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Abstract

Feature-oriented programming is a way of designing a program around the fea-

tures it performs, rather than the objects or files it manipulates. This should lead to

an extensible and flexible “product-line” architecture that allows custom systems to

be assembled with particular features included or excluded as needed. Composing

these features together modularly, while leading to flexibility in the feature-set of

the finished product, can also lead to unexpected interactions that occur between

features. Robert Hall presented a manual methodology for locating these inter-

actions and has used it to search for feature interactions in email[Hal00]. Li et

al. performed automatic verification of Hall’s system using model-checking verifica-

tions tools[LKF02a, LKF02b]. Model-checking verification is state-based, and is not

well-suited for verifying recursive data structures, an area where theorem-proving

verification tools excel.

In this thesis, we propose a methodology for using formal theorem-proving tools

for modularly verifying feature-oriented systems. The methodology presented cap-

tures the essential steps for using modular techniques for modeling and verifying

a system. This enables verification of individual modules, without examining the

source code of the other modules in the system. We have used Hall’s email system

as a test case for validating the methodology.
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Chapter 1

Introduction

1.1 Motivation

When users request additional features in their software, programmers naturally

respond by implementing these features, increasing the marketability of the program.

However, an impressive array of features comes at a price: complexity. The more

features a program has, the more complex the program is, and thus, by extension,

the more defects the code could potentially hide.

To reduce the complexity of a program, one could split the code into distinct

modules [Par72]. Splitting code into modules facilitates code reuse and when up-

dating on section of code, reduces the amount of code-redesign needed in other

modules1. Object-oriented design takes this idea a step further, suggesting that

modules (or classes) should encapsulate each actor or entity in a system [Mey91].

1This, of course, assumes that the modules are sufficiently independent of each other.
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One problem inherent in object-oriented designs for certain types of systems is that

the implementation of a system feature could be spread (or cross-cut) across multi-

ple classes. For large systems, implementing or changing a single feature can take

weeks and requires the cooperation of multiple programmers who are responsible

for each class. Since the code is spread over multiple objects, the complexity of the

resultant changes can introduce errors that are costly both to find and fix.

1.2 Feature-Oriented Programming

Feature-oriented programming introduces a different principle for organizing code.

In this paradigm, modules encapsulate features, rather than actors or entities. In-

tuitively, a feature is a product characteristic, such as voice mail, that allows cus-

tomers to distinguish between products. A system might involve three actors: the

host delivery system, the database of user-information and the email client. The

auto-response feature in the system would use the delivery system to send and re-

ceive email, retrieve data from the database, and use the email client to respond to

messages. Instead of splitting the code across these three actors, feature-oriented

programming keeps the code together in a single module. A feature-oriented module

contains fragments of code that implement a single feature across actors of a system.

Using Figure 1.1 as a guide, traditional object-oriented design would group together

the code according to columns—all the code for the host (or other actor) would be

grouped together in a module. Using a feature-oriented approach, code would be

grouped according to rows—all code for a particular feature, such as auto-response,

2



would be placed in the same module or component [HC01]. In either approach,

linking together (composing) modules produces the final system.

Host User Network
Auto-response auto-resp host-code auto-resp user-code auto-resp client-code
Decrypt decrypt host-code decrypt user-code decrypt client-code
Encrypt encrypt host-code encrypt user-code encrypt client-code
Sign sign host-code sign user-code sign client-code

Figure 1.1: Selected features and actors in an email system.

Separating well-defined features into components facilitates maintenance of the

system, by allowing easy identification and removal of obsolete functionalities. In

an email system, for example, the ability to encrypt and decrypt messages could

be removed by simply removing the encrypt and decrypt modules from the system.

Updating the system to provide support for a new encryption scheme would be

equally straight forward.

Feature-orientation also facilitates programmers’ comprehension of code. By de-

sign, each feature can be coded independently of other features; this allows one

programmer to implement an entire feature, and be able to comprehend its func-

tionality across the whole system. This simplifies updating or redesigning a feature

at a later date—understanding one module of code is generally considered to be

easier than understanding an entire system. Separate feature development also al-

lows the implementation to take place in geographically- or chronologically-separate

locations.

In general, feature-oriented programming derives these benefits from grouping

together code that cross-cuts the actors or entities in a system; such architectures
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enable separation of concerns. Many researchers are exploring programming with

cross-cutting, albeit under a variety of terms: aspect-oriented programming [Asp01],

mixin layers [BO92], units [FF98], subject-oriented programming [OT99], and oth-

ers [BA01, LLM99, Pre97] all propose similar architectures for similar motivations.

Feature-oriented programming is not an ideal model for all software systems, but it

works particularly well for product-line architectures [Gri00].

Product-line software [CNea98] draws its analogy from manufacturing, where

large amounts of similar items are produced every day in cost-efficient manner.

Although many items are produced, each item might be distinctly different from all

the others, depending on which features are chosen for the finished product. For

example, in automobile manufacturing, one car of a particular make might have

red paint, the next blue; the first car has a cassette player installed, the second

one a CD player; and so on, until the cars are both finished, that is, when all

the features have been chosen. Product-line software is similar, the features of the

system can be chosen with great flexibility, allowing many different combinations

of features to arise. A software company might provide a product-line of word

processors, some with grammar checking, document format conversion, and other

features. Developing the family of products as a product-line amortizes development

costs across many systems.

1.2.1 Validation: The Product-line Development Challenge

Product-line architectures are designed to provide flexible and cost-effective ways

to create families of software systems. This flexibility comes at a price, however:
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the number of ways to combine the features of a system grows almost factorially2.

It becomes harder to effectively test the full set of products, because the testing

methodology must verify the absence of errors in every possible feature combination.

Separate testing of each possible product dramatically reduces, and can even elim-

inate, the cost-effectiveness of product-line development. Product-line techniques

such as feature-oriented programming need validation techniques that operate at

the granularity of individual features.

Testing combinations of feature modules exposes a related and well-known prob-

lem: features can unintentionally interact with each other (the feature-interaction

problem [KK98]). For example, by including both message signing/verifying and en-

cryption/decryption in an email system, we introduce the possibility that a message

is properly signed, but cannot be verified because the message cannot be decrypted.

As the possible number of combinations of features can reach factorial proportions,

even if these feature interactions were always readily apparent to the human eye, au-

tomatic tools to check for such interactions are essential because of the large number

of potential interactions.

Product-line development therefore comes with a research challenge: we need

validation techniques that allow each feature (module) to be checked independently,

and that can efficiently locate potential interactions between features once we decide

which ones to compose into a complete system. The second part implies that we

can’t look for interactions by validating the whole composed system.

2For N features, there are only 2N unordered combination possibilities. However, features can
be executed in any order, resulting a factorial number of combinations.
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1.3 Software Verification

Formal software verification is a form of validation that uses mathematics and logic

to formally prove properties of programs. Formal verification is appealing for its abil-

ity to locate unusual defects in software designs. Defects, if left unfixed, “emerge to

trouble the world through the entire lifetime of their software” [Ray03]. The earlier

a defect is caught, the quicker and cheaper it is to correct. Software Engineering

Economics [Boe81] estimates that it costs 20 times as much to fix a defect after the

product has been released, as to fix the same defect during the design phase.

Verifying a design consists of several steps:

1. The design is mapped into a simple model—that is, one small enough to be

easily verified. Often the model of the system is a high-level model that as-

sumes that correct functioning of the lower levels, and attempts to prove the

functionality of the system structure. For example, when verifying a compiler,

the reading and parsing, as well as the writing of file could be abstracted, leav-

ing the more interesting compiling step for verification. For communication

protocols, state machines usually provide suitable models, leaving the network

abstracted.

2. The model is compared (informally) with the actual design, checking whether—

at least for particular inputs—the model and the design exhibit the same be-

havior. This initial testing is not exhaustive, but can serve as an important

“sanity check” in writing the model. Formal comparisons between models and

implementations are generally intractable for interesting systems.
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3. Theorems are proven about the model that establish some interesting prop-

erties about the modeled system. For example, in an email system model,

one might prove that all emails sent are eventually delivered; or that given

the correct key, any encrypted email can be decrypted. Since the model and

design are not proven be exactly the same manner, proving theorems on the

model may seem like a fruitless search. However, the failure of theorems on

the model can pinpoint areas where defects may exist. Likewise, proving the-

orems on the model can increase the confidence of all developers involved that

the design is sound.

Verification approaches differ in the styles of models and proof techniques that

they use. Two of the most popular approaches are theorem proving [KMM00] and

model checking [CGP00a]. Theorem proving models designs and desired proper-

ties as programs or predicate logic and uses techniques such as natural deduction,

resolution, or sequent calculus-style reasoning; theorem proving captures powerful

properties, but requires considerable manual intervention from the user. Model

checking maps a design into a state machine and needs properties as formulas in

temporal logic; model checking is almost fully automated, but at the expense of

being less powerful and expressive.

There are other trade-offs between using model-checking and formal theorem

proving. Model checking can generate counter examples when properties do not

hold, but is known to be limited in its ability to reason about data, due to its

inability to handle unbounded, or even large, data. Model checking also suffers

from a serious problem known as state-explosion: design models often have orders-
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of-magnitude more states than the checker can handle (modern checkers handle

designs up to roughly 2150 states).

In theorem proving, given a system, a property that must hold, and necessary

assumptions allowed, a programmer must build increasingly complex formulas to

prove that the property holds in the system. While this method is able to cope

well with many types of data, there are two major drawbacks: creating the needed

formulas can be a time-consuming task; and the failure of the prover to accept a

formula could mean many things. When a proof is not accepted by the prover, it

could mean that the formula is incorrectly written, or that the system can not find

the proof, or that the property will not hold in the system—it is hard to pinpoint

the source of the error.

1.3.1 ACL2

The language used in this case study, ACL2 [KM97], which stands for “A Computa-

tional Logic for Applicative Common Lisp”, is a theorem proving system written by

Matt Kaufmann and J. Strother Moore. ACL2 is functional programming language

similar to Common Lisp but has carefully chosen restrictions to facilitate proving

theorems on the resulting programs. Like Common Lisp, it can be used to define

functions (in order to model computing systems). Unlike Common Lisp, ACL2 can

also be programmed to make assertions and prove theorems about the defined func-

tions. ACL2 contains a first-order logic which contains induction that allows the

user to prove complex theorems about the defined functions. For example, ACL2 is
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well-suited for proving theorems that, given constraints on its inputs, assure that a

functions outputs are of a particular type.

ACL2 has been used to model and prove the correctness of many different kinds

of systems, including microprocessors [BKM96, MLK, Rus99], programming lan-

guages [Moo99, BM96], and floating-point arithmetic [RF00]. Typically, ACL2 pro-

grams are simplified models of a system which emulate the behavior to be tested.

In the email system, we abstracted the underlying network protocols, accessing the

database, and other parts involved in message sending. Our focus is to prove the

correctness of the features involved in processing and delivering mail, for example,

the encryption and decryption features of the system.

1.3.2 Verification and Feature-Orientation

Given our need for validation techniques that can analyze features modularly and

the need to detect feature interactions, a formal verification approach to feature vali-

dation is worth exploring. Feature-oriented modules offer an interesting benefit over

standard object-oriented designs from the standpoint of verification. One challenge

in verification is isolating the part of the design that actually matters for checking

a property; failure to do so may make the verification task too hard or intractable

to complete. With feature-orientation, this problem goes away because properties

align with features (modules), thus allowing the verifier to easily identify the part

of the model that’s needed. For example, a property about auto-responding would

need to be verified only against the auto-response feature. In a standard OO design

(the column-oriented version of Figure 1.1), all three modules would contain some
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of the needed code, making it much harder to eliminate irrelevant details (experi-

ence shows that eliminating irrelevant code from within a module is hard to do in

practice [SE98]).

What would a verification approach for feature-oriented programs look like?

From the argument in Section 1.2.1, we know that we must be able to verify fea-

tures independently and to locate possible interactions without verifying the whole

system. Compositional verification [Pnu85] supports proving properties about mod-

ules in isolation and determining whether properties of modules imply properties of

whole systems. It works by having each module come with interfaces written as the

properties that it satisfies. Modular feature verification therefore requires some kind

of interfaces for features that are (a) provable against the features and (b) sufficient

to locate at least some kinds of feature interactions (it is well known that only some

kinds of feature interactions can be detected by formal verification [Hal98a]).

1.4 Thesis Overview

The contribution of this thesis is a case study in, and proposed methodology for,

verifying feature-oriented software using the formal theorem prover ACL2 [KM97].

The methodology supports verifying each feature individually, and using the re-

sulting theorems to prove results for the system as a whole. While there has been

some work on each of modular feature verification with model checking and using

theorem proving for feature interaction, as described in the related work chapter

(Chapter 2), no earlier work presents a modular theorem proving methodology for
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feature-oriented verification. The main challenge in the thesis is identifying the

interface functions and theorems that enable modular verification. Using theorem

proving lets us use richer models and check more powerful theorems than previous

modular approaches to feature verification.

Chapter 2 presents other works that are related to this thesis, including Robert

Hall’s original paper on the system modeled in the case study [Hal00]; we have

modeled Hall’s system in the theorem-proving environment of ACL2 [KM97]. For

each feature in the system, we have verified its correct functionality through theo-

rem proving. An overview of the system, the resultant proofs, as well as proofs on

combinations of features are put forth in Chapter 3. In modeling this system, we

developed a general methodology for modeling feature-based systems that involve

more complex forms of data and enabling compositional verification in a system-

atic manner. This general methodology is shown in Chapter 4. The conclusions

drawn from modeling the system, verifying the system and creating the general

methodology are covered in Chapter 5.
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Chapter 2

Related Work

The use of modular verification techniques to verify feature interactions is a very

new area of study. Works such as Felty and Namjoshi’s “Feature specification and

automated conflict detection” [FN98] relate to automatically detecting feature in-

teractions in systems, but do not address verifying these interactions in a modular

fashion. The few works which are directly relevant to this thesis are presented below.

2.1 Robert Hall

Robert Hall presented a manual methodology for searching for interactions and

has used it to search for feature interactions in email [Hal00]. His email study in-

cludes 10 features: address-book, message signing, encryption, decryption, verifying

message signatures, auto-responding to message, forwarding messages, re-mailing

messages, filtering messages, and delivering of messages by the host. Hall modeled

12



these features in a reactive system, and attempted to find interactions by manually

inspecting numerous combinations of these features. In total, Hall inspected 100

(10 x 10) ordered pairs of features, and found 26 distinct interactions. Listed below

are two typical examples of interactions that were found in the study:

• SignMessage vs. V erifySignature: If Bob sends a signed message to rjh,

but rjh attempts to verify it using the wrong key, possibly because rjh’s

key has expired, or Bob somehow was tricked into using the wrong key, the

SignMessage’s purpose, namely convincing rjh that Bob authored it, is de-

feated by rjh’s inability to verify it.

• EncryptMessage vs. V erifySignature: Bob’s EncryptMessage interferes

with rjh’s V erifySignature if rjh’s DecryptMessage is unable to success-

fully decrypt the message, since in the configuration of the Client signing is

performed prior to encryption.

The self-described “heuristic” methods used by Hall, which were “an attempt to

blend the strength of human intuition with some systematicity afforded by formal

modeling” [Hal00], are adequate for small cases. For more complex systems, Hall

advised readers that “it may be useful to consider different test coverage metrics and

tools.” This verification work was done on the system as a whole, with no means

to plan for how future features might interact with those currently in the system.

The verification of the system was not completed in a modular manner, and in this

respect differs from the work in this thesis. The case study in this thesis closely
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follows Hall’s model, though, as he used a Lisp-like language with many similarities

to Lisp-like ACL2.

2.2 Harry Li

Using a model-checking verification tool, Harry Li et al., created a modular verifi-

cation methodology to modularly model and verify the interactions of Hall’s email

system [LKF02a]. Li discovered that it was possible to reproduce many of the

interactions automatically, without laborious hand-simulations.

Li modeled each feature as a state machine and formally verified the proper-

ties needed for “proper” operation of each feature specified in the temporal logic

of CTL [CGP00b]. Informal descriptions of two such properties are presented in

Figure 2.1, as well as their corresponding CTL formulae.

Informal Description CTL Formula
If one tries to verify a signature, then the message
must be verifiable.

AG[try−verify → verifiable]

If an auto-response is generated, the response even-
tually is delivered or received.

AG[auto−response
→ AF (deliver

∨
received)]

Figure 2.1: Example of a CTL property.

Li individually verified each feature through model checking. The interfaces

needed for modular verification were generated automatically by his algorithms in

the form of temporal logic formulas. The following is an example using a system with

two features: F1 and F2. Li verified the system using the following methodology.

1. Model check each individual feature to prove its CTL properties.
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2. Automatically determine interfaces for each feature that are sufficient to pre-

serve each property after composition.

3. Prove that the feature F1 satisfies the preservation constraints of feature F2

by analyzing at most F1, and not the composition of both F1 and F2.

This modular verification technique enabled Li to easy verify product-line arch-

itectures—each piece can be verified individually with out foreknowledge of any of

the other features in the final system.

One of the main challenges in Li’s work is that the model checker must reason

with incomplete information: if a property to be checked against F1 refers to some

variable or attribute set in F2, the model checker won’t have all of the informa-

tion it needs to verify the property in F1. This situation comes up when checking

constraints between interfaces, despite the fact that the properties generally align

with the features. For example, using a system composed of an encryption and a

forwarding feature, we wish to prove that once a message is encrypted, it is never

sent out on the network un-encrypted. After verifying the encryption feature, we

must ensure that the forwarding feature preserves the encryption property. How-

ever, since the forwarding feature contains no references to whether the message is

encrypted, its value is unknown.

