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Abstract

Our IQP investigates the possible functionality of another celestial body as an alternate 

home for mankind.  This project explores the necessary technological advances for moving 

forward into the future of space travel and human development on the Moon and Mars.  Mars is 

the optimal candidate for future human colonization and a stepping stone towards humanity’s 

expansion into outer space.  Our group concluded space travel and interplanetary exploration is 

possible, however international political cooperation and stability is necessary for such 

accomplishments.
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Executive Summary

This report provides insight into extraterrestrial exploration and colonization with regards 

to technology and human biology.  Multiple locations have been taken into consideration for 

potential development, with such qualifying specifications as resources, atmospheric conditions, 

hazards, and the environment.  Methods of analysis include essential research through online 

media and library resources, an interview with NASA about the upcoming Curiosity mission to 

Mars, and the assessment of data through mathematical equations.  Our findings concerning the 

human aspect of space exploration state that humanity is not yet ready politically and will not be 

able to biologically withstand the hazards of long-term space travel.  Additionally, in the field of 

robotics, we have the necessary hardware to implement adequate operational systems yet 

humanity lacks the software to implement rudimentary Artificial Intelligence.  Findings 

regarding the physics behind rocketry and space navigation have revealed that the science of 

spacecraft is well-established.  Moreover, our group has learned that the Moon holds significant 

quantities of water locked in the regolith and that it would serve as a sufficient outpost for human 

expansion into space.  Finally, our findings on Mars affirm that the atmosphere is relatively thin 

compared to Earth due to a weaker magnetosphere, yet habitability is still possible because of an 

Earth-like environment.  Our group concludes that Mars is the better exploration and 

colonization candidate because Mars has more suitable planetary conditions compared to the 

Moon.  While the Moon may be closer, a colonization effort has a better chance for successful 

habitation on Mars regarding human biology.  Furthermore, we have determined that the 

technology for robotics, spacecraft, and railguns are sufficiently developed for use in space but 

have not yet been extensively tested in isolated conditions.  Recommendations discussed during 

the project include further research on genetics and medicine for human biology with regards to 

space, developing railguns purposed for Near Earth Object defense, and exploring new materials 

and methods for extraterrestrial habitat construction.  Limitations our group has encountered 

during this project are the lack of resources and ability to test our findings in a physical medium 

by building the technologies we discuss as well as being unable to conduct in-person interviews 

for the majority of our research due to transportation difficulty.
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Introduction!

! Since the dawn of the space age, space-related technology has been contributing to 

advancements that would provide an opportunity for the human race to flourish on another 

world.  Humanity would want this prospect in the case of a potential apocalyptic circumstance.  

Such an event could occur within the next hundred years, including solar flares, a large Near 

Earth Object collision, or extremely devastating tectonic activity.  In order for humanity to 

survive such an event, there should be another location where the legacy of humanity will 

continue.  This would entail a worldwide effort to develop an outpost or colony on another 

planet.  Besides an emergency situation, retaining an outpost on another world will provide 

research opportunities and valuable resources that can be used both in space and here on Earth.  

Thus, humanity’s pursuit of knowledge of the solar system continues to proliferate so 

technological advances and interplanetary exploration become possible for the future.

Our group decided to pursue this IQP for various reasons.  The team is made up of two 

Electrical and Computer Engineers, a Robotics Engineer, and a Chemical Engineer.  Space 

interests us because it holds multiple curiosities to uncover and mysteries to unravel.  Our 

personal motivations for exploring aspects regarding humanity and space include forming 

foundational knowledge about reengineering the solar system to suit humanity’s needs, 

expanding beyond the Earth to discover new cosmic phenomena, and determining the overall 

process involved in colonizing a celestial body.  The group has been able to apply our knowledge 

towards such aspects within our solar system.  Our future careers will involve futuristic 

technologies such as robots that will be used in extraterrestrial missions, such as surveying other 

celestial bodies, improving communication infrastructure of spacecraft antenna, integrating 

circuits and power systems for spacecraft, and finding new resources and safer chemicals to use 

in nuclear reactors.

Science fiction has placed humans throughout outer space in multiple situations, 

providing an innovative outlet for developing solutions to space, and makes the idea of 

colonizing and exploring other planets more acceptable to the human mind.  Two celestial bodies 

that seem most plausible for humans to develop are the Moon and Mars, because of their close 
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proximity to the Earth and their relatively favorable environs compared to the rest of the solar 

system.  Although both worlds pose their own set of risks, developing technology is able to 

counteract these hazards and provide a safe haven for human beings.  It will take centuries to 

fully colonize another world, beginning with intensive research and technological advancements.  

This project will begin to identify the processes necessary to achieve space expansion and the 

impact on human society from such endeavors.
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1. Human Aspects

1.1! Exploration Motivations

 Each day new technology, theories, experiments, and research help progress human 

intelligence.  Civilization has come a long way from the development of the first computer, 

which weighed 30 tons and had dimensions of eight by three feet—unimaginable nowadays—

and our lives have therefore become much more interesting, convenient, and, unfortunately, 

dangerous.  It is important to remember that natural disasters or other planetary catastrophes  can 

occur at any moment, and that we should  take advantage of modern science’s technological 

progression to prevent such a tragedy from happening.  However, sometimes humanity’s new 

inventions are harmful to our planet, and we are decreasing our own chances of sustaining life on 

Earth.  To preserve mankind in the event of such an emergency, a space based colony could be 

used as a new location for humans to thrive.   

 Political and environmental issues are quickly coming to a climax as  the human race 

enters the 21st century.  Dilemmas such as a third World War, severe effects from mishandled 

nuclear waste, and atmospheric pollution are entering the foreground of political and scientific 

media.  According to Carl Sagan, famed astrophysicist and producer of the 1980s TV series 

“Cosmos”, the chance of life continuing to exist on Earth is (determined to be) less than 1% per 

century, when factoring in the multitude of events in the “sample space” of Earth that could 

cause global extinction of humanity.  This seems like a rash statement, but there are valid reasons 

that there will be an ending to mankind eventually.  One example would be an epidemic.  

Between 1346 and 1368, the “Black Death”, or the bubonic plague, spread through Europe and 

an estimated 25,000,000 people died, an entire quarter of the continent’s population.  Around 

30,000,000 people died in the summer and fall of 1918 from the “Spanish” Influenza, wiping out 

2% of the World’s population [40].  It seems unlikely that such a devastating illness could occur 

within the near future, since we have vaccines for many fatal diseases and medicine is quickly 

advancing, but there’s a chance that these vaccines or other medical developments hold hidden 

dangers.  Britain’s famous medical journal, the “Lancet”, stated throughout 1979 and 1980 that 

“there is a relationship between crib death and immunizations” and that “at last count there was 
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2,525 cases of children reduced to vegetables by vaccine damage” [24].  Vaccines may have 

unpredicted side effects, such as blindness, deafness, or heart defects, which have been linked 

back to the German measles, Salk polio and other various vaccinations.   Scientists must also be 

careful when completing experiments in genetic laboratories, one mistake could lead to the 

development of a deadly virus, a mutated strain of DNA, or toxic bacteria.  To limit scientific 

accidents, 140 leading genetic researchers met at the Asilomar meeting in 1974 to discuss the 

hazards of genetic manipulation and to set guidelines to protect mankind from the potentially 

disastrous consequences of modern science.  This protocol cannot be governed however, and if 

someone does make a mistake, or does not abide by the rules, it will be helpful to have a 

completely separate  colony-- such as outer space-- where a part of the unharmed population 

could temporarily, if not permanently, escape.  

 Another issue is the possibility of creating “runaway pollution” [40].  The “runaway 

greenhouse” concept was developed while scientists were studying Venus and is defined by a 

planet’s temperature increasing, therefore causing increased water evaporation, which then 

causes greater infrared absorption, causing an even greater temperature increase and so on until a 

new, significantly different, equilibrium is stabilized.  Earth’s atmosphere has been, and is being, 

strongly modified by man, and the risk of a runaway effect is possible.  Industrial pollution emits 

a variety of substances that are harmful to the atmosphere; toxins such as chlorofluorocarbons 

(CFCs), which can be found in refrigeration systems and aerosol propellants, and methane, a 

product of industrial and mining activities, eventually make their way to the upper stratosphere 

and interfere with the production of the ozone layer by the Sun’s rays [125].  The ozone layer is 

an important part of the Earth’s atmosphere that protects life from deadly ultraviolet and X-rays 

which are constantly emitted by the sun.  In the last half dozen years there has been shifting 

changes in our global weather patterns.  The changes are highly unpredictable and we know very 

little about the complicated, non-linear interaction between various pollutants and our 

environment.  By moving mankind to outer space, we can be sure that there is another life-

supporting station outside of Earth’s realm, and that if anything catastrophic was to happen, 

humans would not become extinct.  Our intelligence is valuable, and we should be sure to take 

advantage of its thoughts and capabilities in space colonization. 
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1.2! Impact of Space on Humanity 

 One of the most significant events of the 20th century occurred on July 20, 1969.  

America held its breath as Neil Armstrong took “one small step for man; one giant leap for 

mankind”.  Hence, society’s growing interest in space began.  Humanity’s knowledge has been 

growing exponentially since the Stone Age, and by expanding our creative thoughts into the solar 

system, many new stimulating opportunities arise.  After a devastating Tsunami rocked the 

Indian Ocean in 2004, the InterAcademy Panel on International Issues (IAP) began an initiative 

known as the “Natural Disaster Mitigation”.  This protocol involves Earth-observation satellites 

and the cooperation of nations throughout the World to predict and protect against any coming 

natural disasters.  Earth-observation satellites are used to monitor every portion of the Earth’s 

surface, including weather patterns, ocean currents, and clouds.  Observational remote sensing 

systems are installed on the satellites which are then sent to orbit around Earth, providing us with 

meteorological, land, sea, and oceanic observations, some of which help predict weather patterns 

that our daily lives are based upon.  Satellites orbiting the Earth also play a large part in long 

distance communication systems.  Communication satellites allow radio, television, and 

telephone signals to be sent in real time to anywhere in the world.  Unfortunately, 

communication signals travel in straight lines and cannot bend with the curvature of the Earth, 

making extremely long distance land communication impossible.  The introduction of space 

satellites solved this issue and further advanced society by making it possible to send direct 

signals to a satellite in space, which then redirects the signals to another specific location, which 

could be halfway across the World [43]. 

 Space exploration has been a major driving force behind many recent technological 

advancements.  As NASA and other space agencies develop new hardware or scientific devices 

for robots, spacecrafts, and humans to withstand the harsh environment of the solar system, 

they’re also taking giant leaps in technological applications that we can use here, on Earth. In 

2007, USA Today released a list of the “Top 25 Scientific Breakthroughs” that had occurred 

within the last 25 years.  Nine of them came from the pursuit of space exploration, and eight 

were directly related to NASA.  Space technology has helped firefighters, doctors, and the 
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common workman in numerous ways.  Technology used during the  Apollo missions produced a 

lighter breathing apparatus for firefighters, and includes a mask that allows for greater peripheral 

vision.  A handheld drill that was developed by Black & Decker and NASA for Moon soil 

samples spurred the production of a line of cordless tools that make construction and gardening 

for a business or homeowner easier.  One of NASA’s most prominent developments is the 

Ventricular Assist Device, or DeBakey Blood Pump, that uses the Space Shuttle’s turbine 

technology to pump blood in a multitude of situations, such as supporting and sustaining an 

injured heart.  Heart surgeon Dr. Michael DeBakey collaborated with NASA on this project, and 

is proud of how these “spinoffs” so positively affect life here on Earth.  A “spinoff” is any 

beneficial device that was derived from space technology and is now used commercially. So far 

NASA has had more than 1,500 successful spinoff stories [141].             

 Besides useful developments for Earth living, space influences humanity’s moral life as 

well.  When the United States of America landed on the Moon, American pride heightened.  The 

excitement of space exploration continues today, as over 1,000 people watched the live Curiosity 

landing on Mars in August.  Space provides hope to society, and assures that there are more 

things to be discovered and studied.  It is important to be looking at the Universe in such a 

profound way, so that scientific and creative attention can be focused and applied to somewhere 

other than Earth.  As humanity’s technology and knowledge expands, we use up more and more 

of Earth’s valuable resources.  Our goal should be to conserve our planet, and we can do so by 

utilizing the solar system.     

1.3! Effects of Low Gravity

! Making a permanent base on the moon is becoming an attractive option for the future of 

space travel.  Plans are unclear so far as to whether this base would most likely be run and 

maintained as a fulltime living community, or used more as a jumping point for the transit to 

other planets and space locations.  Regardless, the impact and effects of low gravity on the 

human body are issues that need to be contended with in order to make a permanent base on the 

moon into a realistic possibility.
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 The human body is a very complex system, capable of adapting to numerous extremes.  

When long amounts of time are spent on earth, “the body as a whole system establishes an 

‘earth-normal’ condition” [72]. This is the condition the body assumes as normal for its given 

environment—the earth.  When the body is relocated to the moon, it must readapt to a “moon-

normal” condition.  That is, the condition the body adapts to in order to maintain a stable and 

healthy state in lowered gravity.

 Whenever the body moves from high gravity, like that on earth, to lowered gravity, such 

as space or the moon, it must take time to readjust.  The moon’s gravity is roughly one sixth that 

of the earth, so perhaps the most noticeable change is a feeling of lightness and agility.  This 

feeling, however, comes with strong physiological implications.  Because all the body’s organs 

and fluids are being pulled downwards with only one sixth of the force as in an earth-normal 

state, a strong upwards fluid migration will occur.  Because of the lessened downward pull of 

gravity, “fluids are redistributed to the upper part of the body and away from the lower 

extremities” [72]. This effect is more prevalent in micro-gravity conditions, however, after long 

periods on the moon it is speculated that some symptoms will become noticeable, the most 

common of which includes swelling of the facial features, and shrinking of the fatty tissues in the 

lower half of the body.

 Perhaps the most troublesome issue of spending long amounts of time in a low-gravity 

system is the fact that muscles begin to atrophy.  Because the gravity on the earth is six times 

greater, the muscles in the body must work much harder on a day to day basis than they would 

on the moon.  Because of this, after long periods of time spent on the moon, muscles will weaken 

because they are not bearing as much weight as they would on earth.  Additionally, bones will 

lose density and therefore strength.  The release of calcium that comes with loss of bone density 

also poses a threat to the kidneys as the body tries to absorb the misplaced calcium.  The most 

dangerous implication as the body weakens is the “deconditioning and decrease in size of the 

heart” [16].  Upon returning to the earth, the body will weigh six times what it has become used 

to on the moon, meaning that the heart will have to work six times as hard.  This could result in 

any number of life-threatening cardiac complications in addition to the fact that weakened bones 
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are more prone to fractures and breaks, and the rest of the bodies muscles will have to be built 

back up through physical therapy.

 In order to combat these issues, specialized aerobic and strength training exercises will 

need to be formulated to target specific areas of the body which are most susceptible to atrophy 

and weakening.  Weight bearing exercises to simulate the earth’s gravity will be crucial in the 

months leading up to a return trip to earth, if one is made, as well as preventative exercises 

throughout one’s stay on the moon.  As living and working on the moon becomes more and more 

a possibility for the future, it is necessary to be mindful and realistic about the different 

gravitational environment and how to take care of the body under such circumstances.

1.4! Bioengineering

!  In past manned space exploration missions, advanced health regulating technology was 

needed to monitor the vital signs of the crew, administer nutrition, and manage waste.  Current 

technology will suffice for future trips to the moon; however, further developments need to be 

made in the bioengineering field in order to facilitate trips to Mars and other explorations in the 

future.

 Currently, NASA’s bioengineering branch is working on a complex life-support system 

that will closely regulate crew members and passengers on future trips to Mars.  Such 

technologies will need to include air contaminant removal and filtration systems, water and 

waste recycling systems, as well as food processing systems, among others [93]. 
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Figure 1.  Enronmental Contola and Life Support System. A diagram explaining the life support systems used in the 
space station. (NASA)

 
In the figure above, the complex system used to sustain the humans on the space station is 

broken down into a flowchart.  A complex system like this would be needed for any extended 

human presence in space, such as the long commute to Mars [70]. 

 Currently, most research for bioengineering as it pertains to space is focused on refining 

such life sustaining systems for the future of space travel.  This being said, it is important to also 

consider what re-engineering the human body could bring to table.  Although it seems that the 

technology is still far off, replacement organs would be a solid option for the difficult issue of 

solar radiation.  In addition to solar radiation, there are many other cancer-causing aspects of 

space, such as hyper-accelerated particles that can rip through bodies, and even space ships.  On 

the current level of technological advancement, synthetic organs are only capable of standing in 

for real organs while patients await donor organs from the transplant list.  As technology 

develops, perhaps cancer resistant lab-made synthetic organs can be replaced in a person’s body 

prior to space travel.
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Figure 2. A lab-grown bladder. (Syntheticorgans.yolasite.com)

 Once humans begin to colonize other space locations such as Mars and the moon, 

constructing safe shelters and habitats quickly will be of the utmost importance in order to find 

protections from solar radiation and possible meteorites.  Sending robots ahead to complete this 

task is a great idea in theory, but it is likely that a human presence will be needed for supervision 

and management.  One way to cut labor needs down is to increase the strength of each individual 

using robotic exoskeletons. Robotic exoskeletons are a type of robot that is worn by a human and 

works with the wearer’s natural movements to aid them in strength and endurance.  While these 

machines are not autonomous, they read signals from the body and adapt to move with the 

wearer and increase their natural strength greatly.
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Figure 3. An example of a robotic exoskeleton being used by the military. (Gizmag.com)

Currently, the US Defense Advanced Research Projects Agency (DARPA), is funding a 

50 million dollar project known as "Exoskeletons for Human Performance Augmentation."  

Although actuation, power supply and storage suitable for the human body are still problems that 

need to be tackled, in comparison to other bioengineering alternatives, exoskeletons are a much 

more feasible possibility for the near future.  Most of the robotic exoskeletons under current 

development will be first produced for military use, however, their applications will surely 

extend to space travel.  Such exoskeletons will not only increase strength, but will also protect 

the wearer from harsh elements, as well as increasing stamina [89]. 

 Bioengineering is an indispensable technological field for the future of space travel.  

From life-support systems, to synthetic organs, to robotic exoskeletons, the field is incredibly 

vast and capable of impacting the speed of space development greatly.  Robotic exoskeletons 

will help with the progress of making other planets habitable, while replacement organs and life-

support will be important aspects of maintaining human safety on the journey away from earth.
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1.5! International Relations

! China has recently entered the top-end network of spacefaring countries, standing 

alongside the United States and Russia.  In 1992 the Chinese government approved a steady, 

slow-paced space exploration plan that includes the development of human spaceflight, a robotic 

lunar exploration program, and space effort towards national security.  China successfully 

launched the Shenzhou 9 spacecraft during June of 2012.  Three astronauts boarded the 

spacecraft and achieved China’s first manned space docking with the country’s orbiting module 

Tiangong 1 [36].  China has only seriously collaborated on its space technology with a small 

number of nations, specifically Russia and Brazil.  Russia worked with the Chinese to help 

develop the Shenzhou 9, which was based upon the successful Russian Soyuz vehicular design, 

as well as allowing the country to purchase Russian spacesuit designs.  China and Brazil have 

been scientific partners since 1988, when the China-Brazil Earth Resources Satellite (CBERS) 

Program was developed between the two nations.  The countries work together to improve the 

construction, launching, and operation of satellite technology.  China also belongs to the Asia-

Pacific Space Cooperation Organization (APSCO), whose headquarters are in Beijing, and has 

pledged to cooperate on space exploration matters with a few other countries of the Asian-Pacific 

region, including Iran and Pakistan [36].  

The United States however, has not been involved in such friendly spatial relations with 

China.  The main complication is the U.S.’s mistrust of China’s military intentions; space 

technology can be used for both civilian and military purposes, and it is difficult to foresee 

whether military space assets are intended for offense or defense.  China’s space program is 

primarily run by the military, making it difficult for the U.S. to cooperate with the country.  It is 

unknown whether Chinese aeronautical firms will be willing to sell their missile technology to 

nearby Asian countries, such as North Korea, Iran, and Pakistan, that are serious threats to the 

U.S.  China could easily join forces with these nations, empowering and strengthening their 

global standing in hopes of the U.S.’s demise. 

The U.S. delegation proposed using foreign satellites to monitor carbon dioxide 

emissions in China, since the country has been the largest CO2 contributor since 2004, making 
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the stabilization of international atmospheric greenhouse gases very difficult.  The Chinese 

strongly resented this idea, claiming it would be an “infringement upon their national 

sovereignty” and tension between the nations has grown.  When it comes to space, the two 

countries prioritize different issues, the United States being most concerned with space security 

while China is most interested in commercial space cooperation and the expansion of market 

opportunities [64].  

A goal listed in the United States National Space Policy is to “strengthen stability in 

space through domestic and international measures to promote safe and responsible operations in 

space” [135].  In order to fulfill this goal, the U.S. must be willing to cooperate with China.  The 

abbreviation of the U.S. space program has provided a great opportunity for Chinese and 

American space efforts to collaborate.  Budget cuts within the space program have increased 

American dependency upon foreign space technology, and could definitely help the two 

countries form a closer relationship.  China is one of the few countries where space budgets are 

stable, with promise of growth, and proves that the country may be a vital potential partner in 

future space endeavors. Through this partnership the U.S. could gain a more explicit 

understanding of China’s interests and intentions in space.  President Obama and Chinese 

president Hu Jintao have visited one another and have emphasized their willingness to cooperate 

on matters of space exploration.  Hopefully this is not an empty promise [64].

1.6! Near Earth Objects

! Near Earth objects (NEOs) are one of the greatest hazards that lie outside of Earth’s 

realm and are capable of regional, and even global, damage if not discovered in a timely manner.   

