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Abstract

Building automated trading systems has long been one of the most cutting-
edge and exciting fields in the financial industry. In this research project,
we built a trading system based on machine learning methods. We used the
Recurrent Reinforcement Learning (RRL) [1] algorithm as our fundamental
algorithm, and by introducing Genetic Algorithms (GA) [2] in the optimization
procedure, we tackled the problems of picking good initial values of parameters
and dynamically updating the learning speed in the original RRL algorithm.
We call this optimization algorithm the Evolutionary Recurrent Reinforcement
Learning algorithm (ERRL), or the GA-RRL algorithm. ERRL allows us
to find many local optimal solutions easier and faster than the original RRL
algorithm. Finally, we implemented the GA-RRL system on EUR/USD at a
5-minute level, and the backtest performance showed that our GA-RRL system
has potentially promising profitability. In future research we plan to introduce
some risk control mechanism, implement the system on different markets and
assets, and perform backtest at higher frequency level.

i



Contents
1 Introduction 1

1.1 Machine Learning and Algorithmic Trading . . . . . . . . . . . . . . 1
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Forex Trading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Foreign Exchange Market . . . . . . . . . . . . . . . . . . . . 4
1.3.2 Forex Trading Process . . . . . . . . . . . . . . . . . . . . . . 5

2 Methodology Overview 8
2.1 The Trading System Architecture . . . . . . . . . . . . . . . . . . . . 8
2.2 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 The Recurrent Reinforcement Learning Algorithm 9
3.1 Algorithm Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Accumulative Learning . . . . . . . . . . . . . . . . . . . . . . 11
3.1.2 Online learning . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Algorithm Disadvantages . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 The Evolutionary RRL System 14
4.1 Genetic Algorithm (GA) . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 The GA-RRL System . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Performance Evaluation 22
5.1 Algorithm Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1.1 Dataset I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1.2 Dataset II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1.3 Dataset III . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Future Work 37
6.1 Risk Control Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2 The Rolling Window Backtest . . . . . . . . . . . . . . . . . . . . . . 38

ii



Appendix A Codes 40

List of Figures
3.1 RRL Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 The GA-RRL Chromosome . . . . . . . . . . . . . . . . . . . . . . . 18
5.1 Training Performance on Dataset I, 8 Neurons . . . . . . . . . . . . . 23
5.2 Test Performance on Dataset I, 8 Neurons . . . . . . . . . . . . . . . 23
5.3 Training Performance on Dataset I, 16 Neurons . . . . . . . . . . . . 24
5.4 Test Performance on Dataset I, 16 Neurons . . . . . . . . . . . . . . . 24
5.5 Training Performance on Dataset I, 30 Neurons . . . . . . . . . . . . 25
5.6 Test Performance on Dataset I, 30 Neurons . . . . . . . . . . . . . . . 25
5.7 Training Performance on Dataset II, 8 Neurons . . . . . . . . . . . . 27
5.8 Test Performance on Dataset II, 8 Neurons . . . . . . . . . . . . . . . 28
5.9 Training Performance on Dataset II, 16 Neurons . . . . . . . . . . . . 28
5.10 Test Performance on Dataset II, 16 Neurons . . . . . . . . . . . . . . 29
5.11 Training Performance on Dataset II, 30 Neurons . . . . . . . . . . . . 29
5.12 Test Performance on Dataset II, 30 Neurons . . . . . . . . . . . . . . 30
5.13 Training Performance on Dataset III, 8 Neurons . . . . . . . . . . . . 32
5.14 Test Performance on Dataset III, 8 Neurons . . . . . . . . . . . . . . 33
5.15 Training Performance on Dataset III, 16 Neurons . . . . . . . . . . . 33
5.16 Test Performance on Dataset III, 16 Neurons . . . . . . . . . . . . . . 34
5.17 Training Performance on Dataset III, 30 Neurons . . . . . . . . . . . 34
5.18 Test Performance on Dataset III, 30 Neurons . . . . . . . . . . . . . . 35

List of Tables
2.1 Sample Raw Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.1 Parameters Description . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1 Backtest Results on Dataset I . . . . . . . . . . . . . . . . . . . . . . 22

iii



5.2 Backtest Results on Dataset II . . . . . . . . . . . . . . . . . . . . . . 27
5.3 Backtest Results on Dataset III . . . . . . . . . . . . . . . . . . . . . 32

iv



1 Introduction

1.1 Machine Learning and Algorithmic Trading

Machine learning is one of the most exciting branches of modern science. Basically
it is defined as the field of study that looks into computers’ ability to learn without
being explicitly programmed[3]. Machine learning is being applied in different facets
of applications. For example, it has been used in pattern recognition, using which the
system can segment out individual objects from photos and label them. Google has
developed the famous AlphaGo agent which beated the world champion Lee Sedol.
Many scientists believe that machine learning will impact our lives.

Algorithmic trading is likewise a relatively new and promising field in the finan-
cial industry. In algorithmic trading, the trading strategies are programmed and
implemented by computers. In the past decades, predictive mathematical models,
statistical arbitrage methods, and event-driven systems have been commonly used in
algorithmic trading. For manual traders one of the most important issues is the ten-
dency to be undisciplined. For instance, manual traders are likely to continue trading
after suffering a big loss because the more money they have lost, the more they are
desperate for getting them back. Unlike manual traders, algorithms which set explicit
rules will faithfully implement them, thus avoiding the man-caused interruptions and
improving trading performance.

To implement machine learning techniques in algorithmic trading is a pretty
natural choice. In the financial market, the price of the assets changes over time
very frequently. There are large uncertainties in the market, so even if there might
exist a pattern for a short period of time, the pattern will tend to collapse in the
long run. A human will find it difficult to go through loads of dynamic data and
recognize different patterns to predict the future state. However, an appropriate
machine learning algorithm, using considerable computing power, might be able to
help find such dynamic patterns. These dynamic models will be changing over time,
but in most cases we only have to update certain parameters, which can be done
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automatically. So once the machine learning model is built, the future maintenance
requires only routine work. In the financial industry, many companies have been
trying to use smart machine learning algorithms plus powerful calculating devices
in trading. Not only hedge funds like Bridgewater, Two Sigma, but also investment
banks like J.P. Morgan are using machine learning in trading[4]. They hire machine
learning experts in academia to develop the most advanced trading systems, and
upgrade their trading facilities to get the fastest calculating speed and the most stable
environment.

1.2 Related Work

Traders and scholars have been striving to design automated trading systems for a
long time. Generally the trading systems can be classified as trend following systems
and mean reversion systems.

For trend following systems, the most famous technique is to use the moving
average (MA) indicator, which is the average value of the previous prices during a
certain period. However, simply using MA is not likely to generate a stable profitable
system, so MA is often considered as an input in some sophisticated systems. Another
famous strategy is momentum trading. The momentum here usually means the
previous performance of the asset, or technically, the previous returns in a certain
period. Jegadeesh and Titman’s research [5] shows that buying past winners and
selling past losers will give a larger return than the return for the market index.

Compared to trend following strategies, the mean reversion strategies are more
difficult to construct, because it is much more difficult to predict an exact turning
point. One common approach is to use standard deviations based on the belief that
prices will finally fall into a stable interval. However, this fails to be true when the
price does breakout the previous price range, and one famous example is the collapse
of Long-Term Capital Management, which failed at the arbitrage trading of Royal
Dutch Shell. One can also use regression methods in a short term, or use ARCH or
GARCH to construct time series models. For pairs traders or market makers, a famous
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approach is to use the Ornstein-Uhlenbeck (OU) process, see S. Rampertshammer’s
research[6] for a framework, and T. Leung and X. Li’s paper[7] discussing the optimal
entry and exit price. Besides, professional traders also proposed some interesting
findings using miscellaneous techniques, for example, see J. Ehlers’s report[8] which
builds a system consisting of the fancy super smoother and a two-pole high-pass
filter, turning stochastic oscillators from a delayed indicator into a predictive indicator.

In recent decades, the design of automated trading systems became more sophisti-
cated, and many statistical and machine learning methods have been tried on different
markets. For example, G. Creamer and Y. Freund used the alternative decision tree
(ADT), proposed by Y. Freund and L. Mason [9], with some well-known technical
indicators and fundamental financial indicators to predict the excess returns. Due to
the complicated market conditions, a profitable pattern may be highly non-linear,
so naturally, people implemented Artificial Neural Networks (ANN) to approximate
a complicated model. For ANNs the two major issues are features selection and
parameters optimization: what features should be selected and how much should they
weight repectively both have a significant influence on the performance of the trading
system. The features (independent variables) can be the price momentum or other
technical indicators, and the optimization process may use the back propagation
method[10] and genetic algorithms. See K. Kim and I. Han’s research[11] which
constructs ANNs to predict the stock index and uses genetic algorithms for parameters
optimization.

To achieve a good trade-off between a trend following system and a mean reversion
system is another important issue. The market is always changing, and thus pure
trend following or pure mean reversion strategies cannot always fit in with the market
conditions. Based on the Fama-French model[12], R. Balvers and Y. Wu[13] have
explored a linear combination model of momentum and mean reversion strategies in
different national stock markets, and the hybrid strategy gives abnormal excessive
returns. A. Serban[14] applied the similar combination method on the forex market
which likewise created excessive higher returns and an even higher Sharpe ratio than
those obtained by investing in the stock market index.
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The Recurrent Reinforcement Learning (RRL) algorithm was first proposed by
J. Moody and L. Wu[15], which constructed an ANN and used back-propagation to
optimize the parameters. The original paper tested the algorithm in an artificial
market and showed promising results. J. Moody and L. Wu then continued their
research[1] which tested the algorithm in stock and US Treasury Bills markets,
compared the performance between RRL trader and Q-learning trader, and analyzed
the sensitivity of some parameters. C. Gold[16] continued to explore RRL and applied
it to the foreign exchange market, in which he first used rolling window methods to
train and test the algorithm. He also suggested the movement/spread ratio to measure
the feasibility of implementing RRL on certain assets, and gave an empirical analysis
for optimizing parameters. M. Dempster and V. Leemans’s paper[17] constructed
a more sophisticated and practical automated forex trading system based on RRL
with multiple layers. They used 1-minute data rather than the half-hour data of the
previous paper to test the performance. The system trades only between 9 a.m. and 5
p.m London time, and was incorporated with risk control mechanisms such as trailing
stop loss, constant holding period, and optimizing self-defined utility functions in
terms of risk. Besides, from the empirical research in [17], using extra inputs with
14 classical technical indicators seems not to be significantly beneficial. However,
the influence of using extra technical indicators can be intricate. J. Zhang and D.
Maringer[18] used genetic algorithms to improve the RRL system by introducing
technical indicators that are not relevant to price returns, and the results showed
that this outperformed the original RRL system. Since the influence of incorporating
technical indicators are complicated to judge, here we will not consider any other
technical indicators in our following trading system.

