
Automated Tool Prep/Crib

A Major Qualifying Project Report: Submitted to the faculty of the

WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of

the requirements for the Degree of Bachelor of Science

Wheeler, Ryan Willcox, Eric Zolotykh, Sergey

Advisors:

Prof. Craig Putnam, Major Advisor

Prof. Stephen S. Nestinger, Co-Advisor

Prof. Lifeng Lai, Major Advisor

Executive Summary

General Electric Aviation uses CNC machines for manufacturing machined parts. The

process uses end mills inside of tool holders, called an assembly, that need to be replaced

by hand after they are used for a milling process. To eliminate this manual task, GE

wanted to use a robotic industrial arm they purchased from Applied Controls Technology

(ACT) to try to start automating this task with four main goals. The robot needs to be

able to receive used end mills from a worker, it needs to be able to replace the used end

mill with a new one, and finally it needs to be able to properly tighten the collet nut.

A process was developed that will complete all the project goals and much of it was

implemented, but not all. The processes planned and partially constructed throughout

this project show potential for the final goals of the project that can be realized with

some more work and refining.

A second goal of the project was to create a method that is capable of tracking tool

holders within GE’s facilities with the primary purpose of keeping their job histories. An

RFID solution was designed and fully implemented using off the shelf consumer parts

that met three design goals. The assemblies all need to have all jobs they work on logged

with a timestamp, the current location needs to be tracked, and the total amount of

time the tool holder has been used needs to be kept.

Testing shows that the project is completely feasible and could easily be implemented

at GE’s facility by just changing the RFID reader type to a more powerful industrial

solution.

ii

Contents

1. Introduction 1

1.1. Project Description . 3

2. Changing and Storage 5

2.1. Current Changing Process . 5

2.2. Brainstorming . 6

2.2.1. Intake and Outtake . 6

2.2.2. Removing Sheaths . 6

2.2.3. Changing End Mills . 7

2.3. Flowcharts . 8

2.3.1. High Level . 8

2.3.2. Low Level . 10

2.4. Selected System Ideas . 12

2.4.1. Assembly Receiver/Dispatcher . 12

2.4.2. Vise . 13

2.4.2.1. Indexing Table . 16

2.4.2.2. Mounting . 19

2.4.2.3. Analysis . 20

2.4.3. Gripper . 21

2.4.3.1. Gripper Analysis . 23

iii

2.5. Models . 27

2.5.1. Arm: MATLAB . 27

2.5.2. Arm: SolidWorks . 28

2.5.3. Work Cell Layout: SolidWorks . 29

2.6. Implementation and Testing . 30

2.6.1. Drawer . 31

2.6.1.1. Performance . 31

2.6.2. Vise . 32

2.6.2.1. Performance . 33

2.6.3. Gripper . 35

2.6.3.1. Performance . 36

2.6.4. Work Cell Layout . 38

2.6.5. Programming and Putting it Together 38

2.7. Safety Considerations . 40

2.8. Aesthetics . 41

2.9. Social and Ethical Impact . 42

3. Tool Tracking 43

3.1. Background . 43

3.2. Preliminary Planning . 44

3.3. Flowcharts . 46

3.3.1. Changing Cell . 46

3.3.2. Storage In and Out . 47

3.3.3. CNC Carrousel . 49

3.4. Reader Selection . 51

3.5. Breadboard Circuit . 52

iv

3.6. Selecting a Communication Method . 54

3.6.1. Overview . 54

3.6.2. Wireless . 54

3.6.3. Wired . 55

3.7. Database Selection . 56

3.8. Controller Selection . 57

3.8.1. Arduino Uno and Ethernet Shield 57

3.8.2. Arduino Yun . 58

3.9. Network Plan . 59

3.10. Portable Hand Scanner . 61

3.11. Implementation and Testing . 63

3.11.1. Database . 63

3.11.2. Web Interface . 63

3.11.2.1. Basic Queries . 64

3.11.2.2. Searching . 65

3.11.2.3. Admin Station . 69

3.11.3. Portable Scanner . 69

3.11.3.1. Results . 71

3.11.4. CNC Machine . 71

3.11.4.1. Results . 71

3.11.5. Changing and Storage . 72

3.11.5.1. Results . 72

4. Further Discussion and Future Work 73

4.1. Discussion . 73

4.1.1. Repeatability Considerations . 73

4.1.1.1. Tool Holder . 73

v

4.1.1.2. Tool Tracking . 74

4.1.2. Economic Considerations . 74

4.1.2.1. Tool Changing . 74

4.1.2.2. Tool Tracking . 75

4.2. Future Work . 76

4.2.1. Tool Changing . 76

4.2.2. Tool Tracking . 77

5. Conclusions 78

Appendices 80

A. FANUC DH Parameters 81

B. MATLAB Kinematics Code 83

B.1. translate.m . 83

B.2. tlink.m . 83

B.3. rotate.m . 84

B.4. fulltrans.m . 85

B.5. FANUC.m . 85

C. New Yun Setup 87

D. Plates and Pointer 88

E. Reader Code 90

E.1. Arduino Side (C) . 90

E.1.1. CNC Reader . 90

E.1.2. Hand Scanner . 95

E.1.3. All others . 100

vi

E.2. Linux Side (Python 2.7) . 104

E.2.1. Admin Station . 104

E.2.2. CNC Reader . 109

E.2.3. Changing and Storage . 113

E.2.4. Portable Reader . 115

F. Web Code and Material 118

F.1. Home Page . 118

F.2. Management Page . 120

F.3. Adding a Tool Holder . 121

F.3.1. User End . 121

F.3.2. Back End . 123

F.4. Editing Data . 124

F.4.1. User End . 124

F.4.2. Back End . 127

F.5. Deleting Data . 128

F.6. Searching . 129

F.6.1. User End . 129

F.6.2. Back End . 132

F.7. Finding the History . 136

F.8. Reading from Administration Station . 137

F.8.1. User End . 137

F.8.2. Back End . 139

F.9. Text Files . 140

F.9.1. Admin Station . 140

F.9.2. Drawing Models . 140

F.9.3. Machines and Other Locations . 141

vii

F.10.Calendar Script . 141

F.11.CSS . 147

F.11.1. Website . 147

F.11.2. Calendar . 148

F.12.Images . 149

viii

List of Figures

1.1. Tool holder exploded . 1

1.2. CNC machine . 2

1.3. Bladed Disk . 2

1.4. Robotic arm with work cell . 3

2.1. End mill with a sheath . 7

2.2. Tool holder Channel . 8

2.3. High level changing flowchart . 9

2.4. Low level changing flowchart . 11

2.5. Recieving/Dispatching Box . 13

2.6. Locking Pins . 14

2.7. Vise jaw internals . 15

2.8. Jaws snapping into collet nut channels 15

2.9. Indexing table for spinning the assembly 16

2.10. Motor controller for indexing table . 17

2.11. Relay schematic for controlling motor direction 18

2.12. H bridge for controlling indexer . 18

2.13. Table for mounting vise . 20

2.14. Deformation of jaw pins . 21

2.15. Gripper . 22

ix

2.16. Simulation model . 23

2.17. Gripper deformation . 24

2.18. Gripper deformation . 25

2.19. ABS gripper deformation . 26

2.20. Gripper stress . 27

2.21. MATLAB model . 28

2.22. FANUC SolidWorks model . 29

2.23. Planned work cell layout . 30

2.24. Completed drawer assembly . 31

2.25. Constructed vise . 32

2.26. Constructed relays . 33

2.27. Temporary fix for the vise jaws . 34

2.28. Grippers made of PLA . 35

2.29. Wooden and aluminum grippers . 35

2.30. Severe deformation of the grippers . 36

2.31. Actual cell layout . 38

2.32. Teach pendant . 39

2.33. Complete changing process . 40

3.1. Preliminary RFID reader layout . 45

3.2. Automated tool crib flowchart . 47

3.3. Storage in flowchart . 48

3.4. Storage out flowchart . 49

3.5. CNC carrousel flowchart . 50

3.6. RFID reader and tag . 52

3.7. Reader circuit design . 53

3.8. Arduino Uno . 58

x

3.9. Arduino Yun . 59

3.10. Network plan . 60

3.11. Portable RFID Scanner . 62

3.12. Portable RFID scanner internals . 62

3.13. Web interface . 64

3.14. Searching for a tool holder . 65

3.15. Date picker for filtering . 66

3.16. Search results for jobs in a past machines 67

3.17. Job history of an individual tool holder 68

3.18. Web Admin page . 69

3.19. Portable RFID scanner printed . 70

3.20. Portable scanner output . 71

D.1. Arm plates and Pointer . 89

F.1. Website banner . 149

F.2. Website icon . 149

xi

Acknowledgements

The team would like to thank the following individuals for their help with this MQP.

Without their guidance, this project would not have been possible.

Pi Thanacha Choopojcharoen

Tracey Coetzee

David Ephraim

Joseph St. Germain

Lifeng Lai

Stephen Nestinger

Craig Putnam

xii

Abstract

This MQP has two goals that aim to show the feasibility of automating CNC mainte-

nance tasks for General Electric Aviation. The first goal was to design a system capable

of changing used end mills within a tool holder used by CNC machines. Workers cur-

rently have to spend an entire day going around to every machine and changing out all

of these used end mills with fresh ones for other jobs. A process using an industrial arm

owned by GE was created capable of obtaining this goal with reasonable constraints.

The second goal was to create a method to automatically keep track of the location

of all tool holders as well as keep a log of all jobs on which they have been used. GE

currently does not keep track of their tool holders in any way which causes problems

when a part becomes defective. Workers have to try to locate a single tool holder

amongst the hundreds that they have at their facility which is a very difficult process.

The end results showed that both goals are possible and with more work could be

implemented in a working production level system. The processes designed can be

expanded for more functionality until GE either implements them or disbands the goal.

xiii

1. Introduction

The purpose of this Major Qualifying Project (MQP) was to develop a robotic process

for General Electric Aviation (GE) to remove and replace end mills in industrial machine

tool holders. The combination of a tool holder and all of its constituent parts (collet,

collet nut, etc.) plus an end mill will be called an ’assembly’; an example can be seen

in Figure 1.1.

Figure 1.1.: Exploded view of an assembly

GE uses these assemblies within their Computer Numerical Control (CNC) machines

to create bladed disks (blisks) that can be seen in Figures 1.2 and 1.3 respectively.

1

Figure 1.2.: Example of a CNC machine

Figure 1.3.: An example of a blisk that can be made by a CNC process

GE’s end vision is to have the robot work cell be able to receive a number of new

end mills and used assemblies within a workers cart, and have the robot automatically

replace the old end mills with new end mills just as a worker would.

2

GE has provided a robotic work cell for the MQP that contains a FANUC robotic arm,

both of which can be seen in Figure 1.4. A budget of $5,000 has also been generously

provided for any additional tools and materials that are deemed necessary for meeting

the end goals of the project.

(a) FANUC arm (b) Outside of the work cell

Figure 1.4.: Robotic arm with work cell

1.1. Project Description

GE currently have a few processes that are all done by hand involving the assemblies.

First, after an end mill has been used in a job it has to be replaced with a new one and

the old one shipped off to be sharpened by an external vendor. Next, the new assembly

is then either used immediately or stocked in a vending type machine that is able to

store it until it is needed at a later time.

A problem with the tool holders is that they are currently not tracked in any way. If

one should malfunction and it isn’t caught immediately, it may be used in other jobs

before the problem is detected in the first part. It’s currently difficult to try to find all

tool holders that were used on any given job making it hard to find where the broken

3

tool holder has gone to. GE would like to have a system created that is able to keep

track of a tool holder’s job history as well as the ability to find what end mill is currently

in it and where it is located at any time.

The robot would ideally be able to verify the absolute length of the end mill within

the tool holder using some sensor and communicate it with the CNC machines. The

current process has the measurements being done within the CNC machine as is and

there is not a lot of error handling on receiving wrong tools. The robot would then store

all new assemblies in a storage system to be given out on an as-needed basis to workers,

similar to the current vending machine process that is in use now. As tools enter and

leave the storage area, they would be tracked for which jobs they are coming from and

going to and the CNC machine would know if a worker installed an assembly into an

incorrect carrousel.

The problems were approached separately, and the tool changing and tool crib prob-

lems can be seen in Chapter 2 while tool tracking can be found in Chapter 3. Wrap-up

comments as well as future recommendations are then given in Chapters 4 and 5.

4

2. Changing and Storage

To begin, each problem had to be broken down into smaller, manageable sizes so that

it could be tackled. The first step was to come up with a process that the FANUC would

be able to follow to complete each of the following four basic objectives:

1. Take an assembly in/out of the cell

2. Remove the end mill from the tool holder

3. Insert a new end to the proper length mill and tighten the tool holder

4. Move assembly to a storage area

2.1. Current Changing Process

To change a used end mill and tool holder combo (assembly), there are currently

multiple steps that a worker needs to perform. The first step is to check the operational

log on each machine to see which assemblies need to be removed from the system and,

if any, take them out of the tool carrousel. Once removed from the machine, the worker

then has to bring them to a vise where they lock in the tool holder and, with a wrench,

loosen its hold on the end mill and remove it from the collet that holds it. They then

put the used end mill into a sheath to protect it and move it to an area to be sent off to

be resharpened. Next, a new end mill is removed from its sheath and then placed into

5

the tool holder and is set with a special jig, and then the collet nut is tightened until it

cannot physically turn any more. The tool holder then has to have its grip on the end

mill loosened very slightly, called backing off, so the hold on the end mill is still firm but

not so much as to cause damage. The new assembly can then be removed from the vise

and stored in a holding area until a worker requests it from the tool crib.

2.2. Brainstorming

A lot of ideas were created to start trying to think about how to best approach each

problem. A short general idea for each follow.

2.2.1. Intake and Outtake

Using one of the doors into the work cell that already exist, a mechanism can be

devised to take advantage of the existing entryway into the cell. A drawer or a table

can be created with holes in it to place assemblies along with new end mills still in their

sheaths. A drawer method would prevent any workers from ever having any parts of

their bodies within the cell as a hole could be put into the work cell that the drawer

would slide in and out of. A table method however would involve a user opening one

of the doors and reaching within the work cell, potentially putting them in danger if

the robot were to move to their location. When a worker requests a new assembly, the

drawer or table could just be loaded up by the robot with new ones from its storage and

the worker can pull them out when ready.

2.2.2. Removing Sheaths

Before the end mills can be manipulated, the sheath they came in needs to be removed.

A simple gripper that will hold one half of the sheath can be used to allow the robot to

6

lift off the other half, allowing for access to the end mill. The new end mill can then be

replaced with the used one and repackaged in the reverse order and stored on the side

to be resharpened. Figure 2.1 shows an end mill along with the two parts of the sheath

it comes packaged in.

Figure 2.1.: End mill with a sheath

2.2.3. Changing End Mills

To change an end mill the assembly, namely the tool holder body, will need to be

fixed in place. The vise that GE uses will either need to be utilized or something that

performs the same function (with additional features) will need to be created. The tool

holders have a vertical channel in them that the manual vise GE uses to hold them in

place while a worker manipulates the tool holder as needed. These can also be used if a

vise is created and can be used by the intake/outake system for alignment purposes to

ensure a known position. This channel can be seen on a tool holder in Figure 2.2.

7

Figure 2.2.: Tool holder Channel

2.3. Flowcharts

Flowcharts detailing the overall system operation were then created using the brain-

stormed ideas to start figuring out how everything will interconnect.

2.3.1. High Level

Figure 2.3 shows the high level flowchart that breaks down the entire tool changing

process.

8

Figure 2.3.: Highest level flowchart for changing an assembly

The system will first check to see if any orders have been placed for assemblies. If

order(s) have been placed the system then checks if it already has the assemblies in

storage to fulfill the orders. If there are enough assemblies in storage, then the system

9

will populate the drawer with assemblies for the worker to pull out of the cell. If however

there are not enough assemblies in storage, the system will check to see if it can create

new ones with any existing stock or parts in the drawer. If it has no stock to go

through (including the drawer) the system will alert the worker that their order cannot

be fulfilled.

If no orders have been placed, the system will then check to see if there are any used

assemblies in stock that need to have their end mills changed and will change any that

exist. If there are no used assemblies in stock or any orders to fill, then the system will

wait for an order to be placed or for new stock to be received.

2.3.2. Low Level

The flowchart for changing an end mill is shown in Figure 2.4.

10

Figure 2.4.: Low level changing flowchart

The system will first sense the position of the assemblies by way of sensor or camera

11

I/O. The robot will then navigate the gripper to the tool holder that is most conveniently

located and grip it. The robot will then lift the assembly out of its position and place

it into the vice so it can be held while the end mill is removed.

The jaws will then close around the top half of the tool holder fitting into the slots

that are used for securing or removing the end mill. The vice will then rotate, loosening

the end mill from the tool holder. The robot will navigate the small jaws of the gripper

around the end mill. The gripper jaws will close around the end mill. The robot will

lift the end mill out of the tool holder and place it into the sheathing/desheathing area.

The robot will navigate the gripper around a new sheathed end mill and move it into

a second gripper that will hold the bottom half of the sheath. The robot will lift the

top half of the sheath off, revealing the end mill which it will place into the tool holder.

The old end mill can then be placed into the sheath that had the new end mill and then

repacked and placed to the side so that it can be resharpened later.

The vice will then rotate to tighten the tool holder and hold the end mill in place.

The robot will move the completed assembly out of the vice and place it into a storage

area where it can be retrieved later when an order is placed.

2.4. Selected System Ideas

Many designs were created to try to find viable solutions to solve the tool changing

problem. The best ideas were selected and can be seen in the following subsections. The

designs were selected by feasibility given the time constraints and the skill set of each

team member as well as budget.

2.4.1. Assembly Receiver/Dispatcher

When a worker brings their used assemblies to the robot, they need a place to put

assemblies that will not put workers in danger if the robot is in motion. A simple

12

drawer was designed that will be able to have the used assemblies along with new end

mills within their sheaths placed into it and pushed into the cell on a rail system. Sensors

can be placed within each slot to give the population of the box, or the Cognex camera

can be utilized to see which positions are populated. To make sure that tool holders are

always aligned a particular way so they can fit into the vise properly, raised tabs have

been placed around the slots to make sure they are always oriented a certain way. A

view of the drawer with a tool holder in it can be seen in Figure 2.5.

(a) Zoomed-in perspective (b) Zoomed-out perspective

Figure 2.5.: Box to receive and return orders to workers

2.4.2. Vise

The vise is designed in two sections which each serve a specific purpose for end mill

replacement.

The first part of the vise will be the inner part that spins the tool holder. It will rotate

the tool holder until it is told to stop which, along with the upper part of the vise that

doesn’t rotate, will allow for the system to tighten or loosen an end mill from the grip

of the tool holder. This can be seen in Figure 2.6 as the center of the two platters.

13

Figure 2.6.: Vise concept design

The next part of the vise will mimic the behavior of a wrench that grips the slots on

the collet nut. Two jaws will be placed on either side of the tool holder and they will

be controlled with a pneumatic piston. When the tool holder begins to spin, the pistons

will extend and come in contact with the edges of the collet nut and ideally go into the

slots immediately. More than likely it is going to miss the slots however and to address

that the ends of the pistons are spring loaded to allow for them to have some play such

that the springs will be compressed when not in a slot and extended when inside of a

slot. Without the springs, the tool holder would likely not be able to be loosened or

tightened and slots would have to be lined up for every tool holder which is not practical.

An internal view of the jaws can be seen in Figure 2.7.

14

Figure 2.7.: Vise jaw internals

The jaws snapping into and gripping the collet nut of the tool holder can be seen in

Figure 2.8.

Figure 2.8.: Jaws snapping into collet nut channels

15

2.4.2.1. Indexing Table

The tool holders need to be rotated to enable the collet to be loosened or tightened

whenever end mills are changed while in the vise. To do this, the rotating portion of the

vise is connected to an indexing table that is able to spin in 45◦ increments in clockwise

and counterclockwise directions. The indexing table can be seen below in Figure 2.9.

Figure 2.9.: Indexing table for spinning the assembly

To control the indexing table, a motor controller is used to drive as seen in Figure

2.10 it in conjunction with an H bridge design as seen in Figure 2.11.

16

Figure 2.10.: Motor controller for indexing table

This controller takes in an AC voltage from the grid and converts it into a usable 90V

DC signal for use by the motor, however this particular model lacks a method to control

the rotational direction of the motors. To address this problem another system needed

to be added that will be able to take this 90V signal and apply it to the desired motor

terminals allowing for it to be driven in either direction. The general system layout is

in Figure 2.11 shown using a relay controlled by a microcontroller.

17

Figure 2.11.: Relay schematic for controlling motor direction

An attempt of creating this circuit was made by purchasing an H bridge that is a solid

state version of a relay, utilizing MOSFETs instead of mechanical switches. The model

purchased also had current sensing built it which will tells the behavior of the motors.

When the motors are stalled the current is high meaning tool holder is tightened and

when the current is low the collet nut is fully open. The H bridge was supposed to

connect to the motor controller and with an input from a microcontroller will be able

to switch the rotational movement at will as dictated by a current sensor included with

the relay circuit. The unit purchased can be seen in Figure 2.12.

Figure 2.12.: H bridge for controlling indexer

This circuit however had a failure during initial testing when connected and destroyed

18

the microcontroller connected to the H bridge that it was controlling. This meant a

new solution had to be found that would be able to control the direction of the indexing

table as desired.

