
An Investigation of Security

In Near Field Communication Systems

by

Steven J. Olivieri

A Dissertation

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Doctor of Philosophy

in

Electrical and Computer Engineering

by

January 26, 2015

APPROVED:

Professor Alexander M. Wyglinski Professor Yunsi Fei
WPI, Advisor Northeastern University

Professor Fred J. Looft III Professor Xinming Huang
WPI WPI

Professor Thomas Eisenbarth Professor Craig Shue
WPI WPI

Abstract

Increasingly, goods and services are purchased over the Internet without any form of phys-

ical currency. This practice, often called e-commerce, offers sellers and buyers a convenient

way to trade globally as no physical currency must change hands and buyers from any-

where in the world can browse online store fronts from around the globe. Nevertheless,

many transactions still require a physical presence. For these sorts of transactions, a new

technology called Near Field Communication has emerged to provide buyers with some of

the conveniences of e-commerce while still allowing them to purchase goods locally.

Near Field Communication (NFC), an evolution of Radio-Frequency Identification (RFID),

allows one electronic device to transmit short messages to another nearby device. A buyer

can store his or her payment information on a tag and a cashier can retrieve that information

with an appropriate reader. Advanced devices can store payment information for multiple

credit and debit cards as well as gift cards and other credentials. By consolidating all of

these payment forms into a single device, the buyer has fewer objects to carry with her.

Further, proper implementation of such a device can offer increased security over plastic

cards in the form of advanced encryption.

Using a testing platform consisting of commercial, off-the-shelf components, this disser-

tation investigates the security of the NFC physical-layer protocols as well as the primary

NFC security protocol, NFC-SEC. In addition, it analyzes a situation in which the NFC pro-

tocols appear to break, potentially compromising sensitive data. Finally, this dissertation

provides a proof of security for the NFC-SEC-1 variation of NFC-SEC.

iii

Acknowledgements

First, I must thank Professor Alex Wyglinski, who served as my primary advisor for both of

my graduate degrees at WPI and who read through numerous drafts of every paper that I

have written and provided great feedback each time. He also knows pretty much everybody

and his connections were invaluable for tracking down additional support. Plus, he helped

me to find my current job. Thanks, Professor!

I would also like to thank Professors Yunsi Fei, Fred Looft, Xinming Huang, Thomas

Eisenbarth, and Craig Shue for serving on my dissertation committee and for providing

valuable insight and additions to this dissertation.

To MIT Lincoln Laboratory and LinQuest, thank you for supporting me for the past

few years as I worked to complete my PhD and for your understanding when my schedule

was not quite normal.

To Isaac, Drew, Zebs, Zach, Ben, Allison, Andrea, Tim, Soe San, Tom, Mike, and anyone

else that I’ve forgotten to list here, thank you for making my time at WPI awesome. You

all were always there to distract me from getting work done and to ensure that I did not

lose my mind. Thanks!

My parents, my sister, and Jamie: Hey, I finished. Please don’t call me Dr. Steve. And

also, thanks for everything. Really.

Finally, thanks to Jennifer. You’re the best! I totally wouldn’t have finished without

you. I love you. <3

iv

Contents

List of Figures vii

List of Tables ix

List of Algorithms x

1 Introduction 1

1.1 Research Motivation . 1
1.2 Current State of the Art . 2
1.3 Research Objectives . 3
1.4 Contributions . 3
1.5 Dissertation Organization . 4

2 Near Field Communication 5

2.1 Overview . 5
2.2 Physical Operation . 6
2.3 Protocol . 8

2.3.1 Analog Interface . 9
2.3.2 Digital Interface . 13

2.3.2.1 Single Device Detection and Initialization 15
2.3.2.2 Data Exchange Protocol 22

2.3.3 Logical Link Control . 27
2.3.3.1 LLCP Frames . 29
2.3.3.2 MAC Mapping . 30
2.3.3.3 Activating a Link . 31
2.3.3.4 Exchanging Data . 32
2.3.3.5 Deactivating a Link . 34

2.3.4 Simple NDEF Exchange Protocol . 34
2.3.5 NFC Data Exchange Format . 37

2.4 Chapter Summary . 39

3 Cryptography Overview 41

3.1 Advanced Encryption Standard . 41
3.1.1 Finite Field Math . 43

v

3.1.2 Key Schedule . 44
3.1.3 AddRoundKey . 45
3.1.4 SubBytes . 46
3.1.5 ShiftRows . 47
3.1.6 MixColumns . 47
3.1.7 Decryption . 48

3.2 Diffie-Hellman . 48
3.3 Elliptic Curves . 51
3.4 NFC-SEC . 55
3.5 NFC-SEC-1 . 58
3.6 Chapter Summary . 61

4 NFC Protocol Security 63

4.1 Eavesdropping Attacks . 63
4.2 Data Alteration Attacks . 66
4.3 Man-in-the-Middle Attacks . 68
4.4 Relay Attacks . 70
4.5 Chapter Summary . 75

5 NFC Testing Platform 76

5.1 Hardware . 76
5.2 Software . 80
5.3 Implementation . 80
5.4 Chapter Summary . 82

6 An Analysis of Double Target Trouble 83

6.1 The Problem . 83
6.2 Proposed Experiment . 84
6.3 Experimental Results and Analysis . 85
6.4 Security Implications . 91
6.5 Chapter Summary . 94

7 NFC-SEC Proof of Security 95

7.1 Protocol Composition Logic . 95
7.2 NFC-SEC-1 SSE Algorithm . 97
7.3 The PCL Proof System . 99
7.4 Proof of Authentication . 102
7.5 Chapter Summary . 104

8 Conclusions 106

8.1 Summary and Accomplishments . 106
8.2 Future Work . 107
8.3 Resulting Publications . 108

vi

A Multiplying in Finite Fields 109

A.1 Peasant Algorithm . 109
A.2 Finite Fields . 111

Bibliography 115

vii

List of Figures

2.1 Regions of an EM field. 7
2.2 Magnetic induction with two NFC devices. 8
2.3 Structure of the NFC protocol layers. 9
2.4 Modified Miller sequences. 11
2.5 Manchester encoding for passive fc/128 devices. 12
2.6 Manchester encoding for fc/64 or fc/32 devices. 13
2.7 Flowchart of a NFC transaction. 14
2.8 Initial RF Collision Avoidance. 15
2.9 Initial active mode configuration. 16
2.10 Initialization frames for passive fc/128 devices. 17
2.11 Flowchart of the anti-collision algorithm for passive fc/128 devices. 19
2.12 Example of the anti-collision algorithm for passive fc/128 devices. 21
2.13 Anti-collision frame format for passive fc/64 and fc/64 devices. 22
2.14 Example of the anti-collision algorithm for NFC-F devices. 22
2.15 Frame formats for the Data Exchange Protocol. 23
2.16 Flowchart of the Data Exchange Protocol for passive communication. . . . 24
2.17 Flowchart of the Data Exchange Protocol for active communication. 25
2.18 Format of the ATR REQ command. 26
2.19 Payload of a DEP frame. 27
2.20 Structure of the LLC layer. 29
2.21 Format of the LLCP PDU. 30
2.22 Example of an ATR REQ that supports LLCP. 31
2.23 Simple NDEF Exchange Protocol frame format. 34
2.24 Example of a fragmented SNEP message. 35
2.25 Format of an NDEF record. 38
2.26 Format of an NDEF short record. 39

3.1 Illustration of the AES AddRoundKey function. 46
3.2 Illustration of the AES ShiftRows function. 47
3.3 Example of the Diffie-Hellman key exchange algorithm. 51
3.4 The elliptic curve y2 = x3 + x. 52
3.5 The elliptic curve y2 = x3 + x over F13. 53
3.6 Example of the Elliptic Curve Diffie-Hellman key exchange algorithm. . . . 54

viii

3.7 Format of the NFC-SEC PDU. 55
3.8 Flowchart of the NFC-SEC protocol. 57
3.9 Establishing the NFC-SEC-1 shared secret service. 59
3.10 Establishing the NFC-SEC-1 secure channel service. 60
3.11 Sending encrypted data with NFC-SEC-1. 62

4.1 Example of an eavesdropping attack. 64
4.2 Data modification attack at 100% ASK. 67
4.3 A man-in-the-middle attack with NFC devices. 68
4.4 A typical relay attack with NFC devices. 70
4.5 A long distance relay attack with NFC devices. 73

5.1 A block diagram of the NFC testing platform. 77
5.2 Photograph of the NFC testing platform. 78

6.1 Flowchart of the Double Target Trouble experiment. 85
6.2 DTT control test. 86
6.3 DTT test at 424 Kbps active, 0 cm. 87
6.4 DTT test at 424 Kbps passive, 0 cm. 88
6.5 DTT test at 106 Kbps active, 0 cm. 89
6.6 DTT test at 424 Kbps active, 4 cm. 90
6.7 DTT test at 424 Kbps passive, 4 cm. 91
6.8 DTT test at 106 Kbps active, 4 cm. 92

7.1 Authentication properties of the NFC-SEC-1 Initiator. 102
7.2 Proof of weak authentication for NFC-SEC-1 Initiator. 103
7.3 Proof of strong authentication for NFC-SEC-1 Initiator. 105

ix

List of Tables

2.1 Comparison of popular wireless technologies. 6
2.2 Modulation and coding schemes used for NFC. 10
2.3 Coding of the SAK frame. 18
2.4 Service Access Point Address Mapping for LLCP. 30
2.5 TLVs for NFC-DEP ATR REQ frames. 32
2.6 SNEP request codes. 36
2.7 SNEP response codes. 37
2.8 TNF encoding for NDEF records. 40

3.1 NFC-SEC PDUs. 55

6.1 Double Target Trouble results from Alice’s perspective. 93

x

List of Algorithms

3.1 Pseudo code of the AES algorithm. 42
3.2 Pseudo code of the AES key expansion. 45
3.3 Pseudo code of the inverse AES algorithm. 49

7.1 PCL Algorithm for NFC-SEC-1 Initiator. 97
7.2 PCL Algorithm for NFC-SEC-1 Target. 98

A.1 The modified peasant algorithm in C. 114

1

Chapter 1

Introduction

1.1 Research Motivation

For at least 150,000 years, people have engaged in trade and commerce. Early humans

bartered goods and services directly. As early as 12,000 BCE, civilizations in the Mediter-

ranean region traded with obsidian [1]. By 9,000 BCE, cattle and grain were common forms

of money [2]. Cowrie shells were used in China as early as 1,200 BCE [2]. The first coins

appeared in Lydia (present day Turkey) in 687 BCE [2]. While these first coins were made

from electrum, future coins would be made of bronze, silver, gold, and other metals. Paper

money was first introduced in Song dynasty China in 1024 CE [3].

Today, we have many methods of paying for goods and services. Some transactions still

use coins and bank notes. Others use checks, money orders, and other forms of guarantees.

Still others use credit cards and debit cards. Increasingly, goods and services are purchased

over the Internet without any form of physical currency. This practice, sometimes called

e-commerce [4], offers sellers and buyers a convenient way to trade globally as no physical

currency must change hands and buyers from anywhere in the world can browse online store

fronts from around the globe.

Nevertheless, many transactions still require a physical presence. A driver still purchases

gasoline for his automobile at gas stations, a thirsty athlete might buy a bottle of water from

a vending machine, and the older couple with the convenience store down the road probably

2

doesn’t have an online presence. For these sorts of transactions, a new technology called

Near Field Communication has emerged to provide buyers with some of the conveniences

of e-commerce while still allowing them to purchase goods locally.

Near Field Communication (NFC) allows one electronic device to transmit short mes-

sages to another nearby device. As an evolution of Radio-Frequency Identification (RFID),

NFC also allows such a device to read passive tags. These tags might contain web addresses,

images, product information, or other forms of data. Specifically for financial transactions,

these tags can hold payment credentials. Thus, a buyer can store his or her payment in-

formation on a tag and a cashier can retrieve that information with an appropriate reader.

Advanced devices can store payment information for multiple credit and debit cards as well

as gift cards and other credentials. By consolidating all of these payment forms into a

single device, the buyer has fewer objects to carry with her. Further, proper implementa-

tion of such a device can offer increased security over plastic cards in the form of advanced

encryption.

1.2 Current State of the Art

Today, Near Field Communication is used in a wide variety of applications all over

the world, including parking meters [5], event ticketing [6][7], public transportation [8][9],

hotel keys [10], and in-store payments [11][12][13]. Major credit card companies in the

United States have NFC-enabled devices and payment terminals (e.g. payWave for Visa

[14], PayPass for MasterCard [15]). Google has developed an application called Google

Wallet [16] that enables users to store credit card information on their phones and then use

those phones to pay at MasterCard PayPass terminals. BlackBerry OS [17] and Windows

Phone 8 [18] have similar applications.

Support for NFC in mobile phones is increasingly common in the United States and

elsewhere. Google has added NFC support to its Android operating system and many

device manufacturers have enabled the feature, including HTC [19], Samsung [20], Motorola

[21], and LG Electronics [22]. Many of Research in Motion’s BlackBerry phones support

the technology [23], as do some Windows phones [24]. While most NFC-enabled phones

3

are smart phones, some feature phones also have support for NFC, most notably the Nokia

6131 flip phone, which was the first mass market mobile phone with built-in support [25].

As of late 2014, Apple’s iPhone supports NFC transactions only in a very limited form

called Apple Pay.

1.3 Research Objectives

While Near Field Communication provides many advantages that traditional payment

methods lack, it also has drawbacks. For instance, storing multiple payment credentials

into a single NFC-enabled device produces a single point of failure. Should the NFC-

enabled device be lost or stolen, so too are all of those payment credentials lost. Perhaps

the biggest potential disadvantage to using NFC over other payment methods is that NFC

devices transmit data wirelessly. Wireless transmissions tend to be vulnerable to a number

of malicious attacks, including eavesdropping and relay attacks. With this in mind, the

primary research objectives of this dissertation are the following:

• To provide a comprehensive overview of Near Field Communication technology, public

key cryptography, and other technologies related to NFC mobile payment applications.

• To build a testing platform using commonly available hardware and software that is

capable of emulating realistic NFC transactions.

• To utilize the testing platform to investigate security vulnerabilities in the most com-

monly implemented NFC protocols and specifications, including NFCIP-1 and NFC-

SEC.

1.4 Contributions

In order to complete the tasks described in Section 1.3, this dissertation makes the

following novel contributions:

• A comprehensive overview of the vulnerabilities inherent to NFC transactions, the

current state of research toward exploiting those vulnerabilities, and defenses built

4

into the NFC protocols to thwart them.

• A testing platform that includes microprocessors, NFC controllers, and other hardware

and software commonly found in widely-used mobile devices. This testing platform

allows users to investigate a variety of NFC devices and software combinations for

protocol correctness and vulnerabilities.

• An investigation into a flaw in the NFC single-device detection protocol that exposes

NFC transactions to numerous security problems, including spoofed data and denial

of service attacks.

• A proof of security for the NFC-SEC-1 SSE security protocol, used to establish a

secure channel in the absence of hardware secure elements (e.g. SIM cards) using

Protocol Composition Logic.

A list of publications resulting from this work can be found in Section 8.3.

1.5 Dissertation Organization

The remainder of this dissertation is organized as follows: Chapter 2 provides detailed

descriptions of Near Field Communication technology and Chapter 3 describes the encryp-

tion systems employed by NFC devices; Chapter 4 contains a thorough overview of the

current state of research into exploiting NFC transactions; Chapter 5 describes the hard-

ware, software, and operation of the testing NFC platform; Chapter 6 details a vulnerability

in the NFC single-device detection protocol; Chapter 7 examines the NFC-SEC protocol

with Protocol Compositioon Logic and offers a proof for NFC-SEC-1 SSE; finally, Chap-

ter 8 offers concluding remarks and directions for future research. Appendix A describes an

algorithm for multiplying integers in certain finite fields.

5

Chapter 2

Near Field Communication

This chapter provides an introduction to the near field communication (NFC) technology

used in this dissertation, including a brief overview and history of the technology and a

detailed primer on its operation.

2.1 Overview

Near Field Communication (NFC) technology is fairly new, having first been published

as a standard by Ecma International as ECMA-340 in December, 2002 [27]. Building

upon the ideas established by Radio Frequency Identification (RFID), NFC devices use

short-range radio communication to transfer information. While RFID allowed one-way

communication (e.g., a smart phone reading a passive smart tag), NFC additionally allows

two-way communication (e.g., two smart phones exchanging information). Like many RFID

devices, NFC devices operate in the 13.56 MHz industrial, scientific, and medical (ISM)

band, which is unlicensed worldwide. The operating range of NFC devices is typically less

than five centimeters. Table 2.1 compares NFC technology with some other popular wireless

technologies.

In 2004, the International Organization of Standardization (ISO) and the International

Electrotechnical Commission (IEC) published a revised version of this standard as ISO/IEC

Parts of this Chapter were submitted for publication to Wiley Journal on Wireless Communications and
Networks [26].

6

Table 2.1: Comparison of popular wireless technologies.

NFC [28] Bluetooth [29] WiFi [30] ZigBee [31]

Base Standard ISO/IEC 18092 Bluetooth SIG IEEE 802.11 IEEE 802.15.4

Max Bit Rate 424 Kbps 2.1 Mbps 7 Gbps 250 Kbps

Typical Range <5 cm <100m <100m <100m

Network Type Point-to-Point Wireless PAN Wireless LAN Wireless PAN

Frequency 13.56 MHz 2.4 GHz 2.4 GHz, 5 GHz 2.4 GHz, 915 MHz, 868 MHz

18092:2004 [32]. Since then, both standards have been amended and revised. The most

recent versions were published in June, 2013 as ECMA-340 3rd Edition [33] and ISO/IEC

18092:2013 [28]. In 2004, NXP Semiconductors, Sony, Nokia, and others founded the NFC

Forum, a non-profit industry association whose mission is to advance the use of NFC tech-

nology. Today, the NFC Forum has more than 190 member organizations [34]. The NFC

Forum is responsible for a number of additional standards, including standards for message

formats and device characteristics.

2.2 Physical Operation

The name “Near Field Communication” comes from the fact that NFC devices commu-

nicate in the electromagnetic near field. That is, two NFC devices can communicate when

they are separated by a distance of less than one wavelength (λ). In fact, NFC devices

operate within an even smaller region called the reactive near field, in which which they are

less than λ/2π apart. Figure 2.1 shows the division of the near and far field regions. A quick

calculation would show that the reactive near field for devices operating at 13.56 MHz is

approximately 3.52 meters. However, that is only true for an antenna of length λ/2, which

would be approximately 11 m. Since NFC is most frequently found in mobile devices, such

an antenna length is not practical. The NFC specifications aim for an operating range of

approximately 4-10 cm, which allows for much smaller antennas.

In the reactive near field, some energy is held near the surface of the antenna. For

7

Figure 2.1: Regions of an EM field. NFC operates in the reactive near field region [35].

instance, an alternating current flowing through a transmitting antenna creates a magnetic

field near the antenna. When the current reverses direction, this magnetic field collapses

and returns the energy to the electrons in the antenna. However, if a receiving device

absorbs some of this magnetic energy, then that energy is lost to the transmitting antenna.

This loss changes the impedance of the transmitting antenna, which can be sensed as a

small change in the voltage across a resistor in series with that antenna [36].

NFC devices employ loop antennas. When two devices are in operating range, the

combination of the two antennas acts like a transformer, where the current flowing through

the transmitting antenna creates an electromagnetic field, which induces a current in the

receiving device antenna. The receiving device powers itself with this current. In contrast to

RFID, in which only one device may generate an electromagnetic field, both NFC devices are

allowed to generate an EM field. However, only one device does so at any time. Figure 2.2

shows the relationship between two NFC devices when initiating a transaction.

If both devices are “active” devices, then data flows in the same direction as the EM

field. When the Initiator device has finished transmitting data, it turns off its EM field.

When the Target is ready to respond, it turns on its own EM field and sends data back to

8

Figure 2.2: Magnetic induction with two NFC devices. The two coils represent the loop
antennas on the NFC devices and the dashed rings represent the EM field. Here, the
Initiator generates the field to power the Target.

the Initiator. Like RFID, NFC also supports “passive” Target devices. If the Target is a

passive device, then it always uses the Initiator’s EM field for power and modulates that

field to send data back to the Initiator.

2.3 Protocol

The ISO/IEC, ECMA, and NFC Forum maintain numerous standards defining NFC

protocols. As with many other communications technologies, these protocols are layered

atop one another. Figure 2.3 compares the various NFC layers [37] with those of the Open

Systems Interconnection (OSI) model defined in the ISO/IEC 7498-1 standard [38] and

with the commonly-used TCP/IP stack [39]. Since NFC devices typically communicate in a

point-to-point fashion, there is no need for the session (e.g., sockets), transport (e.g., TCP),

and network (e.g., IP) layers.

The following subsections deal with each layer in the NFC Forum stack, starting with

the lowest layer.

9

Figure 2.3: Structure of the NFC protocol layers. Compared to the OSI and TCP/IP
models, the NFC model has no layers for networking with more than two devices. The
NFC Analog and NFC Digital layers in NFC Forum devices expand upon NFCIP-1, while
the higher layers are only defined for NFC Forum devices.

2.3.1 Analog Interface

The Near Field Communication Interface and Protocol (NFCIP-1) standard (ECMA-

340 [33], ISO/IEC 18092:2013[28]) defines the analog interface for NFC devices. The NFC

Forum’s ANALOG [36] specification further defines the analog interface and includes mul-

tiple types of NFC and NFC-compatible devices. One common device type is the ISO/IEC

14443 proximity card [40] and, indeed, much of the NFC analog standard is based on the

ISO/IEC 14443 radio interface standard. As a result, NFC devices are capable of read-

ing such proximity cards. Notable examples of these cards include NXP Semiconductor’s

MIFARE [41], biometric passports [42], and EMV payment cards [43].

10

Table 2.2: Modulation and coding schemes used for NFC.

Device Mode Data Rate Encoding Modulation

Active fc/128 (∼106 Kbps) Modified Miller ASK 100%

Passive fc/128 (∼106 Kbps) Manchester ASK 10%

Active fc/64 (∼212 Kbps) Manchester ASK 10%

Passive fc/64 (∼212 Kbps) Manchester ASK 10%

Active fc/32 (∼424 Kbps) Manchester ASK 10%

Passive fc/32 (∼424 Kbps) Manchester ASK 10%

All NFC devices operate on the 13.56 MHz carrier frequency (fc) and support three

data rates: fc/128,
fc/64, and

fc/32, or approximately 106 Kbps, 212 Kbps, and 424 Kbps.

The modulation and coding schemes employed by an NFC device depends on whether it is

“active” or “passive”, and on what data rate it is using. Table 2.2 summarizes the different

modulation schemes used by NFC devices [40][33].