1.3 Forex Trading

1.3.1 Foreign Exchange Market

The foreign exchange (forex) market is the place where people trade currencies.
Most of the forex trading are completed electronically through computer networks all
over the world, and there is no centralized physical exchange such as the New York
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Exchange for the stock market. Therefore, the forex market is an over-the-counter
(OTC) market. The market participants are mostly large financial institutions such as
banks and hedge funds, big corporations doing international trades such like General
Electric (GE), and individuals as consumers, travellers and investors. Forex market
is open for 24 hours every day in 5 days of a week, and it is the largest market in
the world, with a daily volume of around $5 trillion, and the world GDP of a year is
about $73 trillion1. The causes for forex rate change is complicated, which include
the changes of interest rates, inflation and the demand and supply of the currency.

Forex can be traded in mainly three markets: the spot market, the forwards
market and the futures market. We do not go further into the latter two markets here,
since when people mention the forex market usually they refer to the spot market. In
the forex market, currencies are traded in pairs. In the electronic spot forex market,
no physical currencies exchange really happens. It can be regarded that we are only
trading the number, the exchange rate of currency pairs, and our accounts are usually
US dollar denominated. For example, the exchange rate of EUR/USD, the most
widely traded pair in the world. It represents how many US dollars one euro can
buy. If the EUR/USD rate is now 1.36, then 1 euro can buy 1.36 dollars. If you
think that the US dollar value will increase, you would sell the EUR/USD pair, which
means that you get US dollars by selling euros, and wait for the EUR/USD rate to
decrease. When such price movement happens, you can buy the EUR/USD pair,
which means that you buy euros by selling US dollars. Since the US dollar’s value
decreased, theoretically you can get more euros, thus make a profit. In practice your
account is denominated in US dollars, and you will earn the difference between the
rate multiplied by some constant number. The next subsection will show an example.

1.3.2 Forex Trading Process

As a retail trader, to start forex trading, one needs to choose a broker. Basically,
there are two types of brokers: market makers (MMs) and electronic communications

1Statistics come from the Bloomberg Market Concepts tutorial.
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networks (ECNs). MMs set the bid and ask price in their own system thus they
actually “make” the market, and provide liquidity to the real market. ECNs, on the
other hand, gather all the bid and ask quotes from many market participants and only
serve as the connecting bridges. The bid and ask quotes on ECNs’ systems are more
volatile and closer to the real market conditions. Here we will use the transactions on
an ECN broker’s platform (IC Markets CTrader platform) in our transaction example.
Forex trading is very different from stock trading. For instance, almost all traders
in forex market use leverage to magnify their positions. Let us go through some
essential concepts and learn the trading process by conducting a simulated transaction.

Transaction Example:

At 10:13:49 EST, Feb 15, 2017, the bid price of EUR/USD is 1.05696 at which
I would like to sell the EUR/USD pair. I used an account with a leverage of 50:1,
and used market sell order to sell 0.2 lots of the pair. However, it ended up with
an average entry price of 1.05693, and cost me $ 422.77 for the margin. I suffered
a slippage of 1.05693 − 1.05696 = −0.00003. At 10:35:26 EST, 15 Feb 2017, I
closed my position using a market order, with a closing price of 1.05750, and the total
commissions are 1.26. The net pips I gained is $-5.7, and the gross profit I made
is $ 0.2 × (-5.7) = -11.40. After adding the commissions, my net profit is $-12.66.
Transaction Done.

Let’s clarify some concepts in the example above:

• Lot: The lot is the standard amount of the forex contract, which usually
equals 100,000 units of a certain currency. For example, if you buy one lot
of EUR/USD at price 1.05693, you actually buy 100,000 euros at the cost of
1.05693 ∗ 100, 000 = 105, 693 US dollars. In forex trading, one may trade a
smaller size such as 0.5 lots, 0.2 lots, but the minimum is 0.01 lots.

• Leverage and Margin: Non-leveraged forex trading requires a large amount
of money. For example, even trading 0.01 lots of EUR/USD requires about
1,000 dollars. Besides, the fluctuation of forex is often small, generally within
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2% percent a day. To trade with less money and magnify their profit, at least
hopefully, people use leverage to trade. In the previous example, the leverage is
50:1, which means that for one lot worth 100,000 units of a certain currency,
we can trade it with only 100, 000/50 = 2000 units. These 2000 units are
required as the deposit to hold one lot’s position, and is called margin. The
leverage will magnify both profit and loss. For example, if the currency pair
rate increases or decreases for 1% and you hold a long position, then for one
lot you will win or lose 100, 000× 1% = $1000. However, for a 50:1 leveraged
account we trade one lot EUR/USD with only $2000, so we will actually win
or lose 1000/2000 = 50%. In the previous example, we trade 0.2 lots worth
0.2× 1.05693× 100, 000 = 211, 138.6 using a 50:1 leverage, so we need to put $
211, 138/50 = 422.77 for margin.

• Slippage: The currency pair rate changes very fast. If we intend to trade at
a certain price and use a market order, usually the order will be filled at a
different price. The difference between our intended price and the real entry
price is called the slippage. The slippage can be either positive or negative. In
the previous example, I suffered a slippage of -0.00003: I intended to build a
short position at 1.05696 but in fact the order was filled at 1.05693. Using a
market order, the slippage is one of the costs of building a position.

• Pips: A pip is usually 1/100th of a cent. For one lot one pip is worth 10 units
of the currency. In our previous example, the EUR/USD pair decreased from
1.05693 to 1.05750, total (1.05693 − 1.05750)/0.0001 = −5.7 pips. Since we
only trade 0.2 lots, the gross profit is −5.7 ∗ 10 ∗ 0.2 = −11.4 US dollars.

In live trading for long-term investors the commissions and slippage can be almost
neglected. However, for short-term day traders the commissions and slippage are very
influential on their profit and loss. In our project we will take into account the com-
missions and slippage and try to develop an algorithm that can be used in live trading.
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2 Methodology Overview

2.1 The Trading System Architecture

Our trading system is designed as follows:

First, using training data, we implemented the evolutionary RRL algorithm for
optimization. Based on RRL, we used GA to pick some potentially good initial values
for the parameters and dynamically change the learning speed of the RRL algorithm
during the evolution. Here we can run this procedure many times and decide to use
the parameters with the best performance on the training set, or by observing the
trading behaviors of the different systems.

Second, we will introduce some risk control mechanisms, for example, a constant
holding time limit, trailing stop loss, volatility stop loss, hibernation, and hedging
with mean-reversion systems, and here again we can use GA to optimize the related pa-
rameters. After this step our trading algorithms are completely optimized and finished.

Finally, using a rolling window technique, we will test our strategy on the whole
dataset to evaluate the performance. We can refer to the statistics such as the
maximum drawback, win rate, Sharpe ratio, and profit per trade to evaluate the
trading performance. Here we also need to optimize the best rolling window length.

In this project, we have only implemented the first step, and we did some basic
backtests on several small datasets. The problem here is that this trading system can
be very complicated and requires optimizing many parameters, and it will be more
intricate when it comes to high-frequency data and involves risk control mechanisms
and rolling window method. However, we do not have the computation resources
powerful enough to do many experiments in the limited time. Besides, in practice
it requires some manual observation and refinement. For example, by observing the
algorithm’s trading behavior in historical transactions, we may find some overfitting
examples, or some unreasonable trades that are not expected to happen but somehow
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did, and some dramatic losses in certain extreme conditions. We will continue doing
the research of the problems mentioned above in the future.

2.2 Data Description

We used the EUR/USD currency pair price of 1 minute frequency from 2006.12.31
22:00:00 UTC2, to 2017.02.03 21:59:00 UTC. The raw data is provided by a pro-
fessional forex data provider who asked to remain anonymous, which consists of
timestamps, 5-digit price combinations (open price, highest price, lowest price, close
price) and volume for each 1-minute bar. The total number of data points is 3, 793, 452.
Here we only consider the close prices in our model.

Time (UTC) Open High Low Close Volume
2017.02.03 21:55:00 1.07855 1.07864 1.07851 1.07859 81.8
2017.02.03 21:56:00 1.07864 1.0787 1.07856 1.07857 115.73
2017.02.03 21:57:00 1.07857 1.0787 1.07847 1.07855 53.28
2017.02.03 21:58:00 1.07851 1.0786 1.07851 1.07853 32.8
2017.02.03 21:59:00 1.07852 1.07859 1.07818 1.07818 30.71

Table 2.1: Sample Raw Data

3 The Recurrent Reinforcement Learning Algo-
rithm

3.1 Algorithm Principles

The Recurrent Reinforcement Learning algorithm (RRL) is based on the Arti-
ficial Neural Network (ANN). Below are some definitions to better illustrate algorithm.

2Coordinated Universal Time, which can be considered equivalent to the Greenwich Mean Time
(GMT), or the London time without Daylight Saving Time adjustment.
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• rt (Returns): The return rt is defined as rt = pt − pt−1, in which pt is the
price at time t. In our ANN, if we consider the previous M periods of returns,
we will use rt, rt−1, ..., rt−M in our inputs.