Near Earth objects are classified as asteroids, comets, or meteorites that come within 8 million 

kilometers of Earth’s orbit.  These can then be further classified into Potentially Hazardous 

Asteroids (PHAs) if they are within this close range and have a diameter of 140 meters or 

greater.  Currently, NEOs and PHAs are detected by satellites sent on space missions or by 

ground based telescopes.  NASA recently launched a mission to specify the amount of NEOs out 

there and gather information on them. Results were obtained from data found by the asteroid-
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hunting portion of  NASA’s WISE mission, known as NEOWISE, and 4,700 asteroids were 

observed.  One thousand three hundred and twenty of these are considered PHAs, meaning that 

they are close enough to cause a threat, and big enough to survive passing through Earth’s 

atmosphere, therefore causing damage on a regional, or greater, scale.   The WISE mission 

retired in late 2011, and there is currently no other space-based observatory vehicle in our solar 

system.  The Canadian Space Agency (CSA) is expected to launch the world’s first space 

telescope that is solely dedicated to detecting and tracking NEOs sometime in 2012.  The 

NEOSSat (Near-Earth Object Surveillance Satellite) will be 800 kilometers above Earth and will 

circle the globe every 100 minutes while scanning outer-space near the Sun.  Moving NEO 

observatories to the sky is a great idea, since ground-based telescopes can be limited by the 

Earth’s day-night cycle, geographic location, or weather [6].  

  
Figure 4. This diagram illustrates the differences between orbits of a typical near-Earth asteroid (blue) and a 

potentially hazardous asteroid, or PHA (orange). 
(Neowise 2, Atkinson)

 

 With this information it is clear that an accurate approach to the detection of PHAs, and 

protection from them is needed.  John D. Matthews, a professor of electrical engineering at Penn 

State, is convinced that artificial intelligence is the answer to space-related problems.  We have 

the technology to develop these exobots, but the lack of a compact power source is causing a 

delay on this frontier.  Exobots would have two main purposes, to clear existing debris and 

monitor space junk as well as monitoring the 1,300 PHAs and other NEOs.  The first step in this 
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process would be to launch robot vehicles that will learn about the asteroids and place beacons 

on them for identification and tracking.  Ultimately Matthews would like to see a network of 

exobots spread throughout the solar system and into the galaxy communicating through a series 

of infrared (IR) lasers.  This network would be composed of the autonomous robots previously 

described that are able to determine the exact location and time of their observations and send 

this information through IR lasers that will finally convey the information to Earth.  Surprisingly, 

the most expensive part of developing and launching this technology is escaping the surface and 

gravity of Earth.  These exobots would make targeting space debris in near Earth, and 

geosynchronous, orbit easier and will be able to recycle their findings [109].  

 The NEOWISE project put this idea of IR sensors to use while detecting NEOs and 

PHAs.  With the IR sensors, the robot-like vehicle was able to detect the heat of asteroids and 

therefore could pick up both dark and light objects, resulting in a more representative look at the 

entire NEOs population and improving the ability of astronomers to take good measurements of 

the asteroids’ diameters.  Eight hundred and forty-three near Earth asteroids with a diameter of 

approximately 1 kilometer of larger were detected.  WISE realistically sampled 107 PHAs to 

make predictions for the entire population as a whole.  NEOWISE uncovered the fact that there 

is an overabundance of low-inclination PHAs, meaning that these PHAs will move closer to 

Earth as time continues. 

 There are four mitigation techniques and defense mechanism plans that are still quite new 

and under-developed that could be used in the event of a disaster.  These include civil defense, a 

“slow pull” or “slow push” method, kinetic methods, and nuclear explosions.  Civil defense is a 

basic technique used when severe weather or other natural hazards occur and includes 

evacuation, sheltering, and emergency infrastructures.  This method could be used for small 

NEO impact events and would be a necessary part of mitigation for larger NEO events.  The 

“slow push” method is practical for NEOs that are tens of meters to 100 meters in diameter, and 

includes a spacecraft exerting a force on the target object that will gradually change its orbit to 

avoid a collision with Earth.  Kinetic methods would also include flying a spacecraft into the 

NEO’s orbit to defend against moderately sized objects (hundreds of meters to a kilometer in 
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diameter).  A nuclear explosion is the only current, practical way to defend against large NEOs 

that are greater than a kilometer in diameter.  None of these methods are fully developed or easy 

to complete, and decades of warning time would be needed.  

 Future generations would greatly benefit from having a NEO observatory and defense 

station on the Moon.  The best way to implement this would be by using existing technology, 

such as the NEOSSat, which is orbits around Earth, therefore watching every part of the sky, 

observing and tracking PHAs, then sending this data to a Lunar-based space station which could 

analyze the PHAs and provide mitigation techniques from there.  Colonizers on the Moon could 

produce spacecrafts that could be launched from mass drivers or rail guns, further explained in  

section 3.5, towards a PHA where it could then tow or push the object away from Earth’s orbit 

using mechanical arms.  This is a better alternative to using nuclear explosions because the 

debris from an explosion could potentially cause as much damage as the PHA itself.     

1.7     Research and Zero-G

! When the human body encounters conditions existing in space, it will need certain 

protection.  Shielding is used for such dangers as cosmic radiation, and pressurized, sealed 

environments are maintained for a place of rest and research for humans.  However, the effects of 

zero-G on the human body must be met in a different manner.  Extended amounts of time in zero 

gravity situations, such as those periods experienced by astronauts aboard the International Space 

Station (ISS), will result in detrimental health effects on the human body.  In zero gravity the 

main issue that occurs is the equalized distribution of body fluids within the body, so that fluid 

pressure in the head reaches equilibrium with fluid pressure in the feet; the usual pressures are 

80mmHg for the brain and 200mmHg for the feet, a decent difference [144].  The body senses 

the pressure buildup around the cranial cavity and combats damage to the brain by excreting 

excess fluids in the urine, leading to astronauts tending to be thirsty after extended space flights 

on their return.  This natural action brings down the overall blood pressure within the body so the 

brain is safe, though this develops a further problem of the cardiac muscle deteriorating.
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Therefore, utilization of a “lower body negative pressure chamber”, which causes blood 

to accumulate in the lower extremities through use of lower pressure within the chamber than 

outside it and on the upper body, allows the heart to work harder to properly circulate blood and 

maintain its strength [144].  A body centrifuge is also used to force fluids into the lower 

extremities, and works much like a normal centrifuge in that it uses centripetal acceleration.  The 

reason for other muscles, such as skeletal muscles, deteriorating is that they are simply not used 

as much as on Earth in a 1G environment.  To combat this type of muscle fatigue astronauts are 

advised to utilize on-board resistance training since normal weights would have no use in a zero-

G setting.  It is vitally important to exercise skeletal muscles since the spinal and other muscles 

can lose up to 20% of their mass while bones can lose from 40 to 60% [144].  The vertebrae in 

the spinal column also decompress and stretch, sometimes painfully, in zero-G situations, 

causing an astronaut to be up to 2.5 inches taller [26].

The immune system also weakens due to the body fluid disruption and equalized 

distribution, since the body operates best in directional circumstances.  That is, many biological, 

chemical, and physical interactions on a cellular level depend highly on gravity to operate 

efficiently or at all.  One example of this is the necessity of the sinus passages draining after a 

cold since they cannot drain if there is no gravity, the mucus will simply backup.  A common 

occurrence is a recurrence of childhood chicken pox in astronauts.  Antibiotics and other 

medication are supplemented to the astronauts to combat infections or to strengthen weakened 

immune systems; however these are also limited in efficiency due to necessity of gravity [26].  

Effects of zero-g ignore the lethal side effects of cosmic radiation.  Most, if not all, of the effects 

of zero-g dissipate after returning to Earth, though no astronaut so far has been in continuous 

zero-g conditions for longer than a year.

 Concerning the research on the ISS, one such project is actually aiming to extensively 

study the effects of zero-g and microgravity situations on the perceptions of the human body.  

Termed “Bodies in Space Environment” (BISE), this project will follow six astronauts in zero-g 

conditions, including on-Earth underwater neutral buoyancy and aircraft microgravity tests, and 

how their terrestrial perceptions and corresponding body/vision cues differ on Earth compared to 
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on the ISS [15].  Another project is the Analysis of a Novel Sensory Mechanism in Root 

Phototropism (Tropi), which will investigate the effects of varying light and gravity levels on the 

root systems of Arabidopsis Thaliana (thale cress) [5].  The varying gravitational conditions will 

be simulated using an on-board centrifuge, and the genes for successful plant growth in 

microgravity will be analyzed.  The goal of this project is to develop a durable long-term 

habitation solution for space travel concerning life support and food supply.

ISS research is currently strongly based in medical, botanical, and chemical applications; 

however, there has been criticism as to the actual materialization of end product.  Medical 

researchers from the Center for Macromolecular Crystallography at the University of Alabama in 

1999 reported that “this research has led to the development of a new generation of 

pharmacologicals that are currently in preclinical or clinical trials for diseases such as T-Cell 

Lymphoma, psoriasis, rheumatoid arthritis, AIDS, influenza, stroke and other cardiovascular 

complications” [34].  Critics raise their collective voice to this by questioning where the 

commercial product is.  And in response to this is the statement that getting anything, especially 

space-grown meds, past FDA regulations is a nightmare.  If there are any products on their way 

to the American consumer, they should materialize within the current decade or the next.

 Furthermore, there are products and research resulting from projects conducted on Earth, 

either in preparation for projects on the ISS or for space-based applications.  The following is a 

shortened summary of a few such projects from the years 2007 to 2012.

The iRobot PackBot Tactical Mobile Robot

Created from the Rocky-7 prototype Mars Rover, which Spirit and Opportunity are based 

on; this robot is currently used by the military for surveillance and uncovering IEDs. [55]

Flexible Aerogel

Created for a temperature barrier during rocket launches in response to the fragile silica 

aerogels; currently used for rocket umbilical cord insulation and in footwear insoles for 

hikers. [55]
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Intrifuge CellXpansion

Created as a “rotating wall bioreactor” to simulate microgravity situations on the ISS 

during the lapse of time that the US had no readily viable space transport after the 

Columbia Shuttle disaster; currently used in numerous medical applications where a 

three-dimensional cell culture is necessary, as opposed to a two-dimensional petri dish. 

[55]

Eagle Eyes Optics

Created for protection against solar radiation on the eyes of astronauts and developed 

from naturally-occurring oil droplets found within the eyes of birds of prey; currently 

used for solar radiation protection and in consumer sunglasses that filter out UVA, UVB, 

and blue-light radiation to prevent cataracts and age-related macular degeneration. [55]

Micro Algae Nutritional Supplements

Developed from research into providing proper nutrition by using algae as a food supply; 

implemented in infant formula since the algae Crypthecodinium cohnii contains high 

levels of DHA omega-3 fatty acid (docosahexaenoic acid) and a fungus (Mortierella 

alpine) that yields ARA (arachidonic acid).  The acids are present in breast milk, but not 

in previous infant formulas. [55]

ArterioVision

Developed from NASA Jet Propulsion Laboratory video imaging software for surveying 

and measuring the solar system; detects plaque, blood flow, and possible atherosclerosis 

of an artery in a non-invasive manner while previous technologies only detected plaque 

and blood flow. [55]

Petroleum Remediation Product (PRP)

Developed from NASA’s biological encapsulation research and the orbital production of 

microspheres; currently used in most oil and chemical spills around the world. [55]
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Emulsified Zero-Valent Iron

Developed from research at the Spaceport Engineering and Technology Directorate at 

NASA's Kennedy Space Center, EMZI is used to eliminate Dense Non-Aqueous Phase 

Liquids (DNAPLs).  DNAPLs are a form of chemical that are heavier than water and do 

not dissolve in water, thus contaminating groundwater and raising the toxicity in the rest 

of the water table. [55]

The potential for the advancement of technologies created from ventures in the ISS, both for use 

in space and on Earth, is too great to ignore and must be furthered for the benefit of mankind.
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2 . Robotics! !

2.1! Durability

One of the most important variables to consider in space exploration is durability. Any 

journey through space is going to be extremely long. In order to ensure the success of the 

mission, the spacecraft must be durable enough to suffer harsh temperatures in space or on 

another planet. The spacecraft must also be able to withstand air resistance when entering an 

atmosphere and landing on a hard surface. In order to survive these tough conditions, two things 

are needed. One being a great design, and the other is a strong building material.

 The Mars Exploration Rover mission (MER) utilizes both intelligent design, and resilient 

components. Both rovers were launched in June of 2003, and arrived on Mars in June and July of 

2004 [80]. Only one rover is still active on Mars, while the other rover has not relayed 

communication since March of 2010. The durability of the Mars Exploration Rovers is very 

impressive. The spacecraft that transported the rovers from Earth to Mars was made of several 

different components that helped to keep the rover intact during its journey to Mars. 

The cruise stage is the component that goes from Earth to Mars. It is primarily made of 

aluminum and covered with solar panels. The solar panels could provide up to 600 watts of 

power near Earth and 300 watts at Mars [80]. The energy created from the solar panels is 

partially used to keep the batteries warm during its travel through the cold space. The heat 

required to keep the batteries working on the Mars Exploration Rover come from electrical 

heaters, eight radiosotope heater units, and the heat given off by electrical components. 

The aeroshell, which was a protective covering for the lander during the voyage to Mars 

was made of an aluminum honeycomb structure that was placed in between graphite-epoxy face 

sheets [80]. On top of that is a layer of phenolic honeycomb filled with a blend of corkwood, 

binder, and tiny silica glass spheres [80]. Upon entering Mar’s atmosphere this blend will react 

and take away heat. This heat loss in turn lowers the kinetic energy of the spacecraft, therefore 

slowing it down for a safer landing. At an altitude of 10km the parachute is deployed [80]. The 
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aeroshell contains the parachute, which is made of polyester and nylon. It also has a triple bridle 

made of Kevlar, which connects to the back of the spacecraft. 

The lander itself is a lightweight structure made into a tetrahedron shape. The beams are 

made of graphite fiber woven into a fabric that is then layered [80]. The beam is lighter than 

aluminum, and more rigid than steel [80]. The lander deploys its airbags before hitting the 

surface of Mars. The airbags are made of Vectran, which is a manufactured fiber that has almost 

twice the strength of Kevlar [80]. 

Overall, the spacecraft design used for the Mars Exploration Rover mission is one that 

should be used as a guide for other space exploration missions. The success of keeping its rover 

safe and intact through all the hazards of space travel proves that it is of durable design and 

material.

2.2   Curiosity

Subsequently, NASA is making yet another attempt at sample analysis on Mars. Starting 

this year on August 6th at about 1:30 am EST, Curiosity will be landing on Mars in pursuit of 

unlocking the mysteries of Mars’ environment and history. Curiosity will be headed for Gale 

crater to seek out and analyze layered rock deposits. Since the MER landed in 2004, NASA has 

made many technological advancements with their rover design. With the addition of many 

technologies like a new more precise landing method and a new power source, Curiosity can 

almost guarantee a successful and safe mission. 

The entry, descent, and landing functions of Curiosity utilize a combination of successful 

technology from past missions as well as some new ones. The most notable change of this set-up 

is in its final landing maneuvers. This particular landing system will use a sky crane touchdown 

system. This improvement was absolutely necessary, as the airbag-assisted method used for the 

MER would not be able to supply a safe landing for the colossal 950 kg rover [88]. This new 

method allows for much more precise and safe landings. The airbag-assisted landing method 

yielded an estimated 93 by 12 mile landing ellipse area. The new sky crane method minimizes 
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the projected landing area to only a 4 by 12 mile ellipse [88]. The sky crane is the last part of the 

landing function and it used after the heat shield has been separated and the parachute has slowed 

the vehicle significantly. With four steerable engines, the descent stage will continue to lower the 

rover until a velocity of near zero is attained. Once this approximate velocity is reached, a bridle 

connected to the rover from the descent stage will lower the rover the remaining distance to the 

ground. Upon the detection of the rover’s safe landing the descent stage will cut the bridle and 

throw itself at full throttle away from the landing site of Curiosity [88]. This is to ensure that no 

damage or additional obstacles are in Curiosity’s way upon landing. The large landing zone that 

the MER had made exploring certain areas of Mars dangerous or just impossible. With this new 

high precision landing system, most of Mars could potentially be explored.

Another new feature of Curiosity is its power source. The new rover has a radioisotope 

power system that generates electricity from the heat of plutonium’s radioactive decay. 

Previously, solar panels were used as the power source for Spirit and Opportunity. While both of 

these rovers managed to well exceed their predicted life span, they could not be used during 

periods of no sunlight. Also, Spirit and Opportunity could only produce in between 0.499-0.590 

kWhr of power in the span of one Martian day. With this new power source, Curiosity can be 

running at all times and is predicted to produce 2.5 kWhr in one Martian day [88]. With the 

additional power supply, Curiosity will also provide an enhanced payload capacity as well as the 

ability to explore a much larger range than any previous mission. The estimated lifespan of this 

mission is to be at least one Martian year (687 days) [88]. However, it is not the power source 

that will be the limiting factor for this mission. The power supply is more than enough to keep 

the rover rolling much longer than that. The uncertainty of how long the mechanical instruments 

will be able to last should be the limiting factor [3]. Keep in mind though that both Spirit and 

Opportunity were only expected to have a mission lifespan of 3 months. One of the rovers 

managed to last 6 years, and the other one is still in function to date giving it over 8 years of 

service. With the many variables that could impede a rover’s lifespan its hard to accurately 

predict how long Curiosity could actually last. If it's anything like Spirit and Opportunity 

however, Curiosity has the potential to be exploring and analyzing Mars for a whole decade. 
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 Overall, the new design and operation of Curiosity could unlock the many mysteries of 

Mars, and open up new ideas for more improved rover designs. Hopefully this mission will 

provide sufficient data to make more accurate conclusions about Mars, as well as make the idea 

of putting a man on Mars more plausible. The potential of discovery on Mars come August 6th is 

greatly anticipated and could make a very important impact on the future of space exploration. 

 Recently, Curiosity successfully landed on Mars after its 36 weeklong journey on August 

6th, at 1:32 am EST [88]. Since the landing, Curiosity has calibrated and tested many of its 

features already. Including taking samples, vibration tests, taking color/panoramic/black & white 

photos, and arm tests. The most recent news as of October 4th is that Curiosity is in the correct 

position on Mars to begin taking scoops of soil for analysis [88]. Curiosity still has plenty of time 

and potential to discover great things on Mars. The results of this mission are of great interest for 

potentially forwarding space exploration efforts.

2.3   Lunar Robots

 To assist with construction and gathering of resources on the Moon, robots will need to 

be capable of moving large quantities of regolith in short periods of time.  Moonraker 2.0 (figure 

5) is an autonomous robot developed at WPI for NASA.  The 167 pound robot is capable of 

excavating and transporting nearly 1000 pounds of regolith in under 30 minutes, using a series of 

narrow troughs to scoop up the lunar soil and deposit into its onboard bin.  Machines like this 

will be an asset when lunar shelters must be quickly constructed, and resources must be gathered 

on short notice.  Its predecessor, Moonraker 1.0 is more compact, weighing less than half as 

much at 35 pounds.  Moonraker 1.0 (figure 6) uses an arm and conveyor belt strategy, which 

would allow it to fit in more compact spaces.  Technology such as Moonraker would have to 

undergo substantial modifications for use on Mars because Martian soil is much denser than 

regolith, due to its high iron oxide content.  This being said, technology similar to Moonraker 

would be essential to the formation of a Martian settlement.  Robots like Moonraker would be 

able to go to Mars ahead of humans and lay the ground work for a human habitat [101]. 
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Figure 5. Moonraker 2.0. (Paul’s Robotics)

Figure 6. Moonraker 1.0. (Paul’s Robotics)

 

 Additionally, robots sent to other planets for explorations purposes, and to search for 

additional suitable living environments will need to have independent power sources such as 

solar panels, a long wheelbase, and over four to six large wheels, making it easier to traverse 

obstacles.  Robots such as this—the Spirit and the Opportunity—have made missions to Mars in 

past years with great success.   The Spirit and the Opportunity were sent to Mars with no 
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intention of being retrieved.  Although the robots were only intended for temporary use, they far 

surpassed their lifespans, providing valuable information about Mars for many years.  Both 

robots weigh 400 pounds, and use an articulated rocker-bogie suspension system that allows the 

wheels to maintain contact and traction when an obstacle or hole is encountered.  The rovers are 

powered with rechargeable lithium-ion batteries that are recharged using a solar array that can 

generate up to 140 Watts of power.  Robots like these can be improved upon in the future, and if 

designed for a return trip, will be able to retrieve environmental samples that will provide 

essential information about the bacterial content of the soil and so on for finding future habitable 

space locations [79].

Here on earth, robots are beginning to become more commonplace in the construction 

world, however, many of these robots require human supervision or operation, such as the 

Wacker Neuson RTSC2, which is a remotely operated steamroller that is used to level hard to 

reach places for construction work.

Figure 7: the Wacker Neuson RTSC2. (Wacker Neuson)

Although this machine is not autonomous—and some would say not even a robot—it is a 

shadow of the possibility of robot aided construction on other planets perhaps such remotely 

operated machines could be controlled from earth to create a stable living environment on the 

Moon or Mars.  Although currently there is little to be found on the market as far as autonomous 
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construction robots, inventor Lars Asplund is laying the groundwork for a lunar mission with a 

robot capable of assembling a small cottage on the Moon’s surface.  Although the cottage will 

weigh only five kilograms, it is an example of what robots will need to achieve on the Moon or 

Mars before humans officially get there [128].  There are currently many autonomous robots in 

the industry, monitoring power plants, being used for military purposes, and even up and coming 

in the medical field.  Because autonomy is on the rise, with the future of space travel looming, it 

is clear that autonomous robots will be present in the future of space travel.  