A second model of the motor controller exists that does support the reverse direction

and is controlled with relays. Three relays are connected to control forward, reverse, and

stop by switching a 24V signal that comes out of the arm controller. This eliminates the

extra layer with the microcontroller and allows the arm to fully control the vise which

is a better system, however this design lost the ability to sense current which was being

used for when to stop. To address this, the vise will just be turned on for a set amount

of time that was measured beforehand that tightens and loosens the tool holder.

2.4.2.2. Mounting

The entire vise needs to be in an area that the robot is able to reach so that assemblies

can be placed into the vise. A simple table was constructed out of steel and the indexing

table was mounted to it as shown in Figure 2.13.

19

Figure 2.13.: Table for mounting vise

2.4.2.3. Analysis

A basic analysis was performed on the vise that looked at the pins in the jaws as that

is the piece most likely to fail due to being so thin. An analysis similar to what was

performed on the grippers was run in SolidWorks and the results can be seen in Figure

2.14.

20

Figure 2.14.: Deformation of jaw pins

The bending of 1.4 mm was found at the tip which is not a large amount, but may be

enough to begin wearing the jaw down over time and cause deformation. The pins will

be bent once in both directions during the changing of every tool holder and this will

eventually break the jaw pins causing them to need replacement.

To fix this in the future, the pins should be made out of a stronger metal that will

not see this amount of deformation. As this is a contact point an even better reason to

replace them in the future with a harder material is to stop chipping from happening

when the jaws close.

2.4.3. Gripper

The gripper shown in Figure 2.15 will be 4 separate parts mounted onto a 2-jaw

parallel actuator that allows for it to go over and around assemblies and end mills. As

21

the robot needs to manipulate sheaths, tool holders and end mills, the gripper needed

to be designed to deal with all of them or be swapped out with another as needed. As

there are only three parts of non-irregular shapes and sizes, it was better to keep one

gripper and not overcomplicate anything. The left side of the gripper has a large circular

hole that will go around the tool holder and be able to safely manipulate it as needed

in and out of the vise. The right side has two holes, one that will be able to grab small

circular end mills and slightly larger square sheaths. All holes will have a piece of soft

rubber around the inside that will be able to deform when compressed so it can better

grip the tool holder and conform to its shape and prevent it from slipping on the smooth

metallic surfaces.

Figure 2.15.: Gripper

22

2.4.3.1. Gripper Analysis

To test out how well the design would work, a simulation was run in SolidWorks 2013

on a simplified gripper made out of aluminum 6061 as shown in Figure 2.16. Because

only the tool holder has sufficient weight to cause any type of deformation, only the right

half of the gripper was loaded with a force of 100 Newtons while the left half was left

unloaded. This force is equivalent to about 22.4 pounds of force, much more than the

assemblies weigh (about 10 pounds) which gives a safety factor of 2. This force is applied

to the gray circle which represents an assembly where the force will be concentrated from

the weight once grabbed.

Figure 2.16.: Simplified gripper for simulation

The first analysis is the deformation in Figure 2.17. The scale is in millimeters and

the color scale shows how much each part of the gripper deforms.

23

Figure 2.17.: Gripper deformation with 100N of force

Looking only at the image, it appears as if the gripper is bending by about 25 mm

or more. This is because SolidWorks is scaling the deformation by about 145 times so

that the effect is visible; looking at the scale to the right it shows that it is only at most

0.196 mm at the tip which is next to nothing.

If the bending of the gripper is treated as a triangle, the angle that the gripper is

bending can be found which allows for the displacement of the end of the tool holder to

be found. The angle was found to be 0.072◦ and the effect this has on the tool holder can

be seen in Figure 2.18 using a tool holder with a length 305 mm where the black line is

a tool holder deforming. An equation was also found to give the displacement for a tool

holder of any length with a 100 N force which was found to be: y = 793.650167x + 0.

Therefore, the effect of a 100 N force on the gripper is negligible.

24

Figure 2.18.: Tool holder displacement with 100N of force

Initially, as a prototype to make sure that all measured dimensions that were believed

to be needed were correct, a gripper was 3D printed out of polylactic acid (PLA). In

SolidWorks, a simulation was run on a similar material (acrylonitrile butadiene styrene

- ABS) which showed that the plastic gripper would not be able to be used with this

force as shown in Figure 2.19.

25

Figure 2.19.: Gripper deformation with 100N of force

This time there is 6.734 mm of deflection at the tip of the gripper. This would not

be that great of a material to use for a gripper as it is just over 32 times worse than

aluminum was. Equating the displacement of the actual tool holders end points was

done once again and this time found to be almost 13 mm in the horizontal which is

unacceptable. This would make it harder to place the assemblies into either the vise

or storage position, and over time may even wear down as plastic does not have the

durability of aluminum.

The analysis was done again with a force matching that of the actual tool holder

and only a 5.5 mm displacement was found at the tip of the tool holder. This was an

acceptable amount when tested and the PLA was used as it was already made and would

work reliably throughout the project.

Next a stress analysis was done for aluminum in Figure 2.20.

26

Figure 2.20.: Gripper deformation with 100N of force

Unsurprisingly, all of the stress is located back by the bolts, mainly at the inner 90

degree corner of the gripper. The stress exhibited is very low and is nothing that needs

to be concerned about in this application.

2.5. Models

To help with the design, some models were created to represent the arm to make

planning easier. They were used to make sure that the arm would be able to perform

the actions desired and to help spot potential problems.

2.5.1. Arm: MATLAB

A MATLAB model was created that used forward kinematics to display the orientation

of the arm with a given DH table. This model was not very useful in the end but creating

27

it did help understand the movements capable of the arm at the start of the project. An

example output of the MATLAB script created can be seen in Figure 2.21 that shows

the arm in some orientation and the MATLAB code can be found in the Appendices.

Figure 2.21.: FANUC MATLAB model

2.5.2. Arm: SolidWorks

A much more useful SolidWorks model of the FANUC arm was obtained from online.1

This model allowed for a much better visualization of the arm and allowed for all other

parts created in SolidWorks to be put in the same workspace as this arm. The modeled

arm is shown in Figure 2.22

1https://grabcad.com/library/fanuc-m-710ic70

28

Figure 2.22.: FANUC SolidWorks model

2.5.3. Work Cell Layout: SolidWorks

Using the SolidWorks model of the arm and all systems developed, a layout for the

work cell was created as shown in Figure 2.23.

29

(a) Isometric view (b) Top-down view

Figure 2.23.: Planned work cell layout

The drawer will go where an access door is already located on the work cell. This is an

easy access point that is within the workspace of the robot so it can be easily reached by

the arm. This is the only logical place to put the drawer at the moment as the work cell

is not allowed to be significantly modified. The access door is able to easily be removed,

and the existing safety features on the door can be re-used on the drawer as desired.

The vise will go directly in front of the arm and cables will run from the arm to the

vise systems that allows for the controlling of the vise with pneumatics and relays. This

uses up almost all of the available space in the work cell and if more is needed in the

future, it would be required to either expand the work cell or purchase a new one.

2.6. Implementation and Testing

Each section was constructed one at a time to make sure there was no problems that

would affect another system, calling for modifications that might be impossible after

construction. Some of the original plans were deviated from during the construction

process as needed when problems arose and were addressed as appropriate.

30

2.6.1. Drawer

The drawer was constructed out of wood and attached to the side of the cell where an

access door used to be. The SolidWorks plan was deviated from due to time constraints

and having some extra 80/20 on hand that was able to serve the same purpose as the

support frame. This still allowed for workers to safely be able to remove and insert

assemblies into the cell without being in danger of any moving parts. Figure 2.24 shows

the drawer installed in the cell with a tool holder loaded into it.

Figure 2.24.: Completed drawer assembly

2.6.1.1. Performance

The drawer is able to function as desired and can safely insert and remove tool holders

and end mills from the work cell. One thing that needs to be done is that the size of

the drawer needs to be increased from the small test size that was created to make sure

it would work. The drawer served its purpose for testing and therefore was not scaled

31

up as it was not a critical component that affected anything.

2.6.2. Vise

The vise was machined out of 6061 aluminum and was attached to the indexing table.

The entirety of the vise was then attached to the previously constructed table as shown

in Figure 2.25

Figure 2.25.: Constructed vise

The relays that control the direction were put inside of a plastic project box as shown

in Figure 2.26.

32

(a) Box that contains the relays
(b) Simple relay circuit for controlling the

vise

Figure 2.26.: Constructed relays

2.6.2.1. Performance

The vise is able to perform the task of loosening and tightening the collet nut, however

there are some issues with the overall design. When adjusted, the collet nut moves up

and down approximately 1
8

of an inch. This that was never taken into account during

the planning phase, and means that there is bending in the jaws. An attempt was made

to remedy this in the short term by placing rubber washers and springs underneath the

jaws which allow it to move in the vertical as shown in Figure 2.27. This modification

however allows the jaws to also move in the horizontal slightly which is undesirable.

33

Figure 2.27.: Temporary fix for the vise jaws

Another problem is the dimensions of the tool holder were not properly taken and

there is a small lip on the bottom that was not taken into account. Because of this the

tool holder does not properly sit in the vise causing it to be able to wobble around when

placed into the hole.

A possible solution to this is to make a way for the jaws of the vise to ”float” allowing

for them to freely rise and fall with the collet nut. This would be a more complicated

solution however it is much more robust and allows for using different tool holders that

each rise a different amount.

The last major problem with the vise is because there is no current sensing, the collet

nuts were tightened by rotating for a fixed time. If the collet nut were to be over-

tightened then it has the potential to bend the vise jaws, effectively destroying the vise.

The only way to stop this from happening is the stop switch on the motor controller

which immediately stops any rotation.

34

2.6.3. Gripper

The gripper was made out of PLA using a MakerBot 2 printer as shown in Figure

2.28.

Figure 2.28.: Grippers made of PLA

As already discussed in the analysis of the gripper, the PLA did not meet the initial

hopes. Figure 2.29 shows the machined aluminum grippers for the tool holders that

replaced the 3D printed grippers as well as wooden tooling grippers.

Figure 2.29.: Wooden and aluminum grippers

It was only possible to make the tool holder gripper out of aluminum due to problems

with the CNC machines in WPI’s Washburn Labs near the end of the project when the

35

grippers were being machined. The tool holder grippers were instead laser cut out of

wood to eliminate the distortions in the 3D printed ones.

2.6.3.1. Performance

When the gripper was made out of PLA it was able to serve its purpose fine for a short

while. However during the printing process the gripper deformed due to the limitations

of the printer. Parts of the gripper became twisted which meant that objects became

misaligned when held by the arm. Figure 2.30 shows the sheath and end mill grippers

deformed from the print process.

Figure 2.30.: Severe deformation of the grippers

Another problem not taken into account is when the gripper encountered any resis-

tance or accidently bumped into something, then the gripper would bend severely. Due

36

to the bending, the tool holder gripper was then made out of aluminum and the tooling

grippers out of wood to make sure they weren’t broken on accident during testing.

The aluminum tool holder gripper worked much better and did not have any deforma-

tions. It was able to successfully pick up tool holders and move them around as desired

and putting extra force on them did not bend them. It was found that the tool holders

were able to rotate so rubber was added to the gripper as was visible earlier in Figure

2.29.

The wooden grippers for the tooling did not work as well as the aluminum ones for

the tool holders. Rubber was not able to be fixed to them as easily and they snapped

when excessive force was accidently applied to them. The laser cutter is not as accurate

as the mills meaning that tolerances were poor and end mills were not gripped well.

Electrical tape was wrapped around the gripper to try to fix with the holding issue as

was seen in Figure 2.29 but it did not help much.

One other issue that was not considered that came up was that if there is higher

than normal friction between the collet and end mill, the collet can be pulled out of the

tool holder. This is a problem associated with the wooden grippers sagging slightly with

weight at their ends and the deformation of the wrapped electrical tape which sometimes

pulled the end mill out at an angle. This problem can be addressed in the future by

making a simple mechanism that is able to stop the collet from rising as during testing

the collet was easily pushed down and removed.

Another problem along the lines of the end mill becoming crooked is re-insertion.

Whenever an end mill was picked up, it was often crooked and at a different angle then

before, making inserting it into the collet impossible. This is something that may be

able to be solved with the aluminum design, however it was not able to be tested due

to all WPI’s CNC machines being broken at the time.

37

2.6.4. Work Cell Layout

The final cell layout matches the initial plan and the implemented components can

be seen in Figure 2.31.

Figure 2.31.: Actual cell layout

The arm was able to freely move between the two areas as desired with no issues

whatsoever. The only change that would be made is that the table should be bolted

to the floor as sometimes the table was moved accidently which required some arm

movement points to be re-created.

2.6.5. Programming and Putting it Together

The programming of the robot was relatively simple as multiple systems were never

created which eliminated a lot of obstacles. Everything was programmed from the teach

pendant shown in Figure 2.32 which allowed for moving the arm as desired and saving

the motions as desired.

38

Figure 2.32.: Teach pendant

The functions of all sub-components were made into functions which were called when

needed such as ”open gripper” or ”tighten collet” to make the code more readable and

modular. Everything was then put together and a video of everything can be seen at

https://www.youtube.com/watch?v=74kvBIuBhkc&feature=youtu.be and snapshots

can be seen in Figure 2.33.

39

https://www.youtube.com/watch?v=74kvBIuBhkc&feature=youtu.be

(a) Obtaining and returning the tool holder (b) Placing and removing from the vise

(c) Tightening and loosening the collet nut (d) Removing and replacing the end mill

Figure 2.33.: Complete changing process

2.7. Safety Considerations

The biggest concern with the changing process is a worker being able to get any part

of their body within the work cell while it is in motion. This can happen in multiple

spots, the most dangerous being the doors of the work cell as a person could fully enter

the cell during operation.

When an employee wishes to enter the work cell they need to unlock one of the

doors and leave their key on the outside, locked in. The doors are monitored by an

interlock system that senses when a door is open and can stop the arm from making any

movements or make it run at a reduced speed. If proper safety procedures are taken then

there is no risk unless there is a malfunction with the equipment or someone removes

another workers key and reactivates the arm.

The drawer currently has no safety systems implemented which can put workers at

40

risk. This created two hazards, the first is that if an employee pulled out the drawer

they could stick in a body part and possibly be injured if the arm hits them. This could

be addressed by tying the drawer into the interlock system so that if it is ever opened

when the robot is operational, then it will react in the same way as a door being open.

The next problem with the drawer is that if the arm is holding something in the

drawer there is nothing locking the drawer in place preventing a worker from attempting

to pull it out of the cell. This can cause components to break which is an issue that will

need to be fixed in the future with some kind of locking system to prevent anyone from

accessing the drawer when the arm is using it.

Another large problem is that the vise system is not tied into any of the work cells

safety systems. If a problem occurs while the vise is rotating such as over-torquing as

discussed earlier, then the only way to stop the vise is to enter the work cell and flip the

switch on the controller. Pressing the emergency stop buttons or breaking the fence on

the work cell doors will currently not stop the vise from operating.

2.8. Aesthetics

The the vise and the tool holder gripper look aesthetically pleasing being made out of

aluminum and look appropriate in an industrial setting. The drawer needs to be remade

to look better which would involve making it out of metal instead of wood as well as

doing a better mounting job. This also applies to the end mill and sheath gripper which

was made out of wood instead of aluminum as it was supposed to, milling it out of

aluminum will make it look more professional as it was meant to be.

41

2.9. Social and Ethical Impact

At the start of the project, GE explained that changing end mills is a job task that

is rotated around within employees already within the company. This can eliminate a

dull and slightly strenuous task from their employees workload and give them work that

is better suited to their talents. With further development this can apply to the many

other tool holder types GE has to eliminate those tasks as well and employees would no

longer need to spend their days doing this job.

42

3. Tool Tracking

3.1. Background

For tracking assemblies, a solution was needed that could stand-up to the harsh en-

vironments of the CNC machines. Due to the environment, the only real solution was

radio-frequency identification (RFID) where tags can be attached to the tool holders

and scanned.

The other main solution considered briefly was an image recognition or QR-codes that

would be scanned in by a camera. This however brought in multiple problems with it,

the biggest being that oils and metal bits that can contaminate the image making it

harder to read. Another problem is that there is no good place to put it on the tool

holder that would be easy to read and all tool holders are off-the-shelf parts that would

then need to go through a custom branding process to add an image. The final problem

is that orientation and lighting can be tricky and make the image hard to read causing

many false or failed readings.

Each tool holder will therefore have its own RFID tag which will stay with the tool

holder throughout its lifetime at the company.

Due to budgetary concerns, GE indicated that they were okay with consumer grade

electronics being used for RFID tracking as a proof of concept. They indicated that

they would like to be able to track the following parameters:

43

• Location

– Being changed

– Storage

– On the shop floor (in transit)

– Carrousel, waiting to be used

– Carrousel, ready to be removed

• Total time used

• Length of tool installed

• Job history

As the potential number of tool holders and the pertaining amount of information

that is to be tracked is large, a database will be used to keep track of all data. GE has

put no particular restrictions or preferences on what type of database should be used

nor how to implement it.

3.2. Preliminary Planning

To track all of the positions, multiple RFID readers will be needed throughout the

plant that will allow for as much as possible to be tracked without being redundant.

Figure 3.1 shows how readers will be dispersed within the facility to be able to meet all

the goals.

44

Figure 3.1.: Preliminary RFID reader layout

Each reader will be tied into the network by some communication method so that

communications with the database can be done to retrieve and manipulate data as

needed.

45

3.3. Flowcharts

To track a tool holder at each of the possible locations, different processes will be

needed for entering and exiting each respective area. Flowcharts were created once all

the areas were determined to help find potential problems and prepare for hardware

purchases as well as coding later. One thing to note is that at every stage the tags are

checked to see if they are in the database or not. This is a check to make sure workers

have not put a tool holder anywhere in the line that it doesn’t belong on accident.

3.3.1. Changing Cell

The flowchart for the process of taking a used assembly into the work cell and changing

end mills can be seen in Figure 3.2.

46

Figure 3.2.: Automated tool crib flowchart

When the robot removes a tool holder from the drawer it will pass it by an RFID

scanner which will check it into the system and put the location in the database as

”Changing end mill.” However when the tool holder is scanned if that particular tool

holder is not found in the database, the robot should place the tool holder to the side

so that someone can add it in if desired when retrieved.

3.3.2. Storage In and Out

Figure 3.3 shows the flowchart for the process of taking a new assembly into the

changing stations storage area.

47

Figure 3.3.: Storage in flowchart

When an end mill is done being changed, the FANUC will bring it by an RFID scanner

which will check to see if the tool holder exists in the database. If the tool holder is not

in it, then the tool holder will be placed to the side as in the changing station entrance

so it can be added if desired. If it was in the database then it will have its’ current

location updated as well as the length of the just installed end mill.

48

Figure 3.4.: Storage out flowchart

Figure 3.4 shows the flowchart for the process of taking a new assembly out of storage.

When the arm scans a tool holder to check it out of the system, if it is not found in the

database it will be set aside so it can be added later if desired and a different one can be

grabbed instead. Otherwise it will just set the location database field to being on the

shop floor.

3.3.3. CNC Carrousel

Figure 3.5 shows the flowchart for the process for taking a new assembly into a tool

carrousel.

49

Figure 3.5.: CNC carrousel flowchart

When an employee puts the assembly into a CNC machine, it will be scanned and if

it is not found in the database it will let the user know they have the wrong assembly in

hand. Otherwise it will update the location field in the database to the current machine.

50

In the future, when the assembly goes into the CNC machine to be used its’ end mill

length will be queried from the database and checked to see if it matches what it thinks

it has. If the length doesn’t match, the CNC machine will report an error and need

to have a worker come address it as the tool is not the correct length. However if the

length is correct, the reader will save the time that the assembly is entering the machine

and wait for it to come back out. When the assembly is scanned out of the machine, the

difference in the time in and time out will be computed and it will have the time used

field in the database updated.

3.4. Reader Selection

Multiple RFID readers will be needed for all the required location states and to make

sure everything is automated so employees don’t have to enter information unless abso-

lutely necessary. To keep costs low, an off-the-shelf reader was selected from Sparkfun

- the ID-12LA which was chosen due to previous experience with it and the ease of use

experience it provided. It operates at 125 kHz has a reading range of approximately

4 inches and which is not a long range, but it will suffice for a proof-of-concept. This

frequency would not likely be used by GE in a production environment, they would

instead select 13.56 MHz as those tags are read/write and have more options for the

physical packaging of the tag. An image of the selected reader can be seen in Figure 3.6

along with the tag style used.

51

(a) ID-12LA
(b) Clamshell RFID

tag

Figure 3.6.: RFID reader and tag

3.5. Breadboard Circuit

Connecting the reader to a microprocessor is a very simple process; an Arduino Mega

2560 is used in Figure 3.7 for demonstration purposes.

52

Tag in range LED Tag read LED

1k

1

Figure 3.7.: Reader circuit design

There are 3 different data connections that have to go to the board: serial data, a tag

is in range line, and a tag read line; the only one that is really required for operation is

the serial data line.

Reset is not supposed to be used according to the datasheet, however after some

testing it seems there are no adverse affects of triggering a reset by pulling the pin

temporarily to ground to make the reader restart. However if resetting capabilities are

not needed, the reset line can just be tied to 5V as shown in Figure 3.7. This will

be helpful when combined with the tag in range line; if there is a tag near the reader

but no data was received then it can reset to try to re-read the tag. The last line is

the data line which just sends serial data out to the microprocessor to be interpreted.

