobile in the subsurface, 

whereas metals that do not easily form stable complexes could result in metal retention (McLean 

et al., 1992).    

 Many types of surface complexes form between metals and soil.  The subsurface must be 

balanced by ions with an opposite charge as the overall complex.  Figure 4 depicts two common 

mechanisms in which cations form complexes known as outer-sphere and inner-sphere, where 

outer-sphere is comprised of weaker bonds than the inner-sphere complex. An outer-sphere 

complex occurs when the metal is surrounded by water and the metal itself is not directly bonded 

to the surface.  These reactions happen rapidly and are reversible with little dependence on the 
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electron configuration.  An inner-sphere complex occurs when the metal bonds to the surface, 

either with ionic or covalent bonding.  Water does not need to be present for this complex to 

form and there is a higher bonding energy associated with this complex.  Together, these 

complexes form a matrix within the soil (McLean et al., 1992).     

Anion and cation exchanges contribute to the way metals behave in soils and water.  The 

ion exchange capacity measures the amount of oppositely charged sites available for adsorption.  

The order and preference of the sorption affinity is dependent on metal properties, surface type, 

and the physical conditions.  Cations with strong bonding capabilities tend to have a higher 

relative affinity and a higher adsorption capacity.  Certain anions precipitate more readily than 

other anions in clay minerals, oxides, and organic matter.  Cations are adsorbed on to specific 

adsorption sites.  Once sites are saturated, they are governed by exchange reactions.  The 

competition for these sites is increased and causes an increased mobility of the cations present, as 

they compete for the site.  Certain adsorption sites favor trace cations and anions because their 

properties are a better match for the soil than major cations and anions (McLean et al., 1992).    

 

 
Figure 4: Cation Adsorption Mechanisms (McLean et al., 1992) 

 

Metals within the subsurface solution can be removed from solution through various 

mass transfer mechanisms.  This movement is particularly important to consider for metals such 

as arsenic and mercury.  Metals also can participate in precipitation reactions, where they form 

solid phases within the soils.  The precipitates of metals in soil can be pure solids or mixed 

solids, which occur from co-precipitation.  Precipitation reactions are most common with metals 

of low solubility.  This allows insoluble complexes to precipitate out of the soil without 

dissolving into groundwater.  Inorganic anions commonly form insoluble complexes, which is an 

advantage to immobilize metals.  Solid solution formation tends to occur when the trace element 

is compatible with that of the host metal.  For example, cadmium and calcium are similar in their 

ionic radii, so cadmium can replace calcium within a carbonate mineral.  Adsorption is not 

affected by these precipitation reactions, but the precipitates can cause an increase in metal 

concentration and are especially important in waste systems.  Thermodynamic data can be used 

to predict precipitation reactions for metals under given conditions (McLean et al., 1992).  
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2.4.1  Mechanisms of Groundwater Transport 

Groundwater flow patterns can be studied to understand the path of water flow 

underground.  These flow patterns can provide important information when predicting the path 

of contaminants in groundwater.  Additionally, flow patterns can help to determine where 

groundwater enters a drinking water supply source or breaks through the surface.   

As described in section 2.4, contaminants can leach into groundwater.  Contaminants can 

travel through an aquifer in three ways: advection, dispersion, and diffusion.  Advection refers to 

when contaminants flow in the groundwater.  Dispersion flow is defined as when a “contaminant 

at the edges of the mass are deflected away from the mass by particles that obstruct their flow” 

(Stockton College, 2012).  Diffusion is when particles spread from areas of high concentration to 

low concentration through random motion. An example of this in groundwater is when there is 

little to no groundwater flow and the contaminants slowly leach into the soil (Stockton College, 

2012).   Groundwater flow patterns in combination with fate and transport models can be used to 

best predict the path of contaminants.   

2.4.2  Exposure Pathway Evaluation of Contamination 

There are five main elements of an exposure pathway that assist in identifying the type 

and degree of human exposure from a given contaminated source.  The first element is the source 

that can release contaminants into various media.  For example, a drum or landfill can release 

contaminants into the soil or water.  The second element is the fate and transport of the 

contaminant once it has been released into the environment.  Each contaminant will move 

differently through various media.  The third element is known as the exposure point or area.  

This refers to the specific location(s) in which human or environmental receptors may be 

exposed to the contaminated media.  The fourth element is the exposure route which is also 

known as the means of contact at the exposure point.  For example, ingestion and inhalation are 

types of exposure routes.  The last element of an exposure pathway is the population that is 

potentially exposed to the contaminant (ATSDR, 2005). 

In order to best evaluate the exposure at a specific site, conceptual models are commonly 

used.  These models help answer important questions including where the contaminant travels 

and where the location of greatest risk to receptors is.  These models help identify the key 

elements, beginning with the source of contamination and identifying affected media, safety 

hazards, and points of exposure.  Overall, these methods help to better predict the potential harm 

that could be caused at the given site (ATSDR, 2005).   

2.5  Remedial Strategies for Metal Leaching 

Various remedial strategies are outlined in this section to understand common techniques 

used in preventing and treating metal contamination in groundwater.  A general description of 

and important considerations for each remedial strategy are discussed.     

2.5.1  Capping 

 Capping involves containment, but not removal, of metals contaminated material.  

Capping is used to stop further interaction between contaminants and surrounding water sources.  
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The cap acts as a physical barrier to restrict contact with contaminated material, to reduce water 

infiltration through the contaminated material, and to reduce infiltration into the underlying 

groundwater.  It is also used to control gas and odor emissions and create a solid surface so the 

site may be used for other purposes.  Caps do not lower toxicity or remove the contaminants 

from the site and require periodic inspection and maintenance.  According to a study done by the 

Department of Toxic Substance Control (DTSC) in California, of 188 metal contamination sites 

evaluated, capping/containment was the most used remedial strategy between 2001 and 2007.  

Out of those sites analyzed, 60% considered capping, and 16% implemented capping (Burger, 

2008).  Caps can be single layered or multilayered and can be made of various materials and at 

differing thicknesses depending on the mobility of the contaminant, climate, and future use of the 

property.  Types of caps are: soil, evapotranspiration (ET), asphalt/concrete, low permeability 

clay or soil, and geosynthetic/composite (Burger, 2008). 

2.5.2  Filtration 

Filtration is a precursory or concluding treatment used to remove contaminants from 

water (Caniylmaz, 2003). In filtration, water is passed through a porous permeable membrane or 

filter. Suspended particles are too big to pass through the pores while the water flows freely 

through the filter (Tech Brief, 2011). The effectiveness of filtration often depends on the pore 

size (Caniylmaz, 2003). 

Sediment filters have large pore sizes, generally around 20 microns, but can be larger or 

smaller (AchaWater, 2011). They are effective at removing suspended matter, but usually 

ineffective at removing dissolved organic or inorganic materials (Dvorak, 2008). Sediment filters 

can be used as a pretreatment process to remove large particles that could be damaging to or 

cause fouling of other processes such as ion exchange resins, which are explained in section 

2.5.7 (Caniylmaz, 2003). 

 Membrane filtration is often pressure-driven, meaning that the driving force for the 

process is the pressure difference across the membrane. Four general classes of pressure-driven 

membranes are: microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse 

osmosis (RO). These membranes are classified based on their pore sizes. Of these four, 

microfiltration has the largest pore sizes, ranging from 0.1 to 10 micrometers. Microfiltration is 

often used in water treatment processes because of its high recovery rate and low energy 

requirements compared to other membranes (Caniylmaz, 2003). 

2.5.3  Solidification/Stabilization/Precipitation 

Solidification/Stabilization/Precipitation (S/S/P) involves mixing a chemical agent into 

the soil or water to react with the contaminant metal.  This reaction causes the metal to 

precipitate in a solid matrix, decreasing its mobility. A variety of binders, such as lead arsenate, 

can be used to immobilize metals.  This technique is not effective with metals when they are in 

their anion or organic form.   

This technique can be done in situ or ex situ.  If done ex situ, the soil must be excavated 

and the chemical agent added at a facility.  The precipitate can then be removed and the soil can 
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be returned to its point of origin.  If done in situ, the chemical reagent is added directly into the 

soil on site.  However, this can be more expensive because the precipitate needs to be excavated 

and disposed of properly because S/S/P does not lower toxicity levels of the metals. A typical 

large scale S/S/P process can treat between 500 to 1,000 tons of contaminated soil per day 

(Evanko et al., 1997).   

2.5.4  Interceptor Drain 

An interceptor drain consists of a gravel trench on top of relatively impermeable soil and 

is typically placed on a slight slope.  This method is commonly used for groundwater collection 

where ground stability is an issue, such as an area where landslides occur often. Once water 

enters the gravel trench, it is carried via perforated pipe to a discharge point. The water that 

enters the trench is contaminated.  Since the contaminated water now flows through the trench, 

the effect of any contaminants on the soil is limited.   The water flows to a discharge or 

collection point where the water then must be removed to a safe area.  When the water is present 

in the trench, other remedial strategies can be employed to reduce contamination (Washington 

State Department of Ecology, 2011a).   

When constructing an interceptor drain, it is important to consider the slope.  If the trench 

is too flat, the water will not flow easily and could clog the trench.  Location is also an important 

factor to avoid introduction of undesired water, such as wastewater, into the drain.  This is a 

good option when the land of interest is already located above a relatively impermeable soil layer 

(Washington State Department of Ecology, 2011a).  These factors show that this option is a poor 

choice in areas with unstable slopes or on a low bank but good for areas on a bank.  Also, it is 

moderately low cost and its installation and maintenance require the use of heavy equipment.  

These disadvantages and advantages of an interceptor drain are depicted in Figure 5. 

 

 

Figure 5: Advantages and Disadvantages of an Interceptor Drain  

(Washington State Department of Ecology, 2011a) 
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2.5.5  Cut-off Trench 

Cut-off trenches are used to prevent water seepage into soils.  These trenches have been 

used during the implementation of dams or man-made ponds.  Trenches are cut along the 

centerline of the dam until the trench extends past an impervious material, such as rock, shale, or 

heavy clay.  Then, the trench is filled with heavy clay and compact soil.  Cut-off trenches reduce 

the leakage of contaminated water into soil by the slurry wall, described below.  If deep 

excavation is required, a track hoe or other heavy machinery is required, and therefore work-

space is an important consideration (Gentry, 2005).   

A major component of cut-off trench is the slurry wall within, which is created by 

applying slurry to the trench.  Slurry is an engineered fluid that is created in a colloidal mixer 

before being pumped into the trench.  This fluid exerts a hydraulic pressure toward the trench 

walls, preventing a collapse. The most common slurry used is bentonite slurry, which is a 

combination of bentonite clay and water.  A solid, or a “cake,” is formed by the slurry, which 

limits the permeability of the layer.  The layer of slurry reduces the leaching potential, which 

reduces contamination, because the contaminants become caught in the slurry trench and cannot 

leach into the groundwater.  The compatibility between the slurry and contaminants is an 

important consideration (EarthTech, 2011).  If the slurry and chemical are not compatible, then 

the slurry may not be able to maintain its form under the presence of chemicals that may ruin or 

deteriorate the material.  This could reduce the thickness of the wall, which would reduce the 

effectiveness of the slurry wall.  

2.5.6  Permeable Treatment Wall 

A permeable treatment wall is a remedial strategy that removes contaminants by 

degrading, transforming, precipitating or adsorbing target solutes as the groundwater flows 

through the wall. Permeable treatment walls are also known as permeable reactive curtains. To 

install a permeable treatment wall, a trench is typically dug and backfilled with the chosen 

material for the treatment wall (U.S. Navy, 2011). An advantage of permeable treatment walls is 

that no pumping or above ground treatment is needed. 

Zero valent iron and limestone treatment walls are most common.  Zero valent iron 

permeable treatment walls are typically used to treat systems that have high concentrations of 

chromium. Low oxidation chemical species serve as electron donors when they come in contact 

with the treatment wall.  

Limestone treatment walls are used to treat systems that are contaminated by lead and 

acid. Lead and acid are typically a result of battery contamination in landfills. The limestone wall 

neutralizes the acidic ground water and limits the mobility of metals. If there are anaerobic 

conditions or high concentrations of iron or aluminum, the effectiveness of the treatment wall 

could decrease (Evanko et al., 1997). Limestone permeable treatment walls can operate up to 30 

years with the proper maintenance (U.S. Navy, 2011). 
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2.5.7  Ion Exchange 

Ion exchange is a remedial approach in which contaminated water runs through a resin 

containing exchange ions. The exchange ions replace the contaminant ions in the water and the 

contaminant ions are then transferred to the resin. The resin must be periodically regenerated to 

maintain its efficiency. Both the spent resin and regeneration water must be further treated and 

disposed of properly (Siemens, 2011). 

 Ion exchange technology is used commonly as an arsenic removal method. Ion exchange 

can remove up to 95% of the arsenic in water (Caniylmaz, 2003). Filtration is commonly 

performed before ion exchange to remove suspended contaminants such as solids and organics to 

prevent fouling and damage of the resin (Siemens, 2011). 

