
7Factor Webhooks-as-a-Service:
Standard Operating Procedure

Contents

Chapter 1. Overview... 3

Recommendations Overview... 3

Chapter 2. Getting Started... 4

Installing and Running the Application... 4

Chapter 3. Backend Design.. 6

Third Party Providers and Receivers...6

Chapter 4. UI Design.. 7

Creating ReactJS Components... 10

Rendering HTML Elements..11

Chapter 1. Overview
This standard operating procedure is intended for future computer science MQP teams working with

7Factor on their Webhooks-as-a-Service (WaaS) API that was started in a 2021-2022 Major Qualifying

Project (MQP). The tasks that will be covered include procedures recommended by the prior team to

continue building the WaaS API. The recommendations are outlined in the Webhooks-as-a-Service: A

Custom API Design report. This SOP shows WPI student developers how to get started working with the

current codebase and materials. It introduces tasks that are to be worked on during the course of their

MQP, an extension of the WaaS API.

Recommendations Overview
The following recommendations of the report are covered in this SOP. Each recommendation will include

methods that the team suggests for completing each task.

The procedures on how to build off of the existing API framework in place are:

1. Installing and Running the Application

2. Integrating the current UI design with the React.js framework

3. Extending support to more webhook providers and receivers

Chapter 2. Getting Started
To get started with extending the custom WaaS API it is important to get familiar with the most recent

project concepts and codebase. You will gain access to the codebase and contribute via a 7Factor

provided GitHub Organization.

The codebase contains server and database components for a future working application. Your team

should work to complete the connection between the server and database. The current server and

database are supported through Docker containers. Using the existing codebase, the past team was able

to do manual integration testing with webhooks between Discord and Github. For example, the action of

sending a message in Discord when an action occurs in Github is established as a webhook. You will be

encouraged to extend the application to other third party APIs.

Using the React modules that have been setup, you will also be expected to work on a user interface

based on the standards set in the project mockups.

Installing and Running the Application
You will learn how to install, build, and run the server and database application with Docker.

To install, build, and run the application with the current codebase:

1. Install the codebase from GitHub.

2. Install Docker.

3. Navigate to the installed project ~/webhooks.

4. Run the following commands to build the two required images:

docker build -t jlrosenbaum/webhooks_mqp .

docker build -t jlrosenbaum/webhooks_db Docker/Database

5. Run the following command to run the database and server containers through Docker compose:

docker compose up

6. Access the application on localhost:666.

a. If localhost:666 does not work on your machine, try looking in the terminal print outs for

where the containers are hosted.

In this example, the database appears to be running on port 8000.

https://docs.docker.com/get-docker/

7Factor Webhooks-as-a-Service: Standard Operating Procedure | 2 - Getting Started | 5

Chapter 3. Backend Design
The backend design consists of a NodeJS server and a SQLite database. Both the server and the

database are hosted in Docker containers.

Important prequisite knowledge for working on the backend includes:

• Getting familiar with the current codebase

• Referencing the 7Factor User Guide

• Basic knowledge of JavaScript, Python, and SQLite

Some tasks expected to be completed by the team include:

• Connecting the server and database containers

• Creating a secure login system with multiple users

• Adding functionality for third party providers and receivers (This task will be covered in the next

section on Third Party Providers and Receivers)

Third Party Providers and Receivers
One of the recommendations provided by the team is to add third party providers and receivers to the API.

To add third party providers and receivers, please refer to the 7Factor Webhooks-as-a-Service User Guide

as you complete this task.

1. Navigate to server/payload_parsers.

2. Create a new .js file for the service. For example: concourse.js.

3. Research the format of the service's payload you will be sending and receiving.

4. Create methods for handling actions similar to sendLink.

5. Require the parser and add a case in getParser()inparser-dict.js .

6. Consult the User Guide for more information.

Chapter 4. UI Design
The current UI design was mocked up using Figma, a cloud based UI tool for drafting mockups. The

foundation for creating UI Designs has been integrated into the current codebase using React, Babel, and

Webpack.

Important prequisite knowledge for working on the UI includes:

• Getting familiar with the current codebase

• Referencing the 7Factor User Guide

• Strong knowledge of JavaScript and React

Current UI Mockups

The following pictures represent concepts that should be implemented by future teams using React. You

may reference these mockups as a guide before creating your own ReactJS components and rendering

HTML elements explained in later topics.

Login Pages

The following pages are for the login and create account screens.

7Factor Webhooks-as-a-Service: Standard Operating Procedure | 4 - UI Design | 8

Settings Page

7Factor Webhooks-as-a-Service: Standard Operating Procedure | 4 - UI Design | 9

Connections Dashboard

7Factor Webhooks-as-a-Service: Standard Operating Procedure | 4 - UI Design | 10

Connection Creation Page

Creating ReactJS Components
You will learn how to create ReactJS components in the application that will be rendered in a webpage.

To create a ReactJS component:

1. Under the src folder, right click the folder and create a new .jsx file.

The resulting file is to be written in plain Javascript

2. Import React with the following code:

import React from "react";

import ReactDOM from "react-dom";

3. Create a JS class that extends React.Component similar to the example below.

class LikeButton extends React.Component {

constructor(props) {

super(props);

7Factor Webhooks-as-a-Service: Standard Operating Procedure | 4 - UI Design | 11

 this.state = { liked: false };

 }

4. Create a render() method where the structure of the component will be returned.

render() {

if (this.state.liked) {

return 'You liked this.' + this.props.value;

 }

return (

<button onClick={() => this.setState({ liked: true })}>

 Like

</button>

);

}

5. Outside of the class, create a DOM container and call render on it with the class created.

const domContainer = document.getElementById('react-container');

ReactDOM.render(<LikeButton/>, domContainer);

6. Refer to "Rendering HTML Elements" for properly rendering the element in the DOM container.

Rendering HTML Elements
Once you have created a React js file, you should use the Babel and Webpack setup commands for

rendering. To make rendering HTML elements in React simpler, Babel is used for transpiling the .jsx

files into plain Javascript and Webpack is used to combine all of the Javascript files into one script for

efficiency.

These steps will show you what is needed to render React webpages:

1. In the node_modulesfolder, check if Babel and Webpack packages have been installed. Use the

following commands to check and/or make updates:

a. For Babel: npm install babel

b. For Webpack: npm install webpack

2. In a terminal window, start Babel for transpiling with the following commands:

a. For Windows: npm run start-babel-windows

b. For Mac/Linux: npm run start-babel

3. Save any changes made to .jsx files.

7Factor Webhooks-as-a-Service: Standard Operating Procedure | 4 - UI Design | 12

Note:

Make sure that after saving changes to .jsx files to check if Babel was stopped. If so, re-run

the appropriate Babel command above.

4. In another terminal window, run the following command: npm run webpack

5. For Mac/Linux run the following command in a third terminal window: npm start

You should notice .js files of the same name appear under public/build

6. Test the React component in a browser

Note:

It is important to keep these watcher commands running in separate terminals, as they

transpile the code while edits are saved.

	7Factor Webhooks-as-a-Service: Standard Operating Procedure
	Contents
	Chapter 1. Overview
	Recommendations Overview

	Chapter 2. Getting Started
	Installing and Running the Application

	Chapter 3. Backend Design
	Third Party Providers and Receivers

	Chapter 4. UI Design
	Current UI Mockups
	Login Pages
	Settings Page
	Connections Dashboard
	Connection Creation Page
	Creating ReactJS Components
	Rendering HTML Elements