The information stored on the tags being used for testing is 10 data bits followed by 2

checksum bits.

53

3.6. Selecting a Communication Method

3.6.1. Overview

For communicating from the RFID readers back to the database and vice versa, there

are two possible methods: wired and wireless. For wired, the only real choice is Ethernet

(IEEE 802.3) as the data has to possibly travel long distances from the two points -

which 802.3 is meant to accomplish. Wireless has two different possible standards that

are appropriate in this application, Wi-Fi (IEEE 802.11) and XBee (IEEE 802.15.4) that

each have their own advantages and disadvantages. General Electric (GE) has expressed

interest in using their Wi-Fi system once they revamp it in the coming year, however

they are fine with using Wired as data drops are already installed at each CNC machine.

They intend the system to grow up to a maximum of no more than 100 machines, each

with potential to house 40 tool holders within at any given time and would like to be

able to track 10,000 tool holders within the company.

3.6.2. Wireless

GE has already expressed interest in using their soon-to-exist infrastructure of 802.11,

however looking at the number of machines involved this could potentially cause prob-

lems.

Each machine may have up to 2 readers within and assuming a worst case scenario

of 2 wireless transmitters per machine, this can possibly cause issues with reliability.

If every machine were reading in 4 tags per minute (10% of their capacity) that’s 400

messages being sent every minute, or one every 150 ms on average. This essentially is

still small, however paired with whatever else GE plans to put onto their network it can

start to cause data to not reach it’s destination which is not as easily detectable with

wireless as there is no collision detection, only avoidance.

54

If an XBee based system were to be used, then the 900 MHz spectrum becomes an

option which will not interfere with 802.11 and it is unlikely they have anything else

on that spectrum (GE was unable to confirm at the time of writing). However, there

is also another major problem, the environment cannot be tested beforehand so noise

levels within the plant cannot be tested. The signal pathloss within the plant cannot

be checked as the signal travels to the receiver so it is unknown if it is even an option,

especially when they are revamping the system because the current one is unreliable.

A lot of these problems can be solved with software, and doing checks to make sure

the database was appropriately modified (many of which will have to be done anyway),

however, there is not much of a reason to be using wireless on a machine that will not

be moving and is in a fixed position. It would be using a system that has numerous

unknowns in the current situation and may not be feasible if implemented.

3.6.3. Wired

Wired would address all of the drawbacks with wireless, and allows for much easier

expansion if ever desired as Ethernet can be easily segmented. As data ports are already

available at every machine, the only real drawback would be if an inexpensive hub or

switch is needed to support additional hosts.

Ethernet is designed to be able to span large distance (328 ft with Gigabit) and this

will not be any concern with data drops right next to the reader. As data packets will all

be small, and already calculated at 1 every 150 ms on average, it will not be a problem

and create lots of collisions, and any that were to happen, data would just retransmit if

using TCP/IP.

Choosing wired will be the safest choice for GE without conducting extensive testing

on the performance of either wireless standard within their plant. There are just too

many unknown variables that could cause wireless to be non-functional or suffer from

55

poor performance.

3.7. Database Selection

A database had to be selected that would be able to adapt to various different tool

holders and likely other tools in the future. A list of requirements was made that needed

to be met.

• Easily scalable

• Able to export to other formats

• Able to be accessed through the web by some plugin

• Easy to setup

• Ability to handle dynamic data

The next step was to look into the types of databases available. There were two

different types of database solutions that were looked into: SQL and NoSQL. SQL is a

relational database which stores data in with a key and value into tables that represent

whatever is desired and everything in the database must follow this format. NoSQL

allows for SQL like database queries to be performed if desired, but they are not true

SQL and is not a relational structure. NoSQL was developed about 30 years after SQL

so many advantages and disadvantages were already known and were addressed as each

individual database manager programmer saw fit.

The solution chosen is called MongoDB which is a NoSQL database as it is meets

every requirement and more. MongoDB is able to easily be interfaced with Python as

well as PHP and performed well in initial tests making it a prime candidate.

56

3.8. Controller Selection

Going with the recommendation of using Ethernet, there are two main solutions that

are feasible that will keep the cost low and be easy to integrate. Both solutions involve

using an Arduino, however each solution has it’s own set of pros and cons. Other non-

Arduino solutions are certainly possible such as a BeagleBone board, however also due

to familiarity and the cost of an Arduino they were not selected. For a production level

solution, a company such as Balluff would be used which specializes in this industry.

3.8.1. Arduino Uno and Ethernet Shield

Going for keeping costs low, an Arduino Uno with an Ethernet shield can be used to

create a very basic interface to send data to and from the database. The combination

kit sold by Cana Kit costs approximately $50 on Amazon.com and would be able to

send basic commands to the database to execute commands.

This combination however has many reports from users of not working well at times

as a quick search on the web can yield. Some have reported that it is only an issue

when trying to communicate with multiple end-points, while some have reported that

the shield will not send data to even one destination and no answers were found to their

problems. It is likely this would not affect the project judging by the seemingly small

user group reporting failure and if it were encountered, could hopefully be solved quickly

with troubleshooting. An Arduino Uno with Ethernet Shield can be seen in Figure 3.8.

57

Figure 3.8.: Arduino Uno

3.8.2. Arduino Yun

The Arduino Yun is a new product in the line and has brought some features that

have not previously been seen in an Arduino.

The Yun has a second processor that has a Linux operating system running on it that

would introduce a lot of possibilities to the RFID system. The most interesting of the

possibilities is that the MongoDB has a Python library that is running on the server to

manage the database. This means that some of the database work can be done right

on the Arduino as well as the possibility to create more complicated programs to work

directly with the RFID tags.

The Yun also has the added benefit of already having 802.11 and 802.3 built-in to it,

along with USB host and an SD card slot for storage. With the SD card and Linux, each

reader could have a webserver for management if so desired that would be very helpful

58

for managerial purposes, such as checking for potential problems.

All of the extra features that the Yun has makes it well worth the $70 price tag as so

much more can be done with it than with the Uno and shield, it was therefore selected

for use in the project. The Yun can be seen in Figure 3.9.

Figure 3.9.: Arduino Yun

3.9. Network Plan

To connect the Arduinos to the network, a network switch or hub is needed to let it

connect with the machine it is paired with. Below in Figure 3.10 a plan for connecting

the Yuns can be seen that segments each reader task into a different network branch.

59

Figure 3.10.: Network plan

All of the network segments work in the following way. The clients are the end stations

which all connect to a switch which allows multiple clients to connect to the network off

of one data line. The routers are all optional, they can be used to segment networks for

anything they want to contain within them, such as all (or some) of the CNC machines

while still having access to the rest of the network. After the routers, everything will

connect to the rest of GEs’ network which will finally connect to the database where all

60

the tool holder data is contained.

The first segment in the upper left is the administration branch. This branch will be

used when an employee wants to either look at the statistics of a tool holder in hand or

they want to add a new one to the database.

The next branch can contain any number of CNC machines that will each have 2 Yuns

for scanning first into the carrousel, and secondly into and out-of the machining area.

This branch can have multiple machines and Yuns all on one router, but each group on

their own switch.

The final branch is for the tool changing work cell. There will be one Yun which will

work for both the changing and storage areas and will be able to track the multiple

locations discussed earlier.

3.10. Portable Hand Scanner

Part way into the implementation phase, a requirement of a portable hand scanner

was added in that should work over a wireless network so an employee can scan in data

anywhere. The scanner will use the wireless connection to connect back to the database

server to obtain all pertinent data about a tool holder. The design can be seen in Figure

3.11.

61

Figure 3.11.: Portable RFID Scanner

There is a large monochrome graphical display that will be able to show the informa-

tion about the tool holder that was just scanned. Buttons and LEDs were included that

are currently unfunctional and were included incase they were desired for anything in

the future and a new part would not need to be created for something so simple.

The electronics will all be placed on the inside of the housing and a cutaway can be

seen in Figure 3.12 which shows an Arduino Yun, an RFID reader, and a battery located

in the handle.

Figure 3.12.: Portable RFID scanner internals

This scanner can be printed out of PLA using a 3D printer in the same fashion that

the tool changing grippers were. However none of the problems with the grippers will

62

be encountered as it only needs to hold electronics within it and is not subjected to any

stresses.

3.11. Implementation and Testing

Everything was broken down and implemented incrementally starting first with the

database and the website. From there each Arduino was tested one at a time starting

with the simplest one of the administration station and then a portable hand scanner

as these two only had to read data and not manipulate anything.

3.11.1. Database

MongoDB was a simple setup which just involved downloading the installer off the

web from https://www.mongodb.org/. The 64-bit install was used which allows for

virtually limitless space to be used for the database (compared to 2GB with the 32-bit

version).

Test data was made using tag IDs that were purchased and test data was created to

associate with it. Data was able to be successfully stored, manipulated, and retrieved

by looking through the database with any search term.

3.11.2. Web Interface

A simple website was developed to allow for GE to check everything that was outlined

and was developed in HTML and PHP. Database queries are done by using a PHP

plugin for MongoDB similar to PyMongo. Python was not used server side as PHP is

more common place and is easier to setup.

To create a server testing environment, WampServer version 2.4 was used.1

1http://www.wampserver.com/en/

63

https://www.mongodb.org/

3.11.2.1. Basic Queries

The landing page of the website is shown in Figure 3.13 which pulls up everything in

the database and shows it in a table.

Figure 3.13.: Web interface

All the RFID tags numbers are clickable which allows for editing the basic information:

drawing number, length of currently installed end mills, the location, and the total time

it has been used. The search button can be used to perform specific queries into the

database and can search based off of any of the following parameters: location, past

location, time used, and the drawing number. Clicking on the ”Add” button allows

an employee to create a new entry in the database with whatever tool holder they are

looking to add.

64

3.11.2.2. Searching

Clicking on the search button brings up a page where a single set of parameters can

be filled in as seen in Figure 3.14 for finding particular tool holders.

Figure 3.14.: Searching for a tool holder

Using any parameter except ”past location” along with the date filters, will return

results similar to the landing page. If the past location is used, the date filters can

be used as well which allow for looking at jobs in a particular machine completed in a

certain date range. To make date entering easier and ensure a user enters a date in a

way that the server can interpret it, a date picking interface was created as shown in

Figure 3.15.

65

Figure 3.15.: Date picker for filtering

The user can navigate months with the left and right arrows at the top or with the

drop downs menus for month and year. The red date seen in the figure is just the current

date for reference by the employee. Once a user does a search for all tool holders that

have been through a machine, Figure 3.16 shows the structure of the results.

66

Figure 3.16.: Search results for jobs in a past machines

This is laid out as what tag was in the machine along with when it entered and exited

the milling area and the end mill length used. Clicking on one of the links for a tag

brings up the complete history for that tag along with the current information on it as

seen in Figure 3.17. This page is also available when going to edit a tag; a button exists

for easy access to the history.

67

Figure 3.17.: Job history of an individual tool holder

Similar to when searching, the history can be filtered by entering dates in the same

manner then pressing the ”Filter” button.

68

3.11.2.3. Admin Station

An Administration terminal was created that would allow for an employee to scan in

any tag, and the information was then fed back to the webserver which would perform

a search and display all appropriate data. This allows for an employee to edit the tool

holder easily that is in their hand without having the problem of tracking down what

they have by having to look up the tag manually. The webpage that shows what was

scanned by this admin station is in Figure 3.18.

Figure 3.18.: Web Admin page

3.11.3. Portable Scanner

The scanner was printed on a 3D printer and the results are shown below in Figure

3.19.

69

(a) Isometric view (b) Top view

(c) Interior

Figure 3.19.: Portable RFID scanner printed

70

There were some problems with the print warping in some places, however this was not

an issue that affected anything as the only functions of the parts is to house electronics.

3.11.3.1. Results

Scanning in a tag produces the following screen output shown below in Figure 3.20.

Figure 3.20.: Portable scanner output

As seen, all the data fits comfortably on the screen and is very easy to read. The

wireless was reliable for retrieving from the database, and everything worked as desired.

3.11.4. CNC Machine

The CNC machine was the most complicated system and needed to be able to read

from two different readers. The first reader checks the tool holder into the machine and

the second one times how long it is in the machine for milling.

To accomplish this, all it required in addition to the previous code is a modification

step in the code. When a tool holder enters the carrousel, it gets its location updated,

and when it completes a CNC job, it gets the total use time updated.

3.11.4.1. Results

The reader is able to modify the location of the tool holder as it enters and leaves each

part of the CNC machine and identifies whether it is in milling or sitting in the carousel.

71

Checking the job history as a tool holder passes over the milling reader modifies the

history as well as the use time used corresponding to how long the job was and reports

the end mill length at the time. The functionality of the CNC readers were the most

critical portion of the tool tracking objectives and the goals were all met with it.

3.11.5. Changing and Storage

The changing and storage reader was meant to be added into the tool changing part of

the project, but because of the problems with that portion it was not fully implemented.

The code is functional, however the robot was not programmed to automatically scan in

tool holders as they are removed and replaced into the storage drawer. The new solution

that would have to happen is that employees would have to bring the tool holder past

a scanner themselves instead of the robot doing it for them. Also, because a storage

system was never implemented the work cell location was changed from the separate

changing and storage points to just ”FANUC Changing/Storage” for database logging.

3.11.5.1. Results

The testing procedure was similar to the CNC machines and tags were just scanned

in and checked to see if the current location was changed. Tool holders were able to be

checked into and out of the cell as planned without any problems and worked as desired.

72

4. Further Discussion and Future Work

4.1. Discussion

4.1.1. Repeatability Considerations

4.1.1.1. Tool Holder

Much of the reliability problems were already discussed under each sub-systems per-

formance section. The major points for each system are summarized below.

The largest problem for repeatability with the vise is the lack of current sensing and

the issue of the jaws not adjusting to the height of the collet nut. The lack of current

sensing allows for the potential to over-tighten the tool holders which doesn’t allow the

tool holders to be tightened properly all the time. Each tool holder may have a slightly

different number of turns required for fully tightening and loosening that would need to

be addressed in the future to reliably replace end mills.

The next problem is that installing an end mill at the right length was never addressed

meaning that placing them into the collet at what worked once, may not work the next

time. This can be fixed for this one tool holder by just installing a metal rod or an

actuator that sticks out of the center of the vise and is inserted into the hole at the

bottom of the tool holder.

The grippers biggest problem is the tooling one is made out of wood, not aluminum.

This often caused the end mills to be picked up crooked which caused issues with re-

73

moving them from the collet as well as re-inserting the new ones.

There were no issues with the drawer that were found during testing. The only

improvement that could be made is it could be expanded to the full design, however this

would not have any foreseeable reliability affects and would only expand storage.

4.1.1.2. Tool Tracking

The tool tracking portion was perfectly repeatable during testing, however some mod-

ifications need to be made for a production level solution. The error checking outlined in

the flowcharts needs to be implemented and likely more as the system is further tested.

Two issues may come up from moving from a clean laboratory environment to an

industrial environment. The first is that the machinery that is located around the RFID

readers may cause excessive interference that will affect the integrity of tag data being

read and transmitted. The second issue is that in the lab, tags are always under ideal

conditions which include orientation and distance which may not always be easy to

ensure in a factory. Upgrading from the consumer grade product and ensuring all data

lines are shielded should take care of both of these problems however.

4.1.2. Economic Considerations

4.1.2.1. Tool Changing

The tool changing portion of this project cost approximately $1,500 considering the

cost of everything purchased for testing and constructing. This price does not reflect that

of the robot or any peripherals that were already owned by the university or GE, only

that of additional materials purchased. The majority of this cost is from the aluminum

stock that was purchased for creating the vise as well as the reversible motor driver and

the H bridge.

Continuing the project in a linear fashion and adding support for one additional tool

74

holder per year, the project cost should be around the same to as the vise will remain

the main component to be reconstructed. Another possible large cost in the future will

be a change to the motor system, however it is not a critical part as it serves it purpose

even though it is not an ideal solution.

There are a few major aspects to take into consideration for further development of

the project that have the potential to cause price spikes, however they can be lessened if

handled properly. As the vise is improved, the amount that it can be further expanded

will saturate and another vise will need to be constructed to deal with different types

of tool holders. This will require an expansion of the current one for more space. The

robot has the workspace to have a bigger cell, and could even take advantage of things

being placed on the walls or ceiling for more room. This will deal with any vises that

could be constructed in the foreseeable future and should allow for many tool holders to

be dealt with.

4.1.2.2. Tool Tracking

The cost of the tool tracking was almost entirely made up of Arduino Yun’s and RFID

readers. The total cost spend on the tool tracking was approximately $700. The cost of

a server running a database and a webserver was not included as a personal machine was

used for testing which would normally need to be considered unless an existing server is

extended with a virtual machine.

Going to a full-blown industrial solution would require much more money to be in-

vested in the hardware at a minimum as the software was developed to be modular.

However doing so would lose whatever features were already developed by a profes-

sional company so it would be best to switch both which could also affect server-side

requirements as well with more powerful components.

75

4.2. Future Work

4.2.1. Tool Changing

There are several improvements that could be made to the tool changing process to

further development. The first is to design the vise to work with a broader range of tool

holders than just the one that it currently works with. Changes that would need to be

made can’t be determined until the corresponding tool holders are decided on, however

they would likely revolve around the vise system. The vise would need a better way to

be able to loosen and tighten the collet nut and a way to install end mills at different

lengths. The final improvement to the vise is a way to reliably install end mills at a

desired length. This could be done easily by installing an actuator that adjusts to the

desired height of whatever end mill is being installed and would be a simple fix.

To deal with the collet nut, the most likely change would be making the height of

the jaws adjustable so they can grab tool holders of different lengths. The locking

mechanism would likely still be the same for similar tool holders and probably does not

need adjusting.

Another vise improvement is with the motor system. The indexing in 45◦ increments

only slows down the whole process and with a regular motor, could be done faster. With

a current sensor added in as originally planned, the motor could begin to slow down and

eventually stop once it is tightened completely and this would work better than running

the motor for a set length of time.

The drawer and the grippers may not need to be adjusted depending on if the bottom

part of the tool holder stays the same or not. If it is of the same length and diameter

then neither would need adjusting as they will still function in the same way.

The final and most important work that needs to be done is all of the safety consid-

erations discussed in Section 2.7.

76

4.2.2. Tool Tracking

The only real future work with regards to the tool tracking is to try to test out an

industrial solution and compare the results. The consumer electronics were able to

perform perfectly fine but the only real question is with regards to how it would deal

with an electrically noisy factory environment. If the consumer grade electronics were

deemed to be acceptable by GE for their needs, then the biggest improvement that can

be recommended is to get a reader with a better antenna. The four inch range of the

current reader was the only real draw back that was found during testing and other

reader support external antennas that have much better ranges that could work better.

Once a final reader style is selected then a tag style can be as well. The tags used in

this project were merely for testing but would not work in an industrial environment as

they would not be able to be affixed to the tool holder in any way. There are multiple

styles available that were not discussed due to the final reader not being known however

many options do exist that are made specifically for this purpose.

One other component that could be improved is the portable hand scanner. A better

housing solution should be developed that is not warped like the 3D printed parts were,

and a keypad could very easily be installed into it to allow for more functionality. A full

QWERTY keypad could be added that would allow for manipulating data on-the-spot

instead of having to go back to a terminal to make changes to a tool holder.

77

5. Conclusions

This project aimed to improve the CNC work General Electric Aviation does on a daily

basis. The fist part of the project developed and constructed a method of replacing end

mills that were used during a milling job. Multiple components were created capable of

completing the whole process from the intake, to the changing, and to the returning a

new assembly for a new milling job.

To take assemblies in and out of the work cell, a drawer was created for workers to

use. The drawer worked as expected however it still needs safety systems implemented

to keep workers safe from the robot. The robot moves assemblies between the drawer

and a vise that is capable of spinning the collet nut that holds the end mills. The vise

worked but had many reliability and safety concerns that will need to be addressed

before it works as desired, however it is a good start. Finally, the grippers attached

to the robot that move the tool holders around worked exactly as desired but the ones

for the tooling still needs to be made out of aluminum and tested. The tool changing

process still needs a lot of work but it has certainly made progress this project iteration.

The next goal of the project created a way to make tracking CNC tool holders possible.

An RFID solution was designed and implemented that reads tags attached to each

tool holder and a database contains pertinent information corresponding to each tag.

Readers were designed to be spread across GE’s facility so that everything can be tracked

autonomously and everything worked as expected. The largest desired capability was

to track the job history of each tool holder which was met by having at least one RFID

78

reader in the entrance of the milling area of each CNC machine.

This MQP was able to meet some of the initial goals, but not all. The largest result

from the project shows that the goals GE would like to accomplish are feasible with

more development time. With further development GE should be able to incorporate

the project at their facility which will make their operations run smoother and be more

profitable at the end of the day.

79

Appendices

80

A. FANUC DH Parameters

The DenavitHartenberg parameters were found and can be seen below in the table

while the constant values are shown in the dimensions on the following page. This table

was used to construct the MATLAB model and the code is in the following appendix

which takes in this table to construct the arm at a given orientation.

