

Worcester Polytechnic Institute Department of Civil and Environmental Engineering

Feasibility & Validation Study of Foundation **Design** Alternatives Stantec Project Center Boston, MA

A Major Qualifying Project Submitted to the Faculty of Worcester Polytechnic Institute Worcester, MA

In partial fulfillment of the requirements for the Degree of Bachelor of Science

> Student Authors: **Dominick Bossalini** Paul Buchanan Margaret Freed Dylan Heinricher

StantecStructural@wpi.edu

Project Advisors: Professor Leonard Albano **Professor Frederick Hart**

Abstract

Using software analysis for structural design is becoming more prevalent across the industry due to increasing technological resources. This project served as an investigation of foundation design alternatives and the feasibility of STAAD.foundation as a design aid for engineers at Stantec Consulting Ltd. Both design optimization and accuracy were tested against hand calculations in accordance with ACI 318-05 and ASCE 7-05 in order to identify the proficiencies and shortcomings of the software which were documented in a user tips manual.

Acknowledgements

Our team would like to thank Professor Albano and Professor Hart for all their guidance and assistance over the course of this project. We would also like to thank the employees of Stantec Consulting Service Inc. in the Boston office for being so helpful and welcoming to our team. The project would not be complete without the help and support of several specific Stantec employees; Greg Cuetara, Dennis Keough, and Ryan Hill.

Authorship

This project was a collaborative effort between all four team members. Our team collectively determined how to approach and effectively complete all aspects of the project. In order to be most efficient, sections of the report were written separately. However, the sections were reviewed and edited by each team member. A general delineation of team responsibilities is listed below.

Dominick Bossalini: Created Excel Spreadsheets that could be used for multiple design calculations and designed foundations. This team member was responsible for the analysis, results and conclusions sections concerning the evaluation and comparison of STAAD.*foundation*.

Paul Buchanan: Developed the Stantec User Tips Manual and focused on compiling the MQP report and Stantec Deliverable. This team member was responsible for the development of the Stantec Deliverable and the writing of associated report sections.

Margaret Freed: Created Excel Spreadsheet that could be used for multiple design calculations and focused on compiling the MQP report and Stantec Deliverable. This team member was responsible for the analysis, results and conclusions sections concerning the evaluation of design alternatives.

Dylan Heinricher: Verified Excel Spreadsheets through hand calculations and became proficient in STAAD.*foundation* program functions and limitations. This team member was responsible for the analysis, results and conclusions sections concerning the evaluation and comparison of STAAD.*foundation*.

Capstone Design Statement

According to the principles developed by the Accreditation Board for Engineering and Technology (ABET), students must demonstrate knowledge and skills acquired in earlier coursework through a capstone design experience. A capstone design experience must incorporate engineering principles and realistic design constraints. This Major Qualifying Project (MQP) incorporated the following six design constraints:

Economic

One of the six design constraints of the project is economics. Designing a structure for economic efficiency necessitates a greater amount of detail than would be required when designing for structural integrity alone. The amounts and types of material, as well as the ease of construction must all be considered, while still providing enough structural support strength. For this project, economic efficiency was designed by completing multiple foundation designs and providing a ranking based on design and construction costs. These designs were then evaluated by completing a cost estimate for the amount of steel rebar and concrete included in the design, as well as determining if the shape or size of the foundation will require a greater amount of site work and construction man-hours. The cost estimates for reinforcement and concrete were quoted from the 2013 National Construction Estimator.

Ethical

The designs for this project were consistent with the code of ethics set forth by the American Society of Civil Engineers (ASCE). The designs meet the requirements of the ASCE's fundamental principles and fundamental canons. The ASCE's fundamental canons are as follows:¹

- 1. Engineers shall hold paramount the safety, health and welfare of the public and shall strive to comply with the principles of sustainable development in the performance of their professional duties.
- 2. Engineers shall perform services only in areas of their competence.
- 3. Engineers shall issue public statements only in an objective and truthful manner.
- 4. Engineers shall act in professional matters for each employer or client as faithful agents or trustees, and shall avoid conflicts of interest.
- 5. Engineers shall build their professional reputation on the merit of their services and shall not compete unfairly with others.
- 6. Engineers shall act in such a manner as to uphold and enhance the honor, integrity, and dignity of the engineering profession and shall act with zero-tolerance for bribery, fraud, and corruption.
- 7. Engineers shall continue their professional development throughout their careers, and shall provide opportunities for the professional development of those engineers under their supervision.

¹ American Society of Civil Engineers. *Guidance on Licensing and Ethical Responsibilities for Civil Engineers*. Web. http://www.asce.org/uploadedFiles/Education_and_Careers/Licensure/Content_Pieces/licensing-ethics-brochure.pdf>.

Health and Safety

Foundation designs were conscientiously designed keeping the well-being of those constructing the design and the future users of the facility in mind. The designs comply with the requirements of the governing regulatory codes and with pertinent industry standards. All the foundation designs were created considering the code standards laid out in ACI 318-05, the 14th edition of AISC, and ASCE Standards: 9-1, 9-2, 9-3.

Constructability

The project created the foundation designs with the feasibility of construction in mind. This included considering the effective use of resources, labor, construction duration, and structure maintenance. It is important to consider the constructability of designs in the field. Producing designs that are too complicated or that expect unreasonable precision can lead to costly delays in the field and wasted resources.

Social

Since the project team worked in a professional environment during the length of the project, the social design constraint was addressed during our time at Stantec. A major aspect of completing the project was learning how to adapt to and be productive in a professional environment. Completing this constraint included meeting the expectations of a professional workplace. These requirements included adopting acceptable work attire and manners, adhering to Stantec's established schedule and hours, and integrating with fellow coworkers and managers.

Professional Licensure Statement

Obtaining a professional license as a civil engineer means that the applicant has accepted and understands the technical and ethical obligations of the profession.² Reliance on engineers who have obtained a professional ensures that engineering projects protect the health, safety, and welfare of the public. Each state has specific requirements for an individual to become a licensed professional engineer (P.E.). The National Council of Examiners for Engineering and Surveying (NCEES) is one prominent organization that oversees the licensing requirements for each state.

Requirements to Obtain a License

Although licensing requirements may very slightly from state to state, the general process remains fairly consistent throughout the United States. Listed below are the requirements to obtain a professional license according to the American Society of Civil Engineers: ³

- 1. Graduating from an ABET accredited engineering program or an ABET accredited engineering technology program in some states.
- 2. Passing the national Fundamentals of Engineering (F.E.) exam offered by the National Council of Examiners for Engineering and Surveying (NCEES).
- 3. Obtaining four year (or three years past a masters degree in some states) of acceptable engineering experience with increasing levels of responsibility under the guidance of one or more licensed engineers.
- 4. Submitting a detailed application documenting among other things, a progressing increase in responsible professional experience and including both professional and character references.
- 5. Passing the Principles of Engineering (P.E.) exam offered by NCEES. Some states have an additional exam offered by the state board that convers its principles of conduct and ethics.

Importance of licensure to the profession, to the individual, and to the public

There are many reasons that civil engineering students and graduates should aspire to become licensed engineers. Having a professional license expands the knowledge of the profession, fulfills an ethical responsibility to the engineer's community and enhances the engineer's career. Since the majority of civil engineering work is done in close proximity to the public it is an engineer's responsibility to ensure the safety of the community. Professional licensure means that the engineer has a thorough understanding of fundamental engineering principles and has acquired engineering experience and judgment under the guidance of a professional engineer. A license legally enables an engineer to take personal responsibility for any technical work they complete.

According to the seventh fundamental ethical cannon laid out by the American Society of Civil Engineers (ASCE), "Engineers shall continue their professional development throughout their careers, and shall provide opportunities for the professional development of those engineers

² American Society of Civil Engineers. *Guidance on Licensing and Ethical Responsibilities for Civil Engineers*. Web.

http://www.asce.org/uploadedFiles/Education_and_Careers/Licensure/Content_Pieces/licensing-ethics-brochure.pdf>

³ Ibid.

under their supervision". Becoming a professional engineer satisfies this requirement in several ways. A young engineer aspiring to be licensed needs to complete several years under the guidance of a professional engineer. This increases the professional development of the younger engineer and allows the professional engineer in charge to pass along their knowledge. Passing down engineering knowledge is not only crucial to expanding the development of a younger engineers but it is also vial to the progress of the profession as a whole.

Relationship between this MQP and professional practice

The MQP is directly integrated with professional practice; both in its execution and end goal. This project was completed in Stantec Consulting Ltd.'s Boston office with direct supervision from several professional engineers. It required team members to consistently work in a professional environment under the guidance of experienced engineers. Spending time in the Stantec office helped each member of the team develop professionally and technically. Our project also helped develop a sense of professionalism. The team needed to consider how our project could be incorporated in the office workflow and the best method to present our findings to Stantec engineers.

Executive Summary

Purpose and Scope of Document

The Power Group at Stantec has previously worked with several different foundation software programs. The company was interested in the investigation of STAAD.*foundation* in order to determine range of applicability and reliability within the software package. By engaging in a parametric study of STAAD.*foundation*, it was possible to determine the reliability of the software and identify any potential limitations. In order to quantify the effectiveness and reliability of STAAD.*foundation*, foundation types were designed through hand calculations and then verified through the STAAD.*foundation* program. These foundation designs were then analyzed considering engineering principles and realistic design constraints. Specifically, the team considered direct cost of materials, labor, and equipment, design code compliance, health and safety regulations and aspects of constructability.

Three documents were created in order to complete the project. A deliverable to the company was created with the use of Microsoft Word and PowerPoint. To create the deliverable for Stantec, a standard operations was provided by them and followed until completion. The team met and worked with Ryan Hill (EIT) to ensure that the deliverable was up to standard with the company. The deliverable contains a table of contents, a purpose, an applicable codes and standards section, definitions, design criteria, and an appendix. The purpose defines the needs and specifics of the project. The deliverable will be printed and then compiled into a binder so that Stantec has a hard copy of it. In the appendix of the deliverable, the user can see the User Tip Manual, all of the hand calculations, and spread sheets of each specific foundation design used to verify the validity of STAAD.*foundation*. The deliverable can be used by any employee in the office that will be new to or using STAAD.*foundation*.

Tutorial videos and examples provided by the software were explored to best develop a user manual that can show a designer how to create and analyze specific foundations depending on the project's need. Essentially, should Stantec hire a new employee, this user manual would provide them with enough information to learn the fundamentals of the program. The user tips manual outlines proper methodology to use and setup various foundations and is in the form of a Microsoft PowerPoint. The PowerPoint has a table of contents which acts as chapters for each foundation design, limits and optimizations within the program section, importing and exporting within the program, and a tips and tricks section.

Methods

The objectives of this project are as follows:

- 1. Evaluate the reliability of STAAD. foundation and identify any software limitations
- 2. Consider design alternatives for various foundation types using a predefined rubric
- 3. Develop a user tips manual for use by Stantec Consulting Ltd. Engineers

To accomplish the project objectives, the team created design alternatives through hand calculations and by utilizing STAAD.*foundation*. The foundation types that were designed included isolated spread footings, combined footings, strap footings and mat foundations. For each foundation type, three models were created that could then be used for STAAD.*foundation* evaluation and consideration of design alternatives.

Results and Conclusions

Objective 1

A comparison of the hand-calculated designs with those produced by STAAD.*foundation* reveals that while STAAD offers the potential for a streamlined foundation design process, it does have several important flaws. The hand calculated designs in almost every instance produced a similar set of dimensions as those of the foundations STAAD designed. The most noticeable error within the dimensioning of the STAAD produced designs occurred within the combined footing, where STAAD suggested dimensions that would have been quite difficult to construct. Other errors seen within the results occur with regard to the reinforcement design and the analysis of shear forces. In several cases, STAAD was found to have produced a design in which the reinforcement would be spaced greater than the maximum 7.5 inches, or would require too large a number of bars with too wide a spacing, effectively moving reinforcement outside of the boundaries of the foundation. The analysis of shear within the program proved inaccurate as well. STAAD.*foundation* completed its analysis of the foundation not from the largest possible load case, but rather from the largest positive value computed. In the event that the design produced a significantly larger negative shear force than the selected positive shear force, the foundation would fail.

While STAAD.*foundation* is certainly a useful tool, designs which are produced exclusively within the software should be compared to a design which has been manually calculated. In addition to this, design constraints should be determined ahead of time based upon the users engineering judgment. While the program will design to the minimum constraints, a proper foundation design will come not from using exclusively the minimums, but rather from careful consideration of all of the variables within the structure and the site. Tools such as this act as design aids and supplements to the process, but should not be considered replacements to the traditional methods of structural design.

Objective 2

To determine the most appropriate design, there must be consideration of ethical standards, health and safety, cost, and constructability. In order to evaluate the three design alternatives a grading rubric was created. While the rubric does not determine the best design, it does offer the engineer an evaluation of the twelve foundation designs. All of the foundations were designed in accordance with the ASCE code of Ethics and Ethical Cannons as well as being designed in accordance with the various governing codes. In terms of cost estimation, the pricing of materials was considered for each design and is represented in the spreadsheets as either green (cheapest), yellow (middle) or red (most expensive). The overall cheapest design is that of the second combined footing design, whereas the most expensive is the third mat design. For constructability, all of the designs once again offer varying degrees of difficulty. While the mat foundation requires the smallest amount of formwork setups, it also does cover the largest amount of area.

The results obtained from the rubric offer a number of positive and negative factors for each of the designs as well as confirming that the design has met the required standards. These serve as a tool for analyzing each foundation design individually, as well as in comparison to the other designs within the type of foundation and the project as a whole. As the rubric does not propose any one design in particular, the engineers must decide for themselves what the overall best design would be, based upon the known constraints within the site, budget, and timeline.

Objective 3

The creation of a user tips manual serves as a guide for future users of STAAD.*foundation*. It offers insight into the import and export of STAAD files, as well as detailing the steps required to begin a design within the program. The user tips manual also covers the various areas of the program that we found lacking, such as the analysis of shear, the use of minimum design constraints, and reinforcement. While not all of these errors were solved, they are potential problems that can appear within the design and should be considered when using STAAD.*foundation*.

Contents

Abstractii
Acknowledgementsiii
Authorshipiv
Capstone Design Statementv
Professional Licensure Statement
Executive Summary ix
Purpose and Scope of Documentix
Methodsix
Results and Conclusionsx
1.0 Introduction
1.1 Project Need1
1.2 Design Approach
2.0 Background
2.1 Stantec Consulting Ltd
2.1.1 Company Structure
2.1.2 Power Engineering Group at Stantec
2.2 Foundation Design
2.2.1 Spread Footings
2.2.2 Mat Foundations
2.3 STAAD.pro
2.4 STAAD.foundation
2.4.1 STAAD.foundation Program Theory
2.4.2 Foundation Design in STAAD. foundation
2.4.3 Case Study in STAAD. foundation
3.0 Methodology
3.1 Investigation of Foundation Designs
3.2 Completion of Project Objectives
3.2.1 Evaluate the reliability of STAAD. <i>foundation</i> and identify any software limitations 15
3.2.2 Consider alternatives for various foundation types using a design rubric
3.2.3 Develop a User Tips Manual for Stantec Consulting Ltd. Engineers

3.3 Project Schedule	
4.0 Results	
4.1 Objective 1 Results [Investigation of STAAD.foundation]	
4.2 Objective 2 Results [Evaluation of Design Alternatives]	
4.3 Objective 3 Results [Creation of User Tips Manual]	
5.0 Deliverable	
6.0 Conclusions	
6.1 Objective 1 Conclusions [Investigation of STAAD.foundation]	
Isolated Footing Design Optimization	
Combined Footing Design Optimization	
Strap Footing Design Optimization	
Mat Foundation	
6.2 Objective 2 Conclusions [Evaluation of Design Alternatives]	
6.3 Objective 3 Conclusions [Creation of User Tips Manual]	
6.4 Project Limitations	
7.0 References	
8.0 Appendices	
Appendix A: Team Information Sheet	
Appendix B: Stantec Consulting Ltd. Project Overview	35
Appendix C: Load Cases from STAAD.pro Reference Structure	
Appendix D: Excel Spreadsheet – Isolated Spread Footing Models	
Model: I1	40
Model: I2	
Model: I3	
Appendix E: STAAD.foundation – Isolated Spread Footing	60
Appendix F: Hand Calculated - Isolated Spread Footing	76
Appendix G: Excel Spreadsheet – Combined Footing Models	83
Model: C1	
Model: C2	
Model: C3	
Appendix H: STAAD. foundation – Combined Footing	

Appendix I: Hand Calculation - Combined Footing Design	121
Appendix J: Excel Spreadsheet – Strapped Footing Models	126
Model: S1	126
Model: S2	134
Model: S3	142
Appendix K: STAAD.foundation – Strapped Footing	150
Appendix L: Hand Calculations – Strapped Footing	175
Appendix M: Excel Spreadsheet – Mat Foundation Models	182
Model: M1	182
Model: M2	186
Model: M3	190
Appendix N: STAAD.foundation – Mat Foundation	194
Appendix O: Hand Calculation – Mat Foundation	203
Appendix P: User Tips Manual - Stantec Consulting Ltd.	208
Appendix Q: Final Project Proposal	242

1.0 Introduction

By verifying the applicability and reliability of software used within a company, it is possible to gain financial benefits, facilitate communication across different departments, and ensure the effective use of company resources. It is important to determine whether software applications utilized by company employees are encouraging streamlined workflow by functioning to their intended standard. Letting discontinuities or inaccuracies creep into the intricate framework of structural design and construction projects can lead to wasted resources and delayed schedules. Having unreliable software applications can increase the frequency of reworks, the possibility of safety hazards, and the amount of wasted materials.

1.1 Project Need

The Power Group at Stantec has previously worked with several different foundation software programs. The company was interested in the investigation of STAAD.*foundation* in order to determine range of applicability and reliability within the software package. By engaging in a parametric study of STAAD.*foundation*, it was possible to determine the reliability of the software and identify any potential limitations. This involved the use of STAAD.*pro* in order to construct a structural steel model and perform the necessary structural analysis. Once the reaction forces from STAAD.*pro* were computed, they were applied to design various foundation types. In order to quantify the effectiveness and reliability of STAAD.*foundation*, foundation program.

1.2 Design Approach

To verify the applicability and reliability of STAAD.*foundation*, reaction forces from a STAAD.*pro* structural frame model was obtained. Reaction forces and loadings obtained from the structural analysis in STAAD.*pro* were then input into STAAD.*foundation*. The team inputted the design criteria for each type of foundation into STAAD.*foundation*. These selected foundation types were also designed through hand calculations to verify the results from the program. This comparison allowed for the analysis of software and design limitations inherent in STAAD.*foundation*. This project focused on the design of isolated spread footings, combined footings, strap footings and mat foundations. Once the verifications were documented, a User Tips Manual was created for use by Stantec Consulting Ltd.. The foundation designs were then analyzed considering several design criteria, specifically: direct labor, material and equipment costs, compliance with health and safety regulations, adherence to design codes and constructability.

2.0 Background

2.1 Stantec Consulting Ltd.

Stantec Consulting was founded in 1954 in Edmonton, Canada by Dr. Don Stanley as a civil and environmental engineering firm working primarily on water and sewage projects in rural Canadian towns. Within the first decade, the company grew to a size of thirty employees and was awarded its first major structural project: the redesign of the Peace River Bridge on the Alaska Highway. Today Stantec is one of the largest design firms in the world, with over 14,000 employees in over 230 different offices specializing in architecture, landscape architecture, and engineering

2.1.1 Company Structure

Stantec is divided into several project areas within the fields of architecture, civil engineering and landscape architecture, mechanical engineering, and chemical engineering. Within the framework of Stantec's corporate Structure, these sub areas are known as *Business Centers*, or "BC's." These BC's often have sub groups within them, which collaborate on projects related to their fields, allowing Stantec to better allocate resources, and better manage the flow of money from clients to sub-contractors.

2.1.2 Power Engineering Group at Stantec

The power group at Stantec in Boston, Massachusetts was added to their firm in early 2014⁴. The group came to Stantec after many years with Shaw Power and Stone & Webster. The power group designs and engineers projects involving heat, power, turbines, and air quality control. The group looks at traditional resources such as gas and coal, as well as renewable energy resources including wind and solar power. The power projects include the repurposing of old power plants to be more economically efficient. The power group is growing on both the East and West Coast of the United States, allowing Stantec to access a broader clientele.

2.2 Foundation Design

Foundations are the base and support in the structural system that transmit the superstructure's loads directly to the earth. All civil engineering structures require foundations to keep the structure from leaning or buckling. Buildings bestow their weight and loadings onto their foundations; therefore, the footing needs to be designed to withstand the weight of the building. The foundation design process cannot begin until the loads have been calculated. There are several different types of design loads including: normal loads, shear loads, moment loads, and torsion loads. Where weather is applicable, the bottom of the foundation must be constructed below the frost line to prevent cracking from freeze-thaw cycles.

⁴ Smith, Allson. "Stantec Adds Power Engineering Team in Boston, Massachusetts." *Stantec Media Relations*. n. page. Web. 6 Mar. 2015. http://www.stantec.com/about-us/news/2014/stanatec-adds-power-engineering-team-in-boston-massachusetts.html

2.2.1 Spread Footings

Spread footings are normally used to support the structural system of small to medium structures with moderate to good soil conditions. They can be used in high-rise buildings where the soil conditions are exceptional and can bear the load. Individual columns of the building are constructed on top of the spread footing because of its ability to bear extremely heavy loading. Many low-rise residential buildings consist of spread footings that distribute the load over a larger area. Spread footings are the most common type of foundation due to its low cost and quick construction. They are built in different shapes and sizes to accommodate each project's scenario. The shape of the footing is generally a rectangular.

Determination of soil pressures, shear forces, and bending moments then need to be established to determine design capability⁵. The design and layout of the footing is controlled by several factors: the load of the structure, penetration of soft layers near the surface, and penetration of layers near the surface due to the effects freezing and thawing. These foundations are more commonly found in residential construction buildings that have a basement. These footings are not sufficient for high-rise buildings. Three types of spread footings, isolated, combined and strap, are discussed below and can be seen in Figure 1.

Isolated Spread Footings

Isolated Spread support the structural system of small to medium structures. These footings are used to transmit a load from columns to the soil beneath it. If the soil supporting the column is weak or the column loading is too heavy, the isolated spread footing needs to be designed a lot larger. Isolated spread footings are more economical because less material is needed to create the footing than a normal spread footing.

Determination of soil bearing pressure and bearing capacity must be established to determine the design capability. If the soil has a higher bearing capacity, then the isolated spread footing is sufficient for the design.

Combined Footings

Combined Footings receive loading from more than one

FIGURE 1: [A] ISOLATED SPREAD FOOTING, [B] COMBINED FOOTING, [C] STRAP FOOTING Taken from: http://eu.lib.kmutt.ac.th

⁵ Tabsh, Sami W and Abdul Raouf AJ-Shawa. "Effect of Spread Footing Flexibility on Structural Response." *Structural Design and Construction* 2005, 10 ed.: 109-114. Web.

column or load-supporting element. Each column applies their own individual loading to the footing. The columns can be located at any distance from the footing ends, however, they must lie on the centerline along the longer axis of the footing. Determination of shear, service loading, soil bearing pressure, bending moments, and reinforcement need to be established to determine design capability. Combined footings are most commonly designed with a rectangular or trapezoidal geometry.

Strap Footings

Strap footings are generally used when one of the columns the footing is supporting undergoes extreme loading. When two columns are far apart, the strap is designed to transfer the large moment between the two columns. The strap does not provide any weight bearing; it is simply there to transfer the moment of one footing to the other. Strap footings are more economic than combined footings because it uses less material to construct the footing. Determination of loading, soil bearing capacity, and characteristic of the footing needs to be established to determine design capability.

2.2.2 Mat Foundations

Mat foundations, also known as raft foundations, are a type of foundation that is considered when using a spread foundation would not be economical or reasonable. Mats are considerably larger than spread footings and generally encompass the entire footprint of a building. This type of foundation can be considered economical for a variety of reasons, mostly depending on size

and soil condition. If a spread footing is being considered and covers more than a third of the footprint, a mat may be considered as a more appropriate Additionally, a mat can be alternative. used when dealing with erratic soil conditions because the mechanics of the will foundation successfully bridge irregularities and differential settlements throughout a site. Location of the water table is another consideration for using a If the foundation is mat foundation. located below the depth of the water table, mat foundations are beneficial due to monolithic properties and ease of waterproofing. Depending on design, differential structural loads can cause

FIGURE 2: VARIOUS MAT FOUNDATION DESIGNS Taken from: http://eu.lib.kmutt.ac.th

irregular loading on the footing, in which case, a mat foundation would be beneficial because it is able to compensate for irregular loading. Although mats are able to withstand irregular loads due to both superstructure bearing and soil conditions, piles or shafts may be necessary in order to fully support the mat foundation.⁶

When considering the design analysis of a mat foundation, it can be considered as rigid or nonrigid. The traditional method to evaluate the design of this type of foundation was to consider it a rigid structure. Using this approach, a high width-to-thickness ratio is generally observed. Furthermore, using this type of analysis yields less reliable estimates of shear, deformations and moments because there is no consideration to redistribution of the bearing pressure throughout the mat.⁷

The more developed and accurate way to analyze the design of a mat is using the non-rigid method. Using this analysis, the interaction between the mat and the underlying soil is assumed to be a "bed of springs." With this assumption, deformations can be calculated locally throughout the mat, rather than calculating one deformation for the entire foundation, which is unreasonable under the conditions that a mat foundation is selected. By considering both flexural deflections and corresponding soil bearing pressure redistribution, non-rigid analysis yields results that are more appropriate.⁸

2.3 STAAD.pro

STAAD.pro is a software application that assists professional engineers in the design of steel, concrete, timber, aluminum, and cold form steel structures with a user-friendly interface, optimized design and analysis capabilities. It is a product of Bentley Systems, a software company that specializes in, "comprehensive software solutions for the infrastructure lifecycle".⁹ The software allows the user to create three-dimensional models of nearly any type of structure, featuring flexible modeling supporting over 70 international codes and over 20 U.S. codes. Three-dimensional model, as opposed to two-dimensional drawings, allow for heightened awareness of interferences within the design. By combining mechanical, electrical, and plumbing systems within a single model, the software allows for integration of structural elements. Additionally, analysis and design features, such as nuclear certification, are included within the software package. The interoperability of the software package allows for data exchange across several different programs. A notable component of STAAD software packages is the ability to link models to external project databases. Several different aspects of the model, such as mechanical and plumbing components, can be imported from third party resources such as AutoCAD. Along with structural analysis and interference reports, STAAD is able to produce virtual walkthroughs of the models.¹⁰

 ⁶ Coduto, D.P. *Foundation Design: Principles and Pracitices*. Upper Saddle River, New Jersey: Prentice-Hall, 2001. Print.
 ⁷ Ibid.

⁸ Ibid.

⁹ Bentley: Sustaining Infrastructure. 2014. Web. http://www.bentley.com/en-US/.

¹⁰ Bentley. STAAD.pro. n.d. Web. 10 December 2014. < http://www.bentley.com/en-US/Products/STAAD.pro/>.

Case Study in STAAD.pro

An example of a project that benefitted from the use of STAAD.*pro* was the design and construction of the Evergreen Community Power Plant in Reading, Pennsylvania. The project was contracted by ESI Inc. of Tennessee, and the engineers on the project had no previous experience using STAAD or Bentley software products. The difficulties associated with this project were attributed to size constraints and complexity of the project. Additionally, the customer was adamant on the use of three-dimensional modeling to ensure that proper operation and size could be achieved within the provided space.

The project team for the power plant consisted of 19 engineers, including structural, mechanical, electrical, and instrumentation engineers who were able to input their components of the design into the model. The engineers were able to review the model while 3D specialists simultaneously performed detailed modeling for the plant. The project was streamlined by utilizing STAAD's integration tools. Two and three-dimensional models from the vendors, which were created in third party applications, could be imported into the STAAD model. Interference reports were also generated using this model, opposed to two-dimensional interpretation. These reports identified major cost saving interferences between different engineering components before construction. Overall, the implementation and use of STAAD saved ESI Inc. about two months on the design schedule.¹¹

2.4 STAAD.foundation

STAAD.*foundation* is used to design and model various types of complex and simple foundation systems. It is also a product of Bentley Systems. STAAD.*foundation* is designed to handle common foundations, such as isolated spread footings and pile caps. It can also tackle foundation designs for larger and more complex projects. According to Bentley Systems, "efficient design and documentation is realized through its plant specific design tools, multiple design codes with U.S. and metric bar sizes, design optimization and automatic drawing generation".¹² Application of STAAD.*foundation* can potentially benefit users of STAAD.*pro* due to the streamlined workflow between the two programs. STAAD.*foundation* can efficiently input geometry, loads and reactions from STAAD.*pro* and then effectively produce a foundation design.¹³ While STAAD.*foundation* can be used cohesively with STAAD.*pro* and other building information modeling software, it can also be utilized as a standalone program.

2.4.1 STAAD.foundation Program Theory

STAAD.foundation allows the user the ability to model complex or simple footings, and these include: isolated spread footings, pile caps, strip footings, mat foundations, and octagonal

¹¹ Bentley.Company. Bentley Helps Jump-Start 3K Design Services for Green Power Plant. June 2009.

 $<\!\!http://ftp2.bentley.com/dist/collateral/docs/case_studies/CS_ESI_Green-Power-Plant.pdf>.$

¹² Ibid.

¹³ Bentley Systems. STAAD.*foundation - User Manual*. Research Engineers International, 2009. 1-2

footings.¹⁴ The program designs these various foundation types in accordance with ACI 318-05 code.¹⁵

2.4.2 Foundation Design in STAAD.foundation

Isolated Spread Footings and Strip Footings

In the design of isolated spread footings and strip footings, STAAD.*foundation* uses parameters concerning soil bearing capacity, shear and flexural strength of footing, and compressive and flexural strength of pedestal.¹⁶ Depending on the bearing resistance of the soil and structure, the loading on a footing plan is determined. The footing thickness is determined by considering shear and bending capacity. The shear consideration includes punching shear and one-way shear.¹⁷

Mat Foundation

STAAD.*foundation* relies on finite element method (FEM) and slab-on-elastic-subgrade principles to analyze and design mat foundations.¹⁸ When applying a load to a plate or mat foundation, there is more than one direction for the load to traverse the plate. Using the finite element method, a plate can be subdivided into smaller sections in order to obtain deflection information.¹⁹

2.4.3 Case Study in STAAD.foundation

Apollo Tyres Limited is India's largest automotive tire manufacturer, and is currently in the process of building a new plant on a 126-acre plot.²⁰ The project will include 30 buildings and a build area of approximately 167,226 square meters. The project included some difficult challenges, specifically the large size of the entire structure and the need to accommodate heavy loads. The consulting and engineering firm of Aswathanarayana and Eswara was awarded the contract for the project and utilized STAAD.*pro* and STAAD.*foundation* in the design.²¹ The foundation design included 120 support positions and over 50 load combinations. Due to the complexity of the project, STAAD.*foundation* was able to streamline the design and analysis process. It allowed engineers to sort through massive amounts of data very effectively. By using STAAD.*foundation* software, the firm was able to save 50% to 60% in design time and saved 12 to 15% in materials.²² The firm also saved approximately 80 hours of work per month over the course of a six-month project period.²³

¹⁴ Bentley Systems. STAAD.*foundation - User Manual*. Research Engineers International, 2009. 2-19

¹⁵ Ibid.

¹⁶ Ibid. ¹⁷ Ibid., 23.

¹⁸ Ibid.

¹⁹ Ibid.

²⁰Apollo Tyres Limited. 2010. < http://ftp2.bentley.com/dist/collateral/docs/case_studies/CS_Apollo-Tyres.pdf>.

²¹ Ibid..

²² Ibid.

²³ Ibid..

3.0 Methodology

The objectives of this project are as follows:

- 1. Evaluate the reliability of STAAD. foundation and identify any software limitations
- 2. Consider design alternatives for various foundation types using a predefined rubric
- 3. Develop a user tips manual for use by Stantec Consulting Ltd. Engineers

3.1 Investigation of Foundation Designs

During the first week at Stantec Consulting Ltd.'s Boston office, the team met with our project supervisors. The team had separate meetings with our main supervisor, Greg Cuetara, from the Scarborough, Maine office, and with Dennis Keough, and Ryan Hill, from the Boston, Massachusetts office. During these meetings the project scope and project proposal were further defined. A copy of the proposal developed by Stantec Consulting Ltd. can be found in Appendix B.

During the initial meeting, Greg Cuetara also provided the team with a STAAD.pro structural steel frame model to be used for the foundation designs. The reference structure was originally designed as a portion of a Providence Landfill Gas to Energy Project completed by Stantec Consulting Ltd. in Johnston, Rhode Island. The reference structure can be seen in Figure 3. Having the reference structure allowed the team to plan which types of foundation were to be designed. It was also possible to define necessary parameters to aid in the design of the foundations. These parameters included: location of the structure, foundation geometry, the structure's purpose, etc. Defining the reference structure and these parameters was

reference structure and these parameters was FIGURE 3: RENDERED DRAWING OF STAAD.*PRO* REFERENCE the initial step in determining the loading and forces present in the foundation system. After using the analysis feature in STAAD.*pro*, the team had definitive design loadings and reaction forces for each of the connection points.

Having defined the type and function of the reference structure, the team made general assumptions for a range of other necessary parameters. These assumptions included information about the geotechnical condition in the area and various soil parameters. These can be seen in Table 1. For the design calculations the material properties to be determined included: strength of concrete, yield strength of steel, maximum and minimum bar size, clear cover values, and initial thickness. Soil parameters that were considered include soil types, unit weight of soil, and soil bearing capacity.

Design Parameters											
Concrete and Reinforcem	ent			Cover and Soil							
Unit weight of concrete	γc	150	pcf	Clear cover values	С	3	in				
Strength of concrete	\mathbf{f}_{c}	4	ksi	Unit weight of soil	γs	120	pcf				
Yield strength of steel	f_y	60	ksi	Soil bearing capacity	qa	3000	psf				
Minimum bar spacing		-	in	Depth of soil above footing		12	in				
Maximum bar spacing		-	in								
Minimum bar size	#	-									
Maximum bar Size	#	-									
Geometry				Design Parameters							
Minimum length	L _{max}	-	ft	Coefficient of friction	μ	0.5					
Maximum length	L _{min}	-	ft	Factor of safety against sliding	FS	1.5					
Minimum width	b _{max}	-	ft	Factor of safety against overturning	FS	1.5					
Maximum width	b _{min}	-	ft								
Minimum thickness	t _{max}	-	ft								
Maximum thickness	t _{min}	-	ft								
*Blank	parame	ters in	dicate	e variable assumptions							

 TABLE 1: DESIGN PARAMETERS

Designing Foundations through Hand Calculations

In order to create an efficient system for running multiple hand calculations, Excel Spreadsheets were developed for isolated footings, combined footings, strap footings and mat foundations. The design process used for the foundation designs can be seen in Flowchart 1. Excel Spreadsheets allows the user to change the design parameters and produce an accurate foundation design. Each of the Excel Spreadsheets were set up following the foundation design procedure shown in Flowchart 1. The different sheet within the Excel Spreadsheet follow the headings of defining assumptions, preliminary design based on service load, structural analysis and design checks and reinforcement design. In order to verify the accuracy of the Excel Spreadsheets, manual calculations were also computed for a trial design and then compared to the spreadsheet output. Any variations between the two design methods was then compared and corrected. The team implemented a specific methodology for producing these hand calculations. One team member would create an Excel Spreadsheet for a specific foundation design, and once complete another team member would work through a hand calculated example while verifying the spreadsheet outputs. These calculations were then reviewed and approved by the other members of the team.

FLOWCHART 1: FOUNDATION DESIGN

Isolated Spread Footing Design

Isolated footings were designed in accordance ASCE 7-05 code and ACI 318-05. The design procedure to develop the isolated spread footing designs can be seen in Flowchart 2. For more information on isolated spread footing design calculations, a sample of the Excel Spreadsheet can be seen in Appendix D and the hand verifications can be reviewed in Appendix F.

FLOWCHART 2: DESIGN OF ISOLATED SPREAD FOOTINGS

Combined Footing Design

Combined footings were designed in accordance ASCE 7-05 code and ACI 318-05. The design procedure to develop the combined footing designs can be seen in Flowchart 3. For more information on combined footing design calculations, a sample of the Excel Spreadsheet can be seen in Appendix G and the hand verifications can be reviewed in Appendix I.

FLOWCHART 3: DESIGN OF COMBINED FOOTINGS

Strap Footing Design

Strap footings were designed in accordance ASCE 7-05 code and ACI 318-05. The design procedure to develop the strap footing designs can be seen in Flowchart 4. For more information on strap footing design calculations, a sample of the Excel Spreadsheet can be seem in Appendix J and the hand verifications can be reviewed in Appendix L.

FLOWCHART 4: STRAPPED FOOTING DESIGN

Mat Foundation Design

Mat foundations were designed in accordance ASCE 7-05 code and ACI 318-05. The design procedure to develop the mat foundation designs can be seen in Flowchart 5. For more information on mat foundation design calculations, a sample of the Excel Spreadsheet can be seem in Appendix M and the hand verifications can be reviewed in Appendix O.

FLOWCHART 5: MAT FOUNDATION DESIGN

Designing Foundations using STAAD.foundation

To begin a design in STAAD.*foundation*, the team created a *Project* to hold all the pertinent information about the foundation design. This information included the physical aspects of the foundation and data about the reference structure.²⁴ Setting up the general parameters, structural geometry, and structural analysis of a project in STAAD.*foundation* can be either done through the input of data manually or imported from STAAD.*pro*. Manually inputting the project information involved entering support coordinates, defining structural loads, specifying design constraints, and entering design parameters.²⁵ Importing structural geometry and analysis results from STAAD.*pro* into STAAD.*foundation* created a streamlined design process. Integrating the two programs allowed the foundation design to be seamlessly combined with analysis of forces and moments in the superstructure. To take advantage of this streamlined process, the team imported the structural analysis of the reference structure from STAAD.*pro* into STAAD.*pro* into STAAD.*pro* into

The design and analysis of a project in STAAD.*foundation* varies depending on the intended type of foundation project. The specifics of this project's structural geometry, foundation type, and support reactions were based off the reference structure provided by Stantec Infrastructure Ltd. The team's efforts were focused on designing and analyzing STAAD.*foundation* for isolated spread footings, combined footings, strap footings and mat foundations.

Creating Foundation Models

In order to address the project's first two objectives, several different models for foundation type were created. Each of these models was designed to satisfy the structural and loading requirements of the reference structure. For the various models, individual parameters were changed to develop final designs. The team created three models for each foundation type: isolated footings, combined footings, strap footings and mat foundations.

3.2 Completion of Project Objectives

3.2.1 Evaluate the reliability of STAAD.foundation and identify any software limitations

The investigation into foundation designs was used to evaluate the reliability of STAAD.*foundation's* outputs and identify any potential software design limitations. The STAAD.*foundation* design outputs for isolated spread footings can be seen in Appendix E, combined footings in Appendix H, strap footings in Appendix K and mat foundations in Appendix N. After establishing the design parameters for three separate models of each foundation type, this criterion was imputed into STAAD.*foundation* and into the team's verified Excel Spreadsheets. Having the design specifications for each foundation type calculated by both sources allowed the team to compare differences in the outputs. The final design specifications

 ²⁴ Bentley Systems. STAAD.*foundation - User Manual*. Research Engineers International, 2009. 2-20.
 ²⁵ Ibid.

calculated from these sources was then recorded and compiled. When comparing the STAAD.*foundation* and hand calculated results, the team specifically focused on the overall dimensions of the foundation and the spacing and design of the reinforcement. The methodology used to create foundation designs and then compare STAAD.*foundation* outputs with hand calculations can be seen in Flowchart 6.

FLOWCHART 6: INVESTIGATION OF STAAD.FOUNDATION

Testing Optimization in STAAD.foundation

In order to validate or discredit the design optimization of STAAD.foundation, several design alternatives were tested against the program's automated design results. Design parameters, such

as footing geometry, rebar spacing and sizing, and soil conditions, for each foundation were modified and constricted within the program in order to record the effect on the evaluation process. The outputs were then analyzed to check for proficiency and feasibility against several failure modes including punching and direct shear, sliding, overturning, and flexure. Additionally, spacing of the rebar was further investigated to ensure the validity of the program output.

3.2.2 Consider alternatives for various foundation types using a design rubric

Using the foundation investigation and the designs created in STAAD.foundation the individual models were then compared. The team considered several different design constraints when comparing the models, including: direct cost of materials, equipment and labor, ethical standards, health and safety requirements, and constructability. Every design constraint was then given a rank based on how well a design met the design criteria. The team then conducted a side-byside evaluation of the designs based on these criteria. The criteria considered in the design rubric can be seen in Error! Reference source not found. Ethical, and health and safety constaints were considered a obligatory requirement for any of the foundation models. If the model did not meet ASCE Code of Ethics and Ethical Cannons, then the design was considered invalid. Likewise, if the design did not comply with code standards and could not sustain the loading requirements of the reference structure, the design was considered invalid. Economic constraints were considered based on the construction, equipment, and material costs for reinforcment and concrete footings. These costs were quoted from the 2013 National Construction Estimator. The values used include the unit material cost and labor cost per linear foot of reinforcement. The concrete reinforcing bars considered were ASTM A615 Grade 60 and the cost data included tie wire and tying costs. The estimates for concrete foundation costs include material, labor and equipment costs per cubric foot. The 2013 National Construction Estimator established these values based on normal weight structural concrete. The assumed construction costs were based on 4,000 PSI concrete with 3% waste, using a portable 55 KW 120/240 volt generator, two 25" diameter concrete vibrators, a truck-mounted hydraulic crane with 115' boom and small

Design Rubric
Area of reference structure: 201 ft ²
Final Design Outputs
Thickness [ft]
Total Area [ft ^{2]}
Volume Concrete [ft ^{3]}
Ethical
Designed according to ASCE Code of Ethics and Ethical Cannons
Health and Safety
Designed according to Code Standards
Meets loading requirements of reference structure
Economic
Cost of Reinforcement
Cost of Concrete
Total Cost per Footing
Total Cost of Reference Structure Foundation
Constructability
Percentage of structure area
Number of Formwork Setups
Is this foundation typically used in this situation?