An active device uses amplitude shift keying (ASK) to modulate its EM field when

transmitting data to another device. Two levels of ASK are supported. At a data rate of

fc/128, the device uses a 100% scheme such that a high level is the default EM field strength

and a low level has less than 5% of that strength. Otherwise, the device uses a 10% scheme,

where a high level is the default EM field strength and a low level is approximately 82%

of that strength. Passive devices employ load modulation in order to generate a subcarrier

with a frequency (fs) of fc/16 (∼848 KHz) [40]. The subcarrier is modulated with a 10%

ASK scheme.

As with modulation, the encoding employed by an NFC device varies. Active devices,

both Initiators and Targets, use a modifier Miller coding scheme at a data rate of fc/128.

This scheme defines three sequences, as shown in Figure 2.4. The NFCIP-1 standard uses

these sequences in the following manner [40]:

• For a logic ‘1’, use Sequence X,

11

Figure 2.4: Plot of the modified miller encoding of the ASCII letter ‘h’. The dashed lines
mark the bit periods. This plot assumes that the bit prior to time zero was not a logic ‘0’
or a “start of communication” bit. Note that there are eight periods of the subcarrier in
each bit period and that the subcarrier is modulated with on-off keying (OOK), or ASK
100%.

• For a logic ‘0’, use Sequence Y, except:

– For two or more contiguous ‘0’s, use Sequence Z for all but the first,

– For a logic ‘0’ after the “start of communication”, use Sequence Z,

• For “start of communication”, use Sequence Z,

• For “end of communication”, use a logic ‘0’ followed by Sequence Y.

• For “no information”, use two or more Sequence Ys.

For active devices using a date rate of fc/64 or
fc/32 and for all passive devices, NFCIP-1

mandates a Manchester encoding. Passive devices operating at a bit rate of fc/128 use on-off

keying (OOK), while all devices operating at fc/64 or fc/32 use an alternative Manchester

12

Figure 2.5: Plot of the Manchester encoding of the ASCII letter ‘h’ for passive devices
operating at fc/128. The dashed lines mark the bit periods. Note that there are eight
periods of the subcarrier in each bit period and that the subcarrier is modulated with ASK
10%, so the lower field strength is 82% of the maximum.

scheme. Figure 2.5 illustrates the former scheme, with sequences D, E, and F defined as

follows [40]:

• For a logic ‘1’, use Sequence D,

• For a logic ‘0’, use Sequence E,

• For “start of communication”, use Sequence D,

• For “end of communication”, use Sequence F,

• For “no information”, use no subcarrier

Figure 2.6 illustrates the scheme for devices operating at fc/64 or
fc/32 [33]. The NFCIP-

1 standard allows for a polar reversal of Figure 2.6 and polarity is determined during the

SYNC transmission (see Section 2.3.2).

13

Figure 2.6: Plot of the Manchester encoding of the ASCII letter ‘h’ for devices operating
at fc/64 or fc/32. The dashed lines mark the bit periods. Each bit period in this Figure is
equal to 4 ∗ fs, so the data rate is fc/64. A device operating at fc/32 would have bit periods
of 2 ∗ fs. Note that each bit is modulated with ASK 10%, so the lower field strength is 82%
of the maximum.

Finally, note that devices operating at fc/128 transmit bytes with the least-significant

bit first and that devices operating at fc/64 or
fc/32 transmit bytes with the most-significant

bit first.

2.3.2 Digital Interface

The second layer in the stack, the Digital Interface, is defined by the NFCIP-1 standard

(ECMA-340 [33], ISO/IEC 18092:2013 [28]) and is further expanded upon by the NFC

Forum’s DIGITAL specification [44]. These standards are partially based on the ISO/IEC

14443-3:2011 standard [45] for proximity cards. The Digital Interface has two primary

responsibilities: device detection and initialization, and data exchange. Figure 2.7 shows

the flow of a NFC transaction in both the active and passive modes.

14

Figure 2.7: Flowchart of a NFC transaction. The Initiator determines the data rate after
switching to the appropriate communication mode, but before activating the Target [33].

15

Figure 2.8: Timing of the Initial RF Collision Avoidance algorithm. The Initiator randomly
chooses the value of n in the range 0–3. In this diagram, the value is 3. As always, the
value of fc is 13.56 MHz. This Figure is not to scale [33].

2.3.2.1 Single Device Detection and Initialization

In order to prevent interference with other devices operating in the 13.56 MHz frequency

band, a NFC device will not switch on its EM field if it detects another EM field with a

strength of at least 0.1875 A/m (rms). The “Initial RF Collision Avoidance” protocol is

illustrated in Figure 2.8. When the Initiator needs to activate its EM field to begin a

transaction, it first chooses a random integer value in the range 0–3. If the device detects

no EM field after TIDT + n ∗ 512/fc seconds, where TIDT = 4096 ∗ fc, then it switches its

EM field. Otherwise, the device begins the algorithm again. The shortest possible wait

time for an Initiator to switch on its EM field is approximately 350 µs, though it must wait

at least another TRFG = 5, 000 µs to begin sending data.

The single device detection and device initialization algorithms are different for devices

using active mode than for devices using passive mode.

Active Mode — Target devices in the active communication mode perform an algorithm

similar to the Initiator’s “Initial RF Collision Avoidance” algorithm. Once the Target has

received the first command from the Target, it waits at least TADT + n ∗ 512/fc seconds

before switching on its EM field, where TADT is at least 768/fc, but not more than 2, 559/fc

and n is again a randomly chosen integer in the range 0–3. This wait provides the Initiator

time to switch off its EM field. Once the Target has switched on its EM field, it must wait

at least TARFG = 1024/fc seconds before sending the response. Since n is random, not all

Targets will respond to the Initiator’s command at the same time. The Target in range

with the lowest value for n will respond first and the other devices will not respond at all.

16

Figure 2.9: Timing of the initial active mode device configuration. Here, the Initiator
activates the Target and requests to change some parameters. The Target responds to both
commands. Next, the Initiator could begin using the Data Exchange Protocol [33].

If more than one Target device responds at the same time, then the Initiator will detect

a data collision and start the process again. This process continues until only one Target

responds. After a Target is activated, the Initiator and Target both use n = 0 and the

Target’s RF collision avoidance algorithm for further communications.

In the active communication mode, the Initiator first sends the attribute request com-

mand (ATR REQ) and the Target responds with the attribute response (ATR RES). Next,

the Initiator can choose to change some communication parameters, such as the data rate

and maximum frame length, by sending the parameter select request (PSL REQ), which

the Target answers with a parameter select response (PSL RES), or enter the data exchange

protocol by sending a data exchange protocol request (DEP REQ), which the Target an-

swers with a data exchange protocol response (DEP RES). These commands are further

defined in Section 2.3.2.2. Figure 2.9 shows the initialization process for active mode com-

munication. Following the PSL RES, the Initiator would likely issue a DEP REQ to begin

data exchange.

Passive Mode — For devices operating in the passive communication mode, there are

two different algorithms for single device detection and device configuration. The first is a

modified version of the algorithm described in ISO/IEC 14443-3:2011 [45] and is used for

devices operating at fc/128, which the NFC Forum standards call NFC-A, and the second

applies to devices operating at fc/64 or fc/32, called NFC-F. In all cases, the Initiator’s EM

field remains switched on for the duration of the transaction and the Target, being passive,

17

Figure 2.10: a) A short frame, used for starting communication. b) A standard frame, used
for most commands. Standard frames can have n ≥ 1 bytes and each byte has odd parity,
P. This Figure shows a frame with 2 bytes. c) A bit-oriented frame used for single-device
detection. Here, the Initiator sends three full bytes and three additional bits; the Target
sends the remaining five bits of that byte and then three more full bytes. The total number
of bits in a bit-oriented frame is always 56, but the split can occur anywhere. If the split
occurs mid-byte, as it does in this Figure, then the parity bit for the split byte is ignored.

never generates its own field.

NFC-A Devices — The first algorithm, used for devices operating at fc/128 in passive

mode, employs three types of frames, as shown in Figure 2.10. Short frames are used to begin

transactions, bit-oriented SDD frames are used for the single-device detection algorithm,

and standard frames are used for all other commands and data. All frames are transmitted

in pairs so that each request from the Initiator is paired with a response from the Target.

The time that the Target must wait before sending a response depends on the request that

the Initiator sent. For the commands used in the anti-collision algorithm, devices must use

a value of 1236/fc so that they respond synchronously. For other commands, the delay can

be longer, but not shorter. The time that the Initiator waits after receiving a response is

at least 1772/fc.

The first command that the Initiator sends is sense request (SENS REQ), a short frame,

which all Target devices in range answer with sense response (SENS RES), a standard

frame of two bytes. If only one device responds, then the Initiator sends out a single-

device detection request (SDD REQ) to get the device’s unique ID (NFCID1). The Target

responds with its NFCID1 (SDD RES). Next, the Initiator sends out a SEL REQ command

with the Target’s NFCID1 and the Target responds with a select acknowledge (SAK). If the

18

Table 2.3: Coding of the SAK frame.

b8 b7 b6 b5 b4 b3 b2 b1 Meaning

X X X X X 1 X X NFCID1 not complete.

X 1 X X X 0 X X NFCID1 complete, Target supports

NFCIP-1, Target supports

ATR REQ.

X 0 X X X 0 X X NFCID1 complete, Target supports

NFCIP-1, Target does not support

ATR REQ.

SAK frame indicates that the NFCID1 is not complete, then this particular Target device

has a “double” or “triple” NFCID1 and the Initiator repeats the SDD REQ command to

get the second (and possibly third) part of the NFCID1. The final SAK response indicates

that the NFCID is complete. Table 2.3 outlines the possible SAK values for the NFCIP-1

standard.

If more than one device responds to the SENS REQ command, then the Initiator must

perform the anti-collision algorithm. Figure 2.11 shows the flow of this algorithm. First,

the Initiator sends the single-device detection request (SDD REQ), a standard frame with

two bytes, and listens for the SDD RES from each Target. The SSD RES contains the

NFCID1 (or the first part of the NFCID1 for devices with “double” or “triple” NFCID1s).

If there is no collision in the SDD RES frames, then the Initiator asks for the second part

of the NFCID1, and continues this process until a collision is found. When a collision is

found, the Initiator sends a bit-oriented SDD REQ frame with the received NFCID1 up to

the bit before the collision and ‘1’ appended to the end. This process repeats until there

is no collision, at which point the Initiator gets the Target device’s full NFCID1, stores it,

and then sends a sleep request (SLP REQ) to remove that device from the process. The

Initiator again sends out a two-byte SDD REQ and repeats the process until it has found

all available Target devices.

19

Figure 2.11: Flowchart of the anti-collision algorithm for passive fc/128 devices. Arrows
pointing right indicate frames sent by the Initiator and arrows pointing left indicate frames
sent by the Target(s) [45][44][46].

20

Figure 2.12 illustrates the single-device detection algorithm with an example. In this

Figure, there are two Target devices. The first has a normal NFCID1 of 50-40-30-20h

and the second has a “double” NFCID1 of 80-70-60-50-40-30-20h. The first byte of each

SDD REQ depends on the cascade level where 93h is level one, 95h is level two, and 97h is

level three. The upper half of the second byte determines the number of full bytes in the

command (not including the CRC) and the lower half determines the number of extra bits

sent. The final byte of each SDD RES is an exclusive-OR of the previous four bytes.

NFC-F Devices — The final anti-collision algorithm applies to passive devices oper-

ating at fc/64 or
fc/32. This algorithm uses only one frame format, illustrated in Figure 2.13.

The following rules apply to the frames in Figure 2.13:

• The Preamble is at least 48 bits of encoded zeros,

• SYNC can be inverted (4Dh B2h) to use reverse polarity encoding (see Section 2.3.1).

• TSN is 00h, 01h, 03h, 07h, or 0Fh and is the number of time slots to use for the

anti-collision algorithm,

• NFCID2 is the eight-byte device ID,

• PAD is an eight-byte padding field, which is ignored,

• CRC is calculated according to A.3 of [44].

In order to detect devices, the Initiator first sends a Polling Request (SENS REQ) frame

with TSN configured for the number of time slots that the Initiator supports. NFC Forum

devices conforming to the ACTIVITY specification must use a TSN value of 0Fh [46] when

using the anti-collision algorithm, though the value of TSN can be set to 00h to disable the

algorithm. A time slot is 16, 384/fc seconds long and there is a delay if 32, 768/fc seconds

between the end of the SENS REQ frame and the start of the first time slot.

Once the SENS REQ is finished, each Target device in range generates a random integer

value, R, in the range 0–TSN. The Targets then respond with Polling Response (SENS RES)

frames that contain their unique NFCID2 numbers when their time slots arrive. Figure 2.14

21

Figure 2.12: Example of the anti-collision algorithm for passive fc/128 devices with two
Targets. This Figure does not show SOC, EOC, or parity bits. For details about the
CRC A field, please consult Appendix B of ISO/IEC 14443-3:2011 [45].

22

Figure 2.13: Anti-collision frame format for passive fc/64 and fc/64 devices. a) The
SENS REQ Polling Request frame sent by the Initiator during device detection. b) The
SENS RES Polling Response frame sent by the Target(s) during device detection [27]

.

Figure 2.14: Example of the anti-collision algorithm for NFC-F devices. In this Figure, the
Initiator can recognize Target devices 1, 3, 5, and 6, but not Target devices 2 and 4. Since
there was a collision in time slot 3, the Initiator will repeat the SENS REQ frame until it
can detect the missing devices [27][46].

shows this process. The Initiator can recognize any device that uniquely responds in a time

slot. When more than one Target device responds in the same time slot, a collision occurs

and the Initiator cannot recognize those devices. When this happens, the Initiator repeats

the process until all it has discovered all devices in range.

2.3.2.2 Data Exchange Protocol

Once single-device detection and anti-collision algorithms are complete, the Initiator can

begin the Data Exchange Protocol (DEP). This protocol allows applications running on

two NFC devices to communicate. There are three primary phases to the DEP. Figure 2.16

outlines the activation, data exchange, and deactivation phases for NFC devices using the

passive communication mode and Figure 2.17 does the same for active devices. The process

is largely the same in both communication modes. Once the Initiator has completed the

single-device detection algorithm, it exchanges attributes with the Target (and possibly

alters some of them) before moving into the DEP. Once communication is finished, the

23

Figure 2.15: a) Frame format for the Data Exchange Protocol (DEP) at a bit rate of fc/128.
b) Frame format for the DEP at bit rates of fc/64 and fc/32.

Initiator can deselect the Target and begin communicating with another Target or it can

release all Targets and begin the process again.

For the DEP, all commands and responses use the same frame format, though this

format varies slightly with the bit rate. Figure 2.15 shows the format of the DEP frame.

Note that only the starting bytes differ with bit rate. The length field (Len) is always set

to the number of bytes in the payload field plus one and has values in the range 3–255. The

CMD1 and CMD2 bytes are always required. Some commands have additional required

arguments. Finally, the CRC 1 is calculated according to appendix A.1 of the NFCIP-1

standard and CRC 2 is calculated according to appendix A.3 of the same [27].

Protocol Activation — The first step in the protocol activation phase is the attribute

request (ATR REQ). Figure 2.18 shows the formats of the ATR REQ command and its

paired ATR REQ response. The ATR REQ command establishes another unique device

identification number (NFCID3i for active mode and fc/128 passive mode, NFCID2t for

others) that is valid until the Initiator releases the Target in the deactivation phase. If the

Initiator has selected more then one target for data exchange, then it can use the DIDi field

to specify which target a command is meant for, up to a maximum of 14 Target devices. The

BSi and BRi fields indicate which data rates the Initiator supports (BSi for sending data,

BRi for receiving data). The PPi field, also shown in Figure 2.18, has options for NFC-

SEC (a cryptographic protocol, see Section 3.4), packet length reduction, and NAD, which

provides packet routing for the application layer, similar to the way that sockets work in a

typical TCP/IP stack. If there are other proprietary settings, then the ATR REQ allows

24

Figure 2.16: Flowchart of the Data Exchange Protocol for passive communication. If a
Target does not support the ATR REQ command, then it is not NFCIP-1 compliant and
thus NFC-DEP is not possible [27][46].

25

Figure 2.17: Flowchart of the Data Exchange Protocol for active communication. Recall
that the ATR REQ/ATR RES sequence is the anti-collision protocol for active communi-
cation. In the active mode, deselected devices must be reactivated with a wakeup request
(WUP REQ) before the Initiator can communicate with them again [27][46].

26

Figure 2.18: a) Format of the ATR REQ command. The bytes G(i) are optional and allow
the devices to specify additional, non-standard information. b) Format of the ATR RES
response. C) Format of the PPi field.

additional bytes of data, though the total payload cannot exceed 255 bytes. The ATR RES

response is very similar to the ATR REQ command, though it provides an additional field

to specify a timeout value (TO).

Other commands used in the activation phase include the parameter select request

(PSL REQ) and its paired response (PSL RES) and the wakeup request (WUP REQ) and

its paired response (WUP RES). The PSL REQ allows the Initiator to specify the Initiator-

to-Target bit rate, the Target-to-Initiator bit rate, and the maximum frame length for future

DEP communication. The WUP REQ allows the Initiator to wake an active-mode Target

from the sleep state [27].

Data Exchange — The only two commands used for data exchange are the Data Ex-

change Protocol (DEP) Request (DEP REQ) and DEP Response (DEP RES). These two

commands share the same payload format, which is shown in Figure 2.19. The DID and

NAD fields are the same as those used in the activation phase. The PFB field determines

the type of each data frame. There are four possible options:

1. ”000” is an Information PDU (primary data unit), which contains information used

by the application layer,

2. ”001” is a Protected PDU, which is a PDU using the NFC-SEC protocol (see Sec-

tion 3.4),

3. ”010” is an ACK/NACK PDU, which acknowledges the last DEP frame,

27

Figure 2.19: Payload of a DEP frame. The start and CRC fields depends on which bit rate
is in use, as described in the text.

4. ”100” is a Supervisory PDU, which comes in two flavors:

(a) Attention, which allows the Initiator to check that a Target is still present,

(b) Timeout Extension, which asks the Initiator for more time to complete a com-

mand.

In addition, the PFB field can specify that that Multiple Information data chaining

feature is active, which indicates to the receiving device that the incoming data is contained

in more than one frame. When using this feature, each frame requires an ACK before the

next frame can be sent.

Protocol Deactivation — To deactivate a Target, the Initiator has two options. First,

it can use the deselect request (DSL REQ, DSL RES). This command releases the device ID

(DID) that the Initiator had assigned for the Target. To reactivate a Target after using this

command, the Initiator must issue a WUP REQ in active mode or begin the single-device

detection algorithm in passive mode. In both cases, the Target received a new DID.

Alternatively, the Initiator can issue the release request (RLS REQ, RLS RES), which

instructs Targets to return to their initial state. To communicate with a Target after issuing

this command, the Initiator must begin with the Initial RF Collision Avoidance algorithm

and proceed through the single-device detection and protocol activation phases.

2.3.3 Logical Link Control

The NFCIP-1 standard specified the operating of NFC devices through the analog and

digital interfaces. Indeed, the NFCIP-1 specification is all that one needs to create NFC-

28

compliant devices. However, the NFC Forum maintains its own collection of NFC standards

that further clarify and expand the ISO/IEC standards. Some of these standards clarify

existing ISO/IEC standards, such as ANALOG [36], DIGITAL [44], and ACTIVITY [46].

Others add new functionality on top of the underlying NFCIP-1 specifications. The next

layer in the stack is the Logical Link Control Protocol (LLCP), which is specified by the

LLCP standard from the NFC Forum [37]. This layer is approximately equivalent to the

top half of the OSI model’s Data Link Layer (see Figure 2.3).

The LLCP simplifies the transfer of data from one NFC device to another by providing a

uniform interface to higher layers in the stack. Among the features that the LLCP provides

are link activation, supervision, and deactivation, aggregation and disaggregation of smaller

digital-layer frames, and a “synchronous balanced transfer mode”, which allows Target

devices to initiate communication and manage connections. This last feature contrasts

with vanilla NFCIP-1, which reserves these operations for Initiator devices. Figure 2.20

shows the structure of the primary components of the LLC layer.

Connection-oriented transport provides services similar to the Transmission Control Pro-

tocol (TCP) from the Internet Protocol suite. Before exchanging data, two devices using

the connection-oriented transport feature first establish a data link connection. Then, each

information packet sent by one device is acknowledged by the receiving device once it has

passed that information up to the application layer. Devices maintain a sliding window of

sent, unacknowledged packets (PDUs) that can vary in size with a maximum of 15 unac-

knowledged PDUs. This transport mode guarantees sequential delivery of information.

In contrast, connection-less transport provides very few features. Similar to the User

Datagram Protocol (UDP) from the Internet Protocol Suite, connection-less transport does

not guarantee delivery of information. There is no established link between devices and

PDUs are not acknowledged. While the NFCIP-1 protocols guarantee that PDUs will reach

the intended device, the connection-less transport mode does not guarantee that they will

reach the intended application.

29

Figure 2.20: Structure of the LLC layer. The MAC mapping sublayer allows the LLC to
interface with various other digital interfaces, but this text only considers those NFC devices
using the NFC-DEP protocol [37].

2.3.3.1 LLCP Frames

All LLCP PDUs use the same frame format, which is illustrated in Figure 2.21. The

Destination Service Access Point (DSAP) field identifies which service on the receiving

device the PDU is intended for. Similarly, the Source SAP (SSAP) field maps to the service

that generated the PDU on the sending device. Addresses come in three flavors, according

to Table 2.4 [37][47].

The PDU Type (PTYPE) field specifies the type of PDU. Some notable PTYPEs are

CONNECT (“0100”) for establishing connection-oriented transport links, I (“1100”) for In-

formation PDUs, and DISCONNECT (“0101”) for disconnecting connection-oriented trans-

port links. Some LLCP PDUs require a sequence number (e.g., Information PDUs), while

others do not (e.g., CONNECT, DISCONNECT). Finally, the Information field contains

any additional parameters or data. The maximum length of this field is 128 bytes, though

30

Table 2.4: Service Access Point Address Mapping for LLCP.

SAP Description

00h–0Fh Well-Known Service Access Points

00h · · · LLCP Link Management

01h · · · Service Discovery Protocol (SDP)

04h · · · Simple NDEF Exchange Protocol (SNEP)

10h–1Fh Services in the local service environment that are advertised by SDP

20h–3Fh Services in the local service environment that are not advertised by SDP

Figure 2.21: Format of the LLCP PDU. The value of M is 0–128 by default, though devices
can specify a larger maximum upon link establishment. Not all PDUs have the Sequence
field [37].

devices can establish a higher maximum when establishing a link.

2.3.3.2 MAC Mapping

The LLC layer can support different MAC mappings. However, the NFC Forum only

specifies the NFC-DEP mapping. This mapping sits atop the Digital Interface described in

Section 2.3.2, but with the following notable restrictions [37]:

• The Device ID (DID) feature is not used.