Li partially worked around the unknown property limitation by using three-

valued logic and attempting the same verifications twice: once assuming all unknown

attributes to be true; and once assuming all unknown attributes to be false. By using

a model-checker, Li was limited in his ability to model the incomplete information
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inherently present in feature interfaces: although the values of all outside attributes

are not always known, the model checker must assign a value for each attribute in

the system. The work of this thesis avoids this problem because theorem provers

are able to handle unknown values without resorting to checking only special cases.

Handling unknown values is one of the main benefits of theorem provers that this

thesis aims to exploit for feature verification.

2.3 Christian Prehofer

Using UML statechart diagrams as a modeling tool, Prehofer presented a work on

building components by modular composition of features and discovering interac-

tions between features [Pre02]. Robert Hall’s email system was used as the problem

set for presenting his methodology.

Each feature in the system was modeled using a statechart diagram, where tran-

sitions are labeled with the function calls which trigger that transition. For feature

combination, he combines two statecharts into a single statechart with the combined

functionality. When using statecharts for combining state machines, each individual

state machine retains its original structure, and thus its functionality. In the case

of an interaction between the statecharts, one feature is adapted in the presence of

the other—a special case is defined to address where the features interact. Since his

method of combining features is a manual and time-intensive process and must be

applied to each new combination of features, it need not be further discussed.
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Chapter 3

The Case Study

The model in this thesis is a simplified version of a feature-oriented system be-

cause the different actors do not execute a feature simultaneously. Instead, first the

sender’s mail host, then the network, then the receiver’s mail host, carry out their

tasks to process each action. This is consistent with Li’s model, and focuses on

the initial questions of what kinds of interfaces and methodologies support theorem

proving for feature-oriented designs.

3.1 Modeling the System

3.1.1 Base System

The base system is the system, devoid of any added features. It includes the base

functionality (infrastructure) that supports the addition of these features. For the

email system, this includes: the core network for sending message, the existence of
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servers on the network, as well as infrastructure to enable adding features. Figure 3.1

shows the main code for the base system: the full code appears in Appendix A.

The simulate-network function is the main driver of the system—taking a

list of actions to perform, a hash table of user environments and a hash table of

host environments. An action is a listing of the command to perform, and the

data necessary to perform that command. For example, to mail a message, the

action would be: (’mail sender message), where the recipient is captured in the

message. Each user environment is a hash table that captures the data necessary for

the features used, such as a unique username and other attributes (an encryption

key, an address-book, etc) associated with it. In the base system, this is initially

empty. The host environments are analogous to the user environments, but contain

data specific to each host in the system, a unique hostname, as well as its users

associated with it. Additionally, each host and user has fields for keeping track of

the messages that are both sent and received, to facilitate the verification of message

properties.

The functions do-action and do-action-cond work together to process each

action in turn. All actions are processable in the base system code. When new

features are added, new code is inserted in the do-action-* helper functions; an

example of this is shown in Section 3.1.2. With the base system, users can send

and receive basic emails, but have no access to the encryption, decryption, or auto-

response features.
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(defun do-action-cond (action users hosts)

(let ((type (action-type action)))

(mv-let (new-users new-hosts)

(cond ((equal ’init type)

(do-init action users hosts))

((equal ’command type)

(do-command action users hosts))

(t (begin

(cw "Can’t execute command ~x0~%" action)

(mv users hosts))))

(mv new-users new-hosts))))

(defun do-actions (actions users hosts)

(cond ((endp actions) (mv ’end users hosts))

(t (let* ((action (car actions))

(rest (cdr actions)))

(mv-let (new-users new-hosts)

(if (member-equal (action-type action)

’(mail send deliver))

(do-action-mail action users hosts 10)

(do-action-cond action users hosts))

(do-actions rest new-users new-hosts ))))))

;;(simulate-network list[actions])

;;sets up initial env and calls recursive simulation func

(defun simulate-network (actions users hosts)

(do-actions actions users hosts))

Figure 3.1: Code for base system.
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3.1.2 Features

Our model of the email system presents each feature as a collection of functions,

each implementing a particular functional interface.

Interface Description
-init Initializes data structures needed for feature.
-command Provides an interface for data structures to be changed.
-outgoing Contains logic for transforming messages being sent from (by) a user

or via a host.
-incoming Similar to -outgoing, for messages sent to a user. In additional, may

refuse or respond to messages.

Figure 3.2: Interfaces implemented by features.

The functions of each feature are identified with a unique descriptive prefix,

for example, the functions relating to auto-response all begin with ’email-auto-’.

Additionally, the functions that each feature exposes are also identified, with unique

suffixes, for example: ’-init’ and ’-incoming’ for handling state initialization and

incoming message. In this manner, each function is readily identifiable as to both

its feature and calling interface.

Consider the auto-response feature, similar in functionality to the Unix “vaca-

tion” [Uni], which sends a pre-specified message back to each correspondent the

first time they send you an email while you are away. If a correspondent sends

you a second email, no auto-response email is sent a second time. The source

code in Figures 3.3 and 3.4 is a listing of the auto-response feature in ACL2. The

feature consists of four functions called email-auto-init, email-auto-command,

email-auto-outgoing, and email-auto-incoming. All the functionality of the
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feature is encapsulated in those four functions. The email-auto-init function con-

tains code for initializing the data structures needed for the feature; email-auto-

command provides an interface for mail messages and data structures to be changed,

email-auto-outgoing provides the logic for handling messages being sent from a

user, and email-auto-incoming is responsible for handling messages sent to a user.

The four calling functions make up the component for a feature. The ACL2

implementation does not package these up into a formal (code) component because

the ACL2 module facility (called a book) introduced unnecessary complexity into

the verification step for the stage of the project. Using books would have required

an additional step in creating modules—certifying each book before it could be

used. When rapidly developing the code and theorems, this restriction kept us

from using books to split the code into modules. Section 4.1 explains how to use

features of ACL2 to simulate the effect of having code encapsulated in modules

during verification.

All the other features in the system are similarly put together. The features

are linked together, using a minimal of glue code, such that the pieces are able to

interact with one another; Section 3.1.3 discusses how this is done.

3.1.3 Compositions of Features

We add features to the base system by modifying the action functions (shown in

the base system) to call the appropriate feature functions. This section shows how

to add one feature, other features can be added similarly.
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;;(email-auto-init env) -> env

;; initialize envronment

(defun email-auto-init (env)

(set-var ’already-answered ’()

(set-var ’user ’()

(set-var ’default-response ’() env))))

;;(email-auto-command string list[<anything>] env -> env

(defun email-auto-command (cmd args env)

(cond ((equal ’SET_USER cmd)

(let ((?user (car args)))

(set-var ’user ?user env)))

((equal ’SET_DEFAULT_RESPONSE cmd)

(let ((resp (car args)))

(set-var ’already-answered ’()

(set-var ’default-response resp env))))

(t env)))

;;(email-auto-outgoing message env) -> action

;; what transpires when an message is sent

(defun email-auto-outgoing (msg env)

(begin (cw " [email-auto-outgoing: ~x0]~%" (get-var ’user env))

(act comment "[Outgoing events not handled]")))

Figure 3.3: ACL2 source code of auto-response feature (1 of 2).
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;;(email-auto-incoming message env) -> action

;; when a message is received

(defun email-auto-incoming (msg env)

(if (equal ’() (get-var ’user env))

(act comment " [User not set yet --> no action]")

(begin

(let ((?from (message-sender msg)))

(if (member-equal ?from (get-var ’already-answered env))

(act comment "[No autoresponse, already answered -->

no further action]")

(if (equal ’() (get-var ’default-response env))

(act comment "[No default autoresponse -->

no further action]~%")

(let ((?recip (recipient msg))

(?response (get-var ’default-response env)))

(begin

(cw " respond ’~x0’to ~x1~%" ?response ?recip)

(act mail

(mk-message ?recip

(list (message-sender msg))

(set-var ’subject (list ’re (subject msg)) ’())

(cons ?response ’()))

(set-var

’already-answered

(cons ?from (get-var ’already-answered env))

env))))))))))

Figure 3.4: ACL2 source code of auto-response feature (2 of 2).
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(defun user-init (user)

(let-seq user

;; could add a feature here

(email-auto-init user)

;; ...or here.

user))

Figure 3.5: User initialization source code.

The user-init function is used for the initialization action, sequentially call-

ing each feature’s initialization function in turn with the user environment as its

argument. Each function will return a (possibly) modified environment, which

user-init passes on as the argument to the next feature. Figure 3.51 shows the

auto-response’s initialization function, email-auto-init, being called. To add an-

other feature, a similar line would be added before or after email-auto-init in the

proper sequence.

The user-command function, used for the command action, is similar in nature

to the user-init function. It sequentially calls each feature’s -command function,

passing on the (possibly) modified environment to input of the next feature. Adding

another feature is obtained by adding a line in the desired sequence.

The do-user-send function is responsible for tying together the features that

affect a user’s outgoing message, then passing the message back to the network to

send to the specified host. The user-send-begin is an alias that points to the

1The code listed in the appendix is set up slightly differently, with heavy macro usage, so as to
facilitate rapid modification of the features enabled.
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(defun user-command (act user)

(let ((cmd (action-arg1 act))

(args (action-arg2 act)))

(let-seq user

(email-auto-command cmd args user)

user)))

Figure 3.6: User command action source code.

first feature function. When the encryption feature is enabled, user-send-begin

is an alias for user-send-encrypt. The function user-send-encrypt describes

the part of the sending state machine that corresponds to the encryption feature.

The function calls the encryption feature’s -outgoing calling function, and then

passes the resulting (possibly changed) message and environment to the next feature.

Adding a feature requires two steps:

1. Create a user-send- function to represent the state transitions of the feature.

2. Define the appropriate aliases to call the features in the desired sequence.

The do-user-deliver function is similar to do-user-send, but on the receiv-

ing host. It passes the message through the features that could affect the mes-

sage, and then delivers the message. In the case of the auto-response feature,

do-user-deliver is able to return a send message action, which in turn is handled

by the do-user-send function. Adding a feature is handled similarly to adding a

feature to the sending code.
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; Define sequence of features to apply

; In this case, using the encrypt feature at the beginning

(fif encrypt

(defalias user-send-begin user-send-encrypt)

(defalias user-send-begin user-send-encrypt-next))

; The next ‘‘feature’’ is signifies that the message was sent

; correctly.

(defalias user-send-encrypt-next user-send-ok)

(fif encrypt

(defun user-send-encrypt (msg user)

(mv-let (status new-msg new-user)

(email-encrypt-outgoing msg user)

(cond ((equal ’mail status)

(user-send-encrypt-next new-msg new-user))

(t (user-send-abort new-msg new-user))))))

(defun user-send-ok (msg user)

(mv ’deliver msg (set-var ’sent-msg msg user)))

(defun do-user-send (action users hosts)

(let ((name (action-name action))

(msg (action-arg1 action)))

(mv-let (status new-msg new-user)

(user-send-begin msg (get-var name users))

(let ((new-users (set-var name new-user users)))

(if (equal status ’send)

(mv (mk-host-mail-action ’send new-msg)

new-users

hosts)

(mv nil new-users hosts))))))

Figure 3.7: User send action source code.
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(fif decrypt (defalias user-deliver-begin user-deliver-decrypt)

(defalias user-deliver-begin user-deliver-decrypt-next))

(fif auto

(defalias user-deliver-decrypt-next user-deliver-auto)

(defalias user-deliver-decrypt-next user-deliver-auto-next))

(defalias user-deliver-auto-next deliver-ok)

(defun deliver-ok (msg user)

(mv ’deliver-ok msg (set-var ’recv-msg msg user)))

(defun do-user-deliver (action users hosts)

(let* ((name (action-name action))

(msg (action-arg1 action)))

(cond ((get-var name users)

(mv-let (status new-msg new-user)

(user-deliver-begin msg (get-var name users))

(let ((new-users (set-var name new-user users)))

(if (equal ’mail status)

(mv (mk-user-mail-action ’send new-msg)

new-users

hosts))

(mv ’() new-users hosts))))

(t (mv ’() users hosts)))))

Figure 3.8: User deliver action source code.

27



3.1.4 Interfaces

Components come with interfaces that summarize what information they provide

to other components [HC01]. The feature components in this thesis have two kinds

of interface information. The calling functions introduced in Section 3.1.2 provide

the construction interface (what we need to compose components into an existing

system). For modular verification, components also need a verification interface

containing properties that are true of them. Section 3.2.2 illustrates the contents of

the verification interface for features in ACL2.

3.2 Verifying the System

In selecting the features to implement and verify in the system, we chose features

that were representative of the features included in Hall’s system. The host feature

is the simplest feature, sending a “postmaster response” when an attempt is made

to send a message to an unknown user. The auto-response feature was chosen to

represent features that do not modify the message being sent, but messages with

certain properties can trigger other actions to be performed. The encryption and

decryption feature was selected to provide a case where an unknown attribute is

present in the system. Hall’s study provides several interactions between the host,

auto-response and en-/decryption features, which makes them especially suited for

including in this study.

For the auto-response feature, the major property to preserve is as follows: The

auto-response should reply once and only once to all messages from active users of
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the system, but not including automated messages such as the postmaster. The

property is shown as a combination of f-auto-adds-already-answered-and-thm

and f-auto-auto-response-if-not-already-answered-thm in Figure 3.9. The

first theorem proves that sending a message to a user with an auto-response mech-

anism enabled adds the sender to the ’already-answered list in the user’s envi-

ronment. Lines 2–9 make up the body of the theorem. The implies is the ACL2

implication function, identical to its mathematical meaning. Lines 3–6 comprise the

assumptions that are taken to be true to the action (lines 7-9). The assumptions,

in this case, are: 1) the auto-response feature is enabled (’default-response is

non-nil); 2) the environment is a valid user environment (’user is non-nil); and

3) the sender of the message msg is equal to sender. The action (implication)

part of the theorem states thusly: the resultant environment from delivering (via

user-deliver) the message msg will contain sender in the ’default-response

variable. The second theorem proves that sending a subsequent message to a user,

when the sender is already in the ’already-answered list, results in no additional

auto-response messages. The two theorems are sufficient to prove the above prop-

erty.

For the host feature, Figure 3.10 shows f-host-postmaster-response-to-

unknown-user-thm, the property that must be preserved. An informal definition of

this property is as follows: If a message received by the host is not sent to a user of

that host, then a postmaster ’user unknown’ message is sent in reply.

When reporting verification results, we do not include standard performance

measures such as runtime or memory usage. These measures are not as meaningful
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00: ; Line numbers added for illustrative purposes only

01: (defthm f-auto-adds-already-answered-thm

02: (implies

03: (and

04: (get-var ’default-response env)

05: (get-var ’user env)

06: (equal (message-sender msg) sender))

07: (user-in-already-answered

08: sender

09: (mv-env (user-deliver msg env)))))

10:

11: (defthm f-auto-auto-response-if-not-already-answered-thm

12: (implies

13: (and

14: (get-var ’default-response env)

15: (get-var ’user env)

16: (equal sender (message-sender msg))

17: (not (member-equal sender (get-var ’already-answered env))))

18: (mv-let (status new-msg new-env)

19: (user-deliver msg env)

20: (equal status ’mail))))

Figure 3.9: ACL2 preservation properties for the auto-response feature.
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(defthm f-host-postmaster-response-to-unknown-user-thm

(implies

(and

(equal recipient (recipient msg))

(equal (email-host recipient) (get-var ’hostname env))

(equal (email-user recipient) username)

(not (member-equal username (get-var ’users env)))

(message-p msg))

(mv-let (status new-msg new-env)

(host-send msg env)

(and

(equal status ’mail)

(equal (email-user (message-sender new-msg)) ’postmaster)

(equal (recipient new-msg) sender)))))

Figure 3.10: ACL2 preservation properties for the host feature.

in theorem proving, where the main focus is on user overhead to develop the proofs.

Given the exploratory nature of the work presented here, figures on the amount of

user time would be premature.

3.2.1 Verifying the Whole Composed System

When verifying a system modularly, it is important that the results be identical

to those that would have resulted from verifying the entire composed system. The

first step in this case study, therefore was to verify the given properties on a system

comprised of the all three features previously listed. This provides the baseline for

the intended results of the modular verification. All of the theorems listed above

proved as expected in the entire system.
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3.2.2 Verifying Individual Features

When verifying an individual feature, we start with the four calling functions, and

the property that we want to verify. The four calling functions do not stand entirely

on their own—they need the infrastructure of the base system to tie them together

to the network system. Therefore, when verifying an individual system, we also

include the base system. This follows the same technique in Section 3.1.2.

Verifying a property proceeds in several stages. To start, we verify the interface

of the feature, that is, how it affects the message being sent/received or the envi-

ronment. These basic theorems are then used to prove more complex theorems on

the code that performs each individual action. Finally, these serve as lemmas to

lift the property to the simulaste-network code. Figure 3.11 shows the hierarchy

of theorems that correspond to those needed to prove the auto-responser property

of adding the message sender to the ’already-answered list. As the proves moves

up the levels, the function on which the theorem is being proven changes. The as-

sumptions stay the same, or tighten slightly, depending on what is relevant for the

current level. Figure 3.12 depicts the levels of theorems necessary to produce a final

theorem on the simulate-network level. Theorems proven on the level immediately

below are used to prove theorems about the current level.