• ν (Dummy Variable): The dummy variable ν acts as the integration of
noises.

• Ft (Position): The position at time t, which can be 1, 0,−1 respectively for
long, neutral, and short positions.

• µ (Lots): The lots we are trading, equivalent to the shares traded in the stocks
market.

• δ (commissions): The commission fees for a single transaction per lot.

The ANN for RRL is shown as the following graph:

Figure 3.1: RRL Network
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Here the input vector is ~x = (rt, rt−M , 1, Ft−1), the weights are ~w =
(w0, ..., wM , wM+1, wM+2)T . Note that we not only use the previous returns, the
dummy variable (default value 1, to be adjusted by the weight), but also the previous
position Ft−1, and that is why this system is called a recurrent learning system. The
total input is wTx, which will be transformed by a hypertangent function so that the
Ft value is within [−1, 1]. Subsequently, we can calculate the position return at each
timestamp, defined as

Rt = µ(Ft−1rt − δ(|Ft − Ft−1|)) (1)

To optimize the algorithms, we need to optimize a reasonable utility function.
Here we use the Sharpe ratio defined as

ST = Ave(Rt)
Std(Rt)

= E(X)√
E(X2)− [E(X)]2

=
1
T

∑T
t=1 Rt√

1
T

∑T
t=1 R

2
t − ( 1

T

∑T
t=1 Rt)2

(2)

To optimize the Sharpe ratio, we will use back propagation with a gradient descent
method. We need to compute dST

dw
, and the basic updating rule is

wk = wk−1 + ρ
dST

dw
. (3)

The superscript represents the number of training times, and ρ is the learning
speed. To calculate dST

dw
we have two approaches. The first is accumulative learning,

which calculates the total derivatives to implement back propagation. The second
approach surrounds using the the on-line learning method to optimize a moving
averaged Sharpe ratio as will be mentioned later. In accumulative training, w updates
only after the whole training data is processed, while in online training, w updates at
each timestamp.

3.1.1 Accumulative Learning

Define AT = E(Rt) = 1
T

∑T
t=1 Rt and BT = E(Rt

2) = 1
T

∑T
t=1 R

2
t , then (2) can be

written as

ST = A√
B − A2

(4)
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Therefore the total derivatives can be calculated as follows:

dST

dwk
=

T∑
t=1

( dST

dAT

dAT

dRt

+ dST

dBT

dBT

dRt

)(dRt

dFt

dFt

dwk
t

+ dRt−1

dFt−1

dFt−1

dwk
t−1

) (5)

in which
dST

dAT

= (BT − A2
T )−0.5 + A2

T (B − A2)−1.5 (6)

dST

dBT

= −0.5AT (BT − A2
T )−1.5 (7)

dAT

dRt

= 1
T

(8)

dBT

dRt

= 2Rt

T
(9)

dRt

dFt

= −µδsign(Ft − Ft−1) (10)

dRt

dFt−1
= µδsign(Ft − Ft−1) + µrt (11)

and recurrently updating dFt

dw
:

dFt

dw
= (1− tanh2(~wT~x))(∂Ft

∂wt

+ ∂Ft

∂Ft−1

∂Ft−1

∂wt−1
) (12)

= (1− tanh2(~wT~x))(~x+ wM+2 ·
∂Ft−1

∂wt−1
) (13)

All equations (6) - (12) can be calculated at each timestamp, thus we can calculate
(5) and update the weight ~w using (3).

3.1.2 Online learning

An online learning approach will update the parameters only based on the most
recent returns. This can be achieved by using the moving average Sharpe ratio
(MA-sharpe) as a moving average form of (2). We still define the Differential Sharpe
Ratio in the same form of (4) with

At = At−1 + ∆At = At−1 + η(Rt − At−1) (14)
Bt = Bt−1 + ∆Bt = Bt−1 + η(R2

t −Bt−1) (15)

12



in which η is the coefficient of moving average. By Taylor’s expansion we have for
a small η > 0

S(η, t) = S(0, t) + η
dSt(0, t)
dη

+O(η2) (16)

= S(0, t− 1) + η
dSt(0, t)
dη

+O(η2) (17)

in which S(η, t) represents the Sharpe ratio at time t with a moving average coefficient
η defined as in (14) and (15). When η = 0, we write S(0, t) as St in short, clearly
At = At−1, Bt = Bt−1, so St = St−1. Here we define the differential Sharpe ratio
(D-sharpe) as

Dt = dSt

dη
=
Bt−1∆At − 1

2 · At−1∆Bt

(Bt−1 − A2
t−1) 3

2
. (18)

In (16), regard St−1 and η as constants, we have dSt ≈ ηdDt. Therefore we have
dSt

dRt
≈ η dDt

dRt
, in which

dDt

dRt

= Bt−1 − At−1Rt

(Bt−1 − A2
t−1) 3

2
. (19)

Our online optimization updating rule is

wt = wt−1 + ρ̂
dSt

dw
(20)

in which
dSt

dwt

≈ ρ
dDt

dRt

(dRt

dFt

dFt

dwt

+ dRt−1

dFt−1

dFt−1

dwt−1
). (21)

Here ρ = ρ̂η, and the other differentiations and recurrent updating are the same
as in the accumulative learning (10) - (12).

When we use online learning with rolling windows, if we always set initial A0,
B0 to be some fixed small values at the beginning, according to (14), (15), and (19),
the learning speed in the first several steps can be extremely high, thus the learning
process may be seriously deviated. In practice, we will set the initial values of A0, B0

in the next training process as the final values of At and Bt in the previous training
process.
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3.2 Algorithm Disadvantages

One primary disadvantage, as noted in the previous work section, is the potential
optimization issues faced by RRL algorithms; initially, the algorithm tends to
remain at the local optimum when the learning rate is low, or otherwise stride
over the local optimum and head to the worst case if the learning rate is too high.
Second, the algorithm can be very sensitive to certain parameters such as the initial
weights, learning rate, the number of returns used for training, the number of
training times, the length of training and test window, and some parameters for
risk controlling that will be touched on later. In some cases it will be nearly im-
possible to achieve a positive solution with a bad initial set of parameters in given time.

There exist many different local optima in a RRL training set, and to find the
overall optimum will be difficult, time-consuming and may cause overfitting. Actually,
sourcing the global optimum is not necessary, as the backtest results in Section 5
showed that overfitting may generate a system with good training performance which
loses much money in the test dataset. Although theoretically we may use GA to
find the global optimum, here our strategy surrounds finding a certan amount of
local optimums, and then choose and utilize the best one based on particular criteria,
which will be further elaborated on later. Besides, this primitive trading system does
not include any risk control mechanisms of which we have to introduce, and the extra
risk-related parameters also require optimization.

4 The Evolutionary RRL System

4.1 Genetic Algorithm (GA)

Genetic Algorithm is a commonly used algorithm for optimization, which was
firstly proposed by J. H. Holland in 1975 in his famous book Adaptation in Natural
and Artificial Systems[2]. The schema theorem[2] and empirical evidence indicate
that GA is possible to find good solutions, but the convergence properties can be very
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complex. Using Markov chain theory, G. Rudolph[19] has proved that the canonical
GA does not converge to the global optimum in static optimization problems, but
some variants do. In this project we will use the elitist genetic algorithm (EGA),
which converges to the global optimal solution with any choice of initial population[20].

By imitating the biological evolution process, GA chooses parents from the
present population, and allows their genes to crossover and mutate to generate the
individuals in the next generation, thus introducing stochastic variants. GA picks
the parents based on the individual’s fitness level in the environment; therefore,
descendants with better fitness scores will have a better chance at survival and
relaying their genes to the next generation. Compared to random search, GA
improves the convergence rate, however, it still stands the risk of getting stuck in
local optima.

Figure 4.1: Genetic Algorithm

Let us illustrate GA using the following example[21]. To start GA we need to
initialize a population with some random individuals; here we use digital strings to
represent those individuals’ chromosomes. See Figure 4.1 (a).

In each generation a fitness function is used to evaluate the fitness of the
individuals in the environment, see Figure 4.1 (b). We then pick the individ-
uals from the present population, and the rule is that the higher the fitness
score, the more likely the individuals will be chosen. In Figure4.1 (c), the first
individual was picked once, and the second picked twice, while the third picked
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only once, however, the last individual has a relatively low fitness score and
was not picked even once, so it failed to transmit its gene to the next genera-
tion. Note that here we fixed the population size the same as the previous generation’s.

We introduce stochastic invariants in the next steps. In Figure 4.1 (d) the
chromosomes of the parents have a small probability of crossing over at some certain
crossover points, which can be a fixed or random number. In the crossover process,
the first child gets the first part of the first parent, and the second part of the second
parent, while the second child gets the first part of the second parent, and the second
part of the first parent.

At last, after crossover, each gene locus has a very small probability of mutation.
See Figure 4.1 (e). For example, the sixth locus of the first child mutated from 5 to 1.

A brief version of pseudo codes are shown as follows[21]:
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Algorithm 1 Genetic Algorithm
1: function GA(population, FITNESS) inputs:
2: population, a group of individuals
3: FITNESS, the fitness function
4: loop:
5: new_population ← an empty set
6: for i=1 to SIZE(population) do
7: x ← RANDOM-SELECTION(population, FITNESS)
8: y ← RANDOM-SELECTION(population, FITNESS)
9: child ← REPRODUCE-CROSSOVER(x, y)
10: if RANDOM-NUMBER() < some small number then
11: child ← MUTATE(child)
12: new_population.APPEND(child)
13: population ← new_population
14: if individuals fit enough or enough generations then
15: break
16: return population

Here the REPRODUCE-CROSSOVER funtion will determine whether to crossover.
If crossover process is not implemented, it will just return the original children x and
y.