• The NAD feature is not used.

• Timeout Extension PDUs are not used.

• The Attention PDU is used only for exceptions.

31

Figure 2.22: Example of an ATR REQ that supports LLCP. This device uses version 1.1
of LLCP, keeps the default MIU of 128, supports the LLC Protocol and the Simple NDEF
Exchange Protocol (see Section 2.3.4), keeps the default LTO of 100 ms, and supports both
connection-oriented and connection-less transport modes.

• The payload length value for ATR REQ and similar commands is always set to “11”

for a maximum length of 255 bytes.

2.3.3.3 Activating a Link

In order to activate the LLC protocol, the MAC sets the first three General Bytes of

ATR REQ (G(1)–G(3)) to “46h 66h 6Dh”. Following this, the MAC writes a number of

additional LLC-related parameters into the General Bytes field. Table 2.5 [37] describes the

parameters, called TLVs (type, length, value), and Figure 2.22 shows an example ATR REQ

frame with support for LLCP. Only the VERSION TLV is mandatory and only the TLVs

included in Table 2.5 are supported.

Once the Target device receives the LLCP-enabled ATR REQ, it issues an ATR RES

with the same format for the General Bytes field. Then, both devices continue the normal

NFC-DEP activation algorithm, including parameter selections. When both devices enter

the DEP stage, they notify their local LLC layers that a connection is complete. At this

point, the LLC layer takes over.

The LLC layers must agree on a protocol version number before proceeding. If the

major and minor version numbers for both the ATR REQ and the ATR RES match, then

the version number is that of the ATR REQ. If the major numbers match, but the minors

do not, then the version number is the lower of the two. If the major numbers do not

match, then the device with the higher major number determines if the other device’s

version number is compatible. If so, then both devices use the lower version number. If

not, then the link activation fails.

32

Table 2.5: TLVs for NFC-DEP ATR REQ frames.

Name Type Length Value

VERSION 01h 01h Bits 7–4 encode the major version number. Bits 3–0

encode the minor version number.

MIUX 02h 02h The Maximum Information Unit Extension specifies

the maximum length of the Information field of a

LLCP PDU. MIUX =MIU − 128

WKS 03h 02h The Well-Known Service parameter encodes which

well-known services this device is configured to use.

The lsb is always ‘1’ since this device supports the

LLC Protocol.

LTO 04h 01h Link Time-Out specifies the maximum time between

the last bit received by a device and the first bit

transmitted in response.

OPT 07h 01h Bit 1 is set if the device supports connection-oriented

transport. Bit 0 is set if the device supports

connection-less transport.

Once the version number is agreed to, the devices determine the maximum length of

the Information field of LLCP PDUs. If a device did not specify the MIUX TLV in the

ATR REQ or ATR RES, then the default of 128 bytes is used. Otherwise, each device

uses the value that it received in MIUX + 128. Each device has its own MIU and they

do not need to be equal. A transmitting device never violates the receiving device’s MIU,

regardless of its own MIU value.

2.3.3.4 Exchanging Data

With the link established, the two devices can begin to exchange application data.

In this phase, the Initiator sends DEP REQ frames to the Target and the Target sends

33

DEP RES frames to the Initiator. When a LLCP PDU does not fit into a single DEP

frame, the Multiple Information chaining mechanism described in Section 2.3.2.2 is used.

When receiving chained data, the MAC reassembles it into a single LLCP PDU before

passing it up to the LLC layer. During the date exchange phase, either the connection-less

transport mode or the connection-oriented transport mode can be used.

Connection-less Transport — The connection-less transport mode does not require

the establishment of a data link and thus also does not require the disconnection of such

a link. In this mode, all information is sent with the Unnumbered Information (UI) PDU,

which does not use a sequence number. Both devices are able to send and received UI

PDUs at any time, within the limits of the NFC-DEP protocol, and neither device ever

acknowledges receipt of a UI PDU from the other device. Both devices are free to ignore

incoming PDUs for any reason.

Connection-oriented Transport — In contrast to connection-less mode, the connection-

oriented transport mode does require establishing a logical data link before exchanging other

data. A device can request to establish a data link with the CONNECT PDU, which spec-

ifies the MIUX to use for the connection, the receive window size, and the name of the

service on the remote device to which the local device wishes to establish a data link. The

remote device responds with a Connection Complete (CC) PDU, which specifies the MIUX

and receive window size for the remove device.

With the data link established, the two devices can now exchange data using Information

(I) PDUs. These PDUs use a sequence number to ensure that the receiving device receives

them in the correct order. Each I PDU must be acknowledged by the receiving device with

a Receive Ready (RR) PDU. If the receiver is not ready for the next I PDU, it instead sends

the Receive Not Ready (RNR) PDU. When it later becomes ready, it then sends the RR

PDU. If there is a problem with a received I PDU, then the receiver can reply with a Frame

Reject (FRMR) PDU to inform the sending device of the problem and the sending device

can choose to resend the errored frame. Using this protocol, both devices can be sure that

each frame is sent and received in the proper order and without error.

34

Figure 2.23: Simple NDEF Exchange Protocol (SNEP) frame format. The upper nibble of
Version encode the major version number while the lower nibble encodes the minor version
number. The Code is a request code for frames sent by a SNEP client and a response code
for frames send by a SNEP server. Not all frames have the Information field [48].

When a device wishes to terminate a data link, it sends the Disconnect (DISC) PDU

with the DSAP field populated with the access point of the service to disconnect from. In

response, the remote device informs the application-layer service of the disconnection and

then issues the Disconnect Mode (DM) PDU to confirm the data link disconnection.

2.3.3.5 Deactivating a Link

To terminate the LLC link connection, a device issues the DISC PDU with the DSAP set

to 00h to indicate the LLCP service. The other device responds with the DM PDU. Once

this is complete, the LLC layers inform their respective MAC layers to disconnect. The

Initiator sends the DSL REQ frame, which the Target answers with the DSL RES frame.

This completes both the NFC-DEP and LLC protocols.

2.3.4 Simple NDEF Exchange Protocol

The Simple NDEF Exchange Protocol (SNEP), defined by the NFC Forum’s SNEP

specification [48] sits atop the LLC layer and acts as a service that allows two NFC Forum

devices to exchange NFC Data Exchange Format (NDEF) messages (see Section 2.3.5). The

SNEP service is found at SAP 04h [47]. SNEP frames are transmitted in the Information

field of LLCP PDUs and have the format shown in Figure 2.23. The largest NDEF message

that can fit into a SNEP frame is 232 − 1 bytes because this is the largest value that fits

into the 32-bit Length field.

When a SNEP message does not fit into a single LLCP PDU, it is split into multiple

PDUs. Upon receiving the first PDU, the receiving device checks the protocol version

number of the received frame using an algorithm similar to the one used by the LLC

Protocol. If the received protocol version is supported, then the receiving device can send

35

Figure 2.24: Example of a fragmented SNEP message. The web server sends a URL encoded
as a NDEF message to the SNEP client, which sends a “Get” request to the SNEP server.
The SNEP server passes the URL to the web server, which retrieves the document and
passes it to the SNEP server as a NDEF message. Since the document is too large to fit
into one SNEP message, the SNEP server splits it into four fragments. Once the SNEP
client has received all four fragments, it passes the NDEF document back to the web browser
[48].

a “Continue” frame, which prompts the sending device to send the remaining pieces of the

SNEP message. If the protocol version is not supported, then the receiving device sends a

“Unsupported Version” frame and the transaction is complete. Figure 2.24 illustrates an

example in which the SNEP client requests a message from a SNEP server and the SNEP

server’s response does not fit into a single SNEP frame.

There are four request codes that the SNEP client can send to a SNEP server, which

are summarized in Table 2.6 [48]. The “Continue” request code asks the SNEP server to

send the remaining fragments of a fragmented SNEP message. The Information field of

a “Continue” request is empty and so the Length field is zero. If the client is unable or

unwilling to receive the remaining fragments, then it instead sends a “Reject” request. This

request also contains an empty Information field.

36

Table 2.6: SNEP request codes.

Code Name Info Description

00h Continue NO Tells the server to send remaining message fragments.

01h Get YES Asks the server to send a NDEF message.

02h Put YES Asks the server to accept a NDEF message.

7Fh Reject NO Tells the server not to send remaining message

fragments.

The “Get” request code asks the server to send a NDEF message. The Information field

of a “Get” message contains a 32-bit field specifying the maximum length of the response

message that the client can handle and then a single NDEF message specifying which

message to retrieve. For instance, a web browser on the client device might send a URL as

the NDEF message in a “Get” request and a an application running on the SNEP server

device would then send the contents of the document located at that URL as an NDEF

message in response. Finally, the client can send a “Put” request that asks the server to

accept an NDEF message. The server can then pass this message up to the appropriate

application.

Table 2.7 [48] summarizes the eight response codes that a SNEP server can send. Two

of them, “Continue” and “Reject”, work just as they do for the SNEP client. The server

can also send the “Success” code, which indicates that the “Get” or “Put” request was

successful. In the case of a “Get”, the “Success” response contains the requested NDEF

message. For “Put” requests, the “Success” response has no Information field.

The rest of the server’s response codes deal with error conditions. “Not Found” indicates

that the server could not find the requested NDEF message, “Excess Data” indicates that

the server has found the requested message, but that it is too large to send to the client, “Bad

Request” indicates that the server could not understand the request (possibly because it was

malformed), “Not Implemented” means that the server cannot fulfill the request because

it does not support the required functionality, and “Unsupported Version” means that the

37

Table 2.7: SNEP response codes.

Code Name Info Description

80h Continue NO Tells the client to send remaining message fragments.

81h Success YES Informs the client of a successful Get or Put operation.

C0h Not Found NO Informs the client that the requested NDEF message

was not found.

C1h Excess Data NO Informs the client that the requested NDEF message is

too large.

C2h Bad Request NO Informs the client that the server could not understand

the request.

E0h Not

Implemented

NO Informs the client that the server cannot fulfill the

request.

E1h Unsupported

Version

NO Informs the client that the server does not support its

protocol version.

FF Reject NO Tells the client not to send remaining message

fragments.

server does not support the SNEP version that the client is using. None of these error code

frames have an Information field.

2.3.5 NFC Data Exchange Format

The NFC Data Exchange Format (NDEF) message and record are specified by the

NFC Forum’s NDEF specification [49]. The goal of NDEF is to provide NFC devices

with a simple, uniform way to exchange data of any type. A NDEF message is one or

more NDEF records. While one NDEF message cannot contain another NDEF message,

a NDEF message can contain a NDEF record which itself contains a full NDEF message.

Thus, NDEF messages can be nested. There is no limit to the number of NDEF records

contained in a NDEF message.

38

Figure 2.25: Format of an NDEF record. The fields with italicized labels have variable
lengths. The size of the Type, ID, and Payload fields are encoded in the Type Length,
Payload Length, and ID Length fields, respectively. If the IL flag is not set, then neither
the ID Length field nor the ID field is included in the record. If the Type Length or Payload
Length is zero, then the respective Type or Payload field is not present in the record [49].

Figure 2.25 show the format of a NDEF record. The Message Begin (MB) flag is set for

the first NDEF record in a NDEF message and the Message End (ME) flag is set for the

final NDEF record in a NDEF message. If the message has only one record, then both flags

are set. The Chunk Flag (CF) flag indicates that a record is either the first chunk or an

intermediate chunk of a chunked payload. The final chunk of a chunked payload does not

set CF. The Short Record (SR) flag indicates that this NDEF record is of the short record

format (see Figure 2.26). Finally, the ID Length (IL) flag is set when the ID Length field is

present in the record. The Type Name Format (TNF) field encodes the format of the Type

field.

The maximum length of the payload in a normal NDEF record is 232 − 1 bytes because

the Payload Length field is 32 bits. Longer application payloads can be separated into

chunks using the chunked payload feature. The full payload must be contained in a single

NDEF message, which has no limit on size. Chunked payloads have an initial record, zero or

more intermediate records, and a final record. The initial record of a chunked payload also

specifies the payload type and (optionally) the ID for the entire set. Subsequent records set

39

Figure 2.26: Format of an NDEF short record. Short records have a maximum payload size
of 255 bytes, but are otherwise identical to normal NDEF records [49].

the TNF field to 06h (unchanged), set the IL flag to ‘0’, set the Type Length field to zero,

and omit the Type, ID Length, and ID fields entirely. Each record in the chunked payload

sets its Payload Length flag to the length of the Payload field for that specific record and

not for the overall payload.

There are no restrictions on what the NDEF payload contains. However, the NDEF

record does provide a system for helping an NFC device determine to which application

it should send an incoming NDEF message and from which application such a message

was generated. Table 2.8 [49] summarizes the possible encodings for the Type field. The

contents of the Type field determine the specific type of the payload. For instance, a JPEG

image would have a TNF of 02h (MIME) and a Type of “image/jpeg”.

2.4 Chapter Summary

Near Field Communication (NFC) devices build upon the ideas of Radio Frequency

Identification (RFID). NFC devices communicate with passive devices and tags, including

a subset of RFID devices, and also communicate with other active devices. Regardless of

the mode of operation, NFC devices use a multi-layered communication model similar to the

Internet Protocol Suite or the ISO Model. The NFC Forum expands on the NFC standards

with additional layers, including the NFC Data Exchange Format, which provides a simple,

universal way to exchange information with NFC devices and tags.

40

Table 2.8: TNF encoding for NDEF records.

Value Type Name Format

00h Empty (no payload)

01h NFC Forum Well-Known Type [50]

02h Media Type (MIME) [51]

03h Absolute URI [52]

04h NFC Forum External Type [50]

05h Unknown

06h Unchanged (for chunked payloads)

41

Chapter 3

Cryptography Overview

The ECMA-385 [53] standard describes the NFC Security and Services Protocol (NFC-

SEC) and ECMA-386 [54] describes a means of implementing that protocol. This chapter

describes NFC-SEC and the cryptographic algorithms used to implement it.

3.1 Advanced Encryption Standard

The Advanced Encryption Standard (AES) is a method for encrypting electronic data.

In 2001, the National Institute of Standards and Technology (NIST) announced AES as

Federal Information Processing Standards Publication 197 [56]. Since then, AES has been

adopted by the United States government as a replacement for the Data Encryption Stan-

dard (DES), and the National Security Agency approved the use of AES for encrypting

SECRET and TOP SECRET classified information [57]. Many modern computer proces-

sors have special instructions for quickly encrypting data with AES [58] and many software

libraries take advantage of these special instructions, including the popular OpenSSL secu-

rity suite [59]. In summary, AES is a powerful, widely-used encryption algorithm.

The input to AES is a message, called the plaintext, and the output is an encrypted

message, called the ciphertext. At a high level, AES uses a secret number, called the

cipher key, to perform mathematical operations on the bits that make up the plaintext.

AES supports key sizes or 128, 192, and 256 bits. The NFC-SEC protocol uses a key size of

Parts of this Chapter were submitted for publication to Elsevier Computer Communications [55].

42

Algorithm 3.1: Pseudo code of the AES algorithm.

AES(uint8 in [1 6] , u int8 out [1 6] , u int32 key [4 4]) {

uint8 s t a t e [4] [4] = in ; // s t a t e i s in column major order !

AddRoundKey(s tate , key [3 : 0]) ;

for (round = 1 ; round < 10−1; round += 1) {

SubBytes (s t a t e) ;

ShiftRows (s t a t e) ;

MixColumns (s t a t e) ;

AddRoundKey(s tate , key [(round+1)*4−1: round *4]) ;

}

SubBytes (s t a t e) ;

ShiftRows (s t a t e) ;

AddRoundKey(s tate , key [4 3 : 4 0]) ;

out = s t a t e ;

}

128 bits, so this text focuses on the operation of AES with a key of that size. The plaintext

input must be 128 bits, so longer messages are first subdivided into 128-bit chunks, or

blocks. Then, the AES algorithm is run on each block to produce a 128-bit cipher of that

block. Finally, the cipher blocks are concatenated together to form the final ciphertext.

Algorithm 3.1 contains a pseudo-code implementation of the AES encryption algorithm

for a 128-bit block size with a 128-bit cipher key. This Algorithm makes clear that the

AES algorithm performs ten rounds of transformations on the plaintext to generate the

ciphertext. The rounds are identical, except that the last round omits the MixColumns

transformation. The functions AddRoundKey, SubBytes, ShiftRows, and MixColumns are

explained later in the text.

For the remainder of this text, an 8-bit value is referred to as a byte and a 32-bit value

43

is referred to as a word. Also, note that the state variable uses column major order. Thus,

the plaintext bytes are arranged as follows:

















b15 b11 b7 b3

b14 b10 b6 b2

b13 b9 b5 b1

b12 b8 b4 b0

















3.1.1 Finite Field Math

All bytes in the AES algorithm, including the initial state, are elements of a character-

istic 2 finite field with 256 elements, or GF(28). For example, the binary value “11001010”

is equivalent to “x7 + x6 + x3 + x”. In this field, addition and subtraction operations are

equivalent to exclusive-OR operations (⊕). Multiplication operations (•) are more compli-

cated (see Appendix A for an example of an algorithm) and are always performed modulo

the irreducible polynomial, m(x) = x8 + x4 + x3 + x+ 1, represented in binary notation as

“100011011”. Two numbers in the field are multiplicative inverses if their product modulo

m(x) is 1. For example, the values 57h and 83h are multiplicative inverses [56], where:

(x6 + x4 + x2 + x+ 1) • (x7 + x+ 1) mod x8 + x4 + x3 + x+ 1 = 1.

Four-term polynomials with coefficients that are themselves finite field elements (i.e.,

bytes rather than bits) behave differently than those just described. For instance, consider

the following two polynomials:

a(x) = a3x
3 + a2x

2 + a1x+ a0

b(x) = b3x
3 + b2x

2 + b1x+ b0

where to add these values, we perform exclusive-OR operations on the coefficients, yielding:

a(x) + b(x) = (a3 ⊕ b3)x
3 + (a2 ⊕ b2)x

2 + (a1 ⊕ b1)x+ (a0 ⊕ b0).

Multiplication is again more complex. First, we algebraically expand the polynomial

product and, remembering that addition is equivalent to exclusive-OR, combines like terms.

Thus, we obtain the following:

44

c(x) = a(x) • b(x) = c6x
6 + c5x

5 + c4x
4 + c3x

3 + c2x
2 + c1x+ c0

c0 = a0 • b0 c4 = (a3 • b1)⊕ (a2 • b2)⊕ (a1 • b3)

c1 = (a1 • b0)⊕ (a0 • b1) c5 = (a3 • b2)⊕ (a2 • b3)

c2 = (a2 • b0)⊕ (a1 • b1)⊕ (a0 • b2) c6 = a3 • b3

c3 = (a3 • b0)⊕ (a2 • b1)⊕ (a1 • b2)⊕ (a0 • b3).

As with all multiplication, multiplication with four-term coefficient polynomials is per-

formed modulo another polynomial. For AES, this polynomial is “x4+1”, which will reduce

c(x) to a four-term polynomial (i.e., a word).

Finally, the modular product of two polynomials a(x) and b(x) modulo x4+1 is computed

as follows:

a(x)⊗ b(x) = d(x) = d3x
3 + d2x

2 + d1x+ d0

d0 = (a0 • b0)⊕ (a3 • b1)⊕ (a2 • b2)⊕ (a1 • b3)

d1 = (a1 • b0)⊕ (a0 • b1)⊕ (a3 • b2)⊕ (a2 • b3)

d2 = (a2 • b0)⊕ (a1 • b1)⊕ (a0 • b2)⊕ (a3 • b3)

d3 = (a3 • b0)⊕ (a2 • b1)⊕ (a1 • b2)⊕ (a0 • b3).

3.1.2 Key Schedule

The third parameter to the AES function in Algorithm 3.1, key, is a 44-word (176-byte)

value. This value is computed from the original 128-bit cipher key according to the AES

key schedule. Algorithm 3.2 illustrates the algorithm used to produce this key schedule in

pseudo code [56].

The first sixteen bytes of the expanded key are equal to the first sixteen bytes of the

original cipher key. Each following word is equal to the exclusive-OR of the previous word

and the word four prior. For each fourth word, an additional transformation is applied.

Each four-word key produced by this key expansion is considered a round key. In total,

there are eleven such keys.

The SubWord function applies the SubBytes function described in Section 3.1.4 to each

byte in the word, substituting it for another value found in a pre-computed lookup ta-

ble. RotWord rotates the bytes in a word one position left so that {a3, a2, a1, a0} becomes

{a2, a1, a0, a3}. Finally, the Rcon(i) function computes the value x(i−1) in GF(28) using

45

Algorithm 3.2: Pseudo code of the AES key expansion.

KeyExpansion(u int8 cKey [1 6] , u int32 eKey [4 4]) {

uint32 temp ;

for (i = 1 ; i < 4 ; i += 1) {

eKey [i] = cKey [4* i +3] , cKey [4* i +2] , cKey [4* i +1] , cKey [4* i] ;

}

for (i = 4 ; i < 44 ; i += 1) {

temp = eKey [i −1] ;

i f (i mod 4 == 0) {

temp = SubWord(RotWord(temp)) ;

temp [3] = temp [3] xor Rcon(i /4) ;

}

eKey [i] = eKey [i −4] xor temp ;

}

}

the rules described in Section 3.1.1. For example, to compute Rcon(9), we perform the

following computation:

Rcon(9) = x(9−1) = x8 mod x8 + x4 + x3 + x+ 1 = x4 + x3 + x+ 1 = 1Bh.

In practice, the results of the Rcon(i) function are often precomputed and stored in a

lookup table in order to increase the AES algorithm’s performance.

3.1.3 AddRoundKey

The AddRoundKey function consumes the state and a round key and performs a bitwise

exclusive-OR operation to produce the result. Figure 3.1 demonstrates this operation, where

S is the state and RK is the round key. If the same cipher key is used to encrypt every block

of plaintext, then every block will have the same key expansion. In a system with sufficient

memory, the exclusive-OR operations can be replaced with 176 lookup tables, one for each

byte in the expanded key. However, since modern processors include special instructions

for AES and exclusive-OR operations are usually faster than memory lookups, this is rarely

46

Figure 3.1: Illustration of the AES AddRoundKey function. This operation is performed
eleven times for each 128-bit block of plaintext [56].

done.

3.1.4 SubBytes

The SubBytes function performs a non-linear substitute of each byte in the state. In

order to determine the new value of a byte, first find its multiplicative inverse in GF(28)

according to the rules in Section 3.1.1. Then, for each bit in the byte, apply the following

affine transformation over GF(2), where c = 63h and all subscripts are modulo 8:

b′i = bi ⊕ b(i+4) ⊕ b(i+5) ⊕ b(i+6) ⊕ b(i+7) ⊕ ci.