3.2.3 Verifying Non-interference Between Features

As an example an interaction between two features, consider the auto-response and

host features. The first feature provides for an automated response to incoming
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(defthm email-auto-incoming/auto-response-adds-sender-to-already-answered

(implies

(and (get-var ’default-response env)

(get-var ’user env)

(equal sender (message-sender msg))

(not (member-equal sender (get-var ’already-answered env))))

(user-in-already-answered sender

(mv-env (email-auto-incoming msg env)))))

(defthm user-deliver/auto-response-adds-sender-to-already-answered

(implies

(and (get-var ’default-response recipient-env)

(get-var ’user recipient-env)

(equal (message-sender msg) sender)

(not (member-equal sender (get-var ’already-answered recipient-env))))

(user-in-already-answered sender

(mv-env (user-deliver msg recipient-env)))))

(defthm simulate-network/auto-response-adds-sender-to-already-answered

(implies

(and (get-var ’default-response recipient-env)

(get-var ’user recipient-env)

(equal (message-sender msg) sender)

(equal (email-user sender) sender-name)

(not (member-equal sender (get-var ’already-answered recipient-env)))

(equal (email-user (recip msg)) recip-name)

(equal (get-var user users) recipient-env))

(user-in-already-answered sender

(get-var recip-name

(mv-nth 1 (simulate-network

(mk-action ’mail sender-name msg)

users hosts))))))

Figure 3.11: Hierarchy of theorems to prove auto-response property.
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Figure 3.12: Levels of theorems.

messages. The second sends an undeliverable response from the postmaster when

a message is sent to an unknown user on the server. The postmaster account is an

unmonitored system account whose messages are often discarded.

One interaction that Hall has found is between these two features. As outlined

in Section 3.2, when a message is sent to an invalid user on a host, it is customary

for the postmaster of the host to reply with a ’user unknown’ response. The

postmaster account is an administrative address, and is not always monitored by

a human. It would therefore be extraneous to send an auto-response message to

the postmaster. While this situation does not indicate that something went wrong
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1. A sends a message to ZZZ@host (an unknown user)

2. The mailing software of host determines that ZZZ is an unknown user.

3. The postmaster at host sends an ’user unknown’ message to A.

Figure 3.13: Normal scenario of Postmaster sending a ’user unknown’ message.

0. A sets his auto-response to reply to any incoming email.

1. same as above in 3.13.

2. same as above in 3.13.

3. same as above in 3.13.

4. The auto-response of A sends a reply to Postmaster@host. This reply is
extraneous and is unexpected by the user.

Figure 3.14: Interaction scenario between auto-response and host features.

in the email system, it is considered an unwanted interaction within the feature-

interaction community.

The scenarios in Figures 3.13 and 3.14 illustrate both the expected and unex-

pected behaviors of the auto-response and host features. The unexpected behavior

is where the interaction occurs.

We can verify that this interaction is possible by describing the interaction as an

ACL2 theorem. Intuitively, the premise of the theorem, is: given that the vacation

message can only be a valid vacation message, and that the user name of the sender
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is a valid user name; sending a message to user who does not exist on a host should

result in the postmaster receiving a vacation message from the original sender of the

message. The formal theorem statement is listed in Figure 3.15.

Capturing the interaction as a theorem, rather that the absence of the interaction

is less than ideal. It presupposes that the interaction was already identified in the

system. The goal of this thesis was to recreate the problems that Hall identified in

a modular fashion; this helps determine sufficient interface information to identify

these problems. Theorem provers have known limitations in identifying the sources

of failure in proofs. Working with the actual interactions made it easier to detect

what interface information was points to the interactions. Carrying this over to

work with the theorems that state that no interaction exists is deferred to future

work.

Recall that the goal of doing this compositionally is to prove the theorems with-

out referring the to contents of the auto-response and host features. Instead, we will

prove these theorems using interface information about these two features.

What information is needed from the two features in order to prove that the

interaction occurs? From the auto-response, it is sufficient to know that: 1) if

the auto-response feature is enabled, and the sending user has not yet been re-

sponded to (i.e. not in ’already-responded), then that user will be added to the

’already-responded list, and 2) if the auto-response feature is enabled, and the

sending user has not yet been responded to, then an auto-response reply message

will be sent. The first captures the changes in the environment, the second capture

the action that results. For the host system, it is sufficient to know that if the user
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(defthm vacationer-autoresponds-to-postmaster-thm

(implies

(and

(message-p msg)

(equal (recipient msg) recipient)

(equal (email-user (message-sender msg)) sender-name)

(equal (email-user recipient) recipient-name)

(equal (email-host recipient) recipient-host)

(symbolp vacation)

(equal (get-var sender-name users) sender-env)

(get-var ’default-response sender-env)

(get-var recipient-host hosts)

(not (get-var recipient-name users))

)

(mv-let (status new-users new-hosts)

(simulate-network (mk-action ’mail sender-name msg)

users hosts)

(eq (body-lines (get-user-var ’postmaster ’recv-msg users))

vacation))))

Figure 3.15: ACL2 theorem for extraneous auto-response messages.

in the recipient field in not known on that host, then the postmaster will send an

’unknown user’ reply to the message sender.

All of these constraints are easily captured in theorems that appear in Figures 3.9

and 3.10 . The first two theorems prove that the auto-response feature performs

as expected, sending automated “vacation” responses to users once and only once.

This requires the code of the auto-response feature, as well as the base system code.

The last theorem proves that the host feature operates in the correct manner for

sending ’unknown user’ replies. The code of the host feature as well as the base
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system are required here. Together, these theorems capture the necessary interfaces

for proving the larger auto-response interaction property in Figure 3.16. However,

additional work must be done in order for the proofs to be accepted into the theorem

proving environment.

(defthm simulate-network/auto-response-to-postmaster

(implies

(and

(equal recip-name ’postmaster)

(equal (get-var user users) recipient-env)

(get-var ’default-response recipient-env)

(get-var ’user recipient-env)

(not (member-equal recip-name

(get-var ’already-answered recipient-env)))

(equal (email-user (message-sender msg)) sender-name)

(equal (email-user (recipient msg)) recip-name)

)

(user-sent-auto-response-to

sender-name

recip-name

(mv-nth 1 (simulate-network

(mk-action ’mail sender-name msg)

users

hosts)))))

Figure 3.16: ACL2 theorem for ensuring an auto-response message will be sent.

In order to prove the interaction exists in the whole system, we must “lift” the

properties of the features to a level where the features are able to interact. In the

code for the whole system, the features interact by both being called starting from

simulate-network. We therefore need to lift the interface properties proven about
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the features to theorems that refer to simulate-network. Figure 3.12 shows the

hierarchy of theorem levels needed to prove a theorem, while Figure 3.11 shows those

theorems for the the auto-response feature.

Treating the lifted theorems as lemmas, we can now prove that the interaction

exists on the entire system. However, in doing so, we would be using the code from

the entire system, which would be counter-productive to the modular verification

goals of the thesis. The code for connecting the features are needed for the final

proofs and cannot be removed from the system. However, the code contained within

the individual features are not needed and should not be used, as the already-

proven interfaces provide sufficient information for the verification. The theorem

prover of ACL2 operates by expanding function definitions as needed to prove the

theorems. Left to its core algorithms, ACL2 proves the interaction theorem, but

looks at the contents of the features. If ACL2 did not look at the contents of the

features, the resulting proof would be modular.

Fortunately, ACL2 provides a mechanism for preventing it from expanding cer-

tain functions when proving theorems. Using the ACL2 feature to “disable” expand-

ing (or re-writing) the feature contents, leaves the connections between the feature

intact, while making the proof modular. Figure 3.17 contains a small example illus-

trating how disabling a function affects its proof.

The function f returns ’a if its argument is true, and ’b otherwise. We wish to

prove that f returns either ’a or ’b for all inputs. We first prove, via f-of-true-

returns-a that f returns ’a for all true inputs. Next, f-of-false-returns-b

proves that f returns ’b for all non-true inputs. Since these two facts will be
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(defun f (x) (if x ’a ’b))

(defthm f-of-true-returns-a

(implies

x

(equal (f x) ’a)))

(defthm f-of-false-returns-b

(implies

(not x)

(equal (f x) ’b)))

; Disable expanding definition of f

(in-theory (disable f))

(defthm f-returns-a-or-b

(member-equal (f x) ’(a b))

:hints ((‘‘Goal’’ :use (f-of-true-returns-a

f-of-false-returns-b))))

Figure 3.17: ACL2 example of using disable.

sufficient for proving our property, we then disable the expansion of function f in

all further proofs. That is, the definition of f is no longer consulted when attempting

to prove the theorems. In our final theorem, f-returns-a-or-b, we use the results

of the previous two theorems, to prove the original property.

We used the disabling technique when proving all the interaction theorems. Us-

ing this technique, we were able to duplicate the results obtained from verifying

the whole complete system in Section 3.2.1. Using the disabling technique, we were

able to duplicate the results obtained from verifying the whole complete system in
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Section 3.2.1. This process and style of interface theorems are representative of the

steps and theorems needed to prove the other interactions.

3.3 Summary of Case Study

By building the system up from the base system, we were able to clearly observe

the effects of adding a feature on the system. Each feature added was a collection of

functions which implemented the necessary functional interfaces. Adding a feature

to the system was simple, thanks to the ample usage of macros in the main source

code. Only minimal changes must be made to add a feature to the base system,

this allowed me to experiment with a variety of features in rapid succession. Each

feature was individually added to the base system, and verified to ensure that its

major properties were preserved.

To ensure that the interactions occurred, an attempt was made to prove all the

properties on the whole composed system; the system with all features enabled.

The baseline proven by this attempt gave validation to the next section of the case

study—proving the interactions occurred, modularly. By “disabling” the theorem

prover from expanding the function definitions of the features, we could ensure that

all theorems were proven on the basis of the previously proven verification interfaces.

In other words, by obtaining the same proof results both with and without expanding

the feature code, we modularly verified that the properties listed in Section 3.2.
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Chapter 4

The Methodology

This chapter describes a methodology for creating and proving theorems about

feature-oriented systems in the ACL2 theorem proving environment. In order to

determine what theorems must be proven, it is paramount that 1) the base system

and calling function for each feature have already been implemented, and 2) the

set of properties to preserve and interactions to confirm are known. The methods

presented here illustrate how to optimally set up the model in ACL2, and how to

design different types of interface theorems. Additionally, hints are given on which

parts of the model are needed for proving different types of theorems, and how

effectively manage the proof process.
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4.1 Setting up the Model

In considering flexibility, both the model and the implementation should be designed

to easily allow new features to be added, with minimal or no changes needed. The

model of the system was designed to be highly modular; the implementation of the

system is modular as well, as each feature is contained in a separate file.

In implementing the system, we had two main goals:

1. To make it easy to enable or disable features so we could study the impact of

the features on properties in the system.

2. To make adding a new feature (to the code, as well as the corresponding the-

orems) as simple as possible. Many of the theorems have a similar structure

across features (differing only in the name of the calling function or an environ-

ment variable). Having a way to share this common structure would simplify

both adding new features and altering the common structure as needed once

we began using them for verification.

ACL2 macro facilities enabled me to meet both of these goals [Gra93].

For the first goal, we created a macro, fif (short for “feature-if”), which condi-

tionally includes the code for a feature, as well as the necessary code in the network

system, based on whether the feature is enabled. A feature is enabled by setting

an ACL2 variable with the names of the features to be used. Figure 4.1 shows

the same code as Figure 3.5, but using the fif macro to increase flexibility. The

*features-present* line in the figure specifies that only the auto-response and

encryption code should be included when macro expanded.
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(defconst *features-present* ’(auto encrypt))

(defund user-init (user)

(let-seq user

(fif encrypt (email-encrypt-init user) user)

(fif decrypt (email-decrypt-init user) user)

(fif auto (email-auto-init user) user)

user))

Figure 4.1: User initialization source code, using the fif macro.

The second goal was similarly solved with macros. We created various macros

to create theorems parameterized by details from the actual features. For example,

Figure 4.2 shows the macro make-*/mail-returns-message-p-thm which creates a

theorem to prove that the function’s second return value is has the format of a valid

message. The macro takes in one or more arguments: 1) the name of the function to

which to apply the theorem, and (optionally) 2) any hints that should be provided

to the theorem prover to aid in proving the theorem1.

Obviously these macros do not affect the ability to prove theorems in the sys-

tem. However, these macros are critical for reducing user overhead in proving the

theorems. Without the simplifying macros, it would be difficult for the programmer

to maintain and update the system, as well as keep the similar theorems consistent

across features.

1Hints are a feature of ACL2 which provide the theorem prover with a suggest of how to best
proceed in the proof.
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(defmacro make-*/mail-returns-message-p-thm (func &optional hints)

‘(defthm ,(new-thm func ’returns-message-p)

(implies

(message-p msg)

(message-p (mv-nth 1 (,func msg env))))

:hints ,(inject-goals

(list

(list "Goal" ’:in-theory (list ’enable func))) hints)))

(make-*/mail-returns-message-p-thm email-auto-outgoing)

Figure 4.2: Macro definition for make-*/mail-returns-message-p-thm and exam-
ple usage.

4.2 Designing Interface Theorems

Theorems characterize the following:

1. Input/output: Constraints on the types or format of the functional inputs

(arguments) and outputs (return values).

2. Changes: Which attributes might and definitely do not change in the environ-

ment after executing the feature. Figure 4.4 shows the theorem thm-email-

auto-init-adds-or-changes-only-x-variables, which proves that only

’already-answered, ’user and ’default-response are added by the func-

tion email-auto-init. Explicitly stating those variables that are changed

enables the theorem to remain the same when additional variables are added
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; Provided that the first argument to email-auto-outgoing

; satisfies message-p, the second return value of

; calling the function will always satisfy message-p.

(defthm thm-email-auto-outgoing-returns-message-p

(implies (message-p msg)

(message-p (mv-nth 1 (email-auto-outgoing msg env)))))

Figure 4.3: Constraints on functional outputs.

to the system—the number and content of the unknown variables in the system

are irrelevant to this theorem.

3. Dependent changes: How the environment is changed and what values are re-

turned, based on attributes of the inputs or variables in the environment. Fig-

ure 4.5 shows an example. The theorem auto-response-if-not-already-

answered-mail-action proves that if the auto-response mechanism is en-

abled and the sender of the incoming message is not already in the ’already-

answered list, then an auto-response message is sent back. The theorem

no-auto-response- if-already-answered proves the reverse—that if the

sender is already in the ’already-answered list, then no auto-response mes-

sage is sent.

Some of the theorem types listed above have a great potential for being generated

automatically. Writing theorems is a time-consuming task, so the automation both

reduces the time spent, as well as the chances of the theorem being improperly
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(defthm thm-email-auto-init-adds-or-changes-only-x-variables

(implies

(and (symbol-alistp env)

(equal (get-var key env) var)

(not (member key

’(already-answered user default-response))))

(let

((new-env (email-auto-init env)))

(and (equal (get-var key new-env) var)

(and (has-var ’already-answered new-env)

(has-var ’user new-env)

(has-var ’default-response new-env))))))

Figure 4.4: Which attributes are changed during function call.

stated. The list below characterizes the above list as to each class of theorem’s

potential for automatic generation.

1. Input/output: With minimal programmer input, these theorems could be au-

tomated. Programmers of strongly-typed languages are already accustomed

to specifying the type of their variables. With simple type annotations on vari-

ables, the input and output types of functions could be automatically derived

(generated) and proven.

2. Changes: Which simple code-analysis techniques, these theorems could also

be largely automatically generated. A simple parsing of the possible paths

in a function could determine which variables are always changed and which

are only sometimes changed. Variables that are changed based on an input
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;; auto-response-if-not-already-answered-mail-action

; If enabled, first message from user results in an

;; auto-response message

(defthm auto-response-if-not-already-answered-mail-action

(implies

(and

(get-var ’default-response env) ; autoresponder enabled

(get-var ’user env)

(equal sender (message-sender msg))

(not (member-equal sender (get-var ’already-answered env)))

)

(equal (mv-status (email-auto-incoming msg env)

’mail))))

;; no-auto-response-if-already-answered

;; If enabled, subsequent messages from the same user result in

;; no additional messages

(defthm no-auto-response-if-already-answered

(implies

(and

(equal (message-sender msg) sender)

(user-in-already-answered sender env)

)

(not

(equal (mv-status (email-auto-incoming msg env))

’mail))))

Figure 4.5: Which attributes are changed during function call.
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or environmental variable could be marked, and put into a theorem using the

dependent changes method.

3. Dependent changes: The least likely candidate for automation. These theo-

rems are highly dependent on the code contained in the functions used in the

theorem.

4. “Lifters”: These theorems that “lift” previously proven theorems to the next

level of code also have potential for semi-automatic generation. The first

theorem on a function that is lifted to the next level require human intervention

to discover the exact methods used for related one level to the next. However,

the subsequent theorems use largely the same techniques for the lifting, and

could possibly be generated automatically.

Although using macros or generating theorems automatically can reduce the

amount of effort necessary to initially produce a theorem, some theorems may require

more user intervention to prove. In our experience, the dependent changes and lifter

theorems required the most user intervention, often requiring hints to the theorem-

prover or additional helper lemmas before finally proving. The input/output and

changes theorems in the system required almost no changes.

4.3 Model Elements for Proving Theorems

Each class of theorem must be checked against different parts of the system model.

For example, the property theorems need only be checked against the feature-level

49



code, while the interaction theorems use only the top-most level. The following is a

list explaining which parts of the model each theorem uses.

1. Property, Input/Output, Changes, Dependent changes: These classes of theo-

rems use the feature-level code in the system. These require the feature and

base system code, as illustrated in Section 3.2.2.

2. Interaction: Since interactions primarily occur between features, this class of

theorems uses only the top-most level of code for its proofs. The feature-level

code should be disabled during these proofs, and cannot be used to provide

details for the proof. See Section 3.2.3 for a complete explanation.