2.4   Exoskeletons

Another important robotic advancement that could greatly add to the future of space 

travel is the aforementioned robotic exoskeleton.  Currently, the best exoskeletons for space 

travel is being funded by DARPA and supervised by Homayoon Kazerooni of the University of 

California at Berkeley.  The Human Load Carrier (HULC) can operate for 20 consecutive hours 

between recharges, and allows the user to carry up to 200 pounds of cargo.  Additionally, this 

lower body exoskeleton enables the user to consume fifteen percent less oxygen while wearing 

the suit and carrying the load, versus carrying the load alone.  The decrease in bodily exertion 

allows the user to require less oxygen, a very important feature for space use.  Because of this, as 

well as its long battery life, the HULC would be a good option to assist humans with the rapid 

construction of a habitat in space.  The HULC is able to sustain its battery life for so long by 

capitalizing on the force transferred from the ground when the user walks.  The HULC uses 

hydraulics and an onboard micro-computer to ensure that the machine moves fluidly with the 

user [1].  The HUCL is currently being designed for military and biomedical purpose—

replacement of the wheelchair—but it’s moving parts prevent the user from being able to wear 

the suit without a thick protective layer underneath, with minimal future adaptations, it may be a 

perfect addition to a spacesuit.  The HUCL is only the beginning of advances that will take place 

in the near future for robotic exoskeleton space technology.
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2.5   Artificial Intelligence

One of the most essential aspects of future autonomy is Artificial intelligence.  Although 

many advances need to be made before it is achieved, it is certainly a growing field.  When the 

term “Artificial Intelligence”, or AI, is used in the technology industry it usually refers to 

software and programming, such as logistics and data mining; dissimilar to the science fiction 

archetype that society equates with the term.  Frankly, with the term used by the technology 

industry, we can already consider ourselves to have the appropriate AI for an extraterrestrial 

venture.  The values emulated for an AI of this type, which can be considered as “weak” or 

“applied AI”, are speed, short-term memory, and long-term memory [127].  Weak AIs are 

systems that are not designed to emulate human sentience, and may be perceived mainly as a 

program that observes its environment through sensors which helps to maximize its chances of 

success for various algorithms.

For weak AI, speed can be demonstrated by the powerful computing platforms developed 

such as the K Computer, the fastest supercomputer currently in existence with a computing 

power of 10 petaflops and a computational speed of 10.51 quadrillion computations per second 

[62].  The human brain can only perform approximately 0.1 quadrillion computations per second, 

so computers already outmatch human computational power [53].  Short term memory, based in 

RAM, or Random Access Memory, and long term memory, based in the computer’s hard drive, 

are already quite efficient and extensive.  RAM is already easily cost-effective at 8 gigabytes per 

“stick”, while hard drives are in the terabyte range and still increasing.  Utilizing a large array of 

RAM and hard disk drives, Watson, a computing platform built by IBM for analysis and data 

generation/mining, is the best example of an applied AI.  The goals for speed and short- and 

long-term memory for applied AI have already been met.

However, if we are to associate the term Artificial Intelligence with the idea that 

machines are self-governed and autonomous we would quickly realize that science has much to 

do in the way of research to attain that goal of a true AI.  True Artificial Intelligence, also known 

as “strong AI”, require the same values as applied AI of speed, short-term memory, and long-

term memory [127].  However, strong AI also require sentience and the intellectual mechanisms 
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demonstrated by human beings.  Intellectual mechanisms, such as a rudimentary display of 

emotion or simulation of human-like behavior, can be seen in early examples like that of the 

robot Kismet of the Massachusetts Institute of Technology.  The Kismet robot incorporates 

auditory and visual sensors to perceive its immediate environment, and responds to external 

stimuli through synthetic speech or simulated facial cues.  Facial cues are initiated by using 

motorized components across its face, which includes a mouth, eyes, eyebrows, and ears to 

appear human.  Even with these forms of response, accurate bi-directional communication and 

refined emotive traits are still a ways off.

Sentience, in any shape or form, has not been achieved by or in a computing platform to 

date.  One reason behind this is that the fields of neuroscience and psychology have yet to fully 

reveal the intricate aspects of the brain and the mind, respectively.  Researchers reason that if we 

cannot understand our own brain mechanics then how could we possibly replicate it in a machine 

to initiate sentience?  This may be worked around by utilizing networked computing to simulate 

the human brain with its network of neural pathways.  Furthermore, researchers wonder if 

Artificial Intelligence will even have similar thought processes to humankind if they do attain 

sentience.  Artificial Intelligence could become outright hostile, like in many science fiction 

plots, and kill their creators, like Skynet in the Terminator film series, or control them, like the 

machines in The Matrix.  To prevent this, humanity will most likely implement Isaac Asimov’s 

Three Laws of Robotics [143] which are

1.  A robot may not injure a human being or, through inaction, allow a human being 
 to come to harm.

2.  A robot must obey the orders given to it by human beings, except where such 
 orders would conflict with the First Law.

3.  A robot must protect its own existence as long as such protection does not conflict 
 with the First or Second Laws.

with a zeroth law included that states a variation on the first law that “a robot may not harm 

humanity, or, by inaction, allow humanity to come to harm” [143].  These laws, if ingrained 

enough in an Artificial Intelligence’s programming, would hopefully shackle and prevent the AI 

from rebelling.  Though, this may lead to the AI essentially being enslaved, which, if it truly has 
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sentience, could pose a moral issue.  This sort of restraint may also inhibit the full function of the 

AI, depending on how it is programmed.  Either way, sentience has yet to be attained and the 

moral issue need not be visited currently.  Yet, on that same note, research has a long way to go 

in the field of Artificial Intelligence and robotics if a true AI is to be produced.

 Although bold claims about the future of Artificial Intelligence are frequently made, and 

seldom fulfilled, Thanks to MoNETA (Modular Neural Exploring Traveling Agent), such claims 

may soon become reality.  Such technology is being developed at Boston University with the 

goal of creating a brainlike infrastructure coupled with software that will be able to learn on its 

own much like an animal in the wild.  With this colossal project underway, the main funding 

behind this research, the U.S. Defense Advanced Research Projects Agency (DARPA), Claimed 

in 2010 that “Within five years, powerful, brainlike systems will run on cheap and widely 

available hardware” [136].  While this may at first seem like just another empty promise, the 

groundbreaking invention of the memristor makes it a reality.  Developed by HP, the memristor 

is a new class of electronic device that not only changes in resistance based on the applied 

voltage, but is also capable of remembering its previous state.  This functionality will be used to 

mimic synapses in the brain, where information is both stored and processed.

 With this onslaught of breakthroughs, the future is looking very bright for AI.  It is 

important to understand how future technology will differ from the simulated AI of yesterday.  

Traditional computers separate where information is processed, and where it is stored.  This is a 

key difference from the mammalian brain, which processes and stores information 

simultaneously.  Because of this detail, traditional computers are only able to carry out tasks 

which they are specifically programmed to do.  When future AI is able to both process and store 

information at once, computers will be able to learn and adapt as if they have emotional 

motivation and reasoning abilities, “without the constraint that they are actually aware of these 

feelings, thoughts, and motivations” [136]. Computers with such capabilities are known as 

animats, and will have endless applications.  The first of these applications will likely be for 

military use since DARPA is the primary funding, however, space travel will not be far behind.
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 Despite organizations like DARPA and Boston University taking huge strides in the field 

of Artificial Intelligence, the progress is not without challenge.  One of the largest roadblocks in 

the aforementioned advances is the issue of power supply. For example, “brains can operate at 

around 100 millivolts” [136] whereas their electrical counterparts require around 10 times that.  

Memristors are making it a possibility to lower the necessary power supply in the future because 

they require no power to remember their previous state.  Another major challenge that arises is 

the state memory ability of memristors decays over time.  After the technology is refined, this 

will behave much cells dying in a biological brain—as cells die, the brain gradually slows down 

in functionality, rather than crashing like a computer.  However, current technology is not yet 

able to facilitate the memristor decay so gracefully.

While Boston University is working on recreating a version of the brain to power robots, 

scientists at the University in Reading, such as Professor Kevin Warwick and Doctor Ben 

Whalley, are creating a new generation of robots that are powered by none other than a living 

biological brain.  The brain cells are first cultured in the lab, and a suspension of these cultured 

neurons are then put into a device called a multi electrode array.  The specially designed multi 

electrode array is used as a container for the brain cells whose surface is comprised of upwards 

of sixty electrodes.  The electrodes are able to pick up the electrical signals from the firing of the 

neurons and the voltage output of each electrode is determined by the following equation [133]: 

       (Eq. 1)

Ultimately, the voltage outputted to the control the robot is determined by the voltage of the 

overlapping region of the cells and the electrodes multiplied by the area of the overlap divided by 

the area of the electrodes.  These signals are then wired to the wheel motors of a small, simple 

robot, and various sensors on the body of the robot which allow it to know its whereabouts.  

Through this process, the brain is able to control the movement of the robot [133].  This new 

technology is fully autonomous; in fact, there is almost no way to control the brain.  These little 

robots drive around at their own accord and are nearly impossible to control without overriding 

the brain’s choices with exterior control.  
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Figure 8. A brain powered robot with multi electrode array shown. (Robot Powered by Rat’s Brain, Mail Online)

This is perhaps the greatest stride for AI to date.  These groundbreaking robots are able to 

store memories and learn from their past experiences.  For example when and obstacle was 

places in the way, perhaps at first they would run into it, but the next time they would remember 

its presence and stop and go around it [133].  Although this may seem like a small step, it is the 

first sign of any robot that can actively learn from its mistakes without being told so.  Upon 

further developments, such robots will be capable of learning from and adapting to their 

environments.  

Regrettably, the intelligence of the robot is heavily tied to the sophistication of the brain.  

Although the first generation of brain-powered robots were made with the brain cells of a mouse, 

plans are being set in motion at the University of Reading to being culturing human brain cells 

for use of controlling robots.  Although these robots would only be run with a small number of 

cells and not a full sized brain, heavy social implications will begin to come into play.  Although 

studying these robots will allow scientists a glimpse of how memories are stored and created—

thus enabling them to improve artificial brain structures like MoNETA—there are also many 

other factors that come along with utilizing human biology power for the purpose of technology.  
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For example, as the technology improves, and the brains controlling the robots become more 

sophisticated and humanlike, they will also begin to deserve more rights.  Furthermore, since it is 

so difficult to control these robots without exterior limitations that are able to override the brain

—such as constant monitoring and a backup control system that can disable the brain, it is 

unlikely that future generations of this technology will be capable of strictly adhering to 

Asimov’s laws of robotics.  To complicate matters even more, since the brains are human, and 

the more powerful generations will deserve rights, it may be considered unethical to monitor 

them and place exterior control restrictions on their behavior.  

Although these robots are currently being studied to learn more about the brain, this 

technology can also be thought of as the original definition of a cyborg.  Although people 

traditionally consider cyborgs to be humans that are adapted into partially robotic forms, the 

technology developed at University of Reading could eventually lead to robots that have been 

adapted into partially human forms.  Once humanoid robotics can reach a level that is on par 

with the movement capabilities of the human body, paired with a lab-developed human brain, the 

result would essentially be a human in a robot body.  The reason this is so exciting for the future 

of space travel, is that on planets such as Mars or even Titan, where the atmosphere and 

temperatures pose a threat to the human body, having instead a robot body with a human brain 

may prove to be extremely valuable to the success of space civilization.  Furthermore, since 

brain cells take time to be grown, it is possible that they could be cultured on the long trip to 

Mars, and be fully functioning by the time of landing.  This technology could eventually 

eliminate the problem of long space travel times, as well as many environmental concerns once 

the destination is reached.  This plan, of course, is not without complication.  The human brain 

could not survive in this form without prior adaptation.  For example, the areas of the brain that 

register hunger and pain, would have to be readapted to be perceived instead as feelings of low 

battery charge and need of robotic repairs.  It is unknown yet if it is possible to modify the brain 

in such ways while it is in the process of being grown, however, these issues among others, such 

as power supply and nourishment of the brain, will need to be dealt with.
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 Despite numerous challenges that still need to be overcome, true AI is more feasible at 

present than ever in the past.  Advances such as MoNETA and the memristor are allowing 

researchers to combine brain-like software with a design that is physically similar in layout to the 

biological brain.  Such a combination will lead to animats that are able to live among humans, 

replace soldiers, care for elders, and even man spacecrafts.  Perhaps with these advances, 

Artificial Intelligence becoming part of everyday life in the near future will be a reality and not 

just a bold claim.

 Future robotic technology will enable humans to flourish in many space locations, 

especially the Moon and Mars.  Although autonomous robots such as Moonraker, and the rovers 

and the rise of AI is perhaps the most critical for the beginning stages of colonizing the moon, 

human assistive devices such as HUCL will also be valuable assets to cut down manpower when 

developing a habitat.  As the technology develops, robots developed for medical, military, and 

personal use can be adapted for lunar use.  Such technology will enable humans to develop not 

only suitable, but enjoyable habitats away from the earth.
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3. Spacecrafts 

3.1! Solar System Mechanics and Navigation

 In order to navigate the solar system the basic mechanics of the solar system need to be 

understood.  The sphere of influence of planets and other bodies, planetary flyby techniques, 

orbit transfers, and the effects of atmospheric drag are critical in understanding spacecraft flight.  

To begin, the sphere of influence, or SOI, is the area that a celestial body has a greater 

gravitational influence than the parent star it orbits, such as the Earth when compared to the Sun.  

This definition is explained mathematically by 

Gmemv/rev2 > Gmsmv/rsv2       (Eq. 2)

which essentially states that the relation between the mass of the Earth (me), mass of a vehicle 

(spacecraft, mv), and the radius (distance, rev) between the Earth and the vehicle must be greater 

than the relation between the mass of the Sun (ms), the mass of the vehicle (mv), and the radius 

between the Sun and the vehicle (rsv), with the gravitational constant (G) acting on both sides 

[107].  Once the Sun’s influence overtakes that of the body in question the sphere of influence of 

the celestial body essentially ends.  The radius of the sphere of influence can be calculated by

 rSOI ≈ (mp/ms)2/5 × rsp        (Eq. 3)

with rSOI as the radius for the sphere of influence, mp as the mass of the planet, ms as the mass of 

the sun or star of the system, and rsp as the radius from the sun to the planet [107].  The 

interesting thing to note about the SOI is that one must consider the double-think phenomenon, 

which essentially holds that contradicting points of view must be considered and that both points 

are true.  When applied to the SOI, one doubly views it as both extremely large and extremely 

small; the discerning factor is the reference frame [107].  When viewed on a planetary scale the 

sphere of influence is seen to be immeasurably large, extending far beyond the planetary body’s 

radius.  However, when viewed on the solar scale, or considering the solar system as a whole, the 

SOI is extremely small when mapped on the ecliptic plane of the solar system.  The sphere of 

influence concerning Earth, or another planet, is only notable when stationing an artificial 

satellite in orbit around it or when leaving its gravitational influence.  Once a spacecraft has left 
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the gravitational influence of a planet, it must work against the gravitational influence of the Sun; 

this is only important when performing planetary flyby missions or orbit transfers.  

The velocity necessitated by a spacecraft relative to the planet for exiting the SOI on an 

escape hyperbola is called the hyperbolic excess velocity vector, which is equivalent to the 

escape velocity for Earth, except in relation to the sphere of influence.  The heliocentric velocity, 

on the other hand, is comparable to the hyperbolic excess velocity vector, except with the Sun as 

the focus rather than the Earth.  When this hyperbolic excess velocity vector is added to the 

planet’s heliocentric velocity, the spacecraft’s heliocentric velocity is acquired for the 

interplanetary transfer orbit through the solar system.  A flyby trajectory, also known as a 

gravity-assist maneuver or a swingby trajectory, is critical when performing interplanetary 

missions with the goal of preserving fuel [107].  When fuel is preserved, less needs to be 

contributed to the mission and a more massive payload can be allowed.  To find the change in 

velocity due to the flyby, one can follow either equation:

 ΔvFB = vsvO – vsvI = v∞O - v∞I        (Eq. 4)

 ΔvFB = 2 v∞sin(δ/2)             (Eq. 5)

With ΔvFB as the change in the velocity of the spacecraft due to flyby, vsvO and vsvI as the 

outbound and inbound heliocentric velocity vectors, v∞O and v∞I as the outbound and inbound 

hyperbolic excess velocity vectors relative to the planet, v∞ as the common magnitude of both 

the inbound and outbound hyperbolic excess velocity vectors, and δ representing the angle 

between v∞O and v∞I [107].  
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Figure 9.  Diagram depicting standard flyby trajectory, showing inbound and outbound hyperbolic excess velocity 
vectors, v∞I and v∞O, with angle δ. (Prussing, p.131)

For a flyby following a Hohmann transfer, which will be discussed in length in a later article, the 

aim is to either decrease or increase the heliocentric outbound velocity vector of the spacecraft, 

depending on how the flyby is performed and following a Hohmann orbit transfer, as viewed 

below:
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Figure 10.  Diagram (to the left) depicting a flyby trajectory following a Hohmann orbit transfer, destination is for 
an inner planet due to a decrease in heliocentric velocity of the vehicle. (Prussing, p.135)

Figure 11.  Diagram (to the right) depicting a flyby trajectory following a Hohmann orbit transfer, destination is for 
an outer planet due to an increase in heliocentric velocity of the vehicle. (Prussing, p.136)

These views are in reference to the planet in a non-moving reference frame.  However, if this 

flyby were to be put in motion in a celestial model, it would show that for a transfer to an inner 

planet (Figure 10) the outbound velocity relative to the planet, v∞O, is appearing to proceed to the 

planet’s left, yet also seems to eventually proceed to the Sun’s left.  This is false, though, because 

while the velocity relative to the planet puts the spacecraft to the planet’s left, the velocity 

relative to the Sun, vsvO, does not place the craft to the star’s left since it is moving in an inwardly 

spiraling motion.  This is because the objects within the reference frame are in motion radially 

with the Sun as the focus.  Similarly, for transfer to an outer planet (Figure 11), the velocity of 

the craft relative to the planet is greater, though the inbound heliocentric velocity is not [107].  

Due to this, the craft is able to overtake the planet, regarding relative velocity, the planet then 

gives the craft a boost in heliocentric velocity, and the spacecraft is able to migrate outwards 
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towards an outer planet.  The main note to keep in mind for the movement of bodies on the solar 

plane is that the difference in reference frames will provide different results, such as relative 

planetary velocity v∞ and heliocentric velocity, vsv.

 Furthermore, the mechanics of orbit transfer and the effects of atmospheric drag on 

reentry influence spacecraft performance.  The three types of standard orbit transfer are the Two-

Impulse transfer orbit, the Hohmann transfer, and the Bi-elliptic transfer.  The Two-Impulse 

transfer orbit is essentially a basic elliptic with the focus, or gravitational center, the same as the 

focus of the destination, known as the terminal [107].  This would be such that the focus in a 

two-impulse orbit transfer from Earth to Mars would be the Sun; since Mars orbits the Sun the 

spacecraft would likewise have a similar gravitational center.  The reason for being called a 

“two-impulse” orbit transfer is that the spacecraft would require two impulses, or velocity 

boosts, in order to first initialize the transfer orbit and then to circularize the spacecraft into the 

final elliptical orbit.  Calculating for the radius of the periapse (rp), or the closest point in the 

orbit to the focus, and the apoapse (ra), or the farthest point in the orbit to the focus is as follows

 rp =  ≤ r1         (Eq. 6)

 ra =  ≥ r2         (Eq. 7)

with p representing the parameter of the orbit, e representing eccentricity, or how much the orbit 

deviates from being circular, r1 representing the inner orbit of a celestial body such as the Earth, 

and r2 representing the outer orbit of a body such as Mars [107].  Parameter is derived from the 

aforementioned equations concerning the inner and outer radials, and is as follows

 p ≤ r1(1+e)         (Eq. 8)

p ≥ r2(1+e)         (Eq. 9)
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Subsequently, these equations are expressed in Figure 12 below.

Figure 12.  Diagram depicting standard Two-Impulse transfer orbit.  The focus, in this instance, would be the Sun 
for an Earth-Mars transfer, the periapse lying within the inner radial and the apoapse lying without the outer radial. 

(Prussing, p.103)

To further elaborate on the eccentricity, e, of orbits, an ellipse maintains that 0 < e < 1, a parabola 

e = 1, and a hyperbola e > 1 [107].  These characteristics are important when considering and 

differentiating flybys, which are typically hyperbolas, two-impulse and Hohmann transfers, 

which are nominally elliptic, and bi-elliptic transfers, which can extend to become parabolas.  A 

Hohmann transfer is a notable transfer orbit because it is the least eccentric, the most circular, of 

all the transfer orbits and the most fuel-efficient for direct interplanetary travel.  Calculation of 

the semi-major axis, aH, and the eccentricity, eH, is relatively simple and is shown below

 aH = (r1+r2)/2         (Eq. 10)

 eH = (r2-r1)/(r2+r1)        (Eq. 11)

with r1 being the inner radial orbit and r2 representing the outer.  For eccentricity of a Hohmann 

transfer, the periapse is always r1 and the apoapse is always r2 [107], as illustrated in Figure 14.  

For clarification, the semi-major axis is half of the longest diameter of an ellipse; one can think 

of this as the longest “radius”, though this would be misleading for an ellipse.  The semi-minor 
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axis, on the other hand, is the half of the shortest diameter of an ellipse.  Both are illustrated in 

Figure 13.