TABLE 2: DESIGN COMPARISON RUBRIC

TABLE 3: CONCRETE PRICING

NORMAL WEIGHT STRUCTURAL CONCRETE									
	Sprea	d Footings	Mat Foundations						
	1	pern		pern					
Material	\$	3.89	S	3.89					
Labor	\$	1.11	s	0.37					
Equipment	\$	0.30	s	0.10					
REINFORCING BAR PRICING									
CIZE #	U	nit Cost	Labor Cost						
SIZE #	\$/1	inear ft	\$/linear ft						
3	\$	0.26	\$	0.14					
4	\$	0.44	\$	0.21					
5	\$	0.60	\$	0.28					
6	\$	0.84	\$	0.38					
7	\$	1.37	\$	0.49					
8	\$	1.56	\$	0.66					
9	\$	2.72	\$	1.76					
10	\$	3.45	\$	1.94					
11	\$	4.26	\$	2.11					
14	\$	5.74	\$	3.81					

tools. The specific values can be seen in Table 3. In order to evaluate constructability of the foundation models, the team considered if the foundation size was resonable in comparision to the area of the reference structure. This was done by comparing the total area of the foundation designs to the total area of the reference structure. Each foundation type was given a percentage of the reference structure that was considered reasonable. The percentage limit for isolated footings was 20%, combined and strapped footings was 40% and mat foundations was between 100% and 125%. The area of was reference structural equals 201 ft². The comparison rubric also notes the number of formwork setups required to complete the construction of the foundations. Having multiple formwork setups requires extra labor and cost to complete the project. The team also considered if the type of foundation was typically used in similar situations. If the type of foundation was not considered a viable option for similar design situtions then it was not considered functional for this reference structure.

3.2.3 Develop a User Tips Manual for Stantec Consulting Ltd. Engineers.

In creating the User Tip Manual, the program STAAD.*foundation* was thoroughly investigated through examples and tutorial videos. The program allows the user to design or import a structure into the software and output a full analysis from the foundation up into the structure if the program deems it structurally sound. The designer needs to specify which job they are creating; whether it is a mat, pile, isolated, strap, or combined foundation. Once the job is created and specified, design parameters for each specific job open up in the main navigator pane on the left side of STAAD.*foundation*'s main window. The designer then needs to input all of the design variables for analysis. If the program finds that the inputted variables are not valid, the software will not output a detailed analysis of the infrastructure's calculations.

Due to the specificity of the program functions, the goal of the User Tips Manual was to provide Stantec Consulting Ltd. with a resource for the company's engineers. The User Tips Manual is designed to be used as a guide for all levels of STAAD. foundation users. It was design to include information on basic user functions within the program and steps on how to design various foundation types with in the program. For more advanced STAAD.foundation users the Tips Manual also was developed with information about program limitations and optimization techniques. To create the User Tips Manual, Microsoft PowerPoint was used. Through studying the tutorial videos provided by Bentley, the company who developed STAAD. foundation, an analysis of all types of foundations, limitations and optimizations, importing and exporting, and helpful user tricks were compiled to create the PowerPoint. Within the PowerPoint, one can find an interactive table of contents containing the aforementioned content divided up into individual chapters. By clicking on the chapter one needs to look at, the PowerPoint will open to the slide containing the desired chapter. At the end of the chapter a tutorial video is provided that one can watch if more assistance is needed; there is also a Back to Table of Contents button. Within each chapter is screenshots from STAAD. foundation and a detailed description of how to create each foundation job.

3.3 Project Schedule

The Gantt chart on below shows how the team divided and accomplished the project work over the course of a seven week period.

4.0 Results

4.1 Objective 1 Results [Investigation of STAAD.foundation]

A comparison of the designs produced by STAAD.*foundation* to that of our hand calculated foundations was completed for each of the four types of foundations examined. The purpose of this process was the examination of the reliability of the foundation designs produced by STAAD.*foundation* and determine in what areas the program was lacking. The designs that were hand calculated generally matched the dimensions of the STAAD produced designs, but due to certain limiting factors within STAAD, sometimes produced oddly shaped designs. In addition to this, a major error exposed by the results is that of STAAD suggesting reinforcement that would not fit within the designed footing. Examples of these errors can be seen within the following table, which details the comparison of the hand calculated designs to that of STAAD.

02	Isolated Footing		Foundation Dimensions				Reinforcement Design						
œ	Isolated Footing	5					Location	Longtitudinal			Transverse		
Medal	Vaniable Demonster		Thickness	Width	Length	Length Area Size Spacing		Size	Spacing				
Model	variable Parameter		ft	ft	ft	ft ²			# in		#	#	in
C1	Footing Thickness	Hand Calc	3	7	7	4 9	Bottom	16	#7	5			
		STAAD	2	8.5	8.5	72.25	Тор	11	#6	12	10	#6	10
							Bottom	11	#6	12	10	#6	10

TABLE 4: RESULTS FROM PROGRAM DESIGNS AND HAND CALCULATED DESIGNS

Combined Footing			Foundation Dimensions				Reinforcement Design										
							Location	Longtitudinal			Transverse						
Model	Variable Parameter		Thickness	Width	Length	Area						Size	Size	Spacing		Size	Spacing
			ft	ft	ft	ft ²			#	in		#	in				
Cl	Footing Thickness	Hand Calc	2	2	15	30	Bottom	16	#3	12	5	#5	5				
CI		STAAD	2	2.33	16.208	37.76	Тор	22	#6	11	4	#6	9				
			56		200		Bottom	16	#7	13	4	#7	11				

Strap Footing Design Alternatives

Design	Footing 1 Dimension	Footing 1 Reinforcement	Footing 2 Dimension	Footing 2 Reinforcement	Strap Dimensions	Strap Reinforcement
Hand Calc	4'x4'x2'	4#7 @12" O.C. (both directions)	4'x4'x2'	4#7 @8" O.C. (both directions)	8.875'x3'x2'	3#9 @12" O.C. (flexure)
STAAD	4'x4'x2'	5#6 @7" O.C. (both directions)	2.75'x2.75'x3'	3#8 @12" O.C. (both directions)	8.875'x3'x3'	4#9 @9" O.C. (flexure)

Mat Footing		Foundation Dimensions				Reinforcement Design								
Mat Footing						Location	Longtitudinal			Transverse				
Model	V7 11 D		Thickness	Width	Length	Area		2		Size	Spacing		Size	Spacing
Model	variable Parameter		ft	ft	ft	ft ²			#	in		#	in	
MI	Footing Thickness	Hand Calc	1	15	16	240	Bottom	20	#14	7	24	#14	7	
IVII		STAAD	1	16	16	256								

4.2 Objective 2 Results [Evaluation of Design Alternatives]

The comparison of design alternatives involved the consideration of the three design alternatives for each foundation type. The goal of this design rubric is to highlight several realistic design constraints and compare how each alternative affects the design feasibility. The design rubric does not necessarily determine the best design alternative, but instead helps the designer evaluate the advantages and disadvantages of each design model.

Isolated Spread Footing

When designing the three isolated spread footing models the thickness of the footing and the overall area of the footing was varied. The final designs for the three isolated spread footing models can be seen below in Table 5.

	Malal	Variable Parameter	For	undation	Dimensio	Reinforcement Design			
	Model		Depth Width Length Area		Number	Size	Spacing		
			ft	ft	ft	ft ²		#	in
I	I1	Footing Thickness	3	7	7	49	16	#7	5.00
Ι	I2	Footing Thickness	2	7	7	49	16	#7	5.00
	I3	Footing Area	4	9	9	81	27	#7	3.00

 TABLE 5: ISOLATED SPREAD FOOTING DESIGNS

These models were then evaluated according to the design criteria rubric. This included consideration of ethical standards, health and safety, cost estimates and constructability. The rubric with the isolated spread footing models can be seen below in Table 6.

Design Pubric	Isolate	ooting	
Design Rubric	11	12	13
Final Design Outputs			
Thickness [ft]	3	2	4
Total Area [ft ²]	49	49	81
Volume concrete [ft ³]	147	98	324
Ethical			
Designed according to ASCE Code of Ethics and Ethical Cannons	Yes	Yes	Yes
Health and Safety			
Designed according to Code Standards	Yes	Yes	Yes
Meets loading requirements of reference structure	Yes	Yes	Yes
Economic			
Cost of Reinforcement	\$416.64	\$416.64	\$903.96
Cost of Concrete	\$779.81	\$519.87	\$1,718.76
Total Cost per Footing	\$1,196.45	\$936.51	\$2,622.72
Total Cost of Reference Structure Foundation	\$4,785.79	\$3,746.05	\$10,490.88
Constructability			
Percentage of structure area	24.38%	24.38%	40.31%
Number of Formwork Setups	4	4	4
Is this foundation typically used in this situation?	Yes	Yes	Yes

TABLE 6: DESIGN RUBRIC - ISOLATED SPREAD FOOTINGS

Combined Footing

When designing the three combined footing models the thickness of the footing was varied between one and two feet. The final designs for the three combined footing models can be seen below in Table 7.

Model	Variable Parameter	Foundation Dimensions				Reinforcement Design					
						Longitudinal direction			Transverse Direction		
		Thickness	Width	Length	Area		Size	Spacing		Size	Spacing
		ft	ft	ft	ft ²		#	in		#	in
C1	Footing Thickness	2	2	15	30	16	#3	12	5	#5	5.00
C 2	Footing Thickness	1	2	15	30	15	#5	12	6	#7	4.00
C3	Footing Thickness	1.5	2	15	30	16	#3	12	6	#5	4.00

These models were then evaluated according to the design criteria rubric. This included consideration of ethical standards, health and safety, cost estimates and constructability. The rubric with the combined footing models can be seen below in Table 8.
Decign Pubric	Cor	nbined Foot	ing
Design Rubric	Cl	C2	C3
Final Design Outputs			
Thickness [ft]	2	1	1.5
Total Area [ft ^{2]}	30	30	30
Volume concrete [ft ³]	60	30	45
Ethical			
Designed according to ASCE Code of Ethics and Ethical Cannons	Yes	Yes	Yes
Health and Safety			
Designed according to Code Standards	Yes	Yes	Yes
Meets loading requirements of reference structure	Yes	Yes	Yes
Economic			
Cost of Reinforcement	\$901.60	\$418.32	\$441.18
Cost of Concrete	\$318.29	\$159.14	\$238.72
Total Cost per Footing	\$1,219.89	\$577.46	\$679.90
Total Cost of Reference Structure Foundation	\$2,439.78	\$1,154.93	\$1,359.79
Constructability			
Percentage of structure area	14.93%	14.93%	14.93%
Number of Formwork Setups	2	2	2
Is this foundation typically used in this situation?	Yes	Yes	Yes

TABLE 8: DESIGN RUBRIC - COMBINED FOOTING

Strap Footing

When designing the three strapped footing models the reinforcement design, foundation depth and foundation dimensions were varied. The final designs for the three strapped footing models can be seen below in Table 9.

Model	Footing 1 Dimension	Footing 1 Reinforcement	Footing 2 Dimension	Footing 2 Reinforcement	Strap Dimensions	Strap Reinforcement	
61	4'x4'x2'	4#7 @12" O.C. (both	42.42.23	4#7 @8" O.C.	0 075'#2'#2'	2#0 @12" O.C. (flamma)	
51		directions)	4 14 12	(both directions)	0.0/J XJ XZ	5#9 @12 O.C. (Hexure)	
82	2, 2, 2, 2,	5#6 @7" O.C. (both	2 75'-2 75'-2'	3#8 @12" O.C.	0 075'-2'-2'	440 @0" O C (florence)	
82	5 X5 X5	directions)	2.13 X2.13 X3	(both directions)	8.8/J X3 X3	4#9 @9 O.C. (flexure)	
52	2'*2'*2'	3#7 @12" O.C. (both	2'*2'*2'	3#6 @12" O.C.	0 075' 2' 2'	5#7 @7" O.C. (florence)	
- 53	3 X3 X3	directions)	2 22 22	(both directions)	0.075 X5 X2	5#7 @7 0.0. (Hexure)	

These models were then evaluated according to the design criteria rubric. This included consideration of ethical standards, health and safety, cost estimates and constructability. The rubric with the strap footing models can be seen below in Table 10

Design Pubric	S	trap Footir	ıg
Design Ruoric	S1	S2	S3
Final Design Outputs			
Thickness [ft]	2	3	3
Total Area [ft ²]	59	43	45
Volume concrete [ft ³]	117	130	107
Ethical			
Designed according to ASCE Code of Ethics and Ethical Cannons	Yes	Yes	Yes
Health and Safety			
Designed according to Code Standards	Yes	Yes	Yes
Meets loading requirements of reference structure	Yes	Yes	Yes
Economic			
Cost of Reinforcement	\$238.32	\$231.72	\$137.98
Cost of Concrete	\$621.99	\$687.31	\$568.94
Total Cost per Footing	\$860.31	\$919.02	\$706.92
Total Cost of Reference Structure Foundation	\$1,720.62	\$1,838.04	\$1,413.84
Constructability			
Percentage of structure area	29.17%	21.49%	22.21%
Number of Formwork Setups	2	2	2
Is this foundation typically used in this situation?	Yes	Yes	Yes

Mat Foundation

When designing the three mat foundation models the reinforcement design, foundation depth and foundation dimensions were varied. The final designs for the three mat foundation models can be seen below in Table 11.

		Foundation Dimonsions				Reinforcement Design					
	Variable Democratic	roundation Dimensions			Longitudinal direction			Transverse Direction			
Model	variable Parameter	Thickness	Width	Length	Area		Size	Spacing		Size	Spacing
		ft	ft	ft	ft ²		#	in		#	in
M1	Reinforcement	1	16	15	240	20	#14	7	24	#14	7
M2	Footing Thickness	1.5	16	15	240	24	#8	7	25	#8	7
M3	Dimensions	1	15.5	15.5	240	19	#14	7	21	#14	7

TABLE 11: MAT FOUNDATION DESIGNS

These models were then evaluated according to the design criteria rubric. This included consideration of ethical standards, health and safety, cost estimates and constructability. The rubric with the mat foundation models can be seen below in Table 12.

Design Bubuis	Ma	Mat Foundations			
Design Rubric	M1	M2	M3		
Final Design Outputs	TEST	TEST	TEST		
Thickness [ft]	1	1.5	1		
Total Area [ft ^{2]}	240	240	240.25		
Volume concrete [ft ³]	240	360	240.25		
Ethical					
Designed according to ASCE Code of Ethics and Ethical Cannons	Yes	Yes	Yes		
Health and Safety					
Designed according to Code Standards	Yes	Yes	Yes		
Meets loading requirements of reference structure	Yes	Yes	Yes		
Economic					
Cost of Reinforcement	\$834.48	\$1,687.20	\$1,153.20		
Cost of Concrete	\$1,046.49	\$1,569.73	\$1,047.58		
Total Cost per Footing	\$1,880.97	\$3,256.93	\$2,200.78		
Total Cost of Reference Structure Foundation	\$1,880.97	\$3,256.93	\$2,200.78		
Constructability					
Percentage of structure area	119.42%	119.42%	119.55%		
Number of Formwork Setups	1	1	1		
Is this foundation typically used in this situation?	Yes	Yes	Yes		

TABLE 12: DESIGN RUBRIC - MAT FOUNDATION

4.3 Objective 3 Results [Creation of User Tips Manual]

To create the user tip manual, STAAD.*foundation* was looked at in great detail. Tutorial videos and examples provided by the software were explored to best develop a user manual that can show a designer how to create and analyze specific foundations depending on the project's need. Essentially, should Stantec hire a new employee, this user manual would provide them with enough information to learn the fundamentals of the program. The user tips manual outlines proper methodology to use and setup various foundations and is in the form of a Microsoft PowerPoint. The PowerPoint has a table of contents which acts as chapters for each foundation design, limits and optimizations within the program section, importing and exporting within the program, and a tips and tricks section.

Within the program, it was found that the output solves for the minimum constraints inputted by the designer. Although this is more cost effective, the designer needs to make sure the appropriate checks are made before the final design is completed. STAAD.*foundation* software does not use the absolute value of forces. It does not pick the largest shear force and does not consider negative answers. It was found that when importing from STAAD.*pro* into STAAD.*foundation* that the designer will be asked to rename all jobs in order to assign loading to the job. When exporting STAAD.*foundation* output into Microsoft Excel, the export is exact other than having to widen the columns to view the equations and output in the spreadsheet.

There were also errors discovered in the sizing and spacing of reinforcement. While the program tended to offer a reasonable amount of reinforcement, there were several designs of reinforcement that would lead to cracking of the foundation, or to reinforcement that would not fit within the dimensions of the foundation.

5.0 Deliverable

To create the deliverable for Stantec, a standard operations was provided by them and followed until completion. The team met and worked with Ryan Hill (EIT) to ensure that the deliverable was up to standard with the company. The deliverable contains a table of contents, a purpose, applicable codes and standards section, definitions, design criteria, and an appendix. The purpose defines the needs and specifics of the project. The deliverable will be printed and then compiled into a binder so that Stantec has a hard copy of it. In the appendix of the deliverable, the user can see the User Tip Manual, all of the hand calculations, and spread sheets of each specific foundation design used to verify the validity of STAAD.*foundation*, and examples of automated design outputs generated by the software. These outputs were used for comparison checks to hand calculations and helped provide a basis for analysis of feasibility and accuracy of the software as a design aid. Furthermore, the deliverable will include tips for optimization of the designs through parameter manipulation within the software. The deliverable can be used by any employee in the office that will be new to or using STAAD.*foundation*. The deliverable is included as a supporting document to this MQP project.

6.0 Conclusions

6.1 Objective 1 Conclusions [Investigation of STAAD.foundation]

Several steps were taken in order to verify the automated calculations run within STAAD.foundation. This process was aided by the use of an excel spreadsheet in order to iterate several designs quickly. The functionality and accuracy of the spreadsheet was verified against hand calculations. When designing these footings, checks against sliding, overturning, and direct and punching shear were considered. For each type of foundation a comparison of the outputs from the Excel spreadsheets and STAAD.*foundation* was conducted. The limitation found for each foundation type are discussed below.

Isolated Footing Design Optimization

Through hand calculations, the design process and accuracy has been verified for the design of an isolated footing in STAAD.foundation. However, through testing the program, it has been found that the most effective design alternative is not automatically designed through the software analysis unless the design parameters are sufficiently constrained. For example, the program seems to almost always design to match the minimum selected thickness as highlighted to the right in Figure 4. Also noted in the figure are the length with ratio and the set as default option. The length with ratio was kept at 1 throughout our testing in order to assure the design of square footing. Additionally, when "No" is chosen for set to default, the program is supposed to optimize the design. Although this option helped in making the design more feasible, constraining other variables such as the reinforcement sizing and spacing was necessary in order to produce the most effective design.

Another major issue within the automated analysis is the lack of consideration to negative forces when the governing loading is chosen. For example, when the design is analyzed, a 3.059 kip force will govern over a -3.134 kip force. Although this may be a negligible difference for this case, it may become an issue in which there is a more severe difference in the forces.

Dealer Trees	Louis to	- Dimensia	
Design Type	Calculat		
Minimum Length(FI)	40	in	
Minimum Width(FW)	40	in	
Minimum Inickness(Ft)	12	in	
Maximum Length(FI)	500	in	
Maximum Width(Fw)	500	in	
Maximum Thickness(Ft)	48	in	
Plan Dimension Inc.	2	in	
I hickness increment	2	in	
Offset X direction(Oxd)	0	in	
Unset Z direction(Uzd)	0	In	
Length/Width Ratio	1		
Set as Detault			
Set as Detault			
Set as Detault	,	,X ,	

FIGURE 4: FOOTING GEOMETRY INPUT PANE IN STAAD.FOUNDATION

Overall, when using the design analysis for an isolated footing, it is up to the engineer to constrain the ranges to what he/she finds appropriate. For example, upon completion of an analysis, the designer may notice a large number of a small sized rebar is used, which may pose feasibility and constructability issues. For this reason, the designer may have to further constrain the design parameters in order to achieve a more economical result.

Combined Footing Design Optimization

When considering the optimization of a combined design footing through analysis in STAAD.foundation. several similarities in feasibility and reliability that were observed for and isolated footing are also noted for the isolated These parameters that generally need design. constraining include footing thickness, rebar spacing and sizing, and the width of the footing. More specific to a combined footing would be consideration to the minimum overhang, which is highlighted to the right in Figure 5. The default for this was five feet, which was far too larger for In order to obtain a more the testing case. reasonable result, the minimum was lowered to one foot and an over more feasible footing size was generated by the design analysis.

Another notable issue when reviewing the design sheet was the designation of an alpha value when calculating the factored allowable shear. The designated footing was designed for an exterior column and the designated value was chosen for an

FIGURE 5: FOOTING GEOMETRY INPUT PANE

interior column. Although this was a negligible factor in this case, for more extreme shears in place, using a factor of 40 instead of 20 (in this case) could provide an adequate design where in reality the footing may fail.

Additionally, when verifying the designated governing loading cases for analysis there are some discrepancies between the hand calculations and STAAD.*foundation* output. Although the calculated shears are similar to the program output, the calculation sheet references a critical load case that is not defined within the project. This is shown below in Figure 6 which in this case was load case 18. Although this is a technical issue opposed to a design concern, it complicates the designer's ability to address and pinpoint flaws within the program.

Top Reinforcement

Strap Footing Design Optimization

Unlike previous foundation models, the design analysis for strap footing does not seem to design in accordance with the minimum defined design constraints. Although some dimensions of the design seem reasonable, the width of the footings within the design was too large, regardless of constraining the parameters. After analyzing and the calculation sheet produced within STAAD.foundation, there has been no conclusion as to why the designated width is far larger than necessary. For this reason, it is inadvisable to rely heavily on this design analysis for a strap design.

Mat Foundation

Validation of mat foundation designs proved to be more complicated than previous models due to the complexity of loads applied to the concrete and analysis process. In the hand calculation, the rigid method was used to create design alternatives, whereas computer analysis uses the finite method in order to create a more accurate, in depth representation of the forces across the mat. However, by comparing our results with the STAAD.foundation calculation sheet, it appears that the program is using reasonable dimensions and reinforcement when producing a design. A notable issue that may occur is spacing of reinforcement, which has been noted in other designs produced by the program. There is a tendency for the program's automated analysis to provide spacing beyond the maximum bound, providing a design alternative with reinforcement which exceeds the length of the foundation.

6.2 Objective 2 Conclusions [Evaluation of Design Alternatives]

Each foundation model designed by the team was rated according to the design criteria rubric. Since the majority of the foundation models were feasible designs, and each foundation type has its advantages and disadvantages, the design comparison was not intended to establish the top ranking design. Instead, this rubric was intended to establish a side by side comparison for realistic design constraints that might be considered by a professional engineer.

The design rubric included ranking the designs based on ethical standards, health and safety, cost estimates and constructability. Each of the models designed is capable of sustaining the loads from the reference structure. Therefore, each isolated footing, combined footing, strap footing

and mat foundation models meets the requirements for health and safety and also complies with relevant building codes. The team compared the material, labor and equipment cost to find the design with the optimal economic price. This comparison was done to find the most cost effective design for each type of foundation. The most economic designs from each foundation were then compared to determine the lowest cost design from all the design models. The most economic design for isolated footings was model I2, costing \$3746.05. The most economic design for combined footings was model C2, costing \$1154.93. The most economic design for strap footings was S3, costing \$1413.84 and the most economic design for mat foundations was model M1, costing \$1880.97. Out of these designs, model C2 for combined footing was the most cost effective design. For constructability criteria, the team considered the total area of the foundation in comparison to the reference structure, the number of formwork required to construct the foundation, and if the foundation type is suitable for project situation. All of the isolated footing models were above the limit of 20%. This means that these isolated foundation design take up a large percentage of the total reference structure, making them an unrealistic design. Each of the combined footings and strapped footings have an area of less than the limit of 50% the reference structure area. The models for the mat foundation each have an area between the required limits of 100% to 120% of the reference structure. This makes combined footings, strap footings and mat foundations variable options for the foundation design.

6.3 Objective 3 Conclusions [Creation of User Tips Manual]

The User Tips Manual and Stantec Deliverable provides the firm with viable information on STAAD.*foundation*. In the User Tips Manual, a table of contents is provided. Here, the designer can find tips on how to design specific foundations such as mat, spread, and isolated footings. The user can click the chapter needed to design the foundation and follow the detailed steps specified in the manual. By comparing hand calculations to the software's output, limits and optimizations that were found in the program are also specified in the deliverable. Stantec employees will be able to use this manual as a guide when first learning how to use STAAD.*foundation*. This guide will be most beneficial to Structural Engineers who will most likely be using this software for structural analysis.

It was found that STAAD.*foundation*'s output designs for the minimum structure required. Although this is more cost effective, it is not necessarily the best design choice as different loadings and more logical design alternatives can be used. Therefore, always follow up with calculations alongside the program's output. The program also limits reinforcement bar spacing between six and twelve inches. Therefore, STAAD.*foundation* needs to implement more realistic constraints. The program also limits itself by not using absolute values of shear stress; meaning the program does not choose the largest shear, whether negative or not, when analyzing the design. Reinforcement of the foundations poses an additional problem by designing in such a way that the steel bars are spaced far enough apart so they either will not satisfy cracking requirements, or will actually be located outside of the boundaries of the structure.

The User Tips Manual provides useful information about importing and exporting other Building Information Modeling and Microsoft Excel to and from STAAD.*foundation*. It was found that when importing into STAAD.*foundation*, the designer will need to rename the description of every load brought into the program. If the analysis is not completed, STAAD.*foundation*'s output will automatically fail. To export STAAD.*foundation*'s output successfully into Excel, the designer will need to choose the "Detail Output" option to get a better formatted shear, punching, sliding, and overturning spreadsheet. Copying and pasting the output into Excel will also work, however, the width of the columns in Excel will need to be adjusted.

The User Tips Manual and Deliverable also include helpful tips and tricks within STAAD.*foundation*. This includes creating line, quadrilateral, point, and circular pressure loading to different points on a mat foundation. Also, how to remove certain shapes from the mat foundation, should you need to, is specified within this chapter.

6.4 Project Limitations

There were several limitations encountered by the team throughout the course of this project. The most restricting being the limited time to complete the project. Since the team had just a few weeks to complete the project, it was necessary to focus the team's efforts on a few specific foundations types. STAAD.*foundation* has the capability to design more foundation designs than what could be included in the project scope. This investigation focused on isolated footings, combined footings, strap footings and mat foundations. Any future inquiries into STAAD.*foundation* should further analyze piles and pile caps, octagonal footings, and rotating/reciprocating machine foundations.

7.0 References

American Society of Civil Engineers. Guidance on Licensing and Ethical Responsibilities for

Civil Engineers. Web.

<http://www.asce.org/uploadedFiles/Education_and_Careers/Licensure/Content_Pieces/licensing-ethics-brochure.pdf>.

Apollo Tyres Limited. 2010.

<http://ftp2.bentley.com/dist/collateral/docs/case_studies/CS_Apollo-Tyres.pdf>.

- Bentley.Company. *Bentley Helps Jump-Start 3K Design Services for Green Power Plant*. June 2009. http://ftp2.bentley.com/dist/collateral/docs/case_studies/CS_ESI_Green-Power-Plant.pdf>.
- Bentley. STAAD.pro. n.d. Web. 10 December 2014. http://www.bentley.com/en-US/Products/STAAD.pro/>.
- Bentley: Sustaining Infrastructure. 2014. Web. ">http://www.bentley.com/en-US/>.
- Bentley Systems. STAAD.*foundation User Manual*. Research Engineers International, 2009. 1-2.
- Coduto, D.P. *Foundation Design: Principles and Pracitices*. Upper Saddle River, New Jersey: Prentice-Hall, 2001. Print.
- Smith, Allson. "Stantec Adds Power Engineering Team in Boston, Massachusetts." *Stantec Media Relations*. n. page. Web. 6 Mar. 2015. http://www.stantec.com/about-us/news/2014/stanatec-adds-power-engineering-team-in-boston-massachusetts.html
- Tabsh, Sami W and Abdul Raouf AJ-Shawa. "Effect of Spread Footing Flexibility on Structural Response." *Structural Design and Construction* 2005, 10 ed.: 109-114. Web.

8.0 Appendices

Appendix A: Team Information Sheet

Location: Stantec office, located in Boston, MA

WPI Students: Dominick Bossalini (CE '15), Paul Buchanan (CE '15), Margaret Freed (CE '15), Dylan Heinricher (CE '15)

Stantec Project Advisors: Greg Cuetara (Senior Structural Engineer), Dennis Keough (Senior Engineering Consultant – Power Team), Ryan Hill (Structural EIT – Power Team)

WPI Advisors and Co-Directors: Leonard Albano (CE Professor), Frederick Hart (CEE Professor)

Sponsor: Stantec

Optimization of Foundation Design Using STAAD.foundation Software

The Power Group at Stantec has previously worked with several different foundation software programs. The company is interested in the investigation of STAAD.*foundation* in order to determine range of applicability and reliability within the software package. By engaging in a parametric

study of STAAD.foundation, it will be possible to determine the reliability of the software and identify any potential limitations. This involves the use of STAAD.pro in order to construct a structural steel model and perform the necessary structural analysis. Once the reaction forces from STAAD.pro are computed, they will be applied to design various foundation types. In order to quantify the effectiveness and reliability of STAAD.foundation, foundation types are designed through hand calculations and then verified through the STAAD.foundation program.

Appendix B: Stantec Consulting Ltd. Project Overview

Stantec

WPI Capstone Project Spring 2015

Stantec is an engineering and architectural firm mainly located in the United States and Canada. There are currently over 14,000 employees broken down into many sectors such as transportation, environmental services, industrial and power, and building services.

Stantec's industrial and power sector is looking for a way to streamline the way they design their foundations. Currently Stantec structural engineers in the power and industrial sector use software called Staad.pro to design and code check a variety of different structures ranging from a simple pipe support to structures containing hundreds of tons of steel. Typically after a structural model has been completed, Stantec engineers review their results from the Staad.pro analysis and take its reactions to design foundations, footings, or pile caps either by hand or using some other piece software depending on the size of the structure being analysed. This approach has been proven to be not very efficient and Stantec is looking to simplify this process and hopes utilizing Staad Foundation for their projects will help achieve this.

Many of Stantec's engineers have yet to learn how to use Staad Foundation since its analysis and results have not been verified by Stantec personnel nor does a step-by-step instruction manual exist for staff training.

Objective: Verify Staad Foundation analysis and develop step-by-step instructions for exporting a Staad.pro model into Staad Foundation and designing the foundation. This step-by-step instruction manual will be used to train Stantec engineers on how to use and trust Staad Foundation for their own designs.

Tasks to be completed:

- 1.) Learn basic Staad, pro skills to develop several small structural models to be used to verify Staad Foundation analysis. Each structure created will be founded on different styles of foundations including a concrete slab or mat foundation, combined or spread footings, and pile caps. Use load combinations from ASCE7-10 or IBC 2012 and include both vertical and horizontal loads in your analysis.
- Export reactions from the Staad pro models created, import them into Staad Foundation and develop preliminary foundation sizes for each structure.
- 3.) Use Staad foundation to check and resize foundations as necessary for stability including bearing, overturning, and sliding. Use 5 ksf as an allowable bearing pressure capacity and proper factors of safety.
- 4.) Develop stability calculations using MathCAD to show that foundations checks in Staad Foundation are being executed properly. Make sure to be detailed and use plenty sketches in your analysis.
- Use Staad Foundation to check and size foundation reinforcing. Check foundation for bending, one-way and two-way shear.

- Develop concrete strength calculations using MathCAD to show that reinforcing in Staad Foundation is being completed correctly.
- 7.) Once Staad Foundation results have been verified, use a Staad.pro model provided by Stantec to design a slab or mat foundation using Staad Foundation. Your design will be compared to the actual designed foundation. Stantec will provide further details design criteria when this step is reached.
- 8.) Provide detailed step-by-step instructions for exporting a Staad.pro model into Staad Foundation and show how to set up parameters in Staad Foundation so it will analyse the foundation for both stability and strength. These step-by-step instructions will be used by Stantec engineers to design their foundations in the future. Make sure to use plenty of screenshots as part of this instruction package.

For questions regarding any of the tasks to be completed, please contact any of the Stantec staff listed below.

Contact Information:

Dennis Keough, PE Senior Engineering Consultant 226 Causeway Street 6th Floor Boston, MA 02114 <u>Dennis Keough@stantec.com</u> 617-654-6087 Steve Patry, PE Structural Engineering Manager 482 Payne Road Scarborough, ME 04074 <u>Steve.Patry@Stantec.com</u> 207-887-3403

Greg Cuetara, PE Senior Structural Engineer 482 Payne Road Scarborough, ME 04074 <u>Greg Cuetara@Stantec.com</u> 207-887-3432 Kevin Merrill, PE Structural Engineer 482 Payne Road Scarborough, ME 04074 Kevin, Merrill@Stantec.com 207-887-3465

		Spread Footing Design		
DATE:	2/6/2015		DESIGN #:	1
PASS:	YES		CHECK:	DH
	-			

Appendix C: Load Cases from STAAD.pro Reference Structure

Data Input

1.0 Load Combinations

Node		Combination	Fx	Fy	F2
642					
		1 DEAD LOAD	0.101	8.631	0.036
		20 WIND N-S	0.038	5.069	1.932
		21 WIND S-N	0.038	5.069	1.932
		22 WIND E-W	3.312	8.456	0.021
		23 WIND W-E	3.312	8.456	0.021
		100 DL	0.101	8.631	0.035
		110 D + W N-S	0.063	3.562	1.896
		111 D + W S-N	0.138	13.701	1.968
		112 D + W E-W	3.413	17.087	0.057
		113 D + W W-E	3.212	0.176	0.014
		120 0.6 DL + W N-S	0.023	0.109	1.911
		121 0.6 DL + W S-N	0.098	10.248	1.953
		122 0.6 DL + W E-W	3.373	13.635	0.043
		123 0.6 DL + W W-E	3.252	3.277	0
		200 1.4 DL	0.141	12.084	0.05
		210 1.2 DL + 1.6 W N-S	0.06	2.247	3.049
	CONTROLS Z	211 1.2 DL + 1.6 W S-N	0.181	18.469	3.134
CONTROLS X CONTRO	DLS Y	212 1.2 DL + 1.6 W E-W	5.42	23.887	0.077
		213 1.2 DL + 1.6 W W-E	5.179	3.171	0.009
		220 0.9 DL + 1.6 W N-S	0.03	0.343	3.059
		221 0.9 DL + 1.6 W S-N	0.151	15.879	3.123
		222 0.9 DL + 1.6 W E-W	5.39	21.298	0.066
		223 0.9 DL + 1.6 W W-E	5.209	5.761	0.002

643						
			1 DEAD LOAD	0.1	8.631	0.036
			20 WIND N-S	0.038	5.069	1.932
			21 WIND S-N	0.038	5.069	1.932
			22 WIND E-W	3.312	8.456	0.021
			23 WIND W-E	3.312	8.456	0.021
			100 DL	0.1	8.631	0.036
			110 D + W N-S	0.138	13.701	1.968
			111 D + W S-N	0.063	3.562	1.897
			112 D + W E-W	3.413	17.087	0.057
			113 D + W W-E	3.212	0.176	0.014
			120 0.6 DL + W N-S	0.098	10.248	1.953
			121 0.6 DL + W S-N	0.023	0.109	1.911
			122 0.6 DL + W E-W	3.373	13.635	0.043
			123 0.6 DL + W W-E	3.252	3.277	0
			200 1.4 DL	0.141	12.084	0.05
		CONTROLS Z	210 1.2 DL + 1.6 W N-S	0.181	18.469	3.134
			211 1.2 DL + 1.6 W S-N	0.06	2.247	3.049
CONTROLS X	CONTROLS Y		212 1.2 DL + 1.6 W E-W	5.42	23.887	0.077
			213 1.2 DL + 1.6 W W-E	5.179	3.172	0.009
			220 0.9 DL + 1.6 W N-S	0.151	15.879	3.123
			221 0.9 DL + 1.6 W S-N	0.03	0.343	3.059
			222 0.9 DL + 1.6 W E-W	5.39	21.298	0.066
			223 0.9 DL + 1.6 W W-E	5.209	5.761	0.002

571					
0/1		1 0510 1010		0.000	0.020
		1 DEAD LOAD	0.1	8.633	0.036
		20 WIND N-S	0.037	5.07	1.932
		21 WIND S-N	0.037	5.07	1.932
		22 WIND E-W	3.312	8.456	0.021
		23 WIND W-E	3.312	8.456	0.021
		100 DL	0.1	8.633	0.036
		110 D + W N-S	0.063	3.563	1.896
		111 D + W S-N	0.138	13.702	1.967
		112 D + W E-W	3.211	0.177	0.014
		113 D + W W-E	3.412	17.088	0.057
		120 0.6 DL + W N-S	0.023	0.11	1.911
		121 0.6 DL + W S-N	0.098	10.249	1.953
		122 0.6 DL + W E-W	3.251	3.276	0
		123 0.6 DL + W W-E	3.372	13.635	0.043
		200 1.4 DL	0.141	12.086	0.05
		210 1.2 DL + 1.6 W N-S	0.061	2.248	3.048
	CONTROLS Z	211 1.2 DL + 1.6 W S-N	0.18	18.471	3.134
		212 1.2 DL + 1.6 W E-W	5.178	3.17	0.009
CONTROLS X CONTROLS	E Y	213 1.2 DL + 1.6 W W-E	5.419	23.888	0.077
		220 0.9 DL + 1.6 W N-S	0.031	0.342	3.059
		221 0.9 DL + 1.6 W S-N	0.15	15.881	3.123
		222 0.9 DL + 1.6 W E-W	5.208	5.76	0.002
		223 0.9 DL + 1.6 W W-E	5.389	21.298	0.066

672						
			1 DEAD LOAD	0.101	8.633	0.036
			20 WIND N-S	0.037	5.07	1.932
			21 WIND S-N	0.037	5.07	1.932
			22 WIND E-W	3.312	8.456	0.021
			23 WIND W-E	3.312	8.456	0.021
			100 DL	0.101	8.633	0.036
			110 D + W N-S	0.138	13.702	1.968
			111 D + W S-N	0.063	3.563	1.896
			112 D + W E-W	3.211	0.177	0.014
			113 D + W W-E	3.412	17.088	0.057
			120 0.6 DL + W N-S	0.098	10.249	1.953
			121 0.6 DL + W S-N	0.023	0.11	1.911
			122 0.6 DL + W E-W	3.251	3.276	0
			123 0.6 DL + W W-E	3.372	13.635	0.043
			200 1.4 DL	0.141	12.086	0.05
		CONTROLS Z	210 1.2 DL + 1.6 W N-S	0.18	18.471	3.134
			211 1.2 DL + 1.6 W S-N	0.061	2.248	3.048
			212 1.2 DL + 1.6 W E-W	5.178	3.17	0.009
CONTROLS X	CONTROLS Y		213 1.2 DL + 1.6 W W-E	5.419	23.888	0.077
			220 0.9 DL + 1.6 W N-S	0.15	15.881	3.123
			221 0.9 DL + 1.6 W S-N	0.031	0.342	3.059
			222 0.9 DL + 1.6 W E-W	5.208	5.76	0.002
			223 0.9 DL + 1.6 W W-E	5.389	21.299	0.066

1.1 Summary - Controlling Forces

Node	fx	fy	fz
642	5.42	23.887	3.134
643	5.42	23.887	3.134
671	5.419	23.888	3.134
672	5.419	23.888	3.134

Appendix D: Excel Spreadsheet – Isolated Spread Footing Models

Model: I1

			•
		Spread Footing Design	
TE:	2/6/2015		
SS:	YES		
	Footing		
	Length	7 ft	
	Width	7 ft	
	Thickness	3 ft	
	Depth to base	3 ft	
	Column Spacing	0 ft	
	Pedestal	PEDESTAL NOT USED	
	Height	0 ft	
	Length	0 ft	
	Width	0 ft	
	Reinforcement		
	Size	#7	
	Number	16	
	Spacing	5 in	
	Reinforcement	Bottom Reinforcement Only	

		Sprea	d Footing Design			
DATE:	2/6/2015				DESIGN #:	1
PASS:	YES				CHECK:	DH
CHECKS:						
	1.0 Load & Sizing					
				NODE:	642	
	Check 1:	OKAY!				
	Check 2:	OKAY!				
	Check 3:	OKAY!				
	1.1 Shear					
	Check 1:	OKAY!				
	Check 2:	OKAY!				
	1.2 Overturning					
	Check 1:	OKAY!				
	1.3 Sliding					
	Check 1:	OKAY!				

1					
1			Spread Footing Design		
DATE:	2/6/2015			DESIGN #:	1
PASS:	YES			CHECK:	DH
Data					
	1.0 Loads				
	Axial Load	23.887 kip	Downward Loading		
	Factored	28.6644	Downward Loading LRFD		
	1.1 Material Properti	ies			
	2.2 material Properti				
	fr	4000 psi	Concrete Compressive Stru	ength	
	f.	60 ksi	Steel Yield Strength	-	
	λ	1	Normal Weight Concrete		
	Wc	150 pcf	Density of Concrete		
	T	120 pcf	Unit Weight of Soil		
	μ	0.5	Coefficient of Friction		
	1.2 Allowable Soil-Be	aring Pressure			
	q _{ue}	4000 psf	Allowable Soil Pressure		
	q _{eff}	3550	Effective Soil Pressure		
	1.3 Type of Footing				
	h	3 ft	Depth to base of Footing		
	Type Sh	allow	Shallow or Deep Footing		
Footing E	Dimensions				
	2.0 Determine Contro	ol Footing Area*			
	Area 1	7 ft ²			
	Length _{Area1}	2.6 ft	Minimum length of side Re	eq'd from Area1	
	Length Reqd	6.813	Largest Req'd Length from	Checks	
	Length Side 1	7 ft			
	Length Side 2	7 ft ²			
	Area Used	49 ft ²			
Thickness	s of Footing & Perlected	- Uplift Check			
	3.0 Initial Data	point solicities			
			Minimum thickness Hand	Calced	
	*min	3 ft	Selected thickness	er de recei M	
	n. 1	0 #	Depth below water to too	footing	
	- SEW		mater in the co		

γ _w	62.4	pcf	Unit weight of Water
FS _{up}	1.1		Factor of Safety for Uplift
u	187.2	lbs	Uplift Pressure
Pup	9.17	ksf	Uplift force
$\mathrm{FP}_{\mathrm{up}}$	11.01		Factored Uplift Force (1.2DL) LRFD
h _{soi}	0	ft	

3.1 Pedestal Size (Assumed-Can equal zero unless underground)

Transverse Width of Pedestal Longtitudinal Width of Pedestal Height of Pedestal Weight of soil above footing

Strength Reduction Factor in Tension Min. Shrinkage & Temp. Reinf.

