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Abstract

As computer-based learning platforms have become ubiquitous in educational set-
tings, there is a growing need to provide teachers with better support in assessing
open-ended questions. Particularly in the field of mathematics, teachers often rely on
open-ended questions, prompting students to explain their reasoning or thought pro-
cesses, to better assess students’ understanding of content beyond what is typically
achievable through other types of problems. In recognition of this, the development
and evaluation of automated assessment methods and tools has been the focus of
numerous prior works and have demonstrated the potential of such systems to help
teachers assess open-ended work more efficiently. While showing promise, many of
the existing proposed methods and systems require large amounts of student data
to make reliable estimates which may vary in real world application. In this work,
we explore whether an automated scoring model trained for a single problem could
benefit from auxiliary data collected from other similar problems to address this
“cold start” problem. Within this, we explore how factors such as sample size and
the magnitude of similarity of utilized problem data affect model performance. We
find that the use of data from similar problems not only provides benefits to im-
prove predictive performance by increasing sample size, but the incorporation of
such data also leads to greater overall model performance than using data solely

from the original problem when sample size is held constant.
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Chapter 1

Introduction

Over the last several decades, the development of online learning platforms [KC*06,
HH14| have revolutionized education in various ways, transforming the instructional
practices and learning experiences in both traditional and expanded learning envi-
ronments. With this, there are both great opportunities as well as a growing need
to provide better supports for teachers and students using these platforms. In the
domain of mathematics, these online-based learning platforms offer automated sup-
ports for assessing students’ work as well as providing feedback and support to
students. While in the past these supports were generally restricted to closed-ended
problems with a finite number of accepted correct responses, advancements in ma-
chine learning and natural language processing methods have led to the development
of automation tools that even support open-ended work [RM13, CKM16, BBE*21].
As open ended questions in mathematics are widely used by teachers to understand
the students’ knowledge state and their understanding of a topic, these types of
tools have great utility for both teachers and students using these systems.

In recent years, there have been several works focused on the development and

improvement of automated methods for assessing student open-ended responses in



mathematics [EBM120, ZHY 122, YZY17, HBVTN21]. These methods are mostly
based on evaluating given student answers based on the historical student answers
and the scores given by teachers to such data in the past. Similar to this, prior works
from [BBE*21] utilize an unsupervised learning approach that compares given stu-
dent open-response to historical data based on their semantic similarity to suggest a
numeric score. Similar approaches are utilized in recommending feedback messages
to teachers to give to these students. As is prevalent in many applications of ma-
chine learning, however, many of these approaches are susceptible to the cold start
problem, where implementations of such methods may lack sufficient data to make
informed estimates; this is certainly the case when first implementing models within
a system, but may also extend to cases where systems incorporate new content to
which the assessment models have not been previously exposed. While the impact
will vary depending on the model and the context, most assessment models require
non-trivial amounts of data to make accurate predictions (c.f. [BB01]) which may
take time and effort to acquire. However, in cases when there is a newer student
response, that has not been encountered in the past, these type of methods often
fall behind in suggesting an accurate score/feedback message posing this as the cold
start problem.

To help illustrate this problem, consider the sampled statistics pertaining to
problems from the widely-used curriculum of Illustrative Mathematics collected from
ASSISTments [HH14]. The adoption of open educational resources, such as the cur-
ricula of Illustrative Mathematics as well as others such as EngageNY, has become
ubiquitous in classrooms across the United States. Looking at the data of Illustrative
Mathematics curriculum from ASSISTments (i.e. Table 1.1) reveals that nearly half
of the content of this curriculum consists of open-ended problems, with over 70%

(17,201) of these being regularly assigned to students by teachers using the platform.



Table 1.1: Open Response Statistics for Illustrative Mathematics Content

Title Total Problems
Total Questions 51006
Total Open-ended Questions 23678
Total Open-ended Questions assigned by teachers 17201
Total Scored Open-ended Question 9868

Total Commented Open-ended Questions 8038

Total Student responses on these questions 15,824,851
Total scored responses 2,116,341
Total commented open responses 536,891

However, just over half of those problems assigned contain any teacher-provided as-
sessment scores (e.g. many teachers assign the problems, but are not scoring the
student work). In looking at the distribution of scored student responses across
problems in Figure 1.1, we see that a large portion of problems contain few-to-no
scored student responses on which to train an automated assessment model; con-
versely, there are a small number of problems that contain a very large number
of scored responses. This makes the development of automated scoring models for
these open-ended questions more difficult and likely results in large variations in
model performance.

In light of this data, it is important to consider ways to mitigate the impact of this
cold start problem to provide support for teachers across a wider range of problems.
The concept of transfer learning [T'S10] is commonly used as a means of addressing
the cold start problem in a variety of prediction tasks. Within the field of education,
particularly in the comparatively narrow-scoping of mathematics education, we may
be able to leverage data from similar content to improve performance in cases where
there would otherwise be insufficient data to train an automated assessment model.

In this work, we seek to explore the effectiveness leveraging auxiliary data in the
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Figure 1.1: Histogram of the distribution of total scored student responses across
the open-ended problems in Illustrative Mathematics

form of student responses to similar open-ended problems in the auto-scoring of a
new problem with limited labeled data. With the goal of addressing the cold start
problem in automatically assessing student open responses, we intend to answer

following research questions:!

1. Does the addition of new labeled data from a similar open-response prob-
lem, improve the predictive performance of single problem based auto-scoring

models?

2. Does leveraging data from a similar problem lead to better model performance

in comparison to using data from a randomly selected problem?

3. What is the effect of incorporating auxiliary data into the training of an auto-

LA portion of this work was also submitted to EDM 2022 where it has been accepted as a poster
paper. [RBBBH22]



scoring model and are there any benefits beyond that of increasing sample

size?

. How does the quantity of auxiliary data into the training of an auto-scoring

model effect the performance?