Figure 13.  Diagram depicting a basic two-dimensional ellipse with the semi-major axis, a, lying along the x-axis 
and the semi-minor axis, b, lying along the y-axis. The symbols f,r and p denote the angle in radians along the x-

axis, the separation distance according to the angle, and the parameter when f = π/2, respectively. (Prussing, p.16)

Finally, the transfer time, tH, can be calculated via the equation

 tH = π((ah3)/µ)1/2 = π((r1+r2)3/8µ)1/2      (Eq. 12)

with aH representing the semi-major axis of the Hohmann transfer, r1 for the inner radial, r2 for 

the outer radial, and µ for the gravitational constant of the central body [107], known as the focus 

and represented by the F in figures 12, 14 and 15.  In effect, the Hohmann transfer is as shown 

on the following page.
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Figure 14.  Diagram depicting standard Hohmann transfer orbit.  The focus, in this instance, would be the Sun for 
an Earth-Mars transfer, the periapse lying on the inner radial and the apoapse lying on the outer radial, since both 

radials are equivalent to their respective apses. (Prussing, p.105)

The third and final orbit transfer is the bi-elliptic transfer.  This, in effect, is a manipulation of the 

Hohmann transfer, which itself is a manipulation on the two-impulse transfer, in that its 

midcourse radius, ri, lies outside the outer radial in contrast to the Hohmann transfer, as can be 

seen in Figure 15.  However, ri cannot be considered the apoapse since the orbit eventually 

decays as the spacecraft modulates its orbit parameter.  Furthermore, the bi-elliptic is so named 

because it contains two ellipses and it is considered separate from both the two-impulse and the 

Hohmann transfer because the bi-elliptic utilizes three impulses during its course:  one for orbit 

initialization, one for midcourse tangential velocity increase, Δvi , and one for interception or 

orbit stabilization [107].  If the midcourse tangential velocity boost did not occur, than the bi-

elliptic would degrade into a standard two-impulse orbit transfer.
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Figure 15.  Diagram depicting bi-elliptic transfer orbit.  The focus, in this instance, would be the Sun for an Earth-
Mars transfer.  The midcourse velocity boost allows the orbit to evolve into a bi-elliptic from a two-impulse orbit. 

(Prussing, p.109)

A variation on the bi-elliptic is the bi-parabolic, which essentially is just the case where ri 

approaches infinity, ri → ∞, and the midcourse velocity boost approaches 0 for Δv [107].  The 

ellipse then evolves into a parabola, as the name suggests.

Figure 16.  Diagram depicting bi-parabolic transfer orbit.  The focus, in this instance, would be the Sun for an 
Earth-Mars transfer.  The midcourse velocity boost approaches 0 as ri approaches infinity, which causes the orbit to 

evolve into a bi-parabolic from a bi-elliptic orbit. (Prussing, p.110)
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The most economical, considering both fuel-efficiency and transfer time, would be the Hohmann 

transfer since it is the most direct.  The only stipulation with a Hohmann transfer is that it would 

need to be timed impeccably for optimal orbit insertion and planetary interception, unlike a two-

impulse transfer which simply puts a spacecraft into perpetual orbit around a focal point, such as 

the Sun, until further action takes place.  When planetary interception and atmospheric reentry 

takes place, the primary force to consider is atmospheric drag, aside from gravity.  This is also 

relatively easy to compute, with the equation

 T = - ½ρCDAv2/m                  (Eq. 13)

With T representing the drag force, ρ for atmospheric density, A for cross-sectional exposed area 

of the spacecraft to the atmosphere, m as the mass of the spacecraft, v for the velocity of the 

craft, and CD as the drag coefficient, contrived from the surface area of the object [107].  Fuel 

efficiency is important in all forms of transportation, especially considering space and the 

extreme scarcity of refueling opportunities.

3.2! Propulsion

! In order to travel to any location in space, one must utilize a form of spacecraft 

propulsion.  Currently, the most reliable and well-known type of spacecraft propulsion is the 

standard chemical rocket.  This type of propulsion mechanism uses an internal chemical reaction 

between two fuel types, usually liquid hydrogen and liquid oxygen, which react upon mixture 

and ignition in the combustion chamber of the rocket.  In a solid fuel rocket, the oxidizer (liquid 

oxygen) and the fuel (liquid hydrogen) are premixed but unreacted, requiring ignition to catalyze 

the reaction [123].  For monopropellant rockets the fuel is usually not ignited but rather 

undergoes a self-maintained chemical reaction, usually of decomposition to a hot gas, and 

includes hydrazine, hydrogen peroxide, and nitrous oxide [123].  Hybrid rockets use both liquid 

and solid state fuels.  Standard chemical rockets, however, have low specific impulse.  Specific 

impulse is the propellant flow rate required for a given thrust, so if the propellant flow rate is 

high over a short period of time, such as for chemical rockets, then the specific impulse is low 
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[123].  Other terms of note include the actual exhaust velocity, which is the average speed that 

the exhaust jet leaves the vehicle, and the effective exhaust velocity, which is the speed that the 

propellant burned per second would need to exit the vehicle to be able to give an equivalent 

amount of thrust [124].  Current chemical rockets are adequate enough to be able to bring 

humanity to the Moon, but if human beings want to go further or take a more direct route, 

thereby requiring more fuel consumption, then other options will need to be researched.

 The current viable sources of energy that can be used for spacecraft propulsion are 

chemical, solar, electric, and nuclear (fission).  As stated previously, chemical rockets have high 

thrust, but low specific impulse, so they would be able to enable a spacecraft to exit Earth’s 

gravitational influence, but not travel to any great lengths in space.  Solar energy applications 

would revolve mostly around the solar sail, which is already in use for research space probes.  A 

solar sail would definitely not enable a spacecraft to exit the Earth’s gravitational influence since 

the technology is based on gaining what little momentum it can from the photons and particles 

ejected from the sun as well as from the heat it radiates after absorbing solar energy.  Since a 

solar sail does not consume fuel and only gains energy from surrounding solar influences, it can 

travel indefinitely [123].  However, this will lead to relatively slow space travel since there is 

extremely little thrust involved; the importance of this technology is its availability and its high 

specific impulse, which is good for space probes.

Electric propulsion would involve the various forms of ion or plasma technology.  The 

three most eligible technologies are the electrostatic ion thruster, the Hall Effect thruster, and the 

pulsed plasma thruster; all electric propulsion mechanisms have low thrust, yet extremely high 

specific impulse [123].  An electrostatic ion thruster uses electrodes and the resulting electric 

field from these electrodes to accelerate ions it produces by firing electrons within the vehicle to 

produce thrust [38].  A Hall Effect thruster (HET) uses a magnetic field to direct electrons to 

ionize propellant, which the mechanism then accelerates out of the vehicle with an electric field 

[47].  The difference between the electric field and magnetic field is that the electric field results 

from the strength of charge on a particle without involving movement of the particle while the 

magnetic field relies on the motion of the charge, or the current.  This difference illustrates how a 

  51



Hall Effect thruster is identified as an active thruster while the electrostatic ion thruster can be 

considered passive.  Pulsed plasma thrusters are significantly different in that they use an electric 

arc to cause solid propellant to turn into plasma, a state of matter in which most of the particles 

are ionized and are in an energetic state, which then exits the vehicle [105].  These thrusters can 

provide continuous acceleration by firing the electric arc hundreds of times per second with 

energy provided via solar panels, allowing for high velocities to be attained within the solar 

system.  A benefit of this system is that a large amount of electric energy is not necessarily 

required, and thereby being able to run off of solar panels.  However, the major drawback is that 

pulsed plasma thrusters are extremely inefficient in handling fuel.

Of special note is the magnetoplasmadynamic thruster, also known as an MPD, which 

uses an electromagnetic field to accelerate the ions of a gaseous fuel to produce thrust.  Why this 

is of special merit is that it has one of the highest specific impulses of ion thrusters, which are 

among the highest for all types of propulsion methods overall, and also has relatively high thrust 

at 200 Newtons, near to that of small chemical rockets [74].  All the electric propulsion 

technologies, both ion and plasma, are able to provide high specific impulse, though low thrust; 

they may be able to last for a long time, up to weeks or months, but they will not be used for 

exiting the Earth’s gravitational influence which is currently still monopolized by chemical 

rockets.  Electric and plasma propulsion is mainly relegated to orbital spacecraft attitude control 

[140].  Nuclear fission shows itself in the nuclear thermal rocket, which utilizes a nuclear reactor 

to produce high temperatures so that a liquid fuel, like hydrogen, can be exposed to it and rapidly 

expand and exit the launch vehicle, producing thrust.  The effective exhaust velocity is 

approximately twice as efficient as chemical rockets and with equivalent thrust [123].  The 

dangers, though, with nuclear thermal rockets and nuclear fission technology in general is the 

fear of a nuclear catastrophe occurring if the rocket malfunctions.  If a malfunction does occur, 

the radioactive material could be spread over a large area, especially if the rocket achieves high 

altitude before the time of malfunction.  If nuclear fission technology were to be utilized, great 

precautions would need to be made to ensure public safety.  However, we can be secure in the 

knowledge that humanity has already developed several dozens of different propulsion 

technologies, with new theoretical models being developed and tested regularly.
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3.3! Rocketry and Specific Impulse

 As noted previously, chemical rockets currently monopolize most of the field of 

propulsion and rocketry, with other propulsion technologies being delegated the task of orbital 

attitude control.  Chemical rockets are the most prevalent and widely used, and are presently the 

only forms of spacecraft propulsion able to propel a body into space and out of the Earth’s 

gravitational influence.  The design of a rocket currently resides in two broad categories:  single-

stage and multistage.  Single-stage rockets only consist of one engine to produce thrust with one 

or more tanks for fuel; depending on the fuel type it could either be one tank for a solid-fuel 

rocket or multiple tanks for rockets requiring a chemical mixture, such as that of a hydrogen-

oxygen rocket [91].  Currently, single-stage rockets are relegated to being used for missiles, 

which generally do not leave the atmosphere and have significantly less mass than a typical 

rocket intended for delivering a payload to space.  Multistage rockets, however, are able to attain 

greater acceleration due to a significant, periodic decrease in mass during flight time [91].  The 

decrease in mass is not due to the expulsion of fuel during flight, which single-stage rockets 

experience as well, but due to the ejection of multiple “stages” of the rocket in flight [92].  These 

stages, whether serial or parallel, meaning they are either stacked on top of each other or attached 

alongside each other, each separately house their own set of fuel tanks and engines.  Each stage 

is ejected from the overall rocket when the stage attains burnout, or when the fuel can no longer 

sustain proper thrust and runs out of fuel.  This is the most efficient multistage technique, by 

firing the successive stage at the previous stage’s burnout, compared to firing the successive 

stage at the previous stage’s peak altitude because firing at the burnout allows the rocket to 

maintain velocity and further accelerate due to the decrease in mass [92].  This is depicted in the 

figure below from Vashon Industries Valkyrie Report No. 5105:
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Figure 17.  Schematic detailing the altitudes able to be attained by differing rocket propulsion methods using two 
engines. ("Multi-Stage Rockets: Valkyrie Report No. 5105", Vashon Industries, Inc.)

To mathematically explain the reason behind preference for multistage rockets, we shall consider 

the work needing to be done to propel a spacecraft out of the Earth’s gravitational influence.  The 

minimum amount of work, Wmin in Newton-meters (Nm), needing to be done by the rocket can 

be explained by [132]

Wmin = hPR+W′         (Eq. 14)

PR = gρV         (Eq. 15)

With h representing height to be attained, PR representing the weight of the hull and non-fuel 

components of the rocket, and W’ representing the work needing to be done to compensate for 

the fuel.  In the second equation, which explains hull weight, g represent acceleration due to 

gravity, ρ represents density of the material, and V represents volume the material is occupying. 

W’ is explained by [132]

W’ = g(mfuel,h - mfuel,0)(z)dz‘       (Eq. 16)
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With mfuel representing the mass of the fuel and being integrated over position due to the mass of 

fuel being expelled over time.  Finally, the minimum work needing to be done for a two-stage, or 

multistage, rocket, Wmin2, is shown below [132]:

Wmin2 = (h/2)(PR+pE) + (h/2)(PR−pt) + W′2 = hPR + W′2 – (h/2)(pt−pE) (Eq. 17)

With h representing the height the given stage will be ejected, being the first stage in this case, pE 

representing the weight of the engine in the stage, and pt representing the weight of the stage to 

be ejected.  W’2 can be made smaller than W’ if the fuel is slightly reduced for the multistage 

rocket, which would inevitably happen since efficiency would increase given multiple stages and 

less fuel would be needed anyway.  Thus, if calculated, Wmin2 for a multistage rocket will be 

shown to be less than W’ needed for a single-stage rocket [132].

In essence, a multistage rocket is beneficial because it is able to attain higher rates of 

acceleration when it ejects a spent stage from the overall rocket.  The decrease in mass enables 

this increase in acceleration so that the escape velocity of 11.2 km/s can be reached.
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The following is the basic design for a multistage rocket, consisting of three stages (Saturn V 

rocket):

Figure 18.  Schematic detailing the structure of a multistage rocket, specifically the Saturn V rocket that is composed 
of three stages. (“Eric: Spaceships Rockets”, SpaceCollective)

 The physics of a rocket is vital to consider if one were to be built.  The basic physics 

include thrust, impulse, and specific impulse.  Thrust is the force that propels a body, such as a 

spacecraft, forward due to expelled mass in the opposite direction.  This derives from Newton’s 
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second and third law:  acceleration of a body is directly proportional to the net force, F, and 

indirectly proportional to the mass, m, given by F=ma; and that action and reaction forces 

between two bodies are equal and opposite.  Thrust, T, is given by

T = (dm/dt)v         (Eq. 18)

Where dm is the change in mass with respect to dt, the change in time, multiplied by the velocity, 

v, of the ejected mass relative to the rocket.  More specifically, thrust, in Newtons, is given by 

[106]

T = ṁVe + (pe - pa) Ae        (Eq. 19)

ṁ = feVeAe         (Eq. 20)

Where ṁ is the mass flow rate, Ve is the exhaust velocity at the nozzle exit, fe is the fluid density 

at the nozzle exit, Ae is the nozzle exit area, pe is the exhaust pressure at the nozzle exit, and pa is 

the ambient pressure.

 Thrust is the primary force enabling a rocket to escape Earth’s gravitational pull and 

mainly acts against drag and weight, or the force on the object due to gravity, during atmospheric 

flight.

 Impulse, on the other hand, is affected by thrust and is the integral of force with respect to 

time, or simply the change in momentum.  When a force is applied to a body, the momentum of 

the body changes; impulse is equal to this change of momentum.  A small force for a long time 

will give the same amount of impulse as a large force for a short time, all other forces excluded.  

Impulse, in Newton-seconds (Ns), is given by the equation

I = (Ftmax-Ftmin)dt = FΔt = ((dp/dt)tmax – (dp/dt)tmin)dt = Δp   (Eq. 21)

With F as force in newtons, dt and Δt as the change in time, and dp and Δp as the change in 

momentum.
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 Specific Impulse, furthermore, is the derivative of impulse with respect to the amount of 

propellant used, or thrust divided by the amount of propellant used per unit time.  To explain this, 

iteration on thrust is shown here [124]

Fthrust = Ispṁg0         (Eq. 22)

With Fthrust being equivalent to T, or thrust, Isp for specific impulse (in seconds), ṁ for mass flow 

rate (kg/s), and g0 being the value of the acceleration due to gravity at the Earth’s surface (m/s2).

Specific impulse may be measured in seconds or meters per second, depending on what is 

being referenced.  When it is measured in seconds it is referring to the duration of time the 

propellant would last if the engine’s thrust were to be adjusted to equal the initial weight of the 

propellant.  When measured in meters per second it is denoting the effective exhaust velocity.  

Specific impulse (Isp) in seconds is given as [124]

Isp = ve/g0         (Eq. 23)

With Ve as the effective exhaust velocity in meters per second.  Ve is related for equation 10 by 

the formula [124]

Fthrust = Veṁ         (Eq. 24)

And specific impulse in meters per second is given by [124]

Ve = Ispg0         (Eq. 25)

Which, in essence, is a simple algebraic manipulation of equation 23, with Ve representing 

specific impulse measured in meters per second, effectually the effective exhaust velocity.
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Figure 19.  Graph detailing propulsion performance of various propulsion methods, comparing Mach speed to 
specific impulse (Isp) in seconds. (“Specific Impulse”, Wikimedia Foundation)



 Yet propulsion and rocketry would have little importance in spaceflight if ground 

controllers could not communicate with the flight engineers aboard the spacecraft to enable safe 

and secure handling of the astronautical vehicle.

3.4! Celestial Communication

 When man ventures back out to space, methods of communication will be vital to ensure 

that any mission will be carried out properly and that the crew’s wellbeing is optimal.  Some 

methods already exist, such as those used for the Apollo missions and the Mars Exploration 

Rovers, however improvements can be made.  Currently there are only ground-based antenna 

towers and communications satellites (COMSATs) in orbit around Earth [67].  The uses for 
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COMSATs are mainly relegated to commercial/domestic and military needs.  All astronomic 

communications so far have been wireless, and will likely remain so since incorporating an 

extremely long tether for wired communications would be highly impractical and most likely 

dangerous when considering velocity of the craft and tension involved in the tether.  For 

instance, the Apollo missions have incorporated a high-gain S-band antenna for Earth-to-craft 

communication, which has appeared to be the mainstay for near-Earth communication in the 

years since first sending a man to the moon, such as that for commercial communication 

broadcasts [137].  To note, the S-band covers the 2-4GHz range within the microwave band of 

the electromagnetic spectrum.  

What is used more commonly in recent years, however, is the use of the X-band, which 

covers the 7 – 11.2GHz range within the microwave-radio region of the electromagnetic 

spectrum; this is relegated primarily to deep space telecommunications [78].  An example of the 

X-band in use is in the Mars Exploration Rover missions, used for both the spacecraft that ferried 

the rovers and the rovers themselves.  The primary advantage of using the X-band over the S-

band is the ability for smaller antennas that run on less power, yet they still deliver optimal data 

rates [78].  When near to Earth, the Mars rover spacecraft utilized a low-gain omnidirectional X-

band antenna for Earth-to-craft communication, but as the spacecraft traveled farther from Earth 

it had to switch to a medium-gain X-band antenna with a tighter beam focus toward Earth to 

boost transmission power and avoid extraneous radio interference from the Sun [78].  The Mars 

mission rovers also utilize the Mars Reconnaissance Orbiter to relay data communications to 

Earth.  This setup can be beneficial in future space exploration aspects in that the high power 

technology can be relegated to a safe orbit rather than subjecting it to planetary weather patterns.

Most cosmic communication from Earth has been kept on the ground with use of large 

antennas and radio and radar telemetry, such as that of the Deep Space Network, DSN, of the 

United States.  This network of spatial communications and observation equipment is located in 

Goldstone, California, Madrid, Spain, and Canberra, Australia to give 360 degree communication 

ability to any point in the solar system for interplanetary spacecraft (the only impedances would 

be if a craft or rover were on the far side of a planet or the sun) [85].

  60



Figure 20.  Area of communication ability for each DSN location, each with 120 degree view. (“Deep Space 
Network”, Wikimedia Foundation)

 Space communication technology can still improve, however.  Currently, use of the X-

band for interplanetary communication seems adequate, especially since most of the 

infrastructure has already been set up for such communication, like the DSN.  So, in response to 

this, an undertaking that could occur is to launch multiple communications satellites meant for 

Deep Space communications for orbit around the Moon and Mars, and other celestial bodies 

within the solar system that humanity plans to explore in the near future.  For an Earth-to-Mars 

communication scenario a signal would be transmitted from a ground station to a satellite in 

geosynchronous orbit around Earth, to a satellite in lunar orbit or a ground-based 

communications outpost, to a satellite orbiting Mars, then finally to the receiver on the Martian 

surface.  This would enable a more secure method of transmitting data between two points in the 

solar system since the data could be checked for errors at each transmission/reception point.  A 

string of satellite communication outposts would prove to be extremely robust for signal integrity  

when considering the interference from the Sun or other irradiative bodies in the solar system.

The only issue that faces current communications technology stationed in space is the 

possibility of radiation exposure and the ionization it causes to computer systems which, in turn, 
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causes corruption or loss of data in standard, non-hardened equipment.  A burst of radiation, 

whether from high energy neutrons in cosmic radiation or from alpha particles, can cause a 

single-event upset (SEU) that will defect hardware or erase data [145].  Forms of radiation 

hardening already exist, and usually follow the role of replacing semi-conductor materials with 

insulating ones, such as by replacing silicon with silicon oxide, using magnetoresistive random 

access memory, MRAM, which uses magnetic storage elements instead of electrically capacitive 

ones since electrons can be physically knocked out of a circuit by certain types of radiation, by 

physically shielding the electrical components, or by using depleted boron (Boron-11) to protect 

the computational chips since boron-10 readily decays when exposed to radiation, but boron-11 

resists radioactive decay [108].  These radiation hardening techniques are already in use in 

nuclear power plants, and would perform excellently in a space environment.  Such protection is 

vital when considering habitable structures in space, such as that of the International Space 

Station.

3.5! Railguns and Mass Drivers

The United States Navy has recently expanded upon the theory of a rail gun and is using 

it as a new method for shooting artillery [60].  A railgun consists of two conductive rails running 

parallel to each other and a conductive projectile that lies between the two rails.  When power is 

supplied to the gun, electric current runs up the positive rail, across the projectile, and down the 

negative rail.  Both rails are connected to the positive and negative terminals of the power supply 

respectively, and the conductive projectile completes the circuit [12].  The current, force, and 

magnetic vectors that act upon a rail gun can be seen in Figure 21 on the following page.          
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Figure 21. Railguns & the Lorentz Force. (Harris)  

Since current is flowing in opposite directions along the rails, a magnetic field forms around the 

projectile and the net field is directed vertically.  The projectile then experiences the Lorentz 

force, named after a Dutch physicist, which runs perpendicular to the magnetic field and away 

from the power supply.  This force acts upon the projectile, and accelerates it forward at a very 

high speed.  The following equation describes the mathematical relationship between the Lorentz 

force, F, the vector of electric current, I, the vector of the magnetic field, B, and the length of the 

rails, l [46].