4.2 The GA-RRL System

In our optimization process the chromosomes of the individual consist of four
parts of genetic loci: weights of neurons, learning speed, threshold, and moving
average coefficient. Each of the latter three parts only has one genetic locus inside,
whereas the part of the weights for neurons are composed of many genetic loci:
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Figure 4.2: The GA-RRL Chromosome

The Figure 4.2 above shows an example of the chromosome in which the first 11
loci are the weights of the neurons, the 12th for the learning speed, the 13th for the
threshold of the hypertangent function, and the 14th for the exponential moving
average coefficient. For the weights of the neurons, the first 9 loci determine the
weights for the previous 9 bars’ returns. The 10th determines the weight for the
previous position held, and the 11th is for the noises.

As mentioned in the previous section, pure RRL system requires good initial
guesses for parameters, which are difficult to determine in practice. Intuitively, we
may start by using all zeros for the neurons’ weights, but empirical results show that
this initial setting may not achieve a local optimum in reasonable given time, and is
worse than other local optima. However, after combining RRL with GA, we can start
with random values of parameters, and the parameters can change during the GA
evolution in which the individuals that better fit the environment will be more likely
to survive.

We expect the GA-RRL system to improve the convergence speed, but this
GA-RRL system actually has a two-sided effect. Two main negative effects are as
follows:

I. During the selection process, although we pick the parents by probability
proportional to the fitness scores, sometimes it is possible that good individuals
are all missed, leaving only bad individuals in the next generation. This is more
likely to happen when the population size is small.

II. When the solution is near a local optimum, although RRL with an appropriate
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learning speed leads to the optimum, GA may drive the solution away. This
means that RRL and GA may conflict. A typical case is a small population
with a relatively high mutation rate, and when it approaches the optimum at
a certain generation, all the individuals may encounter mutation during the
evolution into the next generation, thus the solution will deviate far away from
the optimum.

To avoid the first problem, we used the genetic algorithm with elitist model
(EGA)[20], the core idea of which is to always preserve the best individual in the
previous generation.

As to the second problem, at the beginning of the research we actually used
the integrated GA-RRL method with constant parameters all the way through the
optimization, only to find that the convergence becomes substantially slower than
expected, and it cannot give a reasonable solution in affordable time. To fully take
advantage of the GA but avoid conflict with RRL, we redesigned the GA-RRL
system in the following way.

I. We use GA and RRL together to search for a good initial set of parameters.
Here we initialize the parameters using uniform random numbers, and in each
following evolutionary step, we first implement GA and then RRL to update the
parameters. In GA we use a small but relatively higher crossover and mutation
rate compared to the fine-tuning mode to be discussed later, and we only run
this searching process for a small number of generations k. If we cannot find
a good initial set of parameters after k generations it means that our random
guess is not good, so we reset the algorithm and start over again, until we can
find a good initial set whose fitness score is larger than some certain threshold.
Here the threshold should be neither too high nor too low. If it is too high, as
mentioned previously, the GA may take too much time to hit that threshold,
whereas if it is too low the initial solution may be too far from the optimum.

II. After getting a good initial set of parameters, we start fine-tuning the parameters.
Here we mainly use RRL and only use GA to adjust the learning speed. For the
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loci of neurons’ weights, threshold, and EMA coefficient, we set the crossover
and mutation rate to be zero. For learning speed we still allow a mutation
rate high enough, and for computing convenience, the mutation process can
be set to only switch the learning speed among some fixed values. In this fine-
tuned mode we generate a few (for example 10) inidividuals at each generation,
and the difference among them mainly lies in the learning speed. During the
evolutionary process the population in each generation consists of individuals
with different learning speeds but all other parameters almost the same. In
addition, the EGA will guarantee the best one to survive in the next generation.

In the first step our goal is to approach a certain local optimum closely
enough. GA weights more in the first step as we allow cross-over and mutation
on the entire chromosome. Then in the second step, we use mainly RRL to
fine-tune the parameters. We do this because RRL guarantees the correct
direction of learning without random guesses, so with an appropriate learning
speed RRL converges to the optimum a lot faster than GA. However, RRL
itself cannot dynamically decide on a good learning speed up to date, so we will
fine tune the parameters with GA only adjusting the learning speed in the second step.

The performance of this evolutionary RRL system depends on many parameters.
We have no time to do sensitivity analysis for all of them, and here we select the
parameters by experimental results. See the following Table 4.1 for a brief description.
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Parameter Name Default Value Description
neurons 10/18/32 Number of neurons in the ANN, equal to the number

of previous returns used plus two.
timelevel 5 mins The time interval to be used.
w_range [-1,1] Initial range of weight for each neuron, used in GA

initial value picking process. The final weight can
exceed this range in the finue-tune mode.

ls_range [0.001,2] Range of learning speed. In the fine-tune mode, the
learning speed can only be some fixed values.

thres_range [0,1] Range of the threshold of the hypertangent function
to decide the position.

coef_range [0.0001,0.01] Exponential moving average coefficient.
lowest_sp -0.01 The least stop value of Sharpe ratio in the initial

parameters search.
fine_tune False When it is True, the mutation and crossover rate

will be very small and parameters can only change
in a very small range, and the learning speed can
only be chosen from some fixed values.

cross_rate 0.1/0 Crossover rate in GA. The default value may be
different in the fine-tune mode.

mute_rate 0.02/0 Mutation rate in GA, except learning speed. The
default value may be different in the fine-tune mode.

ls_mute_rate 0.5/0.5 Mutation rate for learning speed in GA. The default
value may be different in the fine-tune mode.

init_pop_num 10/5 Initial population size. The default value may be
different in the fine-tune mode.

pop_limit 20/10 Maximum population size. The default value may
be different in fine-tune mode.

gen_limit 10/100 Maximum number of generation, the default value
may be different in fine-tune mode.

end_sp 0.10 The least stop value of sharpe ratio in fine-tuning
parameters search.

ls_prop [0,0.005,0.025,
0.1,0.5,1]

The proportions of the maximum learning speed,
used for fixed learning speed choices in fine-tune
mode.

windows [0,400000,
400000,450000]

The start and end point of training window and
testing window.

com 3 The commission fees for one unit of change of po-
sition per lot. For example, to buy 1 lot and then
close totally change 2 units positions.

Table 4.1: Parameters Description
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5 Performance Evaluation

5.1 Algorithm Performance

Although we have a large amount of 1-minute EUR/USD historical data,
the limited computing resource restricts our ability to perform backtest re-
search thoroughly on the whole data set. Here we only used 5-minute level
data, and we picked three subsets of the data with equal quantity, used differ-
ent numbers of neurons at three fixated level, and ran our learning system three
times for each scenario. The detailed performance on each data set is shown as follows.

5.1.1 Dataset I

The first dataset contains the data points from number 200,000 to 400,000 for
the training set, and number 400,001 to 420,000 for the test set. The training set
ranges from UTC 2007/7/12 18:17:00 to UTC 2008/1/23 16:37, roughly half a year,
and the test set ranges from UTC 2008/1/23 16:38 to UTC 2008/2/12 13:57, roughly
three weeks. We ran our GA-RRL algorithm using 10, 16, 32 neurons. Due to limited
computing resources, each test took about 2 hours. Here for each number of the
neurons we just ran 3 tests.

Number of
Returns

Running
Test Num-
ber

Training P&L Training Sharpe
Ratio

Test P&L Test Sharpe Ra-
tio

8 1 34132 0.021772 3485 0.019190
8 2 27912 0.018401 3791 0.021641
8 3 34556 0.021976 2963 0.016285
14 1 39173 0.024569 894 0.004849
14 2 33556 0.021575 2693 0.014945
14 3 33004 0.021065 2188 0.012038
30 1 32590 0.020627 1516 0.008296
30 2 39528 0.024809 -374 -0.002031
30 3 36673 0.023412 -1014 -0.005579

Table 5.1: Backtest Results on Dataset I
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Figure 5.1: Training Performance on Dataset I, 8 Neurons

Figure 5.2: Test Performance on Dataset I, 8 Neurons
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Figure 5.3: Training Performance on Dataset I, 16 Neurons

Figure 5.4: Test Performance on Dataset I, 16 Neurons
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Figure 5.5: Training Performance on Dataset I, 30 Neurons

Figure 5.6: Test Performance on Dataset I, 30 Neurons
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Among all three training datasets, the forex price in the first training dataset
shows the most stable upward trend. The training performance is amazing: for
the 9 running tests, compared to the simple long-position holding strategy (LHS)
which profits 7809.0, the average profit is 34569.3, which amounts 442% of the LHS.
Besides, the best GA-RRL running result profits 39173.0 (501% LHS) and the worst
profits 27912.0 (357% LHS).

The test data, however, outlined a more unstable unilateral trend on the whole
set than the training data, but it illustrates an upward trend in the first half
and a downward trend in the second half. On the test dataset, while the simple
long-position holding strategy only profits 250.0, the GA-RRL system gains an
average profit 1793.6 (717% LHS). However, the performance varies, with the best
profits 3791.0 (1516%) and the worst losses 1014 (-405% LHS).

In the training set the system with more neurons performs better, however, in the
test set, the system with the least neurons wins. This is probably because the price
changes depend more on the recent returns and using returns from too far in the
past may cause overfitting.

Among the 9 GA-RRL tests, 7 of them made a profit. Considering that this
GA-RRL system has no risk-control mechanism, the result shows a great prospect in
practical trading.