Chapter 2

Background

As introduced in the previous section, there has been significant prior research fo-
cused on developing automatic assessment methods and tools. In recent years, there
have been notable improvements in scoring responses through the use of deep learn-
ing techniques for grading both short answers [UU20] and essays [RJO19]. However,
most research on scoring open-ended responses has been outside of the domain of
mathematics. Automatically scoring mathematical expressions and explanations has
several distinctive challenges in comparison to other language-assessment domains
due to the interleaving of linguistic and non-linguistic terms (e.g. such as num-
bers and mathematical expressions). For example, Lan et al. [LVWB15] provides
automatic grading and feedback for math open response questions using clustering
techniques, but it ignores all text explanations to focus solely on numerical expres-
sions. In the past few years though, there has been progress in the particular task
of using language models for mathematics. Erickson and colleagues [EBM*20] com-
pared the performance of different models for scoring math open-ended responses
and attempted to establish a benchmark evaluation procedure to evaluate future

models. Building on that work, [BBE21] notably improved performance by us-



ing embeddings produced by Sentence-BERT (SBERT) [RG19] on the same dataset
to score student responses. SBERT modifies the pre-trained BERT (Bidirectional
Encoder Representations from Transformers) [DCLT19] model to generate sentence-
level embeddings and is better suited for comparing semantic similarities. [BBET21]
compares the similarity of a student’s response to an open-ended question against
previously scored student responses to the same question to generate the score pre-
diction. Omne of the recurring difficulties in open-ended response grading is the
limited quantity of relevant and annotated training data. [CLP21] explores using
SBERT with various combinations of content to score unseen questions. For natural
language processing problems where data is limited, meta-learning is also becoming
a popular approach [Yin20]. Meta-learning attempts to solve a task with limited
data after being trained on how to best learn from other tasks. For short answer
grading, a meta-learning augmented BERT model (ml-BERT) [WLW*19] has been

applied with promising results for biology.



Chapter 3

Preliminary Work

3.1 Methodology

In this chapter, we aim to examine the use of auxiliary data collected from similar
problems as a method of addressing the cold-start problem in building automatic
assessment models for open-ended mathematics problems. For this, we utilize data
collected from ASSISTments in conjunction with the scoring method presented in
[BBE"21], known as the “SBERT-Canberra” model. The data and model used in
this research, as well as our approach to examining the use of auxiliary data, are

described in detail throughout this section.

3.1.1 Dataset

For this study, data! consists of student answers to open-ended problems within the
ASSISTments. It consists of open-ended responses to problems that have ever been

submitted to the system database. For the purpose of this study, we arbitrarily

!The data used in this work may contain personally-identifying information but may be shared
through an IRB approval process; this process is omitted for blinding purposes but will be included
in future versions.



selected a single open response problem within this dataset that contained at least
40 student responses (n=45 for the selected problem) to act as a representative
problem. our evaluation will utilize a bootstrapping simulation design using this
selected representative problem; while the analyses described in this chapter could be
applied to virtually all problems, as will be described, this single problem is sufficient
to gain the necessary insights into the utility of using data from other problems. For
consistency of terminology, this representative problem will be referred to simply as
the “original problem” throughout this work, and will represent the problem for
which we would like to train an auto-scoring model (e.g. we will treat it as the
problem with insufficient data).

The selected problem pertains to logarithms, and presents the students with the
following equation: “5log(x + 4) = 10”; students are asked to either solve for = and
explain their steps to solve or to type “no solution” if no viable solution exists.

In addition to this original problem, we collaborated with a content expert to
select a similar open-ended problem for which there was a comparable number of
existing labeled student answers (n=43) on which to train a model. This second
problem, referred to simply as the “similar problem” throughout the remainder of
this work, similarly pertained to logarithms where students were prompted with the
following equation: “logs(1—x) = 47; similar to the original problem, students were
asked to solve for x and explain the steps they used to solve or to type “no solution”
if no viable solution exists.

While we acknowledge that the selected problems border on the threshold of what
might be considered open-ended, much of the content of open curricula pair close-
ended and open-ended components within many of their questions (e.g. solve and
explain). In this way, the selected problems result in sufficient variation in student

answers to examine auto-scoring models, but additionally allowed us to more easily



identify a problem with undeniable similarity both in terms of content and structure;
as it is one of our goals to explore how the magnitude of similarity between models
affects the effectiveness of model transfer, we are confident in claiming that these
problems are in fact similar.

Finally, outside of these two problems, we remove any problem from the re-
maining dataset containing fewer than 10 labeled student responses. As part of
our analyses, we will be sampling random problems and performed this filtering
step to mimic a practical application where such problems would not be considered
sufficient in providing auxiliary data (arguably, we would in practice even choose a
higher threshold, but wanted to utilize as broad, representative dataset with which
to conduct our analyses).

Only minor preprocessing was performed on the data to match the same format
as was explored in the prior work from which the SBERT-Canberra model was
derived [BBE"21]. These steps included the removal of HTML tags that existed in
some student responses as well as other special characters and references to images.
As was observed in prior works [EBM 120, BBE*21], teacher-provided scores follow a
5-point integer scale ranging from 0, indicating poor performance, and 4, indicating
high performance. While ordinal in nature, this scale is converted to a 5-valued
categorical one-hot encoded vector and modeled as a multi-class prediction task (i.e.
the model treats each score as a mutually-exclusive label). While we acknowledge
that the ordinal relationships are lost by representing the labels in this way, we

follow this procedure to use the model presented in that prior work.

3.1.2 Model

The SBERT-Canberra model used in this work follows a simple similarity-ranking

procedure to generate its predictions. When producing a prediction for a given
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student response, it first applies SBERT to generate a high-dimensional feature em-
bedding that describes the response as a whole; this method is intended to capture
semantic and syntactic meaning within this embedding, such that similar responses
would be mapped to closer points within the embedding space. The SBERT embed-
ding for this student response is compared to SBERT embeddings corresponding to
a pool of historic labeled student responses. Using the Canberra distance measure
[JRVF09], the score for the historic response corresponding to the smallest distance
(i.e. the most similar response) is used as the score prediction. The intuition behind
it being that similar answers to the same problem would have the same score. While
rather simplistic, particularly as there is no “training” involved in the traditional
machine learning sense, we chose to use this model as 1) it outperformed exist-
ing benchmarks in assessing student responses in mathematics [BBE*21], 2) as no
training is involved, we do not need to optimize hyperparameters, and 3) the model

performance is directly linked to the scale and diversity of the historic responses.