Link θi di ai αi

1 θ1 d1 0 π/2
2 θ2 0 a2 0
3 θ3 0 0 π/2
4 θ4 d4 0 −π/2
5 θ5 0 0 π/2
6 θ6 d6 0 0

81

M-710iC/50 & M-710iC/70 Dimensions

Front

Faceplate

Footprint

TopIsometric

Side

219 234
120

43
3

+180°

–180°

0°

R368

R2050

27
5

55
0

150 1016 175

225

535

J5 AXIS
ROTATION
CENTER

17
0

87
0

MOTION RANGE
OF J5 AXIS
ROTATION

CENTER

FRONT

ROTATION CENTER OF J1 AXIS

MOUNTING FACE

M
O

U
N

T
IN

G
 F

A
C

E
M

O
U

N
T

IN
G

 F
A

C
E

4-DIA. 24 THROUGH
DIA. 38 FACING DEPTH 5
(FOR ROBOT MOUNTING BOLT)

310 225

3040

24
0

48
0

40
20

5
20

5
40

27
5

55
0

190

380

32
.5

°

30°

30
°

30
°

30
°

D
IA

. 1
00

30
°

30
°

30
°

30°

R
127

10-M8 DEPTH 16

2-DIA. 8
DEPTH 15
EQ. SP

+0.015
0

R1106.0 125.000 DIA.

63.000 DIA.

+0.000
–0.063

+0.030
–0.000

M-710iC/50 & M-710iC/70
Specifications

Notes:
(1) Without controller.
(2) J1 and J2 axis motion range will be limited for ceiling, angle and wall.

See manual under installation condition.

Items M-710iC/50 M-710iC/70

Axes 6 6

Payload (kg) 50 70

Payload (kg) on J3 casting 15 15

Reach (mm) 2050 2050

Repeatability (mm) ±0.07 ±0.07

Interference radius (mm) 368 368

Motion range J1 320/360/370 320/360/370
(degrees) J2 225 225

J3 440 440

J4 720 720

J5 250 250

J6 720 720

Motion speed J1 175 160
(degrees/s) J2 175 120

J3 175 120

J4 250 225

J5 250 225

J6 355 225

Wrist moment N•m J4 206 (21) 294 (30)
(kgf•m) J5 206 (21) 294 (30)

J6 127 (13) 147 (15)

Wrist inertia J4 28 28
(kg•m2) J5 28 28

J6 11 11
Mechanical brakes All axes

Mechanical weight (kg)(1) 560 560

Mounting method(2) Floor, ceiling, angle and wall

Installation environment:

Ambient temperature °C 0 to 45

Humidity Normally: 75% or less
Short term (within a month):

95% or less. No condensation

Vibration m/s2 (G) 4.9 m/s2 or less (0.5G or less)

IP Rating(s) Body IP54 Std. (IP67 optional)
Wrist and joint 3 arm IP67

B. MATLAB Kinematics Code

The MATLAB code for the forward kinematics of the arm takes in a DH table as

shown in the FANUC.m section to construct the arm. This produces the graphical

model as was shown in Figure 2.21.

B.1. translate.m

,
1 f unc t i on [T] = t r a n s l a t e (steps , ax i s)
%TRANSLATE Generate a t rans fo rmat ion matrix along an ax i s a g iven amount

3

%crea t e a 4x4 I matrix
5 R = eye (4) ;

7 %puts the s tep amount in the e i t h e r the x , y or z p o s i t i o n
i f ax i s == ’x ’

9 R(1 ,4) = s t ep s ;
e l s e i f ax i s == ’y ’

11 R(2 ,4) = s t ep s ;
e l s e i f ax i s == ’ z ’

13 R(3 ,4) = s t ep s ;
end

15

T = R;
17

end

matlab/fanuc/translate.m

B.2. tlink.m

83

,
1 f unc t i on [T] = t l i n k (theta , d , a , alpha)
%TLINK Create a t rans fo rmat ion matrix f o r the l i n k s

3

%get the t rans fo rmat ion matrix
5 T = ro ta t e (theta , ’ z ’) ∗ t r a n s l a t e (d , ’ z ’) ∗ t r a n s l a t e (a , ’ x ’) ∗ . . .

r o t a t e (alpha , ’ x ’) ;
7

end

matlab/fanuc/tlink.m

B.3. rotate.m

,
1 f unc t i on [Rot] = ro ta t e (r deg , ax i s)
%ROTATE Generate a r o t a t i on matrix about an ax i s by given amount in

degree s
3

%cover t degree s to rad ians
5 r rad = r deg ∗ (p i /180) ;

7 %crea t e a 4x4 I matrix
R = eye (4) ;

9

%add in the r o t a t i o n s to the appropr ia t e spot s f o r the de s i r ed ax i s
11 i f a x i s == ’x ’

R(2 , 2) = cos (r rad) ;
13 R(2 ,3) = −s i n (r rad) ;

R(3 , 2) = s i n (r rad) ;
15 R(3 ,3) = cos (r rad) ;

e l s e i f ax i s == ’y ’
17 R(1 ,1) = cos (r rad) ;

R(1 , 3) = s i n (r rad) ;
19 R(3 ,1) = −s i n (r rad) ;

R(3 , 3) = cos (r rad) ;
21 e l s e i f ax i s == ’ z ’

R(1 , 1) = cos (r rad) ;
23 R(1 ,2) = −s i n (r rad) ;

R(2 , 1) = s i n (r rad) ;
25 R(2 ,2) = cos (r rad) ;

end
27

Rot = R;
29

end

matlab/fanuc/rotate.m

84

B.4. fulltrans.m

,
1 f unc t i on [T] = f u l l t r a n s (dhP)
%FULLTRANS Returns the po s i t i o n and o r i e n t a t i o n o f the end e f f e c t o r and

3 %p lo t s

5 T = ze ro s (4 , 4 , 6) ;
Temp = eye (4) ;

7

f o r i = 1 :6
9 Temp = Temp∗ t l i n k (dhP(i , 1) , dhP(i , 2) , dhP(i , 3) , dhP(i , 4)) ;

T(: , : , i) = Temp;
11 end

13 f o r i = 1 :6
Temp2 = T(: , : , i) ;

15 x1 = Temp2(1 , 4) ;
y1 = Temp2(2 , 4) ;

17 z1 = Temp2(3 , 4) ;
i f (i == 1)

19 x2 = 0 ;
y2 = 0 ;

21 z2 = 0 ;
e l s e

23 Temp2 = T(: , : , i −1) ;
x2 = Temp2(1 , 4) ;

25 y2 = Temp2(2 , 4) ;
z2 = Temp2(3 , 4) ;

27 end
hold on ;

29 p lo t3 ([x1 x2] , [y1 y2] , [z1 z2]) ;
end

31

end

matlab/fanuc/fulltrans.m

B.5. FANUC.m

,
1 c l e a r a l l ; c l c ; c l o s e a l l ;
%theta3 = 45+theta2 ;

3

dh = [0 5 1 −90 ; . . .
5 −20 0 5 1 8 0 ; . . .

85

−90 0 3 9 0 ; . . .
7 0 −5 0 −90 ; . . .

5 0 0 9 0 ; . . .
9 0 −3 0 1 8 0] ;

11 T = f u l l t r a n s (dh) ;
ax i s ([−15 15 −15 15 0 15]) ;

13 ax i s equal ;

matlab/fanuc/FANUC.m

86

C. New Yun Setup

The following commands need to be run on an Arduino Yun to set them up for the

first time. They install all necessary packages needed to control any of the readers and

all are necessary except for the nano installation command.

opkg update

opkg install distribute

opkg install python-openssl

opkg install nano (optional editor instead of vim)

easy_install pip

- Sometimes required (was once during all setups):

pip install setuptools --no-use-wheel --upgrade

pip install pymongo

pip install ntplib

87

D. Plates and Pointer

Before anything can be attached to the FANUC, attachment plates had to be designed

and machined. One plate would be for attaching to the robot, with a secondary one

being used for mounting the desired end of arm tooling where each end effector would

have a separate plate. To help create custom coordinate frames for movement while

programming the robot, a rudimentary pointer was also designed that would just serve

as a visual guide to help with that process. Once designed, steel and aluminum blanks

were purchased and brought to Washburn Shops on campus to mill into the final product,

seen in Figure D.1.

88

Figure D.1.: Plate for mounting to the arm, along with a plate for mounting end of arm
tooling and a pointer

89

E. Reader Code

Following in the code for each of the readers, Arduino and Linux side.

E.1. Arduino Side (C)

The Arduino code is the same for all readers except for the hand scanner and CNC

machine.

E.1.1. CNC Reader

,
1 //Admin Stat i on
#inc lude <So f twa r eS e r i a l . h>

3 #inc lude <Bridge . h>

5

7 /∗
∗ Pins − mi l l i n g area

9 ∗ RX = 8
∗ TX = 9

11 ∗ Reset = 7
∗/

13 #de f i n e rxMi l l 8
#de f i n e txMi l l 9

15 #de f i n e r e s e tPMi l l 7
/∗

17 ∗ Pins − c a r ou s e l
∗ RX = 4

19 ∗ TX = 3
∗ Reset = 2

21 ∗/

90

#de f i n e rxCar 4
23 #de f i n e txCar 3

#de f i n e resetPCar 2
25

27 /∗
∗ Star t b i t has a value o f 0x2

29 ∗ Newline b i t has a value o f 0xD
∗ Carr iage re turn b i t has a value o f 0xA

31 ∗ Stop b i t has a value o f 0x3
∗/

33 #de f i n e bBit 0x2
#de f i n e nLine 0xD

35 #de f i n e cReturn 0xA
#de f i n e sBi t 0x3

37

/∗
39 ∗ Simple IDs f o r what reader was read
∗/

41 #de f i n e MILL ID 0
#de f i n e CAR ID 1

43

// The Yun needs to use so f tware s e r i a l
45 So f twa r eS e r i a l RFID MILL(rxMi l l , t xMi l l) ;

S o f twa r eS e r i a l RFID CAR(rxCar , txCar) ;
47

49 /∗
∗ The tag w i l l g ive 12 ASCII chars

51 ∗ The f i r s t 10 are the ID va lue s
∗ The l a s t 2 are the checksum

53 ∗/
St r ing rTagMil l = ”” ;

55 St r ing rTagCar = ”” ;

57

59 // //////////////////////////
/∗

61 ∗ Reads in data from the RFID reader , r e c i e v e s 12 data b i t s
∗ and s t o r e s i t i n to a g l oba l s t r i n g c a l l e d rTag

63 ∗/
void readTag () {

65 // Checks to see i f the re i s anything in the s e r i a l bu f f e r
whi l e (RFID MILL . a v a i l a b l e ()) {

67 // Read in the a v a i l a b l e byte
char rChar = RFID MILL . read () ;

69 // Only s t o r e i t i f i t ’ s data
i f (rChar != bBit && rChar != nLine && rChar != cReturn && rChar !=
sBi t)

71 rTagMil l . concat (rChar) ;
// Need a shor t de lay to l e t the next s e r i a l byte s h i f t i n to the reg

91

73 delay (10) ;
}

75 whi le (RFID CAR. av a i l a b l e ()) {
// Read in the a v a i l a b l e byte

77 char rChar = RFID CAR. read () ;
// Only s t o r e i t i f i t ’ s data

79 i f (rChar != bBit && rChar != nLine && rChar != cReturn && rChar != sBi t)
rTagCar . concat (rChar) ;

81 // Need a shor t de lay to l e t the next s e r i a l byte s h i f t i n to the reg
de lay (10) ;

83 }
}

85

87

/∗
89 ∗ Pr in t s out the tag and checksum through s e r i a l
∗/

91 void printTag () {
// I f a tag was read

93 i f (rTagMil l != ””) {
S e r i a l . p r i n t (”Mi l l Tag :\ t ”) ;

95 f o r (char i = 0 ; i <10; i++){
S e r i a l . p r i n t (rTagMil l [i]) ;

97 }
S e r i a l . p r i n t (”\tChecksum :\ t ”) ;

99 f o r (char i = 10 ; i <12; i++){
S e r i a l . p r i n t (rTagMil l [i]) ;

101 }
S e r i a l . p r i n t l n () ;

103 }
i f (rTagCar != ””) {

105 S e r i a l . p r i n t (”Car Tag :\ t ”) ;
f o r (char i = 0 ; i <10; i++){

107 S e r i a l . p r i n t (rTagCar [i]) ;
}

109 S e r i a l . p r i n t (”\tChecksum :\ t ”) ;
f o r (char i = 10 ; i <12; i++){

111 S e r i a l . p r i n t (rTagCar [i]) ;
}

113 S e r i a l . p r i n t l n () ;
}

115 }

117

119 /∗
∗ Checks the i n t e g r i t y o f the data

121 ∗/
boolean chksum(St r ing tagCheck) {

123 // Convert the read ASCII data in to hex n ibb l e s
char hData [1 2] ;

92

125 f o r (char i = 0 ; i < 12 ; i++){
i f (tagCheck [i] < 58) hData [i] = tagCheck [i] − 48 ;

127 e l s e hData [i] = tagCheck [i] − 55 ;
}

129

// Combine every−other n ibb l e i n to a byte meaning
131 // [0 1] [2 3] [4 5] [7 8] [9 10] [11 12]

// Byte #:
133 // 1 2 3 4 5 6

byte bytes [6] ;
135 char index = 0 ;

f o r (char i = 0 ; i < 12 ; i += 2) {
137 char hByte = (hData [i] << 4) & 0xF0 ;

char lByte = hData [i +1] & 0x0F ;
139 bytes [index] = (hByte | lByte) & 0xFF ;

index++;
141 }

143 // Compares the computed checksum aga in s t the r e c i e v ed
// Done by XORing a l l the data b i t s and s e e i ng i f i t matches

145 // the checksum
byte xChksum = 0 ;

147 f o r (char i = 0 ; i < 5 ; i++){
xChksum ˆ= bytes [i] ;

149 }

151 // I f i t matches , r e turn true
i f (xChksum == bytes [5]) {

153 re turn true ;
}

155

// Otherwise , r e turn f a l s e
157 re turn f a l s e ;
}

159

161

/∗
163 ∗ Sends data out the s e r i a l port to the computer
∗/

165 void sendTag (St r ing tagCheck) {
// Takes only the i d e n t i f y i n g por t i on o f the tag (no checksum)

167 St r ing dataOut = ”” ;
f o r (char i = 0 ; i < 10 ; i++){

169 dataOut . concat (tagCheck [i]) ;
}

171 // Append the e o l cha rac t e r
dataOut . concat (’ \n ’) ;

173 S e r i a l . p r i n t (dataOut) ;
}

175

93

177

/∗
179 ∗ Trips the r e s e t to t ry to re−read the tag be f o r e
∗ i t ’ s out o f range

181 ∗/
void reRead (i n t readerID) {

183 S e r i a l . p r i n t l n (”oops”) ;
// Toggle r e s e t

185 i f (readerID = MILL ID) {
d i g i t a lWr i t e (re se tPMi l l , LOW) ;

187 delay (1) ;
d i g i t a lWr i t e (re se tPMi l l , HIGH) ;

189 }
e l s e i f (readerID = CAR ID) {

191 d i g i t a lWr i t e (resetPCar , LOW) ;
de lay (1) ;

193 d i g i t a lWr i t e (resetPCar , HIGH) ;
}

195 }

197

199 /∗
∗ Posts the tag to the br idge .

201 ∗/
void postTag (St r ing tagCheck , i n t readerID) {

203 i f (readerID == MILL ID) {
// Takes only the i d e n t i f y i n g por t i on o f the tag (no checksum)

205 St r ing dataOut = ”” ;
f o r (char i = 0 ; i < 10 ; i++){

207 dataOut . concat (tagCheck [i]) ;
}

209 Bridge . put (”m i l l t a g ” , dataOut) ;
}

211 e l s e i f (readerID == CAR ID) {
// Takes only the i d e n t i f y i n g por t i on o f the tag (no checksum)

213 St r ing dataOut = ”” ;
f o r (char i = 0 ; i < 10 ; i++){

215 dataOut . concat (tagCheck [i]) ;
}

217 Bridge . put (” car tag ” , dataOut) ;
}

219 }

221

223 // ///////////////////////////////////
void setup () {

225 // Open s e r i a l communications and wait f o r port to open :
S e r i a l . begin (57600) ;

227 whi le (! S e r i a l) ; // wait f o r s e r i a l port to connect .
RFID MILL . begin (9600) ;

94

229 RFID CAR. begin (9600) ;
Bridge . begin () ;

231 }

233

void loop () {
235 // Read in the tag

readTag () ;
237 i f (rTagMil l != ””) {

i f (chksum(rTagMil l)) {
239 sendTag (rTagMil l) ;

postTag (rTagMill , MILL ID) ;
241 }

// I f we read a tag but got bad data , r e s e t the reader and get a new
read ing

243 e l s e reRead (MILL ID) ;
}

245 i f (rTagCar != ””) {
i f (chksum(rTagCar)) {

247 sendTag (rTagCar) ;
postTag (rTagCar , CAR ID) ;

249 }
// I f we read a tag but got bad data , r e s e t the reader and get a new
read ing

251 e l s e reRead (CAR ID) ;
}

253

255 // Clear the tag
rTagMil l = ”” ;

257 rTagCar = ”” ;
}

code/cnc yun3/cnc yun3.ino

E.1.2. Hand Scanner

,
//Admin Stat i on

2 #inc lude <So f twa r eS e r i a l . h>
#inc lude <Bridge . h>

4 #inc lude <SerialGraphicLCD . h>// (2 , 3) (rx [nc] , tx)

6 #de f i n e bitCheck (var , pos) ! ! ((var) & (1 << (pos)))

8 /∗
∗ Pins

10 ∗ RX = 8
∗ TX = 9

95

12 ∗ Reset = 3
∗/

14 #de f i n e rx 8
#de f i n e tx 9

16

18 /∗
∗ Star t b i t has a value o f 0x2

20 ∗ Newline b i t has a value o f 0xD
∗ Carr iage re turn b i t has a value o f 0xA

22 ∗ Stop b i t has a value o f 0x3
∗/

24 #de f i n e bBit 0x2
#de f i n e nLine 0xD

26 #de f i n e cReturn 0xA
#de f i n e sBi t 0x3

28

// S e r i a l p i x e l c on t r o l
30 #de f i n e maxX 127

#de f i n e maxY 63
32

byte cente r (char xy , i n t l en) {
34 i f (xy == ’x ’)

re turn (((maxX/2) − (l en ∗ 3))) ;
36 e l s e

re turn ((maxY/2) − 4) ;
38 }

40

// I n s t a n t i a t e the LCD
42 LCD LCD;

44

// The RFID reader needs s o f t s e r i a l
46 So f twa r eS e r i a l RFID(rx , tx) ;

48

50 /∗
∗ The tag w i l l g ive 12 ASCII chars

52 ∗ The f i r s t 10 are the ID va lue s
∗ The l a s t 2 are the checksum

54 ∗/
St r ing rTag = ”” ;

56

58

// //////////////////////////
60 /∗
∗ Reads in data from the RFID reader , r e c i e v e s 12 data b i t s

62 ∗ and s t o r e s i t i n to a g l oba l s t r i n g c a l l e d rTag
∗/

96

64 void readTag () {
// Checks to see i f the re i s anything in the s e r i a l bu f f e r

66 whi le (RFID . a v a i l a b l e ()) {
// Read in the a v a i l a b l e byte

68 char rChar = RFID . read () ;
// Only s t o r e i t i f i t ’ s data

70 i f (rChar != bBit && rChar != nLine && rChar != cReturn && rChar !=
sBi t) rTag . concat (rChar) ;
// Need a shor t de lay to l e t the next s e r i a l byte s h i f t i n to the reg

72 delay (10) ;
}

74 }

76

78 /∗
∗ Print tag data to the s c r e en .