Rebar

Check

4.0 Material

Φ _t =	0.9	
MinShrink	0.0018	xbxh

4.1 Loads

qn	0.5850	
M., =	19.47 ft - kips /	b _w

Applied Moment

4.2 Reinforcing

Layers	Bottom Reinf	orcement Only	
Cover	3	in	Clear Cover - All Sides
Width	12	in	
As ₁	8.650	in ²	Area of Steel 1
As ₂	9.1175	in ²	Area of Steel 2
Ru	0.003	ksi	
w	5.14E-05		
ρ	0.000003		
As ₃	0.010	in ²	Area of Steel 3
As _{min}	9.1175	in ²	Minimum Area of Steel
Size	#7		Size of Steel Reinforcing
n	15.196		Number of Bars used to achieve Asmin
nused	16		Number of Bars used
Smax	5.2	in	Maximum Allowable Spacing
Spacing	5	in	
	Check:	OKAY!	Spacing <smax< th=""></smax<>

4.3 Rebar Provided

d =	32.56 in
As / b _w =	1.44 in ²

4.4 Moment Design

a =	2.12 in
ΦMn =	204.14 ft - kips / bw
	CUECH, Manager Davies Associated

CHECK: Moment Design Acceptable

4.5 Minimum Reinforcement Requirements

Reinf	Yes	Reinf. Prov'd 1/3 Greater than Req'd
Astas	0.78 in ²	Temp. & Shrinkage Steel
A _{s nex}	in ²	Flexural
As / b _{w provid}	1.44 in ²	
As / b _{w reg/d}	0.78 in ²	

			Spread Footing Shear Check		
DATE:	2/6/2015	i		DESIGN #:	1
PASS:	YES			CHECK:	DH
Data Inp	out				
	1.0 Loading				
	Col _{wt}	0.15 kips	Column Weight		
	Pushear	28.8444 kips	Factored Loads (LRFD)		
	Netup	0.589 ksf	Net Upward Pressure		
	1.1 Reinforceme	nt			
	Size	0.875 in	Bar Size		
	Cover	3.00 in	Cover Depth		
	d	32.56 in	Reinforcement Depth		
	1.2 Critical Section	'n			
	Cs	10 in	Column Side		
	cs+d	42.5625 in	Critical Section		
	c_+d	3.547 ft	Critical Section		
	bo	170.25 in			
Shear	2.0 Shear & Foot	ing Thickness			
			Shano Darameter		
	P	21 44 kips	Shape Parameter		
	÷0	0.85			
	αs	40	Select Column Locatio	n	
	d1	0.390 inch	Acceptable depth from	2 Way Shear	
	d2	0.306 inch	Acceptable depth from	2 Way Shear	
	d ₁	0.586 inch	Acceptable depth from	2 Way Shear	
CHECK		CHECK: OK	\Y!		
	2.1 One Way She	ar			
	d_	0.370 ft	Acceptable Depth from	n 1 Way Shear	
	V _{s1}	1.5 kips			
CHECK	doneway	0.169 inch	1		
		CHECK: OK	\Y!		
	2.2 Bending Mon	nent			
	B _{MEdge}	3.083 ft			
	Mutend	19.6 k-ft			

	Spread Footing Overturning Check					
DATE:	2/6/201	5			DESIGN #:	1
PASS:	YES				CHECK:	DH
Overturn	ing					
	1.0 Initial Condi	tions				
	V.	3.134	kip	Governing Load Case		
	μ	0.5				
	Load	45.937	kip			
	FS _{Overturning}	1.5				
	1.1 Overturning	Calculations				
	Mx	9.402	k-ft	Governing Moment		
	M,	160.780	k-ft	Resisting Moment		
	Mr/Mx	17.101				
		Check:	OKAY!			

			Spread F	Footing Sliding Check		
DATE:	2/6/201	5			DESIGN #:	1
PASS:	YES				CHECK:	DH
DATA INPO	UT					
	1.0 Forces					
	DFsteer	5.42	kips	Disturbing Force (x-shea	r)	
	FS _{sliding}	1.5		Factor of Safety - Sliding		
	Axial	23.887	kips	Axial Downward Force		
	μ	0.5		Coefficient of Friction		
	Wc	0.15	kips	Self Weight		
	1.1 Sliding Calcul	ations				
	Fs _{force}	8.13	kips			
	b ² sliding	46.416		Area of footing - Minimu	Im	
	bmin _{sliding}	6.813				
CHECK	baliding	7		Selected length of footin	e	
		CHECK:	OKAY!			

Reinforcement Reference

ASTM STANDARD REINFORCING BARS						
SIZE #	Nominal Dia. (in)	Nominal Area (in ²)	Nominal Weight (lb/ft)			
#3	0.375	0.11	0.376			
#4	0.5	0.2	0.668			
#5	0.625	0.31	1.043			
#6	0.75	0.44	1.502			
#7	0.875	0.6	2.044			
#8	1	0.79	2.67			
#9	1.278	1	3.4			
# 10	1.27	1.27	4.303			
#11	1.41	1.56	5.313			
#14	1.693	2.25	7.65			
#18	2.257	4	13.6			
N/A						

Top & Bottom Reinforcement	T & B	2		
Bottom Reinforcement Only	Bott.	1		

Model: I2

		Isolated Footing			
DATE:	2/28/2015		DESIG	iN #:	2
PASS:	YES		CHECK	(: E	DCB
	Footing				
	Length	7 ft			
	Width	7 ft			
	Thickness	2 ft			
	Depth to base	2 ft			
	Column Spacing	0 ft			
	Pedestal	PEDESTAL NOT USED			
1	Height	0 ft			
1	Length	0 ft			
1	Width	0 ft			
	Reinforcement		1		
	Size	#7			
	Number	16			
	Spacing	5 in			
	Reinforcement	Bottom Reinforcement Only			
	- / /	Isolated Footing	_		
DATE:	2/28/2015		D	ESIGN #:	2
PASS:	YES		C	HECK:	DCB
CHECKS:					
	1.0 Load & Sizing		—		1
			NODE:	642	
	Check 1:	OKAY!			
	Check 2:	OKAY!			
	Check 3:	OKAY!			
	1.1 Shear				
	Check 1:	OKAY!			
	Check 2:	OKAY!			
	1.2 Overturning				

Check 1: OKAY! 1.3 Sliding

Check 1: OKAY!

<u> </u>					
			kolated Conting		
DATE	2/28/2015		urace routing	DESIGN #	2
PASS:	YES			CHECK:	DCB
Data				*	
	1.0 Loads				
	Axial Load	23.887 kip	Downward Loading		
	Factored	28.6644	Downward Loading LR FD		
	1.1 Material Properti	es			
	f'c	4000 psi	Concrete Compressive Str	ength	
	fy	60 ksi	Steel Yield Strength	-	
	λ	1	Normal Weight Concrete		
	Wc	150 pcf	Density of Concrete		
	Y	120 pcf	Unit Weight of Soil		
	μ	0.5	Coefficient of Friction		
	1.2 Allowable Soil-Be	aning Pressure			
		4000 p.f	Allowable Soil Descure		
		3700	Effective Soil Pressure		
	1.3 Type of Footing				
	h	2 ft	Depth to base of Footing		
	Type Sha	ailow	Shallow or Deep Footing		
Footing	Dimen sion s				
	2.0 Determine Contro	ol Footing Area*			
	Area 1	6 ft²			
	Length _{Arca1}	2.5 ft	Minimum length of side R	eq'd from Area1	
	Length Reqd	6.813	Largest Req'd Length from	1 Checks	
	Length Side 1	7 ft			
	Length Side 2	7 ft ²			
	Area Used	49 ft*			
Thicknes	s of Footing & Pedestal	- Uplift Check			
	3.0 Initial Data				
	t _{min}	ft	Minimum thickness Hand	Calced	
	t	2 ft	Selected thickness		
	District	0 ft	Depth below water to top	footing	
	Υw	62.4 pcf	Unit weight of Water		

FS _{up}	1.1	Factor of Safety for Uplift
u	124.8 lbs	Uplift Pressure
Pup	6.12 ksf	Uplift force
FPup	7.34	Factored Uplift Force (1.2DL) LRFD
h _{aol}	0 ft	

3.1 Pedestal Size (Assumed-Can equal zero unless underground)

Вър		ft
Blp		ft
h _{ped}	0	ft
Wasi	0	kips

Rebar

4.0 Material

φ,=	0.9	
MinShrink	0.0018	xbxh

4.1 Loads

qn	0.5850
Mu =	19.47 ft - kips / b _w

|--|

Transverse Width of Pedestal Longtitudinal Width of Pedestal

Weight of soil above footing

Strength Reduction Factor in Tension Min. Shrinkage & Temp. Reinf.

Height of Pedestal

4.2 Reinforcing

Layers	Bottom Reinfo	or cement Only	
Cover	3	in	Clear Cover - All Sides
Width	12	in	
As ₁	5.462	in ²	Area of Steel 1
As 2	5.7575	in ²	Area of Steel 2
Ru	0.007	ksi	
w	1.29E-04		
ρ	0.0000.09		
As ,	0.017	in ²	Area of Steel 3
As _{min}	5.7575	in ²	Minimum Area of Steel
Size	# 7		Size of Steel Reinforcing
n	9.596		Number of Bars used to achieve Asmin
n _{uand}	16		Number of Bars used
Smax	5.2	in	Maximum Allowable Spacing
Spacing	5	in	
	Check:	OKAY!	Spacing <smax< td=""></smax<>

Check

4.3 Rebar Provided

d =	20.56 in
As / b _w =	1.44 in²

4.4 Moment Design

a =	2.12 in	
ΦMn =	126.38 ft - kips / b _w	
	CHECK: Moment Design Acceptable	

4.5 Minimum Reinforcement Requirements

Reinf	Yes	Reinf. Prov'd 1/3 Greater than Req'd
A _{s tão} A _{s flex} As / b _{w provid} As / b _{w rendri}	0.52 in ² in ² 1.44 in ² 0.52 in ²	Temp. & Shrinkage Steel Flexural

DATE:	2/28/2015				DESIGN#:	2
PASS:	YES				CHECK:	DCB
Data Input						
	1.0 Loading					
	Col _{wt}	0.15	kips	Column Weight		
	Pushear	28.8444	KIPS Inst	Pactored Loads (LRFD)		
	Werth	0.589	n.21	well o pward Pressure		
	1.1 Reinforcement					
	Size	0.875	in	Bar Size		
	Cover	3.00	in	Cover Depth		
	d	20.56	in	Reinforcement Depth		
	1.2 Critical Section					
	—		l .			
	Cs	10	in	Column Side		
	c,+d	30.5625	in A	Critical Section		
	c,+d	2.547	π	Critical Section		
Shenr	D _D	122.25	uri			
Snedi	2.0 Shear & Conting	Thickness				
	Liv Shear & Pooling					
	β	1		Shape Parameter		
	Vu L	25.03	kips			
	φ	0.85	-			
	as	40		Select Column Location		
	d,	0.635	inch	Acceptable depth from 2	2 Way Shear	
	dz	0.566	inch	Acceptable depth from 2	2 Way Shear	
	d _s	0.952	inch	Acceptable depth from 2	2 Way Shear	
CHECK	a	HECK :	OKAY!			
:	2.1 One Way Shear					
			4		1 Mars Channel	
	04 V	1.370	10 kine	Acceptable Depth from 5	r vvay Snear	
CHECK	¥ш. d_	5.6	in ch			
CHECK	"OneWay	U.025	OKAY!			
	a					
:	2.2 Bending Momen	t				
	BMDire	3.083	ft			

			Isol	ated Footing		
DATE:	2/28/201	15			DESIGN #:	2
PASS:	YES				CHECK:	DCB
Overturni	ing					
	1.0 Initial Condi	tions				
	V.	3.134	kip	Governing Load Case		
	μ	0.5				
	Lo ad _{Tistel}	38.587	kip			
	PSoverturning	1.5				
	1.1 Overtuming	Calculations				
	Mĸ	6.268	k-ft	Governing Moment		
	M,	135.055	k-ft	Resisting Moment		
	Mr/Mx	21.547				
		Check:	OKAY!			

		t	solated Footing	
DATE:	2/28/201	15	DESIGN #:	2
PASS:	YES		CHECK:	DCB
DATA INP	ர			
	1.0 Forces			
	DF .	5.42 kips	Disturbing Force (x-shear)	
	ES. Long	1.5	Factor of Safety - Siding	
	Axialaidim	23.887 kips	Axial Downward Force	
	μ	0.5	Coefficient of Friction	
	Wc	0.15 kips	Self Weight	
	1.1 Sliding Calcu	lations		
	FS _{force}	8.13 kips		
	b ² siding	45.416	Area of footing - Minimum	
	bmin _{aliding}	6.813		
CHECK	baiding	7	Selected length of footing	
		CHECK: OKAY!		

Model: I3

		Isolated Footing		
ATE:	2/28/2015		DESIGN #:	
ASS:	YES		CHECK:	D
	Footing			
	Length	9 ft		
	Width	9 ft		
	Thickness	4 ft		
	Depth to base	1 ft		
	Column Spacing	0 ft		
	Pedestal	PEDESTAL NOT USED		
	_			
	Height	0 ft		
	Length	0 ft		
	Width	0 ft		
	Reinforcement			
	Size	#7		
	Number	27		
	Spacing	3 in		
	Delefersement	Pottom Deinfersoment Only		

			Isolated Footing			
DATE:	2/28/2015				DESIGN #:	2
PASS:	YES				CHECK:	DCB
CHECKS	:					
	1.0 Load & Sizing					
				NODE:	642	
	Check 1:	OKAY!				
	Check 2:	OKAY!				
	Check 3:	OKAY!				
	1.1 Shear					
	Check 1:	OKAY!				
	Check 2:	OKAY!				
	1.2 Overturning					
	Check 1:	OKAY!				
	1.3 Sliding					
	Check 1:	OKAY!				

			kalated Conting		
DATE	2/20/204E		Bolated Footing	DESIGN #	,
DASE.	2/20/2013 VFS			CHECK	LCB
Data	163			CITEOR.	000
Uala	1.0 Loads				
	Axial Load	23.887 kip	Downward Loading		
	Factored	28.6644	Downward Loading LR FD		
	1.1 Material Properti	es			
	f'c	4000 psi	Concrete Compressive Stre	ength	
	fy	60 ksi	Steel Yield Strength		
	A.	1 150 oct	Normai Weight Concrete		
	vvc -v	120 pcf	Unit Weight of Soil		
	1 U	0.5	Coefficient of Friction		
	r				
	1.2 Allowable Soil-Be	aring Pressure			
	que	4000 psf	Allowable Soil Pressure		
	9 err	3850	Effective Soil Pressure		
	1.3 Type of Footing				
	b	1 ft	Depth to base of Footing		
	Type Sha	allow	Shallow or Deep Footing		
Footing	Dimen sion s				
	2.0 Determine Contro	l Footing Area*			
	Area 1	6 ft²			
	Length _{Arce1}	2.5 ft	Minimum length of side Re	eq'd from Area1	
	Length Reqd	6.813	Largest Req'd Length from	Checks	
	Length Side 1	9 ft			
	Length Side 2	9 ft -			
	Area Used	81 ft			
Thicknes	ss of Footing & Pedestal	- Uplift Check			
	3.0 Initial Data	•			
	t _{min}	ft	Minimum thickness Hand C	Calced	
	t	4 ft	Selected thickness		
	Digw	0 ft	Depth below water to top	footing	
	Υw	62.4 pcf	Unit weight of Water		

FS _{up}	1.1	Factor of Safety for Uplift
u	249.6 lbs	Uplift Pressure
Pup	20.22 ksf	Uplift force
FPup	24.26	Factored Uplift Force (1.2DL) LRFD
haol	3 ft	

3.1 Pedestal Size (Assumed-Can equal zero unless underground)

Transverse Width of Pedestal Longtitudinal Width of Pedestal Height of Pedestal Weight of soil above footing

Strength Reduction Factor in Tension Min. Shrinkage & Temp. Reinf.

Rebar

4.0 Material

φ,=	0.9	
MinShrink	0.0018	xbxh

4.1 Loads

qn	0.3539
M ₄ =	26.55 ft - kips / bw

Applied Moment

4.2 Reinforcing

Lay	ers Bottom Rein	for cement Only	
Cov	ver 3	in	Clear Cover - All Sides
Wie	ith 12	in	
	As ₁ 15.219	in ²	Area of Steel 1
	As ₂ 16.0425	in ²	Area of Steel 2
	Ru 0.001	. ksi	
	w 2.91E-05		
	ρ 0.000002	1	
	As ₃ 0.003	in ²	Area of Steel 3
As	min 16.0425	in ²	Minimum Area of Steel
S	ize # 7		Size of Steel Reinforcing
	n 26.738		Number of Bars used to achieve Asmin
n,	aci 27	,	Number of Bars used
s	max 3.923076923	in	Maximum Allowable Spacing
k Spaci	ing 3	in	
	Check:	OKAY!	Spacing <smax< th=""></smax<>

Check

4.3 Rebar Provided

d =	44.56 in
As / b _w =	2.40 in ²

44 Moment Design

a =	3.53 in	
ΦMn =	482.22 ft - kips / b _w	
	CHECK: Moment Design Acceptable	

4.5 Minimum Reinforcement Requirements

Reinf	Yes	Reinf. Prov'd 1/3 Greater than Req'd
Astās Astex	1.04 in ² in ²	Temp. & Shrinkage Steel Flexural
As / b _{w provid} As / b _{w regid}	2.40 in ² 1.04 in ²	

			Isolate	ed Footing		
DATE:	2/28/2015				DESIGN#:	2
PASS:	YES				CHECK:	DCE
)ata Inp	put					
	1.0 Loading					
	Col _{we}	0.15 k	tips	Column Weight		
	Pushear	28.8444 k	tips	Factored Loads (LR FD)		
	Netup	0.356 k	र्ड	Net Upward Pressure		
	1.1 Reinforce ment					
	Size	0.875 i	n	Bar Size		
	Cover	3.00 ir	n	Cover Depth		
	d	44.56 i	n	Reinforcement Depth		
	1.2 Critical Section					
	Cs	10 ji	n	Column Side		
	c,+d	54.5625 i	n	Critical Section		
	c,+d	4.547 f	t	Critical Section		
	bo	218.25 i	n			
Shear	2.0 Shear & Footing	Thickness				
	β	1		Shape Parameter		
	Vu	21.48 k	ips			
	φ	0.85				
	as	40		Select Column Location		
	dı	0.305 i	n ch	Acceptable depth from 2	WayShear	
	dz	0.224 i	n ch	Acceptable depth from 2	WayShear	
	d ₃	0.458 i	nch	Acceptable depth from 2	WayShear	
HECK	c	HECK:	DKAY!			
	2.1 One Way Shear					
	d4	0.370 f	t	Acceptable Depth from 1	. Way Shear	
	Va	1.2 k	tips			
HECK	d _{OneWey}	0.102 i	nch			
	c	HECK:	DKAY!			
	2.2 Bending Momen	ıt				
	B _{Medge}	4.083 f	t			
			Isol	ated Footing		
----------	------------------------	--------------	-------	---------------------	-----------	-----
DATE:	2/28/201	15			DESIGN #:	2
PASS:	YES				CHECK:	DCB
Overturn	ning					
	1.0 Initial Condi	tions				
	v.	3.134	kip	Governing Load Case		
	μ	0.5				
	Lo ad _{Tetal}	72.487	kip			
	PSoverturning	1.5				
	1.1 Overturning	Calculations				
	M	12.536	k-ft	Governing Moment		
	M,	326.192	k-ft	Resisting Moment		
	Mr/Mx	26.020				
		Check:	OKAY!			

·							
				Isolated Footin	P		
DATE:	2/28/201	5			5	DESIGN #:	2
PASS:	YES					CHECK:	DCB
DATA INPUT	r						
1	.0 Forces						
	DF shoer	5.42	kips		Disturbing Force (x-shear)		
	FS _{aliding}	1.5			Factor of Safety - Sliding		
	Axialation	23.887	kips		Axial Downward Force		
	μ	0.5			Coefficient of Friction		
	Wc	0.15	kips		Self Weight		
1	.1 Sliding Calcu	lations					
	FS _{force}	8.13	kips				
	b ² alding	46.416			Area of footing - Minimum		
	bmin _{siding}	6.813					
CHECK	b _{aliding}	9			Selected length of footing		
		CHECK:	OKAY!				

Appendix E: STAAD.foundation –Isolated Spread Footing

Isolated Footing Design(ACI 318-05)

Design For Isolated Footing 642

Design For Isolated Footing 643

Design For Isolated Footing 671

Design For Isolated Footing 672

Footing No.	Group ID	Foundation Geometry			
-	-	Length Width Thickness			
642	1	8.500ft	8.500ft	2.000ft	

Footing No.	Footing Reinforcement						einforcement
-	Bottom Reinforcement(Mz) Bottom Reinforcement(M _x)	Top Reinforcement(Mz) Top Reinforcement(Mx)			Main Steel	Trans Steel
642	11 - #6	11 - #6	10 - #6 10 - #6			N/A	N/A
	Footing No.	Group ID		Foundation Geor	netry		
-		-	Length Width			Thickne	\$\$
643		2	8.500ft	8.500ft		2.000f	t

Footing No.	Footing Reinforcement						einforcement
-	Bottom Reinforcement(Mz)	Bottom Reinforcement(Mx)	Top Reinforcement(Mz) Top Reinforcement(Mx)			Main Steel	Trans Steel
643	11 - #6	11 - #6	10 - #6 10 - #6			N/A	N/A
	Footing No.	Group ID		Foundation Geor	metry		
-		-	Length Width		Width Thickness		ss
671		3	8.500ft	8.500ft		2.000f	t

Footing No.	Footing Reinforcement Pede						einforcement
-	Bottom Reinforcement(M ₂)	Bottom Reinforcement(M _x)	Top Reinforcement(M _z) Top Reinforcement(M _x)			Main Steel	Trans Steel
671	11 - #6	11 - #6	10 - #6 10 - #6			N/A	N/A
	Footing No.	Group ID		Foundation Geor	netry		
	-	-	Length Width			Thickne	\$\$
672		4	8.500ft	8.500ft		2.000f	t

Footing No.		Pedestal Re	ainforcement			
-	Bottom Reinforcement(Mz) Bottom Reinforcement(Mx) Top Reinforcement(Mz) Top Reinforcement(Mz)					Trans Steel
672	11 - #6	11 - #6	10 - #6	10 - #6	N/A	N/A

Isolated Footing 642

Input Values

Footing Geomtery

Design Type : Calculate Dimension Footing Thickness (Ft) : 24.000in Footing Length - X (Fl) : 40.000in Footing Width - Z (Fw) : 40.000in Eccentricity along X (Oxd) : 0.000in Eccentricity along Z (Ozd) : 0.000in

Column Dimensions

Column Shape : Rectangular Column Length - X (D_{col}) : 0.532ft Column Width - Z (B_{col}) : 0.507ft

Pedestal

Include Pedestal? No Pedestal Shape : N/A Pedestal Height (Ph) : N/A Pedestal Length - X (Pl) : N/A Pedestal Width - Z (Pw) : N/A

Design Parameters

Concrete and Rebar Properties

Unit Weight of Concrete :	150.000lb/ft3
Strength of Concrete :	4.000ksi
Yield Strength of Steel :	60.000ksi
Minimum Bar Size :	#6
Maximum Bar Size :	#10
Top Footing Minimum Bar Size :	#6
Top Footing Maximum Bar Size :	#10
Pedestal Minimum Bar Size :	#6
Pedestal Maximum Bar Size :	#10
Minimum Bar Spacing :	3.000in
Maximum Bar Spacing :	12.000in
Pedestal Clear Cover (P, CL) :	3.000in
Bottom Footing Clear Cover (F, CL) :	3.000in

Soil Properties

Soil Type : Cohesionless Soil Unit Weight : 120.000lb/ft3 Soil Bearing Capacity : 4.000kip/ft2 Soil Bearing Capacity Type: Net Bearing Capacity Soil Surcharge : 0.000kip/in2 Depth of Soil above Footing : 0.000in Type of Depth : Fixed Top Undrained Shear Strength : 0.000kip/in2 Bearing Capacity Input Method: Fixed Bearing Capacity

Sliding and Overturning

Coefficient of Friction : 0.500 Factor of Safety Against Sliding : 1.500 Factor of Safety Against Overturning : 1.500

Global Settings

Top Reinforcement Option : Always calculate based on self weight Concrete Design Option : Gross Pressure Top Reinforcement Factor : 1.000

Design Calculations

Footing Size

Initial Length $(L_0) = 3.333$ ft Initial Width $(W_0) = 3.333$ ft

	Load Combination/s- Service Stress Level								
Load Combination Number	Load Combination Title	Load Combination Factor	Soil Bearing Factor	Self Weight Factor					
110	D + W N-S	1.00	1.00	1.00					
111	D + W S-N	1.00	1.00	1.00					
112	D + W E-W	1.00	1.00	1.00					
113	D + W W-E	1.00	1.00	1.00					
120	0.6 DL + W N-S	1.00	1.00	1.00					
121	0.6 DL + W S-N	1.00	1.00	1.00					
122	0.6 DL + W E-W	1.00	1.00	1.00					
123	0.6 DL + W W-E	1.00	1.00	1.00					
200	1.4 DL	1.00	1.00	1.00					
210	1.2 DL + 1.6 W N-S	1.00	1.00	1.00					
211	1.2 DL + 1.6 W S-N	1.00	1.00	1.00					
212	1.2 DL + 1.6 W E-W	1.00	1.00	1.00					
213	1.2 DL + 1.6 W W-E	1.00	1.00	1.00					
220	0.9 DL + 1.6 W N-S	1.00	1.00	1.00					
221	0.9 DL + 1.6 W S-N	1.00	1.00	1.00					
222	0.9 DL + 1.6 W E-W	1.00	1.00	1.00					
223	0.9 DL + 1.6 W W-E	1.00	1.00	1.00					

Load Combination/s- Strength Level							
Load Combination Number	Load Combination Title	Load Combination Factor	Soil Bearing Factor	Self Weight Factor			
110	D + W N-S	1.00	1.00	1.00			
111	D + W S-N	1.00	1.00	1.00			
112	D + W E-W	1.00	1.00	1.00			
113	D + W W-E	1.00	1.00	1.00			
120	0.6 DL + W N-S	1.00	1.00	1.00			
121	0.6 DL + W S-N	1.00	1.00	1.00			
122	0.6 DL + W E-W	1.00	1.00	1.00			
123	0.6 DL + W W-E	1.00	1.00	1.00			
200	1.4 DL	1.00	1.00	1.00			
210	1.2 DL + 1.6 W N-S	1.00	1.00	1.00			
211	1.2 DL + 1.6 W S-N	1.00	1.00	1.00			
212	1.2 DL + 1.6 W E-W	1.00	1.00	1.00			
213	1.2 DL + 1.6 W W-E	1.00	1.00	1.00			
220	0.9 DL + 1.6 W N-S	1.00	1.00	1.00			
221	0.9 DL + 1.6 W S-N	1.00	1.00	1.00			
222	0.9 DL + 1.6 W E-W	1.00	1.00	1.00			
223	0.9 DL + 1.6 W W-E	1.00	1.00	1.00			

Applied Loads - Service Stress Level								
LC	Axial (kip)	Shear X (kip)	Shear Z (kip)	Moment X (kip-ft)	Moment Z (kip-ft)			
110	3.562	-0.063	1.896	0.000	0.000			
111	13.701	-0.138	-1.968	0.000	0.000			
112	17.087	-3.413	-0.057	0.000	0.000			
113	0.176	3.212	-0.014	0.000	0.000			
120	0.109	-0.023	1.911	0.000	0.000			
121	10.248	-0.098	-1.953	0.000	0.000			
122	13.635	-3.373	-0.043	0.000	0.000			
123	-3.277	3.252	-0.000	0.000	0.000			
200	12.084	-0.141	-0.050	0.000	0.000			
210	2.247	-0.060	3.049	0.000	0.000			
211	18.469	-0.181	-3.134	0.000	0.000			
212	23.887	-5.420	-0.077	0.000	0.000			
213	-3.171	5.179	-0.009	0.000	0.000			
220	-0.343	-0.030	3.059	0.000	0.000			
221	15.879	-0.151	-3.123	0.000	0.000			
222	21.298	-5.390	-0.066	0.000	0.000			
223	-5.761	5.209	0.002	0.000	0.000			

	Applied Loads - Strength Level							
LC	Axial (kip)	Shear X (kip)	Shear Z (kip)	Moment X (kip-ft)	Moment Z (kip-ft)			
110	3.562	-0.063	1.896	0.000	0.000			
111	13.701	-0.138	-1.968	0.000	0.000			
112	17.087	-3.413	-0.057	0.000	0.000			
113	0.176	3.212	-0.014	0.000	0.000			
120	0.109	-0.023	1.911	0.000	0.000			
121	10.248	-0.098	-1.953	0.000	0.000			
122	13.635	-3.373	-0.043	0.000	0.000			
123	-3.277	3.252	-0.000	0.000	0.000			
200	12.084	-0.141	-0.050	0.000	0.000			
210	2.247	-0.060	3.049	0.000	0.000			
211	18.469	-0.181	-3.134	0.000	0.000			
212	23.887	-5.420	-0.077	0.000	0.000			
213	-3.171	5.179	-0.009	0.000	0.000			
220	-0.343	-0.030	3.059	0.000	0.000			
221	15.879	-0.151	-3.123	0.000	0.000			
222	21.298	-5.390	-0.066	0.000	0.000			
223	-5.761	5.209	0.002	0.000	0.000			

Reduction of force due to buoyancy = 0.000kip

Effect due to adhesion = 0.000kip

Area from initial length and width, A_0 =L $_0$ X W_0 = 11.111ft^2 Min. area required from bearing pressure, A_{min} =P / q_{max} = 6.420ft^2

Note: A_{min} is an initial estimation. P = Critical Factored Axial Load(without self weight/buoyancy/soil). q_{max} = Respective Factored Bearing Capacity.

Final Footing Size

Length $(L_2) =$	8.500 ft	Governing Load Case :	# 223
Width (W2) =	8.500 ft	Governing Load Case :	# 223
Depth (D ₂) =	2.000 ft	Governing Load Case :	# 212
Depth is gove	erned by Ultimate Load Case		

(Service check is performed with footing thickness requirements from concrete check)

Area (A ₂) =	72.250	ft ²
Final Soil Height =	0.000	ft
Footing Self Weight =	21.675	kip
Gross Soil Bearing Capacity	4.24kip/ft2	
=		
Soil Weight On Top Of Footing =	0.000	kip

Pressures at Four Corners

Please note that pressures values displayed in tables below are calculated after dividing by soil bearing factor

Load Case	Pressure at corner 1 (q ₁) (kip/ft2)	Pressure at corner 2 (q ₂) (kip/ft2)	Pressure at corner 3 (q ₃) (kip/ft2)	Pressure at corner 4 (q ₄) (kip/ft2)	Area of footing in uplift (A _u) (ft ²)
212	0.7380	0.5262	0.5232	0.7350	0.000
211	0.6204	0.6133	0.4909	0.4979	0.000
212	0.7380	0.5262	0.5232	0.7350	0.000
212	0.7380	0.5262	0.5232	0.7350	0.000

If A_u is zero, there is no uplift and no pressure adjustment is necessary. Otherwise, to account for uplift, areas of negative pressure will be set to zero and the pressure will be redistributed to remaining corners.

Summary of Adjusted Pressures at 4 corners Four Corners

Load Case	Pressure at corner 1 (q1) (kip/ft2)	Pressure at corner 2 (q ₂) (kip/ft2)	Pressure at corner 3 (q ₃) (kip/ft2)	Pressure at corner 4 (q4) (kip/ft2)
212	0.7380	0.5262	0.5232	0.7350
211	0.6204	0.6133	0.4909	0.4979

212	0.7380	0.5262	0.5232	0.7350
212	0.7380	0.5262	0.5232	0.7350

Check for stability against overturning and sliding

-	Factor of safety against sliding		Factor of sat	fety against Irning	
Load Case No.	Along X- Direction	Along Z- Direction	Resultant	About X- Direction	About Z- Direction
110	200.897	6.654	6.650	28.278	853.812
111	127.962	8.990	8.968	38.206	543.837
112	5.679	341.470	5.678	1451.246	24.135
113	3.402	761.114	3.402	3234.734	14.457
120	481.893	5.701	5.700	24.228	2048.044
121	162.840	8.171	8.161	34.728	692.069
122	5.235	415.061	5.234	1764.010	22.248
123	2.829	69713.998	2.829	296284.492	12.022
200	119.945	339.092	113.079	1441.139	509.765
210	198.390	3.923	3.923	16.674	843.157
211	110.920	6.405	6.394	27.220	471.412
212	4.203	297.440	4.202	1264.119	17.862
213	1.786	1057.997	1.786	4496.486	7.592
220	353.961	3.486	3.486	14.818	1504.333
221	124.516	6.012	6.005	25.551	529.192
222	3.986	325.928	3.986	1385.194	16.941
223	1.527	4139.455	1.527	17592.683	6.492

Critical Load Case And The Governing Factor Of Safety For Overturning And Sliding - X Direction

Critical Load Case for Sliding along X-Direction : 223 Governing Disturbing Force : 5.209kip Governing Restoring Force : 7.957kip Minimum Sliding Ratio for the Critical Load Case : 1.527 Critical Load Case for Overturning about X-Direction : 220 Governing Overturning Moment : 6.119kip-ft Governing Resisting Moment : 90.662kip-ft Minimum Overturning Ratio for the Critical Load Case : 14.818

Critical Load Case And The Governing Factor Of Safety For Overturning And Sliding - Z Direction

Critical Load Case for Sliding along Z-Direction : 220 Governing Disturbing Force : 3.059kip Governing Restoring Force : 10.666kip Minimum Sliding Ratio for the Critical Load Case : 3.486 Critical Load Case for Overturning about Z-Direction : 223 Governing Overturning Moment : -10.418kip-ft Governing Resisting Moment : 67.635kip-ft Minimum Overturning Ratio for the Critical Load Case : 6.492 <u>Oritical Load Case And The Governing Factor Of Safety For Sliding Along Resultant Direction</u> Critical Load Case for Sliding along Resultant 223 Direction : Governing Disturbing Force : 5.209kip Governing Restoring Force : 7.957kip Minimum Sliding Ratio for the Critical Load Case : 1.527

Compression Development Length Check

Development length skipped as column reinforcement is not specified in input (Column Dimnesion Task Pane)

Shear Calculation

Punching Shear Check

Effective depth, der, increased until 0.75XVc 👌 Punching Shear Force

From ACI Cl.11.12.2.1, b _o for column=	$2 \times \left(\mathbf{B}_{col} + \mathbf{D}_{col} + 2 \times \mathbf{d}_{eff} \right) =$	8.931ft
Equation 11-33, V_{c1} =	$\left(2 + \frac{4}{\beta_{c}}\right) \times b_{0} \times d_{eff} \times \sqrt{1000 \times F_{c}}^{+} =$	810.025kip
Equation 11-34, V_{c2} =	$\left(\frac{\mathbf{a}_{s}\times \mathbf{d}}{\mathbf{b}_{o}}+2\right)\times\lambda\times\sqrt{\mathbf{f}_{c}}\times\mathbf{b}_{o}\times\mathbf{d}=$	1348.397kip
Equation 11-35, V_{c3} =	$4 \times b_{\odot} \times d_{eff} \times \sqrt{1000 \times F_{c}^{-1}} =$	557.493kip
Punching shear strength, $V_{\rm c}$ =	0.75 X minimum of (V _{c1} , V _{c2} , V _{c3}) = 0.75 X V _c $>$	418.119kip V _u hence, OK

Punching Shear Force, Vu = 42.418kip, Load Case # 212

One-Way Shear Check

Along X Direction

(Shear Plane Parallel to Global X Axis)

Check that 0.75 X V_c > V_{ux} where V_{ux} is the shear force for the critical load cases at a distance d_{eff} from the face of the column caused by bending about the X axis.

From above calculations,	0.75 X Vc =	198.974	kip
Critical load case for Vux is # 212	$\nabla_{ux} = \nabla_{ux} _{x=D_X} =$	12.259	kip
	0.75 X	$V_c > V_{ux}$ her	ice, OK

One-Way Shear Check

Alona Z Direction

(Shear Plane Parallel to Global Z Axis)

Check that 0.75 X V_c > V_{uz} where V_{uz} is the shear force for the critical load cases at a distance d_{eff} from the face of the column caused by bending about the Z axis.

From above calculations,	0.75 X V _c =	198.974 kip
Critical load case for V_{uz} is # 212	$\nabla_{ux} = \nabla_{ux} _{x=D_x} =$	13.669 kip

0.75 X $V_{\rm c} > V_{uz}$ hence, OK

Design for Flexure about Z Axis

Calculate the flexural reinforcement along the X direction of the footing. Find the area of steel required, A, as per Section 3.8 of Reinforced Concrete Design (5th ed.) by Salmon and Wang (Ref. 1)

Critical Load Case # 212

The strength values of steel and concrete used in the formulae are in ksi

Bars parallel to X Direction are placed at bottom		
Effective Depth d _{eff} =	1.719	ft
Factor ^{β1} from ACI Cl.10.2.7.3 =	0.850	

From ACI Cl. 10.3.2, Pbal =	$0.85 \times \beta_1 \times F_c^{-1} \times \frac{87}{\left[f_y \times \left(87 + F_y\right)\right]} =$	0.02851
From ACI Cl. 10.3.3, P_size =	$0.75 \times \rho_{bal} =$	0.02138
From ACI Cl. 7.12.2, Prim =		0.00169
From Ref. 1, Eq. 3.8.4a, constant m =	$\frac{\mathbf{F}_{\mathbf{y}}}{\left(0.85 \times \mathbf{F}_{e}^{1}\right)} =$	17.647

Calculate reinforcement ratio ^p for critical load case

Design for flexure about Z axis is performed at the face of the column at a distance, D _x =	$0.5 \times L \pm 0.5 \times D_{col} + O_{rol} =$	3.984 ft
Ultimate moment,	$ \mathbf{M}_{\mathbf{u}} _{x=\mathbb{D}_2} =$	47.454 kip-ft
Nominal moment capacity, $M_n =$	$\frac{M_u}{0}$ -	52.726 kip-ft
(Based on effective depth) Required $\stackrel{\rho}{=}$	$\frac{1}{m} \times \left[1 - \sqrt{1 - 2 \times m \times \frac{M_{m}}{\left(F_{g} \times W \times d_{eff}^{-2}\right)}} \right] = -$	0.00025
	(Based on gross depth)P x d _{eff} / Depth =	0.00021
Since	ρ≤ ρ _{min}	pmin Governs

	F - Finit	
Area of Steel Required, A	= $\rho \times W \times d_{eff}$ -	4.141 in2

Selected bar Size = #6

Minimum spacing allowed (Smin) = = 3.000in

Selected spacing (S) = 10.583in

 $S_{min} \! < \! = S \! < \! = \! S_{max}$ and selected bar size < selected maximum bar size...

The reinforcement is accepted.

According to ACI 318 Clause No- 10.6.4

Max spacing for Cracking Consideration = 7.500in

Warning:Calculated spacing is more than maximum spacing cosidering cracking condition. Modify spacing manually if cracking consideration is necessary.

#6 @ 10	0.000in o.c.	
Required development length for bars =	$\frac{3 \times d_b \times f_y}{30 \times \lambda \times \sqrt{f_c}} =$	=2.372 ft
Available development length for bars, DL =	$0.5\times\left(L-D_{col}\right)\cdot-C_{cover}=$	3.734 ft
Try bar size # 6	Area of one bar =	0.440 in2
Number of bars required, $N_{ber} =$	$\frac{A_s}{A_{bar}}$ =	10

Because the number of bars is rounded up, make sure new reinforcement ratio $< \rho_{max}$

Total reinforcement area, As_total = Ntar X (Area of one bar) = 4.400 in2

d_{eff} = D - C_{cover} - 0.5 X (dia. of one bar) = 1.719 ft $\frac{\mathbf{A}_{\sigma_total}}{\left(\mathbf{4}_{eff}\times \mathbf{W}\right)} =$

Reinforcement ratio, P =

0.00209

From ACI Cl.7.6.1, minimum reg'd clear distance between bars Cd = max (Diameter of one bar, 1.0" (25.4mm), Min. User Spacing) = 3.000in Provided Steel Area / Required Steel Area = 1.062

Check to see if width is sufficient to accomodate bars

Design for Flexure about X axis

(For Reinforcement Parallel to Z Axis)

Calculate the flexural reinforcement along the Z direction of the footing. Find the area of steel required, A, as per Section 3.8 of Reinforced Concrete Design (5th ed.) by Salmon and Wang (Ref. 1)

Critical Load Case # 212

The strength values of steel and concrete used in the formulae are in ksi

Bars parallel to X I	Direction are placed at bottom	
Effective Depth deff=		1.656 ft
Factor β_1 from ACI Cl.10.2.7.3 =		0.850
From ACI Cl. 10.3.2, Pbal =	$0.85 \times \beta_1 \times \mathbf{F}_0^{-1} \times \frac{87}{\left[\mathbf{f}_y \times \left(87 + \mathbf{F}_y\right)\right]} =$	0.02851
From ACI Cl. 10.3.3, Passe =	$0.75 \times \rho_{bal} =$	0.02138
From ACI Cl.7.12.2, Pmin =		0.00170
From Ref. 1, Eq. 3.8.4a, constant m =	Ty _	17.647
	$(0.85 \times F_t^{-1})$	

Calculate reinforcement ratio P for critical load case

Design for flexure about X axis is performed at the face of the column at a distance, D _z =	$0.5 \times L \pm 0.5 \times B_{col} + O_{col} =$	3.997	ft
Ultimate moment,	M _u _{x=D} =	42.880	kip-ft

 $\frac{M_{0}}{0}$ = Nominal moment capacity, Mn = 47.645 kip-ft (Based on effective depth) Required $\frac{\rho}{m} = \frac{1}{m} \times \left[1 - \sqrt{1 - 2 \times m \times \frac{M_m}{\left(F_{\gamma} \times W \times d_{eff}^{-2}\right)}}\right] = -\frac{1}{m}$ 0.00024 (Based on gross depth) $^{
m p}$ x d_{eff} / Depth = 0.00020 Since ρ≤ρ_{min} pmin Governs $\rho \times W \times d_{eff} =$ 4.161 in2 Area of Steel Required, As = Selected Bar Size = #6 Minimum spacing allowed (Smin) = 3.000in Selected spacing (S) = 10.583in Smin<= S <= Smax and selected bar size < selected maximum bar size...

The reinforcement is accepted.

According to ACI 318 Clause No- 10.6.4

Max spacing for Cracking Consideration = 7.500in

Warning:Calculated spacing is more than maximum spacing cosidering cracking condition. Modify spacing manually if cracking consideration is necessary.

based on spacing remotoement mereneng provided remotoement i	Based	on sp	acing	reinf	forcement	increment;	; p	rovided	reinfo	orcemen	t is	5
--	-------	-------	-------	-------	-----------	------------	-----	---------	--------	---------	------	---

#6 @ 10.000in o.c.					
Required development length for bars =	$\frac{\mathbf{d}_{\mathbf{b}} \times \mathbf{f}_{\mathbf{y}}}{25 \times \lambda \times \sqrt{f_{\mathbf{c}}}} =$	=2.372 ft			
Available development length for bars, $D_L =$	$0.5\times\left(L-D_{col}\right)\cdot-C_{cover}=$	3.747 ft			
Try bar size # 6	Area of one bar =	0.440 in2			
Number of bars required, N_{bar} =	$\frac{A_s}{h_{bar}}$ =	10			

Because the number of bars is rounded up, make sure new reinforcement ratio $< \rho_{max}$

Total reinforcement area, A _{s_total} =	N _{bar} X (Area of one bar) =	4.400	in2
d _{eff} =	D - C _{cover} - 1.5 X (dia. of one bar) =	1.656	ft
Reinforcement ratio, ρ =	$\frac{A_{\sigma_total}}{(d_{eff} \times W)} =$	0.00217	

From ACI Cl.7.6.1, minimum req'd clear distance between bars

Cd = max (Diameter of one bar, 1.0" (25.4mm), Min. User Spacing) = 3.000in

Provided Steel Area / Required Steel Area = 1.057

Check to see if width is sufficient to accomodate bars

Bending moment for uplift cases will be calculated based solely on selfweight, soil depth and surcharge loading.