3. Lifting: Acting as a bridge between the interaction and other types of theo-

rems, this class could potentially use all the levels of code in the system. For

this particular setup, we had three main levels of code: the feature- (calling

functions), action- (user-command, user-init functions, etc), and top-level

(the simulate-network function). The total number of levels could be differ-

ent for other system models, but the nature of lifting theorems would remain

the same.

4.4 Managing the Proof Process

One of the downsides of theorem-proving is the level of user interaction required to

adequately prove a system. Ideally, the methodology for proving the system should

minimize the amount of user time and effort needed.
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With ACL2, you can automate the proof process in two main ways: 1) auxil-

iary proofs capture common lemmas about key relationships in the system; and 2)

theorem-prover hints that tell ACL2 which lemmas to use at particular points in a

proof. The lifting theorems are the main form of auxiliary theorems we used, which

provided the necessary lemmas for the later proof of the interaction theorems. Hints

provided a method in proving the lifting theorems for specifying which variables on

one level corresponded with the variables on the next level of code. For the inter-

action theorems, hints provided a way to point ACL2 to the proper lemmas to use

in the proof process. Regardless of the system implementation, hints will still be

necessary to ensure that ACL2 uses the proper theorems. This part requires user

intervention, and is unlikely to be automated.

4.5 Perspective on Methodology

4.5.1 Strengths

1. Easier handling of unknown values. By using a theorem proving environment,

unknown values became a minor issue, in contrast to the major difficulty they

presented by using a model checker.

2. Ability to reason about a list of actions, rather than just one action at a time.

Li’s model checker system used only one action at a time, which limits its

ability to express rich theorems.
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4.5.2 Limitations

1. The current methodology is not able to detect actual interactions, but instead

had to rely on those already identified.

2. Theorems must be stated in the positive form. That is, that the interaction

does exist. It is difficult in the theorem proving environment to prove a prop-

erty does not hold; the failure of a theorem to prove could also signify that it

was improperly stated, or does not have enough supporting proofs.

3. The user overhead of creating the theorems is high, but could be reduced sig-

nificantly through the use of automating techniques. See Sections 5.2 and 4.2

for ideas on automating theorem generation.
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Chapter 5

Conclusions

The goal of this research has been to determine what kinds of system model and

interface theorems would allow us to reproduce Hall’s interactions modularly. These

in turn yield a proposed methodology for handling other, similar, systems. The

primary focus of this work was not on finding the interactions, but rather finding

theorems that proved them to exist: the most challenging part of this project was

in coming up with the change and dependent change theorems, which characterize

the information that one feature needs about another during modular verification.

This characterization, and the overall system architecture, are the main and novel

contributions of this work.

To conclude this thesis, we review the results of the case study, summarize the

categories of theorems needed for the proofs, review the features of ACL2 that helped

in verifying the system, and cite directions for future work.
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5.1 Review of Case Study

Starting from a base system devoid of features, we individually modeled and im-

plemented three additional features: the host, auto-response, and en-/decrytion fea-

tures. The features were chosen as a representative sample of the features pre-

sented in Hall’s paper. These features and their implementation is discussed in

Section 3.1.2.

We combined two or more features together to create instances where features

interacted in an interesting manner. Section 3.2.3 showed how to prove that in-

teraction occurred between features. We were able to prove that the auto-response

feature interacted with the host feature when sending spurious response messages to

the host’s postmaster messages. Additionally, we started the proof to show that the

en-/decryption feature interacted with the auto-response feature by sending out pre-

viously encrypted text over the network in clear-text. Although we were unable to

finish these proofs in the time available, problems appeared to be in minor assump-

tions and not in the methodology. Based on the initial successes, we are confident

that all the feature interaction presented in Hall’s paper could be similarly proven.

Section 4.2 categorized the types of theorems in several distinct categories. To

show how common each of the types are, Figure 5.1 shows the number of theorems

that were needed in proving the interactions. The feature-level theorems were gen-

erally easy to produce, and required less user time and effort to create and prove.

The majority of the effort was expended at the lifting theorems, particularly because

of the number of theorems at that level (as shown in Table 5.1).
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Theorem Type/Level Number
Proven

Top Level
- simulate-network 1
Lifting Level
- lifting theorems 88
Feature Level
- input/output 21
- changes 12
- dependent changes 8

Figure 5.1: Distribution of theorems proven.

5.1.1 ACL2 Features

The language chosen, ACL2, had several features that were particularly helpful the

process of modeling the system, and proving the properties and interaction. This

list highlights those features that were most helpful:

1. Disabling - The ability to disable functions from being “expanded” in the

proof was crucial to successfully proving the theorems in a modular fashion.

With out this feature, we would have be un-able to conclusively state that the

theorems were proven without using the source code of the features.

2. Books - This feature of ACL2, although it proved to unwieldy to implement for

our purposes, highlighted the need to separate out the modules into individual

files.

Initially, the further up the theorems were “lifted,” 1 the harder the theorems

were to prove. However, as our knowledge of working with ACL2 and proving
1See Section 3.2.2 for details on lifting theorems.
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theorems increased, the opposite became true—finding the initial theorems for the

feature interfaces became problematic, but once found, were easily lifted up to the

network-level code verification. Given this learning overhead, it is difficult to esti-

mate the amount of user time needed to use this methodology once a user becomes

experienced with ACL2 and feature verification.

5.2 Future Work

Section 4.5 summarizes the strengths and limitations of this work. Three issues

which could provide the most immediate benefit are:

1. Automatically generate theorems which pertain to changes that could occur

in the environment. A program could analyze the feature source code, and

determine which environment variables will definitely change, and which could

possible change in the calling functions. These analyses could then easily be

turned into theorems on the feature (see Section 4.2 for details).

2. Finish reproducing the interactions presented in Hall’s study.

3. Perform another case study to determine what other kinds of interfaces can be

or should be determined on the feature code. This would also have the benefit

of validating the methodology proposed in Section 4.
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Appendix A

Code Listing of System

A.1 mail.lisp

(include-book "/usr/share/acl2-2.6/books/data-structures/list-theory")

(include-book "/usr/share/acl2-2.6/books/data-structures/alist-theory")

(include-book "/usr/share/acl2-2.6/books/data-structures/set-theory")

(include-book "/usr/share/acl2-2.6/books/data-structures/structures")

; Enable all features implemented responder

(defconst *features-present* ’(encrypt decrypt auto host))

(ld "const.lisp")

(ld "util.lisp")

(fif host (ld "f-host.lisp"))

(fif encrypt (ld "f-encrypt.lisp"))

(fif decrypt (ld "f-decrypt.lisp"))

(fif auto (ld "f-auto.lisp"))

(ld "base.lisp")

(ld "theorems.lisp"))
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A.2 const.lisp

;;; CONSTANTS

;;; Used mainly for testing purposes.

;;*users*

;; Describes users are in the system

(defconst *users*

’(

(rjh (user . rjh)

(already-answered)

(default-response)

(name . rjh))

(bob (user . bob)

(already-answered)

(user)

(default-response)

(name . bob))

(postmaster (already-answered)

(default-response)

(user . postmaster)

(name . postmaster))))

;;*hosts*

;; Describes hosts in system

(defconst *hosts*

’(

(host (users rjh bob postmaster)

(users bob postmaster)

(hostname . host)

(hostname)

(users postmaster)

(name . host))

(remail (hostname)

(users postmaster)

(name . remail))

(sender (hostname)

(users postmaster)
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(name . sender))))

(defconst *commands*

’(init_user

set_hostname

set_user

default_response))

(defconst *key-space* ’(a b c d e))

(defconst *user-names* ’(rjh bob))

(defconst *vacation-space* ’("I’m on vacation"

"I love my job, but i love fishing more"))

(defconst *init-env*

(acons ’users *users*

(acons ’hosts *hosts*

’())))

(defconst *msg*

(mk-message

(mk-email ’bob ’host)

(list (mk-email ’rjh ’host))

’()

(list "none")))

A.3 util.lisp

;;; MACROS

;;;

; To see what these macros expand out to, use:

; (macroexpand ’(<macro> <macro-args>) ’() state)

; or

; (expand (<macro> <args>))

;; (expand term)
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;; expands macro to one level

(defmacro expand (macro)

‘(macroexpand1 (quote ,macro) ’() state))

;;(begin list[code]) -> list[len(list)]

;; returns results of last expression

(defmacro begin (exp &rest rst)

(cond ((endp rst) exp)

((endp (cdr rst)) ‘(prog2$ ,exp ,(car rst)))

(t ‘(prog2$

,exp

(begin ,(car rst) ,@(cdr rst))))))

;;(lookup string [string]) -> value

;; macro to lookup variable in current env

(defmacro lookup (str1 &optional str2)

‘(if (not (null ,str2))

(get-hash-var ,str2 ,str1 env)

(get-var ,str1 env)))

;;(lookup string [string]) -> value

;; macro to lookup variable in current env

(defmacro lookupx (str &optional str2)

(let ((s1 (string str))

(s2 (string str2)))

‘(if (not (null ,s2)) (get-hash-var ,s2 ,s1 env)

(get-var ,s1 env))))

;;(let-seq var list[code]) -> list[len(list)]

;; Sequentially binds var to results of list[i] code

;; returns results of last expression

(defmacro let-seq (var &rest rst)

(cond ((endp rst) (car rst))

((endp (cdr rst)) (car rst))

(t ‘(let ((,var (,@(car rst))))

(let-seq ,var ,@(cdr rst))))))
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; mv-let-seq var list[code] -> list[len(list)]

; sequentially binds var to results of list[i] code

; returns results of last expression

(defmacro mv-let-seq (vars &rest rst)

(cond ((endp rst) (car rst))

((endp (cdr rst)) (car rst))

(t ‘(mv-let ,vars (,@(car rst))

(mv-let-seq ,vars ,@(cdr rst))))))

; mv-let-seq var list[code] -> list[len(list)]

; sequentially binds var to results of list[i] code

; returns results of last expression

(defmacro mv-let-seq-use (vars &rest rst)

(cond ((endp rst) ‘())

((endp (cdr rst)) ‘(begin ,@vars (,@(car rst))))

(t ‘(mv-let ,vars (begin ,@vars (,@(car rst)))

(mv-let-seq-use ,vars ,@(cdr rst))))))

;;(defalias f1 f2) -> (defmacro f1 ...)

;;defines alias for function

;;Macro-defining macro from "On Lisp" by Paul Graham

(defmacro defalias (f1 f2)

‘(defmacro ,f1 (&rest args)

‘(,’,f2 ,@args)))

;;(fif feature if_stmt else_stmt) -> statement

;;if feature is enabled, use if_stmt, otherwise else_stmt

(defmacro fif (feature if_stmt &optional else_stmt)

(cond ((member-equal feature *features-present*)

‘,if_stmt)

(t ‘,else_stmt)))

;;(fif-all features if_stmt else_stmt) -> statement

;;if features are enabled, use if_stmt, otherwise else_stmt

(defmacro fif-all (features if_stmt &optional else_stmt)

(cond ((null features) ‘,if_stmt)
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((member-equal (car features) *features-present*)

(let ((f2 (cdr features)))

‘(fif-all ,f2 ,if_stmt ,else_stmt)))

(t ‘,else_stmt)))

;;(fif-any features if_stmt else_stmt) -> statement

;;if any feature is enabled, use if_stmt, otherwise else_stmt

(defmacro fif-any (features if_stmt &optional else_stmt)

(cond ((null features) (begin (cw "(t: ~x0)~%" if_stmt) ‘,else_stmt))

((member-equal (car features) *features-present*)

‘,if_stmt)

(t

(let ((f2 (cdr features)))

‘(fif-any ,f2 ,if_stmt ,else_stmt)))))

;;; ENV FUNCTIONS

(defun envp (env)

(declare (xargs :guard t))

(symbol-alistp env))

;;(set-var symbol value env) -> env

;; Returns a new list with ’var changed to ’val

(defun set-var (var val env)

; (declare (xargs :guard (and (symbolp var)

; (symbol-alistp env)

; )))

(acons var val env))

;;(get-var symbol env) -> value

;; Return val of ’var in list

(defun get-var (var env)

(declare (xargs :guard (and (symbolp var)

(symbol-alistp env))))

(cdr (assoc var env)))

;;(has-var symbol env)-> boolean

;; checks whether symbol is defined in alop

;(defalias has-var assoc)
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(defun has-var (var env)

(declare (xargs :guard (and (symbolp var)

(symbol-alistp env))))

(assoc var env))

(defun symbol2-alist2p (var1 var2 alist)

(declare (xargs :guard t)) ;(and (symbolp var1)

; (symbolp var2)

; (symbol-alistp alist))))

(and (symbol-alistp alist)

(symbolp var1)

(let ((alist2 (get-var var1 alist)))

(and

(symbolp var2)

(symbol-alistp alist2)))))

;;(set-hash-var symbol value symbol env) -> env

;; sets var to val in hash contained in env

(defun set-hash-var (var val hash env)

; (declare (xargs :guard (and (symbolp var)

; (symbolp hash)

; (symbol-alistp env)

; (symbol2-alist2p hash var env)

; )))

(set-var hash ; Set hash var

(set-var var val ; after setting var->val

(get-var hash env)) env); after getting hash

)

;;(get-hash-var symbol symbol env) -> value

;; get value of var in hash contained in env

(defun get-hash-var (var hash env)

(declare (xargs :guard (and (symbolp var)

(symbol-alistp env)

(symbol2-alist2p hash var env))))

(get-var var ; Set hash var

(get-var hash env))) ; after getting hash
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(defun host-envp (env)

(declare (xargs :guard t))

(and (envp env)

(atom-listp (lookup ’users))))

(defun user-envp (env)

(declare (xargs :guard t))

(and (envp env)

(listp (lookup ’already-answered))))

(defun env-subset (?sub ?super)

(declare (xargs :guard (and

(symbol-alistp ?super)

(symbol-alistp ?sub))))

(subsetp-equal (domain ?sub) (domain ?super)))

;;(comment string env) -> env

;; prints out a comments, returns env

(defun comment (str env)

(declare (xargs :guard (and (stringp str)

(symbol-alistp env))))

(or

(cw str) ; returns ’()

(cw "~%") ; newline

env))

;;(actionp message) -> boolean

; predicate for checking whether variable is an action

(defun actionp (act)

(declare (xargs :guard t))

(and (symbol-alistp act)

(get-var ’command act)

(has-var ’args act)

(has-var ’env act)))

;;; HELPER FUNCTIONS
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;;;

;;(stringify-helper <anything> boolean -> string

;; helper function to stringify

(defun stringify-helper (list in-list?)

(declare (xargs :guard t))

(cond ((null list) ")")

((stringp list) (string list))

((characterp list) (string list))

((symbolp list) (string list))

((consp list)

(string-append

(if in-list? " " "(")

(string-append

(stringify-helper (car list) nil)

(string-append " "

(stringify-helper (cdr list) t)))))

(t "<error>")))

;;(stringify ?) -> string

;; stringifies list or variable

(defun stringify (list)

(declare (xargs :guard t))

(stringify-helper list nil))

;;(los-adjoin item list) -> list

;; Add item to list if item is not already part of list

(defun los-adjoin (item list)

(declare (xargs :guard (and (atom item)

(atom-listp list))))

(if (member-equal item list)

list

(cons item list)))

(defstructure email

(user (:assert (and (symbolp user)

(not (null user)))))
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(host (:assert (and (symbolp host)

(not (null host)))))

(:options :guards))

(defun email-listp (lst)

(declare (xargs :guard t))

(if (ATOM LST)

(EQ LST NIL)

(AND (email-P (CAR LST))

(email-LISTP (CDR LST)))))

(defun recips-p (r)

(declare (xargs :guard t))

(and (listp r)

(email-p (car r))

(email-listp (cdr r))))

(defstructure message

(sender (:assert (email-p sender)))

(recips (:assert (recips-p recips)))

(headers (:assert (symbol-alistp headers)))

(body (:assert (listp body)))

(:options :guards)

)

(defun recipient (msg)

(declare (xargs :guard (and (message-p msg)

(not (null (message-recips msg))))))

(car (message-recips msg)))

(defmacro mk-email (user host)

‘(make-email :user ,user :host ,host))

(defmacro mk-message (s r h b)

(if (listp b)

‘(make-message :sender ,s

:recips ,r

:headers (set-var ’from ,s
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(set-var ’to ,r ,h))

:body ,b)

‘(make-message :sender ,s

:recips ,r

:headers (set-var ’from ,s

(set-var ’to ,r ,h))

:body ’(,b))))

;;(wrap-msg-body message symbol -> message)

;; wraps body of message in wrapper, for example, encryption

(defun wrap-msg-body (msg wrapper)

; (declare (xargs :guard (and (messagep msg)

; (symbolp wrapper))))

(update-message msg

:body

(list wrapper (message-body msg))))

;;(get-msg-wrapper message) -> symbol

;; gets the wrapper around the message

(defun get-msg-wrapper (msg)

(begin (cw "~x0 ~%" (stringify msg))

(let ((wrapper (message-body msg)))

(and (consp wrapper)

(car wrapper)))))

;;(get-msg-header string message -> header

;; get the header which contains

(defun get-msg-header (header msg)

(get-var header (message-headers msg)))

;;(set-msg-header string string message -> message

;; add (replace) the header starting with <header> with <value>

(defun set-msg-header (header value msg)

(update-message msg

:headers

(set-var header value (message-headers msg))))
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;;(subject message) -> string

;; returns subject of message

(defun subject (msg)

(get-msg-header ’subject msg))