2.5.8  Chemical Treatments 

Chemical treatments are used to detoxify, precipitate or solubilize metals in groundwater 

and soil, by adding chemicals to the contaminated area.  These treatments should be chosen 

carefully since introducing a new chemical may increase the overall toxicity of the area and 

could potentially have adverse effects if the wrong chemicals are chosen. Chemical treatments 

are chosen based on soil and groundwater conditions including other metals present and pH.   

Three types of reactions that occur during chemical treatments include oxidation, 

reduction and neutralization. Each of these reactions can affect the oxidation state of metal 

atoms, which dictates if the metal is present in solution or as a precipitate. Oxidation reactions 

change the oxidation state of the metal atom through the loss of electrons. Commercial examples 

of oxidizing reagents include potassium permanganate, hydrogen peroxide, hypochlorite, and 

chlorine gas. Chemical treatments can be used to oxidize arsenic, from the more toxic form, 

arsenic (III), to the less toxic form, arsenic (V). If arsenic is present in the water it can be treated 

by chemical oxidation to be precipitated out of solution. Arsenic is more likely to precipitate in 

the presence of Fe (III). Therefore a chemical agent with Fe (III) could be applied to the area 

(Evanko et al., 1997). Reduction reactions change the oxidation state of metal atoms by adding 

electrons. Commercial examples of reducing agents are alkali metals (Na, K, etc.), sulfur 

dioxide, sulfite salts and ferrous sulfate. Neutralization reactions adjust the soil and groundwater 

pH to be closer to a neutral pH of 7. Typically neutralization is used to precipitate metals from 

groundwater.  

Groundwater containing high concentrations of arsenic usually also contains relatively 

high levels of iron and manganese.  The groundwater chemistry may affect the valence state of 

Fe and Mn which in turn affects the mobility of As. When Fe and Mn are dissolved under 

reducing conditions, the arsenic in the water becomes mobilized. Conversely Fe and Mn 

hydroxides can immobilize arsenic. Arsenic can often be removed as a byproduct of Fe or Mn 

oxidation filtration because the chemicals used to oxidize Fe and Mn can also oxidize some As 

(III). For example, oxidizing any soluble Fe (IV) and As (III) allows for the removal of As (V) 

by iron hydroxides through adsorption/co-precipitation. The As (V) is usually in the form of 

arsenate, binds to the iron and may be removed. Oxidation of Mn has also been shown to work in 

some cases. The Mn oxidation removal method can be used for widely varying pH without 
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affecting the efficacy. Some common oxidizing agents are potassium permanganate (KMnO4), 

chlorine dioxide (ClO2), and ozone (O3) (Caniylmaz, 2003). 

A more likely scenario in which arsenic is removed by oxidation is one where more 

arsenic is present than Fe and Mn. In this situation, the oxidation of As (III) becomes important. 

It is much easier to remove arsenate (AsO4
3-

) from water than arsenite (AsO3
3-

). As (V) exists 

primarily in anionic molecules such as H2AsO4
-
 or HAsO4

2-
. As (III), however, is usually found 

in neutral form, which makes it more difficult for arsenite compounds to adsorb to mineral 

sources. Therefore, arsenic is often oxidized to convert As (III), which is found in arsenite 

compounds, to As (V), which is present in arsenate compounds, and make it easier to remove. 

This can be done simply by aeration, the addition of oxygen, or by stronger oxidizing reagents 

such as potassium permanganate, chlorine, hypochlorite, ozone or hydrogen peroxide 

(Caniylmaz, 2003). Two example of the oxidation of As (III) using permanganate are shown in 

Reactions 3 and 4. 

 

           
                              (Reaction 3) 

 

           
                                  (Reaction 4) 

 

Reaction 3 works under acidic conditions and Reaction 4 works under basic conditions. Mn (VII) 

works well to oxidize As (III) regardless of pH which is why potassium permanganate is so 

commonly used for this application (Na et al., 2007). 

2.5.9  Soil Washing 

Soil washing is a technique that could use physical separation, chemical treatment, or 

both to remove metal contaminants from soil.  First the soil is excavated and screened to remove 

large particles which can be placed back at the site.  Then the soil is screened a second time to 

separate the remaining particles by size.  The chemical reagent is then added to the soil to 

dissolve the metal into water.  The water is then removed with the dissolved contaminant.  Many 

reagents affect the pH of the soil and the oxidation state of metals.  The clean soil is then placed 

back at the site.  Soil washing is inexpensive but only moderately lowers the toxicity and 

mobility of the metals (Evanko et al., 1997).  Since the soil needs to be completely excavated for 

this technique, it may not be advantageous for large sites.  

2.6  Landfill Case Study in Clinton, MA 

The South Meadow Road landfill in Clinton, Massachusetts was opened in 1974 after 

approval from the MassDEP and remained open for thirteen years until it was closed in 1987.  

The landfill was capped in 1990 and was closed completely with the approval of a capping 

certificate by the MassDEP in 1995.  In 2003, an inspection of the landfill was conducted and a 

metal leachate was observed discharging down gradient into the South Meadow Pond.  The 

MassDEP issued a Notice of Noncompliance (NON) at this time.  The town of Clinton was 
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responsible for replacing the cap or integrating a better remediation method for containing the 

contaminants in this landfill (Regan, 2009).   

In March 2007, an Initial Site Assessment (ISA) and a Comprehensive Site Assessment 

(CSA) were conducted.  These assessments included collecting and evaluating groundwater, 

surface soil, sediment, and landfill gas samples, for contaminants and potential health risks 

associated with these contaminants.  The contaminants of concern found in this landfill were 

arsenic, iron, acetone, and iron flocculent (floc).  Arsenic was above the drinking water standards 

in groundwater and also was found in residential wells down gradient from the landfill (Regan, 

2009). 

A Corrective Action Alternatives Analysis (CAAA) was submitted in 2006 to evaluate 

several remedial strategies based on U.S. EPA regulations, metal mobility and toxicity, 

feasibility of incorporation, and cost.  The remedial strategies considered for the groundwater 

were: 

1. No further action; 

2. Containment; 

3. Vertical extraction wells between Clinton and Massachusetts Water Resource 

Authority (MWRA)  landfills and ex-situ treatment and discharge to South Meadow 

Brook; 

4. Collection via trenches and ex-situ treatment and discharge to South Meadow Brook; 

and 

5. Vertical extraction wells between MWRA landfill and South Meadow Pond and ex-

situ treatment and discharge to South Meadow Brook. 

 

Before any remedial actions were implemented, bench scale testing was recommended for each 

of these strategies to evaluate their effectiveness (Regan, 2009).  

In order to address the groundwater quality problems in South Meadow Pond, the Board 

of Selectmen voted unanimously to pursue passive remedial alternatives (Dickhaut, 2011). 

Examples of passive remedial measures are reconstructing the area around the landfill so that 

rainwater runoff is diverted away from the landfill, ensuring the landfill is safely capped and is 

sufficiently impermeable, and closing the area to all vehicles including ATVs (Welsh, 2011). 

 The town of Clinton hired the engineering company Brown and Caldwell in Andover, 

MA to assess issues at the South Meadow Pond.  For the purpose of collecting data for the 

passive remedial alternatives, Brown and Caldwell submitted a proposed scope of work. A 

topographic survey was scheduled for September 2011 to create a topographic map of the current 

site, the South Meadow Road landfill and the surrounding areas. This map can be used to decide 

where the land needs to be restructured to meet the required slopes to divert rain water (Podsen, 

2011a). 

 The next phase of this project was to drill and collect soil/groundwater samples in 

October 2011. It was proposed that up to ten borings be taken to acquire representative samples 

of all soil types. The initial borings will be used as an investigation as to whether or not to drill 
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more. The drillings are designed to work as representative samples to determine the depth of 

pollution from the landfill as well as the permeability of the cap and the characteristic 

groundwater chemistry below the landfill (Podsen, 2011a).  

Finally, in early November of 2011 a visual/bathymetric survey was scheduled to be 

conducted on South Meadow Pond in order to gain a better understanding of both the surface and 

under the surface water portions of the site (Podsen, 2011a).  The data will be used to create a 

map of the pond to evaluate potential dredging of iron flocculation.  The drilling activities for 

this survey began on December 12, 2011 (Podsen, 2011b).  From this event, Brown and Caldwell 

determined that the landfill cover is more than 4.5 feet thick with trash filling approximately 5 to 

14 feet above the water table at all drilling locations (Podsen, 2012).  The results of this 

Comprehensive Site Assessment survey will be analyzed and reported to the town of Clinton, 

and a meeting with the MassDEP will likely take place shortly thereafter to discuss the proposed 

passive remedial approaches (Podsen, 2011a).  

2.7  Objectives of Project: Landfill Case Study in Holden, MA 

The goals of this project were to develop a better understanding of conditions that 

promote leaching of metals into groundwater and to identify and evaluate remedial alternatives 

for the former River Street Sanitary Landfill site in Holden, MA, which will henceforth be 

referred to as “the landfill.”  The landfill, which closed in 1987, is in the post-closure monitoring 

phase.  In November 2008, sediment samples near the main seep at the Quinapoxet River 

revealed high concentrations of arsenic, barium, iron, lead, and manganese.  Corporate 

Environmental Advisors, Inc. is assisting the town of Holden with additional assessment 

activities to further evaluate the impacts and risks of the discharge from the landfill to the 

Quinapoxet River.  In order to assist CEA in identifying remediation alternatives for the Holden 

landfill site, the following objectives were completed:   

 

1. Understand the metals and concentrations present at the former Holden landfill site; and 

2. Evaluate remediation strategies to reduce metal mobility at the former Holden landfill 

site, thus reducing potential risk to humans and the environment. 

 

This project aimed to recommend remediation strategies considering various criteria, 

including the ability to effectively impede metal leaching, cost, and long-term applicability.  By 

accomplishing these objectives, CEA was presented with options to make an informed decision 

about the appropriate remediation strategy for the former Holden landfill site.  
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Chapter 3: Methodology for the Holden Case Study 

 

 This project assessed metal leaching at the former River Street Sanitary Landfill in 

Holden, MA.  Groundwater and surface water samples were collected from the landfill and the 

surrounding area.  The samples were analyzed for physical and chemical properties that affect 

metal leaching, such as pH and oxidation-reduction potential (ORP), as well as for metal 

concentrations.  Results were analyzed to determine trends and correlations between parameters 

in order to identify strategies to reduce leaching.  

3.1  Sample Collection 

Sampling was conducted with CEA on October 20 - 21, 2011 at the landfill.  The landfill 

occupies 17 acres and is located 300 feet from interstate Route 190. The Quinapoxet River is 

located approximately 1,100 feet north of the landfill.  This river is a tributary of the Wachusett 

Reservoir, which serves as part of the source water for drinking water in Boston and the 

surrounding communities, and is used for recreational fishing.  A map of the landfill area is 

shown in Figure 6.    

A total of 21 water samples were collected in accordance with Standard Method 1060 

(APHA et al., 1995). Groundwater samples were collected from 16 groundwater wells on and 

around the landfill site.  These groundwater wells had water depths ranging from 4.48 to 46.77 

feet, which are reported in the results.  Five seep water and surface water samples were collected; 

three samples from the Quinapoxet River and two seep water samples from leachate seepage 

areas. The sampling locations are noted on Figure 6.  

Thirteen of the 16 groundwater samples were collected as follows. First, the groundwater 

well was uncapped and tubing that was in the well was removed. The water depth of the well 

was determined with a Solinst interface probe model 122 water level indicator (Solinst, 

Georgetown, Ontario, Canada). New quarter-inch polyethylene tubing (Nycoil, Randleman, NC) 

was cut and connected to a peristaltic pump while the other end of the tubing was placed in the 

well.  The peristaltic pump (Pegasis Pump Company, Bradenton, FL) was connected to a YSI 

5083 flow cell (YSI, Yellow Springs, OH).  The flow cell allowed the water sample to 

continuously flow from the well through a tube into a cell.  A YSI meter was submerged 

completely in this cell in order to complete field measurements as described in section 3.2. The 

sample in the cell was not exposed to the atmosphere.  After the field measurements were 

completed, the tubing was redirected from the flow cell to a 250 mL plastic collection bottle 

labeled with the sampling information. The bottle was filled to the top and then capped.  

For three wells, HDOW 9A-C, a check ball valve was used to generate enough pressure 

to pump the water upwards through dedicated tubing in order to collect samples.  These samples 

were pumped directly into collection bottles.  Since the YSI meter did not fit in the 250 mL 

bottles, an intermediate one liter bottle was used to obtain field measurements. These samples 

were exposed to the atmosphere for approximately one minute prior to obtaining the 

measurements.
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Figure 6: Map of Former Holden Landfill (CEA, 2011) 
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Five seepage and surface water samples were collected.  One seepage sample was 

collected using one method, and the remaining four samples were collected with a different 

method.  The collection of the leachate at the breakout sample was similar to collection of 

groundwater samples, using a peristaltic pump placed directly into the surface water and using a 

flow cell. For the three river samples and Route 190 Seep water sample, the YSI meter was 

placed directly in the surface water for field measurements. A 250 mL plastic container was 

placed directly in the river or Route 190 Seep water to collect each sample.  The river samples 

were collected beginning downstream and continued upstream, which helps minimize the 

disruption of water quality of samples (Town of Plymouth, 2006). 