As the footing size has already been determined based on all servicebility load cases, and design moment calculation is based on selfweight, soil depth and surcharge only, top reinforcement value for all pure uplift load cases will be the same.

Design For Top Reinforcement Parallel to Z Axis

Top reinforcement is calculated based on self weight of footing and soil

Calculate the flexural reinforcement for $M_{\boldsymbol{x}}.$ Find the area of steel required

The strength values of steel and concrete used in the formulae are in ksi

Effective Depth deff=		1.656 ft
Factor β_1 from ACI Cl.10.2.7.3 =		0.850
From ACI Cl. 10.3.2, $P_{bal} =$	$0.85 \times \beta_1 \times F_0^{-1} \times \frac{87}{\left[f_y \times \left[87 + F_y\right]\right]} =$	0.02851
From ACI Cl. 10.3.3, P_state =	$0.75 \times \rho_{bal} =$	0.02138
From ACI Cl. 7.12.2, Pmin =		0.00000
From Ref. 1, Eq. 3.8.4a, constant m =	Ty _	17.647
	$\left(0.85 \times F_{t}^{-1}\right)$	

Bars parallel to X Direction are placed at bottom

Calculate reinforcement ratio P for critical load case

Design for flexure about X axis is performed at the face of the column at a distance, D _x =	$0.5 \times L \pm 0.5 \times D_{col} + O_{col} =$	3.997	ft
Ultimate moment,	$M_{u} _{x=D_{2}}$ =	20.366	kip-ft
Nominal moment capacity, $M_n =$	$\frac{M_u}{0}$ -	22.629	kip-ft
(Based on effective depth) Required $P =$	$\frac{1}{m} \times \left[1 - \sqrt{1 - 2 \times m \times \frac{M_{ts}}{\left(F_{ty} \times \overline{w} \times d_{ty}^{-2}\right)}}\right] = -$	0.00011	
	(Based on gross depth) ip x d _{eff} / Depth =	0.00009	
Since	$\rho_{min} \le \rho \le \rho_{max}$	ОК	
Area of Steel Required, A ₆ =	$\rho \times W \times d_{eff} =$	0.228	in2
Total reinforcement area, $A_{k_total} =$	N _{bar} X (Area of one bar) =	0.884	in2
Provided Ste	el Area / Required Steel Area = 3.876		

Selected bar Size = #6

Minimum spacing allowed (Smin) = 3.000in

Selected spacing (S) = 12.000in

 $S_{min} \! < \! = S \! < \! = \! S_{max}$ and selected bar size < selected maximum bar size...

The reinforcement is accepted.

According to ACI 318 Clause No- 10.6.4

Max spacing for Cracking Consideration = 7.500in

Warning:Calculated spacing is more than maximum spacing cosidering cracking condition. Modify spacing manually if cracking consideration is necessary.

Based on spacing reinforcement increment; provided reinforcement is

r	
L	#6 @ 12.000in o.c.
ĩ	

Design For Top Reinforcement Parallel to X Axis

Top reinforcement is calculated based on self weight of footing and soil

Calculate the flexural reinforcement for M₂. Find the area of steel required

The strength values of steel and concrete used in the formulae are in ksi

Effective Depth d _{eff} =		1.719 ft
Factor β_1 from ACI Cl.10.2.7.3 =		0.850
From ACI Cl. 10.3.2, $P_{bal} =$	$0.85 \times \beta_1 \times \mathbf{F}_{g^{-1}} \times \frac{87}{\left[f_{\overline{g}} \times \left[87 + F_{y^{-1}}\right]\right]} =$	0.02851
From ACI Cl. 10.3.3, $\rho_{state} =$	$0.75 imes \rho_{bal} =$	0.02138
From ACI Cl.7.12.2, Pmin =		0.00000
From Ref. 1, Eq. 3.8.4a, constant m =		17.647
	$\left(0.85 \times F_{t}^{-1}\right)$	

Calculate reinforcement ratio P for critical load case

Design for flexure about Z axis is performed at the face of the column at a distance, D _x =	$0.5 \times L \pm 0.5 \times D_{col} + O_{sol} =$	3.984	ft
Ultimate moment,	M _n _{x=D} =	20.239	kip-ft
Nominal moment capacity, M_{n} =	$\frac{M_u}{0}$ =	22,488	kip-ft
(Based on effective depth) Required ρ =	$\frac{1}{m} \times \left[1 - \sqrt{1 - 2 \times m \times \frac{M_{fs}}{\left(F_{g} \times W \times d_{eff}^{-2}\right)}}\right] = -$	0.000104	
	(Based on gross depth)P x d _{eff} / Depth =	0.000089	
Since	ρmin≤ ρ≤ ρmax	ОК	
Area of Steel Required, $A_s =$	$\rho \times W \times d_{eff} =$	0.218	in2
Total reinforcement area, A _{s_total} =	N _{bar} X (Area of one bar) =	0.884	in2
Provided St	eel Area / Required Steel Area = 4.048		
Select	red bar Size = #6		

Minimum spacing allowed (Smin) = 3.000in

Selected spacing (S) = 12.000in

 $S_{min} \mbox{<=} S \mbox{<=} S_{max}$ and selected bar size $\mbox{<}$ selected maximum bar size...

The reinforcement is accepted.

According to ACI 318 Clause No- 10.6.4

Max spacing for Cracking Consideration = 7.500in

Warning:Calculated spacing is more than maximum spacing cosidering cracking condition. Modify spacing manually if cracking consideration is necessary.

Based on spacing reinforcement increment; provided reinforcement is

#6 @ 12.000in o.c.

Appendix F: Hand Calculated - Isolated Spread Footing

HOP FOUNDATION DESIGN - ISOLATED FOOTING STAAD. FON REFERENCE : FOOTINGT #442 Designative DJH

11	gere 3.55
ь	- 16.75 - 2.60 fe -> round up to 3', for breakout permutu
NET	UPWARD PRESSURE: (6=7' Out to sliding)
FA	CTORED LOAD: 1.2DL + 1.2 (23,817+.150) = 28.84 K
91	$n = \frac{DL}{Ac} = \frac{28.84 K}{(712)} = .589 K/Fb^2$
111	MUM REINFORCE NENT
A	. = (7x7)(144) = 7056 m2
As As	te min = .005Ag = 35.28 m ² min = pbh = .0018 bb = .0018(843136) = 5.4 m ² (shrinkage)
4	Try 9#7, do = 1975" a= . 4 in2
NE P1	CH OF REINFORCEMENT (
d	h - cour 5 ds = 36 - 35(.875) - 32.56"
€ bet	12 ungth bo = 4(c+d) = 170.24"
140	NAY SHEAR
٧v	= Pu - An (c+a)2 = 28 x4 - SEV(42.50 (12)2 = 21.41 K
Pc	= (Savare (alumo

Designed by:

Checked by:

	31	8 -	05	Ch. (0	. 5.	1					
tsm	in	# <u>3</u>	(f*2) Fy	<u>owel</u> =	314	000	(24)	(32.50	e) = 8.(5 in 1	
Ar <u>s</u>	•	5.4	4 m²								
Asir	nia	- 3	200 b. f1	vol =	200	(84) 60.	(31. S 000	w	9.11 m :- 5#	⊧ -∌ og 10	Wens
20	5 1	85	[87. Fr(000 β. 1000 -	fic]	= , 1	15[97] [10	8. 1000	55)(400 600 +#10	0)] = .	0285-
ma	× =	.95	018	. 213	8	20	0.11.0		-		
5 =	. L	- (n	2(10	ver).	= <u>84</u>	- 6	= 5	57 =	Ð 19 ⁿ	Spacini 1	
+											
+											
+					-						

automing				
gourning mar	ment: (220) M	x= h+ (V2) =	3(3:059)=9	. 177 K-F6
risisting mor	went: Mr: (.4)(=:s[(1 =	(WC)6 50(72)(3)).+25. E-FE	66](7)	
Mr = 95.91 Mx = 9.1	145 = 828> 17	1.51		
Moment @ colon	in kage			
$\left[\frac{L-C}{2}\right] =$	7-(10(12)=	3083' 0	n = .589	
Mu = 9n (3.087	s) <u>s.013</u> b =	. 589(3.083)	(<u>3.053</u>)7	
My = 19.59 K	- ře			
Ru : Mu =	(84)(32.56)2 =	.0026 KSi		
$w = 1.7 - \int_{0}^{0}$	(72) - fc [17 (RU C (DFY	-)] . " -)	1.7° - 4(1.7)	-6026 9160)
10= · 000048 *	9 Fx. +c.			
0= .000048(200000, = Q			
As = .000003 -Uxure As = (20	(36)(84) = .009 01Fy)bd = (20	7177 0760110) %4(32.56)= 9.11	
internet (m.)		CTwin stort Twi		

Appendix G: Excel Spreadsheet – Combined Footing Models

Design Procedure - Combined Footings

Service Load Design

- 1.0 Determine the size of combined footing
- 2.0 Calculated the required length of footing. The length of the footing is twice the distance from the edge footing of the exterior column to the resultant of column loads
- 3.0 Calculate the width of footing. The required area of footing is the total column load divided by
- ^{3.0} allowable net soil bearing pressure. The width of footing is the required footing area divided my the Structural Analysis
 - 4.0 Perform structural analysis to determine moment and shear in various sections of the footing
 - 5.0 Calculate factored footing pressure
 - 6.0 Calculate maximum shear at an effective depth from the face of column
 - 7.0 Calculate maximum positive and negative moment in the footing. Maximum positive moment occurs at face of column. Maximum Negative moment occurs between two columns at zero-shear

Reinforced Concrete Design

- 8.0 Check punching shear and direct shear
- 9.0 Design longitudinal reinforcements
- 10.0 Design transverse reinforcements
- 11.0 Design column dowels

Model: C1

Design Checks			
Punching Shear Strength	φv.	OK	
Punching Shear Strength	φv _e	OK	
Shear strength of concrete for footing section	φVe	OK	
Bassing approits of approate at column have	D	Co1 A	OK.
Dealing capacity of concrete at constant base		Col B	OK

Combined Footings - Service Load Design

Column A: Made	Live Load	PL	0	Kips
642	Dead Load	P _{1D}	23.887	Kips
5	Total	Pπ	23.887	Kips
Column D. Made	Live Load	Pz	0	Kips
643	Dead Load	P_{2D}	23.887	Kips
2	Total	Pπ	23.887	Kips
	Resultant	R	47.774	Kips
	Distance Between Columns	8	12.542	ft
	Allowable Soil Pressure	q,	3000	psf
Distance from	n column A to edge of footing	m	1	ft
	Depth of soil above footing		12	inches
	Unit weight of soil	γ.	120	pcf
				-
	Depth of footing		24	inches

Service Load Design			
Location of resultant from A	n	6	ft
Length of Footing	L	15	ft
Weight of Footing	đ	300	paf
Weight of soil above footing	q.	120	paf
Net soil bearing capacity	ą.	2580	psf
Required footing are a	A	19	ft°2
Required width of footing	b _{req}	2	ft

Combined Footings - Structural Analysis

	Depth	Cd	2	ft	Design Code
Column Size	Width	C _w	2	ft	ACI 318-05
	Area	Ac	4	ft^2	
Fastarad Column Loads	Column A	Pua	28.66	kips	
Factored Column Loads	Column B	Pub	28.66	kips	
Locatio	n of Resultant from column A	R _{factored}	7	ft	
Factored footing pre-	ssure per linear foot of footing	Q.	3.8	k/ft	

Shear Diagram			
Point 1	Vui	-21.0	kips
Point 3	V _{U3}	19.3	kips
Point 4	V _{U4}	-1.8	kips

Moment Diagram			
Distance from inside face of column A to peak moment	Х	5.5	ft
Point 1	Muı	-21	ft-kips
Point 2	M _{U2}	-78.8	ft-kips
Point 3	M _{U3}	-30.3	ft-kips
Point 4	M _{U4}	0.401	ft-kips

Combined Footings - Reinforcement Design

Compressive Strength of Concrete at 28 days	fe	4	lei
Yield Strength of rebar	fy	60	<u>6</u> .
shear ratio	φ	0.75	

Check punching shear for column A]
Assume reinforcements are:	#	6	bars]
Bar Diameter	ďi	0.75	inches]
Cover	С	3	inches]
Effective depth	d	17	ft	1
Factored footing pressure	q _{aa}	1.91	kips/ft^2	
Perimeter of punching shear	Ъл	112.5	inches]
Punching shear stress	Vak	3.8	psi	
Punching Shear Strength	φve	189.7	psi	(

Check punching shear for column B				
Perimeter of punching shear	b _e 177	inches		
Punching shear stress	V. 0.7	psi]	
Punching Shear Strength	φv _e 189.7	psi	OK.	

Check Direct Shear				
Maximum Shear	Vmm	19.3	kips	
Distance from zero shear to max shear	Х	10.54167	ft	
Direct shear at the critical section	V.	16.2	kips	
Shear strength of concrete for footing section	φV.	115.265	láps	OK.

Maximum Positive/Negative reinforcement in loc	igitudi	nal directio	a	
Maximum Positive Moment	Mean	78.8	ft-kips	
Required width of footing	bra	2	ft	1
Moment ratio	ዋ	0.9		
Assume depth of Stress block	а	0.9	inches	
-	Т	53.1	kips	
	а	0.65	inches	
5	Т	527	kips	
A	а	0.65	inches	
Converges	а	0.84	inches]
Area of steel	A.	0.88	iπ*2	1
Reinforcement ratio	ρ	0.00181		
Minimum Reinforcement Ratio	Pre	0.00241		
Adjusted Area of Steel	A.	1.17	in^2	1
Allowable Spacing	S	13.87	inches	
Choose Bar: Size	#	3		Γ
Number		16		l
Spacing		11.6	inches	(

Determine reinforcement in transverse direction				1
Distrance from face of column to footing edge	l	0.5	ft	
For 1ft section		1	ft	
Factored moment at face of column	Mu	3.82	kft	
Assume "a"	а	0.1	inches	
	Т	25	kips	
	а	0.06	inches	
5	Т	25	kips	
-	a	0.06	inches	
Final "a"	а	0.06	inches	
Area steel for 1ft section	A	0.042006	in'2	
Reinforcement Ratio	ρ	0.00017		
Minimum Reinforcement Ratio	Parts	0.00023		
Adjusted Area of Steel	A	1.23		
Choose Bar: Size	#	5		Manual
Number		5		Decision
Spacing		4.50	inches	OK.

Model: C2

Design Checks			
Punching Shear Strength	ϕv_c	OK	
Punching Shear Strength	ϕv_c	OK	
Shear strength of concrete for footing section	ϕV_c	OK	

Combined Footings - Service Load Design

C1 1	Live Load	P_{1L}	0	Kips
Node 642	Dead Load	P_{1D}	23.887	Kips
Node 042	Total	P_{1T}	23.887	Kips
Calum Di	Live Load	P_{2L}	0	Kips
Node 643	Dead Load	P_{2D}	23.887	Kips
11000 045	Total	P_{2T}	23.887	Kips
	Resultant	R	47.774	Kips
	Distance Between Columns	s	12.542	ft
	Allowable Soil Pressure	qa	3000	psf
Distance from	column A to edge of footing	m	1	ft
Depth of soil above footing			12	inches
Unit weight of soil		γs	120	pcf
	Depth of footing		12	inches
	Unit weight of concrete	γc	150	pcf

Service Load Design					
Location of resultant from A	n	6	ft		
Length of Footing	L	15	ft		
Weight of Footing	q _F	150	psf		
Weight of soil above footing	q _s	120	psf		
Net soil bearing capacity	q _e	2730	psf		
Required footing area	A _{req}	18	ft^2		
Required width of footing	b _{req}	2	ft		

	Depth	Cd	2	ft	Design Code
Column Size	Width	Cw	2	ft	ACI 318-05
	Area	Ac	4	ft^2	
Factored Column Loads	Column A	Pua	28.66	kips	
Factored Column Loads	Column B	Pub	28.66	kips	
Locatio	n of Resultant from column A	R _{factored}	7	ft	
Factored footing pres	ssure per linear foot of footing	Q.	3.8	k/ft	

Constinued	Destines	Charles	Anotherite
Combined	rootings -	Structura	Analysis

Shear Diagram				
Point 1	Vui	-21.0	kips	
Point 3	V _{U3}	19.3	kips	
Point 4	V _{U4}	-1.8	kips	

Moment Diagram				
Distance from inside face of column A to peak moment	Х	5.5	ft	
Point 1	M _{Ul}	-21	ft-kips	
Point 2	M _{U2}	-78.8	ft-kips	
Point 3	M _{U3}	-30.3	ft-kips	
Point 4	M _{U4}	0.401	ft-kips	

Combined Footings - Reinforcement Design

Compressive Strength of Concrete at 28 days	f.	4	20
Yield Strength of rebar	fy	9	lai
shear ratio	φ	0.75	

Check punching shear for column A]
Assume reinforcements are:		#	6	bars	
Bar Diameter	di		0.75	inches	
Cover	С		3	inches	
Effective depth	d		0.7	ft	1
Factored footing pressure	qaa		1.91	kips/ft^2	
Perimeter of punching shear	b _{bA}		88.5	inches]
Punching shear stress	Vuk		22.8	psi]
Punching Shear Strength	φVe		189.7	psi	0

Check punching shear for column B

Perimeter of punchings	hear b _{og}	129	inches	
Punching shear s	tress V 🙇	14.0	psi	
Punching Shear Stre	ngth qv.	189.7	psi	OK.

٦

٦

Check Direct Shear

				1
Maxmum Shear	Vmax	19.3	kaps	
Distance from zero shear to max shear	Х	10.54167	ft	
Direct shear at the critical section	V _u	18.0	kips	
Shear strength of concrete for footing section	φVe	46.9 5982	láps	OK.

Maximum Positive/Negative reinforcement in longitudinal direction

Maximum Positive/Negative reinforcement in los	gitudi	nal directio	0	
Maximum Positive Moment	Mmax	78.8	ft-kips]
Required width of footing	bra	2	ft	1
Moment ratio	9	0.9		
Assume depth of Stress block	а	0.9	inches]
-	Т	134.7	laps	
	а	1.65	inches	
5	Т	141.5	kips	
=	а	1.73	inches	
Converges	а	0.84	inches	
Area of steel	A.	2.36	in^2]
Reinforcement ratio	ρ	0.01191		
Minimum Reinforcement Ratio	ρm	0.01588]
Adjusted Area of Steel	A,	3.14	in^2]
Attowable Spacing	S	13.87	inches	
Choose Bar: Size	#	5		Manua
Number		Б		Decisio
Spacing		12.4	inches	OK

Determine reinforcement in transverse direction				1
Distrance from face of column to footing edge	l	0.5	ft	
For 1ft section		1	ft	
Factored moment at face of column	Ma	3.82	kft	
Assume "a"	а	0.1	inches	
-	Т	62	kips	
	а	0.15	inches	
5	Т	62	kips	
I	a	0.15	inches	
Final "a"	а	0.15	inches	
Area steel for 1ft section	A	0.103907	in'2	
Reinforcement Ratio	ρ	0.00105		
Minimum Reinforcement Ratio	ρ	0.00140		
Adjusted Area of Steel	A,	3.05		
Choose Bar: Size	#	7		Manual
Number		6		Decision
Spacing		3.60	inches	OK.

Model: C3

Design Checks				
Punching Shear Strength	φv _c	OK		
Punching Shear Strength	ϕv_c	OK		
Shear strength of concrete for footing section	ϕV_c	OK		

Combined Footings - Service Load Design

	Live Load	P _{1L}	0	Kips
Column A: Node 642	Dead Load	P_{1D}	23.887	Kips
10000 042	Total	P_{1T}	23.887	Kips
Coloren Di	Live Load	P_{2L}	0	Kips
Node 642	Dead Load	P_{2D}	23.887	Kips
Node 045	Total	P_{2T}	23.887	Kips
	Resultant	R	47.774	Kips
	Distance Between Columns	s	12.542	ft
Allowable Soil Pressure			3000	psf
Distance from column A to edge of footing			1	ft
Depth of soil above footing			12	inches
Unit weight of soil			120	pcf
Depth of footing			18	inches
	Unit weight of concrete	Yc	150	pcf

Service Load Design		
Location of resultant from A n	6	ft
Length of Footing L	15	ft
Weight of Footing q _F	225	psf
Weight of soil above footing qs	120	psf
Net soil bearing capacity q _e	2655	psf
Required footing area A _{re}	_{eq} 18	ft^2
Required width of footing b _{rec}	g 2	ft

<u>የተተተተተተተተተተተተተተተተተተተ</u>

Combined	Footings	- Structural	Analysis
Comonica	1 ootmes	- outocioia	1 11101 9 313

	Depth	Cd	2	ft	Design Code
Column Size	Width	Cw	2	ft	ACI 318-05
	Area	Ac	4	ft^2	
Eastared Column Loads	Column A	Pua	28.66	kips	
Factored Column Loads	Column B	Pub	28.66	kips	
Locatio	n of Resultant from column A	R _{factored}	7	ft	
Factored footing pres	ssure per linear foot of footing	Qu	3.8	k/ft	

Shear Diagram			
Point 1	Vui	-21.0	kips
Point 3	V _{U3}	19.3	kips
Point 4	V _{U4}	-1.8	kips

Moment Diagram			
Distance from inside face of column A to peak moment	Х	5.5	ft
Point 1	Muı	-21	ft-kips
Point 2	M _{U2}	-78.8	ft-kips
Point 3	M _{U3}	-30.3	ft-kips
Point 4	M _{U4}	0.401	ft-kips

Combined Footings - Reinforcement Design

Compressive Strength of Concrete at 28 days	f.	4	lai
Yield Strength of rebar	fy	60	ksi
shear ratio	φ	0.75	

Check punching shear for column A								
Assume reinforcements are:	ŧ	¢ 6	bars]				
Bar Diameter	di	0.75	inches]				
Cover	С	3	inches					
Effective depth	d	12	ft	1				
Factored footing pressure	q _{ac}	1.91	kips/ft^2					
Perimeter of punching shear	b _{ak}	100.5	inches	1				
Punching shear stress	Vak	9.0	psi					
Punching Shear Strength	φve	189.7	psi	(

Check punching shear for column B							
Perimeter of punching shear	b.s	153	inches				
Punching shear stress	V.e	42	psi				
Punching Shear Strength	φv.	189.7	psi	OK			

Check Direct Shear Maximum Shear Vmm 19.3 isips Distance from zero shear to max shear X 10.54167 ft Direct shear at the critical section Vu 17.1 kips Shear strength of concrete for footing section φV_c 81.11242 kips

Maximum Positive/Negative reinforcement in los	gitudi	nal directio	a	l
Maximum Positive Moment	Mmax	78.8	ft-kips	
Required width of footing	b _{req}	2	ft	1
Moment ratio	Ģ _	0.9		
Assume depth of Stress block	а	0.9	inches	
-	Т	761	láps	
	а	0.93	inches	
j	Т	76.2	kips	
	а	0.93	inches	
Converges	а	0.84	inches	
Area of steel	A	1.27	in'2	
Reinforcement ratio	ρ	0.00371		
Minimum Reinforcement Ratio	Pret	0.00495		
Adjusted Area of Steel	A	169	in*2	
Allowable Spacing	S	13.87	inches	
Choose Bar: Size	#	3		Manual
Number		16		Decision
Spacing		11.6	inches	OK.

OК

Determine reinforcement in transverse direction				
Distrance from face of column to footing edge	l	0.5	ft	
For 1ft section		1	ft	
Factored moment at face of column	Ma	3.82	kft	
Assume "a"	а	0.1	inches	
-	Т	3.6	láps	
	а	0.09	inches	
ji ji	Т	3.6	kips	
1	a	0.09	inches	
Final "a"	а	0.09	inches	
Area steel for 1ft section	A	0.059786	in^2	
Reinforcement Ratio	ρ	0.00035		
Minimum Reinforcement Ratio	P _{min}	0.00047		
Adjusted Area of Steel	A	175		
Choose Bar: Size	#	5		Manual
Number		6		Decision
Spacing		3.60	inches	OK.

Appendix H: STAAD.*foundation* – Combined Footing

COMBINED FOUNDATION DESIGN (ACI 318-05)

Design For Combined Footing 1

Result Summary

file://C:\Program Files (x86)\Bentley\Staad Foundation Advanced 7\CalcXsl\Combined.xml 3/3/2015

Page 1 of 12

COMBINED FOUNDATION DESIGN (ACI 318-05)

Design For Combined Footing 1

Result Summary

Footing No.	Left Overhang (ft)		Right Overhang (ft)		Length (ft)	Width (ft)	Thickness (ft)		
1		1.83	3	1	.833	16.208	2.333	2.000	
Footing No. Footing Reinforcement									
-	M	ain Steel Top	Main Steel Bottom Secondary Steel Top Secondary S		Secondary Steel Top		ry Steel Bottom		
1		4 - #6	4.	- #7	22 - #6		22 - #6 16 - #7		6 - #7

Combined Footing 1

Input Data

Design For Combined Footing 1

Result Summary

Design For Combined Footing 1

Result Summary

Page 1 of 12

COMBINED FOUNDATION DESIGN (ACI 318-05)

Design For Combined Footing 1

Result Summary

Footing No. Left Over (ft)		rhang	Right	Overhang (ft)	Length (ft)	Width (ft)	Thickness (ft)	
1	1 1.83		3	1.833		16.208	2.333	2.000
Footing No.		Footing Reinforcement						
-	M	ain Steel Top	Main Sta	el Bottom	Secondary Steel Top		Secondary Steel Bottom	
1		4 - #6	4.	4 - #7 22 - #6		- #6	16 - #7	

Combined Footing 1

Input Data

Design For Combined Footing 1

Result Summary

Design For Combined Footing 1

Result Summary

Page 1 of 12

COMBINED FOUNDATION DESIGN (ACI 318-05)

Design For Combined Footing 1

Result Summary

Footing No.	Left O	erhang t)	Right Overhang (ft)	Length (ft)	Width (ft)	Thickness (ft)	
1	1 1.83		1.833	16.208	2.333	2.000	
Excellence Mar							
Footing No.		Footing Reinforcement					
-	Main Steel Top	Main Steel Bottom Secondary Steel Top Secondary				Steel Bottom	
1	4 - #6	4 - #7	22	- #6	16 - #7		

Combined Footing 1

Input Data

Design For Combined Footing 1

Result Summary

Page 1 of 12

COMBINED FOUNDATION DESIGN (ACI 318-05)

Design For Combined Footing 1

Result Summary

Footing No.	Left	Overhang (ft)	Right Overhang (ft)	Length (ft.)	Width (ft)	Thickness (ft)	
1	1 1.83		1.833	16.208	2.333	2.000	
Footing No.		Footing Reinforcement					
-	Main Steel Top	Main Steel Bottom Secondary Steel Top Seco			Secondary	y Steel Bottom	
1	4 - #6	4.	4-#7 22-		- #6 16 - #7		

Combined Footing 1

Input Data

Design For Combined Footing 1

Result Summary

file://C:\Program Files (x86)\Bentley\Staad Foundation Advanced 7\CalcXsl\Combined.xml 3/3/2015

103

Design For Combined Footing 1

Result Summary

Design For Combined Footing 1

Result Summary

Strip Footing Design

Page 2 of 12

Geometry of Footing

For Column 642

Column Dimensions

Column Shape :	Rectangular
Column Length - X (D _{col}) :	0.532ft
Column Width - Z (B _{col}) :	0.507ft

Pedestal

Include Pedestal?	No
Pedestal Shape :	N/A
Pedestal Height (Ph) :	N/A
Pedestal Length - X (PI) :	N/A
Pedestal Width - Z (Pw) :	N/A

Eccentricity

Column Offset in Transverse Direction: 0.000ft

For Column 643

Column Dimensions

- Column Shape : Rectangular Column Length - X (Dex) : 0.532ft
- Column Width Z (B_{col}): 0.507ft

Pedestal

Include Pedestal?	No
Pedestal Shape :	N/A
Pedestal Height (Ph) :	N/A
Pedestal Length - X (PI) :	N/A
Pedestal Width - Z (Pw) :	N/A

Eccentricity

Column Offset in Transverse Direction: 0.000ft

Length of left overhang :	1.000ft
Length of right overhang :	1.000ft
Is the length of left overhang fixed?	No
Is the length of right overhang fixed?	No
Minimum width of footing (Wo) :	1.000ft
Minimum Thickness of footing (Do) :	2.000ft
Maximum Width of Footing (Wo) :	10.000ft
Maximum Thickness of Footing (Do) :	5.000ft

Page 3 of 12

Maximum Length of Footing (Lo) : 300.000ft Length Increment : 2.000in Depth Increment : 2.000in

Cover and Soil Properties

Pedestal Clear Cover :	2.000in
Footing Clear Cover :	3.000in
Unit Weight of soil :	120.000lb/ft3
Soil Bearing Capacity :	4.000kip/ft2
Soil Bearing Capacity Type:	Net Bearing Capacity
Soil Surcharge :	0.000kip/in2
Depth of Soil above Footing :	12.000in
Type of Depth :	Fixed Top
Depth of Water Table :	120.0001

Concrete and Rebar Properties

Unit Weight of Concrete :	0.610kip/ft3
Compressive Strength of Concrete :	4.000ksi
Yield Strength of Steel :	60.000ksi
Minimum Bar Size :	#7
Maximum Bar Size :	#14
Minimum Pedestal Bar Size :	#3
Maximum Pedestal Bar Size :	#10
Minimum Bar Spacing :	2.000in
Maximum Bar Spacing :	18.000in

Design Calculations

Footing Size Calculations

Gross Soil Bearing Capacity = 4.36kip/ft^2 Reduction of force due to buoyancy = 0.000kip

Area from initial length and width, A_0 = L_0 X W_0 = 14.542ft^2 Min. area required from bearing pressure, A_{min} = P / q_{max} = 15.413ft^2

Note: A_{min} is an initial estimation. P = Critical Factored Axial Load(without self weight/buoyancy) q_{max} = Respective Factored Bearing Capacity.

Page 4 of 12

Final footing dimensions are:

Length of footing, L : 16.208ft

Width of footing, W: 2.333ft

Depth of footing, Do: 2.000ft

Area, A : 37.820ft^2

Length of left overhang, Liet_overhang : 1.833ft

Length of right overhang, L_{tight_overhang}: 1.833ft

Footing self weight : 46.140kip

Soi weight on top of footing: 4.474kip

Load Combination Number	Load Combination Title	Load Combination Factor	Soil Bearing Factor	Self Weight Factor
110	D + W N-S	1.00	1.00	1.00
111	D+WS-N	1.00	1.00	1.00
112	D+WE-W	1.00	1.00	1.00
113	D + W W-E	1.00	1.00	1.00
120	0.6 DL + W N-S	1.00	1.00	1.00
121	0.6 DL + W S-N	1.00	1.00	1.00
122	0.6 DL + W E-W	1.00	1.00	1.00
123	0.6 DL + W W-E	1.00	1.00	1.00
200	1.4 DL	1.00	1.00	1.00
210	1.2 DL + 1.6 W N-S	1.00	1.00	1.00
211	1.2 DL + 1.6 W S-N	1.00	1.00	1.00
212	1.2 DL + 1.6 W E-W	1.00	1.00	1.00
213	1.2 DL + 1.6 W W-E	1.00	1.00	1.00
220	0.9 DL + 1.6 W N-S	1.00	1.00	1.00
221	0.9 DL + 1.6 W S-N	1.00	1.00	1.00
222	0.9 DL + 1.6 W E-W	1.00	1.00	1.00
223	0.9 DL + 1.6 W W-E	1.00	1.00	1.00
Load Combination Number	Load Combination Title	Load Combination Factor	Soil Bearing Factor	Self Weight Factor
Load Combination Number 110	Load Combination Title D + W N-S	Load Combination Factor 1.00	Soil Bearing Factor 1.00	Self Weight Factor 1.00
Load Combination Number 110 111	Load Combination Title D + W N-S D + W S-N	Load Combination Factor 1.00 1.00	Soil Bearing Factor 1.00 1.00	Self Weight Factor 1.00 1.00
Load Combination Number 110 111 112	Load Combination Title D + W N-S D + W S-N D + W E-W	Load Combination Factor 1.00 1.00 1.00	Soil Bearing Factor 1.00 1.00	Self Weight Factor 1.00 1.00 1.00
Load Combination Number 110 111 112 113	Load Combination Tible D + W N-S D + W S-N D + W E-W D + W W-E	Load Combination Factor 1.00 1.00 1.00 1.00	Soll Bearing Factor 1.00 1.00 1.00 1.00	Self Weight Factor 1.00 1.00 1.00 1.00
Load Combination Number 110 111 112 113 120	Load Combination Tible D + W N-S D + W S-N D + W E-W D + W W-E 0.6 DL + W N-S	Load Combination Factor 1.00 1.00 1.00 1.00	Soil Bearing Factor 1.00 1.00 1.00 1.00 1.00	Self Weight Factor 1.00 1.00 1.00 1.00 1.00
Load Combination Number 110 111 112 113 120 121	Load Combination Tible D + W N-S D + W S-N D + W E-W D + W W-E 0.6 DL + W N-S 0.6 DL + W S-N	Load Combination Factor 1.00 1.00 1.00 1.00 1.00	Soil Bearing Factor 1.00 1.00 1.00 1.00 1.00 1.00	Self Weight Factor 1.00 1.00 1.00 1.00 1.00 1.00
Load Combination Number 110 111 112 113 120 121 121 122	Load Combination Title D + W N-S D + W S-N D + W E-W D + W W-E 0.6 DL + W N-S 0.6 DL + W S-N 0.6 DL + W E-W	Load Combination Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Soll Bearing Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Self Weight Factor 1.00 1.00 1.00 1.00 1.00 1.00
Load Combination Number 110 111 112 113 120 121 122 123	Load Combination Title D + W N-S D + W S-N D + W E-W D + W W-E 0.6 DL + W N-S 0.6 DL + W S-N 0.6 DL + W E-W 0.6 DL + W W-E	Load Combination Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Soll Bearing Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Self Weight Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Load Combination Number 110 111 112 113 120 121 122 123 200	Load Combination Title D + W N-S D + W S-N D + W E-W D + W W-E 0.6 DL + W N-S 0.6 DL + W S-N 0.6 DL + W E-W 0.6 DL + W W-E 1.4 DL	Load Combination Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Soll Bearing Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Self Weight Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Load Combination Number 110 111 112 113 120 121 122 123 200 210	Load Combination Title D + W N-S D + W S-N D + W E-W D + W W-E 0.6 DL + W N-S 0.6 DL + W S-N 0.6 DL + W E-W 0.6 DL + W W-E 1.4 DL 1.2 DL + 1.6 W N-S	Load Combination Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Soll Bearing Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Self Weight Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Load Combination Number 110 111 112 113 120 121 122 123 200 210 211	Load Combination Title D + W N-S D + W S-N D + W E-W D + W W-E 0.6 DL + W N-S 0.6 DL + W S-N 0.6 DL + W E-W 0.6 DL + W W-E 1.4 DL 1.2 DL + 1.6 W N-S 1.2 DL + 1.6 W S-N	Load Combination Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Soll Bearing Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Self Weight Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Load Combination Number 110 111 112 113 120 121 122 123 200 210 211 212	Load Combination Title D + W N-S D + W S-N D + W E-W D + W W-E 0.6 DL + W N-S 0.6 DL + W S-N 0.6 DL + W W-E 1.4 DL 1.2 DL + 1.6 W N-S 1.2 DL + 1.6 W S-N 1.2 DL + 1.6 W E-W	Load Combination Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Soll Bearing Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Self Weight Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Load Combination Number 110 111 112 113 120 121 122 123 200 210 211 212 213	Load Combination Title D + W N-S D + W S-N D + W E-W D + W W-E 0.6 DL + W N-S 0.6 DL + W S-N 0.6 DL + W E-W 0.6 DL + W W-E 1.4 DL 1.2 DL + 1.6 W N-S 1.2 DL + 1.6 W S-N 1.2 DL + 1.6 W S-N 1.2 DL + 1.6 W E-W 1.2 DL + 1.6 W W-E	Load Combination Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Soil Bearing Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Self Weight Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Load Combination Number 110 111 112 113 120 121 122 123 200 210 211 211 212 213 220	Load Combination Title D + W N-S D + W S-N D + W E-W D + W W-E 0.6 DL + W N-S 0.6 DL + W S-N 0.6 DL + W W-E 1.4 DL 1.2 DL + 1.6 W N-S 1.2 DL + 1.6 W S-N 1.2 DL + 1.6 W E-W 1.2 DL + 1.6 W W-E 0.9 DL + 1.6 W N-S	Load Combination Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Soil Bearing Factor 1.00	Self Weight Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Load Combination Number 110 111 112 113 120 121 122 123 200 210 211 211 212 213 220 221	Load Combination Title D + W N-S D + W S-N D + W E-W D + W W-E 0.6 DL + W N-S 0.6 DL + W S-N 0.6 DL + W W-E 1.4 DL 1.2 DL + 1.6 W N-S 1.2 DL + 1.6 W S-N 1.2 DL + 1.6 W W-E 0.9 DL + 1.6 W N-S 0.9 DL + 1.6 W S-N	Load Combination Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Soil Bearing Factor 1.00	Self Weight Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Load Combination Number 110 111 112 113 120 121 122 123 200 210 211 212 212 213 220 221 222	Load Combination Title D + W N-S D + W S-N D + W E-W D + W W-E 0.6 DL + W N-S 0.6 DL + W S-N 0.6 DL + W S-N 0.6 DL + W W-E 1.4 DL 1.2 DL + 1.6 W N-S 1.2 DL + 1.6 W S-N 1.2 DL + 1.6 W W-E 0.9 DL + 1.6 W S-N 0.9 DL + 1.6 W S-N 0.9 DL + 1.6 W S-N 0.9 DL + 1.6 W S-N	Load Combination Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Soll Bearing Factor 1.00	Self Weight Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0

Strip Footing Design

LC

212

Axial (kip)	Shear X (kip)	Shear Z (kip)	Moment X (kip-ft)	Moment Z (kip-ft)
	Column Nu	mber : 642		
3.562	-0.063	1.896	0.000	0.000
13.701	-0.138	-1.968	0.000	0.000
17.087	-3.413	-0.057	0.000	0.000
0.176	3.212	-0.014	0.000	0.000
0.109	-0.023	1.911	0.000	0.000
10.248	-0.098	-1.953	0.000	0.000
13.635	-3.373	-0.043	0.000	0.000
-3.277	3.252	-0.000	0.000	0.000
12.084	-0.141	-0.050	0.000	0.000
2.247	-0.060	3.049	0.000	0.000
18.469	-0.181	-3.134	0.000	0.000
23.887	-5.420	-0.077	0.000	0.000
-3.171	5.179	-0.009	0.000	0.000
-0.343	-0.030	3.059	0.000	0.000
15.879	-0.151	-3.123	0.000	0.000
21.298	-5.390	-0.066	0.000	0.000
5 761	5.209	0.002	0.000	0.000

223	-5.761	5.209	0.002	0.000	0.000
			-		
		Column Nu	umber : 643		
110	13.701	-0.138	1.968	0.000	0.000
111	3.562	-0.063	-1.897	0.000	0.000
112	17.087	-3.413	0.057	0.000	0.000
113	0.176	3.212	0.014	0.000	0.000
120	10.248	-0.098	1.953	0.000	0.000
121	0.109	-0.023	-1.911	0.000	0.000
122	13.635	-3.373	0.043	0.000	0.000
123	-3.277	3.252	0.000	0.000	0.000
200	12.084	-0.141	0.050	0.000	0.000
210	18.469	-0.181	3.134	0.000	0.000
211	2.247	-0.060	-3.049	0.000	0.000
212	23.887	-5.420	0.077	0.000	0.000
213	-3.172	5.179	0.009	0.000	0.000
220	15.879	-0.151	3.123	0.000	0.000
221	-0.343	-0.030	-3.059	0.000	0.000
222	21.298	-5.390	0.066	0.000	0.000
223	-5.761	5.209	-0.002	0.000	0.000

Applied Loads - Strength Level							
LC	Axial (kip)	Shear X (kip)	Shear Z (kip)	Moment X (kip-ft)	Moment Z (kip-ft)		
	Column Number : 642						
110	3.562	-0.063	1.896	0.000	0.000		
111	13.701	-0.138	-1.968	0.000	0.000		
112	17.087	-3.413	-0.057	0.000	0.000		
113	0.176	3.212	-0.014	0.000	0.000		
120	0.109	-0.023	1.911	0.000	0.000		
121	10.248	-0.098	-1.953	0.000	0.000		

file://C:\Program Files (x86)\Bentley\Staad Foundation Advanced 7\CalcXsl\Combined.xml 3/3/2015

Page 5 of 12

Strip Footing Design

122	13.635	-3.373	-0.043	0.000	0.000
123	-3.277	3.252	-0.000	0.000	0.000
200	12.084	-0.141	-0.050	0.000	0.000
210	2.247	-0.060	3.049	0.000	0.000
211	18.469	-0.181	-3.134	0.000	0.000
212	23.887	-5.420	-0.077	0.000	0.000
213	-3.171	5.179	-0.009	0.000	0.000
220	-0.343	-0.030	3.059	0.000	0.000
221	15.879	-0.151	-3.123	0.000	0.000
222	21.298	-5.390	-0.066	0.000	0.000
223	-5.761	5.209	0.002	0.000	0.000
		Column Nu	imber : 643		
110	13.701	-0.138	1.968	0.000	0.000
111	3.562	-0.063	-1.897	0.000	0.000
112	17.087	-3.413	0.057	0.000	0.000
113	0.176	3.212	0.014	0.000	0.000
120	10.248	-0.098	1.953	0.000	0.000
121	0.109	-0.023	-1.911	0.000	0.000
122	13.635	-3.373	0.043	0.000	0.000
123	-3.277	3.252	0.000	0.000	0.000
200	12.084	-0.141	0.050	0.000	0.000
210	18.469	-0.181	3.134	0.000	0.000
211	2.247	-0.060	-3.049	0.000	0.000
212	23.887	-5.420	0.077	0.000	0.000
213	-3.172	5.179	0.009	0.000	0.000
220	15.879	-0.151	3.123	0.000	0.000
221	-0.343	-0.030	-3.059	0.000	0.000
222	21.298	-5.390	0.066	0.000	0.000
223	-5.761	5.209	-0.002	0.000	0.000

Calculated Pressures at Four Corners

Load Case	Pressure at corner 1 (q ₁) (kip/ft^2)	Pressure at corner 2 (q ₂) (kip/ft^2)	Pressure at corner 3 (q ₃) (kip/ft^2)	Pressure at corner 4 (q ₄) (kip/ft^2)	Area of footing in uplift (A _u) (sq. ft)
211	2.9700	0.7365	0.8021	3.0356	0.000
210	0.7365	2.9700	3.0356	0.8021	0.000
212	1.1273	1.1273	4.0757	4.0757	0.000
212	1.1273	1.1273	4.0757	4.0757	0.000

file://C:\Program Files (x86)\Bentley\Staad Foundation Advanced 7\CalcXsl\Combined.xml 3/3/2015

Page 6 of 12

Page 7 of 12

If A_u is zero, there is no uplift and no pressure adjustment is necessary. Otherwise, to account for uplift, areas of negative pressure will be set to zero and the pressure will be redistributed to remaining corners.