3.1.3 Model Evaluation

To examine the use of auxiliary data, we conduct 2 analyses that each compare
the SBERT-Canberra model with 3 different training sets. The analyses follow a
bootstrapping procedure which samples with-replacement from the available pool
of data at increasing intervals. For example, we will observe how well the model
performs when trained on just one sample, then two, then three, etc. until the
true sample size of the problem is reached (or close to it). At each interval, student
responses are randomly sampled to train and evaluate the model using a 10-fold cross
validation, where sampling is conducted within the training folds. Since the original
problem has 45 scored student responses, the bootstrapped sampling is conducted

among 9 training folds and then the model is evaluated on the 10th holdout fold
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(and repeated for all folds). This entire process is then repeated 25 times, with the
model performance being averaged across these iterations (to reduce noise caused
by unlucky sampling).

To evaluate the scoring results, the area under the curve, AUC, (calculated using
the simplified multi-class calculation of ROC AUC described in [HTO01]) is used as
the primary metric to compare the model’s predicted score of a student response to
the actual score to the student response that was provided by a teacher. For a larger
understanding of the performance, RMSE (the root of the average squared errors
when comparing the ordinal predictions and the integer labels) and multi-class Co-
hen’s Kappa (measures the inter-rater agreement) were also calculated. Although we
focus our later discussion primarily on AUC, the patterns that emerge are consistent
with those found with RMSE and Kappa.

The three models are distinguished based on the data used to produce predic-
tions. The Baseline Model uses only student responses from the original problem;
the number of responses made available to the model will be varied at increasing
intervals. The Similar Problem Model uses a combination of student responses from
the original problem as well as auxiliary responses sampled from the similar problem.
Finally, the Random Problem Model uses a combination of student responses from
the original problem as well as student responses sampled from 5 randomly-selected
problems from the remaining dataset; per design and due to the scale of the data
used, it is very unlikely for these problems to be similar to the original problem,

allowing for comparisons to be made in regard to differing magnitudes of similarity:.

Varying Original Problem Sample Size

The first analysis replicates a real-world scenario where we may have a small number

of labeled samples for the original problem, but a larger number of samples that may
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be leveraged from other similar and non-similar problems. For each bootstrapping
interval, we randomly sample data from the original problem ranging from 0 to
40 in increments of 2. As the similar problem has 40 labeled student responses, we
similarly randomly sample 40 scored responses from the 5 random problems to create
a comparable set. While the Baseline model is limited to only the 0 to 40 original
problem samples, both the Similar Problem Model and Random Problem Model is
able to use 40-80 samples over the set of intervals (initially using only samples from
the other problems and adding an increasing number from the original problem with
each interval.

Due to the large variations in sample sizes across problems within the dataset, we
sample student responses for the Random Problem Model using a stratified selection
method. This helps to ensure that the selected 40 responses are spread evenly over
the 5 randomly selected problems rather than from just one of those problems if
there is a large difference in sample size (i.e. in the case that the problem with
2000 scored responses is randomly selected with a problem that has only 10). From
the 5 randomly-selected problems, 8 scored student responses are randomly selected
per iteration in the interval and they compose the 40 samples to supplement the
training data from the original problem.

The average performance of each of the three models is then plotted with 95%

confidence intervals calculated over the 25 repeated runs per interval.

Varying Sample Proportions

As it is hypothesized that the largest benefit of using auxiliary data is in the added
sample size, we conduct a second bootstrapping analysis that observes a constant
sample size across intervals while varying the proportion of data used from the

original problem. From this analysis, all models (except for the baseline) utilize the
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same number of samples, allowing us to observe how the source of content affects
model performance independent of data scale.

In this case, the number of training samples is held consistent at 40 scored
student responses and the percentage intervals range from 0% to 100% of the original
problem at 10% increments. In other words, at the first interval, the 40 samples
are composed of only responses from other problems (either from the similar or
random problems), while at the last interval, all 40 samples are composed only of
the original problem. This proportion is then interpolated between these extremes
over each interval. It is hypothesized that the best model performance would be
exhibited by each model at the 100% interval, where we use all the data available
from the original problem, as this is when the data is most closely related to the
test set. In keeping consistent with the previous analysis, for each increment of
training data from the original problem, 10-fold cross validation is run 25 times and
the reported metric (AUC, RMSE, Kappa) is the average across those runs. The
same sampling procedure for the Random Problem Model as was conducted in the
previous analysis is utilized here as well. As the Baseline Model only utilizes data
from the original problem, we are unable to maintain a consistent sample size across
intervals. For comparative purposes, we simply increase the training sample size
following the increasing percentage (i.e. using 0 samples, then 4 corresponding with

10%, then 8, etc.).

3.2 Results

3.2.1 Varying Original Problem Sample Size

The performance of each of the models when varying the original problem sample

size is reported in Figure 3.1, with the measures of RMSE and Kappa also depicted
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Figure 3.1: Average AUC while varying original problem sample size.

in Figures 3.2 and 3.3, respectively. For interval 0, no training data was provided
for the baseline model so there is no recorded performance for comparison for both
kappa and RMSE; while we acknowledge that a majority class or other value could
have been imputed here to generate some value, but we felt this was unnecessary to
observe the performance trends as is our goal.