 F = BIl         (Eq. 26)

The force can be boosted by either increasing the length of the rails or the amount of current 

supplied to the system.  In Phase I of the U.S. Navy’s railgun experiments, a 32 M-Joule 

prototype was demonstrated, and has been launched at speeds that range from 4,500 mph to 

5,600 mph.  Phase II of the design began in early 2012, and will focus on achieving a 10-rounds-

per-minute firing rate [60].  Resistive heating and melting are the main drawback to railguns, and 
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thermal management techniques must be considered when improving the design and 

functionality of the system.  The high velocity and friction of the projectile along the rails causes 

resistive heating, and can damage the surface of the rails.  Since the currents flowing through the 

rails are running in opposite directions, a repulsive force is also created and attempts to push the 

rails apart.  With such large currents that railguns require, on the order of  amperes, the repulsion 

between the rails is significant and they must be very firmly mounted to withstand this force 

[49].  These problems, as well as the fact that the projectile must be conductive for the system to 

work, are the main downfalls of railguns and many break after just a few uses.  A pulsing, 

alternating current (AC power supply) provides energy to the railguns and is another problem in 

their design.  A huge amount of power is necessary to create the millions of amps required to 

launch a projectile, and it is difficult to find or create a supply that can do this for an extended 

amount of time.  Large capacitors, cubic meters in size, are the only current device that can store 

the sufficient amount of power [12].   

In the future, railguns could be a practical application for lunar launching. The Moon’s 

escape velocity is 2.4 kilometers per second, which is equivalent to 5,368 miles per hour and is 

within the perfect railgun velocity firing rate. The United States Navy plans on introducing a 

railgun that can precisely hit a target from a 50- to 100-nautical mile range; such precision and 

distance make railguns an ideal mechanism for launching payloads into outer space from the 

Moon without rocketry.  To escape the Moon, a velocity of 2.4 kilometers per second must be 

achieved.  This is equivalent to 5,368 miles per hour, which lies within the firing rate of railguns.  

Railguns have also been proposed to help aid the cause of the Strategic Defense Initiative, a U.S. 

government “Star Wars” program that is responsible for the research and development of a 

space-based defense system.  Railguns would be able to fire projectiles at incoming ballistic 

missiles that are following a sub-orbital predestinated path [60].  In space, railguns could be used 

to interject incoming NEOs; an asteroid could either be destroyed or its trajectory altered with 

the projectile.                        

Another device that is being considered for lunar launching and possibly spacial defense 

are mass drivers.  These are electromagnetic launchers that use a linear motor and recirculating 
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buckets surrounded by superconducting magnetic (drive) coils to accelerate and catapult 

payloads, or projectiles, at very high velocities.  Once electricity is supplied to the linear motor, 

which guides and drives the launch, current begins to flow through the bucket and drive coils, 

creating a magnetic field that levitates the buckets and sends them down the motor [12].

 
Figure 22. Mass Driver Mode. (Kolm) 

The first mass driver to be built, Mass Driver I, arose in 1977, under the expertise of Dr. Gerard 

K. O’Neill, founder of the Space Studies Institute (SSI), and Dr. Harry Kolm [63].  The SSI 

continues to support the research and implementation of mass drivers and produced Mass Driver 

II and Mass Driver III in later years.  The second Mass Driver operates in a vacuumed, four-inch 

caliber tube that incorporates the superconducting bucket and an oscillating, push-pull coil 

system.  This mass driver reached 500 G’s and demonstrated the feasibility of the circuitry that is 

necessary to store and supply power to the drivers.  Mass Driver III improved the coupling 

between the drive coils and buckets and reached over 1,800 G’s [116].  In this design, the 

payload does not have to be conductive to be launched, as a railgun requires.  However, it is 

possible to include a conductive armature in between the rails of a railgun, making it just as 

applicable to all types of payloads as a mass driver.  This armature can be in the form of a solid 

conductive metal, a sabot that encases the projectile and then breaks off once the projectile is in 
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flight, or, in more advanced designs, the armature is plasma.  In this design a thin piece of metal 

foil is attached to the back of the non-conducting projectile and when power is supplied to the 

system, the plasma vaporizes through the foil and carries the current across the rails [49].  

With this improvement, and military research and progress already in process, railguns 

seem to be the correct choice for future space applications and technologies.  Current railgun 

designs are capable of hitting a target 250 miles away in just six minutes.  Lower gravity in 

space, or on the Moon, will only effect the vertical component of launching, but the decreased, 

and non-existent air resistance will affect the horizontal distance that can be achieved, making 

the projectile’s capable distance longer than that on Earth.  This is convenient because on a 

space-based scale, launches or missiles will need to cover quite a large distance compared to that 

on Earth.  To reduce friction on the rails, and the wear and tear that accompanies frictional force, 

Argonne National Laboratory has developed a Superhard and Slick Coating (SSC) that reduces 

friction by 80%.  Argonne researchers developed a crystal-chemical nanocomposite coating 

model that was able to help them predict what possible materials can be used for the coating and 

the correct chemical combination of those materials.  Due to their high combined ionic 

potentials, the most promising candidates that the model predicted were molybdenum and 

copper.  Other possibilities include molybdenum-silver, molybdenum-tin, molybdenumantimony, 

and molybdenum-mixed alloys of copper, silver, tin, and antimony.  With this improvement in 

coating mechanical systems, performance accelerates and the amount of energy needed to 

operate the system is reduced [134].  Such future developments will continue to increase the 

potential of railguns both on Earth, and in space. 

3.6! Life Support System

 For further exploration and colonization of the planets, a life support system that can 

sustain life for long periods of time is a necessity. Constantly reshipping water and oxygen 

supplies are far too expensive to consider. A more permanent life support system has been 
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developed by Paragon Space Development Corporation, and may serve as an initial life support 

system for life on Mars in 2023.

 Paragon is a company that specializes in life support systems that works alongside with 

NASA, which recently completed their Commercial Crew Transport-Air Revitalization System 

(CCT-ARS). The CCT-ARS was challenged to exceed NASA human flight safety standards. It 

was completed with less than $1.5 million of government investment, took less than 10 months 

to complete, and was able to meet all technical requirements specified by the Commercial Crew 

Development Space Act Agreement with NASA [100]. The CCT-ARS is able to provide seven 

crucial life support functions when running: carbon dioxide removal, humidity removal, trace 

contaminant removal, post-fire atmospheric recovery, air filtration, cabin air circulation, and 

temperature control [100]. 

 Mars-one, a company that plans on establishing the first human settlement on Mars by 

April of 2023, plans on incorporating Paragon’s CCT-ARS into their Mars lander. The life 

support system is calculated to yield 1500 liters (396.26 gallons) of water and 120 kilograms 

(264.55 pounds) of oxygen in 500 days [129]. Mars-one intends to have two of these life support 

units actively set-up on Mars with production of water and oxygen completed by the time the 

four astronauts are scheduled to land in 2023. With the arrival of humans, the CCT-ARS will 

then be able to utilize its additional functions of water purification and removal of harmful gases 

from the living space. This life support system would not be able to produce enough water on a 

daily basis to keep four astronauts alive without the function of recycling used water. As a result, 

the life support system will continue to create water as a reserve for when water is lost to 

surroundings or when water consumption exceeds the water recycle rate [129]. At first, the water 

will be collected from the soil of Mars. Approximately 60 kilograms of soil will be loaded into 

the life support system [129]. Once inside, the soil will be heated to melt and then evaporate the 

frozen water stuck within the soil. The water is then condensed and the soil is dumped back onto 

the planet. The water can then be stored and some of it will be used to produce oxygen by means 

of electrolysis [129]. The CCT-ARS is also designed to be able to filter out any nitrogen and 

argon that enters from Mars’ atmosphere and release them into the habitat as an inert gas [100].
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 Not only is the CCT-ARS cost effective and productive, but it is also easily maintained. 

The high cost and difficulty of having to ship additional supplies of water and oxygen are 

significantly diminished by this life support system. This particular life support system could 

potentially provide permanent life on Mars for humans, and should be used as a stepping-stone 

for further development of life support systems.  

3.7 Life Support Features 

 Environmental control on the ISS is vital and includes such aspects as airflow, air quality 

and humidity, and thermal control.  The main component in charge of environmental control is 

the ECLSS, or the Environmental Control and Life Support System.  The ECLSS maintains and 

manages the atmosphere and water/waste distribution by capturing and recycling used water and 

air, maintaining habitable humidity and air composition levels, venting unusable environmental 

products overboard such as H2 and by reducing generated waste [96].  One notable mention of 

ECLSS use is in Iraq since April 2006, where potable water is produced at 4 gallons a minute for 

2 cents a gallon to Iraqi villages from contaminated groundwater [96].  The oxygen levels are 

maintained by storing gaseous oxygen in tanks on the ISS and releasing it when needed for 

regulation.  Other methods include perchlorate “candles” that, when ignited in the environmental 

reactor, produces enough oxygen for one person for one day and electrolysis, which produces 

molecular oxygen and hydrogen by inducing an electrical current in water, with the hydrogen 

being vented overboard [69].  Humidity is maintained in the air by utilization of the Temperature 

and Humidity Control (THC) system, which filters out excess humidity and cabin heat by use of 

an air-to-water heat exchanger [17].  Air circulation is accomplished by use of standard 

ventilation fans.

 For filtering out contaminants, the main processes are using zeolite, a common naturally-

occurring mineral that is used as a commercial absorbent, activated charcoal, and sorbent beds 

[95] [17].  The zeolite is used to remove carbon dioxide from the air while the activated charcoal 

is used to remove most hazardous contaminant gases caused by scientific research.  An 
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interesting fact to note is that 1 gram of activated charcoal has 500m2 of surface area due to 

microporosity [2]. 

 
Figure 23.  Zeolite lattice structure.  The microporosity, seen at this level, allows for extremely high surface area for 

small masses. (“Zeolite”, Wikimedia Foundation)

The sorbent beds also trap carbon dioxide produced by the crew, and are able to be reused once 

exposed to heat and the vacuum of space, essentially the outside of the ISS on the Sun side [17].  

The hazardous contaminant gases also include methane, ammonia, acetone, carbon monoxide, 

urea, and methyl alcohol which are produced by humans via their urine, sweat, or breath that 

accumulate due to the zero gravity environment [17].

The Trace Contaminant Control System, which itself is part of the Atmospheric 

Revitalization System, scans for 200 trace chemical contaminants from research off-gassing and 

crew metabolic processes by using a mass spectrometer [17].  The Air Revitalization System is 

located on the Tranquility US module, while the Oxygen Generating System is located on the 

Destiny US module [58].  There is also integration for life support with the Russian module 

Zvezda for the Elektron, Vika, and Vozdukh systems.  The Elektron system utilizes electrolysis to 

separate oxygen from water, the Vika utilizes solid lithium perchlorate for oxygen production, 

and the Vozdukh system scrubs carbon dioxide from the air [58].  NASA engineers are looking 

into combining carbon dioxide with excess hydrogen to produce water and methane, with the 
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methane then being vented overboard instead of the hydrogen it replaced.  NASA has also been 

looking into plant-based environmental recycling systems, though they are too labor-intensive 

and the chemical/mechanical systems take up much less space currently.  Long term space travel 

would need to look beyond the artificial environmental systems since they are prone to failure.  

One example of this is the spontaneous 2004 Elektron failure, which persisted until November 

2006; much too long for repairs to take place to ensure survivability [58].  If water was not 

extracted from the air of the ISS cabins or purified from the urine excretions of the crew, 

approximately 10,000 pounds of water would need to be retrieved from Earth which would be 

used for drinking, hand/body washing, air humidity, et cetera [69].

 Due to the physics in space, there is no circulation in the ISS similar to that on Earth.  

Because of this, forced air systems are necessary to bring temperatures on differing sides of the 

ISS to equilibrium.  Still, the solar side of the ISS could soar to approximately 121 °C and the 

dark side could plummet to -157 °C if insulation were not applied [69].  Therefore, the ISS uses a 

highly reflective covering called Multi-Layer Insulation (MLI) composed of Mylar, also known 

as BoPET or Biaxially-oriented PolyEthylene Terephthalate, and Dacron, or polyethylene 

terephthalate [69].  The sheets of Mylar are aluminized to prevent solar radiation from 

transferring through, yet are extremely thin at 0.3mm thick and reinforced by Kapton material, 

which is a polyimide film used in such things as printed circuit boards [69].  Due to air 

circulation and solar insulation, the station produces more heat internally than it receives 

externally, and therefore must shed waste heat externally by use of heat exchangers in 

conjunction with an internal cold water circulation system which utilizes a 17,000rpm impeller 

the size of a quarter for water flow [69].  These extensive and intricate technologies are indeed 

necessary for the ISS, and spacecraft in general, to function optimally and continue to explore 

the vast regions of space.
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3.8  International Space Station

 Next to the first manned mission to the Moon, the International Space Station is the 

greatest human space achievement of scientific nature.  Composed of mostly American and 

Russian parts, called modules, the International Space Station, otherwise known as the ISS, is a 

joint international effort by the United States, Russia, Japan, Canada, and the European Space 

Agency, ESA [138].  The European Space Agency is composed of Belgium, Denmark, France, 

Germany, Italy, The Netherlands, Norway, Spain, Sweden, Switzerland, and the United 

Kingdom.  All the cooperating nations have contributed to the ISS except for the United 

Kingdom [138].  The original ISS was a combined effort between the US and Russia with their 

respective SS Freedom and Mir-2 projects joined into one single space vehicle and is the ninth 

habitable space station [138].  The cost for the overall ISS endeavor for its 14 years of service so 

far is approximately US$150 billion, split into the shuttle flights and the individual budgets of 

the participatory countries, with the US covering the majority at $72.4 billion [56].  

As of the time of this writing the ISS has been continuously inhabited since November 2, 

2000, with a total of 4959 days in Earth orbit, 161 spacewalks totaling 1,015 hours, and 1.5 

billion miles traveled over the course of 57,361 Earth orbits, equivalent to 8 round trips to the 

Sun [57].  The ISS retains a mass of 450,000kg, a solar array 73 meters long that produces 84 

kilowatts from 8 panels, a habitable volume of 388m3, and 2.3 million lines of computer code 

[57].  Comparable for size, the ISS is approximately as large as a five-bedroom house which, 

considering it is a space station, is not relatively large, though it is the largest object in orbit.  

Boeing is the primary contractor for both hardware and software aboard the ISS, and, for 

example, developed the Starboard-6 truss segment of solar arrays for the last component of the 

US core of the station [29].

The primary means of transporting people and goods to the ISS was by NASA’s Space 

Shuttle program and by Russian Proton and Soyuz rockets; however the US has largely backed 

off flight operations since the 2003 Columbia Space Shuttle accident and fully ended Shuttle 

support with the retirement of the Space Shuttle program in 2011.  Currently NASA is looking 

toward Space Exploration Technologies Corporation, commonly known as SpaceX, for 
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providing shuttle service to the ISS.  The first and only shuttle trip so far was carried out by the 

SpaceX Dragon in May 2012, the first commercial venture to do so.  Payload volume varies 

between 10m3 for pressurized and 14m3 for unpressurized contents, with a 6,000kg up-mass and 

a 3,000kg down-mass and the ability to support 7 crew members [37].  The up-mass refers to the 

amount of mass that the shuttle can handle on its route to the ISS and toward space while the 

down-mass refers to the amount of mass that can be handled for atmospheric reentry and 

braking.  The shuttle retains two solar arrays for power and utilizes 18 Draco thrusters for orbital 

maneuvering and attitude control (this includes system redundancy).  The fuel that it uses are 

nitrogen tetroxide and monomethylhydrazine (NTO/MMH) propellants that provide 400N of 

thrust for orbital maneuvering, de-orbit burns, and re-entry attitude [37].  The shuttle is designed 

to be carried into orbit by SpaceX’s Falcon 9 rocket.  The shuttle, for re-entry, experiences lift to 

enable a smoother deceleration, lower g-forces, and has the ability to land in the water with 

parachutes.  A vital element of the ISS that is constantly maintained by the researchers aboard the 

station and by goods supplied by the shuttle service is life support.
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4. Moon

4.1! Lunar Benefits!

! There are many reasons for colonizing the Moon.  One such reason would be for the sake 

of economics.  Currently, all spacecrafts produced on Earth are custom-designed for their 

missions and require years of both designing and testing before their launch into outer-space.  

The estimated cost of launching a space payload from Earth is $10,000 per pound.  By moving 

spacecraft manufacturing to the Moon, time and money will be saved.  The launching of the 

same payload previously described from the Moon would cost no greater than $0.01 to $0.10 per 

pound [115].  The launching task would be completed by either a mass driver or railgun (section 

3.5) from a lunar base and is the reason for the excessive drop in price per pound of a unit being 

launched.  Launching payloads from Earth is extremely expensive because over 90% of the 

launch vehicle is made up of chemical fuel and rocket components.  In space, the use of rocket 

components would be completely eliminated and replaced by the mass driver/railgun system.  

The ability to test and produce these products on the Moon will also save both time and money 

immensely, since mass-production techniques can be put to use on the base.  The products will 

also already be in the perfect testing conditions due to the vacuum of space that exists on the 

Moon. Mass-production will speed up the process of making spacecrafts by simultaneously 

creating them.  When testing these vehicles on Earth, complicated simulations must be made and 

put to use, while by testing on the Moon, in the actual environment that the spacecrafts are meant 

to function in, more accurate results will be obtained and the process will be less expensive and 

time consuming.      

 Besides large spacecrafts, thousands of very small, single function probes can also be 

manufactured and launched from the Moon.  These tiny probes can be launched at very high 

accelerations (100 to 1,000-G force or higher) at velocities 10 to 100 times greater than what is 

currently possible through rocket propulsion.  These probes could perform high-velocity fly-by 

missions to any area of interest in the solar system, such as Pluto, Mercury, or comets at the 

aphelion of their orbit.  Larger spacecrafts can then be associated with these fly-bys to the point 
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of interest, where they can be maneuvered to fall into a desired orbit or surface on certain 

locations.  The probes will first provide information from the points of interest, so that larger 

spacecraft can then be tailored to the mission.  

 Mass drivers or railguns can be beneficial yet again while recovering spacecrafts on the 

Moon; mass drivers have the ability to run “in reverse” that allows both manned and unmanned 

spacecrafts to de-orbit and land on the Moon without the use of chemical rockets.  Being able to 

eliminate our dependence on rocket components is a great beneficiary aspect in space 

production.  Rockets that are launched from Earth present many environmental and safety risks 

that will be avoided on the Moon and it will cost much less, for example, to place a satellite into 

Earth’s orbit using mass drivers than by launching them with rockets from Earth.   Launching 

systems from the Moon require much less energy than at Earth’s surface, and there is no 

atmosphere on the Moon to block or delay launches.  Although the initial investment in 

industrializing the Moon will be large,  benefits will soon be apparent.  As time continues, the 

use of the Moon as an industrial base will allow all the hardware necessary in the physical 

exploration of space to be produced at a fraction of the cost of the current production and 

launching of space entities from Earth.  Using mass-production techniques and micro-/nano-

technologies, components of all manned and unmanned spacecrafts will be able to be produced 

and applied in space [115].

4.2! Supplies and Personnel

 Sometime, within the next generation, humanity will venture again to the moon and start 

building a permanent base there.  While this will be, no doubt, a hefty endeavor with costs in the 

billions, it will mark the first step in space colonization.  Two major aspects to consider for the 

colonization effort on the moon are the initial crew required for setup and testing and the 

supplies needed as well as how to transport both.  The four main positions on a space mission are 

Pilot, Flight Engineer, Mission Commander, and Mission Specialist [102].  These positions are 

filled by crew members who usually have other distinctions as well; that is, the crew members 
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are not usually solely dedicated to one of the four positions.  The position of Pilot for an 

astronautical vehicle is the same as for an aeronautical vehicle; they are dedicated to flying the 

spacecraft and controlling its navigation.  There may be co-pilots on the spacecraft; however, 

they are given the same distinction of Pilot.

A Flight Engineer has the task of monitoring and controlling the various spacecraft 

mechanisms, though this position is being phased out in recent years due to the advent of high 

precision microelectronics and computing devices.  In continuance from the Artificial 

Intelligence section, an AI could eventually retain the role of Pilot and Flight Engineer due to the 

ability to handle multiple complex tasks simultaneously with efficient speed and no human error.  

However, a human standby will be necessary in case there is hardware failure or a software 

glitch that causes the spacecraft AI to become inoperable.  

There is the position of Mission Commander which, as the name implies, handles the 

direction of the mission and heads the exploration or colonization team.  The Mission 

Commander is not a specific designation based on academic qualifications.  Finally, there is the 

Mission Specialist, which most crew fall under for designation, which has an assigned task to 

perform during the mission.  Payload Specialist is a variant of the Mission Specialist position 

that, while a Mission Specialist was selected as an astronaut first and assigned a task, a payload 

specialist was selected for a mission then assigned as an astronaut [102].  The bulk of the crew 

will be assigned as Mission/Payload Specialists all coming from various academic backgrounds.

 The actual composition of the types of experts to commence startup of a moon colony 

would be quite diverse.  Of primary concern is the necessity of a medical doctor or physician for 

treatment of the crew in extraterrestrial conditions and maintenance of their overall health.  The 

doctor would have to be well-versed in psychology as well to diagnose mental health disorders 

arising from being confronted with the vast emptiness of space, limited freedom and pursuant 

dangers close at hand, and tensions arising from living and working with the same small number 

of people for an extended period of time.

A structural engineer would be prescient to oversee and perform quality checks on the 

progress of the lunar habitat and research facilities.  This would be vital considering a structural 
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weakness of the habitat would mean death for the colonists.  A chemist, or better yet a 

biochemist, would be beneficial for academic research on the chemical feasibility of the Moon, 

specifically the presence of Helium-3 fuel.  Developing a process for mining and refinement of 

Helium-3 would help to make the colony profitable and self-sustaining, the hope being that the 

lunar habitat would be able to support itself financially and not be strongly dependent on the 

Earth for financial assistance.  A mechanical engineer, with a focus in material science, would be 

advantageous to help with the manufacture of materials, use of In-Situ Resource Utilization 

(ISRU) mechanisms, maintenance of a solar panel installation, and analysis of Helium-3 fuel 

deposits and acquisition.  The mechanical engineer would work in tandem with both the 

structural engineer for types of building materials to use for optimum structural strength and the 

biochemist for handling machines to mine the Helium-3 deposits in the vacuum of space.