5.1.2 Dataset II

The second dataset contains the data points from number 1,200,000 to 1,400,000
for the training set, and number 1,400,001 1,420,000 for the test set. The training
set ranges from UTC 2010/3/11 05:57:00 to UTC 2010/9/22 02:17, roughly half a
year, and the test set ranges from UTC 2010/9/22 02:18 to UTC 2010/10/11 23:37,
roughly three weeks.
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Number of
Returns

Running
Test Num-
ber

Training P&L Training Sharpe
Ratio

Test P&L Test Sharpe Ra-
tio

8 1 -1540 -0.000684 -715 -0.003056
8 2 -1545 -0.000699 2512 0.010867
8 3 -1523 -0.000677 3263 0.013976
16 1 23524 0.010466 -9809 -0.041818
16 2 5577 0.002511 -4271 -0.018387
16 3 12245 0.005464 -4191 -0.018077
30 1 10020 0.004422 -13195 -0.056105
30 2 13509 0.005978 987 0.004221
30 3 8179 0.003639 -4902 -0.021078

Table 5.2: Backtest Results on Dataset II

Figure 5.7: Training Performance on Dataset II, 8 Neurons
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Figure 5.8: Test Performance on Dataset II, 8 Neurons

Figure 5.9: Training Performance on Dataset II, 16 Neurons
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Figure 5.10: Test Performance on Dataset II, 16 Neurons

Figure 5.11: Training Performance on Dataset II, 30 Neurons
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Figure 5.12: Test Performance on Dataset II, 30 Neurons

When running on the second dataset, the program seems to struggle during the
initial parameter search. It is harder to train GA-RRL for the second dataset than
the first one, probably because the training price data is shaky and does not show a
stable moving trend as in the first dataset. On the training data, for the 9 running
tests, a simple short-position holding strategy (SHS) profits 3483.0, while the average
of GA-RRL system profits 7605, around 218% of SHS. The best result profits 23524
(675% SHS) whereas the worst loses 1540 (-44% SHS).

The test data shows a better trending property than the training data. On the
test dataset, LHS wins 5724, and GA-RRL system loses on average -3369 (-58% LHS).
The performance varies significantly, with the best profits being 3263 (41% LHS) and
the worst losses being 13195 (-230% LHS). These facts suggest that the GA-RRL
system is not always stable and needs to be refined before being used in practice.

Similarly, in the training set, the systems with more neurons outperform, but
tend to show worse performance on the test data; the systems using less neurons may
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perform worse on the training data, but tend to outperform on the test data. For
example, all 8-neuron systems lose about a thousand dollars in training, but both
turn to make a profit of more than two thousand on the test set, and among the 9
cases they perform as the top 2. However, the system that wins the most on training
data (675% SHS) turns out to lose 9809 (-171% LHS), showing the second worst
performance among all. This is probably due to the overfitting problem; we may find
some hints from the figures.

In figure 5.7, while GA2 and GA3 show similar moving paths of P&L, GA1 seems
to be a lot different. There are more big gaps in GA1, for example, at around
the beginning of June 2016, GA1 profits almost 5000 in two gaps. This indicates
potential overfitting problems, and in the test dataset, GA1 does perform worse than
the other two.

Further, in figure 5.9 GA1 shows a strikingly stable performance regardless of
the volatile price in the training dataset. Although in some cases this is possibly
reasonable and the parameters will also be good on a test set, we still have to be
careful when it seems too good to be true. In our test data set, GA1 results in a
straight loss, as striking as the profit made on the training dataset. Therefore, good
performance on the training dataset does not guarantee good results on the test
dataset. We have to observe the trading behavior carefully on the training set and
ponder on the possible overfitting conditions.

5.1.3 Dataset III

The third dataset contains the data points from number 2,600,000 to 2,800,000
for the training set, and number 2,800,001 to 2,820,000 for the test set. The training
set ranges from UTC 2013/12/2 11:17:00 to UTC 2014/6/13 07:37, roughly half a
year, and the test set ranges from UTC 2014/6/13 07:38 to UTC 2014/7/3 04:57,
roughly three weeks.
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Number of
Returns

Running
Test Num-
ber

Training P&L Training Sharpe
Ratio

Test P&L Test Sharpe Ra-
tio

8 1 5622 0.005052 1194 0.01431
8 2 7165 0.006305 425 0.004956
8 3 4316 0.003814 817 0.009579
16 1 6603 0.005867 -861 -0.010007
16 2 6604 0.005943 133 0.0016
16 3 6961 0.00623 -1060 -0.012702
30 1 13302 0.011698 -1116 -0.013163
30 2 13396 0.011737 -570 -0.006639
30 3 10022 0.008865 -904 -0.010576

Table 5.3: Backtest Results on Dataset III

Figure 5.13: Training Performance on Dataset III, 8 Neurons
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Figure 5.14: Test Performance on Dataset III, 8 Neurons

Figure 5.15: Training Performance on Dataset III, 16 Neurons
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Figure 5.16: Test Performance on Dataset III, 16 Neurons

Figure 5.17: Training Performance on Dataset III, 30 Neurons
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Figure 5.18: Test Performance on Dataset III, 30 Neurons

The historical price in dataset III shows the strongest mean-reversion property
among the tree datasets. From start to finish the price only changes a total of 24.1
pips in the training data. For the 9 running tests a simple short-position holding
strategy (SHS) profits 241, while the average of GA-RRL system profits 8221, which
amounts to 3411% of the SHS. The best wins 13396 (5558% SHS) and the worst
loses 1540 (1790% SHS).

The test data shows a slightly stronger trending property, but the price still
frequently and dramatically retraces over the time. On the test dataset LHS
makes a profit of 807, and the GA-RRL system loses on average 215 (-26% LHS).
The performance on the test data varies, but almost within a small interval of
[−1200, 1200]. The best system profits 1194 (147% LHS), and the worst loses
1116 (-138% LHS). Although GA-RRL systems do not continue their marvelous
profitability on the training set, neither do they lose much money. This is a very
important fact because we have learned previously that in dataset I, GA-RRL
indicates a good profitability in a trending market. However, when the price is shaky,
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GA-RRL still shows a good property of resisting bumpy movements, which is a
potential advantage of using the GA-RRL system in live trading.

In the training set, systems with the largest number of neurons outperform, but
still perform weaker on test dataset, and vice versa. This seems a pattern.

5.2 Conclusions

Based on the performance and analyses above we have the following conclusions
and inferences:

1. The GA-RRL system has potentially good profitability. It is likely to beat the
market in a trending market condition, and may resist shaky prices and survive in a
bumpy market.

2. The GA-RRL system is more likely to be a trend-following system than a
mean-reversion system.

3. The GA-RRL system using less but an adequate number of previous returns
may outperform the system using more previous returns.

4. The performance of GA-RRL systems varies since GA will generate different
sets of parameters. We should observe the historical trading behavior to check the
overfitting problem and decide which to use.

5. Good performance on training dataset does not guarantee good performance
in practical trading. Overfitting problems require much attention.
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6 Future Work

6.1 Risk Control Mechanism

Due to the complexity of programming and limited computing resources, we have
not introduced any risk control mechanisms yet. Here are some techniques we plan
to use in future research.

1. Trailing stop loss. A trailing stop loss order will automatically adjust the peak
point for a stop loss reference, using the price at which the transaction has gained
the highest profit. For example, if we send a trailing stop loss order of 5 pips, and
the present EUR/USD pair price is 1.1000, then at this beginning time our stop loss
price is 1.0095. If after 1 minute the price goes straight up to 1.1010 without any
retracement, then our stop loss price will be updated to 1.1005, with the referencing
peak point as 1.1010 instead of 1.1000. As a widely used mechanism, trailing stop
loss can protect the trade from heavy loss and lock in the realized profit. Deter-
mining the stop loss price is an art which we do not venture further into in this project.

2. Maximum/minimum holding period. Setting up a maximum holding time for a
transaction is likewise a useful technique to control risk. Some conservative trading
systems rarely send trading signals, and once a transaction is triggered, it tends to
hold the position for a long time during which no new trading signals are sent. By
setting an appropriate maximum holding time, we may cut the unnecessary risk
exposure, thus decreasing the risk. On the other hand, some trading systems send
signals very frequently, many of which are actually noises. By setting a minimum
holding time we can reduce the trading times, thus reducing the transaction costs
and possibly the losses due to the noise signals.

3. Hibernation. There is no perfect trading system, and most systems will only
fit in with certain market conditions. When the market conditions have changed, the
trading system may no longer be profitable in a certain period. Therefore, when the
system keeps losing sums of money during the recent time, it may indicate that the
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system is no longer efficient. Therefore we can temporarily stop the trading system
for some time and wait for the market condition to change.

4. Trading time restriction. In the previous section of performance evaluation, we
did a backtest without choosing the specific trading time. Usually there would be more
noises when the trading volume is low, thus lowering the efficiency of the algorithm.
Empirical results have shown that many trading algorithms will perform much
better in a specific time period. We will restrict the trading time in our future research.

6.2 The Rolling Window Backtest

In the rolling window backtest we use a batch of historical data for training and a
smaller batch of data followed for testing. When one backtesting process is done we
forward the backtesting window a little bit, update our training and test data, then
repeat the procedure until we have backtested all the historical data.

We take the rolling window backtest on the data between 2012/1/1 and
2014/12/31 for an example. We start backtesting using the data from 2012/1/1
to 2012/12/31, with a test data from 2013/1/1 to 2013/1/31, which means that
we use a rolling window of 1 year for training and 1 month for testing. After the
first rolling window backtest is done, we forward the starting point of training data
to 2012/2/1, ending point of training data to 2013/1/1, and use the data from
2013/2/1 to 2013/2/31 for testing. Repeating this procedure until the test data ends
at 2014/12/31, we can evaluate the total performance on the rolling test data from
2013/1/1 to 2014/12/31.