In regard to the Baseline Model, when the increment of training samples from
the original problem is 0, the average AUC of the baseline model is assigned to be
0.5 which is equivalent to chance. The lowest average AUC occurs, rather unsur-
prisingly, when there are very few samples from the original problem for the model
to use. The highest average AUC for the baseline model (0.683) occurs when it is
trained with 22 samples from the original problem. However, after just 12 samples
from the original problem as the training data, the baseline model has an average
AUC equal to 0.682 that seems to converge between 0.678 and 0.683 as the baseline

model is trained with increasing amounts of samples from the original problem.
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Figure 3.2: Average RMSE while varying original problem sample size.

Observing the Similar Problem Model, when using 40 random samples from
the similar problem to supplement the training samples from the original problem,
the modified model outperforms the average AUC of the baseline model across
every increment of training samples from the original problem; this difference is also
statistically reliable across a majority of intervals as determined by comparing the
confidence intervals. This model outperforms the baseline model by approximately
0.073 in terms of average AUC per interval. The worst average AUC for the modified
similar problem model is 0.688 and it occurs when trained with 40 samples from the
similar problem and 2 samples from the original problem. The best average AUC
for the modified similar problem model is 0.742 when the model is trained with 40
samples from the similar problem and 10 samples from the original problem. Beyond
8 samples from the original problem, the model arguably converges with an average

AUC between 0.662 and 0.740.
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Figure 3.3: Average Kappa while varying original problem sample size.

Finally, regarding the Random Problem Model, when using 40 random samples
split evenly from 5 random problems to supplement the training samples from the
original problem, the model outperforms the average AUC of the baseline model
across 43% of the increments tested. At an average difference of just 0.007 in
terms of average AUC per interval, very little meaningful difference is observed
between the Random Problem Model and the Baseline Model. It is worth noting
that the performance of the Random Problem Model does outperform the Baseline
over the initial intervals when sample size is the smallest, suggesting that even
randomly-selected problems may provide benefit. However, this model also exhibited
large variations in performance, leading us to omit the error bars to improve the
readability of the figure; this variation is presumably attributable to the random
selection of problems with varying magnitudes of similarity to the original problem.

The best average AUC for the modified random problem model is 0.712 when the

17



model is trained with 40 samples from 5 random problems and 18 samples from
the original problem. Beyond 10 samples from the original problem, the model
converges with an average AUC between 0.663 and 0.712.

Across the three models, the RMSE and Kappa follow similar trends, with the
Similar Problem Model performing the best on average of the methods. While
the general trend remains, it is the case that the difference between the methods,
particularly by the later intervals, are much smaller than those observed in regard
to AUC. For Kappa, for example, all three models seemingly converge by an original

problem sample size of 6, but does observe differences in the early intervals.

3.2.2 Varying Sample Proportions

The performance of each of the models when holding sample size constant and
varying the sample proportion is reported in Figure 3.4, with the measures of RMSE
and Kappa also depicted in Figures 3.5 and 3.6, respectively.

In observing the Baseline Model AUC performance, when the percentage com-
position of training samples from the original problem is 0%, the average AUC of
the baseline model is found to be 0.5, again unsurprisingly as the model has no
samples on which to base its predictions. The highest average AUC for the baseline
model (0.685) occurs when it is trained with 30% of the possible training samples,
which is equivalent to 12 training samples, from the original problem. However,
after that percentage composition interval, the remaining percentage composition
intervals (between 16 and 40 training samples from the original problem), the av-
erage AUC seems to stabilize in a somewhat downward trend between 0.678 and
0.684 even though the baseline model is being trained with increasing amounts of
samples from the original problem.

An interesting trend emerged in regard to the Similar Problem Model. When

18
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using 40 total training samples (and keeping this constant) with some percentage
of samples from the original problem and the remaining samples from the similar
problem, the modified model outperforms or equals the average AUC of the baseline
model across every increment of training samples from the original problem. The
modified model that uses training samples from the similar problem and the original
problem outperforms the baseline model by around 0.053 in terms of average AUC
per interval. The worst average AUC for the similar problem model overall is 0.678
and it occurs when trained with all 40 samples coming from the original problem.
However, the worst average AUC for the similar problem model when using some
non-zero percentage of the training samples from the similar problem is 0.689 and
occurs when trained with all 40 samples coming from the similar problem. The
best average AUC for the similar problem model is 0.735 when the model is trained

with 20% of the 40 training samples coming from the original problem and the

19



1.2

1.1
1
w 0.9
(98]
=
o 0.8
0.7
0.6 /&@%
0.5
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percentage of 40 Possible Training Samples from Original Problem
e=@==Similar Problem Model ==@==Baseline Model Random Problem Model

Figure 3.5: Average RMSE while varying sample proportion.

remaining 80% of training samples coming from the similar problem. After the
peak performance in terms of average AUC, the model’s performance lessens as the
percentage of training samples coming from the original problem increases.

The Random Problem Model follows closely with the performance of the baseline.
When using 40 total training samples with some percentage of samples from the
original problem and the remaining samples from 5 random problems, the modified
model outperforms or equals the average AUC of the baseline model across 54% of
the percentage composition increments tested. The random problem model that uses
training samples from the 5 random problems and the original problem outperforms
the baseline model by around 0.005 in terms of average AUC per interval. The
worst average AUC for the random problem model overall is 0.525 and occurs when
trained with all 40 samples coming from the 5 random problems. The best average

AUC for the random problem model is 0.688 when the model is trained with 90%

20



0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percentage of 40 Possible Training Samples from Original Problem

e=@==Similar Problem Model «=@==Baseline Model Random Problem Model

Figure 3.6: Average Kappa while varying sample proportion.

of the 40 training samples coming from the original problem and the remaining
10% of training samples coming from the 5 random problems. After the percentage
composition interval of 20% of the training samples coming from the original problem
and the remaining 80% coming from the 5 random problems, the performance seems
to stabilize between 0.674 and 0.685 even though it is being trained with increasing

amounts of samples from the original problem.

3.3 Discussion

Looking deeper into the results of both analyses, we identify consistent trends that
are discussed in this section.