A biologist with a specialization in botany would be necessary for cultivation of a 

hydroponics or aquaponics station to supply food to the lunar base.  Napoleon Bonaparte 

famously said that an army marches on its stomach; this idea further extends to the critical 

importance of the supply line [4].  This is especially so when considering that a lunar base would 

be isolated, vulnerable to the vacuum of space lest a structural defect occurs, and response time 

to aid the lunar colonists would be long.  A biologist would be one of the most important citizens 

of a blossoming lunar habitant since everyone would depend on the biologist’s efficiency and 

field of expertise in order to simply have food on the table.

An electrical and computer engineer focused in integrated circuits and power systems 

would be optimal for maintenance of the computer and electrical systems of the lunar outpost.  

The electrical engineer would be useful since the biologist would not be able to grow vegetation 

without a source of light and heat, which would be supplied by fluorescent lights simulating 

sunlight and standard heaters to maintain an Earth-normal growth habitat.  A robotics engineer or 

specialist with a concentration in computer science would be necessary for working with the 

electrical engineer on the lunar colony circuit systems, working with the mechanical engineer on 

the machines to be used for Helium-3 acquisition, as well as programming and debugging the 

programs used for base operations.  Finally, a physicist and an astronomer would be beneficial 
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for academic research purposes since the lunar outpost will most definitely have an astronomical 

observatory.  The reason for maintaining an astronomical observatory is that there are superior 

environmental conditions for viewing deep space for scientific research, since the absence of an 

atmosphere will not cause visual interference dissimilar to Earth, and to provide an early warning 

system against NEOs for Earth and the lunar colony.

This team of nine or so crew members would work together to initially create a large and 

sustainable enough lunar habitat that even more researchers would be able to live simultaneously  

to produce valuable data.  Originally only essential, scientifically aligned people would be 

necessary due to the startup nature of the operation and to prepare the habitat for further 

expansion for non-essential personnel to start to inhabit the colony, thus paving the way for a 

fully functioning community with all types of professions and peoples.  Perhaps a community of 

thirty, potentially even fifty, may inhabit one lunar base fit with an astronomical observatory, 

launchpad, solar panel installation, research laboratories, hydroponics lab, and general living 

quarters.  This extraterrestrial installation would then enable further and loftier goals of human 

spaceflight, exploration and colonization.

4.3! Base Building

In order to construct a durable and safe Moon base, a few hazards must be considered. 

The biggest issues that face construction are lower gravity, varying temperatures, and meteorites. 

If all of these factors can be accounted for, a long lasting Moon base can be made. In addition to 

the hazards that will be faced during construction, location and building materials need to be 

established first.  

 The ideal location for placement of a Moon base would be in a pre-made crater [98]. A 

crater provides a great dug out space that already has walls, and a floor. Making it a great spot 

for an initial base. Of course the floor would need to be flattened out or covered to make a 

suitable living space. Once that is complete all that is left to complete an adequate living space 

would be a ceiling.
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With a location in mind, the next step is to identify the best building material for the base. 

The best material to be used for the creation of a Moon base would be regolith. Regolith is the 

blanket of soil, broken rocks, dust, and other tiny objects that makes up the Moon [98]. If the 

building were to be made out of the regolith that is on the Moon, a couple benefits are produced. 

Using materials for building that are already on the Moon make it so that additional trips will not 

have to be made. Since regolith is resilient to erosion by lunar dust, struggling to find a material 

that can withstand lunar dust is no longer a factor [98]. Using regolith also eliminates the issue of 

having to shield from meteorites. One of the Moon’s functions is to serve as a shield to Earth 

from meteorites. Therefore, using the regolith on the Moon makes for an excellent meteorite 

shield.  

Since the Moon’s atmosphere is not as protective as Earth’s, heat is easily lost to space 

during the night. Any place on the surface of the Moon experiences about 13 days of sunlight, 

followed by 13 days of darkness [21]. As a result the Moon can reach temperatures as low as 

-153°C (-243.4°F) at night, and temperatures as high as 107°C (224.6°F) during the day [21]. 

Therefore, heavy insulation will be needed for any building constructed on the Moon. 

Constructing a thick ceiling of regolith for the Moon base would do just that, and more. In 

addition to providing great temperature control to the Moon base, the thick ceiling would also 

provide a great shield from meteorite strikes and cosmic radiation [18]. 

 For the actual construction of the Moon base, a combination of regolith brick and bags 

filled with loose regolith would make a formidable structure [18]. The bricks would serve as a 

great building block for the general shape of the ceiling. The bags would then be loaded on top 

and a layer of raw regolith would be layed across. Since the bags would be nearly exposed to the 

hazards of the surface of the Moon, a strong material, such as Kevlar, would be needed to keep 

the bags from splitting open from either lunar dust or meteorite strikes [18].

 By using the materials that are already present on the Moon, creating a base seems more 

and more plausible. Also, with the gravity of the Moon being one-sixth of that on Earth, it is 

possible to create a durable base that is also structurally sound. With a Moon base, the potential 
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for spaceports and additional launch sites would make space exploration much more attainable. It  

is highly recommended that a Moon base should be created.

4.4! Water Location

! In order to colonize on the Moon one of the key components for human survival is water. 

Without water, life on the Moon will not be possible. The main issue is that transporting water 

from Earth to the Moon would cost a large sum of money. As a result, the only way around this 

issue would be to already have water on the Moon, which fortunately there is.

 The Lunar Crater Observation and Sensing Satellite (LCROSS) mission successfully 

uncovered water on October 9th, 2009 [35]. After a year of analysis NASA announced that the 

LCROSS lunar-impact probe mission found up to a billion gallons of ice in the floor of a crater 

near the south pole of the Moon. That’s enough to fill 1,500 Olympic size swimming pools 

[104]. NASA was also able to conclude that water is not only located near the north and south 

poles of the Moon. Water is distributed in pockets around the Moon, and it is not limited to the 

shadowed regions [73]. With the main sources of water being at both poles of the Moon, it is still 

possible to mine the valuable mineral thorium, which is mostly buried on the nearside of the 

Moon.

 The ice in these craters is mostly in the form of pure ice crystals. However, there is more 

than just water in the craters. About 20% of what LCROSS analyzed on the Moon was a volatile 

component. Materials such as methane, ammonia, hydrogen gas, carbon dioxide, and carbon 

monoxide were all found. Light metals like sodium, mercury, and even silver were found too 

[73]. Since mercury is toxic, astronauts would not be able to just melt all the ice for use. A 

process to filter out the mercury and other materials would be needed to use the water for 

valuable life support resources. 

 The average person uses about 100 gallons of water every day [54]. Assuming that 

astronauts will eventually live in similar conditions to that on Earth, it would be easy to have 

more than 100 people on the Moon for a long period of time. Considering that NASA has found 

  79



about one billion gallons of water already and people use 100 gallons of water a day, 100 people 

could live on the Moon for 10,000 days. Being able to utilize that many people on the Moon 

would greatly increase our ability to further colonize the Moon.

 Overall, having water on the Moon makes the need to colonize on the Moon even more 

relevant. The ice in the craters could be melted and purified for drinking and cooling of 

spacecraft systems. It could also be broken down further to use the hydrogen as fuel, and the 

oxygen for breathing. In addition to there being water on the Moon, an abundance of hydrogen 

gas, ammonia and methane were found that could potentially be used to produce fuel as well. 

With building materials like regolith that can block out cosmic radiation, sources of energy like 

thorium, and essential living supplies like water, the Moon is a great first location for 

colonization.

4.5! Helium-3

 In the future, humanity will exhaust its terrestrial energy sources and will need to look for 

alternative, extraterrestrial sources of energy.  This source of energy will most likely present 

itself in the form of Helium-3 fuel.  Also known as He-3, 3He, or tralphium, this non-radioactive 

isotope of helium is composed of two protons and one neutron and is extremely rare in the 

Earth’s geosphere [13].  The geosphere itself includes the pedosphere and lithosphere, which are, 

respectively, the biologically active layer of topsoil and the outermost shell of the planet that 

contains the crust and upper mantle.  However, Helium-3 is prevalent in the lunar soil of the 

Moon, especially in the lunar maria, or the large, dark basaltic plains on the Moon.  Helium-3 is, 

and has been, ejected by the Sun and absorbed by the Moon’s regolith over the millennia, up to 

an estimate of 1,100,000 metric tonnes according to some sources [10] or 20-30 ppb on an 

atomic basis [65].

Helium-3 is the major player behind nuclear fusion research and energy, next to 

deuterium, D, and tritium.  However, Helium-3 is the most promising nuclear fusion fuel since it 

provides essentially direct electric energy, as opposed to using tritium, which expends vast 
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amounts of radiation as byproduct, or deuterium, which disburses moderate amounts of radiation.  

This is analogous to heat given off in an energy generation system, which constitutes as thermal 

energy that cannot be captured for electrical energy production.  The only current problem is that 

Helium-3 is extremely rare on Earth, with the only sufficient sources residing on the Moon.  

Thus nuclear fusion research relies mostly on deuterium since it is relatively easy to capture from 

the Earth’s oceans and is in greater abundance (≈156.25 ppm), yet Helium-3 is still a tantalizing 

prospect for extremely efficient nuclear fusion ventures [120].

 Another issue that presents itself is that Helium-3 will not be found in any specific 

deposits on the Moon, rather He-3 is distributed throughout the regolith, or the dusty lunar 

topsoil.  The regolith would have to be heated to 600 degrees Celsius to extract the Helium-3 

[10], and a further temperature increase to 900 degrees Celsius to extract oxygen for use in lunar 

habitats or rocket fuel, though this extraction technique is fully feasible [13].  Once extracted, the 

Helium-3 could be stored in regular pressurized tanks and loaded aboard a space shuttle for 

transport back to earth; the current NASA space shuttle has a potential volume capacity of 

approximately 25 tonnes [10].  The mined Helium-3 can then be used in a fusion reactor to 

generate electrical energy.

 The process followed by a Helium-3 reactor would involve either a 3He-3He or a D-3He 

reaction, respectively known as 3Helium-3Helium and Deuterium-3Helium reactions.  These two 

reactions attain the highest electrical energy efficiency and produce the least amount of radiation 

in the form of neutrons [65] compared to Deuterium-Deuterium, D-D, or Deuterium-Tritium, D-

T, reactions.  While deuterium may be the most abundant fusion reactant, Helium-3 is the most 

potent and allows for direct conversion to electrical energy in a fusion reaction using either 

Helium-3 solely or in conjunction with deuterium [65].  Fusion utilizing Helium-3 has also been 

known to produce very little high-level radioactive waste compared to tritium or deuterium 

reactors [65].  Direct conversion implies that electrical energy can be generated directly from the 

reactor, either from electrostatic conversion or through electromagnetic conversion.  Electrostatic 

conversion involves dielectric plates that would have induced vibration from the fusion reactants, 

thereby converting mechanical energy into electrical energy.  Electromagnetic conversion 
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involves a rectenna, or an antenna that absorbs wave or particle energy to convert to direct 

current electricity, absorbing photons given off by the fusion reaction to generate electricity.

 The actual process for a fusion reaction of D-3He or 3He-3He involves either an 

electromagnetic confinement field (ECF) or Inertial Electrostatic Confinement (IEC) [42].  

Electromagnetic confinement fields are utilized in magnetic confinement fusion employed by the 

toroidal reactors known as tokamaks for high-energy, high-temperature fusion reactions.  The 

Joint European Torus, otherwise known as JET, that resides in Culham, United Kingdom is an 

example of this technology.  A tokamak generator is more suitable for large-scale applications, 

like widespread power generation, while an IEC generator is used for controlled, moderated 

reactions currently.  The main difference between these two technologies, besides scale, is that an 

ECF reactor utilizes electric and magnetic fields to maintain and contain a fusion reaction while 

an IEC reactor utilizes laser or ion beams to fuse the reactants together [42].  A tokamak 

generator initializes a fusion reaction by heating the gas inside its toroid by targeting it with 

microwave radiation and neutral particle beams until it reaches a plasma state, when the gas 

becomes highly ionized and the electrons of the corresponding atoms are in an extremely 

energetic state [42].  The electromagnets of the generator are initialized to contain and further 

compress the plasma to initiate the fusion reaction, utilizing both the high levels of pressure and 

heat within the toroidal magnetic confinement field.  The hot plasma then generates electricity 

through direct conversion, or though heat exchange to produce steam.
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Figure 24.  The standard layout of a tokamak toroidal electromagnetic fusion generator.  The vertical inner magnets 
produce the toroidal magnetic field while the circular magnets forming the donut shape contain the plasma stream 

and compress it to initiate fusion. (Battery and Energy Technologies, Woodbank Communications, Ltd.)

The Inertial Electrostatic Confinement method, while less common, is certainly more exotic.  

The best working example of the IEC method resides in the National Ignition Facility at 

Lawrence Livermore Laboratory and induces fusion by firing 192 lasers at a pea-sized pellet 

containing a deuterium-tritium mix [42].  

Figure 25.  The various phases of the Inertial Electrostatic Confinement fusion process.  First, laser radiation 
impacts the target pellet which leads to heating and compression.  Fusion occurs after the target has been 

adequately heated and pressurized, leading to the thermonuclear output of heat and radiation. (IFT Concept, 
General Atomics)

The laser excitation lasts only a millionth of a second, but the explosive energy released by the 

IEC lasers causes the deuterium-tritium mixture to experience fusion due to the immense heat 
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and pressure applied.  The heat produced by this reaction would then be applied to a heat 

exchanger to produce steam in order to drive turbines for electrical energy production, similar to 

how a nuclear fission power plant works.

Figure 26.  Standard process for electricity generation following heat exchange from a fusion reactor. (How Nuclear 
Fusion Reactors Work, HowStuffWorks, Inc.)

The US, it is estimated, would only require 25 tonnes of Helium-3 to power the energy 

grid for one year, with all other energy sources supplanted while Helium-3 is being used.  The 

world at large would be estimated to require 100 tonnes, with the price resting at $3 billion per 

tonne for the global economy [13], and the lunar reserves lasting for approximately 11,000 years.  

One source examines the previous price of He-3 at $150 per liter and the recent increase to 

$5,000 per liter [99], thus demonstrating that the price of $3 billion per tonne could decrease 

dramatically given a secure supply and remediation of the shortage situation.  If the US were to 

solely control Helium-3 output from the Moon, it could produce approximately $300 billion per 

tonne in net revenue, if the US were to sell to the rest of the world.  The output of the one million 

or so metric tonnes of Helium-3 on the Moon would amount to approximately 20,000 terawatt-

years of thermal energy, or ten times the amount of energy able to be harvested from all the fossil 

fuels on Earth [13].  Helium-3, as can be seen, is extremely energy dense as a fusion reactant.

 Additionally, Helium-3, due to the ever-present solar wind, is relatively abundant 

throughout the solar system and is even supposed to be in the thick atmospheres of the gas 

giants, leading to thoughts of harvesting Helium-3 from locations such as the upper cloud layers 
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of Saturn and establishing outposts on the asteroids in its rings [65].  The initial prospecting 

would also be made easier with the use of teleoperated mining robots; the technology for these 

already exist and, compared to many locales and terrain types on Earth, the lunar landscape 

would be relatively easy to traverse and sieve (the only issue is that they couldn’t operate on the 

far side of the Moon due to radio signal unable to reach that side, unless satellites were to be 

stationed in orbit around the Moon).  The establishment of a lunar base would streamline the 

extraction process, since refinement, storage, and transport would all be able to be carried out at 

the base.  However, China and Russia are both looking into establishing Helium-3 endeavors on 

the Moon as well, thus hopefully stimulating political interest in the US for another lunar space 

race to occur [66].  In any event, Helium-3 will eventually be recognized for its pivotal use as a 

clean, potent source of energy in nuclear fusion and will be sought after by a multitude of nations 

in the future.

4.6! Thorium!

Thorium was discovered in 1828 by the Swedish chemist Jons Jakob Berzelius, who 

named it after Thor, the Norse god of thunder [131]. Thorium is a naturally occurring element on 

Earth that is mildly radioactive [119]. It has a low level of waste, its waste is not very harmful to 

the environment, it is very abundant, and it also serves as an alternative fuel for nuclear fuel 

supply. It would also be a great replacement fuel for reactors because it releases a large amount 

of energy, and could be used as a sustainable energy source. Thorium research continues to find 

many benefits over uranium as a reactor fuel, and should be used.

The theory behind thorium is actually quite simple. When thorium absorbs neutrons, it 

turns into an isotope of uranium (U-233). When U-233 absorbs another neutron it releases 2-3 

neutrons and a great deal of heat. The thorium can then absorb those 2 neutrons and release its 

energy again, making it theoretically possible to indefinitely sustain energy [119]. Further, as 

thorium decays in a reactor core, its byproducts produce more neutrons per collision than 

conventional fuel. When more neutrons collide, more energy is created, less fuel is consumed, 

and less radioactive material is left behind [82].
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On average, the Earth’s soil contains about 6 parts per million of thorium, which means 

that it is not rare [131]. Thorium is roughly 4 times more abundant than uranium in the Earth’s 

crust, and that it can be found almost anywhere. There are areas in Idaho as big as football fields 

that have enough thorium to power the world each year. There’s a lot of thorium on the Moon as 

well, it’s very common and easy to find. There are large deposits on the lunar farside where 

Apollo 11, 12, and 14-17 landed [130]. This makes building a community on the Moon entirely 

possible. A liquid thorium reactor would produce enough energy to power a lunar community 

over the 2-week dark period on the Moon [130].

Thorium is also a very portable energy source, and the facility to house its reactor would 

be compact. “It’s so energy dense that you can hold a lifetime supply of thorium energy in the 

palm of your hand,” said Kirk Sorensen [130]. With its portability and potential to shrink reactor 

size, thorium could replace other forms of energy and eliminate the need for large nuclear 

reactors, or large long distance power transmission towers. 

Research into the use of thorium as a nuclear fuel has been ongoing for over 40 years 

now. Work has been done all over the world in areas like Germany, Japan, India, China, the 

USA, and more [131]. However, thorium research has not had as much time commitment as it 

has for research on uranium fuels. Unfortunately a lot of research into thorium came to a halt in 

the ‘60s. The US government was more interested in building uranium-fueled reactors instead 

because they produce plutonium, which can be refined into weapons-grade material [82]. 

Although interests were more aimed towards weapon making ability, times have changed and 

now an energy source that does not proliferate is more desirable. Thorium has almost no ability 

to proliferate too. The byproducts that are given off by a thorium-fueled reactor would be nearly 

impossible to be used for the fabrication of nuclear weapons. An experiment at Oak Ridge 

National Laboratory in Tennessee showed that when making liquid-fueled reactors, using liquid 

fluoride salts as a fuel base was most likely the best method. The reactors could operate at high 

temperatures without the need of a high-pressure chamber. Uranium and thorium could dissolve 

in the fluoride-salt mixture, which became impervious to radiation damage because of the strong 

ionic bonds. The only waste from the reaction was heat and small amounts of barely radioactive 

  86



material [119]. The small amount of waste given off by a thorium reactor would only need to be 

stored for a few hundred years, whereas a uranium reactor’s byproducts need to be stored for a 

few hundred thousand years [82]. As a result, liquid thorium reactors would not need to use large 

quantities of water as a coolant. Since liquid fluoride occurs at a relatively low temperature, 

reactor vessels do not need to be as large and reactor cooling happens more easily and without 

the need of a coolant. Thorium-fueled reactors like this yield one gigawatt of energy for every 

one ton of raw thorium. However, a uranium-fueled reactor is only able to yield one gigawatt of 

energy for every 250 tons of raw uranium [82]. 

 Not only is thorium a potential source of clean nuclear energy, but it is also abundant, 

portable, efficient, and could kick start our ability to colonize on the Moon. One large draw back 

for implementing thorium currently is its high start-up cost. Having more thorium-fueled reactors 

built for testing is costly and would require a lot of initial funding to get more attention. 

Estimates for building even one thorium reactor can cost more than $250 million [82]. Using 

Thorium as a fuel for nuclear reactors could potentially eliminate its uranium counterpart as a 

fuel, as well as other non-clean energy sources like coal and oil. However, this is where another 

large obstacle for thorium lies. Using a new energy source that could eliminate the use of non-

clean energy sources is a huge limiting factor. Large oil and coal-based companies will not be so 

willing to let thorium put them out of business. Thorium is abundant and energy efficient enough 

to power our world and keep it clean. Using thorium could help our planet, as well as help regain 

interest in space exploration.
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5. Mars

5.1! Martian Atmosphere

! Concerning the livability of Mars, the Martian atmosphere is of prime interest.  To begin, 

the Martian atmosphere is split up into four levels:  the Lower Atmosphere, the Middle 

Atmosphere, the Upper Atmosphere, also known as the Thermosphere, and the Exosphere.  The 

Martian atmosphere has a scale height of 11km compared to Earth’s 7km, while the actual height 

is approximately 200km compared to Earth’s actual of 500km [8].  The scale height of a planet’s 

atmosphere is the relation between the mean planetary temperature and the molecular mass of the 

air, given by the equation

           (Eq. 27)

Where k is the Boltzmann constant of 1.38 x 10−23 J·K−1, g is the constant acceleration due to 

gravity, T is the mean planetary surface temperature in Kelvins, M is the mean molecular mass of 

dry air in units of kilograms, and H is the scale height value in meters [142].  The Lower 

atmosphere can be compared to Earth’s troposphere, though dissimilar weather occurs on Mars 

than on the Earth.  The Middle atmosphere of Mars, with the Martian analogue of the terrestrial 

jet stream, can be compared to the upper part of the troposphere and the stratosphere since this is 

where Earth’s jet stream circulates [8].  The Martian and terrestrial thermosphere are 

synonymous since both exhibit heating directly from solar influence, and the exospheres are 

identical as well since it denotes the boundary between the atmosphere and space for both 

planets.