80 ∗ TAG #
∗ DWG #

82 ∗ End Mi l l Length
∗ Time Used

84 ∗/
void pr in tSc r e en () {

86 s t a t i c i n t l en = 21 ;
char s c r e en [l en] ;

88 LCD. c l e a rS c r e en () ;

90 Bridge . get (” tagData” , screen , l en) ;
// tag

92 LCD. setY (0) ;
LCD. setX (0) ;

94 LCD. p r i n tS t r (”Tag : ”) ;
de lay (25) ;

96 LCD. p r i n tS t r (s c r e en) ;
de lay (25) ;

98

//dwg
100 Bridge . get (”dwgData” , screen , l en) ;

LCD. setY (20−4) ;
102 LCD. setX (0) ;

LCD. p r i n tS t r (”DWG: ”) ;
104 delay (25) ;

LCD. p r i n tS t r (s c r e en) ;
106 delay (25) ;

108 // l ength
Bridge . get (” lenData” , screen , l en) ;

110 LCD. setY (40−4) ;
LCD. setX (0) ;

112 LCD. p r i n tS t r (”LEN: ”) ;
de lay (25) ;

114 LCD. p r i n tS t r (s c r e en) ;

97

delay (25) ;
116

// time used
118 Bridge . get (”usedData” , screen , l en) ;

LCD. setY (56) ;
120 LCD. setX (0) ;

LCD. p r i n tS t r (”USD: ”) ;
122 delay (25) ;

LCD. p r i n tS t r (s c r e en) ;
124 delay (25) ;

126 // c l e a r the ready f l a g
Bridge . put (” ready” , ”N”) ;

128 }

130

132 /∗
∗ Checks the i n t e g r i t y o f the data

134 ∗/
boolean chksum () {

136 // I f a tag was read
i f (rTag != ””) {

138 // Convert the read ASCII data in to hex n ibb l e s
char hData [1 2] ;

140 f o r (char i = 0 ; i < 12 ; i++){
i f (rTag [i] < 58) hData [i] = rTag [i] − 48 ;

142 e l s e hData [i] = rTag [i] − 55 ;
}

144

// Combine every−other n ibb l e i n to a byte meaning
146 // [0 1] [2 3] [4 5] [7 8] [9 10] [11 12]

// Byte #:
148 // 1 2 3 4 5 6

byte bytes [6] ;
150 char index = 0 ;

f o r (char i = 0 ; i < 12 ; i += 2) {
152 char hByte = (hData [i] << 4) & 0xF0 ;

char lByte = hData [i +1] & 0x0F ;
154 bytes [index] = (hByte | lByte) & 0xFF ;

index++;
156 }

158 // Compares the computed checksum aga in s t the r e c i e v ed
// Done by XORing a l l the data b i t s and s e e i ng i f i t matches

160 // the checksum
byte xChksum = 0 ;

162 f o r (char i = 0 ; i < 5 ; i++){
xChksum ˆ= bytes [i] ;

164 }

166 // I f i t matches , r e turn true

98

i f (xChksum == bytes [5]) {
168 re turn true ;

}
170

// Otherwise , r e turn f a l s e
172 e l s e {

re turn f a l s e ;
174 }

}
176

// We didn ’ t do anything , r e turn f a l s e
178 re turn f a l s e ;
}

180

182

/∗
184 ∗ Posts the tag to the br idge .
∗/

186 void postTag () {
i f (rTag != ””) {

188 // Takes only the i d e n t i f y i n g por t i on o f the tag (no checksum)
St r ing dataOut = ”” ;

190 f o r (char i = 0 ; i < 10 ; i++){
dataOut . concat (rTag [i]) ;

192 }
Bridge . put (” tag ” , dataOut) ;

194 }
}

196

198 // ///////////////////////////////////
void setup () {

200 // Open s e r i a l communications and wait f o r port to open :
S e r i a l . begin (57600) ;

202 whi le (! S e r i a l) ; // wait f o r s e r i a l port to connect .
Bridge . begin () ;

204 delay (1000) ; // wait f o r the sp la sh sc r e en
LCD. setBaud (9600) ;

206 LCD. setHome () ; // zero the cur so r
LCD. c l e a rS c r e en () ; // c l e a r s c r e en

208 LCD. p r i n tS t r (”Ready ! ”) ;
de lay (1000) ;

210 LCD. setHome () ;
LCD. c l e a rS c r e en () ;

212 RFID. begin (9600) ;
}

214

216

void loop () {
218 char readyFlag [2] ;

99

Bridge . get (” ready” , readyFlag , 2) ;
220 i f (readyFlag [0] == ’Y ’) p r in tSc r e en () ;

222 // Read in the tag
readTag () ;

224 // Ver i fy the data i n t e g r i t y −
// i f i t ’ s good , send the tag ID to s e r i a l & br idge

226 i f (chksum ()) {
//sendTag () ;

228 postTag () ;
}

230 // Clear the tag
rTag = ”” ;

232 }

code/portable yun4/portable yun4.ino

E.1.3. All others

,
//Admin Stat i on

2 #inc lude <So f twa r eS e r i a l . h>
#inc lude <Bridge . h>

4

6

/∗
8 ∗ Pins
∗ RX = 8

10 ∗ TX = 9
∗ Reset = 3

12 ∗/
#de f i n e rx 8

14 #de f i n e tx 9
#de f i n e resetP 3

16

18

/∗
20 ∗ Star t b i t has a value o f 0x2
∗ Newline b i t has a value o f 0xD

22 ∗ Carr iage re turn b i t has a value o f 0xA
∗ Stop b i t has a value o f 0x3

24 ∗/
#de f i n e bBit 0x2

26 #de f i n e nLine 0xD
#de f i n e cReturn 0xA

28 #de f i n e sBi t 0x3

100

30

// The Yun needs to use so f tware s e r i a l
32 So f twa r eS e r i a l RFID(rx , tx) ;

34

36 /∗
∗ The tag w i l l g ive 12 ASCII chars

38 ∗ The f i r s t 10 are the ID va lue s
∗ The l a s t 2 are the checksum

40 ∗/
St r ing rTag = ”” ;

42

44

// //////////////////////////
46 /∗
∗ Reads in data from the RFID reader , r e c i e v e s 12 data b i t s

48 ∗ and s t o r e s i t i n to a g l oba l s t r i n g c a l l e d rTag
∗/

50 void readTag () {
// Checks to see i f the re i s anything in the s e r i a l bu f f e r

52 whi le (RFID . a v a i l a b l e ()) {
// Read in the a v a i l a b l e byte

54 char rChar = RFID . read () ;
// Only s t o r e i t i f i t ’ s data

56 i f (rChar != bBit && rChar != nLine && rChar != cReturn && rChar !=
sBi t) rTag . concat (rChar) ;
// Need a shor t de lay to l e t the next s e r i a l byte s h i f t i n to the reg

58 delay (10) ;
}

60 }

62

64 /∗
∗ Pr in t s out the tag and checksum through s e r i a l

66 ∗/
void printTag () {

68 // I f a tag was read
i f (rTag != ””) {

70 S e r i a l . p r i n t (”Tag :\ t ”) ;
f o r (char i = 0 ; i <10; i++){

72 S e r i a l . p r i n t (rTag [i]) ;
}

74 S e r i a l . p r i n t (”\tChecksum :\ t ”) ;
f o r (char i = 10 ; i <12; i++){

76 S e r i a l . p r i n t (rTag [i]) ;
}

78 S e r i a l . p r i n t l n () ;
}

80 }

101

82

84 /∗
∗ Checks the i n t e g r i t y o f the data

86 ∗/
boolean chksum () {

88 // I f a tag was read
i f (rTag != ””) {

90 // Convert the read ASCII data in to hex n ibb l e s
char hData [1 2] ;

92 f o r (char i = 0 ; i < 12 ; i++){
i f (rTag [i] < 58) hData [i] = rTag [i] − 48 ;

94 e l s e hData [i] = rTag [i] − 55 ;
}

96

// Combine every−other n ibb l e i n to a byte meaning
98 // [0 1] [2 3] [4 5] [7 8] [9 10] [11 12]

// Byte #:
100 // 1 2 3 4 5 6

byte bytes [6] ;
102 char index = 0 ;

f o r (char i = 0 ; i < 12 ; i += 2) {
104 char hByte = (hData [i] << 4) & 0xF0 ;

char lByte = hData [i +1] & 0x0F ;
106 bytes [index] = (hByte | lByte) & 0xFF ;

index++;
108 }

110 // Compares the computed checksum aga in s t the r e c i e v ed
// Done by XORing a l l the data b i t s and s e e i ng i f i t matches

112 // the checksum
byte xChksum = 0 ;

114 f o r (char i = 0 ; i < 5 ; i++){
xChksum ˆ= bytes [i] ;

116 }

118 // I f i t matches , r e turn true
i f (xChksum == bytes [5]) {

120 re turn true ;
}

122

// Otherwise , r e turn f a l s e
124 e l s e {

re turn f a l s e ;
126 }

}
128

// We didn ’ t do anything , r e turn f a l s e
130 re turn f a l s e ;
}

132

102

134

/∗
136 ∗ Sends data out the s e r i a l port to the computer
∗/

138 void sendTag () {
i f (rTag != ””) {

140 // Takes only the i d e n t i f y i n g por t i on o f the tag (no checksum)
St r ing dataOut = ”” ;

142 f o r (char i = 0 ; i < 10 ; i++){
dataOut . concat (rTag [i]) ;

144 }
// Append the e o l cha rac t e r

146 dataOut . concat (’ \n ’) ;
S e r i a l . p r i n t (dataOut) ;

148 }
}

150

152

/∗
154 ∗ Trips the r e s e t to t ry to re−read the tag be f o r e
∗ i t ’ s out o f range

156 ∗/
void reRead () {

158 S e r i a l . p r i n t l n (”oops”) ;
// Toggle r e s e t

160 d i g i t a lWr i t e (resetP , LOW) ;
de lay (1) ;

162 d i g i t a lWr i t e (resetP , HIGH) ;
}

164

166

/∗
168 ∗ Posts the tag to the br idge .
∗/

170 void postTag () {
i f (rTag != ””) {

172 // Takes only the i d e n t i f y i n g por t i on o f the tag (no checksum)
St r ing dataOut = ”” ;

174 f o r (char i = 0 ; i < 10 ; i++){
dataOut . concat (rTag [i]) ;

176 }
Bridge . put (” tag ” , dataOut) ;

178 }
}

180

182

// ///////////////////////////////////
184 void setup () {

103

// Open s e r i a l communications and wait f o r port to open :
186 S e r i a l . begin (57600) ;

whi l e (! S e r i a l) ; // wait f o r s e r i a l port to connect .
188 RFID. begin (9600) ;

Bridge . begin () ;
190 }

192

void loop () {
194 // Read in the tag

readTag () ;
196 // Ver i fy the data i n t e g r i t y −

// i f i t ’ s good , send the tag ID to s e r i a l & br idge
198 i f (chksum ()) {

sendTag () ;
200 postTag () ;

}
202 // I f we read a tag but got bad data , r e s e t the reader and get a new

read ing
e l s e i f (rTag != ””) reRead () ;

204 // Clear the tag
rTag = ”” ;

206 }

code/admin yun1/admin yun1.ino

E.2. Linux Side (Python 2.7)

E.2.1. Admin Station

,
”””

2 This s c r i p t takes in data from the br idge (Arduino and Linino l i n k) f o r
the

l a s t tag scanned on the RFID reader . I t then does a PHP post to the
4 webserver that w i l l show the corre spond ing in fo rmat ion about the t o o l
ho lder . I f the tag does not e x i s t in the database a l r eady you w i l l have

the
6 opt ion to add i t .

8 Also supports some ba s i c DB f u n c t i o n a l i t y from wiht in the s c r i p t , however
t h i s i s not a big f o cus o f t h i s s c r i p t .

10 ”””

12 # Imports
import u r l l i b

14 import u r l l i b 2

104

from thread ing import Timer
16 from pymongo import MongoClient

import sys
18 sys . path . i n s e r t (0 , ’ / usr / l i b /python2 .7/ br idge / ’)

from b r i d g e c l i e n t import Br idgeCl i ent as b r i d g e c l i e n t
20 bc = b r i d g e c l i e n t ()

22

”””
24 Timer − f o r running ta sk s every x seconds

”””
26 c l a s s RepeatedTimer (ob j e c t) :

de f i n i t (s e l f , i n t e r va l , funct ion , ∗ args , ∗∗kwargs) :
28 s e l f . t imer = None

s e l f . i n t e r v a l = i n t e r v a l
30 s e l f . f unc t i on = func t i on

s e l f . a rgs = args
32 s e l f . kwargs = kwargs

s e l f . i s r unn ing = False
34 s e l f . s t a r t ()

36 de f run (s e l f) :
s e l f . i s r unn ing = False

38 s e l f . s t a r t ()
s e l f . f unc t i on (∗ s e l f . args , ∗∗ s e l f . kwargs)

40

de f s t a r t (s e l f) :
42 i f not s e l f . i s r unn ing :

s e l f . t imer = Timer (s e l f . i n t e r va l , s e l f . run)
44 s e l f . t imer . s t a r t ()

s e l f . i s r unn ing = True
46

de f stop (s e l f) :
48 s e l f . t imer . cance l ()

s e l f . i s r unn ing = False
50

52 ”””
∗∗∗

54 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ MongoDB ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗

56 ”””
#Open a connect ion to the databse

58 c = MongoClient (’ 130 . 215 . 241 . 97 ’)
#Connect to the t o o l ho lde r s DB

60 db = c . ToolHolders
#Connect to the ChuckHolders c o l l e c t i o n

62 c o l = db . ChuckHolders

64 #The tag wasn ’ t found in the DB
noDBtag = None

66 #The l a s t tag scanned in − used to check i f we scanned in anything new

105

lastTag = None
68 l o c s = [”Changing” , ”Tool Crib” , ”Floor ” , ”Carouse l ”]

70

”””
72 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Disp Data ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

”””
74 de f pTLabels () :

l a b e l s = ” {0 :ˆ15}{1 :ˆ15}{2 :ˆ15}{3 :ˆ15}{4 :ˆ15} ” . format (”DWG” , ”Length” , ”
Locat ion ” , ”Used” , ”Next”)

76 pr in t l a b e l s

78 de f pTable (TH) :
Data

80 dwg = TH[”dwg”]
l eng = TH[” l en ”]

82 l o c = TH[” l o c ”]
used = TH[”used”]

84 nxt = TH[”next ”]
p r i n t ” {0 :ˆ15}{1 :ˆ15}{2 :ˆ15}{3 :ˆ15}{4 :ˆ15} ” . format (dwg , leng , loc , used ,

nxt)
86

88 de f f indTag (tag) :
g l oba l noDBtag

90 # I f the tags in the database , f i nd i t
dTag = co l . f i nd one ({ ” i d ” : tag })

92 i f dTag i s None :
p r i n t

94 pr in t ”The tag i s not in the system , you should add i t f i r s t . . . ”
p r i n t ”Tag ID i s : ” , tag

96 noDBtag = tag . s t r i p ()
e l s e :

98 pr in t
Cats

100 pTLabels ()
pTable (dTag)

102 pr in t

104 de f chLoc (l o c a t i o n) :
p r i n t

106 pTLabels ()
f o r CH in co l . f i nd ({ ” l o c ” : l o c a t i o n }) :

108 pTable (CH)

110 de f searchDB () :
p r i n t

112 pr in t ”1 to search by l a s t tag \n2 to search by en t e r i ng a tag \n3 to
search by l o c a t i o n ”

srTrm = raw input ()
114 i f srTrm == ’ 1 ’ :

f indTag (lastTag)

106

116 e l i f srTrm == ’ 2 ’ :
sTag = raw input (”Enter your tag : ”)

118 f indTag (sTag)
e l i f srTrm == ’ 3 ’ :

120 pr in t
f o r i in range (l en (l o c s)) :

122 pr in t i , ” f o r ” , l o c s [i]
sLoc = raw input (”Enter the l o c a t i o n to search : ”)

124 s ea rchIn = l o c s [i n t (sLoc)]
chLoc (searchIn)

126

128 de f printCH () :
Cats

130 pr in t
pTLabels ()

132 f o r CH in co l . f i nd () :
Data

134 pTable (CH)

136 ”””
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Change Data ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

138 ”””

140 de f addCH() :
g l oba l noDBtag

142 pr in t ” Please ente r . . . ”
i f noDBtag i s not None :

144 pr in t ”Do you want to use the tag from memory? ” , noDBtag
mem = raw input (” (y/n) : ”)

146 i f mem == ’y ’ :
id = noDBtag

148 noDBtag = None
e l s e :

150 noDBtag = None
id = raw input (”Tag ID : ”)

152 l en = f l o a t (raw input (”Tool l ength : ”))
l o c = ”Tool Crib”

154 usd = f l o a t (raw input (”Time used : ”))
nxt = None

156 pst = None
dwg = raw input (”Dwg: ”)

158

newCH = { ” i d ” : id ,
160 ” l en ” : len ,

” l o c ” : loc ,
162 ”used” : usd ,

”next ” : nxt ,
164 ” past ” : pst ,

”dwg” : dwg
166 }

107

168 c o l . i n s e r t (newCH)

170 de f updateCH () :
p r i n t

172 pr in t ”Do you want to update the l a s t scanned tag ? ” , lastTag
useScanned = raw input (” (y/n) : ”)

174 i f useScanned == ’y ’ :
uTag = lastTag

176 e l s e :
uTag = raw input (”Enter the tag : ”)

178

updt = raw input (”Enter the new l o c a t i o n : ”)
180 newLoc = {” l o c ” : updt}

c o l . update ({ ” i d ” : uTag} , {” $ s e t ” : newLoc} , upser t = False , mult i =
Fal se)

182

184 de f delCH () :
p r i n t

186 i f lastTag i s None :
uTag = raw input (”Enter the tag you wish to d e l e t e : ”)

188 e l s e :
p r i n t ”Do you want to d e l e t e the l a s t scanned tag ? ” , lastTag

190 useScanned = raw input (” (y/n) : ”)
i f useScanned == ’y ’ :

192 uTag = lastTag
e l s e :

194 uTag = raw input (”Enter the tag : ”)
p r i n t repr (uTag)

196 c o l . remove ({ ” i d ” : uTag})

198

”””
200 ∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Requests ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

202 ∗∗∗
”””

204

de f reqTag () :
206 g l oba l lastTag , bc

tag = bc . get (’ tag ’)
208 i f (lastTag == tag) :

pass
210 e l s e :

lastTag = tag
212 u r l = ’ http : //130 . 215 . 241 . 9 7/ admin write . php? tag=’ + tag

req = u r l l i b 2 . Request (u r l)
214 re sponse = u r l l i b 2 . ur lopen (req)

the page = response . read ()
216 f indTag (tag)

218

108

r t = RepeatedTimer (2 , reqTag) # i t auto−s t a r t s , no need o f r t . s t a r t ()
220

”””
222 ∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Main ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

224 ∗∗∗
”””

226 de f main () :
whi l e 1 :

228 pr in t
p r i n t ”1 to view the data base ”

230 pr in t ”2 to add a t o o l ho lder ”
p r i n t ”3 to d e l e t e an entry ”

232 pr in t ”4 to ed i t an entry ”
p r in t ”6 to search the DB”

234 inData = raw input (”$”)

236 i f inData == ’ 1 ’ :
p r i n t ”View”

238 printCH ()
e l i f inData == ’ 2 ’ :

240 pr in t ”Add”
addCH()

242 e l i f inData == ’ 3 ’ :
p r i n t ”Delete ”

244 delCH ()
e l i f inData == ’ 4 ’ :

246 pr in t ”Edit ”
updateCH ()

248 e l i f inData == ’ 6 ’ :
p r i n t ”Search ”

250 searchDB ()

252 i f name == ” main ” :
t ry :

254 main ()
f i n a l l y :

256 # Stop the t imer
r t . stop ()

258 pr in t ” Exi t ing s a f e l y . . . ”

code/admin yun1/admin ctrl.py

E.2.2. CNC Reader

,
Imports

2 import n tp l i b
from thread ing import Timer

109

4 from pymongo import MongoClient
import sys

6 sys . path . i n s e r t (0 , ’ / usr / l i b /python2 .7/ br idge / ’)
from b r i d g e c l i e n t import Br idgeCl i ent as b r i d g e c l i e n t

8 bc = b r i d g e c l i e n t ()

10 machine = ”A”

12

”””
14 Timer

”””
16 c l a s s RepeatedTimer (ob j e c t) :

de f i n i t (s e l f , i n t e r va l , funct ion , ∗ args , ∗∗kwargs) :
18 s e l f . t imer = None

s e l f . i n t e r v a l = i n t e r v a l
20 s e l f . f unc t i on = func t i on

s e l f . a rgs = args
22 s e l f . kwargs = kwargs

s e l f . i s r unn ing = False
24 s e l f . s t a r t ()

26 de f run (s e l f) :
s e l f . i s r unn ing = False

28 s e l f . s t a r t ()
s e l f . f unc t i on (∗ s e l f . args , ∗∗ s e l f . kwargs)

30

de f s t a r t (s e l f) :
32 i f not s e l f . i s r unn ing :

s e l f . t imer = Timer (s e l f . i n t e r va l , s e l f . run)
34 s e l f . t imer . s t a r t ()

s e l f . i s r unn ing = True
36

de f stop (s e l f) :
38 s e l f . t imer . cance l ()

s e l f . i s r unn ing = False
40

42 ”””
∗∗∗

44 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ MongoDB ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗

46 ”””
Connect to the mongo

48 c = MongoClient (’ 130 . 215 . 241 . 97 ’)
Connect to the db in use f o r t o o l ho lde r s

50 db = c . ToolHolders
Connect to the c o l l e c t i o n f o r chuck s t y l e t o o l ho lde r s

52 c o l = db . ChuckHolders

54 noDBtag = None
lastTag = None

110

56

58 ”””
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Change Data ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

60 ”””
time = ntp l i b . NTPClient ()

62

de f getTime () :
64 tStamp = time . r eque s t (’ us . pool . ntp . org ’)

r e turn tStamp . tx t ime
66

cHolder = [0 . 0 , 0 . 0 , 0 . 0]
68

#need to see i f the machine i s in the l i s t , i f not add i t and put in a
l i s t

70 de f inOut (tag , jobStart , too lLen) :
g l oba l cHolder

72 ho lder = co l . f i nd one ({ ” i d ” : tag })

74 i f j obSta r t :
time = getTime ()

76 cHolder [0] = time
cHolder [2] = ho lder [” l en ”]

78 e l s e :
time = getTime ()

80 cHolder [1] = time
past = ho lder

82 c o l . update ({ ” i d ” : ho lder [” i d ”]} , {”$push” : {” past . ”+machine : cHolder
}} , upser t = False , mult i = Fal se)

84 used = ho lder [”used”]
jobTime = cHolder [1] − cHolder [0]

86 jobTime = (jobTime / 60) / 60 #sec in an hour
used = round (used + jobTime , 3) #new t o t a l time

88 c o l . update ({ ” i d ” : ho lder [” i d ”]} , {” $ s e t ” : {”used” : used }} , upser t =
False , mult i = False)

90 cHolder = [0 . 0 , 0 . 0 , 0 . 0]

92

94 de f updateLoc (tag , l o c) :
c o l . update ({ ” i d ” : ho lder [” i d ”]} ,{ ” $s e t ” : {” l o c ” : l o c }})

96

”””
98 ∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Requests ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

100 ∗∗∗
”””