The Baseline Model across both analyses provide insights into the current imple-
mentation of auto-scoring models. While the performance of the SBERT-Canberra

model will likely vary across problems, we can observe here that the model converges
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within a relatively small set of samples; after 12 or more samples from the original
problem as the training data, the baseline model converges in terms of average AUC
performance. It does seem to matter, however, which samples are used to train the
model. We can see in both analyses that the Baseline Model’s confidence intervals
decrease with more samples. The relatively wide bounds over low sample sizes sug-
gests that there are subsets of training samples that are better than others. This is
not very surprising as the diversity of data is often considered just as important as
the scale in many machine learning applications [HSHA14].

There is a similar trend in regard to the scale of confidence bounds in regard
to the Similar Problem Model. Although the average AUC performance stabilized
after 10 or more samples, the confidence intervals continued to shrink in the first
analysis, but remained relatively constant in the second analysis varying proportion.
In both analyses, however, we see consistent, if not statistically reliable differences
in comparison to the Baseline Model. In addressing our first research question, this
finding suggests that the use of auxiliary data can lead to notable benefits to model
performance. We see that in the first analysis that the added sample size leads to
notable performance when there are few training samples, but this trend remains
through all intervals. While our initial hypothesis was that this benefit would likely
be attributable to increased sample sizes, the trend of this Similar Problem Model
in the second analysis varying proportion contradicts that hypothesis. While this
model does still outperform the baseline, as sample size is held constant, this cannot
be the contributing factor to the differences we observe in that analysis. While
we expected to observe the final interval of Figure 3.4 to be an upper bound for
model performance, we found that the inclusion of data from a similar problem
added benefits that extend even beyond the impact of sample size. This finding

addresses our third research question, but still remains inconclusive as to what
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benefit is provided. It is possible, for example, that the auxiliary data acts as a
regularization method (c.f. [Bou98]), but the analyses conducted here are only able
to rule out sample size being the contributing factor. These findings further confirm
that scoring models can be improved upon when provided with more varied training
samples from both the problem it is trying to score and similar problems rather than
only being trained from samples of the original problem. Even when trained with
the same number of samples, the Similar Problem model’s average AUC decreases
after a peak training percentage composition which supports the theory that the
quality of the training samples from the original problem are less than the quality
of the combined samples.

What is perhaps most surprising about this comparison in the second analysis
is that the model trained from 100% of data from the similar problem seems to
outperform the model trained from 100% of the original problem. We believe that
this is an artifact of the selected problems and the level of similarity that they
exhibit. As such, we would not expect this finding to extend to every open-ended
problem, but rather could extend to a subset where there is strong similarity between
problems both in terms of content and the structure of student responses; this is
the scenario where we believe this method would provide the most benefit.

This is particularly the case considering that the same level of benefit was not
observed in regard to the Random Problem Model across the two analyses. Due to
the nature of choosing random problems, the large variance in confidence intervals
is expected; while these bounds were omitted from the earlier figures, they can be
seen in Figures 3.7 and 3.8 pertaining to the first analysis varying original prob-
lem sample size. In essence, these error bars appear to span the gap that is seen
between the Similar Problem Model and the Baseline Model. Our hypothesis, as

previously introduced, is that the added benefit is likely correlated with the mag-
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Figure 3.7: Average AUC with confidence intervals for the Random Problem Model
while varying original problem sample size.

nitude of problem similarity. Even if this hypothesis is flawed, we are seeing that
certain subsets of problems lead to better performance than others, emphasizing the
importance in selecting suitable problems from which to draw auxiliary data (e.g.
selecting any problem with sufficient sample size may not provide benefits to perfor-
mance). In light of this finding, we can address our second research question in that
problem similarity, loosely defined, does seem to impact performance. In observing
the measures of RMSE and Kappa in regard to this Random Problem Model, it
would seem that a poor choice of problem may lead to reduced performance than
would otherwise be achievable using just data from the original problem (and this

was consistent across both analyses).
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Chapter 4

Extension of Previous Work

4.1 Methodology

We aim to further explore the use of auxiliary data collected from similar problems
to supplement the data from the original problem to train the models by modifying

the approach of varying sample size from Chapter 3.

4.1.1 Dataset

To ensure consistency across studies, the dataset, the data pre-processing and
teacher-provided score encoding process are the same as that from 3.1.1. The only
difference is the choice of original problem and similar problem. We explore the
same pair of problems from 3.1.1 as well as two different randomly chosen pairs of
similar problems. The two additional pairs of similar problems chosen vary in their
level of similarity and they are considered to be more open-ended than the original
similar problem pair because they ask students to explain their reasoning. Due to
this, the answers are more likely to be combinations of words and mathematical

expressions rather than only steps to equation solving. Therefore, we feel confident
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that these three similar problems pairs provide data that is more representative to

the larger set of problems.

Solving Logarithmic Equations

These are the problems used in the main study as described in 3.1.1. As a brief
reminder, the designated original problem has 45 scored student responses. It asks

“no solution” if no

students to solve for x and explain their steps to solve or to type
viable solution exists to the equation: “5log(z + 4) = 10”. The designated similar
problem asks the same question but to the equation: “logs(1 —x) = 4”. The similar

problem has 43 scored student responses.

Determining Exponential Decay

The selected problem pertains to interpreting exponential growth or decay and has
42 scored student responses. It presents the students with the following formula:
“f(t) = 2(3)"”. Students were previously asked to identify the initial value in
the formula and to determine whether the formula models exponential growth or
exponential decay. This specific problem asks students to justify their previous
responses regarding the formula. This will be referred to as the “original exponential
problem” throughout the remainder of this work.

In addition to this original exponential problem, we selected a similar open-
ended problem for which there was a comparable number of existing labeled student
answers (n1=42) on which to train a model. This second problem, referred to simply
as the “similar exponential problem” throughout the remainder of this work, also
pertained to exponential growth or decay where students were prompted with the
following formula: “f(t) = 2(%)’”’. Like the original exponential problem, students

were asked to justify their reasoning on whether the equation models exponential
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A)
What can be concluded about the relationship between planes P and Q?
engage"™

Modified from Engazely SGreat Minds Disclaimer

() The planes are parallel
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(O The planes are equal

(C) The planes are skew

B) Explain.