Compared to the vacuum of the Moon, though, Mars is a better candidate for space 

exploration or colonization considering the presence of an atmosphere.  The Martian atmosphere 

is extremely thin compared to Earth’s atmosphere, at approximately 0.59% the average surface 

level pressure as Earth’s averaging 600 Pascals to Earth’s 101,300 Pascals [25].  The total mass 

of the atmosphere is also a fraction of Earth’s, with 25 teratonnes, or 25,000,000,000,000 tonnes 

for perspective, compared to Earth’s 5148 teratonnes [7].  The average temperature of the 
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atmosphere is -62.77 °C, with a range from -73.33 °C to 23.88 °C [19].  This is dissimilar to 

Earth’s average temperature of 14.4 °C, yet comparable in that it lies above the Antarctic 

temperature of -89°C and below Libya’s 57.8°C [19].  Also in contrast to the Earth, the Martian 

atmosphere is mostly carbon dioxide at 95.3%, with 2.7% nitrogen, 1.6% argon, 0.13% oxygen, 

and trace amounts of water vapor and other gases [28].  The Earth’s atmosphere meanwhile rests 

at 78.1% nitrogen, 20.9% oxygen, 0.9% argon, 0.1% carbon dioxide, and other trace gases [19].  

The Martian atmosphere, with this contrasting data, is seen to be unfit for most biochemical 

reactions to take place to support life, since it has a lack of oxygen and, specifically, nitrogen. 

However, it is thought that vast amounts of water, nitrogen, and carbon dioxide are 

trapped in the frozen polar ice caps of Mars and, if reclaimed, could help spur a thicker and more 

livable atmosphere closer to terrestrial norms.  The oxygen trapped within the frozen and gaseous 

carbon dioxide could be freed and help attain a more terrestrial atmosphere if Mars had an 

existing carbon and oxygen cycle within its biosphere.  In addition, there is an abnormally large 

amount of ferric oxide, also known as hematite or rust with chemical formula Fe2O3, going so far 

as to almost completely cover the Martian surface [83].  Iron and steel, vital materials needed for 

building any sort of structure, could be produced in factories by using the widely available 

Martian ferric oxide soil as a reactant in a carbothermal reduction reaction with carbon as the 

other reactant to produce iron and carbon dioxide (2 Fe2O3 + 3 C → 4 Fe + 3 CO2) under high 

temperatures (1000 °C to smelt the ore, 1535 °C to initiate the reduction reaction) [23].  From 

there the carbon dioxide can enter the carbon/oxygen cycle of Mars, such as by being consumed 

by plant life for conversion to oxygen.  This sort of endeavor involving hematite in factory 

smelting reactions would be to great extremes if dealing with a small initial outpost on Mars, 

though an integrated society with many industrial cities could probably succeed producing 

oxygen as a simple byproduct of industrialism.

However, even with all conditions met for a livable atmosphere with nitrogen and oxygen 

being the most prevalent gases in a terraformed Martian atmosphere, the atmosphere would 

slowly dissipate over a few hundred or thousand years due to the lack of an ozone layer and, 

more importantly, a magnetosphere.  Scientists believe the current nonexistence of a Martian 
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magnetosphere is the leading cause of a lack of a Martian atmosphere [25].  Earth has an active 

magnetosphere that protects it from bombardment by the solar wind; however, Mars, with its 

lack of a magnetosphere, is continuously bombarded by the solar wind at the level of the 

ionosphere and therefore can only retain a thin layer of atmosphere.  Further concerns include the 

presence of extremely fine Martian regolith, with an approximate grain size of 30 micrometers 

[83].  This Martian dust could cause environmental problems for exploring humans in the future 

similar to how the lunar regolith caused issues for astronauts, especially since both regolith types 

are of the same size.  Of interesting note is the presence of methane and ammonia in the Martian 

atmosphere, both of which persist in trace amounts, approximately 10 ppb for methane and less 

for ammonia [28].  Methane decays from ultraviolet radiation within a few hundred years, and 

ammonia does so within a few hours [28].  While possibly indicative of life, the main reason 

scientists believe this occurs is outgassing from the Martian soil of methane and ammonia, 

specifically that the hydrogen within the soil combines with the carbon present to form methane, 

which outgasses from the top layer of Martian regolith to later decay under ultraviolet radiation 

in the atmosphere.

The conclusion for space exploration is that while the atmosphere cannot directly support 

life or habitation, the similar atmospheric mechanics and relatively agreeable temperatures, along 

with the possibility to eventually reintroduce oxygen and nitrogen into the atmosphere, may 

allow for limited, protected habitation in airtight outposts.

  90



These graphs are generated from formulas acquired from “Mars Atmosphere Model – Imperial 

Units” and show the trend for the temperature, pressure, and air density of the Martian 

atmosphere.

Figure 27.  Temperature, in blue, was calculated using T = -25.68-0.000548h for temperatures occurring below a 
height of 22960ft and T = -10.34-0.001217h for temperatures occurring above a height of 22960ft.  Pressure, in red, 

was calculated using the equation P = 14.62*E-0.00003h for all heights. (Martian Atmosphere Characteristics, Self-
produced)

 
Figure 28.  Air Density, in blue, was calculated from pressure and temperature using the formula ρ = P/(1149*(T

+459.7)). (Martian Atmosphere Characteristics, Self-produced)
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5.2! Hazards of Habitation and Exploration

! The journey to Mars is a long one, and there are many possible problems that may arise 

when entering the Martian atmosphere, including landing and exploring its surface.  A favorable 

period for launching a spacecraft from Earth is known as a launch window.  When chosen 

correctly, a launch window can save energy and reduce the spacecraft’s total payload by taking 

advantage of the Earth’s solar orbit and daily rotation.  Based on Mars’s and Earth’s orbits, a 

launch window to reach Mars is created every 25-26 months.  This allows for a straight shot to 

the planet and no worries about whether the spacecraft will miss its destination or not.  Entering 

the Martian atmosphere is a difficult task to complete, due to the density of the atmosphere, 

sandstorms and outcrops of rock on the surface of the planet, issues with the speed of the 

spacecraft, a faulty trajectory, lack of fuel, or an electronic glitch.  Due to these and other 

complications, 60% of the missions to Mars have failed.   Humans have not yet been transported 

to Mars, so even the landing methods that have already been put to use must be tweaked if 

people were to walk the planet.  Usually, inflatable landing cushions, parachutes, and thrusters 

bring a robot safely to the Martian surface at a speed of 15 G’s—robots can survive this impact, 

but humans cannot.  Another simple problem is the amount of time it would take to reach Mars 

and explore it.  With the correct launching window it would take a spacecraft 7 months to reach 

Mars, and then another 18 months would have to pass before the astronauts could begin their 7 

month journey back, amounting to an entire 2 and a half years of space voyage.  Astronauts 

would be far from family, home, or anything familiar for this long stretch of time, which could 

easily cause mental instabilities [22]. 

 Deep space is filled with protons from solar flares, gamma rays from newborn black 

holes, and cosmic rays from exploding stars—all variations of the increased radiation that is 

present in outer space.  In a 2001 study of people exposed to large doses of radiation (subjects 

were Hiroshima atomic bomb survivors and cancer patients who have undergone extreme 

radiation therapy) scientists figured that there is somewhere between a 1% to 19% increase in 

cancer risk from radiation.  In space, they suppose the increase will be about 3.4%, but there are 

no human subjects available to prove this accuracy.  A healthy, non-smoking American has about 
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a 20% risk of developing cancer, and if the increase is only 3.4%, the astronauts could definitely 

bare it.  However, it is possible that the increase is as high as 19%, making the overall risk of 

cancer 39% for a healthy human, which is unreasonable and not worth the risk [122]. 

The greatest threat to astronauts is galactic cosmic rays, or GCRs.  These are particles 

that have been accelerated to practically the speed of light by distant supernova explosions which 

contain heavily ionized nuclei such as Fe+26.  GCRs will barrel through the skin of spaceships 

and people like tiny cannonballs, ripping strands of DNA molecules apart, damaging genes and 

killing cells.  Astronauts have rarely experienced full doses of deep space GCRs, but they are a 

major problem that must be addressed before sending humans as far as Mars.  Overexposure to 

such space radiation can burn skin, cause cataracts in the lens of an eye, and immediately deplete 

blood cells, besides the risk of an increase in cancer [122].  

 To measure radiation doses of astronauts performing Extra Vehicular Activity (EVA), 

which is when an astronaut is spacewalking outside of the shielded walls of a spacecraft and only 

protected by a spacesuit, NASA and the Canadian Space Agency (CSA) developed the EVARM 

experiment.  EVARM, short for Extra Vehicular Activity Radiation Monitoring, is the first device 

to measure the radiation dosages encountered by the eyes, internal organs, and skin during 

spacewalks while relating it to the type of activity performed and the location of the astronaut.  

EVARM consists of a storage/badge reader unit and 12 badges, 3 for each crew member with 4 

crew members in all, which are attached to 3 different key locations on the body: the head, torso, 

and leg.  Each badge contains a silicon MOSFET chip (metal-oxide silicon field effect transistor) 

that continuously measures the total radiation dosage experienced by the astronaut.  This can 

then be plugged into the badge reader after a spacewalk, and data will be transferred to the 

Human Research Facility laptop in the International Space Station then finally transmitted to the 

payload team on Earth which will analyze the data obtained in space.  When a MOSFET is 

exposed to ionizing radiation, a positive charge builds up on the silicon surface, creating a 

negative shift in the threshold voltage of the chip.  Measurements are taken by comparing 

threshold voltage changes with a radiation dose, which is recorded using a photodiode.  Factors 

that must be considered when analyzing the badges are the time and place of the EVA, and the 

  93



orbit and altitude of the International Space Station (ISS).  This experiment was implemented 

throughout 2001 and 2002, and results have shown that although EVA doses are elevated 

compared to those within the ISS, the difference is not very significant.  More work on the 

deflection and dosages of space radiation should be in progress, and the torso badge must also be 

improved because it was not sufficient enough to accurately determine the radiation delivered to 

internal organs [22]. 

5.3! Radiation Protection

Mars maybe a potential planet to colonize because of its many similarities to Earth. A day  

on Mars is about the same length as on Earth, and the surface temperature (-113°C to 0°C) is 

relatively close to Earth’s compared to other planets [77]. However, a significant obstacle still 

remains. The atmosphere on Mars has drifted away because of its low gravity (1/3 of Earth) [77]. 

As a result there is no o-zone, and therefore no protection from ultraviolet (UV) radiation. 

Astronauts will need to be protected from all types of radiation to insure that their risk of cancer 

or other serious illnesses does not increase.

 Radiation is usually physically blocked like thick concrete walls on a reactor. A renewed 

idea to shield radiation with a force field instead has been in the works for a few years now. The 

theory is that since most of the dangerous radiation in space consists of electricly charged 

particles, if the base on Mars were to be covered with an electric field with the same charge as 

the radiation, the radiation would get deflected. "Using electric fields to repel radiation was one 

of the first ideas back in the 1950s…They quickly dropped the idea, though, because it seemed 

like the high voltages needed and the awkward designs that they thought would be necessary 

would make such an electric shield impractical," said Charles Buhler of ASRC Aerospace 

Corporation [11]. 

 The concept design for the force field would contain several inflatable spheres with a 5m 

diameter mounted above the base site, where the astronauts cannot come in contact with them. 

The spheres would need to be made of strong fibers like Vectran and coated with conductive 
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metal. The spheres would inflate by charging them with 100 megavolts. A small current would 

then flow through to maintain the charge and save energy [11]. The like charges of the electrons 

in the conductive metal would repel each other, causing the sphere to expand and inflate.

 The problem with the spheres is that radiation can be either positively or negatively 

charged. So the spheres would need to be arranged in the right way to repel both positive and 

negative charges, and make sure that there is no impact on the health of astronauts or equipment 

from the electric fields. Fortunately there are some designs that managed to have a calculated net 

electric field of zero at ground level [11].

 Colonizing on Mars seems to be within research with our current technology. If the issue 

of radiation protection can be solved with this method or one like it, our ability to put humans on 

Mars becomes somewhat easier. With its many similarities to Earth, Mars does not have as many 

variables for base building as the Moon. Mars has a good surface temperature, and its gravity is 

not too low. Mars is the better option for where to build a base, but it still may not be the best to 

colonize.

5.4! Resources

! Despite Mars’s toxic atmosphere and radical temperatures, because of its size and 

proximity to the earth, it is an interesting place to research as a possible future habitat for 

humans.  Although Mars is less than half the size of the earth, it is a candidate worth considering 

for future inhabitation due to the prevalence of water on its surface, mineral rich soil, and 

abundance of caves below the surface that could be made suitable to support human life.
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Figure 29. Size comparison of the earth and Mars. (Lunar and Planetary Institute)

 Although the thin atmosphere and low temperature of Mars cause exposed water to 

quickly evaporate or freeze, there is evidence in recent years that in certain gullies and low 

altitude locations, water does flow for short periods of time.

Figure 30. Mineral deposit Mars. (NY Times)

In Figure 30, it can be seen based on new mineral deposits in a Martian gully, that water has 

flowed in brief spurts in the recent past, sourced from melting subterranean permafrost.  

Additionally, vast icecaps cover both poles.  It is estimated that the southern icecap alone 

contains enough water to cover the entire surface in a layer of water eleven meters thick.  NASA 

claims that the southern icecap is larger than the state of Texas, and both icecaps range between 

two and three kilometers thick.  If melted, these icecaps could prove to be a valuable resource, 

providing enough water to sustain human life [81].
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Figure 31. Mars's southern polar icecap. (Mars Melting, standeyo.com)

 Because Mars lost its magnetosphere more than four billion years ago, the solar winds 

can interact directly with Mars’s ionosphere, the top layer of the atmosphere.  This causes the 

atmosphere to be exceptionally thin by removing layers of atoms [118].  Although the 

atmosphere is quite dusty, because it is so thin, and comprised of 95% carbon dioxide—a 

powerful greenhouse gas—solar power could be a viable option as an energy source.  However, 

because of its distance from the sun, Mars receives only 43% as much sunlight as earth.  Because 

of the lack of any powerful sunlight reaching Mars, solar power would only be a supplemental 

power source, much like it is on earth.  A more suitable candidate for providing energy to future 

human settlements on Mars would be wind power.  Mars is home to some of the strongest winds 

in the entire solar system, often creating dust storms capable of swallowing up the entire planet 

[103].

Figure 32. The increase of dust storms on Mars. (Mars, solstation.com)
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The average wind speed on Mars is 20 miles per hour, and during storms, can exceed 60 miles 

per hour [94].  These are ideal conditions for harnessing wind energy.  The average large wind 

turbine can produce around to 700 kilowatts per hour.  The average wind speed on earth is only 7 

miles per hour, so in under 20 mile per hour wind conditions, one turbine would be able to power 

a whole community—somewhere around 8000 kilowatts per hour [52]. 

 Martian topsoil has been found to be much less acidic than was otherwise thought.  It 

contains essential minerals such as magnesium, sodium, and potassium.  These are essential 

elements for plant growth, so the surface of Mars is estimated to be surprisingly suitable for 

agriculture.  This was determined by the probe Phoenix in 2008, which collected a small sample 

of Martian soil and heated it with earth water for analytical purposes [84].  In addition to suitable 

conditions for plant growth, Mars is also home to a multitude of subterranean caverns.  Seven 

caverns have been documented in the vicinity of a volcano in the southern hemisphere of Mars, 

however, the structural makeup of these caverns suggests an abundance of such caves may exist 

globally on Mars.  Not only will these caves provide suitable living spaces for settlers, they are 

also of great interest to the investigation of past life on Mars [27].

Figure 33. Cavern openings on the surface of Mars. (Universe Today)
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 Although Mars has a toxic atmosphere, and a number of other hazards to humans, it is 

becoming a viable option for future space colonization.  Its Abundance of water, and caves for 

shelter make it possible for supporting human life.  Additionally, its soil proves to be suitable for 

plant growth, an essential part of sustainable human life.  Although there may not be enough 

sunlight for solar power, Mars’s windy conditions make wind power a realistic option for 

providing energy to future human colonies.  Although many breakthroughs are still needed to 

contend with the toxic atmosphere and many other hazards, Mars is likely capable of supporting 

human habitation.

5.5! Terraforming

! Terraforming is the process of transforming an environment into one suitable to 

sustain human life. Since Mars is the most Earth-like planet in our solar system, it is the most 

viable candidate for terraforming. Even though it seems like Mars is a cold, dry planet, it has all 

the necessary ingredients for life already. It is widely believed that it is currently technologically 

possible to create enough global change on Mars to support human life. Greatly increasing the 

atmospheric pressure and surface temperature on Mars is theoretically possible within a decade, 

and would be the first step towards terraforming.  

The surface temperature on Mars is too low for human life currently because Mars is 

farther from the sun and outside the habitual zone, and has much less of an atmosphere to keep in 

its warmth. The atmosphere on Mars has only about 1% the pressure of the Earth’s at sea level 

[146]. Since moving a planet towards a warmer orbit is out of reach, an alternative method to 

heat up the planet is needed. Another way to do so would be to artificially induce the greenhouse 

effect on Mars to trap the Sun’s heat within the atmosphere. Several ways to accomplish this 

include using orbital mirrors to warm certain areas of the surface, set up factories on Mars that 

produce artificial greenhouse gases, or collide asteroids containing volatile components into 

Mars [146]. Whichever method is used, the main goal is to warm the planet and thicken the 

atmosphere enough to make a suitable living environment for humans. This artificial greenhouse 

effect may be able to do that if enough greenhouse gases are released. Carbon dioxide, which is a 
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greenhouse gas, can be found in large quantities on Mars. Most of which is absorbed within the 

soil, but some of it is frozen in the south polar cap [146]. The only way to reach the carbon 

dioxide is to heat the planet enough so that it can be released as a gas.

It is estimated that there is enough carbon dioxide frozen in the south polar cap of Mars 

to initially kick-start the greenhouse gas effect [146]. Once the greenhouse effect begins it enters 

a runaway process, continuously warming and making it a more life-sustaining planet. The 

warmer Mars gets, the thicker its atmosphere will become [146]. The thicker the atmosphere 

becomes, the warmer it gets. Therefore, once the greenhouse effect is started it cannot be 

stopped. Today, the atmosphere of Mars is roughly 6 millibars of pressure compared to Earth’s 

approximate pressure of 1013 millibars [146].  If the estimated amount of frozen carbon dioxide 

at the south pole were to be released to the atmosphere, it could add anywhere between 50 to 100 

millibars to the atmosphere’s pressure, and would take only about 10 years for the process to be 

completed [146]. That may not seem like enough, but if the estimated amount of carbon dioxide 

also trapped in the soil of Mars was to be released the atmospheric pressure could eventually 

reach about 400 millibars [146]. 

Once the surface temperature on Mars rises above the freezing point of water, the frozen 

water in the soil would begin to melt. The melted water could then start to refill the dried up 

riverbeds, and would eventually allow natural ecosystems to begin on the surface. In addition to 

the development of ecosystems, the melting of water has another major benefit. Water vapor is 

considered to be a greenhouse gas. When the water melts on the surface it can also evaporate and 

add to the runaway greenhouse effect, further accelerating the warming process of Mars [146].

The total amount of carbon dioxide available to be used will be unknown until human 

explorers travel to Mars, and therefore the exact final conditions to occur after terraforming on 

Mars are unknown. However, there is a significant enough amount of carbon dioxide to make 

Mars a more suitable planet for living. It is technologically possible to begin the process of 

terraforming by inducing a greenhouse effect into the atmosphere of Mars. 
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5.6! Magnetosphere

! Terraforming Mars for colonization is a great idea, but there is one particular problem 

that has yet to be solved for this task to be complete.  This is the lack of a magnetosphere on 

Mars, or, scientifically, the lack of an active geothermal core with strong magnetic poles [141].  

A magnetosphere, such as the one we have on Earth, protects the planet from solar activity and 

radiation, and confines the atmosphere so that it doesn’t escape into space.  NASA’s Mariner 4 

was the fourth spacecraft in a series of planetary exploration flyby missions to Mars and was the 

first deemed successful because it provided the first pictures of the Martian surface to ever be 

seen [136].  The spacecraft came within 3.9 Mars radii and found no indication of an Earth-like 

dipole magnetic field [402].  It is hypothesized that Mars had a thick atmosphere consisting of 

mostly carbon dioxide billions of years ago, but without a strong magnetic field the carbon 

dioxide was stripped from the atmosphere by the ions of solar wind and the Martian atmosphere 

slowly began to decompose. Earth is protected from solar wind by its magnetic field; a stream of 

very energetic particles make up solar wind, and these particles would strip away the ozone layer 

that is protecting Earth from harmful ultraviolet (UV) rays if the magnetosphere weakened or 

was nonexistent.  

  Solar and space activity have detrimental effects on humans when they are directly 

exposed to such weather, but the magnetic field and Van Allen Belt that surrounds Earth help to 

deflect this radiation and keep us safe.  The Van Allen Belt consists of two radiation belts, an 

inner and outer belt, that are made of high-energy particles (10-50 MeV), mostly protons and 

electrons, that are held captive by the Earth’s magnetic field.  These belts also deflect radiation 

when the plasma of the solar wind interacts with the plasma of the Van Allen Belts.  Without a 

magnetosphere, no Van Allen Belts are present, making it even more impossible for humans to 

live naturally on Mars. 