Alternatively, the affine transformation can be represented in array form. In this case,

the modular multiplication and addition operations are performed over GF(28), yielding:

47

Figure 3.2: Illustration of the AES ShiftRows function. This operation is performed ten
times for each 128-bit block of plaintext [56].











































b′0

b′1

b′2

b′3

b′4

b′5

b′6

b′7











































=











































1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1





















































































b0

b1

b2

b3

b4

b5

b6

b7











































+











































1

1

0

0

0

1

1

0











































.

The results of transformation are often pre-computed and stored in a lookup table called

the S-Box. When SubWords is called during the key expansion algorithm, it uses the same

S-Box lookup table as SubBytes. SubBytes is performed on state ten times for each 128-bit

block of plaintext.

3.1.5 ShiftRows

The ShiftRows function rotates the bytes in each row of state. The number of positions

that each byte moves is equal to the row of that the byte resides in. As a result, bytes in row

0 are not shifted, bytes in row 1 are shifted one position, and so on. Figure 3.2 illustrates

this function.

3.1.6 MixColumns

MixColumns operates on each column in state. Each column is a four-term polynomial

over GF(28). Using the polynomial a(x) = 3x3 + 1x2 + 1x+ 2, the result of MixColumns is

48

s′(x) = a(x)⊗ s(x). Or, in matrix form, we get:

















s′3,c

s′2,c

s′1,c

s′0,c

















=

















02h 01h 01h 03h

03h 02h 01h 01h

01h 03h 02h 01h

01h 01h 03h 02h

































s3,c

s2,c

s1,c

s0,c

















.

As with other AES functions, the MixColumns is often pre-computed as a set of lookup

tables to avoid doing multiplication on GF(28). This function is performed nine times for

each 128-bit block of plaintext.

3.1.7 Decryption

Decryption of AES ciphertext is performed with the same cipher key and expanded key

as encryption. The order of operations is changed, as illustrated in Algorithm 3.3.

Note that because AddRoundKey is simply an exclusive-OR operation, it is its own inverse

function. However, the other three functions are modified in the following manner:

• InvShiftRows The bytes are rotated in the opposite direction. So, {S′
11, S

′
7, S

′
3, S

′
15}

becomes {S15, S11, S7, S3}.

• InvSubBytes The substitution uses an inverse S-Box, which is obtained by applying

the inverse of the transform described in Section 3.1.4 and then taking the multiplica-

tive inverse of the results in GF(28).

• InvMixColumns The polynomial is a−1(x) = 11x3 + 13x2 + 9x+ 15.

As with the original algorithm functions, these functions are often pre-computed and

stored as lookup tables to improve the efficiency of the inverse algorithm. Each inverse

function is performed the same number of times as its original counterpart.

3.2 Diffie-Hellman

The Diffie-Hellman key exchange algorithm (DH), devised by Whitfield Diffie, Martin

Hellman, and Ralph Merkle [60] was first published in 1976 [61] and it allows for two users

49

Algorithm 3.3: Pseudo code of the inverse AES algorithm.

AES Inverse (u int8 in [1 6] , u int8 out [1 6] , u int32 key [4 4]) {

uint8 s t a t e [4] [4] = in ; // s t a t e i s in column major order !

AddRoundKey(s tate , key [3 : 0]) ;

for (round = 10−1; round > 0 ; round −= 1) {

InvShiftRows (s t a t e) ;

InvSubBytes (s t a t e) ;

AddRoundKey(s tate , key [(round+1)*4−1: round *4]) ;

InvMixColumns(s t a t e) ;

}

InvShiftRows (s t a t e) ;

InvSubBytes (s t a t e) ;

AddRoundKey(s tate , key [4 3 : 4 0]) ;

out = s t a t e ;

}

to devise a shared secret that they can use to encrypt and decrypt messages. Since it

does not require either party to have prior knowledge about the other, it can be used to

establish a secure communication link over an insecure channel.

To begin, the two parties first exchange some public information. In the original imple-

mentation, this information was a pair of numbers, p and g such that p is prime and g is

a primitive root of p. That is, for every integer a co-prime to p, there is an integer k such

that gk ≡ a mod n. For example, consider p = 5. The integers co-prime to p are then 1,

2, 3, and 4. The integer g = 2 is is a primitive root of p because the values k = {4, 1, 3, 2}

satisfy the requirement, as follows:

50

24 = 16 = 1 mod 5

21 = 2 = 2 mod 5

23 = 8 = 3 mod 5

22 = 4 = 4 mod 5.

All arithmetic is performed modulo p, forming a finite cyclic group with g as the gener-

ating element. Once the two parties agree on the initial parameters, the first party, Alice,

chooses a random integer, a, and calculates A = ga mod p. Alice sends this new value, A,

to the second party, Bob. Similarly, Bob chooses a random integer, b, and calculates B = gb

mod p, which he sends to Alice. Finally, both parties compute the shared secret, s, using

the following operations:

Alice: s = Ba mod p

Bob: s = Ab mod p.

Note that the shared secret s is equal for both Alice and Bob because (ga)b mod p ≡

(gb)a mod p. When Alice wishes to send a message m to Bob, she multiplies the message

by the shared secret and sends ms. To decrypt it, Bob calculates s−1 and then applies

it to recover the received message, m = mss−1. When Bob sends a message to Alice,

the operations are reversed. Figure 3.3 shows a simple example of the DH key exchange

algorithm.

In practice, the values for a, b, and p would need to be much larger. This is due to

the fact that for large values, there is no efficient algorithm to recover a or b given only

p, g, A, and B, a problem known as the discrete logarithm problem. In addition, while

the original DH implementation used the same secret to encrypt and decrypt messages for

both, modern implementations use a pair of encryption and decryption keys for each user

to provide additional security. Finally, the public information does not need to be a pair of

integers. Other finite cyclic groups work as well. NFC-SEC uses a popular variation of DH

in which the public information are the parameters to an elliptic curve.

51

Figure 3.3: Example of the Diffie-Hellman key exchange algorithm. The shared key s is
3. To find the inverse, Bob calculates A(|G|−b) mod p = 9 and Alice calculates B(|G|−a)

mod p = 9.

3.3 Elliptic Curves

An elliptic curve is a set of points that satisfies the equation y2 = x3 + ax + b,

where a and b are real numbers. When 4a3 + 27b2 6= 0, then the curve contains no repeat

factors and can be used to form a group. The group consists of the points on the curve an

additional point, O, known as the point at infinity. Figure 3.4 shows the curve y2 = x3+x.

Elliptic curves are symmetrical about the X axis. The negation of a point P = (xP , yP) is

therefore −P = (xP ,−yP). For every point P that is part of an elliptic curve group, −P is

also part of that group.

The sum of of two points, R = P +Q, where Q 6= −P , is defined as:

s =
yP−yQ
xP−xQ

,

xR = s2 − xP − xQ,

yR = −yP + s(xP − xR).

Note that s is the slope of the line that contains both P and Q. The resulting sum, R,

is the inverse of the third point in the elliptic curve that intersects that same line. As the

line containing both P and −P is parallel to the Y axis, the sum of P and −P is defined

as O, the point at infinity.

52

x

y

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

Figure 3.4: The elliptic curve y2 = x3 + x. Many elliptic curves have a second, disjoint
component, but this one does not.

Finally, to add P to itself (or, to double P), then R = 2P , where:

s = 3xP
2+a

2yP
,

xR = s2 − 2xP ,

yR = −yP + s(xP − xR).

Here, s is the slope of the line tangent to P , which intersects the elliptic curve at precisely

one other point. An exception occurs when yP = 0 because the line tangent to a point on

an X axis has a slope of infinity. In this case, 2P = O. Using the addition rule already

described, one can find that 3P = 2P +P = O+P = P . Continuing in this sense, 4P = O,

5P = P , and so on.

Elliptic curves defined in this manner have an infinite number of points. As the points

are pairs of real numbers, calculations involving them are slow and prone to rounding errors.

Cryptographic applications therefore use elliptic curves defined over finite fields. As with

the Diffie-Hellman key exchange described in Section 3.2, operations over such a finite field,

Fp, are performed modulo p. The points that satisfy the equation y2 mod p = x3 + ax+ b

mod p are elements of the elliptic curve over Fp. As before, when 4a3 + 27b2 mod p 6= 0,

the points on the elliptic curve over Fp and the point at infinity, O, form a group. Figure 3.5

shows the elements of the elliptic curve y2 = x3 + x over F13.

Note that instead of being symmetric about the X axis, an elliptic curve over F13 is

53

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7

8

9

10

11

12

x

y

Figure 3.5: The elliptic curve y2 = x3 + x over F13. Notice that the line of symmetry is at
y = 6.5.

symmetric about the line y = 13
2 . Thus, the inverse of a point P = (xP , yP) is −P =

(xP ,−yP mod 13). In Figure 3.5, the points (5, 0) and (8, 0) might look as though they

break the symmetry, but in fact they are their own inverses in F13. More generally, for an

elliptic curve over the finite field Fp, the line of symmetry is at y = p
2 and −P = (xP ,−yP

mod p). Addition and doubling of points in the finite elliptic curve group follow the same

rules as for infinite curves, except that calculations are modulo p.

Recall that the Diffie-Hellman key exchange algorithm relied on the discrete logarithm

problem (DLP) for its security. In a similar manner, cryptographic protocols using elliptic

curves over finite fields rely on the elliptic curve discrete logarithm problem (ECDLP).

Through a combination of point doubling and point addition using the point P , one can

find the value of nP . Given two points P and Q, the ECDLP is to find the integer k such

that P = kQ. As with the original DLP, there is no known efficient algorithm to solve the

ECDLP.

For elliptic curve Diffie-Hellman (ECDH), two two parties Alice and Bob must first agree

on the following six parameters:

• p The size of the finite field, Fp,

• a The first coefficient in the elliptic curve equation, E,

54

Figure 3.6: Example of the Elliptic Curve Diffie-Hellman key exchange algorithm. The
shared key s is 4. Note that the order of G is 10 since 10 ∗ (7, 5) = ∞ and the cofactor
is 11 since 19

10 mod 13 = 11. For cryptographic applications, a cofactor of 1 is ideal since
this implies that the entire curve is part of the subgroup generated by G and simplifies
calculations.

• b The second coefficient in the elliptic curve equation, E,

• G The base point, a point in the group E(Fp),

• r The order of G, the smallest non-negative integer such that nG = ∞,

• f The cofactor, where n = fr is the number of points on the curve.

The values p and r are prime and the parameters are chosen such that f is as small as

possible for efficiency reasons. An ECDH keypair consists of the private key d, where d is an

integer in the range [1, r − 1] and the public key Q, where G = dQ. Alice chooses (dA, QA)

and sends QA to Bob. Bob chooses (dB , QB) and sends QB to Alice. Alice then computes

S = dAQB and Bob computes S = dBQA. The shared secret, s, is the x-coordinate of

the point S. Note that dAQB = dAdBG = dBdAG = dBQA, so both parties will always

calculate the same value for s. Figure 3.6 shows an example of an ECDH key exchange

using small values for clarity.

55

Figure 3.7: Format of the NFC-SEC PDU. The PID and Payload fields are not present in
all PDUs.

Table 3.1: NFC-SEC PDUs.

Command MSG PID? Payload? Description

ACT REQ 0000 Y C Request a new secure service.

ACT RES 0001 N C Accept a new secure service.

VFY REQ 0010 N C Verify the sender’s shared secret.

VFY RES 0011 N C Verify the recipient’s shared secret.

ENC 0100 N C An encrypted data packet.

TMN 0110 N N Terminate the secure service.

ERROR 1111 N C Indicates an error.

3.4 NFC-SEC

Recall from Section 2.3.2.2 that the ATR REQ command contains a field called PPi,

which contains a bit for NFC-SEC. Similarly, the PPt field of the ATR RES response

contains a bit for NFC-SEC. When two NFC devices are establishing a link, they can check

the value of these NFC-SEC bits. If both are set to ‘1’, then the two devices can decide

to establish a secure link. The ECMA-385 standard [53] defines two security services for

NFC devices: the shared secret service (SSE) and the secure channel service (SCH). In the

layered protocol stack, the NFC-SEC protocol sits just above the digital interface.

Figure 3.7 illustrates the format of all protocol data units (PDUs) for NFC-SEC. The

SVC field is set to “00” for SSE exchanges and to “01” for SCH exchanges. The value of

MSG encodes the type of PDU. Note that the PID and Payload fields are not present in

all NFC-SEC PDUs. Table 3.1 summarizes the fields and values for each type of NFC-

SEC PDU. In this table, ‘C’ denotes that a field is conditionally present in a PDU. As

56

the NFC-SEC protocol sits above the digital layer described by NFCIP-1, the entirety of

each NFC-SEC PDU is transmitted in the Payload field of a NFC PDU during the Data

Exchange Protocol (DEP) phase.

As with other NFC protocols, the PDUs are separated into three phases. In the

first phase, two NFC-SEC devices establish the secure services. The Activation Request

(ACT REQ) and Activation Response (ACT RES) PDUs begin the service. Next, the

Verification Request (VFY REQ) and Verification Response (VFY RES) enable the two

devices to ensure that their shared secret is valid. Once the link is established, encrypted

messages are sent with the Encrypted (ENC) PDU. To terminate the link, one device sends

the Terminate (TMN) PDU. Finally, errors are sent with the ERROR PDU, which always

terminates a secure link. Figure 3.8 shows the process of establishing, using, and then

terminating the secure services described by NFC-SEC.

57

Figure 3.8: Flowchart of the NFC-SEC protocol. Alice, using the NFC device on the left,
initiates the secure services and Bob, using the other device, responds. The NFC-SEC
protocol does not assume any specific key exchange or encryption protocols.

58

3.5 NFC-SEC-1

The NFC-SEC protocol described by ECMA-385 [53] does not specify the key exchange

or data encryption algorithms to use for the secure services. Instead, these details are

left to the user. However, the ECMA-386 standard, NFC-SEC-1 [54], offers one possible

implementation of the NFC-SEC security services using the Elliptic Curve Diffie-Hellman

key exchange algorithm and AES for data encryption. This implementation of NFC-SEC

uses a PID value of 1 for ACT REQ frames.

The elliptic curve parameters p, a, b,G, r, and, f are always the P-192 curve defined in

FIPS-PUB 186-2. Thus, Alice and Bob do not need to exchange this information to begin

a transaction. Instead, Alice first generates a random 96-bit nonce, NA. She sends this

nonce and her public key, QA, to Bob as part of the ACT REQ command. Bob responds

with an ACT RES that contains another 96-bit nonce, NB , and his public key, QB . Then,

both participants compute the shared secret Z as described in Section 3.3. This completes

the Elliptic Curve Diffie Hellman key exchange.

Next, each peer computes a 128-bit key, MKSSE, which becomes the shared secret

for SSE. Alice and Bob each derive this key from NA, NB , Z, IDA, andIDB using the fol-

lowing procedure, where IDA and IDB are the NFCID3 values for Alice and Bob (see

Section 2.3.2.2), the || operator is concatenation, and AES-XCBC-PRF-128 is defined in

RFC 4434 [62]:

S = NA[0 : 63]||NB [0 : 63],

SEED = AES-XCBC-PRF-128(S,Z),

MKSSE = AES-XCBC-PRF-128(SEED,S||IDA||IDB ||01h).

Figure 3.9 shows Alice and Bob establishing the shared secret service.

To establish the secure channel service, SCH, Alice and Bob must repeat the Diffie-

Hellman key exchange with new nonces. Then, they derive three more 128 bit keys. The

first, MKSCH , is the master key for SCH and is used to derive the other keys. KESCH ,

the second key, is used for encrypting data packets. The final key, KISCH , is used for data

integrity. Alice and Bob derive these three keys with the following procedure:

59

Figure 3.9: Establishing the NFC SEC 1 shared secret service. First, Alice and Bob perform
an elliptic curve Diffie-Hellman key exchange. Then, they derive a new shared secret and
verify that they are both using the same key.

S = NA[0 : 63]||NB [0 : 63]

SEED = AES-XCBC-PRF-128(S,Z)

MKSCH = AES-XCBC-PRF-128(SEED,S||IDA||IDB ||01h)

KESCH = AES-XCBC-PRF-128(SEED,MKSCH ||IDA||IDB ||02h)

KISCH = AES-XCBC-PRF-128(SEED,KESCH ||IDA||IDB ||03h)

As each key is generated, Alice and Bob perform a key validation exchange to ensure

that the generated keys are correct. First, Alice computes a message authentication code

(MAC) for the key using the AES-XCBC-MAC-96 algorithm defined in RFC 3566 [63] with

the key in question as the key and 03h||IDA||IDB ||QA||QB as the message. Alice then sends

this 96-bit value, MacTagA(K), to Bob using the VFY REQ command. Bob performs the

same calculation and compares the two values. If they match, then Alice has derived the

60

Figure 3.10: Establishing the NFC SEC 1 secure channel service. First, Alice and Bob
perform an elliptic curve Diffie-Hellman key exchange. Then, they derive the master key
and verify that they are both using the same key. Finally, they dervice the data encryption
and data integrity keys and verify those, too.

61

key correctly. In response, Bob calculates MacTagB(K) using the same procedure and

02h||IDB ||IDA||QB ||QA as the message. Bob sends a VFY RES response to Alice, who

checks the key’s validity. This process is illustrated by Figure 3.10.

Once all four keys are validated, Alice and Bob can begin to exchange data. Data is

encrypted using AES in Counter Mode [64]. The initial value of the 128 bit counter is

calculated using the AES-XCBC-PRF-128 algorithm with the key set to MKSCH and the

message set to KISCH ||NA||NB ||04h. Each peer calculates this value independently so that

it is never sent over the channel. For each message, the value of counter is first encrypted

using AES-XCBC-PRF-128 with KESCH as the key. Then, the encrypted counter value

is exclusive-OR’d with the message plaintext to form the final ciphertext, which Alice can

send to Bob. At the end of the operation, the value of the counter is increased by one.

When Bob receives the message, he performs the same AES operation on his counter value,

which should be equal to Alice’s, and again performs the exclusive-OR operation to recover

the message plaintext. Bob also increments his counter value.

To ensure that arriving data is in the proper sequence, each peer maintains a counter

(SNV) that increases by one for each encrypted message sent or received. This counter

is initialized to zero and has a maximum value of 224 − 1. When the maximum value is

reached, the secure services must be terminated. Finally, the integrity of each message guar-

anteed with a MAC using KISCH as the key and SNV||Data Length||Encrypted Message

as the message. The MAC is concatenated to the end of SNV, Data Length, and En-

crypted Message to form the ENC PDU payload. Figure 3.11 shows the process of sending

encrypted data using the NFC-SEC-1 protocol.

3.6 Chapter Summary

The NFC-SEC and NFC-SEC-1 specifications utilize industry standard cryptographic

protocols to secure NFC communications. By providing both a shared secret service and a

secure channel service, users of NFC devices can ensure that they are communicating with

their intended target and that their messages are secure from eavesdropping attacks.

62

Figure 3.11: Sending encrypted data with NFC SEC 1. Alice and Bob use the keys that they
generated in Figure 3.10 to encrypt their data and to ensure that they receive unaltered
frames. Here, Alice sends Bob two frames. Bob responds with a single frame and then
terminates the secure services.

63

Chapter 4

NFC Protocol Security

Due to their very nature, all wireless systems are vulnerable to a set of attacks that

includes eavesdropping, denial of service, and relays. NFC is no exception. In 2006, Ernst

Haselsteiner and Klemens Breitfuß of Philips Semiconductors looked at a number of threats

to NFC systems [65]. This chapter examines those threats and others, evaluates NFC’s

specific vulnerabilities and defenses in regards to threats, and details previous attempts to

compromise NFC systems.

4.1 Eavesdropping Attacks

Just as one might stand outside of a door and listen to two people conversing on the

other side, so too can one eavesdrop on two devices communicating wirelessly. In Figure 4.1,

Alice and Bob are exchanging data while Eve listens in. Since Eve is not transmitting, Alice

and Bob might not know that she is there at all. Silently, Eve can collect information from

Alice and Bob.

The data that Eve collects might be sensitive. For instance, Alice might be a card

reader and Bob might be an emulated NFC-enabled credit card [14][15]. In this case, Eve

may be able to collect credit card numbers and personal contact information. Or, perhaps

Alice and Bob comprise a lock and key system [10]. If Eve is able to eavesdrop on their

communications, then she might be able to obtain the password for entry. In these and

other cases, the designers of NFC systems have an obligation to protect customer data.

64

Figure 4.1: Example of an eavesdropping attack. Here, Alice is the NFC card reader and
Bob is a NFC-enabled credit card. Eve is a cell phone placed close to the card reader,
perhaps by the cashier. Eve might be able to collect credit card numbers and personal
contact information [66][67][68].

Since [65] was published in 2006, ECMA has introduced the NFC-SEC protocol described

in Sections 3.4 and 3.5 [53]. This protocol provides a secure channel for Alice and Bob to

ensure that Eve can only collect encrypted information. With a proper implementation,

such as [54], decrypting that information would be nearly impossible. Thus, for systems

in which encryption is appropriate, NFC-SEC provides solid defense against eavesdropping

attacks. Nevertheless, not all systems are able to use the NFC-SEC protocols. For these

systems, we must consider the maximum eavesdropping range.

As [65] notes, the equipment required to receive and decode NFC messages is commonly

available. Indeed, the NFC Forum’s ANALOG specification [36] provides reference schemat-

ics and PCB layouts for multiple NFC devices. Thus, we must assume the existance of Eve.

However, constructing Eve might still be difficult. NFC devices operate on a range of less

than 10 cm. In order to use an ordinary NFC device for eavesdropping, it must be within

10 cm of both Alice and Bob. Such a device is likely visible to Alice and Bob’s users.

Recall from Section 2.2 that the 10 cm range is largely a limitation imposed by the

small antennas used in portable devices. With a larger antenna, the eavesdropping range

increases. Haselsteiner and Breitfuß estimated the maximum eavesdropping range to be 10

65

meters for NFC devices communicating in active mode and 1 meter for devices using the

passive mode [65].

In [69], Brown et al. construct an experiment in which they emulate a transmitting

NFC device with a one turn circular coil antenna with a radius of 1.5 cm. This device

transmitted a square wave at 108 kHz in order to approximate an active fc/128 device using

100% ASK. Using a second antenna similar to the first, the authors were able to receive and

decode the square wave signal at a distance of 0.5 meters when the transmit field strength

was set to 0.5 A/m. At a strength of 1.5 A/m, the authors were able to receive a signal at

a distance of 0.7 meters and at 4.5 A/m, a distance of 0.9 meters.

The NFCIP-1 specification requires a minimum RF field strength of 1.5 A/m and al-

lows a maximum strength of 7.5 A/m [33]. Thus, the experiments in [69] show that the

eavesdropping range for active NFC devices at fc/128 is longer than 10 cm. Indeed, at the

required minimum RF strength of 1.5 A/m, the eavesdropping range is approximately 7x

the normal operating range. At higher strengths, the range is even longer.