After each sample was collected, field measurements were completed with methods 

described in section 3.2.  Each container with the sample was then placed in a cooler with 

icepacks and transported to the WPI laboratory for additional analysis, as described in section 

3.3.  

3.2  Field Testing 

 As mentioned in section 3.1, field measurements were conducted at the time of sample 

collection.  A YSI 650MDS Multi-Probe Field Meter (YSI, Denver, CO) was used to measure 

pH, oxidation-reduction potential (ORP), dissolved oxygen (DO), specific conductivity, and 

temperature after the reading was stabilized.  For 13 of the 16 groundwater samples, a flow cell 

was used to ensure accurate readings.  For 3 of the 16 groundwater samples, the samples were 

exposed to air for approximately one minute prior to measurement.  It is likely that pH, specific 

conductivity, and temperature were not significantly affected by this sampling technique.  

However, exposure to oxygen in the air may have altered both the DO and ORP readings.  Table 

3 provides a summary of the parameters tested and the associated methods from Standard 

Methods (APHA et al., 1995).  

Table 3: Field Testing Parameters and Methods 

Parameter Method Standard Method Number 

pH Electrochemical Method 

 

4500 - H
+
 B 

ORP Oxidation-Reduction Potential 

Measurement in Clean Water 

2580 B 

DO Membrane Electrode Method 4500-O G 

Specific conductivity Conductivity Cell 2510 B 

Temperature Field Thermometer 2550 B 

3.3  Laboratory Testing 

Water samples were transported to the laboratory for further analysis of chemical and 

physical properties that affect the mobility of metals. The parameters tested in the laboratory 

included metal concentrations, inorganic anion concentrations, turbidity, and color.  The methods 

and holding times are shown in Table 4.  As shown in the table, the actual holding times for 
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metal and inorganic anion concentrations were less than the acceptable holding time.  However, 

the actual holding time for turbidity and color was longer than the acceptable time.  Turbidity 

measurements have a short holding time of two days in order to limit the effect microbial 

decomposition would have on the result (APHA et al., 1995).  Microbes are not typically found 

in groundwater at significant amounts, and therefore, a longer holding time likely did not affect 

the turbidity measurements (American Ground Water Trust, 2008).  The color was not recorded 

until after an acceptable holding time, however, it is not believed to have affected the results.  All 

samples were stored at 4°C prior to analysis.  Additional background information on the 

sampling techniques and specific laboratory tests can be found in the Appendix A.  

Table 4: Laboratory Testing Parameters and Methods 

Parameter Method Standard Method Number Holding Times 

(days) 

Allowed Used 

Turbidity Nephelometric method 2130 2 42 

Color Visual method 2120 2 26 

Metal 

Concentrations 

AA furnace or  

AA flame 

3110 

Individual Metals- 3500 

180  28 

Inorganic anion 

concentrations 

Ion chromatography 

anions 

4110 B 42 28 

 

Quality assurance and quality control measures were taken for metal concentrations, 

inorganic anion concentrations, and turbidity.  First, blank samples were used as standards or 

quality control checks.  For metals, calibration curves included standards listed in Table 5.  For 

anions, one standard for each anion was used to create a calibration peak (see section 3.3.2).  For 

turbidity, no blank samples were used.  The instrument had been calibrated three weeks prior to 

measurements.  Duplicate samples were tested and average results were reported.  The AA 

instrument automatically measured each sample twice and reported each value along with the 

mean.  The ion chromatograph only measured each sample once.  Five random samples, of the 

twenty-one samples, were tested twice.  Since these samples showed precise measurements 

between the two tests, the instrument was determined to provide precise results, and therefore 

duplicate measurements were not completed on all samples. 

3.3.1  Metal Concentrations 

The concentrations of five metals (arsenic, manganese, lead, iron, and cadmium) were 

determined using an AAnalyst 300 atomic absorption spectrometer (Perkin Elmer, U.S.). The 

samples were analyzed in two ways: as dissolved samples and as digested (total) samples.  The 

dissolved samples represent the concentrations of metals present in the aqueous phase, as 

received. The digested samples were prepared to show the total concentration of metals present 

in the aqueous and particulate phases.  For dissolved samples, each sample was shaken for 5 

seconds.  Then, the sample was passed through a Millex (Millipore, Billerica, MA) syringe 
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driven filter (0.45 micron) into a 50 mL centrifuge tube.  The syringe used was 20 mL (BD, 

Franklin Lakes, NJ).  Samples were then stored at 4°C until the samples were ready to be tested.  

To create the digested samples, 50 mL of each sample was mixed with 5 mL of 10 M nitric acid.  

Samples were placed on a hot plate at 175°F for 24 hours to reduce the volume to 25 mL.  Then, 

reagent-grade water (ThermoScientific, Marietta, OH) was added to increase the volume to 50 

mL each.  These samples were then passed through a Whatman #4 filter paper (Whatman, 

Piscataway, NJ) to fill 20 mL tubes.   

 Standard solutions for arsenic, cadmium, manganese, lead, and iron were made from 

standard stock solutions.  These stock solutions were purchased at concentrations of 1000 g/mL 

from UltraScientific, SCP Science, or Perkin Elmer.  To make a standard solution, a specific 

volume of the stock solution was placed in a volumetric flask and then filled to mark with 

reagent-grade water.  For example, to prepare a 1 ppm standard solution of iron, 50 L of the 

1000 g/mL iron stock solution was placed in a 50 mL volumetric flask and filled with reagent-

grade water.  The standards used are summarized below in Table 5. 

Table 5: Standards Used for Each Metal for AA 

Metal Dissolved Standards Digested Standards 

Arsenic 5, 10, 20 ppb 5, 10, 20, 50 ppb 

Manganese 0.1, 0.2, 0.5, 1, 3, 5, 20 ppm 0.1, 0.2, 0.5, 1, 3, 5, 20 ppm 

Lead 5, 10, 20 ppb 5, 10, 20 ppb 

Iron 0.2, 0.5, 1, 3, 5 ppm 0.2, 0.5, 1, 3, 5, 20 ppm 

Cadmium 5, 10, 20 ppb 5, 10, 20 ppb 

 

 An HGA 850 Furnace (HGA, Germany) was used to quantify concentrations of arsenic, 

cadmium, and lead.  Two milliliters of each of the dissolved samples was put into AA sampling 

vials using a pipette. A calibration blank, standards, and the 21 sample vials were placed in the 

AA furnace sample holder.   A NIST (National Institute Standard Technologies) sample was also 

placed in the holder. A lamp was chosen depending on which metal was being analyzed. The 

furnace AA is automatic, where the needle placed itself in a cleaning solution and placed itself in 

and gathered a matrix modifier and then the sample.  After collecting the sample, the needle went 

into the furnace.  The instrument ran every sample twice through the furnace.  Each of these 

results was reported along with the mean concentration detected. The procedure was repeated for 

the digested samples.  

 Flame AA was used to measure manganese and iron in order to avoid contamination of 

the furnace.  Running the AA with the flame eliminates the possibility of contamination because 

there is no graphite that could absorb the metal, as with the furnace.  Iron easily contaminates the 

furnace and could provide inaccurate concentration results if samples were analyzed by the 

furnace.  First the flame was turned on.  A small tube that was connected to the flame was then 

placed into the centrifuge tube, where it collected the sample.  The sample was then passed 

through the flame, allowing the instrument to measure the metal concentrations burnt in the 
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process.  A detailed description of flame AA can be found in the Appendix A. The procedure for 

flame AA was repeated for each of the dissolved and digested samples.  

3.3.2  Inorganic Anion Concentrations 

 Dissolved samples were analyzed on a Dionex 2100 RFIC ion chromatograph (Dionex, 

Sunnyvale, CA).  The instrument column operated at 30C.   The eluent generator utilized 38 

mM potassium hydroxide and the suppressor ran at 113 mA.  Prior to running any samples, the 

instrument ran with blank samples and then various standards.  The standards were 20 ppm for 

fluoride, 200 ppm for phosphate, and 100 ppm for bromide, chloride, nitrite, nitrate, and sulfate.  

Digested samples were not analyzed for ion chromatography because the acid could damage the 

instrument.  Samples were taken from the previously prepared dissolved bottles and placed in 5 

mL cuvettes using a pipette.  These cuvettes were placed in the ion chromatograph and the 

instrument ran the measurements, where it analyzed the samples for inorganic anions, including 

fluoride, chlorine, sulfate, bromide, nitrate, and phosphate.  

3.3.3  Turbidity 

Samples were analyzed for turbidity using a HACH 2100N Turbidimeter (Hach, 

Loveland, CO).  Samples were analyzed as received from sampling.  The first sample was placed 

in a vial, capped, and gently inverted two times for consistency.  The outside of the 30 mL vial 

was wiped clean with a kimwipe.  The vial was placed in the turbidimeter, where the result in 

NTU was displayed.  This process was repeated for each sample.  In between each sample, the 

30 mL turbidity vial was rinsed with reagent-grade water. 

3.3.4  Color 

The color of each sample was recorded.  This process was a visual method where general 

color of the aqueous phase sample was indicated, as well as the presence of any sample in the 

particulate phase.  The color for digested samples was also noted. 

3.4  Data Analysis 

The data collected while sampling was analyzed by several different methods. The data 

were analyzed geographically using maps, and analytically using Microsoft Excel.  Remedial 

strategies were also evaluated to determine the most appropriate alternatives. 

3.4.1  Geographical Analysis 

The parameters obtained through testing were analyzed visually using a map of the 

landfill area. These parameters collected from the 21 locations were divided into smaller ranges 

and each range was assigned a color. The colors were then used to mark geographically which 

wells fell into each range. This visual representation of data was designed to determine if there 

were any noticeable geographical trends, for example, if a certain cluster of wells contained high 

total lead, or if the pH was low along a line between two portions of the map. 
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3.4.2  Statistical Analysis 

 A statistical analysis was conducted on the data to show if there was any statistically 

significant correlations or variance between the data obtained in both the field and laboratory.  A 

correlation analysis was done between all of the parameters, metal concentrations, and ions.  The 

wells were then divided into three geographical regions and an analysis of variance (ANOVA) 

was conducted between these regions for all of the parameters, metal concentrations, and ions.  A 

correlation analysis was also conducted between the metal concentrations obtained by CEA and 

the team’s digested metal concentration results.   

3.4.3  Evaluation of Remedial Strategies 

 In order to determine which remedial strategies are most appropriate to accomplish the 

specified goals, an evaluation was completed according to “The Feasibility Study: Detailed 

Analysis of Remedial Action Alternatives,” a U.S. EPA document that details the method of 

determining appropriate remedial alternatives (U.S. EPA, 1990).  Figure 7 shows general 

guidelines to develop remedial action alternatives.  This method includes understanding results 

of the site of interest and analyzing a list of alternatives to treat the site, as well as developing a 

feasibility study for each recommended action.  Each remedial strategy was researched and 

described in section 2.5.  Each remedial alternative was ranked based on six criteria: cost, long-

term effectiveness, commercial availability, ability to reduce mobility of metals, ability to reduce 

toxicity, and site specific implementation.  Rankings ranged from 1 to 5, where a value of 1 

represented a weak candidate for that criteria and a 5 represented it was the best candidate in that 

criterion.  After each remedial strategy was ranked for each criterion, the criteria were weighted 

according to the importance of that criterion in determining appropriate remedial strategies.  The 

rankings were added for each remedial strategy, giving a total number out of a possible 35.  

These totals were then used to determine recommendations for the site. 
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Figure 7: Guidelines for Evaluation of Remedial Alternatives (U.S. EPA, 1990) 
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Chapter 4: Results and Discussion 

 

 The purpose of this project was to understand the metals and concentrations present at the 

former River Street Sanitary Landfill in Holden, MA, and to evaluate remediation strategies to 

reduce metal mobility, thus reducing potential risk to humans and the environment at this site.   

In order to accomplish these goals, 16 groundwater and 5 surface water samples were collected 

at the site.  This chapter presents site observations and sampling results, as well as geographical 

and statistical analyses of the data.  Then, remedial alternatives were compared to criteria, such 

as cost and long-term effectiveness, in order to determine feasible remedial strategies for the 

landfill site.     

4.1 Site Observations 

 The former River Street Sanitary Landfill in Holden, MA was studied for this project. 

The landfill covers an area of approximately 17 acres. The top of the capped landfill was 

relatively flat and was vegetated with grass, when the team sampled on October 20-21, 2011. 

This area appeared to be regularly maintained and was marked off for model airplane runways. 