Load Case	Pressure at corner 1 (q ₁) (kip/ft^2)	Pressure at corner 2 (q ₂) (kip/ft^2)	Pressure at corner 3 (q ₃) (kip/ft^2)	Pressure at corner (q ₄) (kip/ft^2)
211	2.9700	0.7365	0.8021	3.0356
210	0.7365	2.9700	3.0356	0.8021
212	1.1273	1.1273	4.0757	4.0757
212	1.1273	1.1273	4.0757	4.0757

Summary of Adjusted Pressures at Four Corners

Load Case	Shear X (kip)	Shear Z (kip)	Resultant Shear (kip)	Resisting Sliding Force (kip)	Ratio X	Ratio Z	Resultant Ratio
110	-0.201	3.864	3.869	28.688	142.726	7.424	7.414
111	-0.201	-3.864	3.869	28.688	142.726	7.424	7.414
112	-6.826	-0.000	6.826	35.453	5.194	N/A	5.194
113	6.424	-0.000	6.424	21.924	3.413	N/A	3.413
120	-0.121	3.864	3.866	25.926	214.974	6.710	6.706
121	-0.121	-3.864	3.866	25.926	214.974	6.710	6.706
122	-6.745	0.000	6.745	32.691	4.847	N/A	4.847
123	6.504	-0.000	6.504	19.162	2.946	N/A	2.946
200	-0.281	-0.000	0.281	31.451	111.762	N/A	111.762
210	-0.241	6.183	6.187	30.070	124.664	4,864	4.860
211	-0.241	-6.183	6.187	30.070	124.664	4,864	4.860
212	-10.841	0.000	10.841	40.893	3.772	N/A	3.772
213	10.358	-0.000	10.358	19.246	1.858	187028.728	1.858
220	-0.181	6.183	6.185	27.998	154.767	4.529	4.527
221	-0.181	-6.183	6.185	27.998	154.767	4.529	4.527
222	-10.780	0.000	10.780	38.821	3.601	N/A	3.601
223	10.419	-0.000	10.419	17.175	1.648	N/A	1.648

Check for stability against sliding

Check for stability against overturning (Moments printed against	Local axis)
--	-------------

Load Case	Moment X (kip-ft)	Moment Z (kip-ft)	Resisting Moment X (kip-ft)	Resisting Moment Z (kip-ft)	Ratio X	Ratio Z
110	0.436	-71.951	83.675	581.242	192.131	8.078
111	0.436	71.952	83.675	581.242	192.131	8.078
112	14.789	0.000	103.405	718.296	6.992	N/A
113	-13.918	0.001	63.945	444.188	4.594	426232.000

Page 8 of 12

Strip Footing Design

120	0.261	-71.951	75.619	525.282	289.388	7.301
121	0.261	71.952	75.619	525.282	289.388	7.300
122	14.615	-0.000	95.349	662.336	6.524	3236169.967
123	-14.092	0.001	55.889	388.227	3.966	466048.754
200	0.610	0.001	91.731	637.202	150.449	875162.136
210	0.523	-115.122	87.703	609.222	167.816	5.292
211	0.523	115.123	87.703	609.222	167.816	5.292
212	23.488	-0.000	119.271	828,509	5.078	4180125.941
213	-22.443	0.001	56.135	389.935	2.501	267463.273
220	0.392	-115.122	81.661	567.252	208.340	4.927
221	0.392	115.123	81.661	567.252	208.340	4.927
222	23.357	-0.000	113.229	786.539	4.848	2150476.606
223	-22.574	0.001	50.093	347.965	2.219	267190.760

Calculations of Footing Thickness

Footing thickness is calculated based on the ultimate load cases

Check for Punching Shear

For	Column	642

Critical Load case for Punching Shear Check :			18
Total Footing Depth, Do =	2.000ft		
Calculated Effective Depth,d _{eff} =	1.714ft		
For rectangular column, $P_2 =$		B _{col} / D _{col} :	1.049
Considering the particular column as interior column, Slab Edge Factor		'S :	40.0

Effective depth, det, increased until 0.75*V, 2 Punching Shear Force

Punchng Shear Force, Vu = 17.599kip

From ACI CI.11.12.2.1, ^{Db} for column		8.931ft
Equation 11-33, V _{c1}	$\left(2 + \frac{4}{\beta_e}\right) \times b_0 \times d_{eff} \times \sqrt{1000 \times \mathbb{P}_e^+} =$	810.025kip
Equation 11-34, V _{c2} =	$\left(\frac{\mathbf{u}_{5}\times\mathbf{d}}{\mathbf{b}_{\mathbf{c}}}+2\right)\times\lambda<\int_{\mathbf{c}}\mathbf{V}_{\mathbf{c}}\times\mathbf{b}_{\mathbf{c}}\times\mathbf{d}-1$	1348.397kip
Equation 11-35, V _{c3} =	$A \times M_{\rm g} \times M_{\rm eII} \times \sqrt{1000 \times F_{\rm g}}^{-1} =$	557.493kip
Punching shear strength,Vc=	0.75 x minimum of (V _{c1} ,V _{c2} ,V _{c3}) =	418.119kip
	0.75 * V _c	> V _u hence, OK

For Column 643

Critical Load case for Punching Shear Check :

18

Total Footing Depth, Do =	2.000ft		
Calculated Effective Depth,def =	1.714ft		
For rectangular column, $\beta_2 =$		B _{col} / D _{col} :	1.049
Considering the particular column as interior column, Slab Edge Factor		o* :	40.0

Effective depth, det, increased until 0.75*Vc 2 Punching Shear Force

Punching Shear Force, Vu = 17.599kip

From ACI CI.11.12.2.1, ³ for column		8.931ft
Equation 11-33, Vci	$\left(2 + \frac{4}{\beta_0}\right) \times h_0 \times d_{eff} \times \sqrt{1000 \times \beta_0^{-1}} =$	810.025kip
Equation 11-34, V _{c2} =	$\left(\frac{\mathbf{u}_{2}\times\mathbf{d}}{\mathbf{b}_{c}}+2\right)\cdot\lambda\times\mathbf{j}\overline{\mathbf{t}_{c}}\times\mathbf{b}_{c}<\mathbf{d}-$	1348.397kip
Equation 11-35, V _{c3} =	$4 \times d_c \times d_{eff} \times \sqrt{1000 \times F_c}^2 =$	557.493kip
Punching shear strength,Vc=	0.75 x minimum of (V _{c1} ,V _{c2} ,V _{c3}) =	418.119kip
	0.75 * Ve	> V _u hence, OK

Check for One-Way Shear

Shear Plane Parallel to Foundation Width

Critical load case for maximum shear force along the length of footing : 18

Critical Shear force,Vu	For the critical load case:	12.632kip
Point of occurance of V _u	Critical one-way shear position:	12.396ft
From ACI Cl.11.3.1.1, Vc =	$2 \times W \times c_{eff} \times \sqrt{1100 \times F_e^{-1}} =$	72.827kip
	0.75 x Vc =	54.620kip

Since 0.75 * Vc > Vu hence, OK

Strip Footing Design

Shear Plane Parallel to Foundation Length

Critical load case for maximum shear force along the width of footing :

Critical Shear force,Vu	For the critical load case:	0.000kip
Point of occurance of V _u	Critical one-way shear position:	3.134ft
From ACI Cl.11.3.1.1, Vc =	$2 \times W \times d_{eff} \times \sqrt{1200 \times F_{e}^{-1}} =$	0.000kip
	0.75 x Vc =	0.000kip

Since 0.75 * $V_c > V_u$ hence, OK

Design of flexure

Bottom Reinforcement

Critical load case :	23
Required Effective Depth :	1.641ft
^β Ι, from ACI Cl.10.2.7.3	= 0.8500
From ACI Cl. 10.3.2, ^{µbsl}	$\cos \left(\frac{\kappa_{z}}{\kappa_{z}} + \frac{\kappa_{z}}{\kappa_{z}} + \frac{\kappa_{z}}{\kappa_{z}} \right) = 0.02851$
From ACI Cl. 10.3.3, Pm.ss	0.75 × 664 - 0.02138
From ACI Cl. 7.12.2, ^µ min	$n = \left(\begin{array}{c} 0.0918 & f_{Y}^{(0,c)1}, 0.0914 \\ F_{Y} & F_{Y} \end{array} \right)$ - 0.00180
Modular Ratio,m	$\frac{\overline{F_y}}{\left(\max_{v} \times F_v\right)} = -17.6471$
Ultimate Moment :	12.785kip-ft
Point of occurrence of the ultimate moment along the length of footing :	8.019ft
Nominal Moment Capacity :	14.205kip-ft
Required P (based on effective depth) :	0.0022
P x deff / Depth (based on gross depth) :	0.0018

Area of main steel required, $A_s = \frac{1}{2} * W *$ deff :

			_
1.	71	Oii	n7
	_		10

Top Reinforcement

Critical load case :	18
Required Effective Depth :	1.656ft
^{β1} , from ACI Cl.10.2.7.3	= 0.8500
From ACI Cl. 10.3.2, Pbul	$C^{55} \times \beta_1 \times 7_0 \times \frac{27}{f_0 \times (27 + T_y)} = 0.02851$
From ACI Cl. 10.3.3, Pn.	0.02138 0.02138
From ACI Cl. 7.12.2, Prin	$mm\left(0.0018\frac{40mi}{v_y},0.0014\right)$ 0.00180
Modular Ratio,m	$\frac{\mathbf{F}_{\mathbf{y}}}{\left(\mathbf{n}\mathbf{z}_{s},\mathbf{p}_{c}^{-1}\right)} = -17.6471$
Ultimate Moment :	53.143kip-ft
Point of occurrence of the ultimate moment along the length of footing :	8.189ft
Nominal Moment Capacity :	59.048kip-ft
Required (based on effective depth):	0.0022
P x deff / Depth (based on gross depth) :	0.0018
Area of main steel required, $A_s = P^* W^*$ deff :	1.210in2

Distribution Reinforcement

Critical load case :	212	
Critical Moment for distribution steel :	15.9307	/ kip-l
Nominal moment Capacity :	17.7008	kip-1
Point of occurance of the critical moment along length:	1.4200	ft
Required ¹ (based on effective depth):	0.0022	
P x deff / Depth (based on gross depth) :	0.0018	
Area of distribution steel required, $A_6 = P * L * deff$:	8.402	in2
Too surface disribution reinforcement		
Moment at column face :	9.0473	8 kip-1
Provided Area for distribution steel along Z(Top reinforcement):	8.402	in2

Provided Reinforcement

Main bar no. for top Reinforcement:

#6

Strip Footing Design

Spacing of top reinforcement bar :	11.000	in	
Based on spacing reinforcement increment; provide	ded reinforcement is		
#6 @ 11in o.c			
Main bar no. for bottom Reinforcement:	#7		
Spacing of bottom reinforcement bar :	11.000	in	
Based on spacing reinforcement increment; provide	ded reinforcement is		
#7 @ 11in o.c			
Distribution bar no. (Bottom):	#7		
Spacing of distribution bars (Bottom):	13.464	in	
Based on spacing reinforcement increment; provide	ded reinforcement is		
#7 @ 13in o.c			
Distribution bar no.(Top):	#6		
Spacing of distribution bars(Top) :	9.921	in	
Based on spacing reinforcement increment; provide	ded reinforcement is		
#6 @ Oin o c			

Print Calculation Sheet

Appendix I: Hand Calculation - Combined Footing Design

Designed by: DJH

Checked by:

TOTAL	AXIAL	LOAD							
Pax = S= 1	PUH2 + P 50.5"	543 C	2(13.887)) = HJ.	ŊЦ K				
-> ass1,	me allo	pable s	ou pru	ure:	4000	b Ht .	q.		
-ball	THAT SOIL	UNIT I	ALLANT .		120 16	T+3=	Ys		
-00120	the distant	the from le	42 to the	e of filing:	1 4	4 15	12		
-TTY	. IOLUMO	HAICEAL	5 = 24"						
	dilperi (+ Soll and	w faotin	9 - 12"					_
+ Lana	th of fo	sotting :	L - 184.5	ν					
NET	OIL BE	REING-	CAPACIT	Y			-		-
WL.	- 150 <u> </u> 6	(2410)	$\left(\frac{1}{1}\frac{64}{10}\right)$){ <u>1 k</u>)= .8	k146	2_		
2W	= 1203 <u>16</u> Ft	s (12 m)	(1 ft 12 m)(1000	-\ = · '	12 416	٤L		
9-199	= ga -	WC - W	s = 4 -	. 312	= 3,5	58 414	42		
REGU	RED FO	O TIN G	AREA						
Areq	= Pax	- 47.7	<u>14 - 13</u> 58	.34 ft	2				
b =	<u>Are</u> =	(14.54)	92	4 6 .'	use	l f6	= b	>	

Designed by

Checked by:

SHEAR & MOMENT LALCULAT	10145		
forming pressare:		47.114K	
9n= 2(22.287) = 26 Hin 184.5	23.104		13.887K
Shitur :	- 4	a.	*
+ Vp. = .26 (17") - 23.887 = -19.467"	•?, 200000	- 12 - 0 0 0	• *3 • • • • •
+Vpg = 126(17 + 150.5) - 23 187 = 19.663 K	-193	.5 ^{"-} ?5	.15"-1"
$-\sqrt{p_1} = \prod(12.5) = 4.4 z$			15 87
-Ves = (3 (.26) = -4.42			
manunt :	4.NL	7	
MP. = 4.42(17) - 37.57 K-M 2			-441
Moz = (-1947)(75.25) = 952.56 + -10 2 +57.57 - 597	- 19.47		
Mos = (-4.42)(-1) = 37.57 K-10			
	77.57		57,62
		- 695	

Designed by:

Checked by:

	DE FLEXURE:
Nu= (695 K-in, b-L=184.50, d=244
Rns M	41 = . 645 = .0073 KAN2 (1000) = 9.3 Iblin2 1602 = .9(184.5)(242)
P= ,854 F√	$\frac{f'c}{1-\frac{1-2Rn}{1-\frac{1}{2}}} = \frac{1}{282} \frac{1}{1-\frac{1}{2}} $
pb= 185	[870008.5%] = .85[87000(.85)(4000)]03355 [fulstraio+ fu)] = [10000(1000)+ M000]03355
Prinax = i	1505 = . 1251 > P , Prins = . 0018 +UX
As = PL	-d = dois (184.5)(24) = 7.79 in2, use 7 #10, A1= 8.89 m2
streak f	OR PUNCHING SHEAR = D COLUMN 642 = COLUMN 643
-bassur	me 311 100cr
dn= 24	4-3-15(1.278) = 20.361", 6=10"
Punchau	ut porimeter: bo = 4(20,36+10) = 121.4411
Vo= Pc-	- qn (2+d)2 = 23.887 - 022 (30.36)2 = 3.61K
\$VC = [[dd + 2] Fic bod =,75 (20(20.36)+2) (4000 (12149) (20.36)
¢vc=	627.82 > VU V

Deligned by:

Designed by:

Checked by:

125

Appendix J: Excel Spreadsheet – Strapped Footing Models

Model: S1

			Strap Footing Desig	n .	
DATE:	2/6/2015			DESIGN	#: 1
PASS:	YES			CHECK:	DH
	Footing	Node	642		
	Length		4 ft		
	Width		4 ft		
	Thickness		2 ft		
	Depth to b	ase	3 ft		
	Size		#7		
	Number		4		
	Spacing		12 in		
	Footing	Node	643		
	Length		3 ft		
	Width		3 ft		
	Thickness		2 ft		
	Depth to b	ase	3 ft		
	Size		#7		
	Number		4		
	Spacing		8 in		
	Strap Design				
	Width		3 ft		
	Thickness		2 ft		
	Size		#9		
	Number		3		
	Spacing		12 in		

		Strap Footing Design	
DATE:	2/6/2015		DESIGN #: 1
PASS:	YES		CHECK: DH
CHECKS	i:		
	1.0 Node 1		
	Check 1:	OKAY!	
	1.1 Node 2		
	Chack 1	OKANI	
	CHECK 1.	UKAT:	
	1.2 Strap		
	Check 1:	OKAY!	
	Check 2:	OKAY!	
	1.3 Node 1 Reinforcem	ent	
	Check 1:	OKAY!	
	Check 2:	OKAY!	
	CHECK 5:	UNAT:	
	1.4 Node 2 Reinforcem	ent	
	Check 1:	OKAY!	
	Check 2:	OKAY!	

Check 3:

OKAY!

Concrete Compressive Strength Steel Yield Strength Density of Concrete Unit Weight of Soil Coefficient of Friction

1.2 Initial Assumptions & Structure Information

b	4 ft	Assumed Width of Footing
d	3 ft	Depth to Base of Footing
t	2 ft	Thickness of Footing
D _{EdgeFooting}	1 ft	Distance from Column to Footing Edge
D _{nodes}	150.5 in	Distance Between Nodes
D _{Reactions}	138.5 in	Distance Between Reactions
ColWidth	10 in	Width of Column
e	1 ft	Eccentricity

	Strap Footing Design				
DATE:	2/6/201	5	DESIGN #:	1	
PASS:	YES		CHECK:	DH	
	1.0 Node 1				
		22.007 6 kin			
	M	25.887 TT-KIP	woment		
	v	2.07 kip	Shear		
	R1	25.96 kip	Reaction at Node 1		
	q err	3580 lb	Net Soil Bearing Capacity		
	9 _{eff}	3.58 kip	Net Soil Bearing Capacity		
	A _{Read}	7.25 ft ²	Required Area of Footing		
	Side 1	4 ft	Length of Side 1		
	Side 2	4 ft	Length of Side 2		
	A _{Ftng}	16 ft ²	Area of Footing		
		CHECK: OKAY!			

2.0 Factored Node 1

Fy1	28.66 kip
М	28.66
v	2.48

28.66

2.48

M V

		Strap	Footing Design
DATE:	2/6/201	15	DESIGN #: 1
PASS:	YES		CHECK: DH
	1.0 Node 2		
	м	23.887 ft-kip	Moment
	v	2.07 kip	Shear
	Rz	25.96 kip	Reaction at Node 1
	q _{eff}	3580 lb	Net Soil Bearing Capacity
	q _{eff}	3.58 kip	Net Soil Bearing Capacity
	ARead	7.25 ft ²	Required Area of Footing
	Side 1	3 ft	Length of Side 1
	Side 2	3 ft	Length of Side 2
	A _{Ftng}	9 ft ²	Area of Footing
		CHECK: OKAY!	
	2.0 Factored N	lode 2	
	Fyz	28.66 kip	

Strap Footing Design				
DATE:	2/6/2015		DESIGN #:	1
PASS:	YES		CHECK:	DH
	1.0 Factored Upwar	d Pressures		
	qn1	7.79		
	qn2	8.73		

1.2 Diagram & Shear Forces

+P1	14.28
-P1	-14.39
P2	2.48
P3	2.48
+P4	15.57
-P4	-13.09

1.3 X-Distances

X1	1.83	ft
X2	1.84	ft
X3	0.33	ft
X4	8.875	ft
X5	1.5	ft
X6	1.5	ft

1.4 Moments

Mu	13.062675						
Mu	-26.176703						
Mu	-25.766916						
Mu	-3.7253372						
Mu	9.8178157						
							I
-------	-----------------------------	----------	-------	-----------	-------------------------	-----------------	----
			Strap	Footing D	esian		
DATE:	2/6/2015		•	_	2	DESIGN 4	1
PASS:	YES					CHECK:	DH
1.0	Initial Dat	а					
			1				
	Strap _{Width}	3	ft				
	Strap _{Depth}	2	ft				
	Strap _{cover}	3	in		Clear Cover		
	D _{EffStrap}	20.361	in		Effective Depth		
1.1	One Way	Shear					
	Vu	15.57					
	φ	0.75					
	φVc	34769.05	lb				
	φVc	34.77	kip				
	1/2 φVc	17.38	kip				
		CHECK:	OKAY!		What is the check I	here?	
1.2	Flexure						
	TRACIC						
	φ	0.9					
	Mu	26.18					
	а	2	in		Assumed		
	т	18.03	kip				
	а	0.15	in				
	aused	1	in				
	т	17.57	kip				
	As	0.29	in²				
	ρ	0.0004					
	Pmin	0.003333					
	As _{min}	2.44332	in*				
	As	2.44332	in²				
	Size	#9			Size of Steel Reinforci	ng	
	n	2.44	1		Number of Bars used t	o achieve Asmir	r
	n _{wed}	3			Number of Bars used		
	3 _{max} Saaciaa	15			Maximum Allowable Sp	bacing	
	opacing	Check:			Spacing(Smay		
		Oneok.	UNHT:		opaoing comax		

			Strap Footing Design		
DATE:	2/6/201	5		DESIGN #:	1
PASS:	YES			CHECK:	DH
<u> </u>	1.0 Node	642			
	Cover	3 in			
	d_,,	20 in			
	c+d	30 in			
	ba	120 in			
	a.	195 k/ft ²			
	5	28.65 kin			
	· •	20.00 NP			
	1.1 Two Way	Shear			
	a	20	Select Column Location		
	VU tvc	16.50 kip			
	φvc dVc	809 54308 kin			
	ψıc	CHECK: OKAY!			
	1.2 One Way	Shear			
	Vu	14.39 kip			
	Φ	0./5			
	φνα	227683.55 ID			
	φνε	CHECK: OKAY!			
	1.3 Flexure - I	Longtitudinal			
	Φ	25.19 kin.ft			
	Ro	0.010 k/jo ²			
	Re	10.010 K/III			
	БП	10.10 ID/IN			
	1.4 Reinforce	ment			
	β	1	Shape Paremeter		
	ρ	0.0003			
	Pb	0.0335			
	Pmex	0.0251531			
	Pmin	0.0018			
	Pured	0.0018			
	Asmin	1.728			
	Size	#7	Size of Steel Reinforcing		
	n	2.88	Number of Bars used to a	thie ve Asmin	
	Rused	4	Number of Bars used		
	Actual	2.4 in ²	Area of Steel		
	Smax	14.0 in			
	Spading	12 in			
		Check: OKAY!			

		:	Strap Footing Design
DATE:	2/6/20	15	. DESIGN #: 1
PASS:	YES		CHECK: DH
	1.0 Node	643	
	Cover	3 in	
	deff	20 in	
	c+d	30 in	
	bo	120 in	
	q.,	2.91 k/ft	
	Fy	28.66 kip	
	1.1 Two Way	y Shear	
	а Уш	10.48 kin	Select Column Location
	φvc	809543.08 kip	
	φvc	809.54308 In	
		CHECK: OKAY!	
	1.2 One Way	/ Shear	
	Vu	15.57 kin	
	Φ	0.75	
	φvc	227683.99 lb	
	φvc	227.68 kip	
		CHECK: OKAY!	_
	1.3 Flexure -	Longtitudinal	
	φ	0.9	
	Mu	26.18 kip-ft	
	Rn	0.018 k/in ²	
	Rn	18.18 lb/in ²	
	1.4 Reinford	ement	
	Þ	1	Shape Paremeter
	P	0.0005	
	Pb	0.03	
	Pmax	0.0251551	
	Pmin	0.0018	
	Pused	0.0018	
	AS _{min}	1.296	
	Size	#7	Size of Steel Reinforcing
	n	2.16	Number of Bars used to achieve Asmin
	A	2.4 in ²	Area of Steel
	S.	10 in	
	Specing	8 in	
		Check: OKAY!	

Model: S2

			Strap Footing	g Design		
DATE:	2/6/2015				DESIGN #:	1
PASS:	YES				CHECK:	DH
	Footing	Node	642			
	Less -th		o. (t)			
	Length		3 ft			
	Width		3 ft			
	Thickness		3 ft			
	Depth to b	ase	3 ft			
	Size		#6			
	Number		5			
	Spacing		7 in			
	Footing	Node	643			
			0.75 ()			
	Length		2.75 ft			
	Width		2.75 ft			
	Thickness		3 ft			
	Depth to b	ase	3 ft			
	Size		#8			
	Number		3			
	Spacing		12 in			
	Strap Design					
	Width		3 ft			
	Thickness		3 ft			
	Size		#9			
	Number		4			
	Spacing		9 in			

				Strap Footing Design		
DATE:		2/6/2015			DESIGN #:	1
PASS:		YES			CHECK:	DH
CHECK	S:					
	1.0	Node 1				
		Check 1:	OKAY!			
	1.1	Node 2				
		Check 1:	OKAVI			
			0.0.1.			
	1.2	Strap				
		Check 1:	OKAY!			
		Check 2:	OKAY!			
	1.3	Node 1 Reinforcement				
		Charle 1:	OKAN			
		Check 2:	OKAVI			
		Check 3:	OKAY!			
	1.4	Node 2 Reinforcement				
		Check 1:	OKAY!			
		Check 2:	OKAY!			

Check 3:	OKAY!

1.1 Material Properties

Concrete Compressive Strength Steel Yield Strength Density of Concrete Unit Weight of Soil Coefficient of Friction

1.2 Initial Assumptions & Structure Information

DATE: 2/6/2 PASS: YES 1.0 Node 1 M V P	23.887 ft-kip	DESIGN #: CHECK:	1 DH
PASS: YES 1.0 Node 1 M V P	23.887 ft-kip	CHECK:	DH
1.0 Node 1 M V	23.887 ft-kip	Momant	
M V R.	23.887 ft-kip	Moment	
V		Montent	
Ρ.	2.07 kip	Shear	
01	25.96 kip	Reaction at Node 1	
9 _{eff}	3550 lb	Net Soil Bearing Capacity	
9 _{eff}	3.55 kip	Net Soil Bearing Capacity	
A _{Reqd}	7.31 ft ²	Required Area of Footing	
Side 1	3 ft	Length of Side 1	
Side 2	3 ft	Length of Side 2	
A _{Ftng}	9 ft ²	Area of Footing	
	CHECK: OKAY!		

Fy1	28.66 kip
М	28.66
v	2.48

			Strap F	ooting Design	
DATE:	2/6/201	5		DESIGN #:	1
PASS:	YES			CHECK:	DH
:	1.0 Node 2				
	м	23.887	ft-kip	Moment	
	V	2.07	kip	Shear	
	R ₂	25.96	kip	Reaction at Node 1	
	q er	3550	lb	Net Soil Bearing Capacity	
	q _{eff}	3.55	kip	Net Soil Bearing Capacity	
	A _{Reqd}	7.31	ft²	Required Area of Footing	
	Side 1	2.75	ft	Length of Side 1	
	Side 2	2.75	ft	Length of Side 2	
	A _{Ftng}	7.5625	ft²	Area of Footing	
		CHECK:	OKAY!		

Fyz	28.66 kip
М	28.66
V	2.48

			Strap Footing Design		
DATE:	2/6/2015			DESIGN #:	1
PASS:	YES			CHECK:	DH
	1.0 Factored Upwa	rd Pressures			
	op1	10.28			
	duī	10.58			
	qn2	9.52			
	1.2 Diagram & She	ar Forces			
	+P1	19.03			
	-P1	-9.63			
	P2	2.48			
	P3	2.48			

1.3	X-Distances	

+P4

-P4

X1	1.83	ft
X2	1.84	ft
X3	0.33	ft
X4	8.875	ft
X5	1.5	ft
X6	1.5	ft

15.57

-13.09

1.4 Moments

Mu	17.4169
Mu	-26.176703
Mu	-25.766916
Mu	-3.7253372
Mu	9.8178157

			Strap Footin	ng Design		
DATE:	2/6/2015	,			DESIGN #:	1
PASS:	YES				CHECK:	DH
	1.0 Node	642				
	Cover	3	'n			
	der	32	'n			
	c+d	42	'n			
	bo	168	'n			
	q.,	3.46	k/ft ²			
	Fv	28.66	kip			

1.1 Two Way Shear

۹	20	
Vu	-13.73	kip
φvc	1975285	b
φvc	1975.285	kip
	CHECK:	OKAY!

Select Column Location

1.2 One Way Shear

Vu	9.63	kip
φ	0.75	
φvc	510012.14	lb
φvc	510.01	kip
	CHECK:	OKAY!

1.3 Flexure - Longtitudinal

ф	0.9
Mu	26.18 kip-ft
Rn	0.009 k/in ²
Rn	9.47 lb/in²

1.4 Reinforcement

Size of Steel Reinforcing Number of Bars used to achieve Asmin Number of Bars used

Shape Paremeter

Area of Steel

140

			strap Footing Design		
	2/6/2015)		DESI GN #:	
1	0 Node	6/13		CHECK:	_
1	NO NOUE	045			
	Cover	3 in			
	d _{eff}	32 in			
	c+d	42 in			
	bo	168 in			
	q _	3.46 k/ft ²			
	Fy	28.66 kip			
1	.1 Two Way	Shear			
	a	20	Select Column Location		
	Vu	-13.74 kip			
	φVc	19752.85.1 kip			
	φVc	1975.2851 In			
		CHECK: OKAY!			
1	.2 One Way	She ar			
	Vu	15.57 kip			
	φ	0.75			
	φVc	510012.14 lb			
	φVc	510.01 kip			
		CHECK: OKAY!			
1	.3 Flexure - L	ongtitudinal			
	φ	0.9			
	Mu	26.18 kip-ft			
	Rn	0.009 k/in ²			
	Rn	9.47 lb/in ²			
1	A Reinforce	ment			
	β	1	Shape Paremeter		
	ρ	0.0002			
	ρь	0.03			
	ρ _{max}	0.0251531			
	Pmin	0.0018			
	Pused	0.0018			
	As _{min}	1.9008			
	Size	# 8	Size of Steel Reinforcing		
	n	2.41	Number of Bars used to aci	hieve Asmin	
	Rused	з	Number of Bars used		
		2	Area of Steel		
	Aztel	2.37 In	Area or Steel		

Model: S3

		Strap Footing Design	
DATE:	2/6/2015	DESIGN #:	1
PASS:	YES	CHECK:	DH

Footing	Node	642	
Length		3 ft	
Width		3 ft	
Thickness		2 ft	
Depth to b	ase	3 ft	
Size		#7	
Number		3	
Spacing		12 in	
Footing	Node	643	
Length		3 ft	
Width		3 ft	
Thickness		2 ft	
Depth to b	ase	3 ft	
Size		#6	
Number		3	
Spacing		12 in	
Strap Design			
Width		3 ft	
Thickness		2 ft	
Size		#7	
Number		5	
Spacing		7 in	

				1
		Strap Footing Design		
DATE:	2/6/2015		DESIGN #: 1	1
PASS:	YES		CHECK: D	н
CHECK	S:			
	1.0 Node 1			
	Check 1:	OKAY!		
	1.1 Node 2			
	Check 1:	OKAY!		
	1.2 Strap			
	Check 1:	OKAY!		
	Check 2:	OKAY!		
	1.3 Node 1 Reinforcer	nent		
	Check 1:	OKAY!		
	Check 2:	OKAY!		
	Check 3:	OKAY!		
	1.4 Node 2 Reinforcer	nent		
	Check 1:	OKAY!		
	Check 2:	OKAY!		

1.1 Material Properties

psi	4000	f'c
ksi	60	fγ
pcf	150	Wc
pcf	120	γ
	0.5	μ
psf	4000	q _{ult}

Concrete Compressive Strength Steel Yield Strength Density of Concrete Unit Weight of Soil Coefficient of Friction

1.2 Initial Assumptions & Structure Information

b	4 ft
d	<u> </u>
t	2 ft
D _{EdgeFooting}	0.5 ft
D _{nodes}	150.5 in
D _{Reactions}	144.5 in
ColWidth	10 in
e	1.5 ft

Assumed Width of Footing
Depth to Base of Footing
Thickness of Footing
Distance from Column to Footing Edge
Distance Between Nodes
Distance Between Reactions
Width of Column
Eccentricity

			Strap Fo	oting Design		
DATE:	2/6/2015				DESIGN #:	1
PASS:	YES				CHECK:	DH
	1.0 Node 1					
	м	11.9435 ft-	-kip	Moment		
	V	0.99 ki	р	Shear		
	R1	24.88 ki	р	Reaction at Node 1		
	q _{eff}	3580 lb	•	Net Soil Bearing Cap	pacity	
	9 _{eff}	3.58 ki	p	Net Soil Bearing Cap	pacity	
	A _{Reqd}	6.95 ft	2	Required Area of Fo	oting	
	Side 1	3 ft		Length of Side 1		
	Side 2	3 ft		Length of Side 2		
	A _{Ftng}	9 ft	2	Area of Footing		
		CHECK: O	KAY!			

2.0 Factored Node 1

Fy1	28.66 kip
М	14.33
V	1.19

				Strap Footing Design		
DATE:	2/6/2015				DESIGN #:	1
PASS:	YES				CHECK:	DH
	1.0 Node 2					
	M	11.9435	ft-kip	Moment		
	v	0.99	kip	Shear		
	Rz	24.88	kip	Reaction at Node 1		
	9 _{eff}	3580	lb	Net Soil Bearing Cap	acity	
	q _{eff}	3.58	kip	Net Soil Bearing Cap	acity	
	Areas	6.95	ft²	Required Area of Foo	ting	
	Side 1	3	ft	Length of Side 1		
	Side 2	3	ft	Length of Side 2		
	A _{Ftng}	9	ft²	Area of Footing		
		CHECK:	OKAY!			

2.0 Factored Node 2

Fy ₂	28.66 kip
М	14.33
V	1.19

			Strap Footing Design		
DATE:	2/6/2019	5		DESIGN #:	1
PASS:	YES			CHECK:	DH
	1.0 Factored U	pward Pressures			
	qn1	9.95			
	qn2	9.16			
	1.2 Diagram &	Shear Forces			
	+P1	13.27			
	-P1	-15.40			
	P2	1.19			
	P3	1.19			
	+P4	14.93			
	-P4	-13.74			

1.3 X-Distances

X1	1.83	ft
X2	1.84	ft
X3	0.33	ft
X4	8.875	ft
X5	1.5	ft
X6	1.5	ft

1.4 Moments

Mu	12.140878
Mu	-12.54489
Mu	-12.348504
Mu	-1.785326
Mu	10.302819

DATE:		2/6/2015			 DESIGN #:	1
PASS:		YES			CH ECK:	DH
	1.0	Node	642			
		Cover		3 in		
		der	2	0 in		
		c+d	3	0 in		
		bo	12	0 in		
		q.	3.3	2 k/ft²		
		Fy	2.8.6	6 kip		
				-		
	1.1	Two Way S	shear			

۹	20
Vu	7.93 kip
φvc	809543.08 lb
φvc	809.54308 kip
	CHECK: OKAY!

1.2 One Way Shear

Vu	15.40 kip
φ	0.75
φvc	227683.99 lb
φvc	227.68 kip
	CHECK: OKAY!

1.3 Flexure - Longtitudinal

ф	0.9
Mu	12.54 kip-ft
Rn	0.012 k/in ²
Rn	11.62 lb/in ²

1.4 Reinforcement

β	1
ρ	0.0002
Рь	0.0335
Pmax	0.0251531
Pmin	0.0018
Pused	0.0018
As _{min}	1.296
Size	# 7
n	2.16
n _{used}	з
Actel	1.8 in ²
Smax	15.0 in
Spacing	12 in
	Check OKAY!

Shape Paremeter

Size of Steel Reinforcing Number of Bars used to achieve Asmin Number of Bars used Area of Steel

		Stre	ap Pooting Design		
DAT'E:	2/6/20	5		DESIGN #:	1
PASS:	YES			CH ECK:	DH
	1.0 Node	643			
	Cover	3 in			
	d _{eff}	20 in			
	c+d	30 in			
	bo	120 in			
	q_	3.05 k/ft ²			
	Fv	28.66 kip			

Vay S

۹	20
Vu	9.59 kip
φvc	809543.08 kip
φvc	809.54308 In
	CHECK: OKAY!

Select Column Location

1.2 One Way Shear

Vu	14.93 kip
φ	0.75
φvc	227683.99 lb
φVc	227.68 kip
	CHECK: OKAY!

1.3 Flexure - Longtitudinal

ф	0.9
Mu	12.54 kip-ft
Rn	0.012 k/in ²
Rn	11.62 lb/in ²

1.4 Reinforcement

β	1	
ρ	0.0002	
ρь	0.03	
ρ _{max}	0.0251531	
Pmin	0.0018	
Pused	0.0018	
As _{min}	1.296	1
Size	# 6	5
n	2.95	
Rused	3	
Aztel	1.32	in ²
Smax	11	t in
Spacing	12	in
	Check	OKAY!

Size of SteelReinforcing Number of Bars used to achieve Asmin Number of Bars used

Area of Steel

Shape Paremeter

Appendix K: STAAD.foundation – Strapped Footing

Strap Footing Design

Strap Footing Design(ACI 318-05)

Design For Strap Footing 1

Strap Footing 1

Input Parameters

Footing Geometry

Left Footing Geometry

Footing Thickness :	2.000ft
Footing Length :	4.000ft
Footing Width :	4.000ft
Max Footing Thickness :	120.000in
Max Footing Length :	240.000in
Max Footing Width :	240.000in
Eccentricity along X (Oxd) :	0.000in
Eccentricity along Z (Ozd) :	0.000in

Right Footing Geometry

Footing Thickness : 2.000ft Footing Length : 3.000ft Footing Width : 3.000ft Max Footing Thickness : 120.000in Max Footing Length : 240.000in Max Footing Width : 240.000in Eccentricity along X (Oxd) : 0.000in Eccentricity along Z (Ozd) : 0.000in

Concrete and Rebar Properties

Unit Weight of Concrete : 0.150kip/ft3 Strength of Concrete : 4.000ksi Yield Strength of Steel : 60.000ksi Minimum Bar Size : #7 Maximum Bar Size : #14 Minimum Bar Spacing : 2.000in Maximum Bar Spacing : 18.000in Pedestal Clear Cover (P, CL) : 2.000in Footing Clear Cover (F, CL) : 2.000in

file://C:\Program Files (x86)\Bentley\Staad Foundation Advanced 7\CalcXsl\StrapUS.xml 3/3/2015

r

Page 2 of 24

Soil Properties

Unit Weight :	120.000lb/ft3
Soil Bearing Capacity :	4.000kip/ft2
Soil Bearing Capacity Type:	Net Bearing Capacity
Soil Surcharge :	0.000kip/in2
Depth of Soil above Footing :	12.000in
Depth of Water Table :	120.000ft

Other Parameters

Footing Plan Increment :	1.000in
Footing Thickness Increment :	1.000in
Beam Depth :	24.000in
Beam Width :	36.000in
Coefficient of Friction :	0.500
Factor of Safety Against Sliding :	1.500
Factor of Safety Against Overturning :	1.500

	Load Combination/s- Service Stress Level
Load Combination Number	Load Combination Title
110	D + W N-S
111	D + W S-N
112	D + W E-W
113	D + W W-E
120	0.6 DL + W N-S
121	0.6 DL + W S-N
122	0.6 DL + W E-W
123	0.6 DL + W W-E
200	1.4 DL
210	1.2 DL + 1.6 W N-S
211	1.2 DL + 1.6 W S-N
212	1.2 DL + 1.6 W E-W
213	1.2 DL + 1.6 W W-E
220	0.9 DL + 1.6 W N-S
221	0.9 DL + 1.6 W S-N
222	0.9 DL + 1.6 W E-W
223	0.9 DL + 1.6 W W-E
	Load Combination/s- Strength Level
Load Combination Number	Load Combination Title
110	D + W N-S
111	D + W S-N
112	D + W E-W

113	D + W W-E
120	0.6 DL + W N-S
121	0.6 DL + W S-N
122	0.6 DL + W E-W
123	0.6 DL + W W-E
200	1.4 DL
210	1.2 DL + 1.6 W N-S
211	1.2 DL + 1.6 W S-N
212	1.2 DL + 1.6 W E-W
213	1.2 DL + 1.6 W W-E
220	0.9 DL + 1.6 W N-S
221	0.9 DL + 1.6 W S-N
222	0.9 DL + 1.6 W E-W
223	0.9 DL + 1.6 W W-E

Footing 642

Applied Loads - Service Stress Level							
LC	Axial (kip)	Shear X (kip)	Shear Z (kip)	Moment X (kip-ft)	Moment Z (kip-ft)		
110	3.562	-0.063	1.896	0.000	0.000		
111	13.701	-0.138	-1.968	0.000	0.000		
112	17.087	-3.413	-0.057	0.000	0.000		
113	0.176	3.212	-0.014	0.000	0.000		
120	0.109	-0.023	1.911	0.000	0.000		
121	10.248	-0.098	-1.953	0.000	0.000		
122	13.635	-3.373	-0.043	0.000	0.000		
123	-3.277	3.252	-0.000	0.000	0.000		
200	12.084	-0.141	-0.050	0.000	0.000		
210	2.247	-0.060	3.049	0.000	0.000		
211	18.469	-0.181	-3.134	0.000	0.000		
212	23.887	-5.420	-0.077	0.000	0.000		
213	-3.171	5.179	-0.009	0.000	0.000		
220	-0.343	-0.030	3.059	0.000	0.000		
221	15.879	-0.151	-3.123	0.000	0.000		
222	21.298	-5.390	-0.066	0.000	0.000		
223	-5.761	5.209	0.002	0.000	0.000		

	Applied Loads - Strength Level						
LC	Axial (kip)	Shear X (kip)	Shear Z (kip)	Moment X (kip-ft)	Moment Z (kip-ft)		
110	3.562	-0.063	1.896	0.000	0.000		
111	13.701	-0.138	-1.968	0.000	0.000		
112	17.087	-3.413	-0.057	0.000	0.000		
113	0.176	3.212	-0.014	0.000	0.000		
120	0.109	-0.023	1.911	0.000	0.000		
121	10.248	-0.098	-1.953	0.000	0.000		

122	13.635	-3.373	-0.043	0.000	0.000
123	-3.277	3.252	-0.000	0.000	0.000
200	12.084	-0.141	-0.050	0.000	0.000
210	2.247	-0.060	3.049	0.000	0.000
211	18.469	-0.181	-3.134	0.000	0.000
212	23.887	-5.420	-0.077	0.000	0.000
213	-3.171	5.179	-0.009	0.000	0.000
220	-0.343	-0.030	3.059	0.000	0.000
221	15.879	-0.151	-3.123	0.000	0.000
222	21.298	-5.390	-0.066	0.000	0.000
223	-5.761	5.209	0.002	0.000	0.000

Footing 643

Applied Loads - Service Stress Level						
LC	Axial (kip)	Shear X (kip)	Shear Z (kip)	Moment X (kip-ft)	Moment Z (kip-ft)	
110	13.701	-0.138	1.968	0.000	0.000	
111	3.562	-0.063	-1.897	0.000	0.000	
112	17.087	-3.413	0.057	0.000	0.000	
113	0.176	3.212	0.014	0.000	0.000	
120	10.248	-0.098	1.953	0.000	0.000	
121	0.109	-0.023	-1.911	0.000	0.000	
122	13.635	-3.373	0.043	0.000	0.000	
123	-3.277	3.252	0.000	0.000	0.000	
200	12.084	-0.141	0.050	0.000	0.000	
210	18.469	-0.181	3.134	0.000	0.000	
211	2.247	-0.060	-3.049	0.000	0.000	
212	23.887	-5.420	0.077	0.000	0.000	
213	-3.172	5.179	0.009	0.000	0.000	
220	15.879	-0.151	3.123	0.000	0.000	
221	-0.343	-0.030	-3.059	0.000	0.000	
222	21.298	-5.390	0.066	0.000	0.000	
223	-5.761	5.209	-0.002	0.000	0.000	

Applied Loads - Strength Level							
LC	Axial (kip)	Shear X (kip)	Shear Z (kip)	Moment X (kip-ft)	Moment Z (kip-ft)		
110	13.701	-0.138	1.968	0.000	0.000		
111	3.562	-0.063	-1.897	0.000	0.000		
112	17.087	-3.413	0.057	0.000	0.000		
113	0.176	3.212	0.014	0.000	0.000		
120	10.248	-0.098	1.953	0.000	0.000		
121	0.109	-0.023	-1.911	0.000	0.000		
122	13.635	-3.373	0.043	0.000	0.000		
123	-3.277	3.252	0.000	0.000	0.000		
200	12.084	-0.141	0.050	0.000	0.000		

Page 5 of 24

Strap Foundation Design

210	18.469	-0.181	3.134	0.000	0.000
211	2.247	-0.060	-3.049	0.000	0.000
212	23.887	-5.420	0.077	0.000	0.000
213	-3.172	5.179	0.009	0.000	0.000
220	15.879	-0.151	3.123	0.000	0.000
221	-0.343	-0.030	-3.059	0.000	0.000
222	21.298	-5.390	0.066	0.000	0.000
223	-5.761	5.209	-0.002	0.000	0.000

Footing 642

Design Calculations

Footing Size

Initial Length $(L_0) = 4.00$ ft

Initial Width (
$$W_0$$
) = 4.00ft

Gross Soil Bearing Capacity = 4.24kip/ft^2

Reduction of force due to buoyancy = -0.00kip

Effect due to adhesion = 0.00kip

Final Footing Size

Length (L ₂) =	8.67	ft	Governing Load Case :	# 223
Width (W2) =	8.33	ft	Governing Load Case :	# 223
Depth (D ₂) =	2.00	ft	Governing Load Case :	# 223
Area (A2) =	72.22	ft ²		

Pressures at Four Corners

Load Case	Pressure at	Pressure at	Pressure at	Pressure at	Area of
	corner 1	corner 2	corner 3	corner 4	footing in
	(q ₁)	(q ₂)	(q ₃)	(q ₄)	uplift (A _u)
	(kip/ft^2)	(kip/ft^2)	(kip/ft^2)	(kip/ft^2)	(ft ²)
	(((((14.7

212	0.7309	0.5270	0.5239	0.7278	0.0000
211	0.6184	0.6116	0.4878	0.4946	0.0000
212	0.7309	0.5270	0.5239	0.7278	0.0000
212	0.7309	0.5270	0.5239	0.7278	0.0000

If $\boldsymbol{A}_{\!\mu}$ is zero, there is no uplift and no pressure adjustment is necessary.