For the same historical data, compared to simple static train-test split sampling,
the rolling window method can provide more subsets of samples, and for each set of
subsamples the training is more up-to-date. However, due to the strong correlation
and a large proportion of overlapping seen by the samples of rolling windows, if there
is a major change to the properties of data in a certain period, the rolling window

38



method runs the risk of not adjusting the parameters quickly enough.
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Appendix A Codes
1. Online Learning

1 ’ ’ ’
2 Created on Mar 9 , 2017
3

4 @author : ethansong
5 ’ ’ ’
6

7 import pandas as pd
8 import numpy as np
9

10

11 de f p o s i t i o n (num, prepos , weight , th r e s ) :
12 " " " Determine the pos t i on to take at a c e r t a i n bar .
13

14 Args :
15 num: the number o f the bar .
16 prepos : p rev ious pos t i on .
17 weight : weight vec to r used . For on l i n e l e a rn i ng i t ’ s the

prev ious \
18 bar , f o r accumulat ive l e a rn i ng i t remains the same f o r one

t r a i n i n g proce s s .
19 th r e s : the th r e sho ld f o r hypertangent func t i on to open a non−

neut ra l p o s i t i o n .
20

21 Returns :
22 posvec : the po s i t i o n vec to r to be mu l t i p l i e d by the weight .
23 pos : the po s i t i o n to be taken at the bar .
24

25 " " "
26 l ength = len ( weight )
27 posvec = pips [num−l ength+3:num+1]
28 posvec = np . append ( posvec , [ 1 , prepos ] )
29 raw_pos = np . tanh ( posvec . dot ( weight ) )
30

31 i f abs ( raw_pos ) <= thr e s :
32 pos = 0
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33 e l s e :
34 pos = np . s i gn ( raw_pos )
35

36 re turn posvec , pos
37

38

39 de f da i ly_return (num, coms , l o t s , pos , prepos ) :
40 " " " Ca l cu la t e re turn f o r a s i n g l e bar .
41

42 Args :
43 num: the number o f the bar .
44 coms : commissions f o r a s i n g l e change o f p o s i t i o n .
45 l o t s : number o f l o t s traded .
46 pos : pre sent p o s i t i o n .
47 prepos : p rev ious pos t i on .
48

49 Returns :
50 dreturn : re turn f o r the bar
51

52 " " "
53 dreturn = l o t s ∗ (10 ∗ prepos ∗ pips [num] − coms ∗ abs ( pos − prepos

) )
54

55 re turn dreturn
56

57

58 de f ma_shapre (num, coe f , dreturn , pre_A , pre_B) :
59 " " " Ca l cu la t e moving averaged sharpe r a t i o .
60

61 Args :
62 num: the number o f the bar .
63 co e f : moving average c o e f f i c i e n t .
64 dreturn : s i n g l e bar re turn f o r the prev ious bar .
65 pre_A : prev ious A, approximately equal to E(Rt) .
66 pre_B : prev ious B. approximately equal to E(Rt^2) .
67

68 Returns :
69 A: approximate E(Rt) .
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70 B: approximate E(Rt^2) .
71

72 " " "
73 A = pre_A + coe f ∗ ( dreturn − pre_A)
74 B = pre_B + coe f ∗ ( dreturn ∗∗2 − pre_B)
75

76 re turn A, B
77

78

79 de f d i f f s (num, weight , dreturn , pre_A , pre_B , pos , posvec , prepos , l o t s
, pre_dfw , coms , c o e f ) :

80 " " " Ca l cu la t e the d i f f e r e n t i a t i o n s .
81

82 Args :
83 num: the number o f the bar .
84 weight : weight vec to r used . For on l i n e l e a rn i ng i t ’ s the

prev ious \
85 bar , f o r accumulat ive l e a rn i ng i t remains the same f o r one

t r a i n i n g proce s s .
86 dreturn : s i n g l e bar re turn f o r the prev ious bar .
87 pre_A : prev ious A, approximately equal to E(Rt) .
88 pre_B : prev ious B. approximately equal to E(Rt^2) .
89 pos : the po s i t i o n to be taken at the bar .
90 posvec : the po s i t i o n vec to r to be mu l t i p l i e d by the weight .
91 prepos : p rev ious pos t i on .
92 l o t s : number o f l o t s traded .
93 pre_dfw : the prev ious va lue o f dFt/dw .
94 coms : commissions f o r a s i n g l e change o f p o s i t i o n .
95 co e f : moving average c o e f f i c i e n t .
96

97 Returns :
98 dUt_dWt : the on l i n e approximate g rad i ent o f u t i l i t y func t i on .
99 dfw : dFt/dw.

100

101 " " "
102 dDt_dRt = 0 i f (pre_B − pre_A∗∗2) == 0 e l s e (pre_B − pre_A ∗

dreturn ) /(pre_B − pre_A∗∗2) ∗∗ ( 1 . 5 )
103 dRt_dFt = −coms ∗ l o t s ∗ np . s i gn ( pos − prepos )
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104 dRt_dFtpre = coms ∗ l o t s ∗ np . s i gn ( pos − prepos ) + l o t s ∗ pips [num]
∗ 10

105 dfw = (1 − np . tanh ( weight . dot ( posvec ) ) ∗∗2 ) ∗ ( posvec + weight [−1]
∗ pre_dfw )

106 dUt_dWt = dDt_dRt ∗ (dRt_dFt ∗ dfw + dRt_dFtpre ∗ pre_dfw ) ∗ co e f #
on l i n e t r a i n i n g

107

108 re turn dUt_dWt, dfw
109

110

111 de f t r a i n i n g ( weight , learn_speed , dfw , thres , l o t s , coms , coe f , pre_A ,
pre_B , prep ) :

112 " " " The on l i n e t r a i n i n g proce s s .
113

114 Args :
115 weight : weight vec to r used . For on l i n e l e a rn i ng i t ’ s the

prev ious \
116 bar , f o r accumulat ive l e a rn i ng i t remains the same f o r one

t r a i n i n g proce s s .
117 learn_speed : l e a rn i ng speed .
118 dfw : i n i t i a l dFt/dw .
119 th r e s : the th r e sho ld f o r hypertangent func t i on to open a non−

neut ra l p o s i t i o n .
120 l o t s : number o f l o t s traded .
121 coms : commissions f o r a s i n g l e change o f p o s i t i o n .
122 co e f : moving average c o e f f i c i e n t .
123 pre_A : i n i t i a l A, which w i l l approximately become equal to E(Rt

) .
124 pre_B : i n i t i a l B. which w i l l approximately become equal to E(Rt

^2) .
125 prep : d e f au l t p o s i t i o n taken at the beg in ing . {1 ,0 ,−1} f o r {

long , neutra l , shor t } .
126

127 Returns :
128 weight : opt imized weight .
129 pre_A : moving averaged E(Rt) at the end o f t r a i n i n g .
130 pre_B : moving average E(Rt^2) at the end o f t r a i n i n g .
131 p r o f i t : t o t a l p r o f i t and l o s s .
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132 s p r a t i o : f i n a l opt imized sharpe r a t i o .
133

134 " " "
135 L = len ( p ips )
136 pos = 0
137 prepos = prep
138 pre_dfw = dfw
139 p r o f i t = np . z e r o s ( l en ( weight ) )
140 sum_Rt = np . array ( [ ] )
141 sum_Rt2 = np . array ( [ ] )
142 # With a very t iny c o e f f i c i e n t ,
143 # you may use the sum of the on l i n e l e a rn i ng grad i en t
144 # to approximate the accumat l ive d i f f e r e n t i a l sharpe r a t i o
145 # sum = 0
146 f o r i in range ( l en ( weight ) ,L) :
147 num = i
148 posvec , pos = po s i t i o n (num, prepos , weight , th r e s )
149 dreturn = dai ly_return (num, coms , l o t s , pos , prepos )
150 dUt_dWt, dfw = d i f f s (num, weight , dreturn , pre_A , pre_B , pos ,

posvec , prepos , l o t s , pre_dfw , coms , c o e f )
151

152 prepos = pos
153 pre_dfw = dfw
154 pre_A , pre_B = ma_shapre (num, coe f , dreturn , pre_A , pre_B)
155

156 weight = weight + learn_speed ∗ dUt_dWt
157 p r o f i t = np . append ( p r o f i t , p r o f i t [−1] + dreturn )
158 sum_Rt = np . append (sum_Rt , dreturn )
159 sum_Rt2 = np . append (sum_Rt2 , dreturn ∗∗ 2)
160 # sum = sum + dUt_dWt
161

162 # Approximate accumulat ive d i f f sharpe r a t i o us ing the sum of
on l i n e g rad i en t

163 # weight = weight + learn_speed ∗ sum
164 sumr = np . sum(sum_Rt) / (L−l en ( weight ) )
165 sumr2 = np . sum(sum_Rt2) / (L−l en ( weight ) )
166 s p r a t i o = sumr / np . s q r t ( sumr2 − sumr ∗∗ 2)
167
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168 # pr in t ( p r o f i t [−1] , sp ra t i o , pre_A , pre_B , weight )
169 re turn weight , pre_A , pre_B , p r o f i t , s p r a t i o

2. Accumulative Learning
1 ’ ’ ’
2 Created on Mar 9 , 2017
3

4 @author : ethansong
5 ’ ’ ’
6

7 import pandas as pd
8 import numpy as np
9

10 de f p o s i t i o n (num, prepos , weight , th r e s ) :
11 " " " Determine the pos t i on to take at a c e r t a i n bar .
12

13 Args :
14 num: the number o f the bar .
15 prepos : p rev ious pos t i on .
16 weight : weight vec to r used . For on l i n e l e a rn i ng i t ’ s the

prev ious \
17 bar , f o r accumulat ive l e a rn i ng i t remains the same f o r one

t r a i n i n g proce s s .
18 th r e s : the th r e sho ld f o r hypertangent func t i on to open a non−

neut ra l p o s i t i o n .
19

20 Returns :
21 posvec : the po s i t i o n vec to r to be mu l t i p l i e d by the weight .
22 pos : the po s i t i o n to be taken at the bar .
23

24 " " "
25 l ength = len ( weight )
26 posvec = pips [num−l ength+3:num+1]
27 posvec = np . append ( posvec , [ 1 , prepos ] )
28 raw_pos = np . tanh ( posvec . dot ( weight ) )
29

30 i f abs ( raw_pos ) <= thr e s :
31 pos = 0
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32 e l s e :
33 pos = np . s i gn ( raw_pos )
34

35 re turn posvec , pos
36

37

38 de f da i ly_return (num, coms , l o t s , pos , prepos ) :
39 " " " Ca l cu la t e re turn f o r a s i n g l e bar .
40

41 Args :
42 num: the number o f the bar .
43 coms : commissions f o r a s i n g l e change o f p o s i t i o n .
44 l o t s : number o f l o t s traded .
45 pos : pre sent p o s i t i o n .
46 prepos : p rev ious pos t i on .
47