This area is used as a runway and flight area by the Quinapoxet Model Flying Club as a 

MassDEP approved post-closure use.  The area directly surrounding the landfill is wooded.  

Field sampling was conducted at the landfill using previously installed groundwater 

wells. The groundwater wells were located on the capped landfill and in the surrounding area. 

Samples were also collected from three points in the Quinapoxet River: upstream of the landfill, 

downstream of the landfill, and around the main seep mixing area.  The main seep mixing area is 

the area where water from the main leachate seep mixes with the waters of the Quinapoxet River.  

The downstream location is located under Interstate I-190 at the bottom of a rocky embankment.  

The landfill is located on River Street in Holden, Massachusetts. The nearest residents on 

River Street are located greater than 500 feet from the landfill and do not have access to 

municipal water because there is no available public potable water distribution in this area. These 

residences have private wells.  However, there are no private wells within 500 feet of the landfill 

(MassDEP, 2012).  

4.2  Sampling Results 

This section presents the physical observations and analytical results for the 21 water 

samples collected at the landfill. In Table 6, the physical properties of the samples are presented 

including the depth to water table in the well, depth to bottom of well, and color. It is pertinent to 

know the depth to groundwater in the wells in order to evaluate if the depth of the water is 

correlated to metal leaching. The statistical analysis of this is presented in section 4.4. The results 

show that the samples were collected from wells with various water depths ranging from 4.48 to 

46.77 feet, as well as from surface waters.  The three samples from the river were slightly 

cloudy.  One sample, HDOW 13, was black, and most others were light brown or orange in 

color.   
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Table 6: Physical Properties of Wells and Color of Samples 

Well ID Well vs. 

Surface 

Sample 

Depth to 

Water in 

Well (ft) 

Depth to 

Bottom of 

Well (ft) 

Color 

SEA 1 Well 11.86 17.15 Orange and brown particles 

SEA 2 Well 10.01 27.09 Slightly cloudy 

SEA 2A Well 4.48 14.15 Clear 

SEA 6 Well 18.94 46.00 Slightly cloudy with some 

particles 

SEA 6A Well 18.95 26.64 Bright orange with particles 

QR1 Surface N/A N/A Slightly cloudy 

QR2 Surface N/A N/A Slightly cloudy 

QR3 Surface N/A N/A Slightly cloudy 

190 Seep Surface N/A N/A Clear 

Leachate at the 

breakout 

Surface N/A N/A Light brown with particles 

HDOW 5 Well 29.81 0 Light brown with few particles 

HDOW 6 Well 10.04 0 Clear 

HDOW 7A Well 9.66 51.08 Cloudy with particles 

HDOW 7B Well 9.56 0 Light brown with particles 

HDOW 8 Well 19.03 47.06 Brown with particles 

HDOW 9A Well 46.77 84.4 Light brown with foam top 

HDOW 9B Well 43.66 74.65 Bright orange with particles 

HDOW 9C Well 43.76 55.58 Bright orange with particles 

HDOW 12 Well 7.53 31.70 Yellow 

HDOW 13 Well 5.47 13.13 Black 

HDOW 14 Well 4.51 32.50 Light brown 

 

Physical and chemical water quality measurements included temperature, specific 

conductivity, DO, pH, ORP, and turbidity, which are shown in Table 7. These parameters are 

significant in order to understand the factors that may contribute to metal leaching in 

groundwater. These parameters can affect the solubility of the metals in the water and indicate 

how many particles are present within the samples that were collected.  

 The temperature of the samples ranged from 10.4 to 13.9°C.  Thus, all temperatures were 

within a 4°C range.  The specific conductivity ranged from 0.019 to 1.80 mS/cm, with only two 

samples having a result higher than 1 mS/cm. In a study of a former refinery in Carson City, MI, 

total dissolved solids and specific conductivity were analyzed.  It was shown that eight 

uncontaminated groundwater samples had an average specific conductivity value of 0.576 

mS/cm at an average depth of 8.7 feet (Atekwana et al., 2003). This shows that the specific 
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conductivity values obtained at the landfill site are typical of uncontaminated groundwater 

values.  

Table 7: Physical and Chemical Properties of Water Samples 

Well ID 
Temp 

(°C) 

Specific 

Conductivity 

(mS/cm) 

DO (mg/L) pH ORP (mV) 
Turbidity 

(NTU) 

SEA 1 11.57 1.799 0.70 6.65 -118.6 119 

SEA 2 10.98 0.311 1.52 6.73 -65.0 159 

SEA 2A 12.42 0.303 1.50 6.15 -43.6 41.6 

SEA 6 12.96 0.069 1.27 6.60 -47.7 356 

SEA 6A 13.86 0.428 1.85 6.47 -57.2 1032 

QR1 12.51 0.105 10.21 7.74 34.8 2.64 

QR2 12.44 0.107 10.79 8.07 37.3 1.86 

QR3 12.36 0.129 10.63 7.56 53.5 2.14 

190 Seep 11.97 0.826 7.60 6.92 75.1 0.153 

Leachate at 

the Breakout 12.21 0.376 3.02 6.68 55.7 49.6 

HDOW 5 11.47 0.831 1.08 6.67 10.3 163 

HDOW 6 12.09 0.019 2.71 6.94 1.3 33.5 

HDOW 7A 13.81 0.049 2.74 7.26 -7.4 19.3 

HDOW 7B 13.90 0.031 0.78 6.83 -22.4 20.4 

HDOW 8 10.98 0.167 0.83 6.86 -54.7 198 

HDOW 9A 11.40 1.508 3.82 8.15 -12.8 215 

HDOW 9B 11.46 0.423 7.89 8.30 10.0 505 

HDOW 9C 12.45 0.308 8.79 7.19 63.1 385 

HDOW 12 10.39 0.136 0.70 6.89 -56.5 56.4 

HDOW 13  11.37 0.384 0.38 6.98 -42.9 627 

HDOW 14 11.72 0.403 0.53 6.48 -43.4 91 

 

The DO of the landfill water samples ranged from 0.7 to 10.8 mg/L, with the highest 

values being the surface water samples QR1, QR2, and QR3.  The remaining surface water 

samples (190 seep and leachate at the breakout) were also elevated compared to most of the 

groundwater samples.  The DO for wells HDOW 9A, 9B, and 9C were higher than most well 

samples.  The collection method used for these three wells, described in section 3.2, allowed 

samples to be exposed to the oxygen in the atmosphere prior to measurement, making them 

inaccurate.  The range of DO for landfill groundwater well samples only (excluding HDOW 9A, 

9B, and 9C) was 0.38 - 2.74 mg/L.  This is consistent with typical groundwater DO levels, which 

range from 0.11 - 2.99 mg/L (Center for Earth and Environmental Sciences, 2012).  The pH of 

all samples collected at the Holden site was within the range of 6.15 to 8.30, which is relatively 
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neutral.  The ORP (oxidation-reduction potential) of the landfill samples ranged from -120 mV 

to 80 mV, with the surface samples having the highest (most positive) results, with the exception 

of HDOW 9C.  This is consistent with typical groundwater ORP values, ranging from -400 mV 

to 600 mV (Nielson, 2006).  The turbidity ranged from 0 to 1032 NTU, with the highest sample 

collected from well SEA 6A. All samples with higher values of turbidity showed discoloration. 

 As mentioned in section 3.3.1, samples were tested for metal concentrations both as 

dissolved and digested samples. The dissolved samples represent the concentrations of metals 

present in the aqueous phase, as received. The digested samples were prepared to show the total 

concentration of metals present in the aqueous and particulate phases.  These results are 

displayed in Table 8 and Table 9, respectively.  The AA instrument detects concentrations based 

on comparison to the standard solutions.  Therefore, the lowest standard used for each metal 

acted as a detection limit.   

For the dissolved samples, one groundwater well had a higher level of arsenic than the 

drinking water maximum contaminant level (MCL) of 10 ppb (U.S. EPA, 2011d).  The 

remaining fifteen wells and five surface water samples had arsenic concentrations less than the 

detection limit of 5 ppb (lowest standard used), and therefore less than the drinking water 

standard. As mentioned in section 2.1, manganese and iron do not have maximum contaminant 

levels for drinking water.  Instead, the U.S. EPA has defined secondary standards, which are 50 

and 300 ppb, respectively (U.S. EPA, 2011d).  All 21 samples showed levels higher than the 

secondary standard for manganese and 11 for iron.  Secondary standards are for aesthetics and do 

not infer that samples are harmful.  As mentioned in section 2.2.4.1, iron is not harmful unless it 

is at concentrations closer to 200 ppm, which is 200,000 ppb (Lenntech, 2011e).  No samples 

showed detectable concentrations of lead or cadmium (see Appendix B for metals 

concentrations).  No concentrations for arsenic, lead, or cadmium were higher than the GW-3 

standards.  There are no GW-3 standards for manganese and iron. 
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Table 8: Metal Concentrations for Dissolved Samples 

Well ID As (ppb) Mn (ppb) Fe (ppb) 

SEA 1 BDL 2695 5146 

SEA 2 BDL 181 70 

SEA 2A BDL 155 98 

SEA 6 BDL 158 107 

SEA 6A BDL 11060 6549 

QR1 BDL 70 391 

QR2 BDL 67 394 

QR3 BDL 72 418 

190 Seep BDL 326 161 

Leachate at 

the Breakout 

BDL 

1309 156 

HDOW 5 BDL 543 213 

HDOW 6 BDL 109 202 

HDOW 7A BDL 107 210 

HDOW 7B BDL 145 601 

HDOW 8 BDL 2094 231 

HDOW 9A 45.42 187 269 

HDOW 9B BDL 1761 624 

HDOW 9C BDL 1412 483 

HDOW 12 BDL 1376 486 

HDOW 13  BDL 3444 609 

HDOW 14 BDL 2692 1176 

  *BDL = below detection limit 

  *Bold indicates above drinking water standard 

 

As mentioned in section 3.3.1, digested samples were prepared by adding 5 mL of 10 M 

nitric acid to samples as collected.  Because acid was added to the samples, these metal 

concentrations cannot accurately be compared to drinking water standards or Groundwater 3 

(GW-3) standards defined by the MassDEP in section 2.1.  It was noted that the digested samples 

had overall higher metal concentrations.  This increase in concentrations can be attributed to the 

inclusion of the particulate phase in these measurements, whereas the dissolved samples only 

measured the concentrations in the aqueous phase. The digested samples displayed 

concentrations higher than GW-3 standards for lead in 9 groundwater wells and 1 surface water 

sample (QR 2 at the river).  Since the dissolved sample did not show a high concentration at QR 

2, this area may not be of immediate concern. However, QR 2 should continue to be monitored 

since it is a surface water sample. Only one digested sample showed a concentration of cadmium 
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higher than the GW-3 standard. One sample showed concentrations higher than the GW-3 

standard for arsenic and there are no current GW-3 standards defined for manganese and iron 

(see Appendix B for metals concentrations).      

Table 9: Metal Concentrations for Digested Samples 

Well ID As (ppb) Pb (ppb) Cd (ppb) 

SEA 1 BDL BDL BDL 

SEA 2 7.049 90.25 BDL 

SEA 2A BDL BDL 8.403 

SEA 6 55.86 21.78 BDL 

SEA 6A 676.8 7.267 BDL 

QR1 BDL BDL BDL 

QR2 BDL 36.42 BDL 

QR3 BDL BDL BDL 

190 Seep BDL BDL BDL 

Leachate at 

the Breakout 86.28 6.979 

BDL 

HDOW 5 82.59 13.96 BDL 

HDOW 6 BDL 6.48 BDL 

HDOW 7A BDL BDL BDL 

HDOW 7B 14.79 10.07 BDL 

HDOW 8 177.7 9.465 BDL 

HDOW 9A 720.4 14.29 BDL 

HDOW 9B 187.6 11.64 BDL 

HDOW 9C 177.0 16.05 BDL 

HDOW 12 105.5 BDL BDL 

HDOW 13  1084 33.64 BDL 

HDOW 14 41.12 35.55 BDL 

  *BDL = below detection limit 

  *Bold indicates above GW-3 standard 

 

The inorganic anion concentrations for dissolved samples were determined using an ion 

chromatograph, and these results are presented in Table 10. These results indicate that fluoride, 

chloride, and sulfate are present at almost all of the sampling sites, with the majority having 

higher concentrations of chloride and sulfate than fluoride.  The U.S. EPA has defined secondary 

standards for fluoride, chloride, and sulfate in drinking water are 2 ppm, 250 ppm, and 250 ppm, 

respectively (U.S. EPA, 2011d).  No samples had concentrations of fluoride and sulfate above 

their defined secondary standards (see Appendix B).  The concentrations displayed in Table 10 

show that two samples, SEA 1 and HDOW 9A, has chloride concentrations higher than the 

secondary standard.  No other samples were above the secondary limit for chloride. As 
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mentioned, secondary standards are not enforced guidelines and do not indicate a health risk but 

rather may cause cosmetic effects (U.S. EPA, 2011d).  The EPA defines a Maximum 

Contaminant Level (MCL) for nitrate in drinking water at 10 ppm (U.S. EPA, 2011d).  All 

samples tested indicate concentrations below this standard. The U.S. EPA has not defined MCLs 

or secondary standards for pure bromide and phosphate. 