In addition to the above experiments, Brown et al. constructed a second setup in which

they used a shopping cart as the eavesdropping antenna. In this scenario, they were able to

receive the emulated NFC signal at a range of 0.3 meters when the transmit field strength

was 1.5 A/m and 0.4 meters at a strength of 4.5 A/m. This distance is not the 10 meters

predicted by [65], but it might be far enough for a clever customer to use his shopping cart

as an eavesdropping antenna to record payment transactions. Further, it shows that an

eavesdropping antenna need not always be precisely designed.

As noted in [65] and [70], the eavesdropping range of passive NFC communications

should be smaller than it is for active communications. In [71], the authors conduct an

experiment in which they use an off-the-shelf NFC-enabled cellular phone and a typical

NFC card reader to conduct transactions in passive mode. In addition, they construct

two eavesdropping antennas by attaching an oscilloscope to both a MiFare UltraLight label

and a MiFar Classic card. After performing the experiments with the antennas placed

in numerous positions, the author concludes that the maximum eavesdropping range for

passive NFC communications is approximately 0.3 meters.

The experiments in [69] and [71] demonstrate that NFC’s maximum operating range of

66

10 cm is not a sufficient defense against eavesdropping attacks. While neither experiment

achieved the predicted eavesdropping range of 10 meters, better antenna design increases

the maximum eavesdropping range significantly. In [72], Hancke was able to eavesdrop at

ranges of up to 15 meters with large, commercially-avaiable antennas. While such setups

might not be practical for eavesdropping on credit card transactions, they could instead be

used to skim the same data from passersby with NFC-enabled cards in their wallets.

4.2 Data Alteration Attacks

A second classification of attacks are those that modify the data that a NFC device

receives. Haselsteiner and Breitfuß consider three variations of data alteration in [65]: data

corruption, data modification, and data insertion. The simplest of these is data corruption.

In this attack, a rogue device transmits data on the 13.56 MHz frequency at such a strength

that any other data transmitted on that frequency would be corrupt. Alternatively, a device

could continuously generate a strong 13.56 MHz signal, preventing NFC devices from turning

on their own RF fields. As noted in Section 2.3.2, a NFC device executes the “Initial RF

Collision Avoidance” protocol before enabling its RF field. If it detects another field with

a strength of at least 0.1875 A/m (rms), then it does not turn on its own field [33]. The

result of both attacks is a denial of service.

NFC offers no protection against a denial-of-service attack. However, NFC devices are

able to detect other RF fields, so such attacks should always be detectable [65]. Nevertheless,

these simple attacks could prevent proximity cards from functioning properly, prevent the

NFC payment transactions from completing, and prevent the transmission of important

medical data.

Data modification attacks are more complex and their feasability depends on both the

data rate and transmission mode that the victim devices employ. Active devices operating

at fc/128 employ a modified Miller encoding with 100ASK modulation (see Figure 2.4). In

this scenario, the RF field is either at full strength or it is off. When the field is off, a

rogue device could fill the pause with a signal at full strength. However, when the field

is at full strength, the attacker has no practical way to cancel out that signal. Thus,

67

Figure 4.2: Data modification attack at 100% ASK, as employed by an active NFC device
operating at fc/128. In scenarios a and b, the rogue device detects a ‘0’ bit and does
nothing. At best, the attacker could cause data corruption by causing the receiver to detect
two consecutive bit periods with no pauses, but this is equivalent to the data collision attack
discussed previously. In scenario c, the rogue device detects a ‘1’ and turns on its RF field
for the next bit period. However, the next bit was already a ‘0’, so the data arrives at the
receiver unchanged. In scenario d, the rogue detects a ‘1’, turns on its RF field, and changes
the next ‘1’ bit into a ‘0’ bit. The receiver sees a valid bit sequence and does not know that
the data has been changed.

data modification in the active, fc/128 mode is only possible for two consecutive ‘1’ bits.

Figure 4.2 demonstrates this.

In all other communication modes, NFC devices use a 10% ASK modulation scheme

in which the signal levels are 100% and 82%. Here, a rogue device could add a signal to

the transmitted 82% signals such that that the receiver sees the 82% signals as 100% and

the 100% signals as 82%. Since the NFC specification allows a large range for the RF field

strength (1.5-7.5 A/m [33]), such an attack seems plausible. However, the rogue device

would need to predict when the transmitter sent an 82% signal quickly enough to change

its value.

These data modification attacks are easily defeated. NFC-SEC offers data integrity

mechanisms, so devices utilizing this protocol could detect any data modifications. For

68

Figure 4.3: A man-in-the-middle attack with NFC devices. Here, Malcolm intercepts mes-
sages from both Alice and Bob without their knowledge. Due to NFC’s short operating
range, this type of attacks is nearly impossible to perform.

devices that do not support NFC-SEC, a simple cyclic redundancy check (CRC) is sufficient

to ensure that the data has likely not been modified.

Finally, the authors in [65] consider data insertion attacks. In this attack, a rogue device

transmits data before the victim device can do so. For intance, an Initiator might send out

a request and then wait for the Target device to respond. If the rogue device can respond

before the Target does, then it can trick the Initiator into using false data. This sort of

attack only works when one device pauses for a response and only when the rogue device

can respond faster than the victim device. Chapter 6 considers a situation in which more

than one device responds to an Initiator’s request.

4.3 Man-in-the-Middle Attacks

A typical man-in-the-middle attack involves three devices. The two victim devices, Alice

and Bob, wish to communicate. However, the rogue device, Malcolm, tricks Alice and Bob

into a three-party conversation [65][70]. When Alice attempts to set up a link with Bob,

she really sets up a link with Malcolm. Malcolm then sets up a second link with Bob.

In this way, Malcolm can intercept all messages sent by both Alice and Bob. Figure 4.3

demonstrates this scenario with NFC devices.

If Malcolm can read a message from Alice and Bob, then he might also be able to modify

that message before sending it along to its intended recipient. Further, Malcolm can store

the message contents for later. Using a secure channel service, such as the one specified in

by the NFC-SEC protocols [53][54], would not prevent Malcolm from performing a man-in-

69

the-middle attack. Rather, Malcolm would simply establish two secure channels, one each

with Alice and Bob. One counter to this problem lies with authentication services, in which

public keys are verified by a third-party. NFC-SEC does not require such authentication.

Nevertheless, NFC does offer strong defenses against man-in-the-middle attacks. Con-

sider the situation in Figure 4.3. Here, Alice is an active device, Bob is a passive device,

and Malcolm can use both modes. To begin the transaction, Alice sends a message to Bob,

which Malcolm intercepts. At the same time, Malcolm must also ensure that Bob does not

receive Alice’s message. If Malcolm disturbs the transmission such that Bob cannot read

it, then Alice would be able to detect Malcolm’s transmissions and she could then stop the

transaction. However, let us assume that Alice does not check for this distruption since

NFCIP-1 [33] does not require it. Once Malcolm has the message from Alice, he must relay

that message to Bob. In doin so, Malcolm must enable his RF field. Since Bob is a passive

device, Alice will have left her RF field on so that Bob use it to respond. With two active

RF fields, Bob will not likely be able to understand the message that Malcolm relays.

What about two active devices? As with the previous scenario, Malcolm must first

disturb Alice’s transmission so that Bob cannot receive it. Again, Alice could check for this

disturbance and stop the transaction. As before, let us assume that she does not perform

this check. This time, Alice turns off her RF field so that Bob can use his own field to

respond. Next, Malcolm must relay Alice’s message to Bob. When he does so, both Bob

and Alice will receive that message. Alice can again detect a problem since Malcolm’s

message was not what she expected from Bob.

In either case, a man-in-the-middle attack with three NFC devices is simply not feasbile.

In order for it to work, Alice and Bob would need to be far enough apart so that they could

not detect each other and Malcolm would have to move such that he is only ever within

range of either Alice or Bob. Since NFC devices operate with a range of only 4-10 cm, a

device capable of performing such feats would almost certainly be detectable by the parties

in control of Alice and Bob.

70

Figure 4.4: A typical relay attack with NFC devices. Here, the proxy device relays com-
mands from the NFC card reader to the mole, who then relays those commands to the
smart card. In the other direction, the mole relays the smart card’s responses to the proxy,
who in turn relays them to the card reader.

4.4 Relay Attacks

A relay attack overcomes NFC’s primary defenses by adding a fourth device to the mix.

In a typical relay attack, Alice and Bob are separated by enough distance such that they

could not communicate. Instead, a rogue device, here called the proxy, communicates with

Alice while a second rogue device, here called the mole, communicates with Bob. The

two rogue devices communicate with each other via Ethernet, WiFi, Bluetooth, or some

other technology. In this way, the rogue devices can relay commands from Alice to Bob

and similarly relay Bob’s responses back to Alice. Figure 4.4 illustrates the relay attack

concept.

Relay attacks are potent. As with man-in-the-middle attacks, either the proxy or the

mole can read or modify the communications between Alice and Bob. NFC-SEC offers

protection against these actions. However, relay attacks have a second purpose. Consider a

NFC-enabled card reader located in a coffee shop. A customer with a NFC-enabled smart

phone wishes to pay for her coffee, so she brings her phone within range of the card reader.

The card reader begins the exchange by sending an identification command to the phone.

Instead of replying to the card reader, the customer’s phone, which is really acting as a

proxy, relays the command over Bluetooth to a cell phone located elsewhere in the coffee

shop. This second phone, the mole, receives the command and relays it once more to a

smart card that belongs another, unsuspecting customer. When the card responds, the

two rogue devices relay that response back to the card reader. This process repeats until

the transaction is complete. Using a relay attack, the customer at the register was able to

71

purchase her coffee with another customer’s card. Note that since the two rogue devices

simply relayed messages, NFC-SEC and other security protocols would not have prevented

the relay attack.

There have been numerous relay attacks on NFC devices. In [73], Francis, et al. devise

a relay attack using four NFC-enabled mobile phones. Alice and the proxy were Nokia

6212 Classic phones [74], while Bob and the mole were Nokia 6131 phones [75]. Each of

these phones runs the Nokia Series 40 operating system and supports Java applications. In

order to demonstrate the relay attack, the authors established a Bluetooth link between the

proxy and the mole and wrote custom Java applications to send messages in both directions

through the relay train. While this attack was not connected to any real-world systems, it

nevertheless showed that NFC devices, like other wireless systems, are vulnerable to relay

attacks.

The phones used in the attack presented in [73] were some of the first phones to support

NFC and both are now discontinued. However, modern systems are still susceptible to

relay attacks. Authors Wang, et al. describe a relay attack in [76] that uses HTC One

X [77] smart phones running Google’s Android 4 operating sytem and the Android Beam

application. Android Beam uses NFC to establish a Bluetooth link between two devices.

Many applications shipped on modern Android smart phones used Beam to communicate,

including YouTube and Chrome [76]. In this attack, Beam is used to establish Bluetooth

links between Alice and the proxy and between the mole and Bob while the link between

the two rogue devices runs over WiFi. As in the previous attack with Nokia phones, the

authors are able to relay messages from Alice to Bob via the proxy and mole pair.

Another application on modern Android smart phones that uses NFC is Google Wallet.

The Google Wallet application interfaces with JavaCard applets on the phone’s secure ele-

ment that store credit card and other payment information. With Google Wallet, customers

can use their phones to pay for purchases at NFC-enabled terminals. In [78], Roland, et al.

demonstrate a relay attack that works with Google Wallet. Using a commercial, off-the-shelf

point of sale terminal and a MasterCard PayPass credit card supporting EMV Mag-Stripe

security, the authors were able to demonstrate a successful relay attack. Google patched

the Wallet application in September 2012 to prevent this specific attack, but it might yet

72

be vulnerable to other forms of attack.

Often, the major limiting factor for any of the above relay attacks is distance. In order

to communicate with the victim’s smart card or NFC device, the mole must be within

operating range, which is typically less than 10 cm [28]. Therefore, the attacker operating

the mole device might have to be uncomfortably close to his victim. Indeed, contactless

smart cards rely on this short operating range to ensure that the card’s owner is in fact

present at the point of sale. But what if the range was not so limited?

In [79], Kfir and Wool devise NFC devices that are capable of transmitting and receiving

NFC messages at much longer distances than 10 cm. To do so, they wrapped loops of wire

around an otherwise unmodified NFC device. Then, they connected the wire to a set of

power amplifiers and filters. Finally, they added an optimally-sized antenna made from

copper tubing. This device acted as a proxy and was capable of interacting with the card

reader at distances of up to 50 meters. For an NFC transaction in which both Alice and

Bob would be active devices, two of these proxy devices are sufficient to carry out a long-

distance relay attack.

However, in the case of a smart card transaction, the mole communicates with a passive

device. To do this, the mole must first power the smart card, which is only possible when

the card is within the mole’s reactive near field (see Figure 2.1), which limits the maximum

distance between the mole and the smart card to only 3.52 meters. In fact, due to con-

straints on antenna size and power, Kfir and Wool were only able to increase the reliable

communication range to 40 cm with a mole device similar to their proxy device [79]. With

access to the NFC device driver software and expensive signal processing components, they

were able to increase this range further to 55 cm.

The relay attack in [79] was still limited by the distance between the proxy and the

mole. After all, the connectivity options commonly found on NFC-enabled devices, such

as Bluetooth and WiFi, are themselves designed only to work at distances of less than 100

meters [29][30]. In “Long Distance Relay Attack” [80], authors attempt to remove this

limitation by introducing more devices to the attack architecture. Figure 4.5 illustrates this

new approach. With the expanded relay attack architecture, Sportiello and Ciardulli were

able to demonstrate a relay attack over a distance of ∼541 km with an ePassport in Italy

73

Figure 4.5: A long distance relay attack with NFC devices. In this architecture, the proxy
and mole relay their messages through TCI/IP connections with a server that is controlled
by the attackers, thereby dramatically increasing the overall distance between the proxy
and the mole [80].

and a card reader in Austria!

If we combine the results of “Long Distance Relay Attack” with those of Kfir and Wool,

we have a relay attack architecture that works over very long distances and that does not

require immediate proximity for either the smart card or the card reader. Each of the

devices designed in [79] was valued at less than $100 USD (in 2005) and required only

minimal knowledge of how NFC works. Similarly, the long distance attack used only cheap,

off the shelf components and simple programs. Therefore, we must assume that such devices

are commonly available to would-be attackers.

Given that NFC, like any other wireless protocol, is so vulnerable to relay attacks,

software applications utilizing NFC must take extra steps to ensure the authenticity of

users and data. Many applications, including Google Wallet, require the user to activate

74

enable the NFC antenna with a PIN. While PINs do increase security, they also increase

the amount of time needed to complete a transaction. As speed and convenience are two of

NFC’s primary selling points, a PIN system might not be appropriate for all applications

[80][78].

Another simple solution to the relay attack problem is the faraday cage [78]. If a smart

card is enclosed in metal, such as aluminum foil, then a mole will have extreme difficulty

communicating with it. Faraday cages are already in use for some systems. Indeed, many

proximity cards (e.g. security badges, green cards) come with metal envelopes. Unfortu-

nately, this solution is not practical in all cases. Whether for style, simplicity, cost, or other

reasons, most of us do not carry metallic purses and wallets. Thus, most smart cards and

other NFC/RFID devices (e.g. ePassports) remain vulnerable.

The attacks against EMV, Google Wallet, and ePassports worked because these spec-

ifications allow for long response delays. In some cases, these long delays are necessary.

For instance, a passive device might need to perform a cryptographic operation in response

to a command from an active card reader [80]. For this reason, ISO 14443 [40] allows the

responding device to ask for as much as ∼4.95 seconds to respond to a command. With

current technology, five seconds is a very long time. Certainly, it is enough time to re-

lay messages across the world via the Internet. Therefore, applications should implement

tighter time controls for transactions that are not likely to need so much time for processing.

To combat the long distance relay attack, one might imagine using GPS location data to

ensure that the two NFC devices are located within the expected 10 cm range. Indeed, [76]

and [73] do suggest doing just that. However, GPS technology is not reliable at distances

of less than a few meters [81] and it is even less reliable indoors since microwaves are

attenuated and scattered by many common building materials. Thus, relay attacks within

a shop might still be viable.

A second approach to combating the long distance relay attack involves sensors. Modern

smart phones contain many sensors that the payment application could query. In [82], Halevi

et al. use ambient sound and light data to determine whether the card reader and smart

card are in the same location. With audio, the authors reported a 100% success rate for

detecting when the two devices are in different locations. With light, they report about a

75

90% success rate. In both cases, sensor data makes the job of a would-be relay attacker

significantly more difficult.

However, the authors in [82] used two phones of the same model to record their audio and

light data. Replacing one phone with a card reader, which likely has different sensors and

processing chips, might significantly weaken their results. Further, these sensing techniques

might have little promise if the attacker is in the same general location as the card reader.

Another attempt at using sensor data attempts to improve upon these results by using

temperature sensors [83], Urien and Piramuthu devise an experiment in which both the card

reader and the smart card are equipped with temperature sensors. In theory, both sensors

should measure the same temperature when the card is placed in close proximity to the

reader. When the reader detects a card, it begins a key exchange based on Elliptic-Curve

Diffie Hellman (see Sections 3.2). A combination of secret keys, random nonces, and the

temperature data allow the two devices to establish a shared secret. If the temperatures are

not within the set tolerance, then the transaction is aborted. Otherwise, the two devices

begin a time-limited exchange of bits. In order to prevent replay attacks, this bit exchange

includes some information that should be secret. With a combination of temperature data

and the time-limited exchange, the authors conclude that their approach makes relay attacks

on NFC devices nearly impossible.

4.5 Chapter Summary

Near Field Communication, like any other wireless protocol, is vulnerable to a number

of attacks. These attacks can allow malicious actors to obtain sensitive information, falsify

credentials, and deny service to legitimate users. The short operating range of NFC de-

vices provides good defense against some of these attacks, especially the man-in-the-middle

attack. The NFC-SEC protocols provide solid defense against eavesdropping and data al-

teration attacks for systems in which secure channels are appropriate, though systems that

cannot implement NFC-SEC are still vulnerable. Finally, a combination of sensor data and

time-limited challenges provides great defense against relay attacks. Generally, NFC, when

combined with application-level security, is fairly robust against common attacks.

76

Chapter 5

NFC Testing Platform

In order to test the security of modern NFC devices, I created the NFC teting platform

described in this Chapter. The NFC testing platform consists of modern, open-source

hardware (Section 5.1) and free, open-source software (Section 5.2). This combination

makes it the ideal platform for academic experimentation.

5.1 Hardware

The hardware for the NFC testing platform consists of a small computing board, three

NFC-enabled devices, and a number of supporting elements. The hardware was selected

with three criteria in mind: availability, affordability, and similarity to real-world NFC

devices. Figure 5.2 is a photograph of the NFC testing platform’s primary hardware com-

ponents, which are:

• PandaBoard ES : The large board in the top-right corner of Figure 5.2 is a PandaBoard

ES [84]. This fairly inexpensive (less than US$200 at the time of this writing) platform

contains hardware similar to that found in mobile phones and other NFC-enabled

devices. At the heart of the PandaBoard ES is a Texas Instruments OMAP4460

system on chip (SoC), which contains a dual-core ARM Cortex-A9 microprocessors,

an OpenGL ES v2.0 compatible graphics core, and 2 GB of system memory. Other

features include 802.11b/g/n WiFi, Bluetooth v2.1 EDR, HDMI outputs, two USB

77

Figure 5.1: A block diagram of the NFC testing platform detailing its primary components.
Unused PandaBoard ES functions are not shown in this Figure. The PN532 modules each
use a USB to UART adapter cable.

ports, an a full-size Secure Digital (SD) card reader that allows SD cards to act as

the system disk.

• Adafruit PN532 : The three rectangular modules atop the Teddy Grahams box in

Figure 5.2 are Adafruit PN532 Breakout Boards [85]. The PN532 is a popular NFC

chip that supports reading and writing to RFID cards, communicating with other

NFC devices in the active peer-to-peer mode, and card emulation for passive-mode

communication. A USB to UART cable [86] connects each PN532 board to the Pand-

aBoard ES. Each PN532 board and USB cable combination was US$60 at the time of

this writing.

• Supporting Elements: In addition to the core elements, the testing platform utilizes

a USB hub to expand the number of ports available on the PandaBoard ES and an

Ethernet cable to provide network access for remote logins. The system disk is a 16

GB class 10 SD card from SanDisk.

78

Figure 5.2: Photograph of the NFC testing platform. The 5V DC transformer and basic
USB hub are not shown in this Figure. The Teddy Grahams box and a few nails hold the
very lightweight NFC modules in place.

Both the PandaBoard ES and the Adafruit PN532 NFC module are open-source hard-

ware, which means that the schematics and bills of materials are available for free and

without a license. Figure 5.1 shows a block diagram of the major components of both

modules and where they fit into the overall testing platform.

The testing platform supports two primary configurations. In the first, the Pandaboard

ES is connected to a local network using an Ethernet cable and the onboard RJ-45 connector.

This configuration allows the user to control the system remotely via the ssh program in

Linux or an application like PuTTY in Windows. If Ethernet is not available, then the

79

Pandaboard ES can connect to the local network via WiFi or Bluetooth by utilizing the LS

Research TiWi-R2 device. However, using this device seems to produce instability in the

system, often resulting in kernel panics and system freezes. Thus, the Ethernet connection

is preferable.

In the second configuration, the user can connect a keyboard, a mouse, and a monitor

directly to the Pandaboard ES, negating the need for network support. The monitor must

have an HDMI connector because the Pandaboard ES’s DVI connector is not fully functional

at the time of this writing. The keyboard and mouse should be connected via USB. Since

the Pandaboard ES has only two USB ports, a USB hub is necessary to utilize the keyboard,

mouse, and three NFC devices simultaneously. The prefered connection scheme uses a four-

port USB hub to connect the mouse and three NFC devices while the keyboard is connected

directly to the board, as shown in Figure 5.1.

Other hardware was considered for inclusion in the NFC testing platform. Compared to

the Pandaboard ES, the Raspberry Pi [87] has less memory at only 512MB, has a much less

capable processer, and lacks the Pandaboard’s WiFi and Bluetooth capabilities. In addition,

the Raspberry Pi is less open than the Pandaboard ES, lacking public PCB design files.

Finally, the CPU used on the Raspberry Pi is no longer supported by many popular Linux

distributions. Despite these limitations, the Raspberry Pi could nevertheless serve as a

decent heart for a NFC test platform. It carries a much lower price than the PandaBoard

ES, has smaller physical dimensions, and has a large community of users.

Instead of a using a combination of the PandaBoard ES and the PN532 NFC module,

one might use a modern smartphone. Models like the LG Nexus 5 contain more powerful

hardware than the PandaBoard ES and use newer NFC chips. However, such devices

tend to carry high costs and are much less open than the PandaBoard ES. Additionally,

while programming an application for the PandaBoard ES is essentially no different than

programming an application for a typical personal computer, programming on a smartphone

requires the programmer to learn a new system of tools and restrictions.