48 Returns :
49 dreturn : re turn f o r the bar
50

51 " " "
52 dreturn = l o t s ∗ (10 ∗ prepos ∗ pips [num] − coms ∗ abs ( pos − prepos

) )
53 re turn dreturn
54

55

56 de f sharpe (num, dreturn , pre_A , pre_B , l ) :
57 " " " Ca l cu la t e accumulat ive sharpe r a t i o .
58

59 Args :
60 num: the number o f the bar .
61 dreturn : s i n g l e bar re turn f o r the prev ious bar .
62 pre_A : prev ious A. E(Rt) .
63 pre_B : prev ious B. E(Rt^2) .
64 l : l ength o f the neurons .
65

66 Returns :
67 A: E(Rt) .
68 B: E(Rt^2) .
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69

70 " " "
71

72 A = (pre_A ∗ (num − l ) + dreturn ) / (num + 1 − l )
73 B = (pre_B ∗ (num − l ) + dreturn ∗∗ 2 ) / (num + 1 − l )
74 re turn A, B
75

76 de f d i f f s (num, weight , dreturn , pos , posvec , prepos , l o t s , pre_dfw ,
coms , L) :

77 " " " Ca l cu la t e the d i f f e r e n t i a t i o n s .
78

79 Args :
80 num: the number o f the bar .
81 weight : weight vec to r used . For on l i n e l e a rn i ng i t ’ s the

prev ious \
82 bar , f o r accumulat ive l e a rn i ng i t remains the same f o r one

t r a i n i n g proce s s .
83 dreturn : s i n g l e bar re turn f o r the prev ious bar .
84 pos : the po s i t i o n to be taken at the bar .
85 posvec : the po s i t i o n vec to r to be mu l t i p l i e d by the weight .
86 prepos : p rev ious pos t i on .
87 l o t s : number o f l o t s traded .
88 pre_dfw : the prev ious va lue o f dFt/dw .
89 coms : commissions f o r a s i n g l e change o f p o s i t i o n .
90 co e f : moving average c o e f f i c i e n t .
91

92 Returns :
93 dRt_dWt
94 dfw : dFt/dw.
95 dA_dRt
96 dB_dRt
97

98 " " "
99 dA_dRt = 1 .0 / (L − l en ( weight ) )

100 dB_dRt = 2 .0 ∗ dreturn / (L − l en ( weight ) )
101

102 dRt_dFt = −coms ∗ l o t s ∗ np . s i gn ( pos − prepos )
103 dRt_dFtpre = coms ∗ l o t s ∗ np . s i gn ( pos − prepos ) + l o t s ∗ pips [num]
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∗ 10
104 dfw = (1 − np . tanh ( weight . dot ( posvec ) ) ∗∗2 ) ∗ ( posvec + weight [−1]

∗ pre_dfw )
105 dRt_dWt = (dRt_dFt ∗ dfw + dRt_dFtpre ∗ pre_dfw )
106

107 re turn dRt_dWt, dfw , dA_dRt , dB_dRt
108

109

110 de f t r a i n i n g ( weight , learn_speed , dfw , thres , l o t s , coms , prep ) :
111 " " " The accumulat ive t r a i n i n g proce s s .
112

113 Args :
114 weight : weight vec to r used . For on l i n e l e a rn i ng i t ’ s the

prev ious \
115 bar , f o r accumulat ive l e a rn i ng i t remains the same f o r one

t r a i n i n g proce s s .
116 learn_speed : l e a rn i ng speed .
117 dfw : i n i t i a l dFt/dw .
118 th r e s : the th r e sho ld f o r hypertangent func t i on to open a non−

neut ra l p o s i t i o n .
119 l o t s : number o f l o t s traded .
120 coms : commissions f o r a s i n g l e change o f p o s i t i o n .
121 co e f : moving average c o e f f i c i e n t .
122 prep : d e f au l t p o s i t i o n taken at the beg in ing . {1 ,0 ,−1} f o r {

long , neutra l , shor t } .
123

124 Returns :
125 weight : opt imized weight .
126 p r o f i t : t o t a l p r o f i t and l o s s .
127 s p r a t i o : f i n a l opt imized sharpe r a t i o .
128

129 " " "
130 L = len ( p ips )
131 l = l en ( weight )
132 pos = 0
133 prepos = prep
134 pre_dfw = dfw
135 A, B = 0 , 0
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136 # sum_Rt = 0
137 p r o f i t = np . z e r o s ( l en ( weight ) )
138 ARt , BRt = np . array ( [ ] ) , np . array ( [ ] )
139 RL = np . empty ( ( 0 , l ) , f l o a t )
140 f o r i in range ( l , L) :
141 num = i
142

143 posvec , pos = po s i t i o n (num, prepos , weight , th r e s )
144 dreturn = dai ly_return (num, coms , l o t s , pos , prepos )
145

146 dRt_dWt, dfw , dA_dRt , dB_dRt = d i f f s (num, weight , dreturn , pos ,
posvec , prepos , l o t s , pre_dfw , coms , L)

147

148 prepos = pos
149 pre_dfw = dfw
150 A, B = sharpe (num, dreturn , A, B, l )
151

152 p r o f i t = np . append ( p r o f i t , p r o f i t [−1] + dreturn )
153

154 ARt = np . append (ARt , dA_dRt)
155 BRt = np . append (BRt , dB_dRt)
156 RL = np . append (RL, np . array ( [ dRt_dWt ] ) , ax i s = 0)
157

158 dSt_dA = (B − A∗∗2) ∗∗ (−0.5) + A∗∗2 ∗ (B − A∗∗2) ∗∗ (−1.5)
159 dSt_dB = −0.5 ∗ A ∗ (B − A∗∗2) ∗∗ (−1.5)
160 dSt_dRt = dSt_dA ∗ ARt + dSt_dB ∗ BRt
161 RL = (RL.T ∗ dSt_dRt ) .T
162 s p r a t i o = A / np . sq r t (B − A∗∗2)
163

164 sum_dU = np . sum(RL, ax i s = 0)
165

166 weight = weight + learn_speed ∗ sum_dU
167 pr in t ( p r o f i t [−1] , sp ra t i o , weight )
168 re turn weight , p r o f i t , s p r a t i o

3. Genetic Algorithm
1 ’ ’ ’
2 Created on Mar 24 , 2017
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3

4 @author : ethansong
5 ’ ’ ’
6

7 import r r l a c as ac
8 import r r l o l as o l
9 import numpy as np

10 import pandas as pd
11 import matp lo t l i b . pyplot as p l t
12 import math
13

14

15 de f ind_generator ( neurons , w_low , w_high , ls_low , ls_high , \
16 thres_low , thres_high , coef_low , coef_high ) :
17 " " " Generate i n d i v i d u a l s us ing uniform random numbers .
18

19 Args :
20 neurons = number o f neurons to use
21 w_low = lowest weight f o r i nd i v i dua l neuron
22 w_high = h ighe s t weight f o r i nd i v i dua l neuron
23 ls_low = lowest l e a rn speed
24 l s_high = h ighe s t l e a rn speed
25 thres_low = lowest th r e sho ld value
26 thres_high = h ighe s t th r e sho ld value
27 coef_low = lowest c o e f f i c i e n t va lue
28 coef_high = h ighe s t c o e f f i c i e n t va lue
29

30 Returns :
31 ind : An i nd i v i dua l r ep r e s en t a t i on .
32

33 " " "
34 w = np . random . uniform (w_low , w_high , neurons )
35 l s = np . random . uniform ( ls_low , ls_high )
36 th r e s = np . random . uniform ( thres_low , thres_high )
37 co e f = np . random . uniform ( coef_low , coef_high )
38

39 ind = [w, l s , thres , c o e f ]
40 re turn ind
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41

42 # ind = ind_generator (14 , w_low , w_high , ls_low , ls_high , \
43 # thres_low , thres_high , coef_low , coef_high )
44 # pr in t ( type ( ind ) )
45

46 de f pop_copy ( ind , num) :
47 " " " Generate a populat ion by copying the same i nd i v i dua l mu l t ip l e

t imes .
48

49 Args :
50 ind = ind i v i dua l to be copied .
51 num = num of cop i e s
52

53

54 Returns :
55 pop : populat ion generated by copying .
56

57 " " "
58 pop = np . empty ( ( 0 , 4) , f l o a t )
59 f o r _ in range (0 , num) :
60 pop = np . vstack ( ( pop , np . array ( [ ind ] ) ) )
61 re turn pop
62

63 de f pop_generator (num, neurons , w_low , w_high , ls_low , ls_high , \
64 thres_low , thres_high , coef_low , coef_high ) :
65 " " " Generate a populat ion us ing uniform random numbers .
66

67 Args :
68 num = number o f the i n d i v i d u a l s in a populat ion .
69 neurons = number o f neurons to use
70 w_low = lowest weight f o r i nd i v i dua l neuron
71 w_high = h ighe s t weight f o r i nd i v i dua l neuron
72 ls_low = lowest l e a rn speed
73 l s_high = h ighe s t l e a rn speed
74 thres_low = lowest th r e sho ld value
75 thres_high = h ighe s t th r e sho ld value
76 coef_low = lowest c o e f f i c i e n t va lue
77 coef_high = h ighe s t c o e f f i c i e n t va lue
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78

79 Returns :
80 pop : A populat ion .
81

82 " " "
83 pop = np . empty ( ( 0 , 4) , f l o a t )
84 f o r _ in range (0 , num) :
85 ind = ind_generator ( neurons , w_low , w_high , ls_low , ls_high , \
86 thres_low , thres_high , coef_low ,

coef_high )
87 pop = np . vstack ( ( pop , np . array ( [ ind ] ) ) )
88 re turn pop
89

90

91 de f f i t n e s s ( populat ion ) :
92 " " " Ca l cu la t e the f i t n e s s o f the populat ion .
93