Figure 4.1: Image of the parallel original problem directly from ASSISTments

growth or exponential decay.

Determining Parallelism

The designated original problem of this pair pertains to interpreting and explaining
the relationship between planes P and @) as seen in figure 4.1. It has 125 scored stu-
dent responses.This will be referred to as the “original parallel problem” throughout
the remainder of this work.

Along with this original parallel problem, we selected a similar open-ended prob-
lem for which there was a comparable number of existing labeled student answers
(n=124) on which to train a model. This second problem, referred to simply as the
“similar parallel problem” throughout the remainder of this work, involved inter-
preting and explaining the relationship between lines [ and m as seen in the diagram

in figure 4.1. Although the original parallel problem is about planes and the similar
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parallel problem is about lines, we consider the questions to be similar in nature due
to the use of the same diagram, the same relationship between items (parallel) and
the process for determining the relationship between items is identical regardless of

being about lines or planes.

4.1.2 Model

As described in chapter 3.1.2, the SBERT-Canberra model is used for further anal-

ysis.

4.1.3 Model Evaluation

To explore the benefits in using auxiliary data, we conduct exploratory analyses
that compare the SBERT-Canberra model when trained with various amounts of
auxiliary data. In order to observe the generalized behavior, the same process
was performed using 3 different pairs of similar problems. Those problems are de-
scribed in 4.1.1. The analyses follow a similar bootstrapping procedure from 3.1.3.
However, instead of only having the number of training samples from auxiliary data
remain consistent, this approach trains with varied quantities of auxiliary data with-
replacement from the available pool of data from the associated similar problem at
increasing intervals. For example, we will observe how well the model performs fol-
lowing the procedure from 3.1.3 when trained with 0 samples from auxiliary data,
then 5 samples from auxiliary data and so on in increments of 5. In doing this
approach, we can continue to analyze the performance using only student responses
from the associated original problem as well as observe how much auxiliary data is
necessary to see changes in performance. Likewise as described in 3.1.3, we repeat-
edly evaluate the models using 10-fold cross validation so the performance reported

by the model at each interval is the average of the 25 iterations performed. Further-

29



more, the same performance metrics: AUC, RMSE and multi-class Cohen’s Kappa

were calculated.

4.2 Results

Across all pairs of similar problems, for interval 0, no training data was provided
for the model representing 0 training samples from its respective similar problem
so there is no recorded performance for comparison for both kappa and RMSE.
Furthermore, the models where the training data consists only from its respective
original problem are colored in black to make its performance easily seen. These can
be considered the baseline model performance for their respective problem pairs.
Otherwise, the lines gradually darken in shades of red as the model trains with

increasing amounts of auxiliary data from their respective similar problem.

4.2.1 Solving Logarithmic Equations

The performance of models using varying amounts of samples from the similar prob-
lem while also varying the original problem sample size is reported in Figure 4.2,
with the measures of RMSE and Kappa also depicted in Figures 4.3 and 4.4, re-
spectively. For this problem specifically, the model representing 0 similar problem
samples is equivalent to the Baseline Model described in 3.1.3 with results captured
in 3.1.3. Likewise for this particular problem, the model representing 40 similar
problem samples is equivalent to the Similar Problem Model described in 3.1.3 with
results also captured in 3.1.3.

As observed in Figure 4.2, all models with similar problem samples had signifi-
cantly better performance in terms of AUC across every increment of samples from

the original problem. With as few as 5 training samples from the similar problem
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Figure 4.2: Average AUC while varying both the original problem sample size and
the similar problem sample size.

to supplement the samples from the original problem, there is noticeable improve-
ments over the model without any samples from the similar problem, the respective
baseline model. The model trained with only 5 similar problem samples outper-
formed the respective baseline model by about 0.024 in terms of average AUC per
interval. Each model trained with samples from the similar problems outperforms
the respective baseline model by an average of 0.057 in terms of average AUC per
interval. Furthermore, each model trained with samples from the similar problem
outperforms the model with the next lowest increment of training samples from the
similar problem by approximately 0.009 in terms of average AUC per interval. For
example, the model trained with 10 similar problem samples outperforms the model
trained with 5 similar problem samples by 0.018 in terms of average AUC per in-

terval. The worst average AUC for a model trained with samples from the similar
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Figure 4.3: Average RMSE while varying both the original problem sample size and
the similar problem sample size.

model is 0.611 and it occurs when trained with 5 similar problem samples and 0
samples from the original problem. As was first discovered in 3.1.3, the best average
AUC for models using similar problem samples remains 0.742 when the model is
trained with 40 similar problem samples and 10 samples from the original problem.
Likewise as noticed in 3.1.3, all models generally converge beyond 8 samples from
the original problem.

Across the different models, the RMSE and Kappa follow similar trends, with
the model trained with 40 similar problem samples performing the best on average
of the methods. In this case, the respective baseline model performs the worst and
the models generally improve as they are trained with more samples from the similar
problem. While this trend remains, the difference between the methods are much

less noticeable, particularly by the larger intervals, when compared to AUC.
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Figure 4.4: Average Kappa while varying both the original problem sample size and
the similar problem sample size.

Specifically for Kappa as seen in Figure 4.4, there are a few intervals where the
baseline model outperforms those trained with samples from the similar problem.
This occurs with the models trained with samples from the similar problem at both
16 and 20 training samples from the original problem. However, before and after
those points, all of the models seem to converge. The improvements using training
samples from the similar problem for these performance metrics are most seen in

the early intervals.

4.2.2 Determining Exponential Decay

The performance of models with varying amounts of training samples from the

similar exponential problem when varying the original exponential problem sample
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Figure 4.5: Average AUC while varying both the original exponential problem sam-
ple size and the similar exponential problem sample size.

size is reported in Figure 4.5, with the measures of RMSE and Kappa also depicted
in Figures 4.6 and 4.7, respectively.