Future iterations of the NFC testing platform might include more modern NFC devices

that support the NFC-SEC protocols, such as the PN533 [88]. At the time of this writ-

ing, no open-source hardware devices carry such a chip. A module similar to the PN532

80

from Adafruit but instead carrying a PN533 chip would certainly improve the NFC testing

platform.

5.2 Software

The operating system for the NFC testing platform is Ubuntu 12.04 LTS (Precise Pan-

golin) [89], a free, open-source Linux distribution. Ubuntu 12.04 is recommended by Texas

Instruments for the PandaBoard ES and is available as a pre-configured image. In addi-

tion, Ubuntu 12.04 was the development platform for Texas Instruments engineers and thus

provides packages to install additional drivers and utilities for the PandaBoard ES. The

operating system is stored on the 16 GB SanDisk SD card.

While the NFC testing platform uses Ubuntu, the PandaBoard ES is supported by

numerous other operating systems, including Fedora and Gentoo Linux. There are also

Android builds available for the PandaBoard ES, which more closely mirror the software

found on most smartphones. None of these alternative operating systems are recommended

by Texas Instruments, but all of them support the hardware just as well.

On top of Ubuntu, a free, open-source library called libnfc [90] provides low-level drivers

and utilities for interacting with the PN532 device as well as with many other NFC devices.

The software described in Section 6.2 was built against version 1.7rc7 of libnfc as this was

the latest version available at the time of the experiments.

Future versions of the NFC testing platform might incorporate other free, open-source

utilities such as libfreefare [90], which provides functions for working with MIFARE tags,

and any of the numerous libraries available for reading and writing NDEF records. Newer,

more stable versions of Ubuntu or another operating system would also improve the NFC

testing platform.

5.3 Implementation

In order to recreate the test platform, the user must first install Ubuntu 12.04 to a SD

card. Insert the card, then connect a monitor, keyboard, and mouse. Power the Pandaboard

81

ES to boot the system. For a wired Ethernet connection, simply connect a standard Cat5

cable. The included Network Manager software can configure wireless networks.

Next, update the system. The following commands in will update any pre-installed soft-

ware, add the TI repository for Pandaboard, and perform a full system upgrade. Then, they

install the Pandaboard ES software and firmware from the Texas Instruments repository

and configure the system to use it.

sudo sed --in-place=.bak -e ’s/\^# \(deb.*\)/\1/’ /etc/apt/sources.list

sudo apt-get update

sudo apt-get install python-software-properties

sudo add-apt-repository ppa:tiomap-dev/release

sudo apt-get update

sudo apt-get dist-upgrade

sudo apt-get install ubuntu-omap4-extras

sudo apt-get install --reinstall pvr-omap4-dkms

alsaucm -c PandaES set _verb HiFi

sudo flash-kernel --update-bootloader

Reboot the system. These next commands install some libraries and programs that

libnfc depends on.

sudo apt-get install libusb-dev libpcsclite-dev

sudo apt-get install libusb-0.1-4 libpcsclite1 libccid pcscd

sudo apt-get install subversion

sudo apt-get install debhelper dh-autoreconf libtool

sudo apt-get install dpkg-dev

Finally, install libnfc according to the instructions found on the libnfc website [90]. Once

that is finished, run the following commands to remove any unneeded software and allow

you to use libnfc and the Pandaboard ES properly. Remember to replace “username” with

your actual username!

82

sudo apt-get autoremove

useradd -a -G dialout username

With at least one PN532 connection via USB cable, use the nfc-list command. If no

devices are found, then something went wrong. Otherwise, everything is OK!

Mostly, the system behaved as expected. However, the WiFi module was quite flaky

and often caused the system to lock up. Using a wired Ethernet connection produced a

much more stable system. Additionally, logging into the system remotely via SSH improved

stability over using the Ubuntu GUI locally. Even with the above changes, the system would

still rarely lock up. Advisors in the #pandaboard IRC channel on the Freenode network

attributed these freezes to the SD card. While the SD card is necessary to boot the system,

using an attached USB drive for everything else might improve overall system stability.

5.4 Chapter Summary

The NFC testing platform allows researchers to test NFC hardware and software imple-

mentations for protocol correctness, security flaws, efficiency, and features. It is comprised

entirely of commercially-available, off-the-shelf, open-source hardware and free, open-source

software. This chapter described the many components that make up the NFC testing plat-

form and explained why those components were chosen. Additionally, this chapter provided

implementation details and noted limitations of the system.

83

Chapter 6

An Analysis of Double Target

Trouble

Section 2.3.2.1 describes a single-device detection protocol to ensure that a NFC device

communicates with only one other NFC device. This chapter details an experiment that

shows what happens when this protocol fails.

6.1 The Problem

Standard NFC transactions are point-to-point and only involve two devices: the Initiator

and the Target. When an Initiator wishes to communicate with a Target device, it first

performs the single-device detection algorithms described in Section 2.3.2.1. There are a

few reasons for this behavior.

First, all NFC devices communicate on the same 13.56 MHz frequency band. Thus,

multiple simultaneous transmissions in close proximity will cause interference. If more than

one Target device responded to the Initiator’s commands, then the Initiator might not be

able to read any responses at all. By selecting only one Target, the Initiator ensures that

only one standards-compliant NFC device is transmitting at any given time. Secondly,

some NFC transactions contain sensitive information. For instance, NFC devices can store

payment information, medical information, or access credentials. If the Initiator is not

84

careful to select the correct Target, then malicious devices could spoof this information.

Finally, the Initiator might wish to obtain information from a specific device with a known

identifier. In this case, the Initiator simply needs to select the correct Target from all

possible Target devices in range. The single-device detection algorithms can do this.

What happens if the single-device detection algorithm does not function as expected?

6.2 Proposed Experiment

In order to conduct this experiment, three PN532 NFC devices are connected to the

PandaBoard ES, as shown in Figure 5.2. Note that the three loop antennas are all touching

and that one NFC device is sandwiched between the other two. In this configuration, the

Initiator device is in the center and is flanked by the two Target devices.

Figure 6.1 illustrates the general testing procedure for each iteration of the Double

Target Trouble experiment. Each of three NFC devices was assigned an alias. Alice is the

Initiator device; Bob and Eve are the Target devices. First, the program configures the two

Target devices so that they are idly and waiting for an Initiator to communicate. Then, it

initializes Alice to look for a Target device. When she finds one, she transmits the message,

“Hello! I’m Alice!”. If either Target receives that message, then it responds with, “Hello

to you, too!”. If Alice receives a response, then she sends the message, “Who are you?”. If

Bob receives this second message from Alice, then he responds with, “I’m Bob!”. Likewise,

if Eve receives the second message, then she responds with, “I’m Eve!”. Not shown in

Figure 6.1 is a 5 second delay between each iteration of the test to allow all three devices

time to disconnect from libnfc.

If the single-device detection algorithm is working correctly, then Alice should receive a

response to each of her messages from Bob or Eve, but not both. Likewise, only Bob or

Eve should detect that they have paired with Alice. If Alice fails to receive a message, or

if she receives a message from an unknown sender, then a data collision has occurred. If

Bob and Eve do not agree on who responded to Alice, then the target selection process has

failed.

85

Figure 6.1: Flowchart of the Double Target Trouble experiment. This process was run 1,000
times for each system configuration.

6.3 Experimental Results and Analysis

As a control, one thousand iterations of the test are executed with only Alice and Bob

connected to the system. Then, one thousand iterations of the test are executed with only

Alice and Eve connected to the system. These tests were run with a data rate of 424 Kbps

using the active transmission mode and with the device antennas touching. Figure 6.2

shows the results of the control tests.

Each bar represents the last status that the device returned before disconnecting. Thus,

a status of “Init OK” indicates that the device initialized properly, but did not transmit any

messages. Unfortunately, one of the PN532 modules has a defect in the UART connector.

In order to ensure that both Targets are equal, the defective module is Alice. Figure 6.2

shows that approximately 0.1% of tests fail because Alice was not initialized. The other

86

99.9% of tests worked as expected with Alice received both responses from her intended

Target.

Figure 6.2: DTT control test. Alice has approximately a 0.1% failure chance due to a defect
in the UART connector. Each test was conducted at a data rate of 424 Kbps active with
the NFC boards touching.

For the first set of real tests, all three loop antennas were connected together with Alice’s

antenna in the middle of the stack such that the distance between Alice and Bob is equal

to the distance between Alice and Eve. The data rate was set to 424 Kbps and configured

the boards were configured to use the active transmission mode. One thousand iterations

of the test were executed in this configuration.

As Figure 6.3 shows, the three devices do not agree on what happened. First, consider

Alice. Alice failed to initialize 0.1% of the time, as expected from the control tests. In 20%

of the tests, she initialized properly and found a Target device, but could not receive any

messages. The most likely cause of this behavior is a collision during the transmission of

the first message. Approximately 18% of tests ended with one message pair transmitted

successfully, but not the second pair. This might happen when both Targets transmit

simultaneously. The first message from each Target is the same, but the second differs.

87

Figure 6.3: DTT test at 424 Kbps active with Bob, Eve, and Alice touching.

Thus, a collision during transmission of the second message would produce this result.

Alice got two messages from Bob 377 times and two messages from Eve 210 times. Finally,

she received a message from an unknown sender 25 times. This occurs when there is a

data collision in the second message, but not in the message headers. So, Alice receives the

second message, but the send is not “Bob” or “Eve”.

However, Bob and Eve do not agree with these results. When a Target reports the “Init

Fail” status, it indicates that the Target was not selected by an Initiator device during

the test. Bob was not selected in 0.1% of tests, likely because Alice failed to initialize. In

14% of cases, Bob was selected, but never received a message from Alice, and in 240 tests,

he received one message from Alice, but not the second. Bob believes that he successfully

transmitted both messages to Alice 610 times. Eve was less successful. She was not selected

61 times, received no messages in approximately 20% of the tests, received only one message

in 30% of the tests, and was only able to receive both messages in 43% of the tests. Both

Target devices believe that they were successful 150% to 200% more often than they actually

88

Figure 6.4: DTT test at 424 Kbps passive with Bob, Eve, and Alice touching.

were.

The second set of tests is identical to the first, except that the devices operate in passive

mode and thus use a different single-device detection algorithm. This test will determine

if the problem lies in the single-device detection algorithm or elsewhere in the system.

Figure 6.4 shows the results of running one thousand iterations of this test.

First, notice that Alice failed to initialize more often than the control would suggest.

However, these failures still only account for 0.24% of the tests. Second, the results of this

test are much different than the results of the first. Alice received two messages from either

Bob or Eve in 96.7% of attempts. Unfortunately, the Target devices still can’t agree on who

was successful. Bob thought that he was successful 53.4% of the time when in fact he only

succeeded in 44.8% of attempts. Eve was similarly optimistic, believing that she succeeded

about 5% more often than she did.

The third set of tests is identical to the first, except that the data rate is set to 106 Kbps

instead of 424 Kbps. Since the devices are still in active mode, the single-device detection

89

Figure 6.5: DTT test at 106 Kbps active with Bob, Eve, and Alice touching.

algorithm is the same as the first. Thus, this test set tests whether the transmission speed

affects the active mode single-device detection algorithm. Figure 6.5 shows the results of

one thousand iterations of this test.

The majority of these attempts (about 64%) ended with zero or one message pairs

successfully transmitted as a result of data collisions. Both Bob and Eve see 30% of the

iterations failing after the first message pair and Alice almost agrees with this result. The

disparity is caused by collisions during the transmission of the first response headers. For

the second message pair, Eve was far more successful than Bob. This is because Eve was

selected as a Target more often than Bob. Notice that Eve and Alice very nearly agree on

the number of successful second responses. However, Bob’s viewpoint is highly distorted,

showing a 20% success rate when the actual rate was 0.12%. Bob sent his second response

and called the test a success whenever he got a second message from Alice. Unfortunately

for him, Eve usually was the selected Target and so Alice received her messages instead.

In order to determine if distance changes the results, three more sets of tests were

90

Figure 6.6: DTT test at 424 Kbps active with Eve 4 cm from Alice and Bob touching Alice.

executed that were identical to the first three except that Eve was positioned 4 cm away

from Alice while Bob remained in direct contact with Alice. For these particular NFC

devices, 4 cm was the maximum observed distance in which 100% of control tests were

successful.

Figure 6.6 shows the results of the fourth test. Notice that the “Init OK” percentages

are very high for both Bob and Eve. Bob was not selected in 43% of iterations, allowing Eve

to send her messages without any problems. Similarly, Eve was not selected in 34% of trials,

which allowed Bob to send his messages successfully. Alice’s success numbers very nearly

match those of Bob and Eve. Each Target only differs from Alice by 0.8% 0.9%. These

results imply that stationing one Target further from the Initiator improves the single-device

detection algorithm in libnfc.

The fifth test was the most successful, as shown in Figure 6.7. Alice and Bob agree

entirely on the outcome. Bob’s success rate in sending both messages was 99.4%! However,

Eve is still a problem. She sees one or two successful messages in the same 99.4% of iterations

when in fact she did not transmit any messages successfully. Devices have as shorter range

91

Figure 6.7: DTT test at 424 Kbps passive with Eve 4 cm from Alice and Bob touching
Alice.

in passive mode since passive Targets do not generate their own RF fields. While Eve had

no trouble modulating Alice’s field in the control test, her power is not strong enough to

cause problems for Bob, who is closer to Alice. Nevertheless, Eve receives Alice’s messages,

implying that she believes herself to have been selected by Alice when she should not have

been.

The final test set is summarized in Figure 6.8. As with the other active tests, the single-

device detection algorithm performed poorly. In 27% of trials, Alice could not select a

Target. In another 20%, either Bob or Eve sent only a single messages, having been selected

when they should not have been. Despite this, the numbers of successful transmissions very

nearly match for Alice and either Target device.

6.4 Security Implications

If an Initiator cannot select a single Target with which to communicate, then the NFC

protocol breaks down. Table 6.1 summarizes the results presented in the previous section.

92

Figure 6.8: DTT test at 106 Kbps active with Eve 4 cm from Alice and Bob touching Alice.

Clearly, something is wrong. The active tests did not go well. In the majority of active

tests, Alice was not able to communicate properly with Bob or Eve. Passive tests look

better in Table 6.1, but from Bob and Eve’s perspectives, we know that even the passive

tests produces many disagreements among the three devices. Perhaps the fault lies with

the PN532 device. Maybe libnfc is to blame. Regardless, a bad actor could intentionally

write his library or design his device to behave in this manner. What sort of damage could

he do?

Malicious Target devices could cause trouble in a number of ways. First, they could

eavesdrop on sensitive data. Not all NFC communications are encrypted and not all NFC

devices support the NFC-SEC protocol described in Section 3.4. Indeed, the PN532 devices

used in these experiments do not support the NFC-SEC protocol. There are some alterna-

tives. The PN532 supports a secure access module (SAM). A SAM can provide encryption

and key management services for the NFC device. One example of a SAM is the subscriber

identity module (SIM) present in many mobile phones. Similarly, the NFC device might

rely on another system such as the ARM processor in the PandaBoard to provide encryp-

93

Table 6.1: Double Target Trouble results from Alice’s perspective.

Test Success Collision Init Fail

Control 991 0 9

424K, Active, 0cm 587 403 10

424K, Passive, 0cm 968 9 24

106K, Active, 0cm 370 623 7

424K, Active, 4cm 783 205 12

424K, Passive, 4cm 994 0 6

106K, Active, 4cm 713 281 6

tion services. However, both solutions add another element to the system that could be

compromised through security flaws or side-channel attacks.

Secondly, a malicious Target device could spoof data. Consider a passive RFID tag

used for advertising purposes. Perhaps a customer with a NFC-enabled mobile phone is

meant to read the tag, which then directs her to a website. If another RFID tag is placed

in close proximity, but hidden from the customer’s view, then she might inadvertently read

the wrong tag and find herself on a different website. This website might be offensive or it

might contain a computer virus. Similarly, one might hide a Target device near a payment

terminal. If a customer attempts to pay with his NFC-enabled mobile phone, then the

malicious Target might instead respond to the card reader’s request for information. In this

way, the payment could be charged to the wrong account or it could be blocked entirely.

Finally, a malicious Target might perform other denial of service attacks. Since all NFC

devices communicate on the same frequency band, a Target could ignore the NFC protocol

and transmit whenever another Target attempts to do the same. As these experiments

show, the Initiator might never receive the message and the the real Target device might

be none the wiser. Using this technique, a bad Target device could block payments, access

to restricted areas that use NFC or RFID tags for credentials, advertising, and peer-to-peer

NFC communications.

94

6.5 Chapter Summary

This chapter presented an experiment that showed what happens when NFC Target

devices do not follow the NFC protocol. Whether by accident or intentionally, a bad Target

device could eavesdrop on sensitive data, spoof data, and deny service to legitimate devices.

While encryption can alleviate the first problem and more advanced security services can

somewhat alleviate the second, neither is effective against the third type of attack. Further,

not all devices are suitable for encryption. For instance, one would not wish to forget his

private key when accessing critical medical sensor information.

95

Chapter 7

NFC-SEC Proof of Security

The NFC-SEC protocol [53][54] described in Sections 3.4 - 3.5 offers one solution to

some of the problems described in Chapters 4 and 6. This chapter examines the security of

the NFC-SEC-1 [54] version of that protocol using a system called Protocol Composition

Logic.

7.1 Protocol Composition Logic

Protocol Composition Logic (PCL) is a formal logic for stating and proving security

properties of network protocols [92][93]. PCL breaks a protocol down into roles, such as

“client” and “server” or “initiator” and “target”. A thread is a principal, such as Alice or

Bob, executing one role of a protocol. Each role contains zero or more basic sequences, each

of which is composed of one or more actions performed by the principal. If a basic sequence

contains a receive action, then that action must be the first element of the sequence.

In order to reason about protocols, PCL uses assertions of the form ϕ[actseq]Tψ, which

states that if the thread T is in state ϕ and performs the actions contains in actseq, then ψ

is true in the resulting state. Importantly, the actions contained in actseq are all performed

as part of thead T’s role and not by any other party. PCL does not require explicit reasoning

about the actions of attackers or other third parties.

Parts of this Chapter were submitted for publication to Wiley Security and Communication Net-
works [91].

96

The preconditions ϕ and postconditions ψ can be simple boolean expressions, such as

true and false, or they can contain one or more action predicates. Some action predicates

include Send(T,msg), which says that thread T sent the message msg, Has(T,msg), which

says that thread T either created or otherwise received msg and that msg is not hidden

from T by encryption, and Honest(Pname), which simply says that the principal with name

Pname is honest. An honest principal is one who executes her role as prescribed by the

protocol and who does not share any secret information with other parties. For example,

if Alice shares her private key, then Honest(Alice) would be false. Additionally, PCL

uses standard predicate logic and modal operators to connect predicates and actions. For

a complete set of basic action predicates and operators, please see [92].

The first step of analyzing a protocol with PCL is to explicitly state each role in the

procotol. When doing so, there are some rules to consider:

• A role must not have any free variables. Keys must be constants, parameters passed

to the role at startup, or derived from received messages. This rule applies to non-key

variables as well, especially principal names.

• Each variable must be assigned only once and each variable must not be used until it

has been assigned. To facilitate this rule, roles must be described without loops.

• If a key is confidential, then it cannot be assigned to variable. That is, if a key

K is confidential, then the action var := K would be illegal. Neither can K be an

argument to another function unless that function requires an argument of type key.

For example, the enc function is the asymetric encryption function. Its signature is

of the form location× message× asym enc key. Thus, var := enc msg, K would

be a legal action because K is of type asym enc key, a subtype of key.

• Variables are local to threads. That is, they may only be read from within a role

assigned to a specific thread.

Protocols are written with a blank line to separate basic sequences for readability. Com-

ponents of complex data types are written with record notation. For instance, T.pname

97

Algorithm 7.1: PCL Algorithm for NFC-SEC-1 Initiator.

I n i t i a t o r (A,B : NFCID3) {

n A := newnonce ;

act req A := <pk (A) ,n A>;

send act req A ;

ac t r e s A := receive ;

<pk B , n B> := act r e s A ;

assert : ValidECP(pk B , P192) ;

<Px ,Py> := dk(A) * pk B ;

z s s e := Px ;

keyseed := se (z s s e , <n A , n B>) ;

mk sse := se(<n A , n B ,A,B,01> , keyseed) ;

mac tag A := se (<03 ,A,B, pk (A) , pk B>, mk sse) ;

send mac tag A ;

mac tag B := receive ;

mac tag vA := se (<02 ,A,B, pk (A) , pk B>, mk sse) ;

assert : mac tag vA = mac tag B ;

Z := mk sse ;

}

refers to the pname (principal name) of thread T (e.g. Alice or Bob). Finally, a vector is

denoted with angular brackets (< and >).

7.2 NFC-SEC-1 SSE Algorithm

Algorithm 7.1 explicitly states the NFC-SEC-1 protocol from the perspective of the

Initiator role. The Initiator requires two NFCID3 parameters, called A and B. As previously,

A and B will be Alice and Bob, respectively.

In the first basic sequence, Alice generates a new nonce and sends it, along with her

public key, pk(A), as an ACQ REQ message. In the second basic sequence, she receives an

ACT RES message from (presumably) Bob containing his public key and his (presumably)

98

Algorithm 7.2: PCL Algorithm for NFC-SEC-1 Target.

Target (B,A : NFCID3) {

ac t r eq B := receive ;

n B := newnonce ;

a c t r e s B := <pk (B) , n B>;

send ac t r e s B ;

<pk A , n A> := act r eq B ;

assert : ValidECP(pk A , P192) ;

<Px ,Py> := dk(B) * pk A ;

z s s e := Px ;

keyseed := se (z s s e , <n A , n B>) ;

mk sse := se(<n A , n B ,A,B,01> , keyseed) ;

mac tag A := receive ;

mac tag vB := se (<03 ,A,B, pk A , pk (B)>, mk sse) ;

assert : mac tag vB = mac tag A ;

mac tag B := se (<02 ,A,B, pk A , pk (B)>, mk sse) ;

send mac tag B ;

Z := mk sse ;

}

newly generated nonce. She asserts that Bob’s public key is valid on the P-192 elliptic curve

[56]. Then, she calculates the first shared secret using her private key, dk(A), Bob’s public

key, and the ECSVDP-DH primitive [94]. Alice has now completed the key agreement

protocol with (presumably) Bob.

Next, Alice uses the first shared secret, z sse, to derive the master key for the Shared

Secret Service (SSE), mk sse. In this Algorithm, the se function stands for the proper AES

encryption algorithm, as specified in the NFC-SEC-1 standard [54]. At this point, Alice has

completed the key derivation protocol. To finish the second basic sequence, Alice generates

a MAC tag using mk sse and sends it to Bob as a VFY REQ message.