 

Table 10: Inorganic Anion Concentrations for Dissolved Samples 

Well ID 
Chloride 

(ppm) 

Fluoride 

(ppm) 

Sulfate 

(ppm) 

Bromide 

(ppm) 

Nitrate 

(ppm) 

Phosphate 

(ppm) 

Total 

(ppm) 

SEA 1 570.72 0.05 7.33 0.31 0.67 0.00 579.08 

SEA 2 76.62 0.18 11.20 0.00 1.37 0.00 89.37 

SEA 2A 76.84 0.17 11.74 0.00 0.28 0.00 89.02 

SEA 6 1.80 0.06 1.37 0.00 0.13 0.00 3.36 

SEA 6A 1.50 0.03 5.78 0.43 0.50 0.00 8.24 

QR1 20.55 0.07 7.45 0.00 0.32 0.00 28.39 

QR2 20.87 0.07 7.40 0.00 0.33 0.40 29.06 

QR3 23.11 0.07 7.37 0.00 0.34 0.00 30.89 

190 Seep 214.97 0.13 9.08 0.23 1.53 0.00 225.93 

Leachate at the 

breakout 
40.70 0.07 6.63 0.21 

0.00 0.00 
47.61 

HDOW 5 1.15 0.85 7.49 0.00 0.00 0.00 9.49 

HDOW 6 3.29 1.16 0.00 0.00 0.00 0.00 4.45 

HDOW 7A 1.31 0.07 1.43 0.00 0.39 0.00 3.20 

HDOW 7B 0.00 1.50 0.06 0.00 0.00 0.24 1.80 

HDOW 8 12.00 0.18 3.19 0.00 0.00 0.00 15.38 

HDOW 9A 258.33 0.17 0.61 1.00 0.00 0.00 260.11 

HDOW 9B 27.08 0.04 1.25 0.00 0.00 0.00 28.39 

HDOW 9C 41.83 0.04 0.71 0.00 1.84 0.00 44.42 

HDOW 12 5.23 0.11 2.06 0.00 0.19 0.00 7.59 

HDOW 13 10.23 0.14 3.15 0.00 0.00 0.00 13.52 

HDOW 14 97.57 0.21 5.88 0.14 0.13 0.00 103.92 

   

 

4.3  Geographical Analysis 

The groundwater wells with the highest digested arsenic concentrations were found to be 

on gradient A on Figure 6. Gradient A shows the groundwater flow pattern at the Holden landfill 

site. The water flows in the northwest direction towards the Quinapoxet River (SEA, 1986). As 

seen on this map, the groundwater well HDOW 13 is closest to the river. Of the 21 samples 

tested, the groundwater in HDOW 9A had the highest concentration of dissolved arsenic (45.42 
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ppb). The two wells that had the highest digested lead concentrations were SEA 2A and QR2. 

SEA 2A is located far from the river; however, QR2 is a river sample.  

Color coded maps for each parameter are shown in Appendix B. Each parameter was 

divided into appropriate ranges, where each range was assigned a color.  The sample ID numbers 

were highlighted according to the color that represented the value of the sample.  These maps 

allowed observations about pH, temperature, DO, and ORP to be made in relation to the 

geographical location of the sampling. As previously mentioned, the pH ranged from 6.15 to 

8.30. Samples with pH values towards the higher side of this range (8.30) were along the 

Quinapoxet River as well as in HDOW 9A and 9B. The majority of the other pH values were 

close to 7. The samples with the  lowest values (around 6.15) were observed to be the 

groundwater wells furthest from the Quinapoxet River including SEA 1,SEA 2A, SEA 6, SEA 

6A and HDOW 5.   

The dissolved oxygen concentrations of the surface water samples, including the 

Quinapoxet River, were the highest (>10 mg/L). This was expected since the water was exposed 

to the atmosphere. The dissolved oxygen concentrations of the groundwater samples were low 

(<2 mg/L) since the water was not directly exposed to the atmosphere.  

The most positive oxidation reduction potentials were found to be near the river, in the 

190 seep and HDOW 9C samples. The most negative oxidation reduction potentials were found 

to be at HDOW 8, HDOW 12, SEA 1, SEA 2, and SEA 6A.  

4.4  Statistical Analysis 

 The data from the groundwater wells and river samples was statistically analyzed to 

determine correlations and differences.  Table 11 and Table 12 show the results of a correlation 

analysis conducted in Microsoft Excel between all of the physical parameters, metal 

concentrations, and inorganic anion concentrations.  Calculated correlation coefficients were 

compared to critical correlation values. A table of the correlation values and the critical 

correlation values can be found in Appendix B. 

There was a positive correlation between depth to the bottom of the well and two other 

parameters, pH and ORP.  There was also a positive correlation between depth to the 

groundwater table in a well and the two parameters, pH and ORP.  

The temperature of the samples did not correlate with any of the parameters or the metal 

concentrations present in the wells. All of the temperatures were within a 4°C range.  None of 

the digested samples showed a correlation to the physical and chemical water quality parameters 

(DO, pH, ORP, temperature, specific conductivity).  The dissolved samples indicated a positive 

correlation between the metal concentrations of arsenic, lead, cadmium, and iron and specific 

conductivity.  Out of the 21 samples measured, 20, 21, 21, and 5 samples indicated 

concentrations lower than the lowest standard used for arsenic, lead, cadmium, and iron, 

respectively.  This indicates that metal concentrations were potentially instrument background 

noise, and the correlation may not be valid.   

To determine if there were differences in water quality based on location, the landfill was 

divided into three regions and an analysis of variance (ANOVA) was conducted. Region 1 was 
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near the river west of the landfill. Region 2 was over the landfill.  Region 3 was east of the 

landfill. The sample sites in region 1 were QR1, QR2, QR3, 190 Seep, HDOW 12, HDOW 13, 

HDOW 14, and leachate at the breakout.  The sample sites in region 2 are HDOW 9A, B, C, 

HDOW 5, and HDOW 8. The sample sites in region 3 are SEA1, SEA 2, 2A, SEA 6, 6A, 

HDOW 6, and HDOW 7A, B.  ORP and bromide were found to be significantly different among 

the three regions.  Of the 21 samples, bromide was detected in 5 samples.  All of the other 

parameters, metal concentrations, and inorganic anion results were not significantly different for 

the three regions.   
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Table 11: Correlation Analysis between Parameters and Metal Concentrations 

  

Depth 

to 

Water 

Depth 

to 

Well Temp. 

Specific 

Conduct

-ivity DO  pH ORP 

As 

(Diss.) 

Pb 

(Diss.) 

Cd 

(Diss.) 

Fe 

(Diss.) 

Mn 

(Diss.) 

Depth to Water 1                      

Depth to Well +Y 1 

     

     

Temperature N N 1 

    

     

Specific Conduct. N N N 1         

DO  N N N N 1 

  

     

pH +Y +Y N N +Y 1 

 

     

ORP  +Y +Y N N +Y +Y 1      

As (Dissolved) +Y +Y N +Y N +Y N 1     

Pb (Dissolved) N N N +Y N N N N 1    

Cd (Dissolved) N N N +Y N N -Y N +Y 1   

Fe (Dissolved) N N N +Y N N -Y N +Y +Y 1  

Mn (Dissolved) N N N N N N N N N N +Y 1 

As (Digested) N N N N N N N +Y N N N +Y 

Pb (Digested) N N N N N N N N N N N N 

Cd (Digested) N N N N N N N N N N N N 

Fe (Digested) N N N N N N N N N N N +Y 

Mn (Digested) N N N N N N N N N N +Y +Y 

Fluoride  N N N N N N N N N N N N 

Chloride  N N N +Y N N N N +Y +Y +Y N 

Sulfate  N -Y N N N N N N N N N N 

Bromide  +Y +Y N N N +Y N +Y N N N N 

Nitrate  +Y N N N N N N -Y N N N N 

Phosphate  N N N N N N N N N N N N 

Total  ions N N N +Y N N N N +Y +Y +Y N 

Turbidity  N N N N N N N N N N +Y +Y 

*Y indicates a statistically valid correlation, + positive correlation, - negative correlation  
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Table 12: Correlation Analysis Continued 

  

As 

(Dig.) 

Pb 

(Dig.) 

Cd 

(Dig.)  

Fe 

(Dig.) 

Mn 

(Dig.) Fluoride  

Chlorid

e  Sulfate  

Bromid

e  Nitrate  

 

Phosph-

ate 

 

 

Total 

As (Digested) 1 

         

  

Pb (Digested) N 1 

        

  

Cd (Digested) N N 1 

       

  

Fe (Digested) +Y N N 1 

      

  

Mn(Digested) +Y N N +Y 1 

     

  

Fluoride  N N N N N 1 

    

  

Chloride  N N N N N N 1 

   

  

Sulfate  N N +Y N N N N 1 

  

  

Bromide  +Y N N N N N N -Y 1 

 

  

Nitrate  N N N N N N N N N 1   

Phosphate  N N N N N N N N N N 1  

Total  N N N N N N +Y N N N N 1 

Turbidity  +Y N N +Y +Y N N N N N N N 

*Y indicates a statistically valid correlation, + positive correlation, - negative correlation 
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4.5  Natural vs. Anthropogenic Sources of Arsenic at the Former Holden Landfill 

It was evaluated whether the arsenic at the landfill is from natural or anthropogenic 

sources.  For the source to be natural, the first condition (see section 2.3.3) is that there can be no 

past or present anthropogenic sources of arsenic at the site (Nelson et al., 2007). A landfill 

qualifies as an anthropogenic source of arsenic; therefore, this condition was not met at the 

former Holden landfill site. The landfill was capped in 1988. Capping is a remedial strategy that 

is designed to prevent metal leaching from the capping area. Even with a cap it is possible for 

arsenic to seep through the bottom of a landfill and into the surrounding area if the landfill waste 

is in contact with groundwater. At the former Holden landfill, only one well sampled contained a 

high concentration of dissolved arsenic (0.045 mg/L). It is possible that arsenic could have 

leached from the landfill to this well. It is also possible that the arsenic originated from natural 

sources; however since there is a known former anthropogenic source of arsenic onsite, this 

cannot be confirmed. 

 The second condition for the source to be natural is that the soil and or bedrock at the site 

contain arsenic-bearing minerals or weathering products (Nelson et al., 2007). According to the 

subsurface maps provided in the comprehensive site assessment scope of work for the Holden 

site, the soil below the landfill area was classified as fine medium sand, fine coarse sand, sand 

and gravel, and fine sand trace silt (CEA, 2011). To conclude if the soil or bedrock in the area 

contains arsenic-bearing minerals, it is necessary to perform soil borings and conduct soil tests. 

Without data about the concentrations of arsenic in the soil and bedrock in the area, the second 

condition cannot be confirmed.  

 The third condition to confirm a natural arsenic source is that the geochemical parameters 

in the aquifer must be favorable for dissolution of arsenic-bearing minerals and mobilization of 

arsenic into groundwater (Nelson et al., 2007).  Under reducing conditions arsenite, is more 

mobile than arsenate. Reducing conditions include low dissolved oxygen and oxidation-

reduction potential and a pH<9.0. At the site examined by Nelson et al. (2007), the highest 

average arsenic concentrations were detected under reducing conditions with less than 1.2 mg/L 

of dissolved oxygen, and pH between 7.0 and 8.0.  

Most of the pH values at the former Holden landfill site were relatively neutral (6.15 to 

8.3) but not between 7.0 and 8.0.  Therefore, samples with pH values in the range of 6.8 to 8.2 

were also included under the definition of reducing conditions for the landfill. Under this new 

criteria, four wells contained all three criteria (6.8<pH<8.2, DO<1.2mg/L, and negative ORP). 

The wells were HDOW 7B, 8, 12, and 13.  Table 13 indicates when a sample had a pH, DO, or 

ORP within the specified range, indicating which samples favored reducing conditions. As 

shown in this table, conditions to promote the leaching of arsenic-bearing minerals are present at 

the landfill site. This could not be used as proof that the source of the arsenic is natural; however, 

natural arsenic could be mobilized if it is present.  

Based on Nelson et al. (2007), there are three conditions required to conclude that arsenic 

comes completely from natural sources at a site. There is a former landfill at the site, which 

qualifies as a former source of arsenic. There was not enough evidence to say with certainty that 



 

 

43 

the arsenic present came entirely from anthropogenic sources. However, it is likely that at least 

some of the arsenic detected was of anthropogenic origin. 