(defun ret3 (status arg env)

(declare (xargs :guard (and (symbolp status)

(message-p arg)

(symbol-alistp env))))

(mv status arg env))

;; (return3 symbol msg env) -> (mv symbol msg env)

;; syntactical sugar to return from feature

(defmacro act (status &optional arg env)

(if (equal ’comment status)

‘(begin

(cw "Comment: ~x0~%" ,arg) ; output comment

(ret3 ’,status msg env))

(if env

‘(ret3 ’,status ,arg ,env)

‘(ret3 ’,status ,arg env))))

(defun action-commandp (action)

(and (listp action)

(listp (cdr action))

(listp (cddr action))

(listp (cdddr action))

(let ((who (car action))

(what (cadr action))

(arg1 (caddr action))

(arg2 (cadddr action)))

(and (or (has-var who *hosts*)

(has-var who *users*))

(equal ’command what)

(and (symbolp arg1)

(memberp arg1 *commands*))
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(listp arg2)))))

(defun msg-type-p (msg)

(declare (xargs :guard t))

(and (listp msg)

(listp (cdr msg))

(listp (cddr msg))

(listp (cdddr msg))

(listp (cddddr msg))

(let ((head (car msg))

(from (cadr msg))

(to (cadddr msg))

(body (cadddr (cdr msg))))

(and

(equal ’smessage head)

(listp from)

(listp to)

(or (stringp body)

(atom body)

(listp body))))))

(defun action-sendp (action)

(and (listp action)

(listp (cdr action))

(listp (cddr action))

(let ((who (car action))

(what (cadr action))

(msg (caddr action)))

(begin (cw "~x0 - ~x1 - ~x2~%" who what msg)

(and (or (has-var who *hosts*)

(has-var who *users*))

(equal ’send what)

(msg-type-p msg))))))

(defun actions-helper (actions status)

(if (null actions)

(equal ’end status)

(if (listp actions)
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(let ((action (car actions))

(rest (cdr actions)))

(if (equal ’init status)

(if (equal ’init (car action))

(actions-helper rest ’command)

nil)

(if (equal ’command status)

(if (action-commandp action)

(actions-helper rest ’command)

(if (action-sendp action)

(actions-helper rest ’end)

nil))

nil)))

nil)))

(defun actions-listp (actions)

(begin

(actions-helper actions ’init)

)

)

(defun get-vars (vals alist)

(cond ((null vals) nil)

(t (and (listp vals)

(let ((val (car vals)))

(acons

val

(get-var val alist)

(get-vars (cdr vals) alist)))))))

(defun equal-or-one-off (l1 l2)

(or (equal l1 l2)

(equal (cdr l1) l2)))

(defun wrap-list (lst wrapper)

(cons wrapper lst))

(defun unwrap-list (lst wrapper)
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(if (and (consp lst)

(equal wrapper

(car lst)))

(cdr lst)

lst))

(defmacro mv-status (lst) ‘(mv-nth 0 ,lst))

(defmacro mv-msg (lst) ‘(mv-nth 1 ,lst))

(defmacro mv-env (lst) ‘(mv-nth 2 ,lst))

(defmacro mv-actions (lst) ‘(mv-nth 0 ,lst))

(defmacro mv-users (lst) ‘(mv-nth 1 ,lst))

(defmacro mv-hosts (lst) ‘(mv-nth 2 ,lst))

(defmacro action-msg (act) ‘(action-arg1 ,act))

A.4 f-host.lisp

;;; EMAIL-HOST

;;; ---------

;;(email-host-init env) -> env

;; initializes environment

(defund email-host-init (env)

(begin

(cw " [email-host-init]~%")

(set-var ’hostname ’()

(set-var ’users ’(postmaster) env))))

;;(email-host-command string list[args] env) ->

;;

(begin

(cw " [email-host-command: ~x0 (~x1)]~%" (lookup ’hostname) cmd)

(cond ((equal cmd ’SET_HOSTNAME)

(let ((hn (car args)))

(set-var ’hostname hn env)))
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((equal cmd ’INIT_USER)

(let ((uname (car args)))

(set-var ’users (los-adjoin uname (lookup ’users)) env)))

((equal cmd ’DELETE_USER)

(let ((uname (car args)))

(set-var ’users (remove-equal uname (lookup ’users)) env)))

(t env))))

;;(email-host-outgoing message env) ->

;;

(defund email-host-outgoing (msg env)

(begin

(cw " [email-host-outgoing: ~x0]~%" (lookup ’hostname))

(let ((recip (recipient msg))) ;

(begin

(cw ".....~x0~%" (stringify recip))

(if (equal (lookup ’hostname)

(email-host recip))

(begin (cw "delivering...")

(let ((r-user (email-user recip)))

(if (member-equal r-user (lookup ’users))

(begin (cw "..to ~x0~%" r-user)

(if (message-p msg)

(act deliver msg)

(begin (cw "Message not msgp ~x0~%" msg)

(act deliver msg))))

(begin

(cw "no user~%")

(let ((pm-addr (mk-email ’Postmaster (lookup ’hostname))))

(act mail

(mk-message pm-addr

(list (message-sender msg))

nil

(list

"Unknown user: "

(stringify recip)

"Following message undeliverable:"

(stringify (message-headers msg))
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"e"

(stringify (message-body msg))))))))))

(act mail msg))))))

;;(email-host-incoming message env) ->

(defund email-host-incoming (msg env)

(begin

(cw " [email-host-incoming: ~x0]~%" (lookup ’hostname))

(act comment "[Incoming events not handled]")))

A.5 f-encrypt.lisp

;;; EMAIL-ENCRYPT

;;; -------------

(defun encrypt-headers (headers key )

(if (endp headers)

nil

(let* ((header (car headers))

(field (car header))

(content (cdr header)))

(cond ((equal ’subject field)

(cons (cons field (wrap-list content (list ’encrypted key)))

(encrypt-headers (cdr headers) key )))

(t (cons header

(encrypt-headers (cdr headers) key )))))))

(defun encrypt-body (body key)

(wrap-list body (list ’encrypted key)))

(defun encrypt-message (msg key nonce)

(declare (ignore nonce))

(make-message

:sender (message-sender msg)

:recips (message-recips msg)

:headers (encrypt-headers (message-headers msg) key)

:body (encrypt-body (message-body msg) key)))
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; email-encrypt-init env -> env

; initializes encryption variables

(defun email-encrypt-init (env)

(set-var ’e-corrs ’()

(set-var ’nonce-counter 0 env)))

(defun email-encrypt-command (cmd args env)

(begin

(cw " [email-encrypt-command: ~x0]~%" (lookup ’user))

(cond ((equal ’SET_CORRESPONDENT_KEY cmd)

(let ((corr (car args))

(key (cadr args)))

(if (member-equal corr (lookup ’e-corrs))

(if (equal ’() key)

(set-var ’e-corrs

(remove-equal corr (lookup ’e-corrs))

env)

(set-hash-var corr key ’correspondent-key env))

(set-var ’e-corrs (cons corr (lookup ’e-corrs))

(set-hash-var corr key ’correspondent-key env)))))

(t env))))

(defun email-encrypt-outgoing (msg env)

(let ((?recip (recipient msg)))

(begin

(cw " [email-encrypt-outgoing: ~x0]~%" (lookup ’user))

(if (member-equal ?recip (lookup ’e-corrs))

(let ((key (lookup ’correspondent-key ?recip))

(nonce (lookup ’nonce-counter)))

(act mail

(encrypt-message msg key nonce)

(set-var ’nonce-counter (1+ nonce) env)))

(act mail msg env)))))

(defun email-encrypt-incoming (msg env)

(begin

(cw " [email-encrypt-incoming: ~x0]~%" (lookup ’user))
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(act comment "[Incoming events not handled]")))

(defun body-encrypted? (body)

(and

(listp body)

(listp (car body))

(equal (caar body)

’encrypted)))

(defun encrypted? (msg)

(and

(message-p msg)

(let ((body (message-body msg)))

(body-encrypted? body))))

A.6 f-decrypt.lisp

;;; EMAIL-DECRYPT

;;; -------------

(defun decrypt-headers (headers key )

(if (endp headers)

nil

(let* ((header (car headers))

(field (car header))

(content (cdr header)))

(cond ((equal ’subject field)

(cons (cons field (unwrap-list content (list ’encrypted key)))

(decrypt-headers (cdr headers) key)))

(t (cons header

(decrypt-headers (cdr headers) key )))))))

(defthm unwrap-list-undoes-wrap-list

(implies

(equal key unkey)

(equal

(unwrap-list (wrap-list lst key) unkey)

75



lst)))

(in-theory (enable unwrap-list wrap-list))

(defthm decrypt-headers-undoes-encrypt-headers

(implies

(and

(symbol-alistp headers)

)

(equal

(decrypt-headers

(encrypt-headers headers key)

key)

headers)))

(defun decrypt-body (body key)

(unwrap-list body (list ’encrypted key)))

(defun decrypt-message (msg key)

(update-message msg

:headers (decrypt-headers (message-headers msg) key)

:body (decrypt-body (message-body msg) key)))

(defthm body-encrypted-by-encrypt-body

(implies

(and

body

)

(body-encrypted? (encrypt-body body key))))

(fif comment

(thm ;defthm body-encrypted-by-encrypt-body

(implies

(and

(message-p msg)

key

nonce
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)

(encrypt-message msg key nonce)))

)

(fif comment

(thm

(implies

(and

(message-p msg)

)

(equal

(decrypt-message

(encrypt-message msg key nonce)

key)

msg)))

)

(defun invalid-decrypt-message-result (msg)

(if (endp msg) nil

(if (equal ’encrypted

(cadr msg))

t

(invalid-decrypt-message-result (cdr msg)))))

(defun email-decrypt-init (env)

(set-var ’user ’()

(set-var ’own-key ’() env)))

(defun email-decrypt-command (cmd args env)

(cond ((equal ’SET_USER cmd)

(let ((?user (nth 0 args)))

(set-var ’user ?user env)))

((equal ’SET_OWN_KEY cmd)

(let ((key (nth 0 args)))

(set-var ’own-key key env)))

(t env)))

(defun email-decrypt-outgoing (msg env)
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(act comment "[Outgoing events not handled"))

(defun email-decrypt-incoming (msg env)

(let ((?user (LOOKUP ’user))

(?ok (LOOKUP ’own-key)))

(if (equal "" ?user)

(act comment "[No user set --> message discarded]")

(if (equal ?ok "")

(act deliver msg env)

(let ((?dmsg (DECRYPT-MESSAGE msg ?ok)))

(if (invalid-decrypt-message-result ?dmsg)

(act deliver msg env)

(act deliver ?dmsg env)))))))

A.7 f-auto.lisp

;;; EMAIL-AUTO

;;; -----------------

;;(email-auto-init env) -> env

;; initialize envronment

(defund email-auto-init (env)

(set-var ’already-answered ’()

(set-var ’user ’()

(set-var ’default-response ’() env))))

;;(email-auto-command string list[<anything>] env -> env

;;

(defund email-auto-command (cmd args env)

(cond ((equal ’SET_USER cmd)

(let ((?user (car args)))

(set-var ’user ?user env)))

((equal ’SET_DEFAULT_RESPONSE cmd)

(let ((resp (car args)))

(set-var ’already-answered ’()

(set-var ’default-response resp env))))

(t env)))
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;;(email-auto-outgoing message env) -> action

;; what transpires when an message is sent

(defund email-auto-outgoing (msg env)

(begin

(cw " [email-auto-outgoing: ~x0]~%" (lookup ’user))

(act comment "[Outgoing events not handled]")))

;;(email-auto-incoming message env) -> action

;; when a message is received

(defund email-auto-incoming (msg env)

(if (equal ’() (lookup ’user))

(act comment " [User not set yet --> no action]")

(begin

(let ((?from (message-sender msg)))

(if (member-equal ?from (lookup ’already-answered))

(act comment "[No autoresponse, already answered -->

no further action]")

(if (equal ’() (lookup ’default-response))

(act comment "[No default autoresponse --> no further action]~%")

(let ((?recip (recipient msg))

(?response (lookup ’default-response)))

(begin

(cw " respond ’~x0’to ~x1~%" ?response ?recip)

(act mail

(mk-message

?recip

(list (message-sender msg))

(set-var ’subject (list ’re (subject msg)) ’())

(cons ?response ’()))

(set-var

’already-answered

(cons ?from (lookup ’already-answered))

env))))))))))

79



A.8 base.lisp

;;; SIMULATE NETWORK

;;; ----------------

;(defmacro glue (feature &rest ))

;(defmacro funcname (&rest names)

; ‘(pack-intern "ACL" (,@names)))

;(defmacro callme (name &rest args)

; (let ((call

; (cons (funcname name) args)))

; ‘(QUOTE ,call)))

; Usage:

; (glue outgoing

; (decrypt (deliver verify))

;

; Well, try this instead:

; (glue

; (email-decrypt-outgoing

; (deliver email-verify-outgoing)

; (email-verify-outgoing

; (deliver email-auto-outgoing))

(defun msgtomessage (msg)

(begin

(cw "msgtomessage")

(let ((head (car msg))

(from (cadr msg))

(to (caddr msg))

(body (cadddr msg)))

(if (equal ’smessage head)

(mk-message

(mk-email (car from) (cadr from))

(mk-email (car to) (cadr to ))

’()
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(list body))

’()))))

(defstructure action

(type (:assert (member type ’(command init send mail deliver

ok deliver-ok))))

(name (:assert (and (not (null name)) (symbolp name))))

(arg1 (:assert (or (equal ’init type)

(if (member-equal type

’(send mail deliver))

(message-p arg1)

(not (null arg1))))))

(arg2 (:assert (or (not (equal type ’command))

(atom-listp arg2))))

(:options :guards))

(defun action-listp (lst)

(if (ATOM LST)

(EQ LST NIL)

(AND (action-P (CAR LST))

(action-LISTP (CDR LST)))))

(defun mk-action4 (type name arg1 arg2)

(make-action :type type

:name name

:arg1 arg1

:arg2 arg2))

(defmacro mk-action (type &optional name arg1 arg2)

(mk-action4 type name arg1 arg2))

(defun send-ok (msg user)

(begin

(cw "send-ok: ~%")

(mv ’deliver msg (set-var ’sent-msg msg user))))

(defun send-abort (msg user)
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(mv ’abort msg user))

(defun deliver-ok (msg user)

(mv ’deliver-ok msg (set-var ’recv-msg msg user)))

(defalias deliver-abort deliver-ok)

(defun recv-ok (msg user)

(mv ’ok msg user))

(defun recv-abort (msg user)

(mv ’abort msg user))

(fif address

(defalias user-send-begin user-send-address)

(defalias user-send-begin user-send-address-next))

(fif sign

(defalias user-send-address-next user-send-sign)

(defalias user-send-address-next user-send-sign-next))

(fif encrypt

(defalias user-send-sign-next user-send-encrypt)

(defalias user-send-sign-next user-send-encrypt-next))

(defalias user-send-encrypt-next user-send-ok)

(fif decrypt

(defalias user-deliver-begin user-deliver-decrypt)

(defalias user-deliver-begin user-deliver-decrypt-next))

(fif verify

(defalias user-deliver-decrypt-next user-deliver-verify)

(defalias user-deliver-decrypt-next user-deliver-verify-next))

(fif auto

(defalias user-deliver-verify-next user-deliver-auto)

(defalias user-deliver-verify-next user-deliver-auto-next))
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(defalias user-deliver-auto-next user-deliver-ok)

(fif host

(defalias host-send-begin host-send-host)

(defalias host-send-begin host-send-host-next))

(defalias host-send-host-next host-send-ok)

;;(user-init user) -> user

;;

(defun user-init (user)

; (declare (xargs :guard (symbol-alistp user)))

(let-seq user

(fif sign (email-sign-init user) user)

(fif verify (email-verify-init user) user)

(fif encrypt (email-encrypt-init user) user)

(fif decrypt (email-decrypt-init user) user)

(fif auto (email-auto-init user) user)

(fif address (email-address-init user) user)

user))

(defun user-command-dummy (cmd args user)

(declare (ignore cmd args))

user)

;;(user-command user list[<anything>]) -> user

;;run through all commands

(defun user-command (act user)

; (declare (xargs :guard (and (symbol-alistp user)

; (true-listp args))))

(let ((cmd (action-arg1 act))

(args (action-arg2 act)))

(let-seq user

(fif address (email-address-command cmd args user)

user)

(fif auto (email-auto-command cmd args user)
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user)

(fif sign (email-sign-command cmd args user)

user)

(fif encrypt (email-encrypt-command cmd args user)

user)

(fif decrypt (email-decrypt-command cmd args user)

user)

(fif verify (email-verify-command cmd args user)

user)

(user-command-dummy cmd args user)

user)))

;;;(user-send-*

;;;send user message

(defun user-send-ok (msg user)

(begin

(cw "user-send-ok: Message mailed (~x0): ~x1~%" msg user)

(send-ok msg user)))

(defun user-send-abort (msg user)

(begin

(cw "Message aborted~%")

(send-abort msg user)))

(fif encrypt

(defund user-send-encrypt (msg user)

(begin (cw "user-send-encrypt: ~x0 ~% ~x1~%" msg user)

(mv-let (status new-msg new-user)

(email-encrypt-outgoing msg user)

(cond ((equal ’mail status)

(user-send-encrypt-next new-msg new-user))

(t (user-send-abort new-msg new-user)))))))

(fif sign

(defun user-send-sign (msg user)
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(mv-let (status msg user)

(email-sign-outgoing msg user)

(let ((user (set-var ’sent-msg msg user)))

(if (equal ’mail status)

(user-send-sign-next msg user)

(user-send-abort msg user))))))

(fif address

(defun user-send-address (msg user)

(mv-let (status msg user)

(email-address-outgoing msg user)

(let ((user (set-var ’sent-msg msg user)))

(user-send-address-next msg user)))))

;;(user-send user msg) -> user

;;

(defun user-send (msg user)

(begin (cw "user-send: ~x0 / ~x1~%" user (stringify msg))

(user-send-begin msg user)))

;;;(user-deliver

(defun user-deliver-ok (msg user)

(begin (cw "Message delivered~%")

(deliver-ok msg user)))

; (deliver-ok msg (set-var ’recv-msg msg user))))

(defun user-deliver-abort (msg user)

(deliver-abort msg user))

; (deliver-abort msg (set-var ’recv-msg msg user)))

(defmacro do-options (on-abort options)

(let ((opt (car options))

(rst (cdr options)))

(cond ((endp rst) ‘(if (equal ’,(car opt) status)

(,(cadr opt) msg user)

(,on-abort msg user)))

(t ‘(if (equal ’,(car opt) status)

(,(cadr opt) msg user)
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(do-options ,on-abort ,rst))))))

(defmacro do-next (fn callee on-abort options)

‘(defun ,fn (msg user)

(mv-let (status msg user)

(,callee msg user)

(do-options ,on-abort ,options))))

(fif auto

(defun user-deliver-auto-reply (msg user)

(begin (cw "[user-deliver-auto-reply] Auto ~x0~%" msg)

(mv ’mail msg user))))

(fif auto

(defun user-deliver-auto (msg user)

(mv-let (status new-msg new-user)

(email-auto-incoming msg user)

(begin

(cond ((equal ’deliver status)

(user-deliver-auto-next new-msg new-user))

((equal ’mail status)

(user-deliver-auto-reply new-msg (set-var ’recv-msg msg new-user)))

(t

(user-deliver-abort new-msg new-user))))))

)

; should do the same as above...