Otherwise, to account for uplift, areas of negative pressure will be set to zero and the pressure will be redistributed to remaining corners.

Load Case	Pressure at corner 1 (q ₁) (kip/ft^2)	Pressure at corner 2 (q ₂) (kip/ft^2)	Pressure at corner 3 (q ₃) (kip/ft^2)	Pressure at corner 4 (q ₄) (kip/ft^2)
212	0.7309	0.5270	0.5239	0.7278
211	0.6184	0.6116	0.4878	0.4946
212	0.7309	0.5270	0.5239	0.7278
212	0.7309	0.5270	0.5239	0.7278

Summary of Adjusted Pressures at Four Corners

Adjust footing size if necessary.

Check for stability against overturning and sliding

FI	EV.	/ 🗛 🕆	TI ($\cap I$
_				<u> </u>

-	Factor of	safety again	Factor o against ov	f safety erturning	
Load Case No.	Along X- Direction	Along Z- Direction	Resultant	About X- Direction	About Z- Direction
110	200.831	6.651	6.648	27.714	870.266
111	127.931	8.988	8.965	37.448	554.370
112	5.678	341.396	5.677	1422.484	24.603

file://C:\Program Files (x86)\Bentley\Staad Foundation Advanced 7\CalcXsl\StrapUS.xml 3/3/2015

Page 7 of 24

Strap Foundation Design

113	3.400	760.824	3.400	3170.098	14.735
120	481.708	5.698	5.698	23.744	2087.403
121	162.797	8.169	8.159	34.038	705.455
122	5.233	414.963	5.233	1729.013	22.678
123	2.827	69682.422	2.827	290343.423	12.252
200	119.915	339.008	113.051	1412.533	519.632
210	198.321	3.922	3.921	16.342	859.390
211	110.897	6.403	6.393	26.681	480.556
212	4.202	297.385	4.202	1239.106	18.209
213	1.786	1057.520	1.786	4406.335	7.737
220	353.822	3.485	3.485	14.521	1533.230
221	124.488	6.011	6.004	25.045	539.448
222	3.985	325.865	3.985	1357.770	17.270
223	1.527	4137.287	1.527	17238.697	6.616

Critical Load Case And The Governing Factor Of Safety For Overturning And Sliding - X Direction

Critical Load Case for Sliding along X-Direction: 223

Governing Disturbing Force : 5.209kip

Governing Restoring Force : 7.953kip

Minimum Sliding Ratio for the Critical Load Case : 1.527

Critical Load Case for Overturning about X-Direction: 220

Governing Overturning Moment : 6.119kip-ft

Governing Resisting Moment : 88.849kip-ft

Minimum Overturning Ratio for the Critical Load Case: 14.521

Critical Load Case And The Governing Factor Of Safety For Overturning And Sliding - Z Direction

Critical Load Case for Sliding along Z-Direction :	220
Governing Disturbing Force :	3.059kip
Governing Restoring Force :	10.662kip
Minimum Sliding Ratio for the Critical Load Case :	3.485
Critical Load Case for Overturning about Z-Direction :	223
Governing Overturning Moment :	-10.418kip-ft

Governing Resisting Moment : 68.925kip-ft

Governing Residing Homenic . 00.525K

Minimum Overturning Ratio for the Critical Load Case: 6.616

Critical Load Case And The Governing Factor Of Safety For Sliding Along Resultant Direction

Critical Load Case for Sliding along Resultant Direction: 223

Governing Disturbing Force : 5.209kip

Governing Restoring Force : 7.953kip

Minimum Sliding Ratio for the Critical Load Case: 1.527

Shear Calculation

Calculated Effective Depth, $d_{eff} = D - C_{cover} - 1.0 = 1.79ft$ For rectangular pier, $\frac{3}{2} = B_{col} / D_{col} = 1.00$

Effective depth, defp increased until 0.75*V Punching Shear Force

Punching Shear Force, Vu = 19.18kip, Load Case # 212

From ACI Cl.11.12.2.1, bo for pier=	$ 2 \times (- _{\mathbf{d}} - C_{\mathrm{out}}) \geq \times \mathbf{d}_{\mathrm{ott}}) =$	15.17ft
Equation 11-33, V _{c1} =	$\left(2-\frac{4}{ \mathbf{b}_{2} }\right) \circ \mathbf{b}_{q} \otimes \mathbf{d}_{rrr} \otimes \sqrt{1000 \circ \mathbf{F}_{c}^{-1}} =$	1484.88kip
Equation 11-34, V_{c2} =	$\begin{pmatrix} \alpha_{\mathbf{s}} \times \mathbf{d} \\ \mathbf{b}_{0} + 2 \end{pmatrix} \times \mathbf{h} \times \mathbf{g}^{2} \mathbf{f}_{0} \times \mathbf{h}_{0} \times \mathbf{d} =$	1664.37kip
Equation 11-35, V _{c3} =	$4 \times t_n \times d_{crt} \times \sqrt{1000 \times P_c^{-1}} =$	989.92kip
Punching shear strength, V _c =	0.75 * minimum of (V _{c1} , V _{c2} , V _{c3}) =	742.44kip
	0.7	75 * V _c > V _u hence, OK

One-Way Shear Check Along X Direction

Page 9 of 24

Check that 0.75 * $V_c > V_{ux}$ where V_{ux} is the shear force for the critical load cases at a distance d_{eff} from the face of the pier caused by bending about the X axis.

Check that 0.75 * $V_c > V_{uz}$ where V_{uz} is the shear force for the critical load cases at a distance d_{eff} from the face of the pier caused by bending about the Z axis.

From above calculations,	0.75 * V _c =	203.97	kip
Critical load case for V _{uz} is # 212	$\nabla_{uv} = \nabla_{vv} _{v-D_{v}} =$	5.42	kip
		0.75 * V _c > V _{uz}	hence, OK

Calculate the flexural reinforcement along the X direction of the footing. Find the area of steel required, A, as per Section 3.8 of Reinforced Concrete Design (5th ed.) by Salmon and Wang (Ref. 1)

Critical Load Case # 212

The strength values of steel and concrete used in the formulae are in ksi

Factor from ACI Cl.10.2.7.3	for F _c 4 ksi,	0.85
From ACI Cl. 10.3.2, ^{Fbd} =	$0.85 + \left \left {\tau_g} \right < T_g^{-1} < \frac{57}{\left[{\varepsilon_g} + \left({87 - T_g} \right) \right]} =$	0.02851
From ACI Cl. 10.3.3, ** =	1.75 × hud =	0.02138
From ACI Cl. 7.12.2, ¹		0.00174
From Ref. 1, Eq. 3.8.4a, constant m =	$\frac{z_y}{\left(oss \wedge z_{g'} \right)} =$	17.65

Calculate reinforcement ratio ¹¹ for critical load case

ft	3.38	$0.5 \ll L \equiv D_{\rm e}^2 \ll D_{\rm emp} + C_{\rm emp} +$	Design for flexure about Z axis is performed at the face of the pier at a distance, D _x =
kip-ft	19.14	ла _{са эн⊏ у} н	Ultimate moment,
kip-ft	21.27	$\frac{2a_{0}}{d} =$	Nominal moment capacity, $M_n =$
	0.00009	$\frac{1}{m} \times \left[1 + \int_{0}^{1} 1 - 2 + m + \frac{M_{\eta}}{\left(F_{y} \times \mathbb{W} + d_{g} \frac{2^{\eta}}{y}\right]_{y=1}^{2^{\eta}}} + \right]$	Required P =

file://C:\Program Files (x86)\Bentley\Staad Foundation Advanced 7\CalcXsl\StrapUS.xml 3/3/2015

160

Page 11 of 24

Since	$I_{\rm em} < \rho < 0$	n. ×	ок	
Area of Steel Required, As =	$\rho \times W \times d_{eff}$		4.18	in2
Find suitable bar arrangement between	minimum and ma	aximum rebar sizes		
Available development length for bars, $D_L =$	$0.5 \times \left(1 - \Gamma_{-n'} \right)$	e _{nover} –	38.50	in
Try bar size		Area of one bar =	0.60	in2
Number of bars required, $N_{bar} =$	۸. مىرە	-	7	
Because the number of bars is rounded up, make sure new reinforcement ratio < max				

Total reinforcement area, A _{s_total} =	N _{bar} * (Area of one bar) =	4.20	in2
d _{eff} =	D - C _{cover} - 0.5 * (dia. of one bar) =	1.80	ft
Reinforcement ratio, $\rho =$	$\frac{A_{s_tots}}{(a_{s0} - \infty)} =$	0.00195	

From ACI Cl.7.6.1, minimum req'd clear distance between bars

C_d = max (Diameter of one bar, 1.0" (25.4mm), Min. User Spacing) = 2.000in

Check to see if width is sufficient to accomodate bars

Calculate the flexural reinforcement along the Z direction of the footing. Find the area of steel required, A, as per Section 3.8 of Reinforced Concrete Design (5th ed.) by Salmon and Wang (Ref. 1)

Critical Load Case # 212

The strength values of steel and concrete used in the formulae are in ksi

Factor from ACI Cl.10.2.7.3 for F_c 4 ksi, 0.85

Page 12 of 24

Strap Foundation Design

From ACI Cl. 10.3.2, Full =	$0.85 + \left \varepsilon_1 \otimes \Gamma_g^{(1)} \otimes \frac{87}{\left[\varepsilon_g + \left(87 + \Gamma_g \right) \right]} =$	0.02851
From ACI Cl. 10.3.3,	1.75× hot =	0.02138
= منب ⁴ From ACI Cl.7.12.2,		0.00173
From Ref. 1, Eq. 3.8.4a, constant m =	$\frac{\overline{y}}{(ax - 1)}$	17.65
	(025 × 3 ₆ 1)	

Calculate reinforcement ratio ⁽⁾ for critical load case

Design for flexure about X axis is performed at the face of the pier at a distance, D _z =	$0.5 \times L \pm C S \times B_{\rm eq} = C_{\rm eff}$	3.17	ft
Ultimate moment,	nd 14 + - E ₂ -	14.42	kip-ft
Nominal moment capacity, $M_{\rm n}$ =	$\frac{2a_{tr}}{d} =$	16.02	kip-ft
Required P =	$\frac{1}{m} \propto \left[1 + \left(1 + 2 + \pi + \frac{M_{h}}{\left(E_{\mathbf{y}} \times \mathbb{C}^{2} + d_{2} \frac{\mathbf{y}^{2}}{\mathbf{y}^{2}}\right)}\right] + \right]$	0.00007	
Since	Comin. 2 p is Brank	ок	
Area of Steel Required, A _s =	$\mu > W \times d_{eff} +$	4.37	in2

Find suitable bar arrangement between minimum and maximum rebar sizes

Available development length for bars, D _L =	$0.5 \times (0.10^{-10}) = 0^{-1000}$ =	36.00	in
Try bar size	Area of one bar =	0.79	in2
Number of bars required, N _{bar} =	Α _ε _ Δ _{ύρτ}	6	

Because the number of bars is rounded up, make sure new reinforcement ratio < max

Total reinforcement area, A _{s_total} =	N _{bar} * (Area of one bar) =	4.74	in2
d _{eff} =	D - C _{cover} - 0.5 * (dia. of one bar) =	1.72	ft
Reinforcement ratio, P =	$\frac{\Delta s_totni}{(a_{eff}\times N)}$	0.00219	

From ACI Cl.7.6.1, minimum req'd clear distance between bars

C_d = max (Diameter of one bar, 1.0" (25.4mm), Min. User Spacing) = 2.000in

Check to see if width is sufficient to accomodate bars

Footing 643

Design Calculations

	Foot	ting	Size

Initial Length $(L_o) = 3.00$ ft Initial Width $(W_o) = 3.00$ ft

Gross Soil Bearing Capacity = 4.24kip/ft^2

Reduction of force due to buoyancy = -0.00kip

Effect due to adhesion = 0.00kip

Min. area required from bearing pressure, Amin = P / qmax = 6.271ft²

Area from initial length and width, A_o =

Final Footing Size

Length $(L_2) =$	8.58	ft	Governing Load Case :	# 223
Width (W2) =	8.33	ft	Governing Load Case :	# 223
Depth (D ₂) =	2.00	ft	Governing Load Case :	# 223

 $L_0 * W_0 = 9.00 R^2$

Area (A2) = 71.53 ft²

Pressures at Four Corners

Load Case	Pressure at corner 1 (q ₁) (kip/ft^2)	Pressure at corner 2 (q ₂) (kip/ft^2)	Pressure at corner 3 (q ₃) (kip/ft^2)	Pressure at corner 4 (q ₄) (kip/ft^2)	Area of footing in uplift (A _u) (ft ²)
212	0.7278	0.5239	0.5270	0.7309	0.0000
212	0.7278	0.5239	0.5270	0.7309	0.0000
210	0.4946	0.4878	0.6116	0.6184	0.0000
212	0.7278	0.5239	0.5270	0.7309	0.0000

If A_u is zero, there is no uplift and no pressure adjustment is necessary.

Otherwise, to account for uplift, areas of negative pressure will be set to zero and the pressure will be redistributed to remaining corners.

Summary of Adjusted Pressures at Four Corners

Page 14 of 24

Strap Foundation Design

Load Case	Pressure at corner 1 (q ₁) (kip/ft^2)	Pressure at comer 2 (q ₂) (kip/ft^2)	Pressure at corner 3 (q ₃) (kip/ft^2)	Pressure at corner 4 (q ₄) (kip/ft^2)
212	0.7278	0.5239	0.5270	0.7309
212	0.7278	0.5239	0.5270	0.7309
210	0.4946	0.4878	0.6116	0.6184
212	0.7278	0.5239	0.5270	0.7309

Adjust footing size if necessary.

Check for stability against overturning and sliding

-	Factor of safety against sliding			Factor of safety	
1				against ov	erturning
Load Case No.	Along X- Direction	Along Z- Direction	Resultant	About X- Direction	About Z- Direction
110	127.210	8.935	8.913	37.227	545.942
111	199.282	6.596	6.593	27.484	855.252
112	5.647	339.563	5.646	1414.847	24.236
113	3.368	757.443	3.368	3156.013	14.454
120	161.769	8.116	8.106	33.816	694.258
121	477.541	5.644	5.643	23.516	2049.445
122	5.203	412.375	5.202	1718.229	22.328
123	2.795	N/A	2.795	517575.720	11.997
200	119.216	337.265	112.400	1405.271	511.634
210	110.347	6.370	6.360	26.542	473.573
211	196.729	3.888	3.887	16.199	844.294
212	4.183	295.971	4.182	1233.211	17.952

file://C:\Program Files (x86)\Bentley\Staad Foundation Advanced 7\CalcXsl\StrapUS.xml 3/3/2015

Page 15 of 24

Strap Foundation Design

213	1.765	1058.048	1.765	4408.533	7.577
220	123.823	5.977	5.970	24.905	531.406
221	350.729	3.451	3.451	14.379	1505.214
222	3.966	324.161	3.966	1350.669	17.021
223	1.507	3896.915	1.507	16237.147	6.466

Critical Load Case And The Governing Factor Of Safety For Overturning And Sliding - X Direction

Critical Load Case for Sliding along X-Direction: 223

Governing Disturbing Force : 5.209kip

Governing Restoring Force: 7.849kip

Minimum Sliding Ratio for the Critical Load Case: 1.507

Critical Load Case for Overturning about X-Direction: 221

Governing Overturning Moment : -6.119kip-ft

Governing Resisting Moment : 87.981kip-ft

Minimum Overturning Ratio for the Critical Load Case : 14.379

Critical Load Case And The Governing Factor Of Safety For Overturning And Sliding - Z Direction

Critical Load Case for Sliding along Z-Direction: 221

Governing Disturbing Force : -3.059kip

Governing Restoring Force : 10.558kip

Minimum Sliding Ratio for the Critical Load Case : 3.451

Critical Load Case for Overturning about Z-Direction: 223

Governing Overturning Moment : -10.419kip-ft

Governing Resisting Moment : 67.367kip-ft

Minimum Overturning Ratio for the Critical Load Case : 6.466

Critical Load Case And The Governing Factor Of Safety For Sliding Along Resultant Direction

Critical Load Case for Sliding along Resultant Direction: 223

Governing Disturbing Force : 5.209kip

Governing Restoring Force : 7.849kip

Minimum Sliding Ratio for the Critical Load Case: 1.507

Shear Calculation Punching Shear Check

Page 16 of 24

Effective depth, d_{eff} increased until 0.75^{*}V_c $\stackrel{>}{\sim}$ Punching Shear Force

Punching Shear Force, Vu = 19.18kip, Load Case # 212

From ACI Cl.11.12.2.1, b _o for pier=	$2\times \left(\Xi_{\rm col} - \Gamma_{\rm col} + 2\times d_{\rm eff}\right) =$	15.17ft
Equation 11-33, V _{c1} =	$\left(2 + \frac{4}{\beta_0}\right) \in E_0 \times d_{eff} \times \sqrt{1000 \times F_0^{(1)}} =$	1484.88kip
Equation 11-34, V _{c2} =	$\left(\frac{\alpha_n \times d}{b_n} + 2 \right) \times \lambda \times \sqrt{f_n} \times b_n \times d =$	1664.37kip
Equation 11-35, V _{c3} =	$4 + E_p \times d_{eff} \times \sqrt{1000 \times F_e^{-1}} =$	989.92kip
Punching shear strength, V _c =	$0.75 * \text{minimum of } (V_{c1}, V_{c2}, V_{c3}) =$	742.44kip
		0.75 * V _c > V _u hence, OK

One-Way Shear Check Along X Direction
Strap Foundation Design

Page 17 of 24

Check that 0.75 * $V_c > V_{ux}$ where V_{ux} is the shear force for the critical load cases at a distance d_{eff} from the face of the pier caused by bending about the X axis.

Check that 0.75 * $V_c > V_{uz}$ where V_{uz} is the shear force for the critical load cases at a distance d_{eff} from the face of the pier caused by bending about the Z axis.

From above calculations,	0.75 * V _c =	203.97	kip
Critical load case for V _{uz} is # 212	$\nabla_{uv} = \nabla_{vv} _{v-D_{v}} =$	5.42	kip
		0.75 * V _c > V _{uz}	hence, OK

Calculate the flexural reinforcement along the X direction of the footing. Find the area of steel required, A, as per Section 3.8 of Reinforced Concrete Design (5th ed.) by Salmon and Wang (Ref. 1)

Critical Load Case # 212

The strength values of steel and concrete used in the formulae are in ksi

Factor from ACI Cl.10.2.7.3	for F _c 4 ksi,	0.85
From ACI Cl. 10.3.2, ^{Fbd} =	$0.85 + \left \left {\tau_g} \right < T_g^{-1} < \frac{57}{\left[{\varepsilon_g} + \left({87 - T_g} \right) \right]} =$	0.02851
From ACI Cl. 10.3.3, ** =	1.75 × hud =	0.02138
From ACI Cl. 7.12.2, ¹		0.00174
From Ref. 1, Eq. 3.8.4a, constant m =	$\frac{z_y}{\left(oss \wedge z_{g'} \right)} =$	17.65

Calculate reinforcement ratio ¹¹ for critical load case

ft	3.38	$0.5 \ll L \equiv D_{\rm e}^{\rm p} \ll D_{\rm e, rg} + C_{\rm weat} =$	Design for flexure about Z axis is performed at the face of the pier at a distance, D _x =
kip-ft	19.14	^л а _{стонск} н	Ultimate moment,
kip-ft	21.27	$\frac{2a_{\alpha}}{d} =$	Nominal moment capacity, $M_n =$
	0.00009	$\frac{1}{m} \times \left[1 + \int_{0}^{1} 1 - 2 + m + \frac{\mathcal{M}_{\eta}}{\left(\mathbb{F}_{\mathcal{Y}} \times \mathcal{U} + d_{2} \frac{2^{2}}{\mathcal{Y}} \right)^{2}} \right] +$	Required P =

file://C:\Program Files (x86)\Bentley\Staad Foundation Advanced 7\CalcXsl\StrapUS.xml 3/3/2015

168

Page 19 of 24

Since	$I_{\rm em} < \rho <$	ч	ОК	
Area of Steel Required, As =	$\rho \times W \times d_{eff}$		4.18	in2
Find suitable bar arrangement between	minimum and m	aximum rebar sizes		
Available development length for bars, D _L =	$0.5 \times \left(\mathbf{L} - \mathbf{P}_{-cl} \right)$	e _{nover} =	38.50	in
Try bar size		Area of one bar =	0.60	in2
Number of bars required, N _{bar} =	A _s Asur	-	7	
Because the number of bars is rounded up. r	nake sure new n	einforcement ratio <		

Total reinforcement area, A _{s_total} =	N _{bar} * (Area of one bar) =	4.20	in2
d _{en} =	D - C _{cover} - 0.5 * (dia. of one bar) =	1.80	ft
Reinforcement ratio, $\rho =$	$\frac{A_{\underline{s_tots}}}{(a_{\underline{st}} - \infty)} =$	0.00195	

From ACI Cl.7.6.1, minimum req'd clear distance between bars

C_d = max (Diameter of one bar, 1.0" (25.4mm), Min. User Spacing) = 2.000in

Check to see if width is sufficient to accomodate bars

Calculate the flexural reinforcement along the Z direction of the footing. Find the area of steel required, A, as per Section 3.8 of Reinforced Concrete Design (5th ed.) by Salmon and Wang (Ref. 1)

Critical Load Case # 212

The strength values of steel and concrete used in the formulae are in ksi

Factor from ACI Cl.10.2.7.3 for F_c 4 ksi, 0.85

Page 20 of 24

Strap Foundation Design

From ACI Cl. 10.3.2, Food =	$0.85 + \left \varepsilon_1 \otimes \Gamma_g^{(1)} \otimes \frac{87}{\left[\varepsilon_g + \left(87 + \Gamma_g \right) \right]} =$	0.02851
From ACI Cl. 10.3.3,	1.75× hot =	0.02138
= منب ⁴ From ACI Cl.7.12.2,		0.00173
From Ref. 1, Eq. 3.8.4a, constant m =	$\frac{\overline{y}}{(ax - 1)}$	17.65
	(025 × 3 ₆ 1)	

Calculate reinforcement ratio ⁽⁾ for critical load case

Design for flexure about X axis is performed at the face of the pier at a distance, D ₂ =	0.5 × L± C5 × B ₁₀₁ - C _{et} =	3.17	ft
Ultimate moment,	^{na} c	14.42	kip-ft
Nominal moment capacity, $M_n =$	$\frac{2a_{ij}}{d}$ =	16.02	kip-ft
Required P =	$\frac{1}{m} \times \left[1 + \left(1 + 2 + m + \frac{M_{\eta}}{\left(F_{y} \times \mathcal{W} + d_{z} \frac{2}{y}\right)}\right] + \right]$	0.00007	
Since	frain 2 p s Draw	OK	
Area of Steel Required, As =	$\mu > W \times d_{eff} +$	4.37	in2

Find suitable bar arrangement between minimum and maximum rebar sizes

Available development length for bars, D _L =	$0.5 \times (0, -0, _{10}) = 0$ (1845 –	36.00	in
Try bar size	Area of one bar =	0.79	in2
Number of bars required, N _{bar} =	A ₂ _	6	

Because the number of bars is rounded up, make sure new reinforcement ratio < max

Total reinforcement area, A _{s_total} =	N _{bar} * (Area of one bar) =	4.74	in2
d _{eff} =	D - C _{cover} - 0.5 * (dia. of one bar) =	1.72	ft
Reinforcement ratio, P =	$\frac{\Delta s_totni}{(a_{eff}\times N)}$	0.00219	

From ACI Cl.7.6.1, minimum req'd clear distance between bars

C_d = max (Diameter of one bar, 1.0" (25.4mm), Min. User Spacing) = 2.000in

Check to see if width is sufficient to accomodate bars

Concrete Beam Design CODE ACI 318-05

Analysis Results

Bending Moment Results

Load Case	Maximum Sagging Moment	Maximum Hogging Moment
211	0.00kip-ft	6.27kip-ft

Design Calculations

Optimization of Beam Size

Basic Design Data

(ACI 10.2.7.3)	$0.85 [\max \left[0.85 - 0.05 \left(f_0 - 4 \right) \right] 0.65 \right]$	= 0.85
⁹ min (ACI 10.5.1)	$\max\left(\frac{0.2}{f_y}, 3, \frac{f_c}{f_y}\right)$	= 0.0033
Poal (ACI B8.4.3)	$\frac{0.85 \cdot 34\Gamma_{0}}{\left[\left[\Gamma_{y}\left(87+\Gamma_{y}\right)\right]\right]}$	= 0.0285
р _{тах} (ACI B10.3.3)	$0.75~\rho_{\rm Bell}$	= 0.0214

fy 0.854fg

Modular ratio, m

Moment Strength Calculation

= 17.6471

Moment reduction factor, $\Phi = 0.9$

Modulas of elasticity, E_s = 29000 ksi

Strain in concrete at extreme compression fiber, $^{\varepsilon_{\rm C}}$ = 0.003

Yield strain of main reinforcement, ^{C a}	⊟y mento Es	= 0.0021
Effective depth, Deff	D Cover _{hot} 0.5 Dia _{main} Di	
Distance from extreme compression fiber to neutral axis at balanced condition, C _b	$\mathbf{D}_{\mathrm{eff}} = rac{c_{\mathrm{e}}}{c_{\mathrm{e}} + c_{\mathrm{e}}}$	= 1.0167ft
Depth of equivalent rectangular stress block at balanced condition, A _b	μc_h	= 0.8642ft
Depth of equivalent rectangular stress block at maximum ratio of tension reinforcement, A _{max}	075 Ab	= 0.6482ft
Moment strength at balanced		-

condition, M_n

 $\varphi\left[\circ85\,f_{e}^{'}\le A_{max}\left(D_{eff}^{'}=0\,5A_{max}\right)\right]=1194.27kip\text{-ft}$

Checking of Beam Size

Beam size is optimized to withstand the maximum moment and shear.

Check For Sagging Moment

Maximum sagging moment, M _{max_sag}	Obtained from analysis	= 0.00kip-ft
Ultimate sagging moment, M _{u_sag} =	$\frac{M_{max_sng}}{0.9}$	= 0.00kip-ft
Coefficient of resistance, R _u =	$\frac{M_{\rm tr}}{{\rm W} \cdot {\rm D_{eff}}^2}$	= 0.0000kip/ft^2
$1 = 2 \cdot m \cdot \frac{R_m}{f_y}$	= 1.0000 is greater the	an zero, it is o.k.

Check For Hogging Moment

Maximum hogging moment, M _{max_hog}	Obtained from analysis	= 6.27kip-ft
Ultimate hogging moment, $M_{u_hog} =$	$\frac{M_{mm_hog}}{0.9}$	= 6.96kip-ft
Coefficient of resistance, ${\rm R_g}$ =	$\frac{M_u}{w \cdot D_{eff}^2}$	= 0.7866kip/ft^2
$1 = 2 \cdot \mathbf{n} \cdot \frac{\mathbf{R}_{\mathrm{in}}}{\mathbf{f}_{\mathrm{y}}}$	= 0.9968 is greater th	an zero, it is o.k.

Check For Shear

Maximum shear force, V _{max}	Obtained from analysis	= 0.00kip
Shear reduction factor	ф	= 0.75
Ultimate shear force, V _u	V _{max} / 4	= 0.00kip
Nominal shear strength of concrete, $\rm V_{c}$	$2 {}_{\rm eff} W D_{\rm eff}$	97.33kip
Shear force to be resisted by stirrups, $\rm V_{\rm s}$	$\frac{\nabla_{\mathbf{u}} - \boldsymbol{\psi} \cdot \nabla_{\mathbf{c}}}{\boldsymbol{\psi}}$	0.00kip

Strap Foundation Design

Page 23 of 24

Maximum shear force that can be resisted $8 \cdot \sqrt{f_c} \cdot \Psi \cdot D_{eff}$ 389.3396kip by stimups, V_{s_max}

Since Vs is less than Vs_max, it is o.k.

Since nominal shear strength of concrete is greater than maximum shear force, shear reinforcement is not required.

Final depth of beam, D	= 2.00ft
Final width of beam, W	= 3.00ft
Final moment capacity of the section, M _n	= 1194.27kip-ft
If M _n is less than M _{max} , the beam is to be designed a	as a doubly reinforced beam.

It is a singly reinforced beam.

Reinforcement Design

This is the primary design of reinforcements and it is performed considering the maximum

values of hogging and sagging moments and the maximum shear force.

Design For Bottom Reinforcement

% of steel required, ^{Prog}	$\max\left[\mu_{\min}, \frac{1}{m}\left(1 - \sqrt{1 - 2m}\frac{R_{0}}{f_{y}}\right)\right]$	0.0033
Area of steel required, A _{st_bot}	≥ _{req} . ^{W.D} eE	2.47in2
Area of steel used, Ast,b	no. of bars used x area of 1 bar	2.60in2
Moment capacity	$\varphi \left[0.85 T_{0} \cdot A_{s1} \left[b_{01} \cdot m \left(D_{s1} - 0 \cdot A_{s1} \left[b_{01} \cdot \frac{m}{W} \right) \right] \right] \right]$	242.63kip-ft

Bar no. used = 4

Number of bars required = 13

Number of reinforcement layers = 1

Design For Top Reinforcement

% of steel required, ^{Prog}	$\max \left r_{\min}, \frac{1}{m} \left(1 - \sqrt{1 - \chi_m} \frac{R_m}{r_y} \right) \right $	0.0033
Area of steel required, A _{st_top}	Beu ^{−W−D} eE	2.47in2
Area of steel used, A _{st_t}	no. of bars used x area of 1 bar	2.40in2
Moment capacity	$\varphi \left[0.82 f_{\rm c} \Lambda_{\rm sl, had} m \left(D_{\rm cdf} = 0.2 \Lambda_{\rm sl, had} \frac{m}{W} \right) \right] . \label{eq:phi_slap}$	247.83kip-ft

Bar no. used = 4

file://C:\Program Files (x86)\Bentley\Staad Foundation Advanced 7\CalcXsl\StrapUS.xml 3/3/2015

173

Page 24 of 24

Number of bars required = 12

Number of reinforcement layers = 1

Beam depth is less than 36 inches. Hence side reinforcement is not necessary.

Design For Shear Reinforcement

If design shear force > $2 V_{c'}$ spacing calculated from boundary condition is reduced by 50%.

(0.5-D _{eff} , 24)	10.69in
$\frac{1}{1} \frac{\sqrt{r_c} \cdot W}{r_y}$	7.73in
$um \left(S \rho_{min}, \frac{V_s}{f_y \cdot D_{eff}} \right)$	7.73in
	$\begin{array}{c} \left(0 \times D_{eff}, 21\right) \\ \\ 0 \times \sum \frac{\sqrt{c} \cdot W}{\Gamma_{y}} \\ \\ urr\left(3 \nu_{min}, \frac{V_{s}}{\Gamma_{y} \cdot D_{eff}}\right) \end{array}$

Bar no. used = 3

Print Calculation Sheet

Appendix L: Hand Calculations – Strapped Footing

MAP FOUNDATION DESIGN - STRAPPED FOOTING

STAAD. FOR REFERENCE NODES

- 45	SUME FOOTING WIDTH , B = 4' (642)
	$c = 4(z - 1) = 1' = 1z^{n}$
	distance between R, & R2 = 150,5" - 12"= B&,5"
- (19	ALCULATE ECCENTRIC NONENT :
	H= (23.8874)(1) = 23.567 ft-EP
	$V = \frac{23.887}{(135.512)} = 2.01 = 2$
- 12.8	FACTION AT FOOTING 642.
	R1 = 23.187 + 2.07 = 25.96 K
- NE	ST SOIL BEARING CAPACITY
	alere = aa - we - ws - 4000 - 150 15 (2 fo) - 120 15 (1 fo) = 3580 16 = 3.58 k
- 26	COURED FOOTING AREA'.
	Arra = $\frac{R_1}{916c} = \frac{25.96}{3.58} = 7.25 + 52$
	use 4x2 dimensions, A= 8 fez > Arig
- RIE	ACTION AT FOOTING 643 .
	$R_2 = 23.581 - 2.07 = 21.817 K$
Sestament by	Charlent In-

Checked by

DESIGN STRAP:
6=3' '
FL
d= 21, UN 3" char cover
$d_{lee} = 24 - 3 - l = 20''$
CHECK ONE WAY SHEAR
Nu= 15.58 (from snear diagram)
\$Ve = \$ (Fe bel = .95 (4000 (20) (36) = 34.15 K
12Wc = 19.09 -> not it in force on the needed in strap
CHECK FOR FLEXURE :
No = 26.35 K-fe, assume a = 2
T= Ha _ 210.35(12) = 1849 K
$\phi(d-ah) = i q(20-2h)$
Q = T = 18 49 = .257 " -> USE ("
· 85 F'C b .5 (") (36)
$T = 2435(12) = 18^{K}$
·9 (20 - '12)
$A_5 = T = \frac{18}{1} = 130$
+y 60
P = As = = .0004(7)
bd 20(3b)

Designed by:

Checked by:

Pre	1 0	= <u>20</u>	0 =	.0033	⇒ go	ourns	Asn	nîn #	Fy	<u>m</u> d	, Ar	= Pbod]
Ars	* P	bd ≖	.603	3 (20)(*	56) = z	.4 in²	1 U 18	3#(4 , A	1 = 3	.0 in²	
DESI	GN	1700	MITC	CT 64	12 R	EINF	ORCE	MEN	τ;	(4	×4)	
- 3	2'	dip+	n,	deer	= 24 -	3 - 1	7 2	ð"				-
ŀ	8 =	4(20	+10)	= 1121"	, (†	d = 10	× 2.0	= 30	"			
0	(n :	= <u>1, 1</u> -1	9 =	.45	r1648	, F	y = 2	8.66)	د 🛛			
τw	0 W	AT S	(+E A)	R (PO	NCHI	N CT)						
V	lu-	1.4.6	u - I	.95[(30 (n) ²]	= 16	47 K					
¢	16 =	[d	d +2][F]C	bo d	\$			-			
\$	VC											
ONE	w	AY SI	45 F 6	L (PI	LECT)							
Ve	5	14.40	ĸ							-		
\$	V6 =	20	(PC	bod	= 2(75) 54	1000' (1	20) (2)	o) =	228	K J	
FLEI	UR	E - 1	ongi+	udina	1							
M	10=	26 3	5 4.	Ft								
R	2n =	Nu PEO	=	24.35((202) =	810.	K-1002	= 19	ы	n ²		

Designed by:

Checked by:

1	Ph	-	3	s	- 8	10	00	B.	¢,	c	7		.0	3	5				Ē	t	1								1	1		-	
			1		f	16	87	100	٠	1)	1		-	-					┝	ł	+							t	+	1		1	
	Pr	na	×	1	. 2	13	8	-	-				F	+	-	_		-	F	Ŧ									+		1		
	Pr	nu	0	-	. 0	01	8	4	-	0	e	F	Ţ	+	1			-	F	Ŧ		-		-	F	-		+	+		-	+	
-	A		Ģ	b	d	-	.0	0	8	(2	(۵	(4	18)	1=	1		121	5 1	20	A	U	н	4	Ħ	7	-	-	-	-	-		-	
	5	-	4-	2	. (c	0 U	er)	-	L	8	-	6				14		7	1	44	Ąχ.			F	F	F	1	-	-		-	
	-	F	F	٢	<i>)</i> -	1	ť				4	-	- 1	-						+					t		t	1					
				-	+	+	+	-			-	ł	+	+	+		-	+	ł	+	-		-	+	ł	t	t	t					
			t	t		t	1	1				Ţ	ļ	-			-	-	-	1				ŀ	ŀ	+	ł	-		_			
		F	t	t	t	t							1					t	1	1				L	t	Ţ	t	1					
	ŀ	+	ł	ł	+	+	+			-	ŀ	t	+	1	-			t	t	1				t	t	t	t	1					
		F	F	+	-	-	-				-	+					-	ł	+				-	+	ł	+	t	-					
	t	t	t	t	1		1				ŀ	Ţ	1	-			F	1		_				-	+		+	-	-	_	-	-	
		1	t	t	+			-			t	t					t	t					t	t	t		1					_	ļ
	-	+	ł	+	+	+				-	ł	t	+	+		ŀ	t	t	+	-			t	t	t	+	1						ţ
	t	T	1	-	Ţ	1	_	_			1	-	-	-			+	+	-	_		-	-	+	+	+	+	-		-			ł
	t	t	1	1							t	1					1	1					Ļ	-	1	+	-		-	-	F	-	-
	ł	t	+	+	+		+		-	+	1	+	-	-		t	t						t	1	t		1				E		1
	t	T	T								l	1						1								1					L	1	1

Appendix M: Excel Spreadsheet – Mat Foundation Models

Model: M1

		Mat Design		
DATE:	2/24/2015		DESIGN #:	1
PASS:	YES		CHECK:	DH
	Footing			
	Length	15 ft		
	Width	16 ft		
	Thickness	1 ft		
	Reinforcement ((X-Direction)		
	Size	# 14		
	Number	20		
	Spacing	/ In 2 in		
	Cover	5 111		
	Reinforcement (Y-Direction)		
	Size	# 14		
	Number	24		
	Spacing	7 in		
	Cover	3 in		
		Mat Design		
DATE:	2/24/2015		DESIGN #:	1
PASS:	YES		CHECK:	DH
CHECKS:	:			
1	.0 Foundation Dim	ensions		
	Check 1:	OKAY!		
	Check 2:	OKAY!		
1	.1 Shear & Foundat	tion Thickness		
	Check 1:	OKAY!		
	Check 2:	OKAY!		
	Check 3:	OKAY!		
	Check 4:	OKAY!		
	Check 5:	OKAY!		

1.2 Reinforcement Design

Check 1:	OKAY!
Check 2:	OKAY!

			Mat Decign			
DATE:	2/24/201	5	war besign		DESIGN #:	1
PASS:	YES	-			CHECK:	DH
	1.0 Loads					
	Q1	23.887 kip				
	Q2	23.887 kip				
	Q3	23.888 kip				
	Q4	23.888 kip				
	Q	95.55 kip				
	1.1 Structure [Dimensions				
	Dmoointx	141 84 in		X Distance between mittooint	of columns	
	Dmpointy	150.50 in		Y Distance between midpoint	of columns	
	Dmpointx	11.82 ft		X Distance between midpoint	of columns	
	Dmpointy	12.54 ft		Y Distance between midpoint	of columns	
	Col B	0.83 ft		Length of Column base		
	ColL	0.83 ft		Length of Column base		
	Col Area	0.69 ft 2		Area of Column base		
	Col cov	1 ft		Min Distance from column to	footing edge	
	1.2 Material P	roperties				
	quit	4000 lb/ft ²				
	Ws	120 lb/ft ²		Weight of Soil		
	We	150 lb/ft ²		Weight of Concrete		
	f'c	4000 psi		2		
	fy	60,000 psi				
	2.0 SizeCalcula	ations X Direction				
	x	5.91 ft				
	e.	0.00 ft				
	×	591 ft				
	bmin	14.65 ft		Minimum length of side of ma	at .	
	bused	15 ft		Length of side of Matselecter	1	
		CHECK: OKAY!				
	2.1 SizeCalcula	ations Y Direction				
	ÿ	6.27 ft				
	ey	0.00 ft				
	Y'	6.27 ft				
	hmin	15.37 ft		Minimum length of side of ma	st	
	hused	16 ft		Length of side of Matselected	1	
		CHECK: OKAY!				