In the final basic sequence, Alice receives a VFY RES message from Bob containing his

MAC tag. She generates the expected value for Bob’s MAC tag and compares it with the

one that she received. If they match, then Alice has completed the key verification protocol

99

with Bob.

Algorithm 7.2 states the same NFC-SEC-1 protocol from the Target’s perspective. When

Bob receives an ACT REQ, he generates a new nonce and sends it, along with his public

key, as an ACT RES message. Then, he verifies that the received message contains a valid

public key and, if so, calculates the first shared secret using his private key, dk(B). Bob has

thus completed the key agreement sequence. If Alice is an honest player, then Bob’s z sse

will match Alice’s. Bob then completes the key derivation protocol for SSE, resulting in

mk sse.

In the second basic sequence, Bob receives a VFY REQ message, which should contain

Alice’s MAC tag. Bob generates the expected MAC tag value and compares it with the one

that he received. If they match, then Bob has completed the key verification protocol and

has established a shared key with Alice.

7.3 The PCL Proof System

Protocol Composition Logic provides a framework for proving authentication and secrecy

properties for network protocols. Proofs are written as a sequence of statements in the form

ϕ[actseq]Tψ in which numerous axioms and inference rules connect the statements together.

Generally, if ϕ[actseq]Tψ holds and one wants to prove that ϕ[actseq]Tψ′ holds, then it

suffices to show that ψ ⇒ ψ′. The basic axioms are divided into categories. Some of the

more important ones are as follows:

• AA0 : Axioms that infer the status of a run’s storage based on action sequences per-

formed by threads. For example, the following axiom states that if a thread performs

the action assert : msg1 = msg2, then msg1 is equal to msg2.

true[actseq; assert : msg1 = msg2; actseq′]TSto(T, msg1) = Sto(T, msg2)

• AA1 : If a thread performs an action, then the predicate asserting that the action has

taken place evaluates to true. For example, the following axion says that if a thread

performs the newnonce action, then that thread has in fact performed that action.

true[actseq; loc := newnonce; actseq′]TNewNonce(T, Sto(T, loc))

100

• AA2 : If a thread has not performed any actions, then a predicate asserting that a

thread did perform an action evaluates to false. For example, the following axiom

says that if a thread has not performed any actions, then that thread did not perform

a send action.

Start(T)[]T¬Send(T, msg)

• AA3 : Axioms used to prove that certain messages have not been sent by a thread. For

example, the following axiom states that if a message has not been sent by a thread

and the thread performs any action sequence not containing a send action, then the

message still has not been sent by that thread.

∀actseq not containing a send action : ¬Send(T, msg)[actseq]T¬Send(T, msg)

• AN1, AN2, AN3, AN4 : Axioms concerning nonces. These three axioms state that the

thread generating a given nonce is unique, that only the thread generating a nonce

has that nonce just after generation, that a nonce is fresh just after generation, and

that a thread only has a fresh nonce if it generated that nonce. A nonce is fresh when

it has not been sent as part of any message.

• KEY : Axioms concerning the possession and secrecy of keys. These axioms depend

on the setup assumptions of the protocol in question. For example, if all threads have

access to their own signing keys and all threads are honest, then a thread with access

to sk(Pname) must be the thread assigned to the principal with name Pname.

Has(T, sk(Pname)) ∧ Honest(Pname) ⇒ T.pname = Pname

• HAS : These axioms describe the Has predicate. For example, if a thread receives a

message, then that thread has that message.

Receive(T, msg) ⇒ Has(T, msg)

• SEC : If a protocol includes private keys in the setup assumptions, then only the

principal that owns a private key can decrypt with it, providing that that principal is

honest.

101

• VER: Similarly, only the principal owning a signing key can sign messages with that

key, providing that that principal is honest.

• P1 : The predicates Has, Sign, NewNonce, and FirstSend are preserved across all

action sequences.

• P2 : If a message is fresh, then it it still fresh after an action sequence that does

not contain a send action. Similarly, the freshness of a message is preserved after an

action sequence in which any send actions do not send a message containing the one

in question.

• FS1 : If a nonce is fresh, then it is “sent first” when the first send action containing

that nonce occurs. That is,

Fresh(T, msg1)[send msg2]T(msg1 ⊆ Sto(T, msg2) ⇒

NewNonce(T, msg1) ∧ FirstSend(T, msg1, Sto(T, msg2)))

• FS2 : If a thead first sent a nonce as part of a message and another thread receives

a message containing that nonce, then the send action occured before the receive

action.

The axioms listed above are meant to be illustrative and are by no means comprehensive.

For a complete list of basic axioms, and for a list of other rules, please see [92].

In order to aid with the proofs in Section 7.4, we define Axiom FS3 : If a thread first

sent a message msg1 as part of msg2 and another thread received a message msg3 containing

msg1, then the receive action occured after the send action. This axiom follows from FS2

defined in [92].

((Fresh(T1, msg1) ∧ FirstSend(T1, msg1, msg2))

∧(T1 6= T2) ∧ (msg1 ⊆ msg3) ∧ Receive(T2, msg3))

⇒ Send(T1, msg2) ⊳ Receive(T2, msg3)

102

true[Initiator(A, B)]T

















































Honest(B) ∧ B 6= A

⇒











































∃T′ : T′.pname = B

∧Send(T, acq req A) ⊳ Receive(T′, act req B)

∧Receive(T′, acq req B) ⊳ Send(T′, act res B)

∧Send(T′, acq res B) ⊳ Receive(T, act res A)

∧Receive(T, acq res A) ⊳ Send(T, mac tag A)

∧Send(T, mac tag A) ⊳ Receive(T′, mac tag A)

∧Receive(T′, mac tag A) ⊳ Send(T′, mac tag B)

∧Send(T′, mac tag B) ⊳ Receive(T, mac tag B)



























































































Figure 7.1: Authentication properties of the NFC-SEC-1 Initiator role. If Alice successfully
completes the Initiator role, and if Bob was honest, then Alice knows that she communicated
with Bob and that all messages were sent in the correct order.

7.4 Proof of Authentication

The PCL system is useful for proving two properties of protocols: authentication and

secrecy. The axioms listed in Section 7.3 and those listed in [92] are sufficient to prove

authentication of the NFC-SEC-1 protocol from both the Initiator and Target perspectives.

Figure 7.1 shows the AuthINITIATOR property. It says that if Alice (A) performs the Initiator

role, then if Bob (B) was honest, Alice knows that she communicated with Bob and that

all of the messages transmited as part of the protocol were sent in the proper order.

Notice that during the key exchange part of the protocol, neither Alice nor Bob sends

any identifying information. The nature of NFC itself demands that both Alice and Bob

know each others NFCID3s, but those values are not used to derive z sse. And, once Alice

derives z sse, she does not actually know if she has the same value as Bob until the key

verification stage of the protocol. Thus, in order to prove the authentication property, we

begin with the key verification stage.

Figure 7.2 shows a PCL proof of the authentication property for NFC-SEC-1 from the

Initiator’s perspective. In the first three steps, we define the message that Alice calls

103

AA0,AA1 true[Initiator(A, B)]Tmac tag B = {|< 02, A, B, pk(A), pk(B) >|}SmkSSE

AA1 true[Initiator(A, B)]Tmac tag B =

{|< 02, A, B, pk(A), pk(B) >|}S{|<n A,n B,A,B,01>|}Skeyseed

AA1 true[Initiator(A, B)]Tmac tag B =

{|< 02, A, B, pk(A), pk(B) >|}S{|<n A,n B,A,B,01>|}S
{|z sse|}S

<n A,n B>

HAS true[Initiator(A, B)]THas(A, mac tag B) ⇒ Receive(A, mac tag B)

AA0,AA1 true[Initiator(A, B)]Tmac tag vA = {|< 02, A, B, pk(A), pkB >|}
S
mkSSE

AA1 true[Initiator(A, B)]Tmac tag vA =

{|< 02, A, B, pk(A), pkB >|}
S

{|<n A,n B,A,B,01>|}Skeyseed

AA1 true[Initiator(A, B)]Tmac tag vA =

{|< 02, A, B, pk(A), pkB >|}
S

{|<n A,n B,A,B,01>|}S
{|z sse|}S

<n A,n B>

AA0 true[Initiator(A, B)]Tmac tag B = mac tag vA

KEY,HON Honest(A) ∧ Honest(B) ∧ Has(T′, z sse) ⇒ T′.pname = A ∨ T′.pname = B

KEY,HON true[Initiator(A, B)]THonest(B) ⇒ ∃T′ : T′.pname = B

Figure 7.2: A PCL proof of weak authentication for the NFC-SEC-1 Initiator role. The
first column refernces the axioms as they are labeled in [92]. Here, Alice and Bob are called
A and B, respectively.

mac tag B. In step four, we reason that either Alice generated mac tag B or she received it

as a message. From examining the protocol in Algorithm 7.1, it is clear that Alice did not

generate mac tag B. Therefore, she received it as a message. Steps five through seven define

mac tag vA, which is constructed with z sse. Step eight notes that if Alice completed the

Initiator role, then mac tag B is equal to mac tag vA. Step nine says that if Bob is honest,

then only he and Alice have z sse. Thus, Bob must have generated the message that Alice

received and weak authentication is proved, as shown in step ten. Note that if mac tag B

and mac tag vA did not contain “A” and “B”, then a dishonest party could have performed

the key exchange with Alice and she would be none the wiser since the NFC-SEC-1 protocol

does not verify that public keys belong to specific parties.

The proof in Figure 7.3 shows that all messages were received in the correct order. The

104

first step says that if Alice generated a fresh nonce and sent a message containing it, and

then Bob received a message containing that nonce, then Alice sent her message before Bob

received his. Observation of the protocol shows that Bob receives act req B before sending

act res B. Likewise, Bob must have sent his new nonce before Alice received it and, by

observation, Alice must have received act res A before sending mac tag A.

The second step uses the new FS3 axiom to show that since mac tag A was Fresh before

Alice sent it, then she must have sent it before Bob received it. Observation of the protocol

and a second application of FS3 show that the final message, mac tag B was sent and

received in the proper order, thus proving strong authentication.

Since the Initiator and Target perform essentially the same functions in the NFC-SEC-1

protocol, the AuthTARGET property would look very similar to AuthINITIATOR in Figure 7.1 and

the proofs of authentication would be nearly identical to the ones in Figures 7.2 and 7.3.

7.5 Chapter Summary

Protocol Composition Logic (PCL) provides a framework for proving the security prop-

erties of network protocols. In this chapter, PCL is used to provide a proof of the au-

thentication property of the NFC-SEC-1 protocol’s Shared Secret Service (SSE) from the

perspectives of both the Initiator and Target devices.

105

FS2,AA4 true[Initiator(A, B)]THonest(B) ⇒ ∃T′ : T′.pname = B

∧Send(T, acq req A) ⊳ Receive(T′, act req B)

∧Receive(T′, acq req B) ⊳ Send(T′, act res B)

∧Send(T′, acq res B) ⊳ Receive(T, act res A)

∧Receive(T, acq res A) ⊳ Send(T, mac tag A)

FS3 true[Initiator(A, B)]THonest(B) ⇒ ∃T′ : T′.pname = B

∧Send(T, acq req A) ⊳ Receive(T′, act req B)

∧Receive(T′, acq req B) ⊳ Send(T′, act res B)

∧Send(T′, acq res B) ⊳ Receive(T, act res A)

∧Receive(T, acq res A) ⊳ Send(T, mac tag A)

∧Send(T, mac tag A) ⊳ Receive(T′, mac tag A)

AA4,FS3 true[Initiator(A, B)]THonest(B) ⇒ ∃T′ : T′.pname = B

∧Send(T, acq req A) ⊳ Receive(T′, act req B)

∧Receive(T′, acq req B) ⊳ Send(T′, act res B)

∧Send(T′, acq res B) ⊳ Receive(T, act res A)

∧Receive(T, acq res A) ⊳ Send(T, mac tag A)

∧Send(T, mac tag A) ⊳ Receive(T′, mac tag A)

∧Receive(T′, mac tag A) ⊳ Send(T′, mac tag B)

∧Send(T′, mac tag B) ⊳ Receive(T, mac tag B)

Figure 7.3: A PCL proof of strong authentication for the NFC-SEC-1 Initiator role. This
proof relies on the result from the proof in Figure 7.2.

106

Chapter 8

Conclusions

8.1 Summary and Accomplishments

As Near Field Communication (NFC) technology matures, it will increasingly become

part of daily commerce. Therefore, NFC transactions must be as secure as possible. This

dissertation examined the known weaknesses of NFC technology, such as eavesdropping

attacks and relay attacks, as well as its inherent defenses, such as its short communication

range.

A new test and development platform utilizing a combination of commercial, off-the-

shelf components will allow future researchers and engineers to find weaknesses in NFC

protocols and to develop defenses against them. This new test platform uses hardware that

is very similar to that found in typical smart phones and which is compatible with nearly

all other NFC and RFID devices currently on the market. All of the hardware and software

comprising the new test and development platform is open source, enabling future users to

modify it as necessary.

Using the new test platform, this dissertation presented a situation in which the single-

device detection protocol failed to ensure a proper pairing of NFC devices. This failure

leaves NFC transactions open to bad actors and is easily reproduced. One possible defense

against this problem is the NFC-SEC protocol, which provides for secure key exchanges and

encrypted datagrams.

107

The NFC-SEC protocol itself specifies only a framework for security services. The more

specific NFC-SEC-1 protocol provides the details, including elliptic curve Diffie-Hellman

key exchanges and AES data encryption. Using a framework called Protocol Composition

Logic, this dissertation examined the NFC-SEC-1 protocol and proved that it is sound for

authentication purposes. With NFC-SEC-1, two honest actors can ensure that they are

communicating with one another and that all of their messages are sent and received in the

correct order, regardless of any attackers.

8.2 Future Work

While the NFC-SEC protocol is sufficient to secure some NFC transactions, others

cannot benefit from its services. Even then NFC-SEC is employed, security might not be

sufficient. Therefore, further research with the test and developoment platform and other

test equipment is necessary to improve the security of NFC technology. Some possible areas

of exploration include:

• Prove the secrecy properties of NFC-SEC-1 with PCL. While this dissertation was able

to show that NFC-SEC-1 provides proper authentication services, it did not attempt

to show that the protocol provides secrecy of data. Proving the secrecy properties of

NFC-SEC-1 is essential to understanding it.

• Fix the double target problem. Whether the result of a bug in the libnfc software or

a flaw in the PN532 module, the double target problem is easily reproducable and

could cause significant interference for legitimate transactions. Therefore, a fix for the

single-device detection protocol to migitate this problem would be beneficial.

• Update the test and development platform. Adding additional NFC devices, including

some that employ the NFC-SEC protocol, would allow developers to test vulnerabili-

ties and defenses in more realistic situations. Many NFC readers use a standard USB

interface, which the test platform provides. Additionally, the test platform currently

runs a somewhat outdated version of Ubuntu Linux. Future iterations of the platform

108

might use a newer release or switch to the Android operating system to better emulate

current smart phones.

• Improve the libnfc library. The libnfc library is both free and open source and sup-

ports a large selection of NFC and RFID devices. While it does an adequate job of

implementing low-level device drivers, it lacks higher-level interfaces for easily sending

NFC messages in raw or NDEF format. Further, the library appears to be lacking

full support for the PN533 device’s NFC-SEC features. Improvements to libnfc would

benefit all NFC developers and researchers.

8.3 Resulting Publications

• Steven J. Olivieri, Nicholas A. F. DeMarinis, Alexander M. Wyglinski. “On Protocol

Architectures for Near Field Communication Systems: An Overview.” Wiley Journal

on Wireless Communications and Networks, April 2015 (Submitted).

• Steven J. Olivieri, Nicholas A. F. DeMarinis, Alexander M. Wyglinski. “A Tutorial on

Near Field Communication Security Protocols.” Elsevier Computer Communications,

April 2015 (Submitted).

• Steven J. Olivieri, Nicholas A. F. DeMarinis, Alexander M. Wyglinski. “Analyzing

NFC-SEC with Protocol Composition Logic.” Wiley Security and Communication

Networks, April 2015 (Submitted).

109

Appendix A

Multiplying in Finite Fields

The peasant algorithm is an ancient form of multiplication that was used in at least

Egypt, Russia, and Ehtiopia. It allows one to multiply two numbers using only doubling,

halving, and summing. Thus, it was easier to learn than multiplication tables and methods

that we use today.

A.1 Peasant Algorithm

To begin, determine the two multiplicands. As an example, let us use 327 and 15. Next,

decompose the larger of the two multiplicands. To do so, first find the largest power of two

in the larger of the two multiplicands. Begin with the number 1 and multiply by 2 until

the result is larger than the multiplicand.

110

1× 2 = 2

2× 2 = 4

4× 2 = 8

8× 2 = 16

16 × 2 = 32

32 × 2 = 64

64 × 2 = 128

128 × 2 = 256

256 × 2 = 512

So, the largest power of 2 in 327 is 256. Continue the decomposition by subtracting 256

and then finding the next power of two that is smaller than the result of the subtraction.

Repeat this process until nothing remains.

327 − 256 = 71

71 − 64 = 7

7 − 4 = 3

3 − 2 = 1

1 − 1 = 0

Thus, the multiplicand 327 is the sum of 256, 64, 4, 2, and 1. Next, create a table

consisting of doubles of the second multiplicand, 15. Stop when the power of two is the

largest component of the first multiplicand.

15 × 1 = 15

15 × 2 = 30

15 × 4 = 60

15 × 8 = 120

15 × 16 = 240

15 × 32 = 480

15 × 64 = 960

15 × 128 = 1920

15 × 256 = 3840

111

Finally, sum the doubles of the second multiplicand that correspond to the components

of the first multiplicand.

15 × 1 = 15

15 × 2 = 30

15 × 4 = 60

15 × 8 = 120

15 × 16 = 240

15 × 32 = 480

15 × 64 = 960

15 × 128 = 1920

15 × 256 = 3840

So, the product of 327 and 15 is 15 + 30 + 60 + 960 + 3840 = 4905.

A.2 Finite Fields

Recall from Section 3.1.1 that numbers used in the AES algorithm are elements of

a finite field. Specifically, the Galois field GF(28) with irreducible polynomial m(x) =

x8+x4+x3+x+1. We can represent values in this field with binary notation. For example,

the value 21 in GF(28) is “x4 + x2 + 1”, which we represent as “00010101”. Multiplying

numbers in GF(28) is complex, but a modified version of the peasant algorithm makes the

operation simpler.

As before, first determine the two multiplicands. The multiplicands must be elemnts

of the finite field, so their range is restricted to [0, 255]. For this example, we use A = 145

and B = 21. In binary notation, the multiplicands are A = 10010001 and B = 00010101.

Initialize the product, P, to zero. Next, we run a series of binary arithmetic operations eight

times, once for each bit in either of the multiplicands.

First, check if the rightmost bit of B is set. If so, then exclusive-OR P with the value of

A. As described in Section 3.1.1, this operation is equivalent to addition in the finite field.

Next, shift B one bit to the right, setting the leftmost bit to zero and discarding the x0 term.

Now, check the leftmost bit of A, which represents the x7 term of the polynomial. If it is

112

set to one, then set a variable called carry to true. Shift A left one bit, multiplying it by x.

Finally, if carry was set to true, then exclusive-OR A with the binary value “00011011”,

which represents the irreducible polynomial with the x8 term removed. This final step is

necessary because A× x must be calculated modulo 2 in GF(28).

After all eight iterations, the value of P is the desired product. Algorithm A.1 shows a

sample implementation of the modified peasant algorithm in C. As a minor optimization,

the loop terminates when either A or B is zero.

Running this implementation with the example multiplicands 145 and 21 produces the

following output. Here, the values are printed in hexadecimal notation for simplicity.

a=91 b=15

0: a=39 b=0A p=91

1: a=72 b=05 p=91

2: a=E4 b=02 p=E3

3: a=D3 b=01 p=E3

4: a=BD b=00 p=30

p=30

The loop terminates after five iterations since the decomposition is complete. Note

that as with the original peasant algorithm, A should be the larger multiplicand and B the

smaller. On average, setting the multiplicands this way will result in fewer iterations of

the loop. If we set them the opposite way in this example, then the loop requires all eight

iterations to compute the product.

a=15 b=91

0: a=2A b=48 p=15

1: a=54 b=24 p=15

2: a=A8 b=12 p=15

113

3: a=4B b=09 p=15

4: a=96 b=04 p=5E

5: a=37 b=02 p=5E

6: a=6E b=01 p=5E

7: a=DC b=00 p=30

p=30

114

Algorithm A.1: The modified peasant algorithm in C.

#include <s tdboo l . h>

#include <s t d i n t . h>

#include <s t d i o . h>

#include <s t d l i b . h>

int main (int argc , char* argv []) {

u in t 8 t a = 0 , b = 0 , p = 0 ;

bool car ry = f a l s e ;

i f (argc != 3) {

f p r i n t f (s tde r r , ” usage : peasant a b\n”) ;

return EXIT FAILURE;

}

a = a to i (argv [1]) ; b = a to i (argv [2]) ;

f p r i n t f (stdout , ”a=%02X b=%02X\n\n” , a , b) ;

for (u i n t 8 t i = 0 ; i < 8 , a != 0 , b != 0 ; ++i) {

i f (b & 0x01) {

p ˆ= a ;

}

car ry = (a & 0x80) ;

a <<= 1 ;

i f (car ry) {

a ˆ= 0x1B ;

}

b >>= 1 ;

f p r i n t f (stdout , ”%d : a=%02X b=%02X p=%02X\n” , i ,

a , b , p) ;

}

f p r i n t f (stdout , ”\np=%02X\n” , p) ;

return EXIT SUCCESS;

}

115

Bibliography

[1] N. Balkan-Atli, “One of the Earliest Centers of Obsidian Trade: Göllü Dağ (Central

Anatolia),” in 6th International Congress of the Archaeology of the Ancient Near East,

vol. 3, Rome, Italy, May 2009, pp. 305–306.

[2] G. Davies, A History of Money: From Ancient Times to the Present Day. University

of Wales Press, 1996.

[3] D. R. Headrick, Technology: A World History. Oxford University Press, 2009.

[4] Merriam-Webster, “e-commerce,” Available from http://www.merriam-webster.com/

dictionary/e-commerce.

[5] “NFC Parking in San Francisco,” Available from http://paybyphone.com/san-fran-nfc.

[6] “Ticketfriend Unveils NFC Event Ticketing System,” Available from http://www.

nfcworld.com/2011/08/01/38883/ticketfriend-unveils-nfc-event-ticketing-system.