;(do-next user-deliver-auto

; email-auto-incoming

; user-deliver-abort

; ((deliver user-deliver-auto-next)

; (mail user-deliver-auto-reply)))

(fif verify

(defun user-deliver-verify (msg user)

(mv-let (status msg user)

(email-verify-incoming msg user)

(let* ((user (set-var ’recv-msg msg user)))
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(user-deliver-verify-next msg user)))))

(fif decrypt

(defund user-deliver-decrypt (msg user)

(mv-let (status new-msg new-user)

(email-decrypt-incoming msg user)

(if status

(user-deliver-decrypt-next new-msg new-user)

(user-deliver-decrypt-next new-msg new-user)))))

;;(user-deliver symbol message) -> message

;;

(defun user-deliver (msg user)

(begin

(cw " [user-deliver]~x0 to ~x1~%" msg user)

(user-deliver-begin msg user)))

;;(clean-msg message) -> message

;;

;(defun clean-msg (msg)

; (begin

; ;(cw (string-append (string-append "MSG-->" (stringify msg)) "~%"))

; (if (message-p msg)

; msg

; (let ((msg msg))

; (begin

; ;(cw (string-append (string-append "MSG2-->" (stringify msg)) "~%"))

; (make-message

; (nth 1 msg)

; (nth 2 msg)

; ’()

; (nth 3 msg)))))))

;;(init-users list[users]) -> list[users]
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;;

(defun init-users (users)

(if (not (endp users))

(let ((name (caar users))

(user (cdar users)))

(acons name (user-init user)

(init-users (cdr users))))

nil))

;;(clean-act act ->

;(defun clean-act (act)

; (if (equal ’mail (car act))

; (let ((msg (cadr act)))

; (begin

; (cw "msg: ~x0--~x1~%" msg (car (sender msg)))

; (list (car (sender msg))

; ’send

; msg))

; )

; act))

;;;; HOST FUNCTIONS

;;;;

(defun host-init (host)

(let-seq host

(fif host (email-host-init host) host)

host))

(defun host-command (act host)

(let ((cmd (action-arg1 act))

(args (action-arg2 act)))

(let-seq host

(fif host

(email-host-command cmd args host)

host)

host)))
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(defun host-send-ok (msg host)

(begin

(cw "MAILED~%")

(send-ok msg host)))

(defun host-send-delivered (msg host)

(begin

(cw "host-send-delivered DELIVERED~%")

(mv ’deliver msg (set-var ’recv-msg msg host))))

(defun host-send-abort (msg host)

(send-abort msg host))

(fif host

(defun host-send-host (msg host)

(mv-let (status new-msg new-host)

(email-host-outgoing msg host)

; (let ((host (set-var ’sent-msg msg host)))

(cond ((equal ’deliver status)

(host-send-delivered new-msg new-host))

((equal ’mail status)

(host-send-host-next new-msg new-host))

(t (host-send-abort new-msg new-host)))))

)

(defun host-send (msg host)

(host-send-begin msg host))

; init-hosts list[hosts] -> list[hosts]

;

(defun init-hosts (hosts)

(if (not (endp hosts))

(let ((name (caar hosts))

(host (cdar hosts)))

(acons name (host-init host)

(init-hosts (cdr hosts))))

nil))

89



;;;; OTHER

(defun add-user-mail-action (type msg rest)

(cons (mk-action

type

(email-user (message-sender msg))

msg)

rest))

(defun add-sender-mail-action (type msg rest)

(cons (mk-action

type

(email-user (message-sender msg))

msg)

rest))

(defun add-host-mail-action (type msg rest)

(cons (mk-action

type

(email-host (recipient msg))

msg)

rest))

;;(do-init action list[actions] list[user] list[host]) ->

;;

(defun do-init (action rest users hosts)

(declare (ignore action))

(begin (cw "do-init~%")

(mv rest

(init-users users)

(init-hosts hosts))))

;;(do-command action list[actions] list[user] list[host]) ->

; (BOB COMMAND "SET_USER" ("bob"))

(defun do-command (action rest users hosts)

(begin
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(cw "do-command ~x0~%" action)

(let* ((name (action-name action)))

(cond ((get-var name users) ; USER COMMAND

(let* ((user (get-var name users))

(new-user (user-command action user))

(new-users (set-var name new-user users)))

(mv rest new-users hosts)))

((get-var name hosts) ; HOST COMMAND

(let* ((host (get-var name hosts))

(new-host (host-command action host))

(new-hosts (set-var name new-host hosts)))

(mv rest users new-hosts)))

(t (mv rest users hosts))))))

(defun do-user-send (action rest users hosts)

(let* ((name (action-name action))

(msg (action-arg1 action)))

(mv-let (status new-msg new-user)

(user-send msg (get-var name users))

(let ((new-users (set-var name new-user users)))

(begin

(cw "will send(~x0) ~x1, user: ~x2~%" status new-msg

(email-host (recipient new-msg)))

(if status

(mv (add-host-mail-action ’send new-msg rest)

new-users

hosts)

(mv rest new-users hosts)))))))

(defun do-host-send (action rest users hosts)

(let* ((name (action-name action))

(msg (action-arg1 action)))

(mv-let (status new-msg new-host)

(host-send msg (get-var name hosts))

(let ((new-hosts (set-var name new-host hosts)))

(cond ((equal ’deliver status)
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(mv (add-user-mail-action ’deliver new-msg rest)

users

new-hosts))

((equal ’mail status)

; "mail" to another host == "deliver" on other host

(mv (add-user-mail-action ’deliver new-msg rest)

users

new-hosts))

(t (mv rest users new-hosts)))))))

;;(do-send action list[actions] list[user] list[host]) ->

; (BOB SEND (SMESSAGE (bob host) (rjh host) "Body line 1")))))

(defun do-send (action rest users hosts)

(begin

(cw "do-send: ~x0~%" (stringify action))

(let* ((name (action-name action))

(msg (action-arg1 action)))

(cond ((get-var name users) ; USER SEND

(begin (cw "trying ~x0 ~x1~%" (get-var name users) msg)

(do-user-send action rest users hosts)))

((get-var name hosts)

(do-host-send action rest users hosts))

(t (mv rest users hosts))))))

(defun add-mail-action (msg rest)

(cons (mk-action

’mail

(email-user (message-sender msg))

msg)

rest))

;;(do-deliver action list[actions] list[user] list[host]) ->

(defun do-deliver (action rest users hosts)

(begin

(cw "Doing delivery of ~x0~%" (stringify action))

(let* ((name (action-name action))

(msg (action-arg1 action)))
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(cond ((get-var name users) ; USER DELIVER

(mv-let (status new-msg new-user)

(user-deliver msg (get-var name users))

(let ((new-users (set-var name new-user users)))

(if (equal ’mail status)

(begin

(cw "acted as ~x0 ~x1, user: ~x2~%" status new-msg

(email-user (message-sender msg)))

; (mv (add-user-mail-action ’mail new-msg rest)

(mv (add-user-mail-action ’send new-msg rest)

new-users

hosts))

(mv rest new-users hosts)))))

(t (mv rest users hosts))))))

;;;(do-mail action list[actions] list[user] list[host]) ->

(defun do-mail (action rest users hosts)

(let* ((name (action-name action))

(msg (action-arg1 action)))

(cond ((get-var name users) ; USER MAIL

(mv-let (status msg new-user)

(user-send msg (get-var name users))

(let ((new-users (set-var name new-user users)))

(if status

(begin

(cw "here be dragons (~x2) ~x0 with ~x1 ~%" (message-sender msg) msg status)

(mv

(if (equal status ’mail)

(add-sender-mail-action ’mail

msg

rest)

(if (equal status ’deliver)

(add-user-mail-action ’deliver

msg

rest)

rest))

new-users

hosts))
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(mv rest new-users hosts)))))

(t (mv rest users hosts)))))

(defun do-action-cond (action rest users hosts)

(let ((type (action-type action)))

(cond ((equal ’init type)

(do-init action rest users hosts))

((equal ’send type)

(do-send action rest users hosts))

((equal ’deliver type)

(do-deliver action rest users hosts))

((equal ’mail type)

(do-mail action rest users hosts))

((equal ’command type)

(do-command action rest users hosts))

(t (begin

(cw "Can’t execute command ~x0~%" action)

(mv rest users hosts))))))

;;(do-actions action list[actions] list[user] list[host]) ->

(defun do-actions (actions count users hosts)

(declare (xargs :measure (acl2-count count)))

(if (and (> count 0) (integerp count))

(begin

(cw "do-actions: ~x0~%" (stringify (car actions)))

(cond ((endp actions) (mv ’end users hosts))

(t (let* ((action (car actions))

(rest (cdr actions)))

(mv-let (new-actions new-users new-hosts)

(do-action-cond action rest users hosts)

(do-actions new-actions (- count 1) new-users new-hosts ))))))

(mv ’error users hosts)))

(defun parse-actions (actions)

(begin

(cond ((endp actions) ’())

(t
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(cons

(let ((act (car actions)))

(if (equal ’init (car act))

(mk-action ’init)

(if (equal ’command (cadr act))

(mk-action

’command

(car act)

(caddr act)

(cadddr act))

(mk-action

’send

(car act)

(msgtomessage (caddr act))))))

(parse-actions (cdr actions)))))))

;;(simulate-network list[actions])

;;sets up initial env and calls recursive simulation func

(defun simulate-network (actions)

(do-actions (parse-actions actions) 20 *users* *hosts*))

;;(simulate-network-with-env list[action] env)

;;

(defun simulate-network-with-env (actions env)

(do-actions (parse-actions actions)

20

(get-var ’users env)

(get-var ’hosts env)

))

A.9 theorems.lisp

(set-ignore-ok t)

(set-match-free-default :all)

(ld "p-macros.lisp")

(ld "p-util.lisp")
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(fif host (ld "p-host.lisp"))

(fif auto (ld "p-auto.lisp"))

(ld "p-other.lisp")

(ld "p-interaction.lisp")

A.10 p-macros.lisp

(defun inject-goals (new-goals goals)

(cond ((endp new-goals) goals)

(t (let* ((goal (car new-goals))

(key (car goal))

(rest (cdr new-goals)))

(begin

(cw "you have ~x0 and ~x1~%" goals new-goals)

(inject-goals

rest

(put-assoc-equal key

(append (cdr (assoc-equal key goals))

(cdr goal))

goals)))))))

;; (new-thm symbol symbol) -> acl2-internal-symbol

;; returns concatenated thm-x-y as new acl2 internal symbol,

;; suitable for using as defthm or defun name

(defun new-thm (x y)

(intern (concatenate ’string

"THM-"

(stringify x)

"-"

(stringify y))

"ACL2"))

(defun catsym (x y)

(intern (concatenate ’string

(stringify x)

(stringify y))
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"ACL2"))

;; (make-returns-symbol-alistp-thm symbol) -> thm-func-returns-symbol-alistp

;; Makes theorem which theorizes that a feature function returns

;; a symbol-alistp

(defmacro make-*/mail-returns-symbol-alistp-thm (func &optional hints)

‘(defthm ,(new-thm func ’returns-symbol-alistp)

(implies

(and

(message-p msg)

(symbol-alistp env)

)

(mv-let (s new-msg new-env)

(,func msg env)

(symbol-alistp new-env)))

:hints ,(inject-goals (list (list "Goal"

’:in-theory (list ’enable func))) hints)))

(defmacro make-*/mail-returns-symbolp-thm (func &optional hints)

‘(defthm ,(new-thm func ’returns-symbolp)

(mv-let (s new-msg new-env)

(,func msg env)

(symbolp s))

:hints ,(inject-goals (list (list "Goal"

’:in-theory (list ’enable func))) hints)))

;; (make-returns-same-env-thm symbol) -> thm-func-returns-same-env

;; Makes theorem which theorizes that a feature function returns the

;; same env passed into it.

;;

(defmacro make-*/mail-returns-same-env-thm (func &optional hints)

‘(defthm ,(new-thm func ’returns-same-env)

(implies

(and

(message-p msg)

(symbol-alistp env))
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(mv-let (s new-msg new-env)

(,func msg env)

(equal new-env env)))

:hints ,(inject-goals (list (list "Goal"

’:in-theory (list ’enable func))) hints)))

;; (make-*/mail-returns-message-p-thm symbol) -> thm-func-returns-message-p-thm

;; Makes theorem which theorized that a feature function returns

;; always a message-p message.

(defmacro make-*/mail-returns-message-p-thm (func &optional hints)

‘(defthm ,(new-thm func ’returns-message-p)

(implies

(and

(message-p msg)

)

(message-p (mv-nth 1 (,func msg env))))

:rule-classes (:rewrite (:FORWARD-CHAINING :TRIGGER-TERMS

((mv-nth 1 (,func msg env)))))

:hints ,(inject-goals (list (list "Goal"

’:in-theory (list ’enable func))) hints)))

;; (add-has-vars-conditions list[symbol]) ->

;; Helper function for make-adds-x-variables-thm

(defmacro add-has-var-conditions (vars)

(let ((variable (car vars))

(rst (cdr vars)))

(cond ((endp rst) ‘(has-var (quote ,variable) new-env))

(t ‘(and (has-var (quote ,variable) new-env)

(add-has-var-conditions ,rst))))))

;; (make-*/init-adds-x-variables-thm symbol list[symbol])

;; Makes theorem which theorizes that feature function adds

;; only particular variables to env

(defmacro make-*/init-adds-x-variables-thm (func vars &optional hints)

‘(defthm ,(new-thm func ’adds-x-variables)

(implies

(symbol-alistp env)

(let ((new-env
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(,func env)))

(add-has-var-conditions ,@(cdr vars))))

:hints ,(inject-goals (list (list "Goal"

’:in-theory (list ’enable func))) hints)))

;; (make-changes-only-x-variables-thm symbol list[symbol])

;; Makes theorem which theorizes that feature function does not change

;; variables other than specified

(defmacro make-*/init-changes-only-x-variables-thm (func variables)

‘(defthm ,(new-thm func ’changes-only-x-variables)

(implies

(and

(symbol-alistp env)

(equal (get-var key env)

var)

(not (member key ,variables))

)

(let ((new-env

(,func env)))

(equal (get-var key new-env)

var)))))

;; (make-add-and-changes-only-x-variables-thm symbol list[symbol])

;; Makes theorem which theorizes that feature function adds only

;; variables specified, and that no other variables are added

(defmacro make-*/init-add-and-changes-only-x-variables-thm

(func variables &optional hints)

‘(defthm ,(new-thm func ’adds-and-changes-only-x-variables)

(implies

(and

(symbol-alistp env)

(equal (get-var key env)

var)

(not (member key ,variables))

)

(let ((new-env

(,func env)))

99



(and

(equal (get-var key new-env)

var)

(add-has-var-conditions ,@(cdr variables))

)))

:hints ,(inject-goals (list (list "Goal"

’:in-theory (list ’enable func))) hints)))

(defmacro make-f/comm-add-and-changes-only-x-variables-thm

(func variables &optional hints)

‘(defthm ,(new-thm func ’adds-and-changes-only-x-variables)

(implies

(and

(symbol-alistp env)

(equal (get-var key env)

var)

(not (member key ,variables))

)

(let ((new-env

(,func cmd args env)))

(and

(equal (get-var key new-env)

var)

(add-has-var-conditions ,@(cdr variables))

)))

:hints ,(inject-goals (list (list "Goal"

’:in-theory (list ’enable func))) hints)))

(defmacro make-*/mail-returns-same-message-thm (func &optional hints)

‘(defthm ,(new-thm func ’returns-same-message)

(implies

(and

(symbol-alistp user)

msg)

(mv-let (new-status new-msg new-user)

(,func msg user)