102

de f reqTag () :
104 g l oba l lastTag , bc

111

millTag = s t r (bc . get (’ m i l l t a g ’))
106 carTag = s t r (bc . get (’ car tag ’))

108 #mi l l i n g
i f (mil lTag != ”x”) :

110 i f (lastTag == millTag) :
inOut (millTag , False , 0)

112 lastTag = ”” #c l e a r the l a s t tag , we ’ re done with i t
bc . put (”m i l l t a g ” , ”x”)

114 updateLoc (millTag , machine+” (m i l l i n g) ”
e l s e :

116 inOut (millTag , True , l e n I n s t a l l e d)
lastTag = mil lTag

118 bc . put (”m i l l t a g ” , ”x”)
updateLoc (millTag , machine+” (ca r ou s e l) ”

120

#carou s e l
122 i f (car tag != ”x”) :

ho lder = co l . f i nd one ({ ” i d ” : carTag })
124 l o c a t i o n = ho lder [” l o c ”]

126 i f l o c a t i o n == machine+” (ca r ou s e l) ” :
updateLoc (millTag , ”Floor ”)

128 e l s e :
updateLoc (millTag , machine+” (ca r ou s e l ”)

130

bc . put (” car tag ” , ”x”)
132

r t = RepeatedTimer (2 , reqTag) # i t auto−s t a r t s , no need o f r t . s t a r t ()
134

”””
136 ∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Main ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

138 ∗∗∗
”””

140

de f main () :
142 whi le 1 :

cont inue
144

i f name == ” main ” :
146 t ry :

p r i n t ”Begin ! ”
148 main ()

f i n a l l y :
150 # Stop the t imer

r t . stop ()
152 pr in t ” Exi t ing s a f e l y . . . ”

code/cnc yun3/cnc ctrl.py

112

E.2.3. Changing and Storage

,
Imports

2 from thread ing import Timer
from pymongo import MongoClient

4 import sys
sys . path . i n s e r t (0 , ’ / usr / l i b /python2 .7/ br idge / ’)

6 from b r i d g e c l i e n t import Br idgeCl i ent as b r i d g e c l i e n t
bc = b r i d g e c l i e n t ()

8

10 ”””
Timer

12 ”””
c l a s s RepeatedTimer (ob j e c t) :

14 de f i n i t (s e l f , i n t e r va l , funct ion , ∗ args , ∗∗kwargs) :
s e l f . t imer = None

16 s e l f . i n t e r v a l = i n t e r v a l
s e l f . f unc t i on = func t i on

18 s e l f . a rgs = args
s e l f . kwargs = kwargs

20 s e l f . i s r unn ing = False
s e l f . s t a r t ()

22

de f run (s e l f) :
24 s e l f . i s r unn ing = False

s e l f . s t a r t ()
26 s e l f . f unc t i on (∗ s e l f . args , ∗∗ s e l f . kwargs)

28 de f s t a r t (s e l f) :
i f not s e l f . i s r unn ing :

30 s e l f . t imer = Timer (s e l f . i n t e r va l , s e l f . run)
s e l f . t imer . s t a r t ()

32 s e l f . i s r unn ing = True

34 de f stop (s e l f) :
s e l f . t imer . cance l ()

36 s e l f . i s r unn ing = False

38

”””
40 ∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ MongoDB ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

42 ∗∗∗
”””

44 # Connect to the mongo
c = MongoClient (’ 130 . 215 . 241 . 97 ’)

46 # Connect to the db in use f o r t o o l ho lde r s
db = c . ToolHolders

48 # Connect to the c o l l e c t i o n f o r chuck s t y l e t o o l ho lde r s

113

c o l = db . ChuckHolders
50

noDBtag = None
52 lastTag = None

54

”””
56 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Change Data ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

”””
58

60 de f inOut (tag) :
ho lder = co l . f i nd one ({ ” i d ” : tag })

62 l o c a t i o n = ho lder [” l o c ”]

64 i f l o c a t i o n == ”FANUC Changing/ Storage ” :
c o l . update ({ ” i d ” : ho lder [” i d ”]} ,{ ” $ s e t ” : {” l o c ” : ”Floor ” }}) #check
out

66 e l s e :
c o l . update ({ ” i d ” : ho lder [” i d ”]} ,{ ” $ s e t ” : {” l o c ” : ”FANUC Changing/
Storage ” }}) #check in

68

70 ”””
∗∗∗

72 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Requests ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗

74 ”””

76 de f reqTag () :
g l oba l lastTag , bc

78 tag = s t r (bc . get (’ tag ’))
i f (tag != ”x”) :

80 i f (lastTag == tag) :
inOut (tag , False , 0)

82 lastTag = ”” #c l e a r the l a s t tag , we ’ re done with i t
bc . put (” tag ” , ”x”)

84 e l s e :
inOut (tag , True , 4 . 23)

86 lastTag = tag
bc . put (” tag ” , ”x”)

88

r t = RepeatedTimer (2 , reqTag) # i t auto−s t a r t s , no need o f r t . s t a r t ()
90

”””
92 ∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Main ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

94 ∗∗∗
”””

96

de f main () :
98 whi le 1 :

114

cont inue
100

i f name == ” main ” :
102 t ry :

p r i n t ”Begin ! ”
104 main ()

f i n a l l y :
106 # Stop the t imer

r t . stop ()
108 pr in t ” Exi t ing s a f e l y . . . ”

code/fanuc yun2/fanuc ctrl.py

E.2.4. Portable Reader

,
Imports

2 from thread ing import Timer
from pymongo import MongoClient

4 import sys
sys . path . i n s e r t (0 , ’ / usr / l i b /python2 .7/ br idge / ’)

6 from b r i d g e c l i e n t import Br idgeCl i ent as b r i d g e c l i e n t
bc = b r i d g e c l i e n t ()

8

10 ”””
Timer

12 ”””
c l a s s RepeatedTimer (ob j e c t) :

14 de f i n i t (s e l f , i n t e r va l , funct ion , ∗ args , ∗∗kwargs) :
s e l f . t imer = None

16 s e l f . i n t e r v a l = i n t e r v a l
s e l f . f unc t i on = func t i on

18 s e l f . a rgs = args
s e l f . kwargs = kwargs

20 s e l f . i s r unn ing = False
s e l f . s t a r t ()

22

de f run (s e l f) :
24 s e l f . i s r unn ing = False

s e l f . s t a r t ()
26 s e l f . f unc t i on (∗ s e l f . args , ∗∗ s e l f . kwargs)

28 de f s t a r t (s e l f) :
i f not s e l f . i s r unn ing :

30 s e l f . t imer = Timer (s e l f . i n t e r va l , s e l f . run)
s e l f . t imer . s t a r t ()

32 s e l f . i s r unn ing = True

115

34 de f stop (s e l f) :
s e l f . t imer . cance l ()

36 s e l f . i s r unn ing = False

38

”””
40 ∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ MongoDB ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

42 ∗∗∗
”””

44 # Connect to the mongo
c = MongoClient (’ 130 . 215 . 241 . 97 ’)

46 # Connect to the db in use f o r t o o l ho lde r s
db = c . ToolHolders

48 # Connect to the c o l l e c t i o n f o r chuck s t y l e t o o l ho lde r s
c o l = db . ChuckHolders

50

noDBtag = None
52 lastTag = None

54 ”””
∗∗∗

56 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Bridge Put ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗

58 ”””

60 ”””
For now , I am sending :

62 !DATA READY FLAG!

64 Tag (I KNOW THIS IS REDUNDANT)
DWG

66 Length
Used

68 ”””
de f sendTag (tag) :

70 dbInfo = co l . f i nd one ({ ’ i d ’ : s t r (tag) })

72 #tag
bc . put (” tagData” , s t r (dbInfo [’ i d ’]))

74 #dwg
bc . put (”dwgData” , s t r (dbInfo [’dwg ’]))

76 #len
bc . put (” lenData” , s t r (dbInfo [’ l en ’]))

78 #used
bc . put (”usedData” , s t r (dbInfo [’ used ’]))

80 #ready
bc . put (” ready” , ”Y”)

82

84 ”””
∗∗∗

116

86 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Requests ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗

88 ”””

90 de f reqTag () :
g l oba l lastTag , bc

92 tag = s t r (bc . get (’ tag ’))
i f (lastTag == tag) :

94 pass
e l s e :

96 sendTag (tag)
lastTag = tag

98

100 r t = RepeatedTimer (2 , reqTag) # i t auto−s t a r t s , no need o f r t . s t a r t ()

102 ”””
∗∗∗

104 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Main ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗

106 ”””
de f main () :

108 whi le 1 :
time . s l e e p (1)

110

112

i f name == ” main ” :
114 t ry :

main ()
116 f i n a l l y :

Stop the t imer
118 r t . stop ()

p r i n t ” Exi t ing s a f e l y . . . ”

code/portable yun4/portable ctrl.py

117

F. Web Code and Material

The following is all of the PHP and HTML code needed to run the webserver along

with the supporting images used. The webserver was WAMP 2.4 which uses Apache 2.4.4

and PHP 5.4.12. The only additional requirement is the MongoDB PHP extension.

F.1. Home Page

,
1 <html>
<head>

3 <t i t l e >GE − View Chuck Holders</ t i t l e >
< l i n k r e l=” s t y l e s h e e t ” type=” text / c s s ” h r e f=”/ s t y l e s /base . c s s ”>

5 < l i n k r e l=” shor t cut i con ” h r e f=”/ fav i con . i c o ” />
</head>

7 <body>

9 <div a l i g n=” cente r ”>
<ob j e c t type=”image/ svg+xml” data=”/ images / l ogo ve c . svg”><img s r c=”/ images

/ logo . png”></object>
11 </div>

13

<div a l i g n=” cente r ”>
15 <t ab l e c l a s s=”tnob”>

<tr>
17

<td c l a s s=”tdnob”>
19 <form ac t i on=”/add . php”>

<input type=”submit” value=”Add”>
21 </form>

</td><td c l a s s=”tdnob”>
23 <form ac t i on=”/ search . php”>

<input type=”submit” value=”Search ”>

118

25 </form>
</td>

27 </td><td c l a s s=”tdnob”>
<form ac t i on=”/management . php”>

29 <input type=”submit” value=”Management”>
</form>

31 </td>
</td>

33 </tr>
</tab le>

35 </div>

37

39 <div a l i g n=” cente r ”>
<tab le>

41

<tr>
43 <th>RFID Tag</th>

<th>Drawing</th>
45 <th>End Mi l l Length</th>

<th>Location</th>
47 <th>Time Used</th>

</tr>
49

<?php
51 // Config

$dbhost = ’ l o c a l h o s t ’ ;
53 $dbname = ’ ToolHolders ’ ;

55 // Connect to t e s t database
$m = new Mongo(”mongodb :// $dbhost ”) ;

57 $db = $m−>$dbname ;

59 // s e l e c t the c o l l e c t i o n
$ c o l l e c t i o n = $db−>ChuckHolders ;

61

// pu l l a cur so r query
63 $cur sor = $ c o l l e c t i o n−>f i nd () ;

65 f o r each ($cur so r as $document) {
echo ’<tr> ’ ;

67 echo ’<td><a h r e f=”/ ed i t . php? i d=’ . $document [’ i d ’] . ’”> ’ .
$document [’ i d ’] . ’</td> ’ ;
echo ’<td> ’ . $document [’dwg ’] . ’</td> ’ ;

69 echo ’<td> ’ . $document [’ l en ’] . ’</td> ’ ;
echo ’<td> ’ . $document [’ l o c ’] . ’</td> ’ ;

71 echo ’<td> ’ . round ($document [’ used ’] , 3) . ’</td> ’ ;
echo ’<td><a h r e f=”/d e l e t e . php? i d=’ . $document [’ i d ’] . ’”> ’ . ’
De lete ’ . ’</td> ’ ;

73 echo ’</tr> ’ ;
}

119

75

?>
77

</tab le>
79 </div>

81 </body>
</html>

www/view.php

F.2. Management Page

This file allows for editing of the dropdown boxes that allow selection of location and

drawing model. The only thing missing is just adding code to allow editing the second

file which is as easy as making a second page and changing the file which is edited.

,
<html>

2 <head>
<t i t l e >GE − Management</ t i t l e >

4 < l i n k r e l=” s t y l e s h e e t ” type=” text / c s s ” h r e f=”/ s t y l e s /base . c s s ”>
< l i n k r e l=” shor t cut i con ” h r e f=”/ fav i con . i c o ” />

6 </head>
<body>

8

<div a l i g n=” cente r ”>
10 <ob j e c t type=”image/ svg+xml” data=”/ images / l ogo ve c . svg”><img s r c=”/ images

/ logo . png”></object>
</div>

12

14 <div a l i g n=” cente r ”>
<t ab l e c l a s s=”tnob”>

16 <tr>
<td c l a s s=”tdnob”>

18 <form ac t i on=”/view . php”>
<input type=”submit” value=”Home”>

20 </form>
</td>

22 </tr>
</tab le>

24 </div>

26

<div a l i g n=” cente r ”>

120

28

<?php
30

$fn = ” tx t s / l o c s . txt ” ;
32

i f (i s s e t ($ POST [’ content ’])) {
34 $content = s t r i p s l a s h e s ($ POST [’ content ’]) ;

$ fp = fopen ($fn , ”w”) or d i e (”Error opening f i l e in wr i t e mode ! ”) ;
36 f pu t s ($fp , $content) ;

f c l o s e ($fp) or d i e (”Error c l o s i n g f i l e ! ”) ;
38 }

40 ?>

42

<tab le>
44 <tr>

<td>
46 <form ac t i on=”<?php echo $ SERVER[”PHP SELF”] ?>” method=”post ”>

48 <t ex ta r ea rows=”25” c o l s=”40” name=” content ”><?php
i f (f i l e e x i s t s ($fn)) {

50 r e a d f i l e ($fn) ;
}

52 e l s e echo ”Error − Please contact an admin ! ” ; #the text f i l e doesn ’ t
e x i s t
?></textarea>

54 </td></tr>
<tr><td>

56 <input type=”submit” value=”Save”>

58 </form>
</td></tr>

60 </tab le>

62

</div>
64

</body>
66 </html>

www/management.php

F.3. Adding a Tool Holder

F.3.1. User End

121

,
<html>

2 <head>
<t i t l e >GE − Add a Chuck Holder</ t i t l e >

4 < l i n k r e l=” s t y l e s h e e t ” type=” text / c s s ” h r e f=”/ s t y l e s /base . c s s ”>
< l i n k r e l=” shor t cut i con ” h r e f=”/ fav i con . i c o ” />

6 </head>

8 <body>

10 <div a l i g n=” cente r ”>
<ob j e c t type=”image/ svg+xml” data=”/ images / l ogo ve c . svg”><img s r c=”/ images

/ logo . png”></object>
12 </div>

14

<div a l i g n=” cente r ”>
16 <t ab l e c l a s s=”tnob”>

<tr>
18 <td c l a s s=”tdnob”>

<form ac t i on=”/view . php”>
20 <input type=”submit” value=”Home”>

</form>
22 </td>

</tr>
24 </tab le>

</div>
26

28 <div a l i g n=” cente r ”>
<form ac t i on=”/ i n s e r t . php” method=”post ”>

30 <t ab l e c l a s s=”tnob”>
<tr><td c l a s s=”tdnob”>RFID Tag : </td><td c l a s s=”tdnob”><input type=” text ”

name=” i d ” <?php i f (i s s e t ($ GET [’ i d ’])) echo ’ va lue=” ’ . $ GET [’ i d ’]
. ’ ” ’ ; ?>></td></tr>

32 <tr><td c l a s s=”tdnob”>Drawing #:</td><td c l a s s=”tdnob”>

34 <s e l e c t name=”dwg”>
<?php

36 $path = ” . / tx t s /dwgs . txt ” ;
$ f i l e = fopen ($path , ’ r ’) ;

38 $data = f r ead ($ f i l e , f i l e s i z e ($path)) ;
f c l o s e ($ f i l e) ;

40

$ l i n e s = explode (PHP EOL, $data) ;
42 f o r each ($ l i n e s as $ l i n e) {

i f ($ l i n e) {
44 echo ’<opt ion value=” ’ . ur l encode ($ l i n e) . ’”> ’ . $ l i n e . ’</

option> ’ ;
}

46 e l s e {
cont inue ;

122

48 }
}

50 ?>
</s e l e c t>

52

</td></tr>
54 <tr><td co l span=”2” c l a s s=”tdnob”><input type=”submit” value=”Submit

Change”></td></tr>
</form>

56 </tab le>
</div>

58

</body>
60 </html>

www/add.php

F.3.2. Back End

,
<html>

2 <head>
<t i t l e >GE − Added!</ t i t l e >

4 < l i n k r e l=” s t y l e s h e e t ” type=” text / c s s ” h r e f=”/ s t y l e s /base . c s s ”>
< l i n k r e l=” shor t cut i con ” h r e f=”/ fav i con . i c o ” />

6 </head>

8 <body>

10 <div a l i g n=” cente r ”>
<ob j e c t type=”image/ svg+xml” data=”/ images / l ogo ve c . svg”><img s r c=”/ images

/ logo . png”></object>
12 </div>

14

<div a l i g n=” cente r ”>
16 Su c c e s s f u l l y Added !

18 <tab le>

20 <tr>
<th>RFID Tag</th>

22 <th>End Mi l l Length</th>
<th>Location</th>

24 <th>Time Used</th>
</tr>

26 <?php
$connect ion = new MongoClient () ;

28 $ c o l l e c t i o n = $connect ion−>ToolHolders−>ChuckHolders ;

123

30 $doc = array (
” i d ” => $ POST [” i d ”] ,

32 ” l en ” => 0 ,
” l o c ” => ”Changing” ,

34 ”used” => 0 ,
”next ” => ”None” ,

36 ” past ” => array () ,
”dwg” => ur ldecode ($ POST [”dwg”]) ,

38) ;

40 $ c o l l e c t i o n−>i n s e r t ($doc) ;

42

44 echo ’<tr> ’ ;
echo ’<td> ’ . $doc [’ i d ’] . ’</td> ’ ;

46 echo ’<td> ’ . $doc [’ l en ’] . ’</td> ’ ;
echo ’<td> ’ . $doc [’ l o c ’] . ’</td> ’ ;

48 echo ’<td> ’ . $doc [’ used ’] . ’</td> ’ ;
echo ’</tr> ’ ;

50 ?>
</tab le>

52 </div>

54 <div a l i g n=” cente r ”>
<form ac t i on=”/view . php”>

56 <input type=”submit” value=”Continue”>
</form>

58 </div>

60 </body>
</html>

www/insert.php

F.4. Editing Data

F.4.1. User End

,
1 <html>
<head>

3 <t i t l e >GE − Edit an Entry</ t i t l e >
< l i n k r e l=” s t y l e s h e e t ” type=” text / c s s ” h r e f=”/ s t y l e s /base . c s s ”>

5 < l i n k r e l=” shor t cut i con ” h r e f=”/ fav i con . i c o ” />
</head>

124

7

<body>
9

<div a l i g n=” cente r ”>
11 <ob j e c t type=”image/ svg+xml” data=”/ images / l ogo ve c . svg”><img s r c=”/ images

/ logo . png”></object>
</div>

13

15 <div a l i g n=” cente r ”>
<t ab l e c l a s s=”tnob”>

17 <tr>
<td c l a s s=”tdnob”>

19 <form ac t i on=”/view . php”>
<input type=”submit” value=”Home”>

21 </form>
</td>

23 </tr>
<tr>

25 <td c l a s s=”tdnob”>
<?php

27 echo ’<a h r e f=”/ t h h i s t . php? s t a r t=&end=& id=’ ;
echo $ GET [” i d ”] ;

29 echo ’”> ’ ;
echo ”<button type=’button ’> History </button>” ;

31 echo ”” ;
?>

33 </td>
</tr>

35 </tab le>
</div>

37

<div a l i g n=” cente r ”>
39 Edit ing Tag : <?php echo $ GET [’ i d ’] ; ?>

</div>
41

43 <?php
// Config

45 $dbhost = ’ l o c a l h o s t ’ ;
$dbname = ’ ToolHolders ’ ;

47

// Connect to t e s t database
49 $m = new Mongo(”mongodb :// $dbhost ”) ;

$db = $m−>$dbname ;
51

// s e l e c t the c o l l e c t i o n
53 $ c o l l e c t i o n = $db−>ChuckHolders ;

55 $tag = array (’ i d ’ => $ GET [’ i d ’]) ;

57 // pu l l a cur so r query

125

$cur sor = $ c o l l e c t i o n−>f i nd ($tag) ;
59

f o r each ($cur so r as $document) {
61 $ id = $document [’ i d ’] ;

$ l en = $document [’ l en ’] ;
63 $ l o c = $document [’ l o c ’] ;

$used = $document [’ used ’] ;
65 $dwg = $document [’dwg ’] ;
}

67 ?>

69 <div a l i g n=” cente r ”>
<form ac t i on=”/update . php” method=”post ”>

71 <input type=”hidden” name=” i d ” value=”<?php echo $id ; ?>”>
<t ab l e c l a s s=”tnob”>

73 <tr><td c l a s s=”tdnob”>Drawing #:</td><td c l a s s=”tdnob”>

75 <s e l e c t name=”dwg”>
<?php

77 // Pul l a l l the p o s s i b l e drawing models from a text f i l e
$path = ” . / tx t s /dwgs . txt ” ;

79 $ f i l e = fopen ($path , ’ r ’) ;
$data = f r ead ($ f i l e , f i l e s i z e ($path)) ;

81 f c l o s e ($ f i l e) ;