Table 13: Reducing Conditions Geochemistry at Holden Site 

Well ID 6.8<pH<8.2 DO<1.2 mg/L ORP<0 mV 

SEA 1    

SEA 2    

SEA 2A    

SEA 6    

SEA 6A    

QR1    

QR2    

QR3    

190 Seep    

Leachate at the 

Breakout 

   

HDOW 5    

HDOW 6    

HDOW 7A    

HDOW 7B    

HDOW 8    

HDOW 9A    

HDOW 9B    

HDOW 9C    

HDOW 12    

HDOW 13    

HDOW 14    

*Gray shaded boxes indicate measurement within the specified range 

 

Nelson et al. (2007) presents the theory that reducing conditions are favorable for arsenic 

dissolution from soil into groundwater. Four of the groundwater wells at the former Holden 

landfill were consistent with reducing conditions. Although the geochemistry may be favorable 

for leaching of arsenic, only one well (HDOW 9A) showed a concentration of dissolved arsenic 

higher than drinking water standard (0.045 mg/L). Concentrations of digested arsenic above the 

drinking water standard (0.015 to 1.084 mg/L) were observed in 12 of the 21 wells.  Since the 

concentrations of arsenic of the digested samples were significantly higher than the dissolved 

samples, it was indicated that the arsenic is principally contained in the particulate phase.  It was 

not apparent why the arsenic has not leached from the particulate matter into the groundwater 

when the conditions appeared to be favorable for dissolution from soil to groundwater. 
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4.6  Results Conclusion 

From the physical and chemical water quality tests conducted, only one well had an 

arsenic concentration over the U.S. EPA drinking water standard for the dissolved (or as 

collected) samples, and no dissolved samples had metal concentrations above GW-3 standards.  

The digested samples cannot accurately be compared to the U.S. EPA drinking water standards 

or GW-3 standards since they were not filtered to remove particulate matter prior to being 

acidified, however, these samples showed one arsenic concentration, ten lead concentrations, and 

one cadmium concentration higher than the GW-3 standard.  Geographically, the samples 

collected near the river did not have any metal concentrations over the GW-3 standards, with the 

exception of one river sample (QR2) that had a lead concentration of 36.42 ppb (U.S. EPA 

standard is 15 ppb; GW-3 standard is 10 ppb).  All other samples from the Quinapoxet River and 

other surface water samples did not have dissolved metal concentrations over the U.S. EPA 

drinking water or GW-3 standards.  

Correlations were made between physical parameters and the depth to the water in the 

well and depth of the well.  There was also a correlation between four of the five dissolved 

metals and specific conductivity.  However since most samples were below detection limits for 

metals, correlations may not be valid.  The metal concentrations for the digested samples were 

higher than the dissolved samples; this shows that the metal contaminants present are in the 

particulate phase and not in solution.  If most of the metals are not leaching into the water, the 

remedial strategies that are applicable are affected.  Based on these results, the team evaluated 

remedial strategies to address the one well with high dissolved arsenic and to prevent further 

leaching of metals from the landfill. These remedial alternatives are discussed in Chapter 5.   

  



 

 

45 

Chapter 5: Evaluation of Remedial Strategies  

 

This study has shown that the landfill groundwater and surface water samples contained 

contamination which is primarily arsenic, principally in the particulate phase. There was one 

groundwater well that showed levels of dissolved arsenic higher than the drinking water 

standards. When the samples were digested, arsenic levels were detected in 12 of the 

groundwater wells and in one surface water source, the leachate seepage. A goal of this project 

was to determine the most cost effective and feasible remedial strategy to implement at the 

landfill site in order to reduce mobility and toxicity of the contamination.  Remedial strategies 

that reduce arsenic mobility and toxicity were researched. To fully evaluate remedial strategies, 

soil testing data and determination of the arsenic forms contained in the sediment should be 

obtained.  These data were not available at the time of this study. 

In order to provide recommendations for remedial strategies based on current data, 

remedial strategies were compared.  The remedial strategies were divided into three groups: no 

action, in situ treatment and ex situ treatment. Then, each strategy was ranked based on criteria 

as shown in Table 14. Cost was given a higher weight than other criteria because it was 

determined to be the most important factor by the sponsor of this project.  The total weighted 

score is the sum of the ranking in each criterion multiplied by the weighting. The total possible 

weighted score is out of 35.  Information on each of the remedial strategies is provided in the 

following sections. Each remedial strategy was evaluated based on current data and more 

research should be conducted before a remedial strategy is implemented.  

5.1  No Action/Monitor 

The data showed that only one groundwater well, HDOW 9A, contained a  concentration 

of arsenic (45.42 ppb)  higher than the U.S. EPA drinking water standard in the as collected 

(dissolved) sample. There are no buildings or private drinking water wells within 500 feet of this 

well (MassDEP, 2012). The surface waters in the area did not contain detectable concentrations 

of dissolved arsenic, manganese, lead, iron, or cadmium. This information suggested that there 

was little to no risk to humans or the environment at the present time.  The no action/monitor 

option is the least expensive option since it does not cost any additional money to implement.   

 Although there were no detectable concentrations of dissolved metals in the surface 

waters, the leachate breakout area contained a high concentration of arsenic in the digested 

sample (86.28 ppb). Humans and animals are more likely to come in contact with surface water 

than groundwater. For this reason, further evaluation of the potential risks posed by 

contaminated media within the affected region should be performed to determine if restricting 

access to this area is warranted. This could be accomplished by constructing a fence around the 

leachate at the breakout area (the area on the site where the groundwater breaks through the 

surface). 

 The no action strategy has been used in other cases, such as the Clinton landfill. 

However, this strategy does not prevent or inhibit metal leaching. It also does not reduce the 

toxicity of contaminants. Monitoring is used to assess changes in metal concentrations over time. 
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If the contamination spreads or becomes harmful to humans or the environment, other strategies 

may be necessary.   

5.2  In situ 

In situ remediation by definition occurs on site. In situ remediation includes physical and 

chemical processes (Terrapex, 2009). Chemical processes, such as oxidation and 

solidification/stabilization/precipitation, are generally used to reduce the toxicity of metals or 

make them easier to remove by changing the metals from a liquid to a particulate phase. Physical 

processes include capping and filtration, and are used to remove contaminants or reduce their 

mobility. In the case of the former Holden landfill site, most of the arsenic is in the particulate 

phase, which is easier to remove by physical remediation strategies than dissolved arsenic. 

Chemical processes designed to convert arsenic to forms that are more easily removable from 

water are not effective when the arsenic is already in the particulate phase; therefore, physical 

processes are more relevant. As shown in Table 14, all of the physical in situ treatments, such as 

capping and filtration, outrank the chemical processes, such as oxidation and chemical in situ 

treatments.  

5.2.1  Recapping 

One of the highest rated in situ remediation techniques in Table 14 was recapping the 

landfill. Capping is a physical in situ treatment designed to reduce the mobility of contaminants. 

The landfill was capped in 1988. The cap was made of impermeable clay and was 12 inches 

thick (Appiah, 2011). The wells that were found to have high total arsenic (digested samples) in 

the groundwater near the landfill are outside of the capped zone (see Appendix A). This indicates 

that either high arsenic concentrations were present in the groundwater before the landfill was 

capped, the cap may have failed to prevent the leaching of arsenic from the landfill, or the 

arsenic is derived from some source other than the landfill.  Recapping the landfill would be 

relatively inexpensive at $175,000/acre (FRTR, 2012), and would theoretically prevent further 

leaching of arsenic.  

 Some disadvantages to recapping the landfill are that it will not reduce the toxicity of the 

metals and it is not guaranteed to effectively prevent metal leaching. It does not address arsenic 

concentrations currently in groundwater and soil.  If the current leaching of metals is not due to a 

failure in the cap, but due to naturally occurring arsenic leaching into the groundwater, then 

adding another cap may not prevent metal leaching. It may be feasible to make adjustments to 

the current cap in order to make it more effective.  

5.2.2  Filtration 

Filtration is a physical in situ treatment that involves physical separation of particles from 

a solution. Filtration could reduce the toxicity in the groundwater at the landfill site, because 

most of the contaminants are in the particulate phase and could be filtered out. However, most of 

the particulate phase contamination occurs in the groundwater compared to the surface water. 

Therefore, a pump and treat system would be needed to extract the groundwater, and the treated 

water would need to meet water quality standards of the water body into which it is discharged. 
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Filtration costs $13.5-46.6/10,000 gallons water treated and could be used at the head of the 

tributary to treat the groundwater that is feeding the surface water if the particulate phase in the 

surface water becomes a problem (FRTR, 2012). 

5.2.3  Other In Situ Techniques 

 Some other physical in situ techniques include the cutoff trench, interceptor drain, and 

permeable treatment wall methods. These methods can reduce the toxicity or mobility of the 

metals. Cutoff trenches and interceptor drains are not overly expensive, costing approximately 

$540-750/m
2
 and $60-250/m, respectively (FRTR, 2012). Permeable treatment walls are among 

the most expensive treatments, costing $1,267/m (FRTR, 2012). The cutoff trench could be 

effective in bringing the contaminants to the surface; however, an extra step of removing the 

collected contaminants would be required. Other considerations for installing a cutoff trench 

include the ownership of the property where the trench would be located,  and future 

maintenance and monitoring requirements.  

 Chemical in situ processes have already been mentioned and are not recommended. The 

contaminants that are present are for the most part in the particulate phase and chemical 

treatments, such as oxidation or solidification/stabilization/precipitation, will not be effective. 

These techniques are usually used in situations with high dissolved levels of contaminants, or in 

cases where the contaminants are in the most toxic form and oxidation can reduce the toxicity of 

the compound. In situ chemical treatments are not recommended for this project. 

5.3  Ex situ 

Ex situ remediation involves removing contaminated soil or water from the site. The 

contaminated soil or water must be treated and disposed of properly. This can be accomplished 

by disposing of the soil or water off-site, onsite treatment, and reintegration to the subsurface.  

5.3.1  Ion Exchange 

Ion exchange is an ex situ separation technique. It is cost effective around $3-8/10,000 

gallons treated and is commercially available (FRTR, 2012). Ion exchange reduces the toxicity 

of the water because it removes the contaminant from the water. Once the resin reaches capacity, 

the resin needs to be regenerated and the regeneration water needs to be properly treated and 

disposed of.  Ion exchange resins can be damaged by particles in the water. A potential solution 

to this problem would be to use a physical separation technique prior to ion exchange, such as 

filtration. As discussed earlier, filtration would be an effective remedial strategy for the former 

Holden landfill site since it was determined that most of the contamination was contained in the 

particulate matter. Therefore ion exchange may not be needed after filtration.   

5.3.2  Soil Washing 

 Soil washing is an ex situ process that involves digging up soil, taking it off site for 

treatment and returning it to the site. This is a poor option for several reasons. First, it is a costly 

option at $187/m
3
 and possibly involving removing the existing cap (FRTR, 2012). Also, soil 

washing is a treatment for the soil. No soil tests have been performed at the former Holden 



 

 

48 

landfill site; therefore, there are no data to support the need for this remediation method.  The 

affected area is also very large, spanning 17 acres and most of it is wooded.  Soil washing is not 

a feasible option because of the physical size and geography of the site. 
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Table 14: Evaluation of Remedial Strategies (1 = worst; 5 = best) 

Remedial Strategy Type 

Criteria (Weight) 

Cost (x2) 

Long-

term 

Effective-

ness (x1) 

Commer-

cial 

Availab-

ility (x1) 

Reduce 

Mobility 

Metals 

(x1) 

Reduce 

Toxicity 

(x1) 

Site 

specific 

Imple-

mentation 

(x1) 

Total 

weighted 

score 

No Action/Monitor None 5 1 5 1 1 5 23 

Recapping In situ 4 2 5 4 2 4 25 

Filtration In situ 3 3 4 4 4 3 24 

Solidification/Stabilization 

/Precipitation 
In situ 2 2 4 2 2 2 16 

Interceptor Drain In situ 4 3 3 3 4 3 24 

Cut Off Trench In situ 3 3 3 3 4 3 22 

Permeable Treatment Wall In situ 3 3 3 3 4 3 22 

Chemical Treatment In situ 1 2 4 2 4 3 17 

Oxidation In situ 2 2 4 2 4 3 19 

Soil Washing Ex situ 2 4 4 3 3 1 19 

Ion Exchange Ex situ 3 4 4 4 4 3 25 
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Chapter 6: Conclusions and Recommendations  

 

 This section summarizes the conclusions made in this project, as well as presents 

recommendations for future work. 

 

6.1  Conclusions 

The objective of this project was to gather data on metals at the Former River Street 

Sanitary Landfill in Holden, MA, and to evaluate remedial strategies to reduce metal mobility at 

this site.  Samples were collected from 21 groundwater wells and surface water locations on and 

near the landfill. 