(equal new-msg msg)))
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:hints ,(inject-goals (list (list "Goal"

’:in-theory (list ’enable func))) hints)))

;(defmacro make-user-*-returns-action-listp-thm (func &optional hints)

; un-needed due to not dealing with action-list

(defmacro make-d/that-returns-action-listp-thm (func &optional hints)

‘(defthm ,(new-thm func ’returns-action-listp)

(implies

(and

(action-p action)

(action-listp rest)

(symbol-alistp users)

(symbol-alistp hosts)

)

(mv-let (new-rest new-users new-hosts)

(,func action rest users hosts)

(action-listp new-rest)))

:hints ,(inject-goals (list (list "Goal"

’:in-theory (list ’enable func))) hints)))

(defmacro make-d/that-returns-action-listp-if-message-p-thm

(func &optional hints)

‘(defthm ,(new-thm func ’returns-action-listp)

(implies

(and

(action-p action)

(message-p (action-arg1 action))

(action-listp rest)

(symbol-alistp users)

(symbol-alistp hosts)

)

(mv-let (new-rest new-users new-hosts)

(,func action rest users hosts)

(action-listp new-rest)))

:hints ,(inject-goals (list (list "Goal"

101



’:in-theory (list ’enable func))) hints)))

(defmacro make-*/mail-returns-superset-of-user-thm (func &optional hints)

‘(defthm ,(new-thm func ’returns-superset-of-user)

(implies

(and

(symbol-alistp user)

msg

)

(mv-let (new-status new-msg new-user)

(,func msg user)

(env-subset user new-user)))

:rule-classes :forward-chaining

:hints ,(inject-goals (list (list "Goal"

’:in-theory (list ’enable func))) hints)))

(defmacro make-f/comm-returns-superset-of-user-thm

(func &optional hints)

‘(defthm ,(new-thm func ’returns-superset-of-user)

(implies

(and

(symbol-alistp user)

args

cmd

)

(let ((new-user (,func cmd args user)))

(env-subset user new-user)))

:rule-classes :forward-chaining

:hints ,(inject-goals (list (list "Goal"

’:in-theory (list ’enable func))) hints)))

(defmacro make-d/that-returns-superset-of-users-thm (func &optional hints)

‘(defthm ,(new-thm func ’returns-superset-of-users)

(implies

(and
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(symbol-alistp users)

(symbol-alistp hosts)

msg)

(mv-let (new-rest new-users new-hosts)

(,func action rest users hosts)

(env-subset users new-users)))

:hints ,(inject-goals (list (list "Goal"

’:in-theory (list ’enable func))) hints)))

(defmacro make-d/that-returns-symbol-alistp-users-thm (func &optional hints)

‘(defthm ,(new-thm func ’returns-symbol-alistp-users)

(implies

(and

(symbol-alistp users)

(symbol-alistp hosts)

(symbolp (action-name action))

;msg

)

(mv-let (new-rest new-users new-hosts)

(,func action rest users hosts)

(symbol-alistp new-users)))

:hints ,(inject-goals (list (list "Goal"

’:in-theory (list ’enable func))) hints)))

(defmacro make-*/init-returns-symbol-alistp-thm (func &optional hints)

‘(defthm ,(new-thm func ’returns-symbol-alistp)

(implies

(and

(symbol-alistp env)

msg)

(let ((new-env (,func env)))

(symbol-alistp new-env)))

:hints ,(inject-goals (list (list "Goal"

’:in-theory (list ’enable func))) hints)))
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(defmacro make-d/that-returns-symbol-alistp-users-thm (func &optional hints)

‘(defthm ,(new-thm func ’returns-symbol-alistp-users)

(implies

(and

(symbol-alistp users)

(symbol-alistp hosts)

(symbolp (action-name action))

)

(mv-let (new-rest new-users new-hosts)

(,func action rest users hosts)

(symbol-alistp new-users)))

:hints ,(inject-goals (list (list "Goal"

’:in-theory (list ’enable func))) hints)))

(defmacro make-d/that-returns-symbol-alistp-hosts-thm (func &optional hints)

‘(defthm ,(new-thm func ’returns-symbol-alistp-hosts)

(implies

(and

(symbol-alistp hosts)

(symbol-alistp users)

(symbolp (action-name action))

)

(mv-let (new-rest new-users new-hosts)

(,func action rest users hosts)

(symbol-alistp new-hosts)))

:hints ,(inject-goals (list (list "Goal"

’:in-theory (list ’enable func))) hints)))

(defmacro make-d/that-returns-superset-of-hosts-thm (func &optional hints)

‘(defthm ,(new-thm func ’returns-superset-of-hosts)

(implies

(and

(or rest (null rest))

(or action (null action))

(symbol-alistp users)
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(symbol-alistp hosts)

msg)

(mv-let (new-rest new-users new-hosts)

(,func action rest users hosts)

(env-subset hosts new-hosts)))

:hints ,(inject-goals (list (list "Goal"

’:in-theory (list ’enable func))) hints)))

(defmacro make-*/init-returns-superset-of-env-thm (func &optional hints)

‘(defthm ,(new-thm func ’returns-superset-of-env)

(implies

(and

(symbol-alistp env)

)

(let ((new-env (,func env)))

(env-subset env new-env)))

:hints ,(inject-goals (list (list "Goal"

’:in-theory (list ’enable func))) hints)))

(defmacro make-*/mail-returns-same-user-thm (func &optional hints)

‘(defthm ,(new-thm func ’returns-same-user)

(implies

(and

(symbol-alistp user)

)

(mv-let (new-status new-msg new-user)

(,func msg user)

(equal new-user user)))

:hints ,(inject-goals (list (list "Goal"

’:in-theory (list ’enable func))) hints)))

(defmacro make-*/mail-returns-superset-of-user-if-message-p-thm

(func &optional hints)
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‘(defthm ,(new-thm func ’returns-superset-of-user-if-message-p)

(implies

(and

(symbol-alistp user)

(message-p msg))

(mv-let (new-status new-msg new-user)

(,func msg user)

(env-subset user new-user)))

:hints ,(inject-goals (list (list "Goal"

’:in-theory (list ’enable func))) hints)))

(defmacro make-d/that-returns-no-actions (func &optional hints)

‘(defthm ,(new-thm func ’returns-no-actions)

(implies

t

(mv-let (new-rest new-users new-hosts)

(,func action rest users hosts)

(equal new-rest rest)))

:hints ,hints))

(defmacro make-d/that-returns-at-most-one-action (func &optional hints)

‘(defthm ,(new-thm func ’returns-no-actions)

(implies

t

(mv-let (new-rest new-users new-hosts)

(,func action rest users hosts)

(equal-or-one-off new-rest rest)))

:hints ,hints))

(defun sender-becomes-recipient (a b)

(equal

(message-sender a)

(recipient b)))
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A.11 p-util.lisp

; Utility functions for theorems

;

(defthm env-subset-reflexive

(implies

(and

(symbol-alistp l)

)

(env-subset l l)))

(defthm env-subset-acons

(implies

(and

(env-subset a b)

)

(env-subset a (acons k v b))))

(defthm env-subset-set-var

(implies

(and

(env-subset a b)

)

(env-subset a (acons k v b))))

(defthm env-subset-transitive

(implies

(and

(env-subset a b)

(env-subset b c)

)

(env-subset a c))

:hints

(("Goal’" :use (:instance subsetp-equal-transitive

(a (domain a))

(b (domain b))
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(c (domain c))))))

(defthm same-is-subset

(implies

(and

(symbol-alistp e)

(symbol-alistp e2)

(equal e e2)

)

(env-subset e e2)))

(defthm set-var-is-subset

(implies

(and

(symbol-alistp env)

(symbol-alistp e2)

(env-subset env e2)

(symbolp k)

)

(env-subset env (set-var k v e2))))

(defthm equal-is-subset

(implies

(and

(symbol-alistp env)

; (symbol-alistp e2)

; (equal env e2)

; (subset env e2)

)

(env-subset env env)))

(defthm equal-set-var-is-subset

(implies

(and

(symbol-alistp env)

(symbolp k)

)

(env-subset env (set-var k v env))))
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(defthm mk-action-returns-action-p-thm

(implies

(and

(message-p msg)

(symbolp user)

(not (null user))

)

(action-p (mk-action ’send user msg arg2))))

(defthm mk-email-returns-email-p-thm

(implies

(and

(and

(symbolp to)

(not (null to)))

(and

(symbolp host)

(not (null host)))

)

(email-p (mk-email to host))))

(defthm message-sender-returns-email-p

(implies

(and

(message-p msg)

)

(email-p

(message-sender msg))))

(defthm mk-message-returns-message-p-thm

(implies

(and

(email-p to)

(email-p from)

(equal (list to) tos)

(symbol-alistp headers)

(listp body)

109



)

(message-p

(mk-message from

tos

headers

body))))

(defthm add-mail-action-is-action-listp

(implies

(and

(message-p msg)

(action-listp rest))

(action-listp

(add-mail-action msg rest))))

(defthm add-user-mail-action-arg1

(equal (action-msg (car (add-user-mail-action type msg rest)))

msg))

(defthm add-user-mail-action-returns-action-listp

(implies

(and

(member-equal type ’(deliver mail send))

(message-p msg)

(action-listp rest))

(action-listp (add-user-mail-action type msg rest))))

(defthm add-sender-mail-action-returns-action-listp

(implies

(and

(member-equal type ’(deliver mail send))

(message-p msg)

(action-listp rest))

(action-listp (add-sender-mail-action type msg rest))))

(defthm add-host-mail-action-returns-action-listp
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(implies

(and

(member-equal type ’(deliver mail send))

(message-p msg)

(action-listp rest))

(action-listp (add-host-mail-action type msg rest))))

A.12 p-host.lisp

(make-*/mail-returns-symbol-alistp-thm email-host-outgoing)

(make-*/mail-returns-same-env-thm email-host-outgoing)

(make-*/mail-returns-message-p-thm email-host-outgoing)

(make-*/mail-returns-symbol-alistp-thm email-host-incoming)

(make-*/mail-returns-same-env-thm email-host-incoming)

(make-*/mail-returns-message-p-thm email-host-incoming)

(make-*/init-add-and-changes-only-x-variables-thm email-host-init

’(hostname users))

A.13 p-auto.lisp

(make-*/mail-returns-symbol-alistp-thm email-auto-outgoing)

(make-*/mail-returns-same-env-thm email-auto-outgoing)

(make-*/mail-returns-message-p-thm email-auto-outgoing)

(make-*/mail-returns-symbolp-thm email-auto-outgoing)

(make-*/mail-returns-symbolp-thm email-auto-incoming)

(make-*/mail-returns-symbol-alistp-thm email-auto-incoming)

(make-*/mail-returns-message-p-thm email-auto-incoming)

(make-*/mail-returns-superset-of-user-thm email-auto-incoming)

(make-*/init-add-and-changes-only-x-variables-thm email-auto-init

’(already-answered user default-response))
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;; (user-in-already-answered user env) -> boolean

;; checks whether user in in ’already-answered list

(defun user-in-already-answered (user env)

(member-equal user (get-var ’already-answered env)))

; example usage of user-in-already-answered

(user-in-already-answered (email ’user ’host)

(set-var ’already-answered

(list (email ’u ’h)

(email ’user ’host))

’()))

;;;;;;;;email-auto-incoming/*;;;;;;;;;;;;;

;; email-auto-incoming/auto-response-if-not-already-answered

;; if autoresponder enabled, then a message sent to user

;; will result in one auto-response

(defthm email-auto-incoming/auto-response-if-not-already-answered

(implies

(and

(lookup ’default-response) ; autoresponder enabled

(lookup ’user)

(equal sender (message-sender msg))

(not (member-equal sender (lookup ’already-answered)))

)

(mv-let (s new-msg new-env)

(email-auto-incoming msg env)

(and (equal s ’mail)

(equal (recipient new-msg) sender)

)

))

:hints (("Goal" :in-theory (enable email-auto-incoming))))

(defthm email-auto-incoming/auto-response-if-not-already-answered-mail-action

(implies

(and

(lookup ’default-response) ; autoresponder enabled

(lookup ’user)
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(equal sender (message-sender msg))

(not (member-equal sender (lookup ’already-answered)))

)

(mv-let (s new-msg new-env)

(email-auto-incoming msg env)

(equal s ’mail)

))

:hints (("Goal" :in-theory (enable email-auto-incoming))))

;; email-auto-incoming/no-auto-response-if-already-answered

;; If enabled, subsequent messages from the same user result in

;; no additional messages

(defthm email-auto-incoming/no-auto-response-if-already-answered

(implies

(and

(equal (message-sender msg) sender)

(user-in-already-answered sender env)

)

(not

(equal (mv-status (email-auto-incoming msg env))

’mail)))

:hints (("Goal" :in-theory (enable email-auto-incoming))))

;; email-auto-incoming/auto-response-adds-sender-to-already-answered

;; When sending an autoresponse, sender address is added to

;; ’already-answered list and will thus not receive additional

;; auto-responses

(defthm email-auto-incoming/auto-response-adds-sender-to-already-answered

(implies

(and

(lookup ’default-response)

(lookup ’user)

(equal sender (message-sender msg))

(not (member-equal sender (lookup ’already-answered)))

)

(user-in-already-answered sender (mv-env (email-auto-incoming msg env))))

:hints (("Goal" :in-theory (enable email-auto-incoming))))
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(defthm email-auto-incoming/something

(implies

(and

(lookup ’default-response) ; autoresponder enabled

(lookup ’user)

(equal sender (message-sender msg))

(not (member-equal sender (lookup ’already-answered)))

)

(mv-let (s new-msg new-env)

(email-auto-incoming msg env)

(equal s ’mail)))

:hints (("Goal" :in-theory (enable email-auto-incoming))))

(defthm email-auto-incoming/auto-response-recipient-becomes-message-sender

(implies

(and

(lookup ’default-response) ; autoresponder enabled

(lookup ’user)

(equal sender (message-sender msg))

(not (member-equal sender (lookup ’already-answered)))

)

(equal

(message-sender (mv-msg (email-auto-incoming msg env)))

(recipient msg)))

:hints (("Goal" :in-theory (enable email-auto-incoming))))

(defthm email-auto-incoming/auto-response-message-sender-becomes-recipient

(implies

(and

; (message-p msg)

(get-var ’default-response env) ; autoresponder enabled

(get-var ’user env)

(equal (message-sender msg) sender)

(not (member-equal sender (get-var ’already-answered env)))

)

(sender-becomes-recipient

msg
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(mv-msg (email-auto-incoming msg env))))

; (equal

; (recipient (mv-msg (email-auto-incoming msg env)))

; sender))

:hints (("Goal" :in-theory (enable email-auto-incoming))))

(user-deliver

(mk-message

(mk-email ’rjh ’host)

(list (mk-email ’bob ’host))

’()

’(a body))

(set-var ’default-response ’res

(set-var ’user ’rjh

(set-var ’already-answered ’()

’()))))

(defthm email-auto-incoming/auto-response-message-rewrite

(implies

(and

(message-p msg)

(get-var ’default-response env) ; autoresponder enabled

(get-var ’user env)

(equal (message-sender msg) sender)

(equal (recipient msg) recip)

(not (member-equal sender (get-var ’already-answered env)))

)

(equal

(mv-msg (email-auto-incoming msg env))

(mk-message recip (list sender)

(set-var ’subject (list ’re (subject msg)) ’())

(cons (get-var ’default-response env) ’()))))

:hints (("Goal" :in-theory (enable email-auto-incoming)))

:rule-classes (:rewrite :forward-chaining))

(defthm email-auto-incoming/already-answered-added

(implies

(and

(lookup ’default-response) ; autoresponder enabled
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(lookup ’user)

(equal sender (message-sender msg))

(not (member-equal sender (lookup ’already-answered)))

)

(equal

(mv-env (email-auto-incoming msg env))

(set-var ’already-answered

(cons sender (get-var ’already-answered env))

env)))

:hints (("Goal" :in-theory (enable email-auto-incoming))))

;; email-auto-incoming/auto-response-adds-sender-to-already-answered

(fif comment

(defthm email-auto-incoming/xxxx

(implies

(and

(lookup ’default-response)

(lookup ’user)

(equal sender (message-sender msg))

(not (member-equal sender (lookup ’already-answered)))

(not (lookup k))

(symbolp k)

)

(mv-let (s new-msg new-env)

(email-auto-incoming msg env)

(equal (get-var k env)

(get-var k new-env))))

:hints (("Goal" :in-theory (enable email-auto-incoming))))

)

A.14 p-other.lisp

(make-*/mail-returns-superset-of-user-thm send-ok)

(make-*/mail-returns-superset-of-user-thm user-send-ok

(("Goal’" :use (:instance thm-send-ok-returns-superset-of-user))))
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(make-*/mail-returns-superset-of-user-thm user-send

(("Goal’" :use (:instance thm-user-send-ok-returns-superset-of-user))))

(make-*/mail-returns-superset-of-user-thm email-host-outgoing)

(make-*/mail-returns-same-user-thm email-host-outgoing)

(make-*/mail-returns-same-user-thm email-host-incoming)

(make-*/mail-returns-same-env-thm send-abort)

(make-*/mail-returns-superset-of-user-thm send-abort)

(make-*/mail-returns-superset-of-user-thm host-send-abort

(("Goal’" :use (:instance thm-send-abort-returns-superset-of-user))))

(make-*/mail-returns-superset-of-user-thm host-send-delivered)

(make-*/mail-returns-same-user-thm send-abort)

(make-*/mail-returns-same-user-thm host-send-abort)

(make-*/mail-returns-superset-of-user-thm host-send-ok

(("Goal’" :use thm-send-ok-returns-superset-of-user)))