[7] A. Kowl, “Paperless Ticketing Moving Toward NFC Tech-

nology,” Available from http://www.rfidsb.com/lifestyle-efficiency

%E2%80%8F/ticketmaster-gives-contactless-tickets-a-bad-name-pt-1/

paperless-ticketing-moving-toward-nfc-technology, 2007.

[8] “Austria: ’Rollout’ Uses NFC Reader Mode To Sell Tick-

ets and Snacks,” Available from http://nfctimes.com/project/

austria-rollout-uses-nfc-reader-mode-sell-tickets-and-snacks, 2007.

http://www.merriam-webster.com/dictionary/e-commerce
http://www.merriam-webster.com/dictionary/e-commerce
http://paybyphone.com/san-fran-nfc
http://www.nfcworld.com/2011/08/01/38883/ticketfriend-unveils-nfc-event-ticketing-system
http://www.nfcworld.com/2011/08/01/38883/ticketfriend-unveils-nfc-event-ticketing-system
http://www.rfidsb.com/lifestyle-efficiency%E2%80%8F/ticketmaster-gives-contactless-tickets-a-bad-name-pt-1/paperless-ticketing-moving-toward-nfc-technology
http://www.rfidsb.com/lifestyle-efficiency%E2%80%8F/ticketmaster-gives-contactless-tickets-a-bad-name-pt-1/paperless-ticketing-moving-toward-nfc-technology
http://www.rfidsb.com/lifestyle-efficiency%E2%80%8F/ticketmaster-gives-contactless-tickets-a-bad-name-pt-1/paperless-ticketing-moving-toward-nfc-technology
http://nfctimes.com/project/austria-rollout-uses-nfc-reader-mode-sell-tickets-and-snacks
http://nfctimes.com/project/austria-rollout-uses-nfc-reader-mode-sell-tickets-and-snacks

116

[9] “NFC in Public Transport,” Available from http://www.nfc-forum.org/resources/

white papers/NFC in Public Transport.pdf, January 2011.

[10] “NFC Phones Replace Room Keys and Eliminate Check-In at Swedish Hotel,”

Available from http://www.nfcworld.com/2010/11/03/34886/nfc-keys-hotel-sweden,

November 2010.

[11] D. Balaban, “Subway To Accept Contactless Payment as it Preps

for Google Wallet,” Available from http://nfctimes.com/news/

subway-begin-us-contactless-payment-rollout-it-preps-google-wallet, October 2011.

[12] S. Clark, “Starbucks UK Set To Accept NFC Payments,” Available from http://www.

nfcworld.com/2011/05/24/37619/starbucks-uk-nfc-payments, May 2011.

[13] K. Krause, “NFC Expands its Reach, Google Wallet Now Accepted at

Bay Area Gap Stores,” Available from http://phandroid.com/2011/11/16/

nfc-expands-its-reach-google-wallet-now-accepted-at-bay-area-gap-stores, Novem-

ber 2011.

[14] “Visa payWave,” Available from http://usa.visa.com/personal/cards/card

technology/paywave.html.

[15] “MasterCard PayPass,” Available from http://www.mastercard.us/paypass.html.

[16] “Google Wallet,” Available from http://www.google.com/wallet.

[17] D. Balaban, “MasterCard Certifies Two BlackBerrys to Run

PayPass on SIMs,” Available from http://nfctimes.com/news/

mastercard-certifies-two-blackberrys-run-paypass-payment-sims, October 2011.

[18] “Wallet for Windows Phone 8,” Available from http://msdn.microsoft.com/en-us/

library/windowsphone/develop/jj207032%28v=vs.105%29.aspx, May 2013.

[19] “HTC One,” Available from http://www.htc.com/www/smartphones/htc-one/.

[20] “Samsung Galaxy S4,” Available from http://www.samsung.com/global/microsite/

galaxys4/.

http://www.nfc-forum.org/resources/white_papers/NFC_in_Public_Transport.pdf
http://www.nfc-forum.org/resources/white_papers/NFC_in_Public_Transport.pdf
http://www.nfcworld.com/2010/11/03/34886/nfc-keys-hotel-sweden
http://nfctimes.com/news/subway-begin-us-contactless-payment-rollout-it-preps-google-wallet
http://nfctimes.com/news/subway-begin-us-contactless-payment-rollout-it-preps-google-wallet
http://www.nfcworld.com/2011/05/24/37619/starbucks-uk-nfc-payments
http://www.nfcworld.com/2011/05/24/37619/starbucks-uk-nfc-payments
http://phandroid.com/2011/11/16/nfc-expands-its-reach-google-wallet-now-accepted-at-bay-area-gap-stores
http://phandroid.com/2011/11/16/nfc-expands-its-reach-google-wallet-now-accepted-at-bay-area-gap-stores
http://usa.visa.com/personal/cards/card_technology/paywave.html
http://usa.visa.com/personal/cards/card_technology/paywave.html
http://www.mastercard.us/paypass.html
http://www.google.com/wallet
http://nfctimes.com/news/mastercard-certifies-two-blackberrys-run-paypass-payment-sims
http://nfctimes.com/news/mastercard-certifies-two-blackberrys-run-paypass-payment-sims
http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj207032%28v=vs.105%29.aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj207032%28v=vs.105%29.aspx
http://www.htc.com/www/smartphones/htc-one/
http://www.samsung.com/global/microsite/galaxys4/
http://www.samsung.com/global/microsite/galaxys4/

117

[21] “Motorola Droid RAZR HD,” Available from http://www.motorola.com/us/

consumers/DROID-RAZR-HD-BY-MOTOROLA/m-DROID-RAZR-HD,en US,pd.

html.

[22] “Google/LG Nexus 4,” Available from http://www.google.com/nexus/4/.

[23] “BlackBerry Z10,” Available from http://ca.blackberry.com/smartphones/

blackberry-z10.html.

[24] “Nokia Lumia 928,” Available from http://www.nokia.com/us-en/phones/phone/

lumia928/.

[25] A. Fraser, “Nokia’s NFC Phone History,” Available from http://conversations.nokia.

com/2012/04/11/nokias-nfc-phone-history/, April 2012.

[26] S. J. Olivieri, N. A. F. DeMarinis, and A. M. Wyglinski, “On protocol architectures

for near field communication systems: An overview,” Wiley Journal on Wireless Com-

munications and Networks, 2015, submitted.

[27] ECMA-340, Near Field Communication — Interface and Protocol (NFCIP-1), 1st ed.,

Ecma International, December 2002.

[28] ISO/IEC 18092:2013, Information technology — Telecommunications and information

exchange between systems — Near Field Communication — Interface and Protocol

(NFCIP-1), 2nd ed., ISO/IEC, June 2013.

[29] Specification of the Bluetooth System, 4th ed., Bluetooth Special Interest Group, Febru-

ary 2013.

[30] IEEE 802.11-2012, IEEE Standard for Information technology — Telecommunications

and information exchange between systems, Local and metropolitan area networks —

Specific requirements — Part 11: Wireless LAN Medium Access Control (MAC) and

Physical Layer (PHY) Specifications, IEEE Computer Society, February 2012.

[31] IEEE 802.15.2-2011, IEEE Standard for Local and metropolitan area networks — Part

http://www.motorola.com/us/consumers/DROID-RAZR-HD-BY-MOTOROLA/m-DROID-RAZR-HD,en_US,pd.html
http://www.motorola.com/us/consumers/DROID-RAZR-HD-BY-MOTOROLA/m-DROID-RAZR-HD,en_US,pd.html
http://www.motorola.com/us/consumers/DROID-RAZR-HD-BY-MOTOROLA/m-DROID-RAZR-HD,en_US,pd.html
http://www.google.com/nexus/4/
http://ca.blackberry.com/smartphones/blackberry-z10.html
http://ca.blackberry.com/smartphones/blackberry-z10.html
http://www.nokia.com/us-en/phones/phone/lumia928/
http://www.nokia.com/us-en/phones/phone/lumia928/
http://conversations.nokia.com/2012/04/11/nokias-nfc-phone-history/
http://conversations.nokia.com/2012/04/11/nokias-nfc-phone-history/

118

15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs), IEEE Computer So-

ciety, June 2011.

[32] ISO/IEC 18092:2004, Information technology — Telecommunications and information

exchange between systems — Near Field Communication — Interface and Protocol

(NFCIP-1), 1st ed., ISO/IEC, April 2004.

[33] ECMA-340, Near Field Communication — Interface and Protocol (NFCIP-1), 3rd ed.,

Ecma International, June 2013.

[34] R. Cassidy, “Verizon Wireless and Discover Financial Services Join the NFC Forum as

Principal Members,” Available from http://www.nfc-forum.org/news/pr/view?item

key=10dc2059578b35d1bf22cc24a88324dddc0e0199, June 2013.

[35] OSHA Cincinnati Laboratory, “Electromagnetic Radiation and How It Affects Your

Instruments,” Available from https://www.osha.gov/SLTC/radiofrequencyradiation/

electromagnetic fieldmemo/electromagnetic.html, May 1990.

[36] NFC Analog Specification (ANALOG), 1st ed., NFC Forum, July 2012.

[37] Logical Link Control Protocol (LLCP), 1st ed., NFC Forum, June 2011.

[38] ISO/IEC 7498-1, Information technology — Open Systems Interconnection — Basic

Reference Model: The Basic Model, 2nd ed., ISO/IEC, November 1994.

[39] A. S. Tanenbaum, Computer Networks, 4th ed. Prentice Hall, 2002.

[40] ISO/IEC 14443-2:2010, Identification cards — Contactless integrated circuit(s) cards

– Proximity cards — Part 2: Radio frequency power and signal interface, 2nd ed.,

ISO/IEC, August 2010.

[41] “MIFARE Contactless Smartcard Technology,” Available from http://www.mifare.

net/.

[42] ICAO, “Document 9303, Machine Readable Travel Documents,” Available from http://

www.icao.int/publications/pages/publication.aspx?docnum=9303.

http://www.nfc-forum.org/news/pr/view?item_key=10dc2059578b35d1bf22cc24a88324dddc0e0199
http://www.nfc-forum.org/news/pr/view?item_key=10dc2059578b35d1bf22cc24a88324dddc0e0199
https://www.osha.gov/SLTC/radiofrequencyradiation/electromagnetic_fieldmemo/electromagnetic.html
https://www.osha.gov/SLTC/radiofrequencyradiation/electromagnetic_fieldmemo/electromagnetic.html
http://www.mifare.net/
http://www.mifare.net/
http://www.icao.int/publications/pages/publication.aspx?docnum=9303
http://www.icao.int/publications/pages/publication.aspx?docnum=9303

119

[43] EMV Contactless Specifications for Payment Systems Book D — EMV Contactless

Communication Protocol Specification, 2nd ed., EMVCo, June 2012.

[44] NFC Digital Protocol (DIGITAL), 1st ed., NFC Forum, November 2010.

[45] ISO/IEC 14443-3:2011, Identification cards — Contactless integrated circuit(s) cards

– Proximity cards — Part 3: Initialization and anticollision, 2nd ed., ISO/IEC, April

2011.

[46] NFC Activity Specification (ACTIVITY), 1st ed., NFC Forum, November 2010.

[47] “NFC Forum Assigned Numbers Register,” Available from http://www.nfc-forum.org/

specs/nfc forum assigned numbers register, 2013.

[48] Simple NDEF Exchange Protocol (SNEP), 1st ed., NFC Forum, August 2011.

[49] NFC Data Exchange Format (NDEF), 1st ed., NFC Forum, July 2006.

[50] NFC Record Type Definition (RTD), 1st ed., NFC Forum, July 2006.

[51] N. Freed and N. Borenstein, RFC 2046, Multipurpose Internet Mail Extensions

(MIME) Part Two: Media Types, The Internet Engineering Task Force (IETF),

November 1996.

[52] T. Berners-Lee, R. Fielding, and L. Masinter, RFC 3986, Uniform Resource Identifier

(URI): Generic Syntax, The Internet Engineering Task Force (IETF), January 2005.

[53] ECMA-385, NFCIP1-1 Security Services and Protocol (NFC-SEC), 3rd ed., Ecma In-

ternational, June 2013.

[54] ECMA-386, NFC-SEC Cryptography Standard using ECDH and AES (NFC-SEC-01),

2nd ed., Ecma International, June 2010.

[55] S. J. Olivieri, N. A. F. DeMarinis, and A. M. Wyglinski, “A tutorial on near field com-

munication security protocols,” Elsevier Computer Communications, 2015, submitted.

[56] FIPS PUB 197, Announcing the Advanced Encryption Standard (AES), National In-

stitute of Standards and Technology, November 2001.

http://www.nfc-forum.org/specs/nfc_forum_assigned_numbers_register
http://www.nfc-forum.org/specs/nfc_forum_assigned_numbers_register

120

[57] “CNSS Policy No. 15, Fact Sheet No. 1, National Policy on the Use of the Advanced

Encryption Standard (AES) to Protect National Security Systems and National Secu-

rity Information,” Available from http://csrc.nist.gov/groups/ST/toolkit/documents/

aes/CNSS15FS.pdf, June 2003.

[58] “AES-NI Suport on Intel Processors,” Available from http://ark.intel.com/search/

advanced/?AESTech=true.

[59] “OpenSSL Cryptography and SSL/TLS Toolkit,” Available from http://www.openssl.

org/.

[60] M. E. Hellman, B. W. Diffie, and R. C. Merkle, “Cryptographic apparatus and

method,” US Patent 4200770, April 1980.

[61] W. Diffie and M. E. Hellman, “New Directions in Cryptography,” IEEE Transactions

on Information Theory, vol. IT-22, no. 6, November 1976.

[62] P. Hoffman, RFC 4434, The AES-XCBC-PRF-128 Algorithm for the Internet Key

Exchange Protocol (IKE), The Internet Engineering Task Force (IETF), February 2006.

[63] S. Frankel and H. Herbert, RFC 3566, The AES-XCBC-MAC-96 Algorithm and Its

Use With IPSec, The Internet Engineering Task Force (IETF), September 2003.

[64] ISO/IEC 10116:2006, Information technology — Security techniques — Modes of op-

eration for an n-bit block cipher, 3rd ed., ISO/IEC, February 2006.

[65] E. Haselsteiner and K. Breitfuß, “Security in Near Field Communication (NFC),” in

Workshop on RFID Security, 2006, pp. 12–14.

[66] EMVCo LLC, “About EMV,” Available from http://www.emvco.com/about emv.

aspx.

[67] Tecnoyouth, “Come acquistare Nexus 5 dal Play Store in Italia,” Available from http://

www.tecnoyouth.it/wp-content/uploads/2013/10/Nexus-5.jpg.

http://csrc.nist.gov/groups/ST/toolkit/documents/aes/CNSS15FS.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/aes/CNSS15FS.pdf
http://ark.intel.com/search/advanced/?AESTech=true
http://ark.intel.com/search/advanced/?AESTech=true
http://www.openssl.org/
http://www.openssl.org/
http://www.emvco.com/about_emv.aspx
http://www.emvco.com/about_emv.aspx
http://www.tecnoyouth.it/wp-content/uploads/2013/10/Nexus-5.jpg
http://www.tecnoyouth.it/wp-content/uploads/2013/10/Nexus-5.jpg

121

[68] NFC World, “ACS launches NFC reader with interactive LCD dis-

play,” Available from http://www.nfcworld.com/2011/03/30/36732/

acs-launches-nfc-reader-with-interactive-lcd-display/.

[69] T. W. Brown, T. Diakos, and J. A. Briffa, “Evaluating the Eavesdropping Range of

Varying Magnetic Field Strengths in NFC Standards,” in 7th European Conference on

Antennas and Propagation (EUCAP). IEEE, 2013, pp. 3525–3528.

[70] G. V. Damme, K. Wouters, and B. Preneel, “Practical Experiences with NFC Security

on Mobile Phones,” Proceedings of the RFIDSec, vol. 9, 2009.

[71] H. Kortvedt and S. F. Mjølsnes, “Eavesdropping Near Field Communication,” in The

Norwegian Information Security Conference (NISK), 2009.

[72] G. Hancke et al., “Eavesdropping Attacks on High-Frequency RFID Tokens,” in 4th

Workshop on RFID Security (RFIDSec), 2008, pp. 100–113.

[73] L. Francis, G. Hancke, K. Mayes, and K. Markantonakis, “Practical NFC Peer-to-Peer

Relay Attack Using Mobile Phones,” in Radio Frequency Identification: Security and

Privacy Issues. Springer, 2010, pp. 35–49.

[74] Nokia, “Nokia 6212 Classic User Guide,” Available from http://nds1.nokia.com/

phones/files/guides/Nokia 6212 classic UG en.pdf.

[75] ——, “Nokia 6131 User Guide,” Available from http://nds1.nokia.com/phones/files/

guides/Nokia 6131 NFC UG en.pdf.

[76] Z. Wang, Z. Xu, W. Xin, and Z. Chen, “Implementation and Analysis of a Practical

NFC Relay Attack Example,” in Second International Conference on Instrumentation,

Measurement, Computer, Communication and Control (IMCCC). IEEE, 2012, pp.

143–146.

[77] HTC, “HTC One X,” Available from http://www.htc.com/www/smartphones/

htc-one-x/.

http://www.nfcworld.com/2011/03/30/36732/acs-launches-nfc-reader-with-interactive-lcd-display/
http://www.nfcworld.com/2011/03/30/36732/acs-launches-nfc-reader-with-interactive-lcd-display/
http://nds1.nokia.com/phones/files/guides/Nokia_6212_classic_UG_en.pdf
http://nds1.nokia.com/phones/files/guides/Nokia_6212_classic_UG_en.pdf
http://nds1.nokia.com/phones/files/guides/Nokia_6131_NFC_UG_en.pdf
http://nds1.nokia.com/phones/files/guides/Nokia_6131_NFC_UG_en.pdf
http://www.htc.com/www/smartphones/htc-one-x/
http://www.htc.com/www/smartphones/htc-one-x/

122

[78] M. Roland, J. Langer, and J. Scharinger, “Applying Relay Attacks to Google Wallet,”

in 5th International Workshop on Near Field Communication (NFC). IEEE, 2013,

pp. 1–6.

[79] Z. Kfir and A. Wool, “Picking Virtual Pockets Using Relay Attacks on Contactless

Smartcard,” in First International Conference on Security and Privacy for Emerging

Areas in Communications Networks (SecureComm). IEEE, 2005, pp. 47–58.

[80] L. Sportiello and A. Ciardulli, “Long Distance Relay Attack,” in Radio Frequency

Identification. Springer, 2013, pp. 69–85.

[81] GPS.gov, “GPS Accuracy,” Available from http://www.gps.gov/systems/gps/

performance/accuracy/.

[82] T. Halevi, D. Ma, N. Saxena, and T. Xiang, “Secure Proximity Detection for NFC

Devices Based on Ambient Sensor Data,” in Computer Security – ESORICS. Springer,

2012, pp. 379–396.

[83] P. Urien and S. Piramuthu, “Elliptic Curve-Based RFID/NFC Authentication with

Temperature Sensor Input for Relay Attacks,” Decision Support Systems, 2013.

[84] “PandaBoard ES,” Available from http://pandaboard.org/.

[85] Adafruit, “PN532 NFC/RFID Controller Breakout Board – v1.3,” Available from

http://www.adafruit.com/products/364.

[86] ——, “USB FTDI TTL-232 Cable – TTL-232R 3.3V,” Available from http://www.

adafruit.com/products/70.

[87] “Raspberry Pi,” Available from http://www.raspberrypi.org/.

[88] NXP, “PN533 NFC,” Available from http://www.nxp.com/products/identification

and security/nfc and reader ics/nfc contactless reader ics/PN5331B3HN.html.

[89] “Ubuntu 12.04.4 LTS (Precise Pangolin),” Available from http://releases.ubuntu.com/

12.04.4/.

http://www.gps.gov/systems/gps/performance/accuracy/
http://www.gps.gov/systems/gps/performance/accuracy/
http://pandaboard.org/
http://www.adafruit.com/products/364
http://www.adafruit.com/products/70
http://www.adafruit.com/products/70
http://www.raspberrypi.org/
http://www.nxp.com/products/identification_and_security/nfc_and_reader_ics/nfc_contactless_reader_ics/PN5331B3HN.html
http://www.nxp.com/products/identification_and_security/nfc_and_reader_ics/nfc_contactless_reader_ics/PN5331B3HN.html
http://releases.ubuntu.com/12.04.4/
http://releases.ubuntu.com/12.04.4/

123

[90] “NFC Tools,” Available from http://nfc-tools.org/index.php?title=Main Page.

[91] S. J. Olivieri, N. A. F. DeMarinis, and A. M. Wyglinski, “Analyzing nfc-sec with proto-

col composition logic,” Wiley Security and Communication Networks, 2015, submitted.

[92] A. Datta, J. C. Mitchell, A. Roy, and S. H. Stiller, “Protocol Composition Logic,” in

Formal Models and Techniques for Analyzing Security Protocols. IOS Press, 2011,

vol. 5, pp. 182–221.

[93] A. Datta, A. Derek, J. C. Mitchell, and A. Roy, “Protocol Composition Logic,” Elec-

tronic Notes in Theoretical Computer Science, vol. 172, pp. 311–358, 2007.

[94] IEEE 1363, IEEE Standard Specifications for Public-Key Cryptography, IEEE Com-

puter Society, January 2000.

http://nfc-tools.org/index.php?title=Main_Page

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Research Motivation
	Current State of the Art
	Research Objectives
	Contributions
	Dissertation Organization

	Near Field Communication
	Overview
	Physical Operation
	Protocol
	Analog Interface
	Digital Interface
	Single Device Detection and Initialization
	Data Exchange Protocol

	Logical Link Control
	LLCP Frames
	MAC Mapping
	Activating a Link
	Exchanging Data
	Deactivating a Link

	Simple NDEF Exchange Protocol
	NFC Data Exchange Format

	Chapter Summary

	Cryptography Overview
	Advanced Encryption Standard
	Finite Field Math
	Key Schedule
	AddRoundKey
	SubBytes
	ShiftRows
	MixColumns
	Decryption

	Diffie-Hellman
	Elliptic Curves
	NFC-SEC
	NFC-SEC-1
	Chapter Summary

	NFC Protocol Security
	Eavesdropping Attacks
	Data Alteration Attacks
	Man-in-the-Middle Attacks
	Relay Attacks
	Chapter Summary

	NFC Testing Platform
	Hardware
	Software
	Implementation
	Chapter Summary

	An Analysis of Double Target Trouble
	The Problem
	Proposed Experiment
	Experimental Results and Analysis
	Security Implications
	Chapter Summary

	NFC-SEC Proof of Security
	Protocol Composition Logic
	NFC-SEC-1 SSE Algorithm
	The PCL Proof System
	Proof of Authentication
	Chapter Summary

	Conclusions
	Summary and Accomplishments
	Future Work
	Resulting Publications

	Multiplying in Finite Fields
	Peasant Algorithm
	Finite Fields

	Bibliography