Area_{Mat} 240 ft²

Total Area of the Mat

			Mat Design
DATE:	2/24/20	15	DESIGN #: 1
PASS:	YES		CHECK: DH
	1.0 Mat Thic	kness	
	qc	0.398 k/ft ₂	
		CHECK: OKAY!	
			_
	1x	5120 ft ⁴	
	ly	4500 ft ⁴	
	ф	0.85	
	β	1	Shape Parameter
	d	1 ft	Assumed initial thickness. 1 ft min for reinforced
	b0	7.33 ft	Broskout Perimeter
	bO	88 in	Breakout Perimeter
	φVc	1578.922	
	d as in	A CONTRACT IN	
	amin	4.05 5501 in	Minimum Calculated depth of concrete
	dused	1 π	Selected depth of concrete
	dem	7.307 in	
		CHECK: OKAY!	dused > dmin
	Vuo	28.66 kip	Pactored Shear Porce

1.1 Pressure on Footing

qn	3.58 kip/ft
quit	1.27 ft ²
Wsoil	3.58 k/ft
Vu1	22.97 k/ft
Vuz	26.48 k
bodeff	69.228

1.2 φVc > Vu Check (Two Way)

φvcı	163.2	kip
φvc₂	111.8	kip
φvc₃	108.8	kip
	CHECK:	OKAY!

1.3 Two Way Shear

Vu	21.21135	kip
	CHECK:	OKAY!

1.4 One Way Shear

Vu	20.29	kip
φvc₁	133.1	kip
	CHECK:	OKAY!

Model: M2

		Mat Design		
DATE	2/24/2015	mar Desigli	DESIGN #	1
PASS.	YES		CHECK.	DH
1100	160		CITEON.	011
	Footing			
	Length	15.5 ft		
	Width	15.5 ft		
	Thickness	1 ft		
	Reinforcement ()	X-Direction)		
	Size	# 14		
	Number	19		
	Spacing	7 in		
	Cover	3 in		
	Reinforcement ()	Y-Direction)		
	Size	# 14		
	Number	23		
	Spacing	7 in		
	Cover	3 in		
		Mat Design		
DATE:	2/24/2015		DESIGN #:	1
PASS:	YES		CHECK:	DH
CHECKS:				
1.	0 Foundation Dime	ensions		
	Check 1:	OKAY!		
	Check 2:	OKAY!		
1.	1 Shear & Foundat	tion Thickness		
	Check 1:	OKAY!		
	Check 2:	OKAY!		
	Check 3:	OKAY!		
	Check 4:	OKAY!		
	Check 5:	OKAY!		

1.2 Reinforcement Design

Check 1:	OKAY!
Check 2:	OKAY!

			Mat Design		
DATE:	2/24/2015			DESIGN #:	1
PASS:	YES			CHECK: [DH
	1.0 Loads				
	Q1	23.887 kip			
	Q2	23.887 kip			
	Q3	23.888 kip			
	Q4	23.888 kip			
	Q	95.55 kip			
:	1.1 Structure Di	mensions			
	Dmnointx	141.84 in		X Distance between midpoint of columns	
	Dmpointy	150.50 in		V Distance between midpoint of columns	
	Dmpointx	11.82 ft		X Distance between midpoint of columns	
	Dmpointy	12.54 ft		Y Distance between midpoint of columns	
				,	
	ColB	0.83 ft		Length of Column base	
	Col L	0.83 ft		Length of Column base	
	Col Area	0.69 ft ²		Area of Column base	
	Colcov	1 ft		Min Distance from column to footing edge	
	1.2 Material Pro	perties			
	qult	4000 lb/ft ²			
	Ws	120 lb/ft ²		Weight of Soil	
	Wc	150 lb/ft ²		Weight of Concrete	
	f'c	4000 psi			
	fy	60,000 psi			
:	2.0 Size Calculat	ions X Direction			
	-	E 01 +			
	Â	0.00 #			
	-x	5.00 R			
	X	5.91 TL		Main and the state of the state	
	burned	14.05 IL		Minimum length of side of mat	
	bused			Length of side of Mat selected	
		CHECK: UKAT:			
:	2.1 Size Calculat	ions Y Direction			
	ÿ	6.27 ft			
	ey	0.00 ft			
	y '	6.27 ft			
	hmin	15.37 ft		Minimum length of side of mat	
	hused	15.5 ft		Length of side of Mat selected	
		CHECK: OKAY!		-	
	Area _{Met}	240.25 ft ²		Total Area of the Mat	

			Mat Design	
DATE:	2/24/201	.5		DESIGN #: 1
PASS:	YES			CHECK: DH
<u> </u>	1.0 Mat Thic	kness		
	qc	0.398 k/ft2		
		CHECK: OKAY!		
	bc	4810.005 ft ⁴		
	N	4810.005 ft ⁴		
	φ	0.85		
	β	1	Shapo Parametor	
	d	1 ft	Assumed initial thickne	ss. 1 ft min for reinforced
	ьо	7.33 ft	Breakout Perimeter	
	ьо	88 in	Breakout Perimeter	
	φvc	1578.922		
	desin	4 675501 in		
	dured	4.000001 m		
	doff	7307 in	Selected deput ercener	-616
	dem	7.507 In		
		CHECK: OKAY!	dused > dmin	
	vuo	28.66 kip	Pactored Shear Porce	

1.1 Pressure on Footing

qn	3.70 kip/ft
quit	1.31 ft ²
Wsoil	3.70 k/ft
Vu1	21.86 k/ft
Vu ₂	26.41 k
bodeff	69.228

1.2 φVc > Vu Check (Two Way)

φvc₁	163.2	kip
φvc₂	111.8	kip
φVc₃	108.8	kip
	CHECK:	OKAY!

1.3 Two Way Shear

Vu	20.97093	kip
	CHECK:	OKAY!

1.4 One Way Shear

Vu	20.94	kip
φvc₁	128.9	kip
	CHECK:	OKAY!

			Mat Davies	
DATE	7/74/7778		Net Design	
PASS:	YES		CHECK:	DH.
	1.0 Data input			-
	2.0 0010 mpt			
	D _{eff}	12 n	On effoot wide strip an alvzed	
	0	0.9	, , , , , , , , , , , , , , , , , , , ,	
	+ 1an			
	1.1 Calculation	s - X Direction		
	Distan	1.840 ft	Distance column mid-pt. to footing edge (x)	
	Vucol _x	6.81 kip		
	MaxVu-	21.86 kip-ft		
	Mu	64 39 kin-tt		
	Mu in	775.17 kin-in		
		A DA kip/in ²		
	NO.	1.34 Np/ II		
	Knjib	1344.20 0/10		
	ρ.	0.0307		
	preqdx	0.0307426		
	Material			
		09	Marcal & Redection Red as in Transien	
	MinShrink	0.0018 x bx h	Min. Shrinkage & Temp. Reinf.	
	Ninforcing			
	Aaroqd	41.78251254 in		
	Cover	<u>3</u> in	ClearCover- All Sides	
	Sec	#14	See of Steel Reinforcing (Selectable)	
	1	26.375	Number of Sans used	
	- Com	Pin	Maximum Allowable Specing	
Check	Specing	7 in	Selected Spacing	
		Check: OKAYI	Spacing (Smax	
	1.2 Calculation	s Y Direction		
	Distary	1.479 ft	Distance column mid-pt. to footing edge (y)	
	Vucol,	5.47 kip		
	MaxVu _v	23.19 kip-ft		
	Mu,	72.72 kip-ft		
	Mu, in	872.66 kip-in		
	Rn,	1.51 kip/in*		
	RnJb	1513.36 b/in ³		
	ρ.	0.038		
	pregdy	0.0378903		
	Material			
	¢-	0.9	Strongth Reduction Pad or in Tension	
	MinShrink	0.0018 x bx h	Min. Shrihkage & Temp. Reinf.	
	Maniproint			
	Aarood	51.49652446 in ³	Area of Stool Reeld oor total longth	
	Cover	3 in	ClearCover- All Sides	
	See	#14	Size of Steel Reinforcing (Selectable)	
	-	22.557	Number of Sers used to achieve Asmin	
	Para 1	3	Number of Sars used	
	3	8.181818182 in	Maximum Allowable Spacing	
Check	Specing	7 in	Selected Spacing	
		CIERCE UNATI	aparana kamak	

Model: M3

Check 2:

OKAY!

		Ma	t Design		
DATE:	2/24/2015		-	DESIGN #:	1
PASS:	YES			CHECK:	DH
	Footing				
	Length	15 ft			
	Width	15 ft			
	Thickness	15 ft			
		2.5 10			
	Reinforcement	(X-Direction)			
	Size	# 8			
	Number	24			
	Spacing	7 in			
	Cover	3 in			
	00101	5 11			
	Reinforcement	(Y-Direction)			
	Size	# 8			
	Number	25			
	Spacing	2.5 7 in			
	Cover	3 in			
	COVEN	5 11			
DATE	010410045	Ma	t Design	DEGLON #	
DATE:	2/24/2015			DESIGN #:	1
PASS:	TES			CHECK:	DH
CHECKS:	Foundation Dim	anglang			
1.0	Foundation Dim	ensions			
	Check 1:	OKAY!			
	Check 2:	OKAY!			
1.1	Shear & Founda	tion Thickness			
	Check 1:	OKAY!			
	Check 2:	OKAY!			
	Check 3:	OKAY!			
	Check 4:	OKAY			
	Check 5:	OKAY			
	careen 21	0.011			
1.2	Reinforcement	Design			
	Check 1:	OKAY!			

			Mat Design			
DATE:	2/24/2015	1			DESIGN #:	1
PASS:	YES				CHECK:	DH
	1.0 Loads					
	~					
	01	23.887 kip				
	02	23.887 kip				
	03	23.888 kip				
	0	25.888 KIP				
	4	20.00 kip				
	1.1 Structure Di	mensions				
	Dmonisty	141 84 in		X Distance between midnaint -	of column	
	Dmpointy	150.50 in		Y Distance between midpoint	of columns	
	Dmpointx	11.82 ft		X Distance between midpoint (of columns	
	Dmpointy	12.54 ft		Y Distance between midpoint of	of columns	
	Col B	0.83 ft		Length of Column base		
	Col L	0.83 ft		Length of Column base		
	Col Area	0.69 ft²		Area of Column base		
	Col cov	1 ft		Min Distance from column to t	footing edge	
	1.2 Material Dry	perties				
	And the celler PT(-percies				
	ault	4000 lb/ft ²				
	We	120 lb/ft ²		Weight of Soil		
	We	150 lb/t ²		Weight of Concerts		
	fc	4000 nri		angen of concrete		
	fy	60.000 psi				
	.,					
	2.0 Size Calculat	tions X Direction				
	x	5.91 ft				
	e,	0.00 ft				
	x'	5.91 ft				
	bmin	14.65 ft		Minimum length of side of mat	t	
	bused	15 ft		Length of side of Mat selected	1	
		CHECK: OKAY!	_			
	2.1 Size Calculat	tions Y Direction				
	ÿ	6.27 ft				
	ey	0.00 ft				
	Y'	6.27 ft				
	nmin	15.37 ft		winimum length of side of mai	1	
	nused			Length or side of Matselected		
		CHEUK: UNAY:				

Area_{Met}

240 ft²

Total Area of the Mat

			Mat Design	
DATE:	2/24/201	5	DESIGN #:	1
PASS:	YES		CHECK:	DH
1	1.0 Mat Thick	in ess		
	qc	0.398 k/ft ₂		
		CHECK: OKAY!	_	
	Ix	5120 ft ⁴		
	ły	4500 ft ⁴		
	ф	0.85		
	β	1	Shape Parameter	
	d	1 ft	Assumed initial thickness, 1 ft min for reinforced	
	bO	7.33 ft	Breakout Perimeter	
	60	88 in	Breakout Ponimeter	
	φvc	1578.922		
	dmin	4.63 5501 in	Minimum Calculated depth of concrete	
	dused	1.5 ft	Selected depth of concrete	
	deff	14 in		
		CHECK: OKAY!	duaed > dmin	
	Vup	28.66 kip	Factored Shear Force	

1.1 Pressure on Footing

qn	3.58 kip/ft
quit	1.27 ft ²
Wsoil	3.58 k/ft
Vu1	22.97 k/ft
Vuz	24.48 k
b _{odeff}	96

1.2 φVc > Vu Check (Two Way)

φVc1	433.5	kip
φvc₂	355.2	kip
φvc3	289.0	kip
	CHECK:	OKAY!

1.3 Two Way Shear

Vu	14.3322	kip
	CHECK:	OKAY!

1.4 One Way Shear

Vu	18.29	kip
φVc1	255.0	kip
	CHECK:	OKAY!

Appendix N: STAAD.*foundation* – Mat Foundation

DESIGN OF MAT FOUNDATION

Mat Foundation Design(ACI 318-05)

Job Details

Job Name : Mat Foundation Design

Included Support	X (ft)	Y (ft)	Z (ft)
1	66.917	0.000	50.000
2	66.917	0.000	62.542
3	78.737	0.000	50.000
4	78.737	0.000	62.542

Load Details

Included Loads

Load Case No 110: D + W N-S Primary Primary Serviceability Factor 1.000 Design Factor 1.000 Self Weight Factor 1.000

Reactions

NODE NO.	Fx (kip)	Fy (kip)	Fz (kip)	Mx (kip-ft)	My (kip-ft)	Mz (kip-ft)
642	-0.063	-3.562	1.896	0.000	0.000	0.000
643	-0.138	-13.701	1.968	0.000	0.000	0.000
671	0.063	-3.563	1.896	0.000	0.000	0.000
672	0.138	-13.702	1.968	0.000	0.000	0.000

Load Case No 111: D + W S-N Primary Primary Serviceability Factor 1.000 Design Factor 1.000 Self Weight Factor 1.000

Reactions

NODE NO.	Fx (kip)	Fy (kip)	Fz (kip)	Mx (kip-ft)	My (kip-ft)	Mz (kip-ft)
642	-0.138	-13.701	-1.968	0.000	0.000	0.000
643	-0.063	-3.562	-1.897	0.000	0.000	0.000
671	0.138	-13.702	-1.967	0.000	0.000	0.000
672	0.063	-3.563	-1.896	0.000	0.000	0.000

Load Case No 112: D + W E-W Primary Primary Serviceability Factor 1.000 Design Factor 1.000 Self Weight Factor 1.000

Page 2 of 8

Isolated Footing Design

Reactions

NODE NO.	Fx (kip)	Fy (kip)	Fz (kip)	Mx (kip-ft)	My (kip-ft)	Mz (kip-ft)
642	-3.413	-17.087	-0.057	0.000	0.000	0.000
643	-3.413	-17.087	0.057	0.000	0.000	0.000
671	-3.211	-0.177	-0.014	0.000	0.000	0.000
672	-3.211	-0.177	0.014	0.000	0.000	0.000

Load Case No 113: D + W W-E Primary Primary Serviceability Factor 1.000 Design Factor 1.000 Self Weight Factor 1.000

Reactions

NODE NO.	Fx (kip)	Fy (kip)	Fz (kip)	Mx (kip-ft)	My (kip-ft)	Mz (kip-ft)
642	3.212	-0.176	-0.014	0.000	0.000	0.000
643	3.212	-0.176	0.014	0.000	0.000	0.000
671	3.412	-17.088	-0.057	0.000	0.000	0.000
672	3.412	-17.088	0.057	0.000	0.000	0.000

Load Case No 120: 0.6 DL + W N-S Primary Primary Serviceability Factor 1.000 Design Factor 1.000 Self Weight Factor 1.000

Reactions

NODE NO.	Fx (kip)	Fy (kip)	Fz (kip)	Mx (kip-ft)	My (kip-ft)	Mz (kip-ft)
642	-0.023	-0.109	1.911	0.000	0.000	0.000
643	-0.098	-10.248	1.953	0.000	0.000	0.000
671	0.023	-0.110	1.911	0.000	0.000	0.000
672	0.098	-10.249	1.953	0.000	0.000	0.000

Load Case No 121: 0.6 DL + W S-N Primary Primary Serviceability Factor 1.000 Design Factor 1.000 Self Weight Factor 1.000

Reactions

NODE NO.	Fx (kip)	Fy (kip)	Fz (kip)	Mx (kip-ft)	My (kip-ft)	Mz (kip-ft)
642	-0.098	-10.248	-1.953	0.000	0.000	0.000
643	-0.023	-0.109	-1.911	0.000	0.000	0.000
671	0.098	-10.249	-1.953	0.000	0.000	0.000
672	0.023	-0.110	-1.911	0.000	0.000	0.000

Load Case No 122: 0.6 DL + W E-W Primary Primary

Isolated Footing Design

Serviceability Factor 1.000 Design Factor 1.000 Self Weight Factor 1.000

Reactions

NODE NO.	Fx (kip)	Fy (kip)	Fz (kip)	Mx (kip-ft)	My (kip-ft)	Mz (kip-ft)
642	-3.373	-13.635	-0.043	0.000	0.000	0.000
643	-3.373	-13.635	0.043	0.000	0.000	0.000
671	-3.251	3.276	-0.000	0.000	0.000	0.000
672	-3.251	3.276	0.000	0.000	0.000	0.000

Load Case No 123: 0.6 DL + W W-E Primary Primary Serviceability Factor 1.000 Design Factor 1.000

Self Weight Factor 1.000

Reactions

NODE NO.	Fx (kip)	Fy (kip)	Fz (kip)	Mx (kip-ft)	My (kip-ft)	Mz (kip-ft)
642	3.252	3.277	-0.000	0.000	0.000	0.000
643	3.252	3.277	0.000	0.000	0.000	0.000
671	3.372	-13.635	-0.043	0.000	0.000	0.000
672	3.372	-13.635	0.043	0.000	0.000	0.000

Load Case No 200: 1.4 DL Primary Primary Serviceability Factor 1.000 Design Factor 1.000 Self Weight Factor 1.000

Reactions

NODE NO.	Fx (kip)	Fy (kip)	Fz (kip)	Mx (kip-ft)	My (kip-ft)	Mz (kip-ft)
642	-0.141	-12.084	-0.050	0.000	0.000	0.000
643	-0.141	-12.084	0.050	0.000	0.000	0.000
671	0.141	-12.086	-0.050	0.000	0.000	0.000
672	0.141	-12.086	0.050	0.000	0.000	0.000

Load Case No 210: 1.2 DL + 1.6 W N-5

Primary Primary Serviceability Factor 1.000 Design Factor 1.000 Self Weight Factor 1.000

Reactions

NODE NO.	Fx (kip)	Fy (kip)	Fz (kip)	Mx (kip-ft)	My (kip-ft)	Mz (kip-ft)
642	-0.060	-2.247	3.049	0.000	0.000	0.000
643	-0.181	-18.469	3.134	0.000	0.000	0.000
671	0.061	-2.248	3.048	0.000	0.000	0.000

672 0.180 -18.471 3.134	0.000 0.000 0.000
-------------------------	-------------------

Load Case No 211: 1.2 DL + 1.6 W S-N

Primary Primary

Serviceability Factor 1.000

Design Factor 1.000 Self Weight Factor 1.000

Reactions

NODE NO.	Fx (kip)	Fy (kip)	Fz (kip)	Mx (kip-ft)	My (kip-ft)	Mz (kip-ft)
642	-0.181	-18.469	-3.134	0.000	0.000	0.000
643	-0.060	-2.247	-3.049	0.000	0.000	0.000
671	0.180	-18.471	-3.134	0.000	0.000	0.000
672	0.061	-2.248	-3.048	0.000	0.000	0.000

Load Case No 212: 1.2 DL + 1.6 W E-W Primary Primary

Serviceability Factor 1.000 Design Factor 1.000

Self Weight Factor 1.000

Reactions

NODE NO.	Fx (kip)	Fy (kip)	Fz (kip)	Mx (kip-ft)	My (kip-ft)	Mz (kip-ft)
642	-5.420	-23.887	-0.077	0.000	0.000	0.000
643	-5.420	-23.887	0.077	0.000	0.000	0.000
671	-5.178	3.170	-0.009	0.000	0.000	0.000
672	-5.178	3.170	0.009	0.000	0.000	0.000

Load Case No 213: 1.2 DL + 1.6 W W-E

Primary Primary

Serviceability Factor 1.000 Design Factor 1.000

Self Weight Factor 1.000

Reactions

NODENO	Fx	Fy	Fz	Mx	My	Mz
NODE NO.	(kip)	(kip)	(kip)	(kip-ft)	(kip-ft)	(kip-ft)
642	5.179	3.171	-0.009	0.000	0.000	0.000
643	5.179	3.172	0.009	0.000	0.000	0.000
671	5.419	-23.888	-0.077	0.000	0.000	0.000
672	5.419	-23.888	0.077	0.000	0.000	0.000

Load Case No 220: 0.9 DL + 1.6 W N-S Primary Primary Serviceability Factor 1.000

Design Factor 1.000 Self Weight Factor 1.000

			Reactions			
NODE NO.	Fx (kip)	Fy (kip)	Fz (kip)	Mx (kip-ft)	My (kip-ft)	Mz (kip-ft)

Page 5 of 8

Isolated Footing Design

642	-0.030	0.343	3.059	0.000	0.000	0.000
643	-0.151	-15.879	3.123	0.000	0.000	0.000
671	0.031	0.342	3.059	0.000	0.000	0.000
672	0.150	-15.881	3.123	0.000	0.000	0.000

Load Case No 221: 0.9 DL + 1.6 W S-N Primary Primary Serviceability Factor 1.000 Design Factor 1.000 Self Weight Factor 1.000

Reactions

NODE NO.	Fx (kip)	Fy (kip)	Fz (kip)	Mx (kip-ft)	My (kip-ft)	Mz (kip-ft)
642	-0.151	-15.879	-3.123	0.000	0.000	0.000
643	-0.030	0.343	-3.059	0.000	0.000	0.000
671	0.150	-15.881	-3.123	0.000	0.000	0.000
672	0.031	0.342	-3.059	0.000	0.000	0.000

Load Case No 222: 0.9 DL + 1.6 W E-W Primary Primary Serviceability Factor 1.000 Design Factor 1.000 Self Weight Factor 1.000

Reactions

NODE NO.	Fx (kip)	Fy (kip)	Fz (kip)	Mx (kip-ft)	My (kip-ft)	Mz (kip-ft)
642	-5.390	-21.298	-0.066	0.000	0.000	0.000
643	-5.390	-21.298	0.066	0.000	0.000	0.000
671	-5.208	5.760	0.002	0.000	0.000	0.000
672	-5.208	5.760	-0.002	0.000	0.000	0.000

Load Case No 223: 0.9 DL + 1.6 W W-E Primary Primary Serviceability Factor 1.000 Design Factor 1.000 Self Weight Factor 1.000

Reactions

NODE NO.	Fx (kip)	Fy (kip)	Fz (kip)	Mx (kip-ft)	My (kip-ft)	Mz (kip-ft)
642	5.209	5.761	0.002	0.000	0.000	0.000
643	5.209	5.761	-0.002	0.000	0.000	0.000
671	5.389	-21.298	-0.066	0.000	0.000	0.000
672	5.389	-21.299	0.066	0.000	0.000	0.000

Properties Details

Region	Thickness(ft)	Material
Boundary	1.000	Concrete

Isolated Footing Design

Soil Details

Boundary	Subgrade Modulus	Soil Height Above Mat	Soil Density	Applied Load due to Soil
Boundary	0.083kip/in2/in	0.000ft	120.000lb/ft3	0.000kip/ft^2

Mat Dimension

	Boundary Nam	Boundary Name : AutoGen672									
Node No	X Coor(ft)	Y Coor(ft)	Z Coor(ft)								
17	78.471	0.000	62.288								
18	79.003	0.000	62.288								
19	79.003	0.000	62.795								
20	78.471	0.000	62.795								
	Boundary Name : AutoGen671										
Node No	Node No X Coor(ft) Y Coor(ft) Z Coor(ft)										
13	78.471	0.000	49.747								
14	79.003	0.000	49.747								
15	79.003	0.000	50.253								
16	78.471	0.000	50.253								
Boundary Name : AutoGen643											
Node No	X Coor(ft)	Y Coor(ft)	Z Coor(ft)								
9	66.651	0.000	62.288								
10	67.183	0.000	62.288								
11	67.183	0.000	62.795								
12	66.651	0.000	62.795								
	Boundary Nam	e : AutoGen64	2								
Node No	X Coor(ft)	Y Coor(ft)	Z Coor(ft)								
5	66.651	0.000	49.747								
6	67.183	0.000	49.747								
7	67.183	0.000	50.253								
8	66.651	0.000	50.253								
	Boundary Nar	ne : Boundary									
Node No	X Coor(ft)	Y Coor(ft)	Z Coor(ft)								
21	65.000	0.000	48.500								
22	81.000	0.000	48.500								
23	81.000	0.000	64.500								
74	65.000	0.000	64,500								

Analysis Results

Node Displacement Summary Table

-	Node Number	Load Case	Dx(ft)	Dy(ft)	Dz(ft)	Rx (Rad)	Ry (Rad)	Rz (Rad)
Max Dx	1	110	0.00000	-0.00048	0.00000	0.00002	0.00000	0.00008
Max Dy	2	222	0.00000	491223.33333	0.00000	0.00039	0.00000	30701.46094
Max Dz	1	110	0.00000	-0.00048	0.00000	0.00002	0.00000	0.00008
Max Rx	80	220	0.00000	0.02018	0.00000	0.00196	0.00000	0.00009

Page 7 of 8

Isolated Footing Design

Max Ry	1	110	0.00000	-0.00048	0.00000	0.00002	0.00000	0.00008
Max Rz	1	222	0.00000	-0.03043	0.00000	-0.00055	0.00000	30701.46094
Min Dx	1	110	0.00000	-0.00048	0.00000	0.00002	0.00000	0.00008
Min Dy	2	213	0.00000	-0.04166	0.00000	-0.00111	0.00000	-758.62750
Min Dz	1	110	0.00000	-0.00048	0.00000	0.00002	0.00000	0.00008
Min Rx	93	221	0.00000	0.04246	0.00000	-0.00392	0.00000	0.00012
Min Ry	1	110	0.00000	-0.00048	0.00000	0.00002	0.00000	0.00008
Min Rz	1	223	0.00000	437388.33333	0.00000	0.00006	0.00000	- 27336.77148

Plate Stress Summary Table

-	Plate	Load Case	SQx	SQy	Sx	Sy	Sxy	Mx	My	Mxy
			(kip/ft2)	(kip/ft2)	(kip/ft2)	(kip/ft2)	(kip/ft2)	(kip-ft/ft)	(kip-ft/ft)	(kip-ft/ft)
Max SQX	16	223	30.46750	16.07704	0.00000	0.00000	0.00000	-79.24924	5.81375	34.77990
Max SQY	15	223	-20.05009	25.10551	0.00000	0.00000	0.00000	2.20863	1.87493	9.56435
Max SX	1	110	0.03393	0.04299	0.00000	0.00000	0.00000	0.04896	0.07778	-0.04659
Max SY	1	110	0.03393	0.04299	0.00000	0.00000	0.00000	0.04896	0.07778	-0.04659
Max SXY	1	110	0.03393	0.04299	0.00000	0.00000	0.00000	0.04896	0.07778	-0.04659
Max MX	16	222	-32.23732	-17.96679	0.00000	0.00000	0.00000	90.12712	-6.22540	-38.91974
Max MY	16	223	30.46750	16.07704	0.00000	0.00000	0.00000	-79.24924	5.81375	34.77990
Max MXY	16	223	30.46750	16.07704	0.00000	0.00000	0.00000	-79.24924	5.81375	34.77990
Min SQX	16	222	-32.23732	-17.96679	0.00000	0.00000	0.00000	90.12712	-6.22540	-38.91974
Min SQY	15	222	24.89568	-27.57301	0.00000	0.00000	0.00000	-1.38497	-1.53560	-10.38084
Min SX	1	110	0.03393	0.04299	0.00000	0.00000	0.00000	0.04896	0.07778	-0.04659
Min SY	1	110	0.03393	0.04299	0.00000	0.00000	0.00000	0.04896	0.07778	-0.04659
Min SXY	1	110	0.03393	0.04299	0.00000	0.00000	0.00000	0.04896	0.07778	-0.04659
Min MX	16	223	30.46750	16.07704	0.00000	0.00000	0.00000	-79.24924	5.81375	34.77990
Min MY	248	213	-2.02148	0.03779	0.00000	0.00000	0.00000	0.95577	-6.58576	-0.04113
Min MXY	16	222	-32.23732	-17.96679	0.00000	0.00000	0.00000	90.12712	-6.22540	-38.91974

Base Pressure Summary for Service Load conditions

-	Node	X-Coor(ft)	Y-Coor(ft)	Z-Coor(ft)	Load Case	Base Pressure (kip/ft2)
Maximum Base Pressure	2	81.000	0.000	48.500	213	5.99921
Minimum Base Pressure	11	72.000	0.000	48.500	110	0.00000

Contact Area						
Load Case	Area in Contact(ft2)	% of Total Area	Area out of Contact(ft2)	% of Total Area		
110	253.50000	99.02344	2.50000	0.97656		
111	237.00000	92.57813	19.00000	7.42188		

Isolated Footing Design

112	78.00000	30.46875	178.00000	69.53125
113	94.50000	36.91406	161.50000	63.08594
120	82.00000	32.03125	174.00000	67.96875
121	62.00000	24.21875	194.00000	75.78125
122	8.00000	3.12500	248.00000	96.87500
123	8.00000	3.12500	248.00000	96.87500
200	256.00000	100.00000	0.00000	0.00000
210	153.50000	59.96094	102.50000	40.03906
211	128.50000	50.19531	127.50000	49.80469
212	8.00000	3.12500	248.00000	96.87500
213	8.00000	3.12500	248.00000	96.87500
220	62.00000	24.21875	194.00000	75.78125
221	40.50000	15.82031	215.50000	84.17969
222	8.00000	3.12500	248.00000	96.87500
223	8.00000	3.12500	248.00000	96.87500

Print Calculation Sheet

Appendix O: Hand Calculation – Mat Foundation

2+4-	-	-(3.	24	1	1 +	2	12	5.1	1	1)	=	9	э.	5.2	1					+	+			-	+	+
95.5	55	X	3	(1.3	8	88		23	.8	88)	(14	1.	84	0)					-	_	_		-	-
		X	-	5	.9	1									4		1										-
		e,	16	(41	8	10)	1	5.	11		0														+
		XI	11	S	.9	t'																					
		b	in:	n	=	2	(5	.9	1	+	1.4	- (5(n	5) :	=	4.1	<u>s</u> 5	۱.,	Ð	USI		15	•			
95.5	s	Ŧ	=(23	8	1	+ 2	3.	88	8)	1	150		, N \	5												+
		V	=	6.	2"	ĩ					/		-		_												+
		ęy	11	(1	50 2	, 5 2)		5	. (1.1	.7	*	Ø														
		Y	5	4	27	1																					1
		h	nır	, ,	. 7	(6	.1	1	- 1	+	[5]	12)	=	15,	37	3'	11	. 0	se	16	•					+
01ē	ř1	A 1	-	0	Μ	E.	N S	10	NS	1	s'	* 1	6'						_								1
con	UE	+	P	n s	50	rc,	1	qa		9	5,	55	к (r)	-	11	.3	18	ĸ	I Ft	2	٤٩	050		~			
Ix 3		L	(15)	(14	5)	- 1	5	17	3	Ft	4				S	♥ nij		(C)	ņ+	ric	h	=	0			
I 1, 7	-	2	(16	.)(15	5)		ų	505	1 9	ŧ٩					9	4	3= D	9	c yr	¢	h	12	v	,		-

Designed by:

Checked by:

9	Ve=	[2 •	4		+00	2	(8	.25	36	40 -	4(3.2	2)	(.	85)	=	9.	.3	k	> 1	10	1
φı	lc =	[20	(8 73	25)	+ 1	2]	Į	łoo	d	(13)(8	s.2	5)	(.)	8S)) =	18	.า	qĸ	>	٧u	V	
Φı	lc =	4	400	0	(93)(8.	25	20	85) .	= P	1.9	5	Ł	> \	U	V			-	1	
rwo v	NA	4 5	HΕ	AR	:					+	t							_			Ŧ	t	
٧v	1	Fy .	- (- (0)2 8.25	- () - + 2	201) 2) (1	.27)	=	25	5.6	,1	ĸ	4	ø	'c	V	,		
ONE V	A	51	+E	AR:		-		+		+	-												
V.	-	20.	016	-							1												
Φ	14	.95 .95	(2) (1)	(+'८ (मल	bo	 [16	•)(18-	15	Xr	2).	= 15	;o.	3	>	٧u	1	/					
							-																
				+																			
				+					+	+	t									-		*	
				+					+	+	t											F	
		_		-	-			-	-					- 1						-			

- aus	1911	w	1 0	ba	bid	683	14	U	nı-	0f	th	1 51	Tie	2.				
ь	= 1	1 3	211		_		-			-		_						
d	- 8	.25				1	1	1	-	-		_		-				
	_		(Arz	.)			-	2	100	1.				_				
Hu	= 7	1.7	9 (1	.58) -	5.0	11	.4	1) :	6	8.0	8K	- 61	6 =	16.9	9 1	-in	
	_		2				2	-		1								
D						-	+								1	-		
Kn	= -	MO	-	= -}	516.	99		=	141	4	inz	= 11	10	1011	n~			
++	4	2 24	12	-1	1(12	X 8-1	5-,			+		-		-				
		c C1	1			-	1		= 11		1		T.	+7	1.35	T.	ices	
9	= 18	3+	-	-	1- 1	Kn	1 0	- 8	10(4	000	21	1 -	11.		Turner'	1 13	.00	5
		11	ł	V		15 4%	1		000	00	Ļ	-	N	- 65	21/12	24		-
0.			0				-			-		-	-	-		-		
(m	a.x	161	P/M	in	-		+			+				-	-			
0.	5			201	110		1 -	2	× 1	1	-	21. 1	24	-				
- Th	* DE	202	2 .	11.30	1421	8.02	1 -	6.	LXI	1.40	(3.0.12	7.5			_		
1.0	1			1020	1010			123		1.1			-					
	110	201	# 1	4	-11		-			0	-			+				
	se	20	# (4,	יך	5	pα	cir	ng	0	c.							
	910	20	₩ [4,	1	5	pa u (1	cir 2)	ng - 6	0	с.	78)		> n	nax			
.: .: .3	936	20	# 1 - 2.0	4, (.)	-1	5	ра 4 (1	2)	ng - 4	0	.c.	'usr'	· -4	> r	nax			
:	938 =	20	# 1 - 2(4, (c))	-1	" 5 - 1	ра 4 (1	() 2) 19	ng - 6	0	.c.	,78) [,]		⊳ r	nax			
3		20	+ 1 - 2(4, '))	-	5	ра 4 (1	() 2) 9	ng - 6	0	.c.	, 7 8)'		> r	nax			
3	936 =	20	+ (4, 		5	ра 4 (1	2)	ng - 6	0	.c.	, 7 8) '	·* -4	> r	nax			
3	93C	20	₩ [- 2(4, (.)	٦ ¹	" 5 : [ра 4 (1	2)	ng - 6	0	.c.	, 7 8)'		> r	nax			
3	956	20	# (4, ()	-1	" s	ра 4 (1	2)	ng - 6	0	.c.	, 7 8)'		> r	nax			
3	- -	20	+ 1 - 2(4, (<u>c)</u>)		" 5 : !	ра 4 ()	20	- 6 - 6	0	.c.	, 7 8)'		> r	nax			
3	940	20	+ (4, ()		" S	ра 6 (1	2)	- (c	0	. 9,	,78)		> n	nax			
3	956	20	+ (- 2(4, (.)		" S	ра 4 (1	2)	ney - 6	0	. 9,	, 7 8)'		> r	nax			
3	940	20	+ (- 2(4, (<u>c)</u>		" S	ра 6 (1	2)	- (c	0	.c.	,78)	-	> r	nax			
3	USE =	20	+ 1 - 2(4, (<u>c)</u> ;		" S	ра 4 (1	ci) 2) 19	ng - (0	.c.	,78)	×	> r	nax			
3	340	20	+ (- 2.0	4, ()		" S	ра 6 (1	2)	- (s	0	. 9,	,78)	-	> r	nax			

Designed by:

207

Appendix P: User Tips Manual - Stantec Consulting Ltd.

Table of Contents

HOW TO CREATE AN ISOLATED FOOTING HOW TO CREATE A STRAP FOUNDATION HOW TO CREATE A COMBINED FOOTING HOW TO CREATE A PILE CAP FOUNDATION HOW TO CREATE A MAT FOUNDATION LIMITATIONS WITHIN STAAD.FOUNDATION IMPORTING AND EXPORTING IN STAAD.FOUNDATION HELPFUL USER TIPS AND TRICKS

FOUNDATION LOADING IN STAAD. FOUNDATION

- PURPOSE: TO INCREASE EFFICIENCY IN EACH SUPPORT DESIGN.
- SERVICE LOADS ARE USED TO DESIGN FOUTING DIMENSIONS.
- Ultimate Loads are used to design the concrete reinforcement and footing thickness.
- These Load Combinations (Sergice and Ultimate Loads) need to be combined with factors of safety within the program to create a realistic load case scenario. When toggling through each Load, it is shown that they are not arbied to the foundation in the geometric view at the same time. Load combinations are used for the foundation's actual design.
- PRIMARY LOADS ALLOW LOADING TO BEUSED FOR BOTH PRIMARY AND SERVICE LOADS. PRIMARY LOAD CASES ARE TREATED AS IF THEY ARE ACTING ON THE FOUNDATION SEPARATELY. THEY ARE THEY INITIAL STEP TOWARDS THE DESIGN OF THE FOUNDATION. EXCLUDE PRIMARY LOADS WHEN CREATING LOAD CASES BECAUSE ONLY LOAD COMBINATIONS SHOULD BE USED FOR DESIGN PURPOSES. STAAD FOUNDATION INDIVIDUALLY APPLIES EACH LOAD COMBINATION TO THE FOUNDATION AND DESIGNS EACH SUPPORT ACCORDING TO ITS LIMITING LOAD COMBINATION.

DESIGN PARAMETERS CONCRETE AND REINFORCEMENT

SPRCHES:

- -DAIT WEIGHT OF CONCRETE
- -MINIMUM AND MAXIMUM RAK SPACING
- -STERNITH OF COMPLETE
- -YIELD STRENGTH OF STEEL
- -MINIMUM AND MAXIMUM BAR SIZE
- -TOP MINIMUM AND MACHAUM BAS SIZE
- -MINIMUM AND MAXIMUM PEDESIDAL BAR SIZE
- This provides concepte and reinforcement related information in a table linder the "Data Infit Plane" menu.
- CHECK THE "SET AS DEFAULT" BOX TO "YES" TO DESIGNATE ALL OTHER FOOTINGS THAT ARE CREATED TO THE SPECIFIC VARIABLES IMPUTTED ABOVE.

The postance from the second second	
SPECIFICAL	Pie Anargement Parameter
-Pue Arriverner ein Strein:	Pie Anangement for Support
-Searche Selection	Preserved Page s used for site layout generation, please do not use the page.
-Pue Dans	force for a Langth for a
-Uwo	Pie Data
-Lenna	
-Weencut	Terring (4)
-Urator	A Retregale C Cesaler
-DUIMENER OF PILE	Number of Room (2
-Exce Domones	Ron Specing (0
-AREAMENEN: TYPE	Number of Columns 0
-Gente Pile-Annonement	Colum Specing 8
SELECT DARRY ARRINGEMENT	Could Rie Anargement
-Seam PLE REACTING	Balact Current Anargement
-Seatons Tree and Take	Den Fin Finder
 DESIGNER MEETS THREET TRETINGULAT OF TREES AT THE DESIGN OF THE PLUE THEN THE RESIGNER MEETS TO INFORM THE WALKESSIN THE THLE AND DESIGNER. DREES AT THE THLE AND DESIGNER. 	a Rec

May restaurists are the more complicated production reside. This is shown through the restaurists for "string "May Restauring".

ILPAULI PROFERITES			
Speciences	Setaut properties		
	State analysis the Arana		
S AIL AMATVES TELEVIDE	UN	P1	
-ound Annulias TritoRecas	Thubrase	12.000000	
St an Decres Thorewood	Sale drags theory and		-
-36365 Creating Transfere	Textras	12-3000000	0000
SUBGRADE MODULUS	Subgrote modulus	and the second second	
-30-BOHDEL MODULOS	UNI	10.102	
Con Doonnoos	Subgade notative	0.040000	
SOIL PROPERTY	Sol Preparty	10.000	_
Down Composite Decomposi	Con Sector	115.500000	
DEIM SECTIONAL PROPERTY	Prost and interest original a	1.14 00000	-
Do a Connec Mariane	Unit		-
-LITE SHOWE ANTORA	Depth	12.0000001	
	Main .	12.000000	
	File spring salues		
	Une Contraction	10.00	-
	Stud word y (yr)	26 200000	

SPECIFIES	Physical Insurance
SPECIFIES: -Number of Beams -Node A in Beam -Node B in ream -Depth of Node -Width of Beam	

MATFOUNDATION JOB	File Atrangement Parametric
SPECIPIES:	Number of rows: 10
-Pile Position Table	Number of columns: 10 Row specing: 10
-RECTANGULAR FILE ARRANGEMENT WIZARD -CIRCULAR PILE ARRANGEMENT WIZARD	No Specing X A [™] Row Specing 1 C Column specing 2 1 Origin X 0 3 1 Origin Y 0 4 0 Origin Z 0
Nie Position Prin X Y Z 1 n n n 2 - - - 3 - - - 4 - - - 5 - - - 7 - - - 9 - - -	Preview

MESH GENERALION	Working Selas
SPECIFIES: - ADD MESHING REGIONS	5) Minibing Sotup 60
-Meshing Setur	Add selected region as
	P Burday C Hak C Containage Region Identities
	Select Boundary
	Generalit Medi
	For transplar metror only
	Bidt selected reg. Others selected r

MATFOUND/ JOB ANALYSIS PROPER	ATION RTIES	
Specifies: -Slab Thickness	and and all communications	
-SOIL PROPERTY		
-PILE SPRING	And the second s	
	81.55a7me	

LIMITATIONS OF STAAD, FOUNDATION SOFTWARE

OPTIMEATION

- CHOOSING "SET AS DEFAULT = NO"
- CHOOSING MINMUM THICKNESS
- INPUTTING REALISTIC CONSTRAINTS
- ONLY APPLY FACTORED LOAD CASES

the second second second	and the second second second second	and a second second second second	the second s
I IMPTOTAL	AN AND DETEM	12 ATTINN NE	ENERS OF BUILDING
A DEPARTMENT OF A DEPARTMENT	DIVIDENT OF LUNI	CONTRACTOR AND A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRI	

LIMENDON

STAAD, FOUNDATION, SOFTWARE, DOES NOT USE THE ABSOLUTE VALUE OF FORCES. IT DOES NOT-PICK THE LARCEST SHEAR FORCES. IT ALSO DOES NOT CONSIDER HECATIVE ANSWERS.

		spiled Loads	Streigth Le	well .	
н.	1	Shenr P Jikit	Manuel A	Managerth R (Silar-10)	Manual I
18	1.001	-6.001	1.044	1.04	6.000
11	11.70	-8128	1.88	1.020	8,000
12	ACANC	0.40	19.3007	1.308	6,000
ia)	8.016	3.03	10.000	8.308	8.000
05	10.000	4.01	1.813	3,000	1.000
(A)	11241	-6.09		3.695	5.005
69	D.40	-4379	10,000	1.100	1.00
<u></u>	0.57	3,000	-0.000	8.308	8.008
26	31.6H	10.045	-16.010	1.004	5.004
2)4	1.347	-0.040	1.000	6.798	8.000
22	31.40	9.00	128	1.000	6.000
12	- EXAMP	-9.498	6.277	6.30K	1.00
22	- 6423	11/9	6.00	6,128	1.000
109	4.90	4.09	6 BH0	6.000	1.00
22	10.04	4.0	4.00	A.DE	8.001
122	1.34	-6.340	1.00	1,008	6.000
200	4.44	1.39	6.882	6.008	8.000

Back to Table of Contents

235

STAAD.FOUNDATION -> MICROSOFT EXCEL

- When exporting the "Calculation Sheet" to Excel using "Detail Ou thut", the full calculation sheet is not outhutted into Excel. It is also form afted differently. Only sliding, overturning, shear, puinching, etc. checks are shown as tables in Excel. However, you can copy the data and paste it into excel and all of the data will be present. The column widths in Excel will need to be adjusted to see all calculations.
- DO NOT SIM PLY COPY AND PASTE THE OUTPUT INTO AN EXCEL SHEET AND PASS IT ON TO A CLIENT. DO YOUR CALCULATIONS AS WELL TO CHECK FOR ANY DISCREPANCIES!