(make-*/mail-returns-symbol-alistp-thm email-host-outgoing)

(make-*/mail-returns-superset-of-user-thm email-host-outgoing)

(make-*/mail-returns-superset-of-user-thm host-send-delivered)

(expand (make-*/mail-returns-superset-of-user-thm host-send-ok))

(make-*/mail-returns-superset-of-user-thm host-send-host)

; (("Subgoal 3" :use (thm-host-send-delivered-returns-superset-of-user

; thm-email-host-outgoing-returns-message-p))))

(make-*/mail-returns-superset-of-user-thm host-send)

;(expand (make-*/mail-returns-superset-of-user-thm host-command))

;(make-f/comm-returns-superset-of-user-thm email-host-command)

(make-f/comm-returns-superset-of-user-thm email-auto-command)

(make-*/init-returns-symbol-alistp-thm init-hosts)

(make-d/that-returns-symbol-alistp-hosts-thm do-init)

(make-*/mail-returns-message-p-thm send-ok)

(make-*/mail-returns-message-p-thm user-send-ok)

(make-*/mail-returns-message-p-thm user-send)

(make-*/mail-returns-message-p-thm host-send-delivered)

(make-*/mail-returns-message-p-thm email-host-outgoing)

(make-*/mail-returns-message-p-thm host-send-ok)
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(make-*/mail-returns-message-p-thm send-abort)

(make-*/mail-returns-message-p-thm host-send-abort)

(make-*/mail-returns-message-p-thm host-send-host)

(make-*/mail-returns-message-p-thm host-send)

(make-*/init-returns-superset-of-env-thm init-hosts)

(make-d/that-returns-superset-of-hosts-thm do-init )

(make-d/that-returns-superset-of-hosts-thm do-send)

(make-d/that-returns-superset-of-hosts-thm do-deliver)

(make-d/that-returns-superset-of-hosts-thm do-mail)

(make-d/that-returns-superset-of-hosts-thm do-command)

(make-d/that-returns-superset-of-users-thm do-init);

(make-d/that-returns-superset-of-users-thm do-send)

(make-d/that-returns-superset-of-users-thm do-deliver)

(make-d/that-returns-superset-of-users-thm do-mail)

(make-d/that-returns-superset-of-users-thm do-command)

(make-d/that-returns-symbol-alistp-hosts-thm do-deliver)

(make-d/that-returns-symbol-alistp-hosts-thm do-mail)

;(make-d/that-returns-symbol-alistp-hosts-thm do-send)

(make-d/that-returns-symbol-alistp-users-thm do-init)

(make-d/that-returns-symbol-alistp-users-thm do-send)

(make-d/that-returns-symbol-alistp-users-thm do-deliver)

(make-d/that-returns-symbol-alistp-users-thm do-mail)

(make-d/that-returns-symbol-alistp-users-thm do-command)

(make-d/that-returns-action-listp-thm do-init)

(make-d/that-returns-action-listp-thm do-command)

(make-*/mail-returns-superset-of-user-thm email-auto-incoming)

(make-*/mail-returns-superset-of-user-thm deliver-ok)

(make-*/mail-returns-superset-of-user-thm user-deliver-abort)

(make-*/mail-returns-superset-of-user-thm user-deliver-auto-reply)

(make-*/mail-returns-symbol-alistp-thm user-deliver-auto-reply)

(make-*/mail-returns-symbol-alistp-thm deliver-ok)

(make-*/mail-returns-symbol-alistp-thm user-deliver-ok)
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(make-*/mail-returns-symbol-alistp-thm user-deliver-abort)

(make-*/mail-returns-symbol-alistp-thm email-auto-incoming)

(make-*/mail-returns-symbol-alistp-thm email-auto-incoming)

(make-*/mail-returns-message-p-thm email-auto-incoming)

(make-*/mail-returns-message-p-thm email-auto-outgoing)

(make-*/mail-returns-symbol-alistp-thm user-deliver-auto)

(make-*/mail-returns-same-message-thm deliver-ok)

(make-*/mail-returns-same-message-thm user-deliver-ok)

(make-*/mail-returns-same-message-thm user-deliver-abort)

(make-*/mail-returns-same-message-thm user-deliver-auto-reply)

(make-*/mail-returns-symbol-alistp-thm user-deliver)

(make-*/mail-returns-symbolp-thm user-deliver)

(make-*/mail-returns-message-p-thm user-deliver)

(make-*/mail-returns-superset-of-user-thm user-send)

(defthm thm-user-command-returns-superset-of-user

(implies (and (symbol-alistp user)

(action-p action)

cmd

args

(equal (action-arg1 action) cmd)

(equal (action-arg2 action) args)

)

(let ((new-user

(user-command user action )))

(env-subset user new-user))

)

:hints

(("Goal’’" :use (:instance

thm-email-auto-command-returns-superset-of-user

(cmd (action-arg1 action))

(args (action-arg2 action))

(user user)))))

(defthm thm-do-actions-returns-superset-of-hosts-on-zero

(implies (and (or rest (null rest))

(integerp count)
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(= count 0)

(symbol-alistp users)

(symbol-alistp hosts)

(or action (null action))

)

(mv-let (new-rest new-users new-hosts)

(do-actions action count users hosts)

(and (symbol-alistp new-hosts)

(symbol-alistp new-users)

new-rest

)))

; (env-subset hosts new-hosts)))

:rule-classes (:forward-chaining)

:hints

(("goal" :in-theory (enable do-actions))))

(defthm thm/mk-action->action-p

(implies

(and

(member-equal type ’(command init send mail deliver ok deliver-ok))

(symbolp type)

(and (symbolp name)

name)

(message-p msg)

msg

)

(action-p (mk-action type name msg ’()))

))

(defthm message-p-implies-symbolp-email-host-recipient

(implies

(and

(message-p msg)

)

(symbolp (email-host (recipient msg)))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
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(make-*/mail-returns-symbol-alistp-thm host-send)

(make-*/mail-returns-symbol-alistp-thm user-send)

(make-d/that-returns-symbol-alistp-hosts-thm do-user-send)

(make-d/that-returns-symbol-alistp-users-thm do-user-send)

(make-d/that-returns-symbol-alistp-users-thm do-host-send)

(make-d/that-returns-symbol-alistp-hosts-thm do-send)

(make-d/that-returns-symbol-alistp-hosts-thm do-command)

(make-d/that-returns-symbol-alistp-users-thm do-command)

(make-*/mail-returns-symbolp-thm host-send)

(make-*/mail-returns-symbolp-thm user-send)

(make-d/that-returns-action-listp-if-message-p-thm do-host-send

(("Goal" :hands-off (host-send add-user-mail-action

add-host-mail-action))))

(make-d/that-returns-action-listp-if-message-p-thm do-user-send

(("Goal" :hands-off (user-send add-user-mail-action

add-host-mail-action))))

(make-d/that-returns-action-listp-if-message-p-thm do-send

(("Goal" :hands-off (do-user-send do-host-send))

("Subgoal 3" :use thm-do-user-send-returns-action-listp)

("Subgoal 1" :use thm-do-host-send-returns-action-listp)))

(make-d/that-returns-action-listp-if-message-p-thm do-deliver

(("Goal" :hands-off (user-deliver add-user-mail-action))))

(make-d/that-returns-action-listp-if-message-p-thm do-mail

(("Goal" :hands-off (do-send add-sender-mail-action

add-user-mail-action))))

(make-d/that-returns-action-listp-thm do-action-cond

(("Goal" :hands-off (do-init do-send do-deliver do-mail do-command)

:use (thm-do-init-returns-action-listp

thm-do-send-returns-action-listp
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thm-do-deliver-returns-action-listp

thm-do-mail-returns-action-listp

thm-do-command-returns-action-listp)))

)

(make-d/that-returns-symbol-alistp-hosts-thm do-action-cond

(("Goal" :hands-off (do-deliver do-send do-mail do-init))))

(make-d/that-returns-symbol-alistp-users-thm do-action-cond

(("Goal" :hands-off (do-deliver do-send do-mail do-init))))

(defmacro make-d/that-do-action-cond-returns-same-as-do-thm (type)

‘(defthm ,(new-thm ’action-cond-returns-same-as-do type)

(implies

(equal (quote ,type)

(action-type action))

(equal

(do-action-cond action rest users hosts)

(,(catsym ’do- type) action rest users hosts)))))

(make-d/that-do-action-cond-returns-same-as-do-thm init)

(make-d/that-do-action-cond-returns-same-as-do-thm command)

(make-d/that-do-action-cond-returns-same-as-do-thm send)

(make-d/that-do-action-cond-returns-same-as-do-thm mail)

(make-d/that-do-action-cond-returns-same-as-do-thm deliver)

(defmacro make-action-type-has-message-p-thm (type)

‘(defthm ,(new-thm type ’action-type-has-message-p)

(implies

(and

(equal (quote ,type)

(action-type action))

(action-p action)

)

(message-p (action-arg1 action)))))

(make-action-type-has-message-p-thm send)
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(make-action-type-has-message-p-thm mail)

(make-action-type-has-message-p-thm deliver)

;(make-action-type-has-message-p-thm init)

;(make-action-type-has-message-p-thm command)

(defthm thm-do-actions-returns-symbol-alistp-users

(implies

(and (symbol-alistp users)

(symbol-alistp hosts)

(integerp count)

(action-listp actions)

)

(mv-let (new-rest new-users new-hosts)

(do-actions actions count users hosts)

(symbol-alistp new-users)))

:hints

(("goal" :hands-off (do-action-cond))

("subgoal *1/5" :use (:instance thm-do-action-cond-returns-action-listp

(action (car actions))

(rest (cdr actions))

(users users)

(hosts hosts)))

("subgoal *1/3’" :use (:instance

thm-do-action-cond-returns-symbol-alistp-hosts

(action (car actions))

(rest (cdr actions))

(users users)

(hosts hosts)))

("subgoal *1/2’" :use (:instance

thm-do-action-cond-returns-symbol-alistp-users

(action (car actions))

(rest (cdr actions))

(users users)

(hosts hosts)))

))
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(defthm thm-do-actions-returns-symbol-alistp-hosts

(implies

(and (symbol-alistp users)

(symbol-alistp hosts)

(integerp count)

(action-listp actions)

)

(mv-let (new-rest new-users new-hosts)

(do-actions actions count users hosts)

(symbol-alistp new-hosts)))

:hints

(("goal" :hands-off (do-action-cond))

("subgoal *1/5" :use (:instance thm-do-action-cond-returns-action-listp

(action (car actions))

(rest (cdr actions))

(users users)

(hosts hosts)))

("subgoal *1/3’" :use (:instance

thm-do-action-cond-returns-symbol-alistp-hosts

(action (car actions))

(rest (cdr actions))

(users users)

(hosts hosts)))

("subgoal *1/2’" :use (:instance

thm-do-action-cond-returns-symbol-alistp-users

(action (car actions))

(rest (cdr actions))

(users users)

(hosts hosts)))

))

(defun end-or-error (sym)

(or (equal ’end sym)

(equal ’error sym)))

(defthm thm-do-actions-returns-end-or-error

(implies

(and (symbol-alistp users)
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(symbol-alistp hosts)

(integerp count)

(action-listp actions)

)

(mv-let (new-rest new-users new-hosts)

(do-actions actions count users hosts)

(end-or-error new-rest)))

:hints

(("goal" :hands-off (do-action-cond))

("subgoal *1/5" :use (:instance thm-do-action-cond-returns-action-listp

(action (car actions))

(rest (cdr actions))

(users users)

(hosts hosts)))

("subgoal *1/3’" :use (:instance

thm-do-action-cond-returns-symbol-alistp-hosts

(action (car actions))

(rest (cdr actions))

(users users)

(hosts hosts)))

("subgoal *1/2’" :use (:instance

thm-do-action-cond-returns-symbol-alistp-users

(action (car actions))

(rest (cdr actions))

(users users)

(hosts hosts)))

))

; Takes ~30 seconds to prove

(defthm do-action-cond-returns-action-listp

(implies

(and

(action-listp rest)

(action-p action)

(equal (action-arg1 action) msg)

(message-p msg)

(equal (email-user (message-sender msg)) sender-user)

(equal (email-host (message-sender msg)) sender-host)
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(equal (email-user (recipient msg)) recipient-user)

(equal (email-host (recipient msg)) recipient-host)

(equal (get-var sender-user users) sender-user-env)

(equal (get-var sender-host hosts) sender-host-env)

(equal (get-var recipient-user users) recipient-user-env)

(equal (get-var recipient-host hosts) recipient-host-env)

(not (member-equal (email-user (message-sender msg))

(get-var ’already-answered recipient-user-env)))

(member-equal sender-user (get-var ’users (get-var sender-host hosts)))

(has-var sender-user users)

(has-var sender-host hosts)

(member-equal recipient-user

(get-var ’users (get-var recipient-host hosts)))

(has-var recipient-host hosts)

(equal (get-var ’hostname sender-host-env) sender-host)

(equal (get-var ’hostname recipient-host-env) recipient-host)

(symbol-alistp users)

(symbol-alistp hosts)

)

(action-listp (mv-actions (do-action-cond action rest users hosts)))

)

:hints (("Goal" :in-theory (enable do-action-cond)

:hands-off (do-init do-send do-deliver do-mail do-command)

:use (thm-do-init-returns-action-listp

thm-do-send-returns-action-listp

thm-do-deliver-returns-action-listp

thm-do-mail-returns-action-listp

thm-do-command-returns-action-listp))))

A.15 p-interaction.lisp

;;; Proof of the feature interaction:

(defthm user-deliver/auto-response-adds-sender-to-already-answered

(implies

(and

(get-var ’default-response recipient-env)
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(get-var ’user recipient-env)

(equal (message-sender msg) sender)

(not (member-equal sender (get-var ’already-answered recipient-env)))

)

(user-in-already-answered

sender

(mv-env (user-deliver msg recipient-env)))

)

)

(defthm user-deliver/auto-response-recipient-becomes-message-sender

(implies

(and

(get-var ’default-response recipient-env)

(get-var ’user recipient-env)

(message-p msg)

(equal (message-sender msg) sender)

(not (member-equal sender (get-var ’already-answered recipient-env)))

)

(equal

(message-sender (mv-msg (user-deliver msg recipient-env)))

(recipient msg))))

(defthm user-deliver/adds-already-answered-and-recv-msg

(implies

(and

(get-var ’default-response recipient-env)

(get-var ’user recipient-env)

(equal (message-sender msg) sender)

(not (member-equal sender (get-var ’already-answered recipient-env)))

(not (member-equal k ’(already-answered recv-msg)))

)

(equal

(get-var k (mv-env (user-deliver msg recipient-env)))

(get-var k recipient-env)))

:hints (("Goal" :in-theory (enable user-deliver))))
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(defthm user-deliver-auto/auto-response-message-sender-becomes-recipient

(implies

(and

(get-var ’default-response env)

(get-var ’user env)

(equal (message-sender msg) sender)

(not (member-equal sender (get-var ’already-answered env)))

)

(sender-becomes-recipient

msg

(mv-msg (user-deliver-auto msg env))))

:hints (("Goal" :in-theory (enable user-deliver-auto user-deliver)

:hands-off (sender-becomes-recipient)

:use (email-auto-incoming/auto-response-message-sender-becomes-recipient))))

(defthm user-deliver/auto-response-message-sender-becomes-recipient

(implies

(and

(get-var ’default-response env)

(get-var ’user env)

(equal (message-sender msg) sender)

(not (member-equal sender (get-var ’already-answered env)))

)

(sender-becomes-recipient

msg

(mv-msg (user-deliver msg env))))

:hints (("Goal" :in-theory (enable user-deliver-auto user-deliver)

:hands-off (sender-becomes-recipient)

:use (email-auto-incoming/auto-response-message-sender-becomes-recipient))))

(defthm user-deliver/auto-response-if-not-already-answered-mail-action

(implies

(and

(lookup ’default-response) ; autoresponder enabled

(lookup ’user)
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(equal sender (message-sender msg))

(not (member-equal sender (lookup ’already-answered)))

)

(mv-let (s new-msg new-env)

(user-deliver msg env)

(equal s ’mail)

))

:hints (("Goal" :in-theory (enable email-auto-incoming))))

(defthm do-deliver/auto-response-message-sender-becomes-recipient

(implies

(and

(action-listp rest)

(action-p action)

(equal (action-arg1 action) msg)

(equal (get-var (action-name action) users)

env)

env

(get-var ’default-response env)

(get-var ’user env)

(equal (message-sender msg) sender)

(not (member-equal sender (get-var ’already-answered env)))

)

(sender-becomes-recipient

msg

(action-arg1

(car (mv-actions (do-deliver action rest users hosts))))))

:hints (("Goal" :in-theory (enable do-deliver)

:hands-off (user-deliver get-var add-user-mail-action)

:use (user-deliver/auto-response-message-sender-becomes-recipient))))

(defthm do-deliver/auto-response-message-sender-becomes-recipient

(implies

(and

(action-listp rest)

(action-p action)

(equal (action-arg1 action) msg)
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(equal (get-var (action-name action) users)

env)

env

(get-var ’default-response env)

(get-var ’user env)

(equal (message-sender msg) sender)

(not (member-equal sender (get-var ’already-answered env)))

)

(sender-becomes-recipient

msg

(action-arg1

(car (mv-actions (do-deliver action rest users hosts))))))

:hints (("Goal" :in-theory (enable do-action-cond)

:hands-off (do-deliver user-deliver get-var add-user-mail-action)

:use (user-deliver/auto-response-message-sender-becomes-recipient))))
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