 The rate of change of temperature that corresponds with the depth of a planet is called the 

geothermal gradient.  Earth’s inner and outer cores have much higher temperatures (4,300 

degrees Celsius at the inner core, 5,200 km deep) than those at the surface.  Gravity from the 

Moon creates “tides” on Earth that don’t just affect the ocean, but the crust as well.  The Moon’s 

  101



gravity pulls on the bulge of the Earth that is created by these tides, and causes the Earth’s 

rotation to slow down.  However, it is only the crust that is affected by these tides, while Earth’s 

inner core continues to rotate at a faster pace.  This has been proven by scientists’ findings when 

measuring changes in the speed of earthquake-generated seismic waves that pass through the 

inner core.  A significant amount of this research was completed by Xiaodong Song and Paul G. 

Richards, seismologists at Lamon-Doherty of Columbia University [110].  They say this new 

information will provide a jumping point for more advanced planetary understanding and will 

help explain the pattern of changes in Earth’s magnetic field.  Earth has a solid inner core, made 

solely of iron, and lies within the outer core, which is also made of iron, but is molten.  The 

combination of these electrically conducting cores and the naturally occurring dynamo effect 

creates the planet’s magnetism.  The dynamo effect can be explained in relatively simple physics, 

using a metal disc, of radius a, that is spinning with angular velocity, w.  When a magnetic field 

is present, there is an induced emf, E, across the disc that is proportional to the magnetic flux, Ф, 

times w.  This can be shown through the integration of the Lorentz force (Eq. 26, section 3.5), 

which produces our final equation for induced emf [31]:

 E = (w Ф)/(2π)         (Eq. 28)
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Figure 34. Single Disc Dynamo. (Merrill)

A non-rotating wire electrically connected to the disk and wound about the axle completes the 

circuit and creates the magnetic field.  This can be applied in planetary terms by the solid inner 

core being the axle, and the outer liquid core being the disk.  The “wire” isn’t necessary since the 

cores are so large and therefore have a great enough influence to produce this effect themselves, 

naturally.  

Mars has both inner and outer liquid cores, but does not have a magnetosphere.  Andrew 

Stewart, a planetary geochemist at the Swiss Federal Institute of Technology, suggests that 

cooling the core might restore magnetism to the planet [90].  If a solid inner core was created, 

stationed inside the liquid outer core, a natural dynamo effect might be possible.  However, this 

could not be achieved through humanity’s technology, and would have to happen on Mars 

naturally, in the next thousands, or millions, of years.

  103



If we would like to colonize Mars, we must develop some sort of spatial technology that 

will create an artificial magnetosphere around the planet, or at least something that could protect 

a small, developing city.  Scientists do not have any official plans on how to do this, but a few 

ideas have been tossed around [97].  One such idea would be to launch electromagnetic satellite 

generators into orbit around Mars.  The generator could be built to fire off electrons, acting as a 

cathode, towards the next generator in orbit, which would retrieve the stream of electrons 

through an anode.  Each generator would have both anode and cathode portals, and when a 

continuous stream of electrons were fired, a complete circuit would be achieved.  The magnetic 

field would run perpendicularly to the current between each generator, pointing straight up and 

then curving towards the North and South Poles of the planet.  An electromagnetic generator 

works similarly to the design of a mass driver, but rather than launching payloads these 

generators would be launching electrons.  A conductive coil runs through the generator, and 

when voltage is applied, current is created, and a magnetic field begins to form inside the 

generator.  To achieve the flow of electrons through the cathodes and anodes of the generators, 

we can apply Faraday’s Law of Induction.  This Law states that a moving magnetic field, such as 

the one created within a generator, will cause current to flow without applying voltage.  A copper 

wire could run between the cathode and anode of each generator, and once a magnetic field is 

present within the generator, electrons would begin to flow through this copper wire.  The wire 

would direct electrons out the cathode of one generator, and towards the anode of another.  This 

electron flow would create a magnetic field around the path of the generators. 
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Figure 35. Variable Input Electrical Generator (VIEG). (ExRo Technologies)

 The electromagnetic generator pictured above is made by ExRo technologies and has 

been designed using a series of coils configured into “balanced stages” [112].  The use of 

magnetic balancing allows permanent magnets to be used in the generators design, which is ideal 

for the idea of the artificial Martian magnetosphere previously described.  Once placed into orbit, 

the generators would not need to be constantly maintained due to the permanent magnets and the 

fact that the generator uses wind power for energy.  The Variable Input Electrical Generator 

(VIEG) is able to cycle up and down without hesitation or mechanical friction, eliminating the 

need for a gearbox and making it much more efficient than competing electromagnetic 

generators.  

 If an effective magnetic field was to be made around Mars, the magnetic flux of the field 

would need to be significantly large in order to cover the correct amount of area above the 

planet. Magnetic flux can be defined as the product of the average magnetic field and the 

perpendicular area that it penetrates.  Mathematically, it is defined as 

 Ф = BA         (Eq. 29)

  105



B representing the magnetic field and A being the area perpendicular to the field.  In order to 

increase the field lines of magnetic flux, the electromagnetic generator design could incorporate 

conductors connected in parallel between each of the generators.  The conductors would retrieve 

the stream of electrons from the cathode of a generator and send them through their own unique 

circuit, until they are then projected to the anode of another generator.  A magnetic field would 

be created by the current running through these parallel conductors, strengthening the overall 

magnetic field of the system.  The summation of each of the fields created between and through 

the generators would result in one whole, very large, magnetic field [31].

5.7! Colliding Enceladus with Mars

! While terraforming on Mars seems like an approachable idea, there may be another way 

to do it. Colliding an object, like Enceladus, with Mars could help move it more towards Earth’s 

orbit, and could give it the materials it needs to induce the greenhouse effect still and create a life 

sustainable planet. The main issues to consider for such a process include cost, time, and 

technological ability.

 It may seem ridiculous to collide a moon of Saturn with Mars, but many other planets/

moons have collided before. In fact, the Earth and the Moon could be a result of two planets 

colliding according to the giant impactor theory. The giant impactor theory suggests that a small 

planet, about the size of Mars, hit what was once Earth. The result of this collision ejected large 

volumes of heated materials from the outer layers of both objects into orbit. The debris that was 

left over in orbit around the Earth eventually stuck together and formed what is now our Moon 

[30]. 

 Enceladus is a small ice moon located in the E ring orbiting Saturn. Its surface 

composition is mostly ice, with traces of carbon dioxide, and small amounts of ammonia and 

hydrogen peroxide. Gases being released by plumes on Enceladus by volume mostly erupt with 

water (90%), carbon dioxide (5%), methane (0.9%), ammonia (0.8%), and trace amounts of 

several hydrocarbons and other substances [125]. This presence of organic molecules makes 

Enceladus appealing for collision with Mars because it may be able to help induce the 
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greenhouse effect on Mars, which could eventually make it a life-sustaining planet. Enceladus 

also reflects about 80% of the sunlight it receives making it the brightest object in our solar 

system, and therefore has the highest reflection coefficient of any known solar system object 

[125]. This may also be beneficial to making Mars a life sustainable planet because of its 

inability to deflect radiation currently. 

 In order to move even a small planet such as Enceladus it would take an enormous 

amount of time and energy. Methods to move a planet include using antimatter or fusion rocket 

engines have been considered. However, operating a rocket through our atmosphere would be 

very difficult as well as slow and very costly. Another idea of using just solar sails or orbital 

mirrors would work technologically, but would take around 40 million years to move Venus into 

Earth’s orbit [14]. Comparatively the distance between Venus and Earth is far less than that 

between Enceladus and Mars; therefore this method would not have a realistic timeframe. The 

best current proposal is to establish an accelerating force by transferring momentum and energy 

to the desired planet to be moved by high-velocity mass-streams. The accelerated mass-stream 

would loop energy around a nearby planet with the assistance of solar sails and then project it 

back to be captured by the equatorial track mounted on the moving planet. In essence, the energy  

being catapulted back to the moving planet would cause it to rotate faster and push it further 

away from its orbit and the planet the energy came from. It is predicted that this process could 

work on moving Venus out into Earth’s in around 30 years [14]. 

 In summary, if Enceladus were to collide with Mars, it may be able to transfer some of its 

traits and materials necessary to induce the greenhouse effect on Mars. However, the new 

proposal for moving planets would not be time or cost effective. The distance from Venus to 

Earth is far less than that of Enceladus to Mars so the amount of time needed to collide the two 

would be much greater. Also, the impact of such a large object could destroy or alter the surface 

of Mars, and make future missions there more difficult. The debris launched into space after the 

collision could litter the solar system, rather than collect into a moon, since there is very little 

atmosphere around Mars. Overall, the idea of colliding a large object with Mars to create a life 

sustainable planet may be possible, but it is neither cost nor time effective.
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5.8! Changing Mars’ Orbit

Currently, Mars is just outside of the habitable zone in our solar system at an average of 

1.52 AU (228 million kilometers) from the Sun [14]. In order for it to be considered within the 

habitable zone, Mars would need to be 1.33 AU (199 million kilometers) form the Sun [14]. To 

achieve this, Mars’ angular velocity would need to temporarily decrease so that it could slip into 

an orbit closer to the sun.

 Angular momentum measures an object’s tendency to continue to spin. For a circular 

orbit, angular momentum is defined by the equation [41]:

 L = mvr         (Eq. 30)

Where m is the mass of the object, v is its velocity, and r is its distance from the object it is 

spinning around or its orbital radius. The mass and orbital radius of any given planet can be 

easily obtained, but the velocity must be calculated first. In most cases, velocity can be defined 

by a simple equation [41]:

 v = d/t          (Eq. 31)

Where d is a measure of linear distance, and t is time. Since we are looking at a circular system, 

the distance is calculated by finding the circumference of the planet’s orbit [41]:

 dC = 2πr         (Eq. 32)

With r being the distance from the planet to the Sun. So the equation for the velocity of a planet 

becomes [41]:

 v = (2π r)/t         (Eq. 33)
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Where t is the orbital period. Therefore, the equation for angular momentum can be stated as:

 L = mr2(2π/t)         (Eq. 34)

 An important factor to note is that angular momentum is conserved [126]. If a planet were 

to lose some of its angular momentum in order to change its orbit, another planet’s angular 

momentum must increase. However, for this scenario the angular momentum for Mars will be 

held constant, assuming that the angular momentum that was lost to change its orbit would be 

returned when it is in its final position. 

With Mars’ current orbital radius of 228 million kilometers (km), an orbital period of 

686.98 days, and total mass at 6.42e23 kilograms (kg), its angular momentum would equal 3.5e39 

kilogram-meters squared per second ((kg-m2)/s) [75]. If Enceladus, with a mass of 7.30e19 kg, 

were to combine with Mars while its angular momentum is held constant, the combined mass 

would have a decreased orbital radius and orbital period [75]. If the orbital radius were set to the 

desired habitable distance of 199 million km, then the orbital period would be 528.31 days.

 While it seems to be that a planet with the combined masses of Mars and Enceladus could 

exist in the habitable zone in our solar system, getting Enceladus to collide with Mars and end up  

in the right orbit would be a great challenge. The technology and funding for a project of such 

proportions is most likely out of reach at this current time. It is recommended that an alternative 

path to creating another habitable planet should be approached.

5.9! Possibility of Life Forms in Space

! The possibility of life beyond Earth has been a subject of heated debate for thousands of 

years.  Theories and arguments range from the prospect of super advanced civilizations, to 

abductions from Earth, to a vast science-fiction subculture of imaginings.  Although talk of 

highly developed life forms is interesting and popular, it is more prudent to start the search on a 

smaller scale: bacteria.
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 On Mars, evidence of past bodies of water leads NASA scientists to believe that life did 

thrive on a bacteria level—millions of years ago.  More significantly, the discovery of methane 

in the Martian atmosphere suggests that life may still be in existence on Mars, hibernating below 

its surface.  Here on Earth, there are few areas too hostile for bacteria to survive.  Even when 

conditions become too harsh to support bacteria life, many types of bacteria are capable of 

degenerating into a dormant state—during which they are called a spore—and reviving 

themselves when their surroundings again become livable.  Such single celled organisms are able 

to remain in such a state nearly indefinitely [32].

Because over ninety percent of all methane found on Earth is the result of living 

creatures, NASA’s findings suggest strongly that the methane found in the Martian atmosphere 

was created by bacterial spores living below the permafrost level.  Although it will be difficult 

for such bacteria to regenerate in the current conditions on Mars, without further testing, there is 

no way to know whether or not there are additional strains of bacteria which have evolved to 

survive in the harsh Martian environment.  Researchers claim that detecting bacteria on the 

surface of mars will be so difficult that “even future rovers will have a tough time identifying the 

Martian equivalent of dormant bacterial spores [20].”  Because unknown and unidentifiable 

types of bacteria on Mars could pose a potential threat to settlers, it may be judicious to design 

future rovers with the ability to send soil samples back to Earth to be tested for bacteria in a 

contained environment before exposing large groups of settlers to this potential hazard.

In a much more distant part of the solar system, Saturn’s largest moon, Titan, is a rich 

possibility of life beyond Earth.  Titan, although too low in temperature to support Earthly life 

forms, is rich in hydrocarbons such as methane.  Although most scientists are more quick to 

speculate that Titan is simply an example of what a planet looks like before biological growth 

takes place, it should be considered that Titan could support methanogenic life forms where 

liquid methane takes on the role that water plays on Earth.  Although this possibility seems 

remote, fluctuations in gasses such as hydrogen and ethane, suggest that conditions on Titan are 

consistent with the possibility of life.  Although the temperature on Titan is still too cold to 
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support human life, it is a bright example of what is to be discovered in the future of space 

exploration [68].

Although concrete evidence of life beyond Earth is yet to be found, it is an important area 

of study to consider.  It is possible that bacteria on Mars may pose a threat to humans, and it 

should be studied further before settlers are sent there.  Titan on the other hand, is merely an 

interesting example, not suitable for future habitation.  This being said, as the sun expands over 

millions of years, the temperature of Titan will increase, and perhaps life will bloom and Titan 

will become comparable to Earth.

5.10  Mirrors in Space

! Although technology is growing more and more rapidly to make colonization of Mars a 

more realistic possibility for the near future, one of the most difficult technological issues to 

tackle concerns energy sources to power such a colony.  Because Mars only receives 43% as 

much sunlight as the Earth, solar power is a less than viable option.  Similarly, because the 

atmosphere is so thin, wind power is problematic as well.  Scientists are left to turn to an option 

that is just recently being considered as a long-term solution for Earth’s climate change issues: 

reflective surfaces in orbit.

 Such surfaces placed in Earth’s orbit would be intended to reflect sunlight back out into 

space, thus diverting the excess heat that would increase the Earth’s overall temperature and 

ultimately get trapped in the atmosphere, contributing to global warming even more.  Senior staff 

scientist, Lowell Wood, at Lawrence Livermore National Laboratory estimates that a mirror of 

roughly 600,000 square miles in area—or several smaller mirrors equaling that total area—

would be able to reduce the Earth’s received sunlight by one percent.  This, he estimates, would 

be enough to return the Earth’s climate to stability.  Although the concept is simple in theory, 

Woods abandoned the idea after almost ten years or research for its unfeasibility [51].

 While maintaining—or even producing—a conventional mirror of such size would be out 

of the realm of possibilities, it is possible that several installations of smaller sized highly 
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reflective surfaces could get the job done under careful supervision.  Using technology similar to 

solar sails, this engineering feat could be achieved.  Solar sails are a type of space propulsion 

technology that uses radiation pressure and the force of absorbing and reflecting light to gain 

momentum in space.  Because the mirrors have to be so cumbersome, and the payloads so small 

solar sails are not necessarily practical for modern space travel.  This being said, the reflective 

technology may be of use for both cooling down the Earth, in addition to heating up Mars.

Figure 36. NASA’s solar sail concept. (NASA)

 Figure 36 shows a sketch by NASA of a potential solar sail design.  On this particular 

design, the reflective surface is only a half of a kilometer wide.  Because to make any real 

difference on earth, the surface would need to be at least 32 million times larger, it is obvious 

that the technology is still in its developmental days.  If the mirrors were placed in a properly 

calculated orbit of around or above 800 kilometers due to atmospheric drag, the propulsion 

aspect of the solar sails would not be necessary.  However, it is the material used to create the 

sails that is of interest.  The sails are currently being made of either ultra-thin aluminum film, 

around a tenth of a micrometer in total or aluminized Kapton film around 2 micrometers thick 

which can withstand high temperatures with ease.  The Kapton film is deposited in a vapor form 

which then hardens into a solid to form the mirror surface when in space.  This would be ideal 

for weathering the long trip to Mars, and once there, could be used to reflect sunlight towards the 

surface instead of away.  Not only would this ultimately heat the planet up, but it would also 
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cause more sunlight to reach the surface, possibly making solar power a more viable option 

[113].

 Despite the fact that the technology is still in its infancy, and as Woods presumed, is not 

particularly feasible at the time being, it is still a great option to keep open.  Mars suffers from 

the opposite problem as the Earth, in the sense that it is too cold to be convenient for humans, 

whereas the Earth is gradually heating up.  Nonetheless, the same technology hopefully will be 

able to be used in the future to solve both problems.  Although the technology has a long way to 

go, Mars’s temperature is a problem that needs to be dealt with, so the technology is worth 

developing.
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Conclusion 

Humanity has come far with its knowledge regarding extraterrestrial matters and 

technological advancements.  When people first started studying the stars, a great curiosity 

blossomed within their collective consciousness.  However, the capability of colonizing space 

seemed dauntingly out of reach.  Our team has taken it upon ourselves to advance our personal 

pursuit of knowledge and further the research available concerning spatial exploration.  

Furthermore, we have developed this archive of current space colonization and projects for 

future generations of students.

While our opportunities to explore and colonize space are accessible, one drawback is 

that international politics and cooperation is not mature enough to support these endeavors.  

However, it is imperative that nations continue to explore and collaborate on homeworld 

protection from extraterrestrial dangers; otherwise humankind could be wiped out.  Biology will 

be a limiting factor in the push for space colonization; humanity must develop methods to be 

adaptable to space or prevent unwanted abnormalities.  With continued perseverance and the rise 

of the private space sector, accomplishments will be made within the next few decades.

Robots will help achieve these accomplishments in areas that humans could not otherwise 

perform.  Current examples are Curiosity, the newest Mars rover successor for the exploration of 

the Martian environment.  The technologies included in this rover are the most advanced in its 

field and can deliver new information beneficial to a colonization effort on Mars.  Terrestrial 

robots are mainly relegated to industrial applications, such as manufacturing, but autonomous 

robots are in development.  Applied Artificial Intelligence is already being established, however 

strong AI is still a far beyond our current capacity.  The human mind must first be understood in 

order to cultivate a form of synthetic computer platform that emulates this biological 

phenomenon.

Through our research, we have discovered that the Moon is rich with various energy 

reserves.  The most prevalent resources on the Moon are thorium and helium-3; however, 

thorium is a much more realistic option for future energy production.  Water is also found in 
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abundance in the lunar regolith in a frozen state.  These resources will make the development of 

a productive lunar outpost a greater possibility for mankind.  Our lunar base concept will consist 

of a solar panel installation for energy capture, a launch pad for low cost rocket propulsion, and a 

railgun for Near Earth Object defense and investigation.  This lunar base is proposed as an 

outpost rather than a permanent settlement such as a Martian colony.

Mars is a more suitable candidate for colonization efforts than the Moon.  The 

environment is relatively dangerous compared to that on Earth, with the constant bombardment 

from solar radiation being a prime example.  This radiation is a prevalent risk concerning a 

Martian colony because the planet lacks a magnetosphere.  There have been few feasible 

proposals to date concerning a recreation of the Martian magnetosphere, but it may be possible in 

the future with developing technology.  It would benefit the Martian colonization effort to 

terraform the planet prior to arrival to better suit terrestrial life.  While there are multiple dangers 

currently on Mars, these can be wholly resolved by terraforming the planet.  Once the planet is 

repurposed, it will be fully capable of sustaining a robust civilization.  Humanity will then be 

able to gain a foothold in further space efforts.

In order for further space exploration to occur, international cooperation must be put at 

the forefront of the space debate.  Current international political relations do not favor a 

coordinated space effort, as seen with the situation between the United States and China.  Still, 

there are a multitude of reasons to look deeper into space.  Eventually, Earth’s natural resources 

will be exhausted and mankind will require a secondary homeworld to further thrive.  Hazards of 

space will prevent long-term voyages from occurring without extreme technological 

advancements for protecting human biology.  Once humanity has the ability to undertake long-

term voyages, we can be sure that humanity’s accumulated knowledge will persist outside of 

Earth’s realm.  Thus the human aspect will continue to proliferate.

Our recommendations for future IQP groups extend to speculating the process of 

colonizing the target planet, which would realize the formation of an operational settlement on 

Mars following the timeline of this project.  A further recommendation is to investigate the 

operation and society of an extraterrestrial city, keeping in mind sociological structures and the 

  115



comparison between such a structure on Mars to that on Earth.  Additionally, exploring the 

technology and infrastructure necessary in the new city would be an inquiry into extraterrestrial 

habitation.  Also, researching how a new planet might affect a human’s biology or health is of 

keen interest if humanity desires to spread out amongst the stars.  A future IQP group could also 

theorize how early settlers would cope with isolation, thereby being a study in psychology 

compared to a study in sociology about a city.  Moreover, a group could analyze the need for 

traveling to another world due to humanity’s effects on Earth.  Finally, a group could expand on 

how solar system economics would be affected with the introduction of a secondary homeworld, 

thereby being a progressive study in macroeconomics.

Our IQP group has demonstrated the initiative for expanding our knowledge regarding 

space and technology.  We have enhanced our professional group dynamics and cooperative 

abilities over the course of this project.  We have determined the economic and mineral potential 

of other celestial bodies, especially concerning colonization efforts.  Furthermore, we have 

gained an understanding of real world situations, the influencing factors regarding space travel 

and applied our engineering backgrounds to measurable data within our fields of study.  

Conclusively, we have developed an overall proposal for space exploration and colonization with 

regards to technology.
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