As captured in Figure 4.5, all models with similar exponential problem sam-
ples had significantly better performance in terms of AUC across every increment
of samples from the original exponential problem. The model trained with just 5
similar exponential problem samples outperformed the respective baseline model
by about 0.025 in terms of average AUC per interval. Each model trained with
samples from the similar exponential problem outperforms the respective baseline
model by an average of 0.096 in terms of average AUC per interval. Furthermore,
each model trained with samples from the similar exponential problem outperforms
the model with the next lowest increment of training samples from the similar ex-

ponential problem by approximately 0.020 in terms of average AUC per interval.
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Figure 4.6: Average RMSE while varying both the original exponential problem
sample size and the similar exponential problem sample size.
For example, the model trained with 20 similar exponential problem samples out-
performs the model trained with 15 similar exponential problem samples by 0.021
in terms of average AUC per interval. The worst average AUC for a model trained
with samples from the similar exponential model is 0.606 and it occurs when trained
with 5 similar exponential problem samples and 0 samples from the original expo-
nential problem. The best average AUC for models using samples from the similar
exponential problem is 0.783 when the model is trained with 40 similar exponential
problem samples and 2 samples from the original problem. Furthermore, all models
generally converge beyond 8 samples from the original exponential problem.
Across the different models, the RMSE and Kappa have a similar behavior, with
the model trained with 40 similar exponential problem samples performing the best

on average of the methods. The respective baseline model performs the worst and
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Figure 4.7: Average Kappa while varying both the original exponential problem
sample size and the similar exponential problem sample size.

the models improve as they are trained with increasing numbers of similar expo-
nential problem samples. While this pattern is consistent, the difference between

the methods continues to lessen by the larger intervals especially when compared to

AUC.

4.2.3 Determining Parallelism

The performance of models with varying amounts of training samples from the
similar parallel problem when varying the original parallel problem sample size is
reported in Figure 4.8, with the measures of RMSE and Kappa also depicted in Fig-
ures 4.9 and 4.10, respectively. Due to larger number of samples available from both
the original parallel problem and the similar parallel problem, the figures maintain

increments of 2 but only show ticks at intervals of 10 to increase readability. In
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Figure 4.8: Average AUC while varying both the original parallel problem sample
size and the similar parallel problem sample size.

addition, models are shown in increments of 10 samples from the similar parallel
problem rather than in increments of 5.

As observed in Figure 4.8, all models with similar parallel problem samples gen-
erally had significantly better performance in terms of AUC across each increment
of samples from the original parallel problem. The model trained with 10 similar
parallel problem samples outperformed the respective baseline model by about 0.013
in terms of average AUC per interval. Each model trained with samples from the
similar parallel problem outperforms the respective baseline model by an average of
0.016 in terms of average AUC per interval. Unlike in the previous pairs of prob-
lems, each model trained with samples from the similar parallel problem does not
necessarily outperform the model with the next lowest increment of training sam-
ples from the similar parallel problem in terms of average AUC per interval. For

example, the model trained with 30 similar parallel problem samples outperforms
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Figure 4.9: Average RMSE while varying both the original parallel problem sample
size and the similar parallel problem sample size.
the model trained with 40 similar parallel problem samples by 0.001 in terms of av-
erage AUC per interval. The worst average AUC for a model trained with samples
from the similar parallel model is 0.556 and it occurs when trained with 10 similar
parallel problem samples and 32 samples from the original parallel problem. The
best average AUC for models using samples from the similar parallel problem is
0.783 when the model is trained with 40 similar parallel problem samples and 42
samples from the original problem. This problem is unlike the other pairs of prob-
lems because none of the models generally converge beyond any number of samples
from the original parallel problem despite having the largest number of available
samples tested.

For RMSE, the respective baseline model outperforms models using similar par-
allel problem samples in the earlier intervals up to where the models use 40 samples

from the original problem. However after that point, there is a clear improvement
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Figure 4.10: Average Kappa while varying both the original parallel problem sample
size and the similar parallel problem sample size.

in performance for models using similar parallel problem samples over the respec-
tive baseline model. Overall, the baseline model oscillates between 0.56 and 0.61.
While nearly all the models using similar parallel samples start above the worst per-
formance of the baseline model as they train with increasing quantities of samples
from the original parallel problem, the RMSE on average lessens which amounts to
significant improvement over the baseline model. The overall lowest RMSE of 0.52
can be seen from the model using 110 similar parallel problem samples with 104
original parallel problem samples.

Across the different models, Kappa has a similar behavior as with previous pairs
of problems, with the model trained with 110 similar parallel problem samples over-
all performing the best on average of the methods. The respective baseline model
performs the worst and the models generally improve as they are trained with in-

creasing numbers of similar parallel problem samples. While this pattern is consis-
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tent, the difference between the methods lessens by the larger intervals especially

when compared to AUC.

4.3 Discussion

More closely examining the results of the further analyses, we recognize consistent
trends across the three pairs of similar problems that are discussed in this section.

Due to the variety of problem pairs, we gain more insight into the current imple-
mentation of the automated scoring models with the respective baseline models. For
the logarithmic equation solving and exponential decay identification and justifica-
tion problems in 4.2.1 and 4.2.2 respectively, we see that baseline models converges
within 12 samples of their respective original problem. Alternatively for the prob-
lem identifying and justifying parallelism in 4.2.3, we see that the baseline model’s
behavior is more erratic and does not appear to converge until around 90 samples
of its respective original problem, if at all. Most of the performance improvements
are observed when using AUC. However, the overall decrease in RMSE and increase
in Kappa are important achievements that provide a larger picture of the benefits
in using any number of samples from similar problems.