83 $ l i n e s = explode (PHP EOL, $data) ;
f o r each ($ l i n e s as $ l i n e) {

85 i f ($ l i n e) {
i f ($ l i n e == $dwg) {

87 echo ’<opt ion s e l e c t e d=”s e l e c t e d ” value=” ’ . ur l encode ($ l i n e) .
’”> ’ . $ l i n e . ’</option> ’ ;

}
89 e l s e {

echo ’<opt ion value=” ’ . ur l encode ($ l i n e) . ’”> ’ . $ l i n e . ’</
option> ’ ;

91 }
}

93 e l s e {
cont inue ;

95 }
}

97 ?>
</s e l e c t>

99

</td></tr><tr><td c l a s s=”tdnob”>Length :</td><td c l a s s=”tdnob”> <input type
=” text ” name=” len ” value=”<?php echo $ len ; ?>”></tr></td>

101 <tr><td c l a s s=”tdnob”>Locat ion :</td><td c l a s s=”tdnob”>

103 <s e l e c t name=” l o c ”>
<?php

105 // Pul l a l l the p o s s i b l e l o c a t i o n s from a text f i l e
$path = ” . / tx t s / l o c s . txt ” ;

126

107 $ f i l e = fopen ($path , ’ r ’) ;
$data = f r ead ($ f i l e , f i l e s i z e ($path)) ;

109 f c l o s e ($ f i l e) ;

111 $ l i n e s = explode (PHP EOL, $data) ;
f o r each ($ l i n e s as $ l i n e) {

113 i f ($ l i n e) {
i f ($ l i n e == $ loc) {

115 echo ’<opt ion s e l e c t e d=”s e l e c t e d ” value=” ’ . ur l encode ($ l i n e) .
’”> ’ . $ l i n e . ’</option> ’ ;

}
117 e l s e {

echo ’<opt ion value=” ’ . ur l encode ($ l i n e) . ’”> ’ . $ l i n e . ’</
option> ’ ;

119 }
}

121 e l s e {
cont inue ;

123 }
}

125 ?>
</s e l e c t>

127

</tr></td>
129 <tr><td c l a s s=”tdnob”>Time Used:</td><td c l a s s=”tdnob”> <input type=” text ”

name=”used” value=”<?php echo $used ; ?>”></tr></td>
<tr><td c l a s s=”tdnob” co l span=”2”><input type=”submit” value=”Change Tag”

></td></tr>
131 <tab le>

</form>
133 </div>

135 </body>
</html>

www/edit.php

F.4.2. Back End

,
<?php

2

$ id = array (” i d ” => $ POST [” i d ”]) ;
4 $dwg = array (”dwg” => ur ldecode ($ POST [”dwg”])) ;
$ l en = array (” l en ” => (f l o a t) $ POST [” l en ”]) ;

6 $ l o c = array (” l o c ” => ur ldecode ($ POST [” l o c ”])) ;
$used = array (”used” => (f l o a t) $ POST [”used”]) ;

8

127

10 // Config
$dbhost = ’ l o c a l h o s t ’ ;

12 $dbname = ’ ToolHolders ’ ;

14 // Connect to t e s t database
$m = new Mongo(”mongodb :// $dbhost ”) ;

16 $db = $m−>$dbname ;

18 // s e l e c t the c o l l e c t i o n
$ c o l l e c t i o n = $db−>ChuckHolders ;

20

$ c o l l e c t i o n −> update ($id , array (’ $ s e t ’ => $dwg)) ;
22 $ c o l l e c t i o n −> update ($id , array (’ $ s e t ’ => $ l en)) ;

$ c o l l e c t i o n −> update ($id , array (’ $ s e t ’ => $ l o c)) ;
24 $ c o l l e c t i o n −> update ($id , array (’ $ s e t ’ => $used)) ;

26 header (’ Locat ion : /view . php ’) ;

28 ?>

www/update.php

F.5. Deleting Data

,
<?php

2 // Config
$dbhost = ’ l o c a l h o s t ’ ;

4 $dbname = ’ ToolHolders ’ ;

6 // Connect to t e s t database
$m = new Mongo(”mongodb :// $dbhost ”) ;

8 $db = $m−>$dbname ;

10 // s e l e c t the c o l l e c t i o n
$ c o l l e c t i o n = $db−>ChuckHolders ;

12

$ id = array (” i d ” => $ GET [” i d ”]) ;
14

$ c o l l e c t i o n −> remove ($id , array (’ justOne ’ => t rue)) ;
16

header (’ Locat ion : /view . php ’) ;
18

?>

www/delete.php

128

F.6. Searching

F.6.1. User End

,
1 <html>
<head>

3 <t i t l e >GE − View Chuck Holders History</ t i t l e >
< l i n k r e l=” s t y l e s h e e t ” type=” text / c s s ” h r e f=”/ s t y l e s /base . c s s ”>

5 < l i n k r e l=” shor t cut i con ” h r e f=”/ fav i con . i c o ” />
< l i n k r e l=” s t y l e s h e e t ” type=” text / c s s ” h r e f=”/ s t y l e s / ca l endar . c s s ”>

7 <s c r i p t type=” text / j a v a s c r i p t ” s r c=”/ s c r i p t s / ca l endar . j s ”> </s c r i p t>
<s c r i p t type=” text / j a v a s c r i p t ”>

9 f unc t i on i n i t () {
ca l endar . s e t (” s t a r t ”) ;

11 ca l endar . s e t (”end”) ;
}

13 </s c r i p t>

15 </head>
<body onload=” i n i t () ”>

17

19 <div a l i g n=” cente r ”>
<ob j e c t type=”image/ svg+xml” data=”/ images / l ogo ve c . svg”><img s r c=”/ images

/ logo . png”></object>
21 </div>

23

<div a l i g n=” cente r ”>
25 <t ab l e c l a s s=”tnob”>

<tr>
27 <td c l a s s=”tdnob”>

<form ac t i on=”/view . php”>
29 <input type=”submit” value=”Home”>

</form>
31 </td>

</tr>
33 </tab le>

</div>
35

37 <div a l i g n=” cente r ”>
What do you want to search by?

39

<t ab l e c l a s s=”tnob”>

41 <tr>
<form ac t i on=”/ s r e s u l t s . php” method=” get ”>

43 <td c l a s s=”tdnob”>Locat ion : </td><td c l a s s=”tdnob”>

129

45 <s e l e c t name=” l o c ”>
<?php

47 $path = ” . / tx t s / l o c s . txt ” ;
$ f i l e = fopen ($path , ’ r ’) ;

49 $data = f r ead ($ f i l e , f i l e s i z e ($path)) ;
f c l o s e ($ f i l e) ;

51

$ l i n e s = explode (PHP EOL, $data) ;
53

echo ’<opt ion value=””> </option> ’ ;
55 f o r each ($ l i n e s as $ l i n e) {

i f ($ l i n e) {
57 echo ’<opt ion value=” ’ . ur l encode ($ l i n e) . ’”> ’ . $ l i n e . ’</

option> ’ ;
}

59 e l s e {
cont inue ;

61 }
}

63 ?>
</s e l e c t>

65

</td>
67 <td c l a s s=”tdnob”> </td>

</tr>
69 <tr>

<form ac t i on=”/ s r e s u l t s . php” method=” get ”>
71 <td c l a s s=”tdnob”>Past Locat ion : </td><td c l a s s=”tdnob”>

73 <s e l e c t name=”past ”>
<?php

75 $path = ” . / tx t s / l o c s . txt ” ;
$ f i l e = fopen ($path , ’ r ’) ;

77 $data = f r ead ($ f i l e , f i l e s i z e ($path)) ;
f c l o s e ($ f i l e) ;

79

$ l i n e s = explode (PHP EOL, $data) ;
81

echo ’<opt ion value=””> </option> ’ ;
83 f o r each ($ l i n e s as $ l i n e) {

i f ($ l i n e == ’ Tool Crib ’ OR $ l i n e == ’Changing ’ OR $ l i n e == ’ Floor ’
or ! $ l i n e) {

85 cont inue ;
}

87 e l s e {
echo ’<opt ion value=” ’ . ur l encode ($ l i n e) . ’”> ’ . $ l i n e . ’</

option> ’ ;
89 }

}
91 ?>

</s e l e c t>
93

130

95 </td>
<tr>

97 <td c l a s s=”tdnob”>Star t Date : </td> <td c l a s s=”tdnob”> <input id=” s t a r t ”
name=” s t a r t ” type=” text ”> </td>

<td c l a s s=”tdnob”>End Date : </td> <td c l a s s=”tdnob”> <input id=”end”
name=”end” type=” text ”> </td>

99 </tr>
</tr>

101 <tr>
<form ac t i on=”/ s r e s u l t s . php” method=” get ”>

103 <td c l a s s=”tdnob”>Time Used : </td><td c l a s s=”tdnob”>
<input type=” rad io ” name=”comp” value=”gt ”> >=

105 <input type=” rad io ” name=”comp” value=” l t ”> <
<input type=” text ” name=”used”> </td>

107 </tr>
<tr><td c l a s s=”tdnob”>Drawing #:</td><td c l a s s=”tdnob”>

109

<s e l e c t name=”dwg”>
111 <?php

$path = ” . / tx t s /dwgs . txt ” ;
113 $ f i l e = fopen ($path , ’ r ’) ;

$data = f r ead ($ f i l e , f i l e s i z e ($path)) ;
115 f c l o s e ($ f i l e) ;

117 $ l i n e s = explode (PHP EOL, $data) ;

119 echo ’<opt ion value=””> </option> ’ ;
f o r each ($ l i n e s as $ l i n e) {

121 i f ($ l i n e) {
echo ’<opt ion value=” ’ . ur l encode ($ l i n e) . ’”> ’ . $ l i n e . ’</

option> ’ ;
123 }

e l s e {
125 cont inue ;

}
127 }

?>
129 </s e l e c t>

131 </td></tr>
<tr>

133 <td co l span=”2” c l a s s=”tdnob”>
<input type=”submit” value=”Search ”> </td>

135 </td>
</tr>

137 </form>
</tab le>

139 </div>

141 </body>
</html>

131

www/search.php

F.6.2. Back End

,
<html>

2 <head>
<meta cha r s e t=”UTF−8” />

4 <meta name=” goog le ” content=” no t r an s l a t e ”>
<meta http−equiv=”Content−Language” content=”en” />

6 <t i t l e >GE − View Chuck Holders</ t i t l e >
< l i n k r e l=” s t y l e s h e e t ” type=” text / c s s ” h r e f=”/ s t y l e s /base . c s s ”>

8 < l i n k r e l=” shor t cut i con ” h r e f=”/ fav i con . i c o ” />
</head>

10 <body>

12 <div a l i g n=” cente r ”>
<ob j e c t type=”image/ svg+xml” data=”/ images / l ogo ve c . svg”><img s r c=”/ images

/ logo . png”></object>
14 </div>

16

<div a l i g n=” cente r ”>
18 <t ab l e c l a s s=”tnob”>

<tr>
20 <td c l a s s=”tdnob”>

<form ac t i on=”/view . php”>
22 <input type=”submit” value=”Home”>

</form>
24 </td>

</tr>
26 </tab le>

</div>
28

30

<div a l i g n=” cente r ”>
32

<?php
34 // Config

$dbhost = ’ l o c a l h o s t ’ ;
36 $dbname = ’ ToolHolders ’ ;

38 // Connect to t e s t database
$m = new Mongo(”mongodb :// $dbhost ”) ;

40 $db = $m−>$dbname ;

132

42 // s e l e c t the c o l l e c t i o n
$ c o l l e c t i o n = $db−>ChuckHolders ;

44

// pu l l a cur so r query
46 $cur sor = $ c o l l e c t i o n−>f i nd () ;

48 da t e d e f au l t t ime z on e s e t (’ America/New York ’) ;

50 f unc t i on tableData () {
echo ’<tab le> ’ ;

52 echo ’<tr> ’ ;
echo ’<th>RFID Tag</th> ’ ;

54 echo ’<th>Drawing</th> ’ ;
echo ’<th>End Mi l l Length</th> ’ ;

56 echo ’<th>Location</th> ’ ;
echo ’<th>Time Used</th> ’ ;

58 echo ’</tr> ’ ;
}

60

f unc t i on tab l ePast () {
62 echo ’<tab le> ’ ;

echo ’<tr> ’ ;
64 echo ’<th>Tag</th> ’ ;

echo ’<th>Time In</th> ’ ;
66 echo ’<th>Time Out</th> ’ ;

echo ’<th>End Mi l l Length</th> ’ ;
68 echo ’</tr> ’ ;
}

70

72 i f (! empty ($ GET [” l o c ”])) {
$sterm = ” l o c ” ;

74 tableData () ;
}

76 e l s e i f (! empty ($ GET [” past ”])) {
$sterm = ”past ” ;

78 echo ”<h1>Machine : ” . $ GET [” past ”] . ”</h1>
” ;
tab l ePast () ;

80 }
e l s e i f (! empty ($ GET [”used”])) {

82 $sterm = ”used” ;
tableData () ;

84 }
e l s e i f (! empty ($ GET [”dwg”])) {

86 $sterm = ”dwg” ;
tableData () ;

88 }
e l s e {

90 $sterm = ”” ;
tableData () ;

92 }

133

94 f unc t i on dataRow($document) {
echo ’<tr> ’ ;

96 echo ’<td><a h r e f=”/ ed i t . php? i d=’ . $document [’ i d ’] . ’”> ’ . $document
[’ i d ’] . ’</td> ’ ;

echo ’<td> ’ . $document [’dwg ’] . ’</td> ’ ;
98 echo ’<td> ’ . $document [’ l en ’] . ’</td> ’ ;

echo ’<td> ’ . $document [’ l o c ’] . ’</td> ’ ;
100 echo ’<td> ’ . $document [’ used ’] . ’</td> ’ ;

echo ’<td><a h r e f=”/d e l e t e . php? i d=’ . $document [’ i d ’] . ’”> ’ . ’ De lete
’ . ’</td> ’ ;

102 echo ’</tr> ’ ;
}

104

$lastTag = ”” ;
106

f unc t i on pastRow ($tag , $job) {
108 g l oba l $ lastTag ;

$ id = $tag ;
110 #i f ($tag == $lastTag) $ id = ”” ;

#e l s e $ lastTag = $tag ;
112 echo ’<tr> ’ ;

echo ’<td><a h r e f=”/ t h h i s t . php? s t a r t=&end=& id=’ . $ id . ’”> ’ . $ id
. ’</td> ’ ;

114 echo ’<td> ’ . date (’D M d H: i : s Y ’ , $job [0]) . ’</td> ’ ;
echo ’<td> ’ . date (’D M d H: i : s Y ’ , $job [1]) . ’</td> ’ ;

116 echo ’<td> ’ . $ job [2] . ’</td> ’ ;
echo ’</tr> ’ ;

118 }

120 f unc t i on f i l t e rD a t e ($tag , $job) {
i f (! empty ($ GET [” s t a r t ”]) and empty ($ GET [”end”])) { // only s t a r t has a
date

122 $ s t a r t = s t r t o t ime ((s t r i n g) $ GET [” s t a r t ”]) ;
i f ($job [0] >= $s t a r t) pastRow ($tag , $job) ;

124 }
e l s e i f (empty ($ GET [” s t a r t ”]) and ! empty ($ GET [”end”])) { // only end has a

date
126 $end = s t r t o t ime ((s t r i n g) $ GET [”end”]) ;

$end = $end + ((60 ∗ 60 ∗ 24) − 1) ; // make the cut−o f f time 12 : 59 : 59
128 i f ($job [0] <= $end) pastRow ($tag , $job) ;

}
130 e l s e {

$ s t a r t = s t r t o t ime ((s t r i n g) $ GET [” s t a r t ”]) ;
132 $end = s t r t o t ime ((s t r i n g) $ GET [”end”]) ;

$end = $end + ((60 ∗ 60 ∗ 24) − 1) ; // make the cut−o f f time 12 : 59 : 59
134

i f ($job [0] >= $s t a r t and $job [0] <= $end) pastRow ($tag , $job) ;
136 }
}

138

140 i f ($sterm == ” l o c ” or $sterm == ”dwg”) {

134

f o r each ($cur so r as $document) {
142 i f (ur ldecode ($ GET [” l o c ”]) == $document [’ l o c ’] or ur ldecode ($ GET [”

dwg”]) == $document [’dwg ’]) {
dataRow($document) ;

144 }
}

146 }

148 e l s e i f ($sterm == ”past ”) {
f o r each ($cur so r as $document) {

150 $past = $document [’ past ’] ;
i f (a r r a y k e y e x i s t s ((s t r i n g)$ GET [” past ”] , $past)) {

152 $arrKeys = ar ray keys ($past) ;
f o r each ($arrKeys as $key) {

154 i f ($key == $ GET [” past ”]) {
f o r each ($past [$key] as $job) {

156 $tag = $document [” i d ”] ;
i f (empty ($ GET [” s t a r t ”]) and empty ($ GET [”end”])) pastRow (

$tag , $job) ;
158 e l s e f i l t e rD a t e ($tag , $job) ;

}
160 }

}
162 }

}
164 }

166 e l s e i f ($sterm == ”used”) {
f o r each ($cur so r as $document) {

168 i f ($ GET [”comp”] == ” l t ”) {
i f ($document [”used”] < (f l o a t) $ GET [”used”]) {

170 dataRow($document) ;
}

172 }

174 i f ($ GET [”comp”] == ”gt ”) {
i f ($document [”used”] >= (f l o a t) $ GET [”used”]) {

176 dataRow($document) ;
}

178 }

180 }
}

182

?>
184

</tab le>
186 </div>

188 </body>
</html>

www/sresults.php

135

F.7. Finding the History

,
1 <html>
<head>

3 <t i t l e >GE − Added!</ t i t l e >
< l i n k r e l=” s t y l e s h e e t ” type=” text / c s s ” h r e f=”/ s t y l e s /base . c s s ”>

5 < l i n k r e l=” shor t cut i con ” h r e f=”/ fav i con . i c o ” />
</head>

7

<body>
9

<div a l i g n=” cente r ”>
11 <ob j e c t type=”image/ svg+xml” data=”/ images / l ogo ve c . svg”><img s r c=”/ images

/ logo . png”></object>
</div>

13

15 <div a l i g n=” cente r ”>
Su c c e s s f u l l y Added !

17

<tab le>
19

<tr>
21 <th>RFID Tag</th>

<th>End Mi l l Length</th>
23 <th>Location</th>

<th>Time Used</th>
25 </tr>

<?php
27 $connect ion = new MongoClient () ;

$ c o l l e c t i o n = $connect ion−>ToolHolders−>ChuckHolders ;
29

$doc = array (
31 ” i d ” => $ POST [” i d ”] ,

” l en ” => 0 ,
33 ” l o c ” => ”Changing” ,

”used” => 0 ,
35 ”next ” => ”None” ,

” past ” => array () ,
37 ”dwg” => ur ldecode ($ POST [”dwg”]) ,

) ;
39

$ c o l l e c t i o n−>i n s e r t ($doc) ;
41

43

echo ’<tr> ’ ;
45 echo ’<td> ’ . $doc [’ i d ’] . ’</td> ’ ;

echo ’<td> ’ . $doc [’ l en ’] . ’</td> ’ ;
47 echo ’<td> ’ . $doc [’ l o c ’] . ’</td> ’ ;

136

echo ’<td> ’ . $doc [’ used ’] . ’</td> ’ ;
49 echo ’</tr> ’ ;

?>
51 </tab le>

</div>
53

<div a l i g n=” cente r ”>
55 <form ac t i on=”/view . php”>

<input type=”submit” value=”Continue”>
57 </form>

</div>
59

</body>
61 </html>

www/insert.php

F.8. Reading from Administration Station

F.8.1. User End

,
1 <html>
<head>

3 <t i t l e >GE − Admin Stat ion</ t i t l e >
< l i n k r e l=” s t y l e s h e e t ” type=” text / c s s ” h r e f=”/ s t y l e s /base . c s s ”>

5 < l i n k r e l=” shor t cut i con ” h r e f=”/ fav i con . i c o ” />

7

</head>
9 <body>

11 <div a l i g n=” cente r ”>
<ob j e c t type=”image/ svg+xml” data=”/ images / l ogo ve c . svg”><img s r c=”/ images

/ logo . png”></object>
13 </div>

15

<div a l i g n=” cente r ”>
17 <t ab l e c l a s s=”tnob”>

<tr>
19 <td c l a s s=”tdnob”>

<form ac t i on=”/view . php”>
21 <input type=”submit” value=”Home”>

</form>
23 <form ac t i on=”/admin . php”>

<input type=”submit” value=”Refresh ”>

137

25 </form>
</td>

27 </tr>
</tab le>

29 </div>

31

33 <div a l i g n=” cente r ”>

35 <?php
$path = ” . / tx t s /admin . txt ” ;

37 $ f i l e = fopen ($path , ’ r ’) ;
$data = f r ead ($ f i l e , f i l e s i z e ($path)) ;

39 f c l o s e ($ f i l e) ;

41 // Config
$dbhost = ’ l o c a l h o s t ’ ;

43 $dbname = ’ ToolHolders ’ ;

45 // Connect to t e s t database
$m = new Mongo(”mongodb :// $dbhost ”) ;

47 $db = $m−>$dbname ;

49 // s e l e c t the c o l l e c t i o n
$ c o l l e c t i o n = $db−>ChuckHolders ;

51

// id we are l ook ing f o r
53 $ id = array (’ i d ’ => $data) ;

55 // pu l l a cur so r query , l im i t to 1 r e s u l t f o r now
$cursor = $ c o l l e c t i o n−>f i nd ($ id)−> l im i t (1) ;

57

59

f unc t i on foundTag ($document) {
61 echo ’<tab le> ’ ;

echo ’<tr> ’ ;
63 echo ’<th>RFID Tag</th> ’ ;

echo ’<th>Drawing</th> ’ ;
65 echo ’<th>End Mi l l Length</th> ’ ;

echo ’<th>Location</th> ’ ;
67 echo ’<th>Time Used</th> ’ ;

echo ’</tr> ’ ;
69

echo ’<tr> ’ ;
71 echo ’<td><a h r e f=”/ ed i t . php? i d=’ . $document [’ i d ’] . ’”> ’ . $document

[’ i d ’] . ’</td> ’ ;
echo ’<td> ’ . $document [’dwg ’] . ’</td> ’ ;

73 echo ’<td> ’ . $document [’ l en ’] . ’</td> ’ ;
echo ’<td> ’ . $document [’ l o c ’] . ’</td> ’ ;

75 echo ’<td> ’ . $document [’ used ’] . ’</td> ’ ;

138

echo ’<td><a h r e f=”/d e l e t e . php? i d=’ . $document [’ i d ’] . ’”> ’ . ’ De lete
’ . ’</td> ’ ;

77 echo ’</tr> ’ ;
echo ’<tab le> ’ ;

79 }

81 f unc t i on makeNew() {
g l oba l $data ;

83 echo ”Tag ” . $data . ” does not e x i s t !
” ;
echo ”Would you l i k e to ” ;

85 echo ”<a h r e f =’/add . php? i d=” . $data . ” ’>” ;
echo ”add i t now?” ;

87 echo ”” ;
}

89

$ho lder = $cursor−>getNext () ;
91

i f (! empty ($ho lder)) {
93 //This doesn ’ t need to be a loop obv ious ly as we ’ re only us ing 1 tag

// I made i t as a loop f o r e a s i e r expansion in the fu tu r e however as only
95 //a few changes are needed to p r i n t mu l t ip l e th ing s (namely foundTag ())

f o r each ($cur so r as $document) {
97

99 i f ($data == $document [’ i d ’]) {
foundTag ($document) ;

101 }
}

103 }
e l s e {

105 makeNew() ;
}

107

?>
109

111 </div>

113 </body>
</html>

www/admin.php

F.8.2. Back End

,
<!−− This f i l e i s where the admin ct r l . py f i l e goes to wr i t e a text f i l e

with

139

2 the tag that was j u s t scanned in . The webpage can then read from th i s
f i l e and

d i sp l ay the appropr ia te in fo rmat ion in admin . php .
4 −−>

6 <?php
$dwgs = ’ . / tx t s /admin . txt ’ ;

8 $handle = fopen ($dwgs , ’w ’) or d i e (’ Cannot open f i l e : ’ . $dwgs) ;
$data = $ GET [” tag ”] ;

10 fw r i t e ($handle , $data) ;
f c l o s e ($handle) ;

12 ?>

www/admin write.php

F.9. Text Files

The following files are read from for the corresponding section headings. For the

dropdown menus, each line break represents a new selectable option.