Back to Table of Contents

HOW TO STREAMLINE PROGRAM USE

HELPFUL TIPS AND TRICKS

- Scleet "Circular Pressure" or "Quad Pressure" Depending on desired loading, Loads need to be added on Grid Nodes (Defined by the red lines, X, Y, and Z). The coordinates of the loads
- are analysed according to the designated nodes. When creating these loads both points where you initially click and let go of the load you are creating needs to be on a grid node. You may then enter more detailed information in the witard menu that pops up. Once you select "ok" in the witard menu, you will be able to see the (in this case) Rectangular Loading in the Geometric View Window

Appendix Q: Final Project Proposal

Worcester Polytechnic Institute Department of Civil and Environmental Engineering

Stantec Structural MQP Stantec Project Center Boston, MA

Project Proposal Date: January 20, 2015

> Student Authors: Dominick Bossalini Paul Buchanan Margaret Freed Dylan Heinricher

StantecStructural@wpi.edu

Project Advisors: Professor Leonard Albano Professor Fred Hart

Contents

Table of Figures	3
Authorship	1
Introduction	2
Project Need	2
Design Approach	2
Project Deliverables	3
Background	3
Stantec Consulting	3
History	3
Company Structure	3
Foundation Designs	3
Spread Footings	4
Piles and Pile Caps	4
Pile Caps	6
Mat Foundations	6
STAAD.pro	7
Case Study in STAAD.pro	7
STAAD foundation	8
STAAD, foundation Program Theory	8
Foundation Design in STAAD foundation	9
Case Study in STAAD foundation	9
Capstone Design Statement	11
Capstone Design	11
Methodology	12
Objective 1: Define Scope of the project	12
Objective 2: Evaluate various foundation designs obtained from STAAD.foundation	12
Objective 3: Create User Tips Manual	14
Schedule	16
Deliverables	17

References	18
Appendices	19
Appendix A: STAAD.pro program overview	19
Linear Elastic Analysis	19
P-Delta Analysis	19
Buckling Analysis	19
Direct Analysis	20
Appendix B: Foundation Hand Calculations	21
Isolated spread footings	21
Piles and Pile Caps	22
Mat foundations	22

Table of Figures

Figure 1: A typical Pile Cap design	.4
Figure 2: Stantec Structural Group Gantt Chart	16
Figure 3: Static Analysis Command Line	19
Figure 4: P-Delta Analysis Command Line	19
Figure 5: Buckling Analysis Command Line	20
Figure 6: Direct Analysis Command Line	20

Authorship

The entirety of the Stantec Structural MQP team contributed equally to the completion of this proposal. All material contained within this document is the original work of the Stantec Structural MQP team, unless otherwise stated.

Identify Project Need - Margaret Stantec Consulting - Dominick Foundation Designs: Introduction - Paul Isolated Spread Footings - Paul Piles and Pile Caps - Dominick Mat Foundations: Dylan STAAD.pro - Dylan STAAD foundation - Margaret Capstone Design Statement - Margaret Methodology: Objective 1: Margaret Objective 2: Margaret, Dylan, Paul, Dominick Objective 3: Paul Gantt chart: Margaret, Dominick Appendix: Appendix A: Dylan Appendix B Isolated Spread Footings: Paul Piles and Pile Cap: Dominick Mat Foundation: Dylan

Introduction

By verifying the applicability and reliability of software used within a company, it is possible to gain financial benefits, facilitate communication across different departments, and ensure the effective use of company resources. It is important to determine whether software applications utilized by company employees are encouraging streamlined workflow by functioning to their intended standard. Letting discontinuities or inaccuracies creep into the intricate framework of structural design and construction projects can lead to wasted resources and delayed schedules. Having unreliable software applications can increase the frequency of reworks, the possibility of safety hazards, and the amount of wasted materials.

Project Need

The Power Group at Stantec has previously worked with several different foundation software programs. The company is interested in the investigation of STAAD.*foundation* in order to determine range of applicability and reliability within the software package. By engaging in a parametric study of STAAD.*foundation*, it will be possible to determine the reliability of the software and identify any potential limitations. This involves the use of STAAD.*pro* in order to construct a structural steel model and perform the necessary structural analysis. Once the reaction forces from STAAD.*pro* have been computed, they can be applied to design various foundation types. In order to quantify the effectiveness and reliability of STAAD.*foundation*, foundation types will be designed through hand calculations and then verified through the STAAD.*foundation* program.

Design Approach

To verify the applicability and reliability of STAAD *foundation*, reaction forces from a STAAD *pro* structural frame model will be obtained. A preliminary foundation type will then be constructed in STAAD *foundation* to begin the design process. Reaction forces and loadings obtained from the structural analysis in STAAD *pro* will then be input into STAAD *foundation* and the program will design the foundation to meet the specifications of the situation. The team will also design the selected foundation types by hand to verify the results from STAAD *foundation*. This comparison will allow for the analysis of software and design limitations inherent in STAAD *foundation*. Once the verifications have been documented, a User Tips Manual will be created for use by Stantec.

Background

Stantec Consulting

History

Stantec Consulting was founded in 1954 in Edmonton, Canada by Dr. Don Stanley as a civil and environmental engineering firm working primarily on water and sewage projects in rural Canadian towns. Within the first decade, the company grew to a size of thirty employees and was awarded its first major structural project: the redesign of the Peace River Bridge on the Alaska Highway. Today Stantec is one of the largest design firms in the world, with over 14,000 employees in over 230 different offices specializing in architecture, landscape architecture, and engineering.

Company Structure

Stantec is divided into several project areas within the fields of architecture, civil engineering and landscape architecture, mechanical engineering, and chemical engineering. Within the framework of Stantec's corporate Structure, these sub areas are known as *Business Centers*, or "BC's." These BC's often have sub groups within them, which collaborate on projects related to their fields, allowing Stantec to better allocate resources, and better manage the flow of money from clients to sub-contractors.

Power Engineering Group at Stantec

The power group at Stantec in Boston, Massachusetts was added to their firm in early 2014¹. The group came to Stantec after many years with Shaw Power and Stone & Webster. The power group designs and engineers projects involving heat, power, turbines, and air quality control. The group looks at traditional resources such as gas and coal, as well as renewable energy resources including wind and solar power. The power projects include the repurposing of old power plants to be more economically efficient. The power group is growing on both the East and West Coast of the United States, allowing Stantec to access a broader clientele.

Foundation Designs

Foundations are the base and support in the structural system that transmit the superstructure's loads directly to the earth. All civil engineering structures require foundations to keep the structure from leaning or buckling. Buildings bestow their weight and loadings onto their foundations; therefore, the footing needs to be designed to withstand the weight of the building. The foundation design process cannot begin until the loads have been calculated. There are several different types of design loads including: normal loads, shear loads, moment loads, and torsion loads. Where weather is applicable, the bottom of the foundation must be constructed below the frost line to prevent cracking from freeze-thaw cycles.

¹ http://www.stantec.com/about-us/news/2014/stanatec-adds-power-engineering-team-in-boston-massachusetts.html

Spread Footings

Spread footings are normally used to support the structural system of small to medium structures with moderate to good soil conditions. They can be used in high-rise buildings where the soil conditions are exceptional and can bear the load. Individual columns of the building are constructed on top of the spread footing because of its ability to bear extremely heavy loading. Many low-rise residential buildings consist of spread footings that support the load over a larger area. The foundation of residential homes, for example, is often used as a basement that supports the infrastructure of the house above it. Spread footings are the most common type of foundation due to its low cost and quick construction. They are built in different shapes and sized to accommodate each project's scenario. The shape of the footing is generally a rectangle and larger in lateral dimensions than the load it is supporting.

Determination of soil pressures, shear forces, and bending moments then need to be looked at to determine design capability². The design and layout of the footing is controlled by several factors: the load of the structure, penetration of soft layers near the surface, and penetration of layers near the surface due to the effects freezing and thawing. These foundations are more commonly found in residential construction buildings that have a basement. These footings are not sufficient for high-rise buildings.

Piles and Pile Caps

Piles

The use of piles is one of the oldest forms of foundations, dating back at least as far the Roman Empire. Piles are designed to transfer applied loads of the structure above through the upper portion of the soil and deep into the soil below. Typically, piles are used where the soil has a low bearing capacity in the upper strata, but a significantly stronger bearing capacity at greater depths. Piles can provide an economically viable alternative to other types of foundations in soils with this type of geologic profile as excavation to the firm strata can prove

to be both expensive and difficult.³ A typical pile cap design can be seen in Error! Reference source not found.

There are two types of piles, end bearing piles and skin friction piles. An end bearing pile is driven through the weak upper strata of the soil down to bedrock, densely packed gravel, or another

² Tabsh, Sami W and Abdul Raouf AJ-Shawa. "Effect of Spread Footing Flexibility on Structural Response." Structural Design and Construction 2005, 10 ed.: 109-114. Web.

³ Curtin, W. G., Shaw, Gerry, and Parkinson, Gary. Structural Foundation Designers' Manual. Chichester, GBR: John Wiley & Sons, 2008. ProQuest ebrary. Web. 15 December 2014.

suitably strong material, in order to achieve its load bearing capacity. A skin friction pile supports the load above by using the friction between the buried section of the pile and the surrounding soil to keep the foundation in place and provide an adequate factor of safety for the load of the structure. Often foundations will use both of these types of piles to ensure support for the structure above.

In many instances, it is impossible to sit a structure directly onto the piles, which support it. This can be for several reasons, but occurs most often because piles are rarely in the exact position defined on in the design drawings. During the process of driving the piles into the ground, they can wander from their intended position or angle; although this is acceptable, the piles must not be off their horizontal position by more than ± 75 mm. When a pile is not placed accurately, the columns supported by the pile will not only apply direct stresses to the pile, but will also exert a bending forcing on the pile. Pile caps are also used when it is necessary to distribute the force from a heavily loaded column over an entire pile group.⁴

Pile Caps

A pile cap is the structural element of a foundation that connects the column with multiple deep foundations. When using pile foundations, the piles are almost always placed in groups so that multiple piles will support a single column. In order to distribute the load from the column to all of the piles, a pile cap is used. Normally these are constructed of reinforced concrete, but a pile cap can also be a large slab of rock or a treated timber mat.

To account for the potential wandering of the piles or other deep foundation below, the pile cap is designed to protrude between 100 and 150 millimeters away from the outer face of the piles, although the centroid of the pile cap should remain above the centroid of the pile. The design of a pile cap must satisfy punching shear near the individual piles and shafts⁵ and therefore the depth of the pile cap must be adequate to account for this high shear force.⁶ This effective depth must be at least 12 inches with a minimum thickness of 18 inches.⁷

Mat Foundations

Mat foundations, also known as raft foundations, are a type of foundation that are considered when using a spread foundation would not be economical or reasonable. Mats are considerably larger than spread footings and generally encompass the entire footprint of a building. This type of foundation can be considered economical for a variety of reasons, mostly depending on size and soil condition. If a spread footing is being considered and covers more than a third of the footprint, a mat may be considered as a more appropriate alternative. Additionally, a mat can be used when dealing with erratic soil conditions because the mechanics of the foundation will successfully

⁴ Curtin, W. G., Shaw, Gerry, and Parkinson, Gary. Structural Foundation Designers' Manual. Chichester, GBR: John Wiley & Sons, 2008. ProQuest ebrary. Web. 15 December 2014. ⁵ ACI 15.5

⁶ Curtin, W. G., Shaw, Gerry, and Parkinson, Gary. Structural Foundation Designers' Manual. Chichester, GBR: John Wiley & Sons, 2008. ProQuest ebrary. Web. 15 December 2014.

bridge irregularities and differential settlements throughout a site. Location of the water table is another consideration for using a mat foundation. If the foundation is located below the depth of the water table, mat foundations are beneficial due to monolithic properties and ease of waterproofing. Depending on design, differential structural loads can cause irregular loading on the footing, in which case, a mat foundation would be beneficial because it is able to compensate for irregular loading. Although mats are able to withstand irregular loads due to both superstructure bearing and soil conditions, piles or shafts may be necessary in order to fully support the mat foundation.⁸

When considering the design analysis of a mat foundation, it can be considered as rigid or nonrigid. The traditional method to evaluate the design of this type of foundation was to consider it a rigid structure. Using this approach, a high width-to-thickness ratio is generally observed. Furthermore, using this type of analysis yields less reliable estimates of shear, deformations and moments because there is no consideration to redistribution of the bearing pressure throughout the mat.⁹

The more developed and accurate way to analyze the design of a mat is using the non-rigid method. Using this analysis, the interaction between the mat and the underlying soil is assumed to be a "bed of springs." With this assumption, deformations can be calculated locally throughout the mat, rather than calculating one deformation for the entire foundation, which is unreasonable under the conditions that a mat foundation is selected. By considering both flexural deflections and corresponding soil bearing pressure redistribution, non-rigid analysis yields results that are more appropriate.¹⁰

STAAD.pro

STAAD.pro is a software application that assists professional engineers in the design of steel, concrete, timber, aluminum, and cold form steel structures with a user-friendly interface, optimized design and analysis capabilities. It is a product of Bentley Systems, a software company that specializes in, "comprehensive software solutions for the infrastructure lifecycle".¹¹ The software allows the user to create three-dimensional models of nearly any type of structure, featuring flexible modeling supporting over 70 international codes and over 20 U.S. codes. Three-dimensional model, as opposed to two-dimensional drawings, allow for heightened awareness of interferences within the design. By combining mechanical, electrical, and plumbing systems within a single model, the software allows for integration of structural elements. Additionally, analysis and design features, such as nuclear certification, are included within the software package. The interoperability of the software package allows for data exchange across several different programs. A notable component of STAAD software packages is the ability to link

⁸ Coduto, D.P. Foundation Design: Principles and Pracitices. Upper Saddle River, New Jersey: Prentice-Hall, 2001. Print.

⁹ Ibid.

¹⁰ Ibid.

¹¹ Bentley: Sustaining Infrastructure. 2014. Web. < http://www.bentley.com/en-US/>.

models to external project databases. Several different aspects of the model, such as mechanical and plumbing components, can be imported from third party resources such as AutoCAD. Along with structural analysis and interference reports, STAAD is able to produce virtual walkthroughs of the models.¹²

Case Study in STAAD.pro

An example of a project that benefitted from the use of STAAD.pro was the design and construction of the Evergreen Community Power Plant in Reading, Pennsylvania. The project was contracted by ESI Inc. of Tennessee, and the engineers on the project had no previous experience using STAAD or Bentley software products. The difficulties associated with this project were attributed to size constraints and complexity of the project. Additionally, the customer was adamant on the use of three-dimensional modeling to ensure that proper operation and size could be achieved within the provided space.

The project team for the power plant consisted of 19 engineers, including structural, mechanical, electrical, and instrumentation engineers who were able to input their components of the design into the model. The engineers were able to review the model while 3D specialists simultaneously performed detailed modeling for the plant. The project was streamlined by utilizing STAAD's integration tools. Two and three-dimensional models from the vendors, which were created in third party applications, could be imported into the STAAD model. Interference reports were also generated using this model, opposed to two-dimensional interpretation. These reports identified major cost saving interferences between different engineering components before construction. Overall, the implementation and use of STAAD saved ESI Inc. about two months on the design schedule.¹³

STAAD.foundation

STAAD *foundation* is a used to design and model various types of complex and simple foundation systems. It is also a product of Bentley Systems. STAAD *foundation* is designed to handle common foundations, such as isolated spread footings and pile caps. It can also tackle foundation designs for larger and more complex projects. According to Bentley Systems, "efficient design and documentation is realized through its plant specific design tools, multiple design codes with U.S. and metric bar sizes, design optimization and automatic drawing generation".¹⁴ Using STAAD *foundation* can potentially benefit users of STAAD *pro* due to the streamlined workflow between the two programs. STAAD *foundation* can efficiently input geometry, loads and reactions from STAAD *pro* and then effectively produce a foundation design.¹⁵ While STAAD *foundation* can be used cohesively with STAAD *pro*, it can also be utilized as a standalone program.

¹² Bentley. STAAD.pro. n.d. Web. 10 December 2014. http://www.bentley.com/en-US/Products/STAAD.pro/>.

¹³ Bentley.Company. Bentley Helps Jump-Start 3K Design Services for Green Power Plant. June 2009.

<htp://ftp2.bentley.com/dist/collateral/docs/case_studies/CS_ESI_Green-Power-Plant.pdf>. 14 Ibid.

¹⁴ Ibid.

¹⁵ Bentley Systems. STAAD, foundation - User Manual. Research Engineers International, 2009. 1-2

STAAD.foundation Program Theory

STAAD *foundation* allows the user the ability to model complex or simple footings these include; isolated spread footings, pile caps, strip footings, mat foundations, and octagonal footings.¹⁶ The program designs these various foundation types in accordance with ACI 318-05 code.¹⁷

Foundation Design in STAAD foundation

Isolated Spread Footings and Strip Footings

In the design of isolated spread footings and strip footings, STAAD, *foundation* uses parameters concerning soil bearing capacity, shear and flexural strength of footing, compressive and flexural strength of pedestal.¹⁸ Depending on the bearing resistance of the soil and structure, loading a footing plan is determined. The footing thickness is determined by considering shear and bending capacity. The shear consideration includes punching shear, and one-way shear.¹⁹

Piles and Pile Caps

According to the STAAD *foundation – User's Manual* the program outputs for pile cap design include; required quantity, layout and geometry of the pile cap based on shear and bending strength requirements at critical sections of the footing.²⁰ In order to determine the proper pile arrangement and design the program user can input bearing, uplift and later capacity, and desired diameter, spacing and edge distance. In the design of pile caps, STAAD *foundation* considers the required shear and bending components at applicable critical sections.²¹

Mat Foundation

STAAD, *foundation* relies on finite element method (FEM) and slab-on-elastic-subgrade principles to analyze and design mat foundations.²² When applying a load to a plate or mat foundation, there is more than one direction for the load to transverse the plate. Using the finite element method, a plate can be subdivided into smaller sections in order to obtain deflection information.²³

Case Study in STAAD.foundation

Apollo Tyres Limited: STAAD foundation Provides Comprehensive Foundation Design

Apollo Tyres Limited in India's largest automotive tire manufacturer, and is currently in the process of building a new plant on a 126-acre plot.²⁴ The project will include 30 buildings and a build area of approximately 167,226 square meters. The project included some difficult

¹⁶ Bentley Systems. STAAD foundation - User Manual. Research Engineers International, 2009. 2-19

¹⁷ Ibid.

¹⁸ Ibid.

¹⁹ Bentley Systems. STAAD, foundation - User Manual. Research Engineers International, 2009. 2-4-2-23.

²⁰ Ibid. ²¹ Ibid.

²² Ibid.

²³ Thid

²⁴Apollo Tyres Limited. 2010. http://ftp2.bentley.com/dist/collateral/docs/case_studies/CS_Apollo-Tyres.pdf>.

challenges, specifically the large size of the entire structure and need to accommodate heavy loads. The consulting and engineering firm of Aswathanarayana and Eswara was awarded the contract for the project and utilized STAAD.pro, and STAAD.foundation in the design of the project.25 The foundation design included 120 support positions and over 50 load combinations. Due to the complexity of the project, STAAD foundation was able to streamline the design and analysis process. It allowed engineers to sort through massive amounts of data very effectively. By using STAAD.foundation software, the firm was able to save 50% to 60% in design time and saved 12 to 15% in materials.26 The firm also saved approximately 80 hours of work per month over the course of a six-month project period.27

²⁵ Ibid.

 ²⁶ Ibid.
 ²⁷ Ibid.

Methodology

In order to evaluate the reliability and stability of STAAD.pro and STAAD.foundation, several design alternatives will be created. The foundation will compare the transparency of the Building Information Modeling software between STAAD.pro and design and analysis process within STAAD.foundation. Hand calculations will be performed in order to verify the accuracy of the software's analysis capabilities. The three main objectives for this project include:

Objective 1: Define scope of the project

Objective 2: Evaluate various foundation designs obtained from STAAD.foundation Objective 3: Create user tips manual for engineers at Stantec Consulting Ltd.

Objective 1: Define Scope of the Project

Task 1: Define reference structures and loadings

In order to begin designing various foundation types, it will first be necessary to establish the main reference structure. Determining the reference structure narrows down the scope of the project by directing the focus onto a particular set of design structures. Optimally, this reference structure will be based off of recommendations by Stantec. Once the reference structure is determined, it will be possible to define necessary parameters to aid in the design of the foundations. These parameters include: location of the structure, foundation geometry, the structure's purpose, etc. Defining the reference structure and these parameters is the initial step in determining the loading and forces present in the foundation system.

Task 2: Define range of parameters and other variables

Having defined the type and function of the reference structure, a range of other parameters needs to be established. These parameters include information about the intended use of materials along with a range of soil parameters. For the design calculations, material properties to be determined include: strength of concrete, yield strength of steel, maximum and minimum bar size, clear cover values, and initial thickness. Soil parameters to consider include soil types, unit weight of soil, and soil bearing capacity.

Task 3: Design structural frame model and perform structural analysis in STAAD.pro

Once the reference structure and the range of parameters has been defined, the structural frame model can be designed and structural analysis completed in STAAD.pro. STAAD.pro provides design analysis for linear static, P-Delta, nonlinear, and several types of dynamic analyses. Further review of these various types of design analyses can be found in Appendix A. Corresponding data, such as load and statics check information can be included and printed within the report.

Objective 2: Evaluate various foundation designs obtained from STAAD foundation

Task 4: Input project parameters and calculated reaction forces into STAAD. *foundation* and generate foundation model

When starting a design in STAAD *foundation*, the user first creates a *Project* to hold all the pertinent information about the foundation design. This includes the physical information about the foundation and data about the structure that the foundation will support.²⁸ Setting up the general parameters, structural geometry, and structural analysis of a project in STAAD *foundation* can be either done through the input of data manually or imported from STAAD.*pro*. Manually inputting the project information involves entering support coordinates, defining structural loads, specifying design constraints, and entering design parameters.²⁹ Importing structural geometry and analysis results from STAAD.*pro* into STAAD.*foundation* creates a streamlined design process. Integrating the two programs allows the foundation design to be seamlessly combined with analysis of forces and moments in the superstructure. To take advantage of this streamlined process, this project will import the structural analysis from STAAD.*pro* into STAAD.*foundation* creates a streamlined design process, this project will import the structural analysis from STAAD.*pro* into STAAD.*foundation* creates a streamlined design process.

The design and analysis of a project in STAAD *foundation* varies depending on the intended type of foundation project. The specifics of this project's structural geometry, foundation type, and support reaction have not yet been determined. Therefore, a brief overview of the design and analysis process in STAAD *foundation* for isolated footings, strip footings, mat foundations and pile caps will be discussed.

Isolated footing Design:30

-Define design parameters: concrete and rebar, cover and soil, footing geometry, sliding and overturning, and design

Mat Foundation Design:

-Create grid and define the mat boundary

Create a mesh

In order to evaluate the reliability and continuity of STAAD.pro and STAAD.foundation, several design alternatives will be created. These alternatives will be designed and analyzed within STAAD.foundation, using loading results exported from STAAD.pro. Additionally, hand calculations will be performed in order to verify the accuracy of the softwares' analysis capabilities.

-Define soil properties -Analyze the slab

²⁸ Bentley Systems. STAAD, foundation - User Manual. Research Engineers International, 2009. 2-20.

²⁹ Ibid.

³⁰ Ibid.

Slab design:31

-Generate moment envelope -Design the slab -Create reinforcement zone for reinforcement layout

Pile Cap Design:³²

-Enter pile data: vertical, lateral and uplift pile capacities for each support, pile diameter, spacing, and distance of the edge from the corner piles -Enter pile cap design parameters: strength of concrete, yield strength of steel, maximum and minimum bar size, clear cover values, and initial thickness

-Perform pile cap analysis and view results

Strip Footing Design:33

-Input strip footing design parameters: unit weight of concrete, minimum and maximum bar spacing and size, strength of concrete, yield strength of steel, clear cover values, unit weight of soil, and soil bearing capacity

Task 5: Develop foundation model through application of hand calculations

The design of foundations through hand calculations will be completed in accordance with the various design procedures, as described in Appendix B. These hand calculations will use the same input parameters as were used in the development of foundations in STAAD foundation and will be generated within MathCAD. Additionally, loading and force specifications pertaining to calculations will be determined in accordance with specifications and standards defined by the client's needs.

Task 6: Analyze reliability of STAAD foundation and identify any shortcomings in the software

In order to properly determine the reliability of STAAD foundation, we plan to complete various structural designs with STAAD.pro and then import them into STAAD.foundation to initiate the analysis of the software. Within STAAD.foundation: isolated footings, mat foundations, slab design, pile caps, and strip footings will be analyzed. Once this has been completed, the results generated by the program will be compared to the calculations that the team has completed by hand to check for any potential errors or variations made by the program. The program will be examined by comparing the results and formulas on the STAAD foundation Calculation Sheet to hand calculations and will be checked for output forces, moment resultants, shear stresses, and flexure

³¹ Bentley Systems, STAAD foundation - User Manual, Research Engineers International, 2009. 3-56.

³² Ibid, 3-72 33 Ibid, 3-85

Objective 3: Create user tips manual for engineers at Stantec Consulting Ltd.

Task 7: Summarize the overall efficiency of STAAD.foundation

We will be looking at different types of foundations within STAAD *foundation* to determine the overall effectiveness and accuracy of the program's design. We will be able to determine the efficiency of the foundation through the design process. From the output of the program, we will be able to determine the foundations shear forces, bending moments, and rigidity of the foundation for the structure. Using the outputs from the program and comparing them to our hand calculations will allow us to see potential deficiencies in the program.

Task 8: Develop step-by-step user tips manual that can be utilized by Stantec engineers

Based upon trials that will be undergone in C-Term, a database for user tips will be developed. Through exploring the program and designing foundations based off of structures, we will be able to find techniques that are easier for users. This user tips manual will include information on how to export a STAAD.pro model into STAAD.foundation and step-by-step instructions on how to set up parameters in STAAD.foundation. In order to alert Stantec engineers of any issues in STAAD.foundation, the user tips manual will also highlight any limitations or inaccuracies. Creating a user tips manual will help Stantec employees understand and trust designs computed by STAAD.foundation.

Deliverables

This project will produce a report detailing our study on STAAD *foundation*, which will act as both a summation of our time with Stantec Consulting and as a summation of all of the deliverables created. Additional deliverables will include multiple foundation designs and analyses that were calculated by hand, as well as the companion calculations and analyses that were produced by STAAD *foundation*. These designs will be compiled to show the various design alternatives and will include information relating to the viability of the designs. An additional user tips manual and analysis of STAAD *foundation* will be produced to provide Stantec with an overview of the capabilities of STAAD *foundation*, as well as to provide future users with a synopsis of any potential errors or shortcuts.

Schedule

A proposed schedule for the project can be seen in Figure 2. The Gantt chart relates the project objectives and tasks to a timeframe spanning between January 15, 2015 and March 5, 2015.

Stantec Structural Group	1/15/2015	1/16/2015	2/02/61/1	1/20/2015	3/23/2015	1/22/2015	1/23/2015	5102/92/1	1/28/2015	1/29/2015	1/30/2015	2/2/2018	2/4/2015	2/5/2015	2/6/2015	5102/6/2	2/11/2015	2/12/2015	2/13/2015	2/16/2015	2102/81/2	2/102/51/2	2/20/2015	2/23/2015	5106/36/c	2/26/2015	2/27/2015	3/2/2015	3/3/2015	3/5/2015
STANTEC	Pro	oje	at S	Setu	φ			Τ	Τ	Π	Π	Т			Т	Т	Τ		Π		Τ	Т	Π	Τ	Т	Т	Π	Π	Т	\square
Stantec Orientation			Γ				Т			Π	Π	╈	T	Π	T	T	T		Π		T	T	П	T	T	T	Π		T	\square
Tour office facilities		Π	Γ	Π	Π		T			Π	Π	╈	T	Π	T	T	T		Π		T	T	П	T	T	T	Π		T	Π
Meet supervisor(s)		Π	F		Π		T	T	\top	П	Π	╈	\top	Π	1	T	T	\square	Π		T	T	Π	T	T	T	Π	T	T	Π
Review current project proposal			Γ				Τ			Π	Π	Т			T	Τ			Π		Τ	Τ	П	Τ	Т	Τ	Π		Τ	\square
Load STAAD.pro and STAAD.foundation onto computers	Г		Γ		Π		T			Π	Π	╈		Π	T	T			Π		T	T	П		T	T	Π		T	\square
Review STAAD tutorials and become familiar with program functions	Γ		Γ							Π	Π	Т			Т	Τ			Π		Τ	Τ	П	Τ	Т	Τ	Π	Π	Τ	\square
OBJECTIVE 1: Define Scope of the Project	Γ	Π	a	bjec	tive	21						╈		Π	T	T			Π		T	T	П		T	T	Π		T	\square
Define and review reference structure(s)	Γ		Γ				T	Τ		Π	Π	Т			Т	Τ			Π		Τ	Τ	П	Τ	Т	Τ	Π	Π	Τ	\square
Determine structural loadings															Τ								Π		Τ					
Define range of parameters and other variables	Γ		Γ				Т	Т	Т	Π	Π	Т	Τ	Π	Т	Т	Т		Π		Τ	Т	П	Τ	Т	Τ	Π	Π	Т	\square
Design structural frame model and perform structural analysis in STAAD,oro	Γ	Π	Γ		Π		T	T	Τ			╈		Π	T	T			Π		T	T	П		T	T	Π		T	\square
OBJECTIVE 2: Evaluate Various Foundation Designs Obtained	Γ		Γ		Obj	ject	tive	2													Τ	Τ	П	Τ	Т	Τ	Π	Π	Τ	\square
Define and Input project parameters into STAAD foundation	Γ	Π	Γ				Τ	Τ	Γ	Π		Т			Т	Т					T	T	П		T	T	Π		T	\square
Generate STAAD foundation models for various foundation types: listed below	\square		Γ		ST/	4AD).foi	unde	rtior	7					T	T	Τ				Τ	Τ	П	Τ	Т	Τ	Π	Π	Τ	\square
Isolated Footing Design	Γ	Π	Γ		Π		Τ	Τ	Τ	Π		Т			T	T					T	T	П		T	T	Π		T	\square
Mot Foundation Design	Γ		Γ		Π		Т	Τ		Π	Π	Т			Т	Т	Τ		Π		Τ	Τ	П	Τ	Т	Τ	Π	Π	Τ	\square
Slob Design	Γ	Π	Γ				T			Π	Π	T		Π	T	T					T	T	П		T	T	Π		T	\square
Pile Cap Design	Γ		Γ				Τ	Τ		Π	Π	Т			Т	T	Τ		Π		Τ	Τ	П		Т	Τ	Π	Π	Τ	\square
Strip Footing Design															Τ								Π		Τ					
Develop foundation models through use of hand calculations: listed below	Γ		Г		На	na (Colic	ulu	ions	5					Т		Т				Τ	Т	П	Τ	Т	Τ	Π	Π	Т	\square
Isolated Footing Design							Т					Τ			Τ								Π							
Mat Foundation Design	Γ		Г				Т	Т	Τ	Π		Т	Τ	Π	Т	Т	Т				Τ	Т	Π	Τ	Т	Т	Π	Π	Т	\square
Slab Design																							Π							
Pile Cap Design																							\square		Τ					
Strip Footing Design																							\Box		Τ					
Compare STAAD.foundation designs to hand calculated designs																														
Analyze reliability and identify any shortcomings in the software																							\square		Τ					
OBJECTIVE 3: Create User Tips Manual																	0	bjet	tive	:5										
Identify any deficiencies in STAAD foundation																							\square							
Identify any limitations in software design																							\square							
Provide techniques to ease design process																														
Write and finalize User Tips Manual																														
FINAL MQP REPORT								Fina	IM	QPI	Rep	ant																		
Write major report sections																														
Review and finalize individual sections																					T									
Compile and prepare final MQP Report	\square														T	T									T					
Prepare final project presentation																							Π							\Box
Present final presentation															Ι								Π							
"Tasis will be	divi	dec	d e	veni	y bi	etn	reer	n gri	κр	mei	mbe	15																		

FIGURE 2: STANTEC STRUCTURAL GROUP GANTT CHART

14

Capstone Design Statement

Capstone Design

The Accreditation Board for Engineering and Technology (ABET) must demonstrate knowledge and skills acquired in earlier coursework through a capstone design experience. A capstone design experience must incorporate engineering principles and realistic design constraints. This Major Qualifying Project (MQP) will incorporate the following five design constraints:

Economic: When designing various foundation types, economic constraints will be considered in order to create designs that are cost effective and use economical materials.

Environmental: The designs for various foundations will consider environmental impact.

Constructability: The project will be designed with the feasibility of construction in mind. This includes considering effective use of resources, labor, construction time, and maintenance.

Ethical: The designs will be developed to comply with the principles set forth by ACI Standards and the American Society of Civil Engineers (ASCE).

Health and safety: Foundation designs will be conscientiously designed keeping the well-being of those constructing the design and the future users in mind. The designs will meet the requirements of the governing regulatory codes and comply with the pertinent industry standards.

References

Apollo Tyres Limited. 2010. <http://ftp2.bentley.com/dist/collateral/docs/case_studies/CS_Apollo-Tyres.pdf>.

Bentley. STAAD.pro. n.d. Web. 10 December 2014. http://www.bentley.com/en-US/Products/STAAD.pro/.

Bentley Systems. STAAD foundation - User Manual. Research Engineers International, 2009.

- Bentley.Company. Bentley Helps Jump-Start 3K Design Services for Green Power Plant. June 2009. http://ftp2.bentley.com/dist/collateral/docs/case_studies/CS_ESI_Green-Power-Plant.pdf>.
- Bentley: Sustaining Infrastructure. 2014. Web. http://www.bentley.com/en-US/.
- Coduto, D.P. Foundation Design: Principles and Practices. Upper Saddle River, New Jersey: Prentice-Hall, 2001. Print.
- Curtin, W.G., Gerry Shaw and Gary Parkinson. "Structural Foundation Designer's Manual." Chichester, GBR: John Wiley & Sons, 2008. Web. 15 December 2014.
- Rajapakse, Ruwan. Pile Design and Construction Rules of Thumb. 2008. http://app.knovel.com/hotlink/toc/id:kpPDCRT002/pile-design-construction/pile-design-construction>.
- Tabsh, Sami W and Abdul Raouf AJ-Shawa. "Effect of Spread Footing Flexibility on Structural Response." Structural Design and Construction 2005, 10 ed.: 109-114. Web.

Appendices

Appendix A: STAAD.pro program overview

Linear Elastic Analysis

The command to run a linear analysis is shown in Figure 3. If any part of the analysis command shown is missing, it will not be performed. Furthermore, these additional reports can be generated if analyses are necessary for different phases of the design.

PERFORM ANALYSIS (PRINT { LOAD DATA | STATICS CHECK | STATICS LOAD | BOTH | ALL })

FIGURE 3: STATIC ANALYSIS COMMAND LINE

This command directs the program to check whether all necessary information is provided, form the joint stiffness matrix, check the stability of the structure, solve simultaneous equations, and compute the member forces and displacements. Additionally, STAAD allows multiple analyses to be run at once, which allows for optimized design and simultaneous attainment for load-dependent structures.

P-Delta Analysis

The software package allows for several options for the P-Delta analysis, differing based on the desired effects to the structure. Different effects include small and large delta, large delta only, or analysis including stress-stiffening effect on the KG matrix. In order to attain a proper analysis, three to thirty iterations should be specified in the command. Furthermore, global buckling can occur during this analysis, in which case the results should be neglected. An example of command base on small and large delta effects can be seen below in Figure 4.

> PDELTA ANALYSIS PDELTA 5 ANALYSIS PDELTA ANALYSIS CONVERGE PDELTA ANALYSIS CONVERGE 5 PDELTA 20 ANALYSIS SNALLDELTA PRINT STATICS CHECK

> > FIGURE 4: P-DELTA ANALYSIS COMMAND LINE

Buckling Analysis

This command directs the software package to perform analysis that includes solving for the static case, reforming global joint stiffness matrix to include the Kg matric terms, and solving simultaneous equations for displacements. If the loads must be in opposite directions, the program will automatically stop iteration after the one iteration. Additionally, convergence will occur if two successive iterations are within 0.1% of each other. An example of the buckling analysis command can be seen below in Figure 5.

> PERFORM BUCKLING ANALYSIS MAXSTEPS 15 -PRINT LOAD DATA

> > FIGURE 5: BUCKLING ANALYSIS COMMAND LINE

Direct Analysis

This type of analysis will reflect the secondary effects of a combination of load cases that are defined as repeat loads and reference loads. Furthermore, the analysis will solve simultaneous equations for displacements, reform the global joint stiffness matrix and repeat until the iterations converge. An example of a command for this analysis can be seen below in Figure 6.

> PERFORM DIRECT ANALYSIS ({LRFD or ASD} TAUTOL f1 DISPtol f2 ITERDIRECT i3 (REDUCEDEI i4) (PDiter i5) PRINT *print-options*)

print-options = { LOAD DATA | STATICS CHECK | STATICS LOAD | BOTH | ALL }

FIGURE 6: DIRECT ANALYSIS COMMAND LINE

Appendix B: Foundation Hand Calculations Isolated spread footings Compute the footing-plan dimensions B x L.

For a square footing $B \times B = \sqrt{\frac{Q}{qall}}$ For a rectangular footing $B \times L = \frac{Q}{qall}$ Q is the critical load combination

Convert the allowable soil pressure to an ultimate value for use in USD.

Find the "ultimate" bearing $q_0 = \frac{Qu}{BL}$

Make sure q0<qu

Calculate the allowable two-way action shear stress

For a square footing, check for diagonal tension:

$$Vall = 4\emptyset \sqrt{(f'c)}$$

For a rectangular footing, check for wide beam shear:

$$Vall \leq 2\emptyset \sqrt{(f'c)}$$

Find the effective footing depth

For the case of a square column

$$d^{2}\left(Vc + \frac{q_{0}}{4}\right) + d\left(Vc + \frac{q_{0}}{2}\right)w - (B^{2} - w^{2})\frac{q_{0}}{4} = 0$$

For the case of a round column (a = diameter)

$$d^{2}\left(Vc + \frac{q_{0}}{4}\right) + d\left(Vc + \frac{q_{0}}{2}\right)a - (BL - A_{col})\frac{q_{0}}{4} = 0$$

Compute the required steel for bending and use the same amount each way for square footings. Use the effective d to the intersection of the two bar layers for square footings if d > 12 in. For d < 12 in. and for rectangular footings use the actual d for the two directions. The bending moment is computed at the critical section (face). Check the steel ratio verses minimum and maximum steel ratios.

$$Mu = \frac{q L^2}{2} = \emptyset A_s f_y (d - \frac{a}{2})$$

19

Compute the column bearing and use dowels for bearing if the allowable bearing stress is exceeded. Minimum dowels must always be provided. If dowels are required, the length must be adequate for compression bond.

$$A_s = 0.005(A_{col})$$

Draw a detailed design based off the information you found above.

Piles and Pile Caps

The size of a pile cap is dependent upon the spacing of the piles below and the soil type. The first step is to assume a pile type and material based on economic need and site conditions. Following this, the ultimate bearing capacity of a single pile should be calculated to determine the design pile capacity, obtained from the application of a factor of safety. Once the ultimate bearing pressure of a pile is found, the number of piles needed to support the load can be determined. To space the piles, the center-to-center distance between them is assumed to be between 2.5d to 3.0d. Spacing, however, should be kept as small as possible, unless the site has heavy obstruction, to keep from increasing the cost of the individual pile cap.³⁴

Ultimate bearing Capacity is found using the equation:

$$Q_{ult} = Q_p + Q_f$$

Where:

 Q_{ult} =Ultimate bearing capacity of pile Q_p =Theoretical bearing capacity for tip of foundation Q_f =Theoretical bearing capacity due to shaft friction

Mat foundations

Evaluating a design for a mat foundation is similar to the process of evaluating a shallow foundation, however, additional factors such as the coefficient of subgrade reaction, are accounted for. The equation for evaluating the coefficient of subgrade reaction is calculated as follows:

$$k_s = \frac{q}{s}$$
,

Where:

³⁴ Rajapakse, Ruwan. Pile Design and Construction Rules of Thumb. 2008.

<htp://app.knovel.com/hotlink/toc/id:kpPDCRT002/pile-design-construction/pile-design-construction>.

$$k_s = coefficient of subgrade reaction$$

 $q = bearing pressure$
 $\delta = settlement$

Settlement is calculated using the equations as discussed for shallow foundations. Additionally, the coefficient of subgrade reaction can be recalculated based on the defined zones of the mats.

Since the interaction between the mat and the underlying soil is treated as field of springs, the sum of the spring forces must equal the applied structural load plus the weight of the mat as shown below:

$$\sum P + W_f - u_D = \int q dA = \int \delta k_s dA$$
,

Where:

 u_d = pore water pressure along base of the mat q = bearing pressure between the mat at soil A = mat soil contact area

 $\delta = settlement at a point on the mat$