94 When c a l c u l a t i n g the f i t n e s s , The populat ion w i l l be updated by RRL
.

95

96 Args :
97 populat ion = the populat ion to be measured .
98

99 Returns :
100 pop_new : The populat ion a f t e r c a l c u l a t i o n and update .
101 f i t s c o r e s : f i t n e s s s c o r e s .
102 normfscores : normal ized f i t n e s s s c o r e s .
103 pnl : p r o f i t and l o s s o f the populat ion .
104

105 " " "
106 pop_num = len ( populat ion )
107 pop_new = np . empty ( ( 0 , 4) , f l o a t )
108 f i t s c o r e s = np . array ( [ ] )
109 pnl = np . array ( [ ] )
110 f o r i in range (pop_num) :
111 weight = populat ion [ i , 0 ]
112 learn_speed = populat ion [ i , 1 ]
113 th r e s = populat ion [ i , 2 ]
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114 co e f = populat ion [ i , 3 ]
115 weight , A, B, p r o f i t , sp = o l . t r a i n i n g ( weight , learn_speed , \
116 0 , thres , 1 , 3 , coe f ,

0 , 0 , 1)
117 pop_new = np . vstack ( ( pop_new , np . array ( [ weight , learn_speed ,

thres , c o e f ] ) ) )
118 f i t s c o r e s = np . append ( f i t s c o r e s , 10∗∗(100∗ sp ) ) # You may ad jus t

the parameter 100
119 pnl = np . append ( pnl , p r o f i t [−1])
120 normfscores = f i t s c o r e s / np . sum( f i t s c o r e s )
121 re turn pop_new , f i t s c o r e s , normfscores , pnl
122

123

124 de f evo lu t i on ( pop_old , cross_rate , mute_rate , ls_mute_rate , gen_num ,
pop_lim ,\

125 w_low , w_high , ls_low , ls_high , thres_low , thres_high ,
coef_low , coef_high , lowest_sp , d e l i c a t e = False ) :

126 " " " Genet ic a lgor i thm evo lu t i on func t i on .
127

128 Args :
129 pop_old = I n i t i a l populat ion .
130 c ros s_rate = c r o s s ra t e .
131 mute_rate = mutation ra t e f o r a l l parameters , except f o r the

l e a rn i ng speed .
132 ls_mute_rate = mutation ra t e f o r l e a rn i ng speed .
133 gen_num = maximum genera t i on number .
134 pop_lim = maximum populat ion s i z e .
135 w_low = lowest weight f o r i nd i v i dua l neuron
136 w_high = h ighe s t weight f o r i nd i v i dua l neuron
137 ls_low = lowest l e a rn speed
138 l s_high = h ighe s t l e a rn speed
139 thres_low = lowest th r e sho ld value
140 thres_high = h ighe s t th r e sho ld value
141 coef_low = lowest c o e f f i c i e n t va lue
142 coef_high = h ighe s t c o e f f i c i e n t va lue
143 lowest_sp = stop when the sharpe r a t i o i s g r e a t e r than t h i s

va lue
144 d e l i c a t e = de f au l t Fa l se . When i t i s True the mutation and
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c r o s s ov e r \
145 w i l l be very l e s s l i k e l y to happen and only change in a smal l

range .
146

147 Returns :
148 pop_max : The Ind i v i dua l that has the bes t sharpe r a t i o .
149 sp_max : The best sharpe r a t i o among the populat ion .
150 pnl_max : The best pnl among the populat ion .
151

152 " " "
153 l s = ls_mute_rate
154 gen = 0
155 pop_old , f i t s c o r e s , normfscores , pnl = f i t n e s s ( pop_old )
156 pop_max = pop_old [ normfscores . argmax ( ) ]
157 sp_max = −9999
158 whi le gen < gen_num and sp_max < lowest_sp :
159 l = i n t (np . f l o o r (min ( pop_lim/2 , l en ( pop_old ) ) ) )
160 pop_new = np . empty ( ( 0 , 4) , f l o a t )
161 f o r _ in range ( l −1) :
162 i f gen == 0 :
163 ls_mute_rate = 0
164 e l s e :
165 ls_mute_rate = l s
166 par_x_num = np . random . cho i c e ( l en ( pop_old ) , p = normfscores )
167 par_x = pop_old [ par_x_num , : ]
168 par_y_num = np . random . cho i c e ( l en ( pop_old ) , p = normfscores )
169 par_y = pop_old [ par_y_num , : ]
170 child_a , child_b = reproduce (par_x , par_y , c ros s_rate )
171

172 chi ld_a = mutate ( child_a , mute_rate , ls_mute_rate , w_low ,
w_high , ls_low , ls_high , \

173 thres_low , thres_high , coef_low , coef_high , d e l i c a t e
)

174 child_b = mutate ( child_b , mute_rate , ls_mute_rate , w_low ,
w_high , ls_low , ls_high , \

175 thres_low , thres_high , coef_low , coef_high , d e l i c a t e
)

176
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177 pop_new = np . vstack ( ( pop_new , np . array ( [ chi ld_a ] ) ) )
178 pop_new = np . vstack ( ( pop_new , np . array ( [ child_b ] ) ) )
179

180 pop_new = np . vstack ( ( pop_new , np . array ( [ pop_max ] ) ) )
181 pop_e l i t i s t = np . copy (pop_max)
182 # pop_e l i t i s t [ 1 ] = 0.0001
183 pop_new = np . vstack ( ( pop_new , np . array ( [ p op_e l i t i s t ] ) ) )
184 pop_old , f i t s c o r e s , normfscores , pnl = f i t n e s s (pop_new)
185

186 gen += 1
187 s p r a t i o s = np . log10 ( f i t s c o r e s ) /100
188 sp_max = np .max( s p r a t i o s )
189 pop_max = pop_old [ s p r a t i o s . argmax ( ) ]
190 pnl_max = pnl [ s p r a t i o s . argmax ( ) ]
191 # You may de l e t e the f o l l ow i ng
192 pr in t (np . average (np . log10 ( f i t s c o r e s ) /100) )
193 pr in t ( pnl )
194 pr in t (np . log10 ( f i t s c o r e s ) /100)
195 pr in t (pop_max)
196 pr in t ( gen , pnl_max , sp_max , " \n\n " )
197 i f sp_max < −0.04:
198 pr in t ( ’Too f a r from the optimum ! ’ )
199 break
200

201 re turn pop_max , sp_max , pnl_max
202

203 de f reproduce (x , y , c ro s s_rate ) :
204 " " " The c r o s s over procedure .
205

206 Decide whether to c r o s s over and i f so implement i t .
207

208 Args :
209 x , y = Parent i n d i v i d u a l s .
210 c ros s_rate = c r o s s over ra t e .
211

212 Returns :
213 x , y : I nd i v i dua l s a f t e r c r o s s i n g over procedure .
214
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215 " " "
216 i f np . random . rand ( ) < cros s_rate :
217 xw = x [ 0 ]
218 yw = y [ 0 ]
219 l = l en (xw)
220 s p l i t = np . random . cho i c e ( l )
221 xw_new = np . append (xw [ 0 : s p l i t ] , yw [ s p l i t : ] )
222 yw_new = np . append (yw [ 0 : s p l i t ] , xw [ s p l i t : ] )
223 x [ 0 ] = xw_new
224 y [ 0 ] = yw_new
225 re turn x , y
226

227 de f mutate (x , mute_rate , ls_mute_rate , w_low , w_high , ls_low , ls_high , \
228 thres_low , thres_high , coef_low , coef_high , d e l i c a t e

) :
229 " " " Mutation procedure .
230

231 Decide whether to mutate and
232

233 Args :
234

235 mute_rate = mutation ra t e f o r a l l parameters , except f o r the
l e a rn i ng speed .

236 ls_mute_rate = mutation ra t e f o r l e a rn i ng speed .
237 gen_num = maximum genera t i on number .
238 pop_lim = maximum populat ion s i z e .
239 w_low = lowest weight f o r i nd i v i dua l neuron
240 w_high = h ighe s t weight f o r i nd i v i dua l neuron
241 ls_low = lowest l e a rn speed
242 l s_high = h ighe s t l e a rn speed
243 thres_low = lowest th r e sho ld value
244 thres_high = h ighe s t th r e sho ld value
245 coef_low = lowest c o e f f i c i e n t va lue
246 coef_high = h ighe s t c o e f f i c i e n t va lue
247 lowest_sp = stop when the sharpe r a t i o i s g r e a t e r than t h i s

va lue
248 d e l i c a t e = de f au l t Fa l se . When i t i s True the mutation and

c ro s s ov e r \
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249 w i l l be very l e s s l i k e l y to happen and only change in a smal l
range .

250

251 Returns :
252 pop_max : The Ind i v i dua l that has the bes t sharpe r a t i o .
253 sp_max : The best sharpe r a t i o among the populat ion .
254 pnl_max : The best pnl among the populat ion .
255

256 " " "
257 xw = x [ 0 ]
258 l = l en (xw)
259 f o r i in range ( l ) :
260 i f np . random . rand ( ) < mute_rate :
261 xw [ i ] = np . random . uniform (w_low , w_high )
262 i f abs (xw [ i ] ) > w_high :
263 xw [ i ] = np . s i gn (xw [ i ] ) ∗ w_high/2
264 i f np . random . rand ( ) < ls_mute_rate :
265 i f d e l i c a t e == False :
266 x [ 1 ] = np . random . uniform ( ls_low , ls_high )
267 e l i f d e l i c a t e == True :
268 rge = ls_high − ls_low
269 x [ 1 ] = np . random . cho i c e ( [ ls_low , ls_low+0.005∗ rge , ls_low

+0.025∗ rge , \
270 ls_low+0.08∗ rge , ls_low+0.25∗ rge ,

ls_low+0.50∗ rge , \
271 ls_low+0.75∗ rge , l s_high ] )
272 i f np . random . rand ( ) < mute_rate :
273 x [ 2 ] = np . random . uniform ( thres_low , thres_high )
274 i f np . random . rand ( ) < mute_rate :
275 x [ 3 ] = np . random . uniform ( coef_low , coef_high )
276 x [ 0 ] = xw
277 re turn x
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