Only one well at the former Holden landfill (the landfill) had a concentration of dissolved 

arsenic over the drinking water standard (HDOW 9A). This well did not contain arsenic 

concentrations above the GW-3 standard, however, so it is not of high concern. Twelve water 

samples contained digested arsenic concentrations above the drinking water standard and one of 

them was above the GW-3 standard. However, the arsenic will most likely stay in the particulate 

phase in the natural environment. None of the surface waters contained dissolved concentrations 

of arsenic above the detection limit (0.005 mg/L). The leachate at the breakout contained 

digested arsenic above the drinking water standard but below the GW-3 standard. There is a 

small possibility for the leachate to be harmful because it is at the surface and humans could 

come in contact with is. This possibility could be reduced by prohibiting access to the leachate 

breakout from the general public. 

Eleven remedial strategies were evaluated on their cost, commercial availability, ability 

to reduce toxicity, ability to reduce mobility and the ability to implement them at the landfill site. 

There are few contaminants dissolved in the groundwater, therefore, chemical treatments were 

not strongly considered, because physical treatment processes would be more effective in 

removing contamination. Most of the contamination occurred in the groundwater and in 

locations that are not accessible to humans. There are no drinking water sources within 500 feet 

of the contaminated groundwater wells and by the time the water reaches the Quinapoxet River, 

the concentrations are below the drinking water standards for both digested and dissolved 

arsenic. Therefore, the no action/monitor option is feasible, and is the best option based on its 

low cost. 

 

6.2  Recommendations 

Based on the findings of this project, we recommend the no action/monitor remedial 

strategy as the best available option at this time. The data showed that none of the samples 

collected at the former Holden landfill contained dissolved concentrations of arsenic above the 

GW-3 standard. Only one groundwater well contained a concentration of arsenic above the U.S. 

EPA drinking water standard. At the time of collection, this well was not a drinking water source 

nor was it within 500 feet of a drinking water source; therefore it does not currently pose a threat 

to human health.  
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We recommend that the potential risks posed by contaminated media in the area directly 

around the leachate at the breakout be further evaluated to determine if restricting access by 

humans and most animals to this area is warranted.  Only one surface water sample, the leachate 

at the breakout area, contained a detectable concentration of digested arsenic (86 ppb). This 

concentration of arsenic is not known to be harmful to human health. This breakout is in a small 

area and can be enclosed easily and cost effectively. 

We recommend that filtration, recapping, interceptor drains and ion exchange also be 

considered as viable remedial strategies to be implemented. Twelve samples obtained from the 

landfill site contained concentrations of digested arsenic above the U.S. EPA drinking water 

standard. One groundwater well contained a higher concentration than the GW-3 standard. It has 

been noted that there are no standards for digested (unfiltered) water samples because natural 

groundwaters and surface waters do not come in contact with strong acids and the existing 

standards are based on filtered samples.  The removal of the arsenic in the particulate phase 

could be achieved by physical separation techniques. Chemical treatments are usually used to 

make dissolved contaminants easier to remove. 

We recommend that soil samples be collected from the landfill site because soil testing 

can provide useful information for further study of the site.  The focus of this project was 

groundwater and surface water samples, which are useful in determining the contaminants 

present and their dissolved concentrations in water, as well as the chemical properties of the 

water. Soil samples are useful in other ways.  Soil borings can provide information about the 

bedrock and soil type, which could help determine whether there are high concentrations of 

natural arsenic, or other metals, in the area. Soil samples may also provide more information 

about where the metals are leaching from and whether or not the concentration of arsenic in the 

soil itself is of concern. 

We recommend that further testing be performed at future sampling dates to determine 

the specific arsenic compounds present and to obtain accurate DO readings for every 

groundwater well at the landfill site. The toxicity of arsenic present at the site can be better 

understood with speciation data on arsenic. Dissolved oxygen has been identified as a potential 

indicator of conditions favorable for the leaching of arsenic.   
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Appendix A: Supplemental Background Information 

 

Background research on sampling techniques and laboratory tests used are discussed in 

depth in this section.  Although this project did not participate in soil sampling, the method is 

described below. 

 

Water Sampling 

Collecting and analyzing water samples is a necessary step in determining the type and 

extent of contamination in a body of water. In order to perform such an analysis it is necessary to 

collect, store, transport and test each sample in a safe, consistent method which will not bias the 

sample. There are many different situations in which water samples may be taken; therefore 

there are multiple techniques for sampling. The EPA has a Standard Operating Procedure (SOP) 

to ensure regardless of the method used it is used correctly and consistently evaluated. The EPA 

SOP applies to samples taken from streams, rivers, lakes, ponds, lagoons and surface 

impoundments, either at the surface or at any depth below the surface (U.S. EPA, 2011f). 

Before a sample can be collected there are preparatory steps that must be taken. For 

safety reasons the site should be surveyed prior to sampling to ensure that the health and safety 

of all those involved can be assured. Permission to sample should be obtained well in advance 

and a schedule should be coordinated with staff, clients, and the regulatory agency. Plastic 

stakes, flags, or buoys should be used to mark all of the proposed sampling locations. Prior to 

sampling, appropriate equipment must be obtained, in working order and properly cleaned to 

prevent contamination. Some of the most common methods for collecting water samples are the 

direct method, the dip sampler method and the discrete depth sample method (U.S. EPA, 2011f). 

The direct method uses sample collection bottles to collect surface water samples. Pre-

preserved sample bottles may not be used as collection bottles in the direct method because the 

preservative may be diluted while collecting a sample. In the direct method, the collector uses 

appropriate means to access the sampling location including a small boat, pier, or by wading. 

Wading is only acceptable in small streams with noticeable currents. Samples must be taken 

upstream. In the direct method the collector submerges the closed collection bottle, opens the 

bottle under water and allows water to fill the bottle. The collector then closes the bottle under 

the surface of the water. This is the preferred method of surface sampling if it is safe to do so. 

The collector directly interacts with the water to be tested in the direct method. For this reason, 

any samples that must be taken in an area where contact with contaminants is a concern cannot 

be taken using the direct method (U.S. EPA, 2011f). 

In the dip sampler method the collector uses a long transparent tube with valves on each 

end called a dip sampler (see below). There are two ways to sample using a dip sampler. If an 

all-layer sample is required the dip sampler must be lowered into the water with the bottom valve 

opened, allowing water from all layers to flow into the sampler. The valve must then be closed 

and the dip sampler withdrawn from the water. The contents of the dip sampler can then be 

removed into a storage bottle or container. If a target sample is required the only difference in 

procedure is that the sampler is lowered into the water with the valve closed. The valve is then 
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opened at the desired depth until water fills the dip sampler and then the valve is closed 

(ENVCO Dip sampler, 2011). 

 
Dip sampler, long transparent tubes with two valves (ENVCO Dip Sampler, 2011) 

 

Kemmerer and Van Dorn samplers are both types of discrete depth samplers (U.S. EPA 

2011f). Kemmerer samplers are collection cylinders usually made of metal, such as stainless 

steel, brass, or plastic. Two rubber stoppers are placed on the sampler one on each side of the 

tube. The cylinder is oriented vertically when lowered into the water (U.S. EPA, 2011f). An 

example of a Kemmerer sampler can be seen below.  

 
Kemmerer sampler (ENVCO VanDorn, 2011) 

 

Van Dorn samplers are also cylinders with two stoppers on the ends, usually made of 

plastic. The difference between Van Dorn and Kemmerer samplers is that Van Dorn samplers are 

oriented in the horizontal direction (U.S. EPA, 2011f). An example of a Van Dorn bottle can be 

found below. The procedure for the discrete depth sample method is the same for both 

Kemmerer and Van Dorn samplers. The sampler is lowered with the ends open to allow water to 

flow in. When the sampler reaches the desired depth a messenger is sent down via a rope to close 

the ends. The sampler is then withdrawn from the water. Water is removed via a valve on the 

sampler; however the first 10 to 20 mL should be disposed of to clear the valve of contamination. 
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Attachments are also available to transfer samples to dissolved oxygen bottles (U.S. EPA, 

2011f). 

 

Van Dorn sampler (ENVCO VanDorn, 2011) 

 

  Other common water sampling instruments include peristaltic pumps to take samples of 

water columns, and storm water samplers for collecting storm water. 

 

Soil Sampling 

Consistent soil sampling procedures are necessary to ensure accurate and viable results 

for soil testing. Tools typically used for collecting soil samples are spades, shovels and trowels 

(Washington State Department of Ecology, 2011b). The best practice is to designate different 

tools for each type of sample that is being collected.  If this is not possible, the tools must to be 

cleaned before each collection (U.S. EPA, 2000).  After each use, the tools should be cleaned, 

decontaminated and wrapped in Aluminum foil (Washington State Department of Ecology, 

2011b).  

Soil testing methods require multiple samples that are processed before tests can be 

completed. For soil sampling, it is necessary to determine how many samples are needed for the 

testing and divide them up appropriately. For soil sampling, stainless steel or plastic tools are 

used to prevent contamination of the samples (University of Minnesota, 1988, Washington State 

Department of Ecology, 2011b). It is especially important to avoid galvanized containers, cast 

iron mortars, rubber stoppers and brass screens (University of Minnesota, 1988). For best 

preservation, the sample should be mixed in the bucket to ensure it is homogenous within the 

container (Washington State Department of Ecology, 2011b). The samples should be labeled and 

numbered (University of Minnesota, 1988). A designated control sample should also be labeled 

(University of Minnesota, 1988). Typically samples need to be dried overnight under a heating 

element and a fan to keep moisture low (University of Minnesota, 1988).  

 

Common Metal Laboratory Tests 

This section explores common laboratory tests that were utilized in analyzing samples. 
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Atomic Absorption Spectroscopy  

One of the most common methods for determining the metals present in a collected 

sample and the concentrations of those metals is Atomic Absorption Spectroscopy (AAS).  AAS 

(Figure 7) has been used to identify elements since the 1950s (Ma, 1997). 

 
 Atomic Absorption Spectroscopy Machine (Tissue, 2000) 

 

Each element has a unique electron configuration and produces a unique line spectrum.  In the 

AAS, the element is atomized and sent through a flame where the atoms are excited, causing 

these atoms to advance to higher orbitals.  Each element absorbs light at specific wavelengths 

while in this excited state.  An element can be identified by looking at the specific wavelengths 

produced by each sample when a beam of light is shone on this atomized element.  The 

concentration of the metal can be determined by measuring the amount of light absorbed by the 

sample and using Beer-Lambert Law.  Beer-Lambert Law is an equation that represents the 

linear relationship between absorption and concentration (Tissue, 2000). 

 

 
 A is measured absorbance,  is an absorptivity coefficient, b is the path length and c is 

the wanted concentration (Tissue, 2000).   

The different parts of the AAS are the hollow cathode lamp, nebulizer, flame, 

monochromator, and photomultiplier tube (PMT).  The hollow cathode lamp is used to produce a 

beam of light.  This beam of light shines on the atoms and excited the atom.  This lamp can be 

tuned so it will produce a specific wavelength to detect a specific metal.  The nebulizer is used to 

make the sample into an aerosol.  It is also where the element, fuel (usually acetylene), and 

oxidant (air or nitrous oxide) are mixed together.  The flame is used to get rid of ions, break 

down the element and excite the element.  The monochromator is tuned to pick up wavelengths 

of the element of interest and the PMT identifies the intensity of the wavelengths omitted 

(Chasteen, 2000).   
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AAS requires a large amount of energy to fuel the flame and power the machine. In order 

to eliminate wasted energy a blank with the desired material can be run through before the actual 

experiment to determine the wavelength of this material.  The correct hollow cathode lamp must 

be installed for the metal going to be analyzed (Kneas, 2009).   

 

Ion Chromatography 

Ion chromatography is a form of liquid chromatography that can be used for water 

analysis. Ion chromatography is able to measure the concentrations of major cations and major 

anions in water samples. Samples are loaded into the ion chromatograph and run through a 

pressurized column where they are absorbed. After the sample is absorbed by the tower an ion 

extraction liquid called eluent is passed through the column to absorb and separate the ions. The 

ion concentrations in the sample are determined by the retention time of different species (Weiss 

et al. 2011). 

 

Oxidation Reduction Potential   

Oxidation Reduction Potential (ORP) is a measurement of the electrical potential of an 

oxidation-reduction, or redox, reaction. ORP demonstrates the quantity of oxidation (adding of 

oxygen to form an oxide) and reduction (removing of oxygen) that is possible under certain 

conditions. An ORP meter consists of an electrode with a metal half-cell for measuring, and a 

reference half-cell. When the electrode is inserted into a sample containing oxidizing or reducing 

agents a voltage is generated by the transfer of electrons across the measuring surface. Most pH 

meters have a millivolt setting that can be used to measure ORP (Lowry et al., 2011). 