F.9.1. Admin Station

As per the code, this just has the last tag that was read in by the reader at the

Administration Station.

,
0B008099FE

www/txts/admin.txt

F.9.2. Drawing Models

,
1 NIKKEN MCAT40−C1−85U
NIKKEN MCAT40−C7/8−75US−P

3 NIKKEN MCAT40−C1−90−A
NIKKEN MCAT40

www/txts/dwgs.txt

140

F.9.3. Machines and Other Locations

,
Tool Crib

2 Changing
Floor

4 A
B

6 C
D

8 E
F

10 G
5917

12 5919
5920

14 5925
6210

www/txts/locs.txt

F.10. Calendar Script

,
1 /**

* Calendar Script

3 * Creates a calendar widget which can be used to select the date more

easily than using just a text box

* http://www.openjs.com/scripts/ui/calendar/

5 *

* Example:

7 * <input type="text" name="date" id="date" />

* <script type="text/javascript">

9 * calendar.set("date");

* </script>

11 */

ca l endar = {
13 month names : ["January" ,"February" ,"March" ,"April" ,"May" ,"June" ,"July" ,"

August" ,"September" ,"October" ,"November" ,"December"] ,
weekdays : ["Sun" , "Mon" , "Tue" , "Wed" , "Thu" , "Fri" , "Sat"] ,

15 month days : [31 , 28 , 31 , 30 , 31 , 30 , 31 , 31 , 30 , 31 , 30 , 31] ,
//Get today’s date - year, month, day and date

17 today : new Date () ,
opt : {} ,

19 data : [] ,

21 //Functions

141

/// Used to create HTML in a optimized way.

23 wrt : function (txt) {
this . data . push (txt) ;

25 } ,

27 /* Inspired by http://www.quirksmode.org/dom/getstyles.html */

ge tS ty l e : function (e l e , property) {
29 i f (e l e . cu r r en tS ty l e) {

var a l t property name = property . r ep l a c e (/\−(\w)/g , function (m, c) {
return c . toUpperCase () ; }) ; //background -color becomes backgroundColor

31 var value = e l e . cu r r en tS ty l e [property] | | e l e . cu r r en tS ty l e [
a l t property name] ;

33 } else i f (window . getComputedStyle) {
property = property . r ep l a c e (/ ([A−Z]) /g , "-$1") . toLowerCase () ; //

backgroundColor becomes background -color

35

var value = document . de faultView . getComputedStyle (e l e , null) .
getPropertyValue (property) ;

37 }

39 //Some properties are special cases

i f (property == "opacity" && e l e . f i l t e r) va lue = (parseF loat (e l e .
f i l t e r . match (/ opac i ty \=([ˆ)] ∗) /) [1]) / 100) ;

41 else i f (property == "width" && isNaN (value)) va lue = e l e . c l i entWidth
| | e l e . o f f s e tWidth ;
else i f (property == "height" && isNaN (value)) va lue = e l e . c l i e n tHe i gh t
| | e l e . o f f s e tHe i gh t ;

43 return value ;
} ,

45 ge tPo s i t i on : function (e l e) {
var x = 0 ;

47 var y = 0 ;
while (e l e) {

49 x += e l e . o f f s e t L e f t ;
y += e l e . o f f s e tTop ;

51 e l e = e l e . o f f s e tPa r en t ;
}

53 i f (nav igator . userAgent . indexOf ("Mac") != −1 && typeof document . body .
l e f tMarg in != "undefined") {

x += document . body . l e f tMarg in ;
55 o f f s e tTop += document . body . topMargin ;

}
57

var xy = new Array (x , y) ;
59 return xy ;

} ,
61 /// Called when the user clicks on a date in the calendar.

s e l e c tDat e : function (year , month , day) {
63 var ths = c a l e n d a r a c t i v e i n s t a n c e ;

i f (ths . opt [’onDateSelect’]) ths . opt [’onDateSelect’] . apply (ths , [year ,
month , day]) ; // Custom handler if the user wants it that way.

142

65 else {
document . getElementById (ths . opt ["input"]) . va lue = year + "-" + month

+ "-" + day ; // Date format is :HARDCODE:

67 ths . hideCalendar () ;
}

69 } ,
/// Creates a calendar with the date given in the argument as the

selected date.

71 makeCalendar : function (year , month , day) {
year = par s e In t (year) ;

73 month= par s e In t (month) ;
day = par s e In t (day) ;

75

//Display the table

77 var next month = month+1;
var next month year = year ;

79 i f (next month>=12) {
next month = 0 ;

81 next month year++;
}

83

var previous month = month−1;
85 var prev ious month year = year ;

i f (previous month< 0) {
87 previous month = 11 ;

previous month year−−;
89 }

91 this . wrt ("<table>") ;
this . wrt ("<tr><th><a href=’javascript:calendar.makeCalendar("+(
prev ious month year)+","+(previous month)+");’ title=’"+this .
month names [previous month]+" "+(prev ious month year)+"’><</th>"
) ;

93 this . wrt ("<th colspan=’5’ class=’calendar-title’><select name=’

calendar -month’ class=’calendar -month’ onChange=’calendar.makeCalendar(

"+year+",this.value);’>") ;
f o r (var i in this . month names) {

95 this . wrt ("<option value=’"+i+"’") ;
i f (i == month) this . wrt (" selected=’selected’") ;

97 this . wrt (">"+this . month names [i]+"</option>") ;
}

99 this . wrt ("</select>") ;
this . wrt ("<select name=’calendar-year’ class=’calendar-year’ onChange

=’calendar.makeCalendar(this.value, "+month+");’>") ;
101 var cu r r en t yea r = this . today . getYear () ;

i f (cu r r en t yea r < 1900) cu r r en t yea r += 1900 ;
103

f o r (var i=cur rent year −70; i<cu r r en t yea r +10; i++) {
105 this . wrt ("<option value=’"+i+"’")

i f (i == year) this . wrt (" selected=’selected’") ;
107 this . wrt (">"+i+"</option>") ;

}

143

109 this . wrt ("</select ></th>") ;
this . wrt ("<th><a href=’javascript:calendar.makeCalendar("+(
next month year)+","+(next month)+");’ title=’"+this . month names [
next month]+" "+(next month year)+"’>></th></tr>") ;

111 this . wrt ("<tr class=’header’>") ;
f o r (var weekday=0; weekday<7; weekday++) this . wrt ("<td>"+this . weekdays
[weekday]+"</td>") ;

113 this . wrt ("</tr>") ;

115 //Get the first day of this month

var f i r s t d a y = new Date (year , month , 1) ;
117 var s t a r t day = f i r s t d a y . getDay () ;

119 var d = 1 ;
var f l a g = 0 ;

121

//Leap year support

123 i f (year % 4 == 0) this . month days [1] = 29 ;
else this . month days [1] = 28 ;

125

var days in th i s month = this . month days [month] ;
127

//Create the calender

129 f o r (var i =0; i<=5; i++) {
i f (w >= days in th i s month) break ;

131 this . wrt ("<tr>") ;
f o r (var j =0; j <7; j++) {

133 i f (d > days in th i s month) f l a g =0; //If the days has overshooted

the number of days in this month, stop writing

else i f (j >= sta r t day && ! f l a g) f l a g =1;//If the first day of this

month has come, start the date writing

135

i f (f l a g) {
137 var w = d , mon = month+1;

i f (w < 10) w = "0" + w;
139 i f (mon < 10)mon = "0" + mon ;

141 //Is it today?

var c lass name = ’’ ;
143 var yea = this . today . getYear () ;

i f (yea < 1900) yea += 1900 ;
145

i f (yea == year && this . today . getMonth () == month && this . today .
getDate () == d) c lass name = " today" ;

147 i f (day == d) c lass name += " selected" ;

149 c lass name += " " + this . weekdays [j] . toLowerCase () ;

151 this . wrt ("<td class=’days"+class name+"’><a href=’javascript:

calendar.selectDate(\""+year+"\",\""+mon+"\",\""+w+"\")’>"+w+"</td>
") ;

d++;

144

153 } else {
this . wrt ("<td class=’days’> </td>") ;

155 }
}

157 this . wrt ("</tr>") ;
}

159 this . wrt ("</table>") ;
this . wrt ("<input type=’button’ value=’Cancel’ class=’calendar-cancel’

onclick=’calendar.hideCalendar();’ />") ;
161

document . getElementById (this . opt [’calendar’]) . innerHTML = this . data .
j o i n ("") ;

163 this . data = [] ;
} ,

165

/// Display the calendar - if a date exists in the input box, that will

be selected in the calendar.

167 showCalendar : function () {
var input = document . getElementById (this . opt [’input’]) ;

169

//Position the div in the correct location...

171 var div = document . getElementById (this . opt [’calendar’]) ;

173 i f (this . opt [’display_element’]) var d i sp l ay e l ement = document .
getElementById (this . opt [’display_element’]) ;
else var d i sp l ay e l ement = document . getElementById (this . opt [’input’]) ;

175

var xy = this . g e tPo s i t i on (d i sp l ay e l ement) ;
177 var width = par s e In t (this . g e tS ty l e (d i sp lay e l ement , ’width’)) ;

d iv . s t y l e . l e f t =(xy [0]+ width+10)+"px" ;
179 div . s t y l e . top=xy [1]+"px" ;

181 // Show the calendar with the date in the input as the selected date

var e x i s t i n g d a t e = new Date () ;
183 var da t e i n i npu t = input . va lue ;

i f (da t e i n i npu t) {
185 var s e l e c t e d d a t e = fa l se ;

var da t e pa r t s = da t e i n i npu t . s p l i t ("-") ;
187 i f (da t e pa r t s . l ength == 3) {

da t e pa r t s [1]−−; //Month starts with 0

189 s e l e c t e d d a t e = new Date (da t e pa r t s [0] , da t e pa r t s [1] , da t e pa r t s
[2]) ;
}

191 i f (s e l e c t e d d a t e && ! isNaN (s e l e c t e d d a t e . getYear ())) { //Valid date.

e x i s t i n g d a t e = s e l e c t e d d a t e ;
193 }

}
195

var the yea r = ex i s t i n g d a t e . getYear () ;
197 i f (the yea r < 1900) the yea r += 1900 ;

this . makeCalendar (the year , e x i s t i n g d a t e . getMonth () , e x i s t i n g d a t e .
getDate ()) ;

145

199 document . getElementById (this . opt [’calendar’]) . s t y l e . d i sp l ay = "block" ;
c a l e n d a r a c t i v e i n s t a n c e = this ;

201 } ,

203 /// Hides the currently show calendar.

hideCalendar : function (i n s t anc e) {
205 var a c t i v e c a l e n d a r i d = "" ;

i f (i n s t anc e) a c t i v e c a l e n d a r i d = in s t ance . opt [’calendar’] ;
207 else a c t i v e c a l e n d a r i d = c a l e n d a r a c t i v e i n s t a n c e . opt [’calendar’] ;

209 i f (a c t i v e c a l e n d a r i d) document . getElementById (a c t i v e c a l e n d a r i d) .
s t y l e . d i sp l ay = "none" ;
c a l e n d a r a c t i v e i n s t a n c e = {} ;

211 } ,

213 /// Setup a text input box to be a calendar box.

s e t : function (input id , opt) {
215 var input = document . getElementById (i npu t i d) ;

i f (! input) return ; //If the input field is not there, exit.

217

i f (opt) this . opt = opt ;
219

i f (! this . opt [’calendar’]) this . i n i t () ;
221

var ths = this ;
223 i f (this . opt [’onclick’]) input . on c l i c k=this . opt [’onclick’] ;

else {
225 input . on c l i c k=function () {

ths . opt [’input’] = this . id ;
227 ths . showCalendar () ;

} ;
229 }

} ,
231

/// Will be called once when the first input is set.

233 i n i t : function () {
i f (! this . opt [’calendar’] | | ! document . getElementById (this . opt [’
calendar’])) {

235 var div = document . createElement (’div’) ;
i f (! this . opt [’calendar’]) this . opt [’calendar’] = ’calender_div_’+

Math . round (Math . random () ∗ 100) ;
237

div . s e tAt t r i bu t e (’id’ , this . opt [’calendar’]) ;
239 div . className="calendar-box" ;

241 document . getElementsByTagName ("body") [0] . i n s e r tB e f o r e (div , document .
getElementsByTagName ("body") [0] . f i r s t C h i l d) ;
}

243 }
}

www/scripts/calendar.js

146

F.11. CSS

F.11.1. Website

,
body{

2 c o l o r : white ;
background−c o l o r : gray ;

4 }

6 t ab l e
{

8 border−c o l l a p s e : c o l l a p s e ;
}

10

tab le , th , td
12 {

border : 1px s o l i d white ;
14 text−a l i g n : c en t e r ;

padding : 5 px ;
16 }

18 . tnob
{

20 border−c o l l a p s e : c o l l a p s e ;
border : 0 px hidden ;

22 padding : 0 px ;
}

24

. tdnob
26 {

border : 0 px hidden ;
28 }

30 a : l i n k {
c o l o r : white ;

32 font−weight : bold ;
}

34

a : v i s i t e d {
36 c o l o r : white ;
}

38

a : hover {
40 c o l o r : navy ;
}

42

a : a c t i v e {
44 c o l o r : white ;
}

147

www/styles/base.css

F.11.2. Calendar

,
1 . ca lendar−box {

d i sp l ay : none ;
3 background−c o l o r : gray ;

border : 1 px s o l i d #444 ;
5 po s i t i o n : abso lu t e ;

width :250 px ;
7 padding : 0 5px ;
}

9 . ca lendar−box s e l e c t . ca lendar−month {
width :90 px ;

11 }
. ca lendar−box s e l e c t . ca lendar−year {

13 width :70 px ;
}

15 . ca lendar−box . ca lendar−cance l {
width :100%;

17 }
. ca lendar−box tab l e td {

19 width :14%;
}

21 . ca lendar−box . ca lendar−t i t l e {
text−a l i g n : c en t e r ;

23 }
. ca lendar−box a {

25 text−decora t i on : none ;
}

27 . ca lendar−box . today a {
padding : 0 5px ;

29 margin− l e f t :−5px ;
background−c o l o r : gray ;

31 c o l o r : red ;
}

33 . ca lendar−box . s e l e c t e d a {
padding : 0 5px ;

35 margin− l e f t :−5px ;
background−c o l o r : gray ;

37 }

www/styles/calendar.css

148

F.12. Images

Figure F.1.: Website banner

Figure F.2.: Website icon

149

	1 Introduction
	1.1 Project Description

	2 Changing and Storage
	2.1 Current Changing Process
	2.2 Brainstorming
	2.2.1 Intake and Outtake
	2.2.2 Removing Sheaths
	2.2.3 Changing End Mills

	2.3 Flowcharts
	2.3.1 High Level
	2.3.2 Low Level

	2.4 Selected System Ideas
	2.4.1 Assembly Receiver/Dispatcher
	2.4.2 Vise
	2.4.2.1 Indexing Table
	2.4.2.2 Mounting
	2.4.2.3 Analysis

	2.4.3 Gripper
	2.4.3.1 Gripper Analysis

	2.5 Models
	2.5.1 Arm: MATLAB
	2.5.2 Arm: SolidWorks
	2.5.3 Work Cell Layout: SolidWorks

	2.6 Implementation and Testing
	2.6.1 Drawer
	2.6.1.1 Performance

	2.6.2 Vise
	2.6.2.1 Performance

	2.6.3 Gripper
	2.6.3.1 Performance

	2.6.4 Work Cell Layout
	2.6.5 Programming and Putting it Together

	2.7 Safety Considerations
	2.8 Aesthetics
	2.9 Social and Ethical Impact

	3 Tool Tracking
	3.1 Background
	3.2 Preliminary Planning
	3.3 Flowcharts
	3.3.1 Changing Cell
	3.3.2 Storage In and Out
	3.3.3 CNC Carrousel

	3.4 Reader Selection
	3.5 Breadboard Circuit
	3.6 Selecting a Communication Method
	3.6.1 Overview
	3.6.2 Wireless
	3.6.3 Wired

	3.7 Database Selection
	3.8 Controller Selection
	3.8.1 Arduino Uno and Ethernet Shield
	3.8.2 Arduino Yun

	3.9 Network Plan
	3.10 Portable Hand Scanner
	3.11 Implementation and Testing
	3.11.1 Database
	3.11.2 Web Interface
	3.11.2.1 Basic Queries
	3.11.2.2 Searching
	3.11.2.3 Admin Station

	3.11.3 Portable Scanner
	3.11.3.1 Results

	3.11.4 CNC Machine
	3.11.4.1 Results

	3.11.5 Changing and Storage
	3.11.5.1 Results

	4 Further Discussion and Future Work
	4.1 Discussion
	4.1.1 Repeatability Considerations
	4.1.1.1 Tool Holder
	4.1.1.2 Tool Tracking

	4.1.2 Economic Considerations
	4.1.2.1 Tool Changing
	4.1.2.2 Tool Tracking

	4.2 Future Work
	4.2.1 Tool Changing
	4.2.2 Tool Tracking

	5 Conclusions
	Appendices
	A FANUC DH Parameters
	B MATLAB Kinematics Code
	B.1 translate.m
	B.2 tlink.m
	B.3 rotate.m
	B.4 fulltrans.m
	B.5 FANUC.m

	C New Yun Setup
	D Plates and Pointer
	E Reader Code
	E.1 Arduino Side (C)
	E.1.1 CNC Reader
	E.1.2 Hand Scanner
	E.1.3 All others

	E.2 Linux Side (Python 2.7)
	E.2.1 Admin Station
	E.2.2 CNC Reader
	E.2.3 Changing and Storage
	E.2.4 Portable Reader

	F Web Code and Material
	F.1 Home Page
	F.2 Management Page
	F.3 Adding a Tool Holder
	F.3.1 User End
	F.3.2 Back End

	F.4 Editing Data
	F.4.1 User End
	F.4.2 Back End

	F.5 Deleting Data
	F.6 Searching
	F.6.1 User End
	F.6.2 Back End

	F.7 Finding the History
	F.8 Reading from Administration Station
	F.8.1 User End
	F.8.2 Back End

	F.9 Text Files
	F.9.1 Admin Station
	F.9.2 Drawing Models
	F.9.3 Machines and Other Locations

	F.10 Calendar Script
	F.11 CSS
	F.11.1 Website
	F.11.2 Calendar

	F.12 Images