Although the performance of all the models generally improves as more samples
from their respective similar problem, the trends seen in the improved performance
are also often seen in their respective baseline model’s performance. In that sense,
all the models, regardless of samples from their similar problem, have the same
peaks and valleys in regards to the performance at particular original sample size
intervals. This is likely a consequence of which samples from the original problem
are used to train the model and how diverse all the training samples used are from

one another.
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As expected, we usually see improvements across all models when trained with
more samples from either the respective original problem or the respective similar
problem. However, in 4.8, we can also clearly see that quantity is does not exclusively
improve performance. As noted previously, the performance varies significantly with
the increase of samples from the original parallel problem. Unlike other problems’
performances, the AUC does not gradually increase with the increase of respective
original samples. Instead, the performance hits a peak at 26 samples and after-
wards, continues to hit relative peaks and relative valleys. This suggests that after
26 samples, the increase of original parallel problem samples stops benefiting the
performance and instead adds confusion in terms of appropriately scoring student
responses.

In addition, there can be a maximum to the benefits provided by supplementing
with similar problem samples. Specifically when all the models are trained using
solely samples from the similar problem (at interval 0 on the x-axis in 4.8), we can
see that the model trained with 110 similar problem samples is outperformed by
multiple models trained with fewer similar problem samples. This suggests that the
model trained with 110 similar problem samples has worse results because with the
increase of samples came additional samples whose scores are inconsistent. Despite
not being ideal for training purposes, it should be expected that different teachers
would have distinct criteria for students to earn a particular grade. For example,
Teacher A could be more lenient and score students mainly full marks (a score of 4)
while Teacher B could be searching for clear and concise explanations of concepts.
While to our benefit, it is surprising though that the other pairs of similar problems
do not seem to come across these scoring inconsistencies in any of the metrics tested.
It is possible that this situation is more extreme in 4.2.3 because the problem is so

focused on a diagram rather than a focused on a formula or equation like in 4.2.1 and
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4.2.2. By having to justify their explanations about interpreting an image, there
is likely more variance in the students’ responses as well as the teachers’ scores.
These findings address our fourth research question, but as seen in the variance
of performance benefits across problems, it remains inconclusive in determining
the strict limits of performance improvement when using increasing quantities of

auxiliary data.
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Chapter 5

Limitations and Future Work

In Chapter 3, the largest limitation is that the research focuses on predicting the
scores of only one specific problem. While we argue that the analyses conducted
there were sufficient to address our research questions, there is a larger uncertainty
that remains in regard to how representative these results are to the larger set of
problems. As a result, in Chapter 4, we test across a variety of problems to ensure
that the results generalize well to other possible problems. However, future work
should explore even more varied problems in terms of both problem content and the
number of available samples to train with.

Another overarching limitation throughout this research that is likely observed in
4.2.3 is that the training data consists of samples of student open-ended responses
and their associated teacher provided score. As is the nature of open-ended re-
sponses, the quality of the student’s response and the teacher provided score can be
subjective. Consequently, it opens the possibility of training models with inconsis-
tent scoring standards due to the variance in teachers’ scoring requirements within
the same problem or its similar problem.

When deciding what constitutes a similar problem, future work could explore
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other methods that consider a wide range of comparison characteristics. The choice
of problems in this work removed several challenges to identifying similar problems
(as the structures of the chosen problems were so similar), but other descriptives
including the problem text, knowledge component, grade level, average difficulty, or
other such factors may be utilized in comparing problems. Defining such attributes
would also provide opportunities to build models to better understand how matching
characteristics correlate with model performance gains. By understanding how to
better identify similar problems, scoring models that incorporate auxiliary data
could better avoid selecting unhelpful or even detrimental samples (e.g. avoid the
lower bounds of model performance).

Conversely, the methods explored here may provide insights into the similarity
or other relationships between problems and skills. Prior work has focused on de-
veloping methods to measure the similarity of problems and skills for the purpose of
identifying prerequisite hierarchies among content [ASHT14]. For example, it could
be useful to pair problems (Problem A, Problem B) and gauge their similarity or
their required knowledge overlap by how well the responses of Problem A could
train or supplement the training of a scoring model intended to score the responses
of Problem B. Even without the ability to better characterize how problems are sim-
ilar, the magnitude of performance gain by observing model transfer could provide
a new measure to gauge these relationships.

Future work could also explore training with more than one similar problem
to supplement the original problem’s data to see how much the performance can
improve or further test if there are limits to the benefits of using other problem’s
data. Alternatively, future work could explore training using only similar problems’
data as a method of transfer learning rather than using the similar problem’s data

to supplement other original problems’ data for training. This would be especially
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helpful for open-ended problems that don’t yet have any scored responses.

While scoring models are becoming more prevalent in education research and
learning systems, teachers often need supports in providing more meaningful forms
of feedback beyond that of a numeric score. ASSISTments is already able to recom-
mend feedback for trained problem models, but it requires a lot of data in order to
do so (more than for the automated scoring task alone). The use of auxiliary data

as explored in this work may prove useful in other such contexts.
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Chapter 6

Conclusion

In this work, we explore one possible solution to the cold-start problem in automat-
ing the assessment of student open-ended work. We have shown that our SBERT-
Canberra method using similar auxiliary problem data consistently and significantly
outperformed the model using data solely from the original problem; this trend also
held across multiple metrics, with the largest differences observed in AUC. When
there are very few training samples from the original problem, even the modified
SBERT-Canberra method using random problems’ data to supplement helped im-
prove the performance in some cases, and additional research could be conducted
to aid in selecting better training samples.

Throughout the exploration of both Chapter 3 and Chapter 4, there is a notice-
able benefit to supplementing the training samples with data from similar problems
even with as few as 5 samples. By supplementing the original training samples
with multiple similar problems, we hypothesize that it will lead to even larger per-
formance improvements to automatic scoring regardless of the number of original
training samples. This would be particularly the case if our hypothesis is correct

where some of this benefit is derived from regularizing factors.
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Future work should use transfer learning to use the SBERT-Canberra model of
a similar problem as a starting point to score a new problems’ open-ended response.
As more data from across problems are collected, we found that there may still be

benefits to using auxiliary data even beyond addressing the cold start problem.
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