 

Thermogravimetric Analysis 

Thermogravimetric analyzers (TGA) have many different applications. TGA analyzers 

heat samples to cause physical changes in material or force reactions. TGA measures change in 

mass due to decomposition, dehydration or oxidation of a sample with temperature or time. TGA 

can be used to determine the moisture content of soil samples by measuring the change in mass 

due to dehydration of the sample (Intertek, 2011). 
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Map of former Holden landfill (CEA, 2011) 

 
*Gray shaded area indicates former landfill area.  Note this is a similar map to Figure 6 but indicates the landfill area.
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Appendix B: Additional Physical and Chemical Water Quality Results 

 

Metals Concentrations 

 These tables represent output data from the AA for various metal concentrations.  None 

of these concentrations were found to be higher than both the U.S. EPA drinking water standards 

of the GW-3 standards defined by the MassDEP. If the metal concentration of the sample is less 

than the standard solution used then the concentration cannot be accurately detected. Therefore 

negative concentrations could be attributed to potential background noise of the instrument. As 

noted in Table 8 and Table 9, concentrations lower than the lowest standard used were “Below 

Detection Limit.” The following two tables show all concentrations as reported by the AA for the 

dissolved and digested samples, respectively. 

 

Well ID 

Dissolved 

As 

(ppb) 

Pb 

(ppb) 

Cd 

(ppb) 

Fe 

(ppm) 

Mn 

(ppm) 

SEA 1 0.226 3.335 2.6 5.146 2.695 

SEA 2 0.161 0.103 0.822 0.07 0.181 

SEA 2A 0.763 0.267 0.361 0.098 0.155 

SEA 6 1.746 0.167 0.158 0.107 0.158 

SEA 6A -0.297 0.131 -0.013 6.549 11.06 

QR1 1.093 0.36 0.076 0.391 0.07 

QR2 1.286 0.291 0.038 0.394 0.067 

QR3 1.366 0.398 -0.065 0.418 0.072 

190 Seep 0.791 0.65 0.082 0.161 0.326 

Leachate at the 

breakout 0.228 0.2 0.13 0.156 1.309 

HDOW 5 4.019 0.13 -0.002 0.213 0.543 

HDOW 6 -0.318 0.126 -0.021 0.202 0.109 

HDOW 7A 1.418 0.119 0.189 0.21 0.107 

HDOW 7B 3.048 0.393 0.069 0.601 0.145 

HDOW 8 0.804 0.001 0.067 0.231 2.094 

HDOW 9A 45.42 1.758 0.243 0.269 0.187 

HDOW 9B 1.325 0.175 -0.029 0.624 1.761 

HDOW 9C 0.178 0.099 0.263 0.483 1.412 

HDOW 12 0.88 -0.027 -0.036 0.486 1.376 

HDOW 13  1.314 0.066 0.032 0.609 3.444 

HDOW 14 0.236 0.08 0.171 1.176 2.692 

 *Bold indicates concentrations higher than drinking water standards 
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Well ID 

Digested 

As 

(ppb) 

Pb 

(ppb) 

Cd 

(ppb) 

Fe 

(ppm) 

Mn 

(ppm) 

SEA 1 2.281 3.332 3.261 12.53 2.44 

SEA 2 7.049 90.25 1.591 9.872 0.282 

SEA 2A 2.201 3.426 8.403 3.187 0.215 

SEA 6 55.86 21.78 0.553 19.78 0.372 

SEA 6A 676.8 7.267 0.053 64.21 10.65 

QR1 0.221 4.83 0.347 0.643 0.161 

QR2 -0.661 36.42 0.995 0.713 0.171 

QR3 -0.648 2.555 0.633 0.567 0.17 

190 Seep -0.048 3.939 0.475 0.238 0.367 

Leachate at the breakout 86.28 6.979 0.622 13.42 1.314 

HDOW 5 82.59 13.96 0.844 12.71 0.718 

HDOW 6 4.872 6.48 0.412 2.775 0.207 

HDOW 7A 4.967 3.382 0.476 2.15 0.191 

HDOW 7B 14.79 10.07 0.278 4.993 0.207 

HDOW 8 177.7 9.465 0.518 19.17 2.11 

HDOW 9A 720.4 14.29 0.905 20.37 0.297 

HDOW 9B 187.6 11.64 0.535 45.29 2.453 

HDOW 9C 177.6 16.05 0.732 39.08 1.505 

HDOW 12 105.5 2.946 0.336 10.71 1.395 

HDOW 13  1084 33.64 0.358 86.56 4.62 

HDOW 14 41.12 35.55 1.347 10.94 2.578 

*Bold indicates concentrations higher than GW-3 standards 
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Colors of Samples 

 These pictures show the 21 samples collected at the former Holden landfill and allow for 

a visible representation of their color.   

 

  
SEA 1, SEA 2, SEA 2A, SEA 6, SEA 6A     

 

 
QR1, QR2, QR3, QR3 B (190 Seep), Leachate at the breakout 
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HDOW 5, HDOW 6, HDOW 7A, HDOW 7B, HDOW 8  

 

 
HDOW 9A, HDOW 9B, HDOW 9C, HDOW 12, HDOW 13, HDOW 14 

 

Geographical Analysis Maps 

 These maps include a color code that depicts a range for each parameter.  The maps were 

used to determine if there was a visible trend in different regions or locations around the landfill 

that had similar values of a specific parameter of interest. 
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Statistical Analysis 

 This section provides the statistical analysis output used to determine if correlations 

existed between various parameters. 

 

Table of critical correlation values for comparison of correlation values (MSTU, 2012) 

  # of Samples Critical Correlation Value 

Temp  21 0.413 

Specific Conductivity 21 0.413 

DO 18 0.444 

pH 21 0.413 

ORP  21 0.413 

As (Diss) 21 0.413 

Pb (Diss) 21 0.413 

Cd (Diss) 21 0.413 

Fe (Diss) 21 0.413 

Mn (Diss) 21 0.413 

As (Dig) 21 0.413 

Pb (Dig) 21 0.413 

Cd (Dig) 21 0.413 

Fe (Dig) 21 0.413 

Mn (Dig) 21 0.413 

Fluoride  21 0.414 

Chloride  20 0.423 

Sulfate  20 0.423 

Bromide  6 0.707 

Nitrate  13 0.514 

Phosphate  2 (Not enough samples) 

Total ions 21 0.413 

Turbidity  21 0.413 

 

 

 The following three tables present statistical values between parameters.  The critical 

correlation values in the table above were used to determine if a correlation does exist.
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Depth to 

Water 

Depth to 

Well Temp Specific Cond. DO pH ORP  

Depth to Water 1.000 

      Depth to Well 0.854 1.000 

     Temp  -0.094 0.000 1.000 

    Specific 

Conductivity  0.350 0.103 -0.320 1.000 

   DO 0.779 0.675 0.139 -0.150 1.000 

  pH 0.723 0.853 -0.084 0.037 0.714 1.000 

 ORP 0.599 0.640 0.195 -0.249 0.770 0.457 1.000 

As  (Diss) 0.528 0.608 -0.157 0.522 -0.002 0.436 0.006 

Pb (Diss) 0.129 -0.003 -0.119 0.856 -0.057 0.088 -0.326 

Cd (Diss) -0.143 -0.337 -0.165 0.659 -0.242 -0.225 -0.536 

Fe (Diss) -0.076 -0.345 0.247 0.413 -0.208 -0.259 -0.476 

Mn (Diss) -0.036 -0.298 0.192 0.126 -0.260 -0.286 -0.357 

As (Dig) 0.208 0.033 -0.101 0.238 -0.221 0.114 -0.197 

Pb (Dig) -0.139 -0.174 -0.283 -0.090 -0.127 -0.041 -0.224 

Cd (Dig) -0.267 -0.423 -0.050 0.198 -0.190 -0.375 -0.301 

Fe (Dig) 0.233 -0.076 -0.047 0.085 -0.192 -0.003 -0.216 

Mn (Dig) -0.021 -0.293 0.160 0.108 -0.256 -0.247 -0.348 

Fluoride -0.169 -0.152 0.196 -0.161 -0.302 -0.188 -0.007 

Chloride 0.044 -0.093 -0.214 0.879 -0.121 -0.050 -0.335 

Sulfate  -0.421 -0.694 -0.151 0.113 0.101 -0.332 0.024 

Bromide 1.000 0.894 -0.152 0.521 0.122 0.897 -0.109 

Nitrate 0.711 0.285 -0.157 0.276 0.243 0.009 0.349 

Phosphate 0 0 -1.000 1.000 1.000 1.000 1.000 

Total ions 0.055 -0.109 -0.246 0.878 -0.091 -0.047 -0.322 

Turbidity  0.299 -0.015 0.135 0.074 -0.174 -0.068 -0.268 
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As 

(Diss) 

Pb 

(Diss) 

 Cd 

(Diss) 

Fe 

(Diss) 

Mn 

(Diss) 

 As 

(Dig) 

Pb 

(Dig) 

Cd 

(Dig) 

Fe 

(Dig) 

Mn 

(Dig) 

Pb (Diss) 0.386 1.000 

        Cd (Diss) -0.027 0.834 1.000 

       Fe (Diss) -0.120 0.461 0.486 1.000 

      Mn(Diss) -0.154 -0.005 0.036 0.834 1.000 

     As (Dig) 0.423 0.017 -0.167 0.266 0.544 1.000 

    Pb (Dig) -0.032 -0.189 0.103 -0.164 -0.069 0.070 1.000 

   Cd (Dig) -0.041 0.245 0.389 0.028 -0.142 -0.211 -0.034 1.000 

  Fe (Dig) 0.009 -0.122 -0.103 0.377 0.677 0.850 0.115 -0.215 1.000 

 Mn (Dig) -0.153 -0.040 -0.001 0.791 0.992 0.616 -0.044 -0.163 0.758 1.000 

Fluoride -0.003 -0.107 -0.164 -0.169 -0.223 -0.152 -0.072 -0.111 -0.229 -0.229 

Chloride 0.293 0.955 0.861 0.427 -0.008 -0.049 -0.091 0.308 -0.149 -0.047 

Sulfate  -0.309 0.072 0.256 0.083 -0.037 -0.329 0.262 0.528 -0.344 -0.073 

Bromide  0.945 0.330 -0.078 -0.061 -0.085 0.815 -0.093 -0.114 0.260 -0.074 

Nitrate -0.442 0.068 0.168 -0.068 -0.054 0.038 0.274 -0.123 0.209 -0.052 

Phosphate -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 1.000 1.000 -1.000 -1.000 

Total ions 0.282 0.944 0.863 0.428 0.007 -0.042 -0.073 0.329 -0.138 -0.032 

Turbidity -0.001 -0.124 -0.101 0.569 0.825 0.725 0.087 -0.206 0.905 0.869 

 

 

  Fluoride Chloride  Sulfate Bromide Nitrate Phosphate  Total ions Turbidity 

Chloride  -0.168 1.000 

      Sulfate  -0.177 0.175 1.000 

     Bromide  0.153 0.153 -0.882 1.000 

    Nitrate  -0.011 0.220 0.087 0.029 1.000 

   Phosphate  -1.000 0 1.000 0 0 1.000 

  Total ions -0.209 1.000 0.232 0.142 0.224 1.000 1.000 

 Turbidity  -0.242 -0.167 -0.270 0.223 0.108 -1.000 -0.150 1.000 
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Anova p-values significant values  

 

Anova P-value 

Temp 0.065 

Specific Conductivity 0.455 

DO 0.106 

pH 0.068 

ORP 0.043 

As (Diss) 0.167 

Pb (Diss) 0.714 

Cd (Diss) 0.229 

Fe (Diss) 0.302 

Mn (Diss) 0.855 

As (Dig) 0.630 

Pb (Dig) 0.912 

Cd (Dig) 0.340 

Fe (Dig) 0.607 

Mn (Dig) 0.924 

Fluoride 0.354 

Chloride 0.786 

Sulfate 0.230 

Bromide 0.003 

Nitrate 0.071 

Phosphate 

(not enough 

samples) 

Total ions 0.871 

Turbidity 0.435 

 

 

A correlation analysis was done between CEA’s digested data and WPI’s digested data.  

Arsenic, lead, and manganese were statistically similar.  For CEA and WPI’s data both cadmium 

and iron were below the detectable limit for all the samples.  CEA reported low values as being 

less than their lowest standard, whereas WPI reported output values from the AA.  This affected 

the statistical correlation, which is shown in the table below.    

 

CEA correlation with team’s digested metal concentration data 

Metal contaminate Correlation Value 

Arsenic 0.80512 

Lead 0.23 

Cadmium 0.03976 

Iron 0.90913 

Manganese 0.99214 
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Cost of Remedial Strategies 

Remedial Strategy Cost 

No Action N/A 

Recapping $175,000/acre 

Filtration $ 13.5 -45.6/10,000 gallons treated 

Solidification/Stabilization/Precipitation $190 -330/m
3 

Interceptor Drain $60 – 250/m 

Cut Off Trench $540 -750/m
2 

Permeable Treatment Wall $1,267/m 

Chemical Treatment $1,582/m
3 

Oxidation $150/10,000 gallons treated 

Soil Washing $187/m
3
 

Ion Exchange $3 – 8/10,000 gallons treated 

*The cost was estimated based on values found by the Federal Remedial Technology Roundtable 

(FRTR, 2012).  This only includes the cost of implementation and maintenance but does not 

include labor costs. 

 

 


