
Towards Better Predictivity Between Two
Random Variables

Major Qualifying Project

Advisor(s):

RANDY PAFFENROTH
JACOB WHITEHILL

Written By:

MINH PHAM

A Major Qualifying Project
WORCESTER POLYTECHNIC INSTITUTE

Submitted to the Faculty of the Worcester Polytechnic
Institute in partial fulfillment of the requirements for the

Degree of Bachelor of Science in Computer Science and
Bachelor of Science in Mathematical Sciences.

AUGUST 2020 - MAY 2021





ABSTRACT

This Major Qualifying Project dives into the classic problem in machine learning where we
want to predict one random variable from another random variable and. Having taken
inspiration from Canonical Correlation Analysis (linear methods) and autoencoders (non-

linear methods), we propose various algorithms to improve the predictability between two random
variables.

Our work provides interesting insights into how to train neural networks to reconstruct one
variable from another. In particular, it underlines the importance of obtaining an information-rich
latent representation of each variable. Moreover, we demonstrated the importance of the hidden
representation of an autoencoder and the benefits of utilizing random data correctly towards our
problem.
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1
INTRODUCTION

Since 2006, the availability of large datasets, the exponential growth in computer power, and

advances in machine learning algorithms have lead to successes in various tasks such as re-

gression, classification, clustering, or dimensionality reduction. Consequently, machine learning

algorithms has powered parts of people’s daily life. Applications of machine learning can be seen

in fraud detection, credit scores, image and speech recognition, etc.

1.1 Motivation

A classic problem in machine learning is given two random variables X and Y, you want to predict

a variable X from Y as well as Y from X. The application of this problem can be seen from various

domains. In computer vision, an interesting scenario is predicting one view of an image from

another view. For example, one random variable is the front view of an image while the other

random variable is the side view of that image. Such a task can be beneficial to several problems

such as self-driving cars or face frontalization [4] [5] [4]. In radio engineering, we might be

interested in predicting the positions of transmitters X from radiation patterns Y.

Moreover, collecting paired data, i.e. X and Y that are associated with each other, might be a

time-consuming task. On the other hand, generating only Xs and Ys individually, i.e. unpaired

data, can be an easier task. For instance, in radio engineering, while collecting the radiation

pattern associated with the positions of transmitters can be expensive, generating the patterns

and positions separately might be easier.

In this Major Qualifying Project report we explore various algorithms to improve the pre-

dictability between two random variables. For example, a classic approach for mapping a set

of random variables onto themselves by learning a linear transformation that projects the orig-

inal data into another space where vectors of projections are defined by the variance of the

1



CHAPTER 1. INTRODUCTION

data is called principal component analysis (PCA) [6]. Similarly, canonical correlation analysis

(CCA) [7] [8], a related method to PCA, defines coordinate systems that optimally describe the

cross-variance between two sets of random variables.

The above-mentioned examples are linear methods. However, it is much more interesting to

consider nonlinear methods such as neural networks. A classic example, and a close cousin to

PCA about would be an Autoencoder. Accordingly, here we wish to generalize an Autoencoder

(which goes from X to itself) to a more general paradigm where X goes to Y and vice versa. We

investigate various paradigms that apply Autoencoders to our task and study their performance.

The first approach one might think of would be having a function f that maps X to Y, and a

pseudo-inverse function f † that goes from Y to X. We can define f and f † as two neural networks.

This approach would be our baseline.

Moreover, we are interested in scenarios where we have an abundance of unpaired data, which

can be easier to collect than paired data. Hence, in addition to investigating various algorithms

to improve the predictability between two random variables, we explore how to utilize unpaired

data for our problem.

Figure 1.1: Examples of paired data (left) and unpaired data (right). X is the front view, and Y is
the side view. [1]

In figure 1.1, notice on the left that we have the two views of the same object, which makes

the data paired. We want to predict the right images from the left. On the right, we do not want

to predict the truck from the duck. The goal is to predict the corresponding views of the duck and

truck, i.e. predicting the truck from the truck or the duck from the duck. However, we are not

provided with the corresponding views of the duck or the truck.

2



1.1. MOTIVATION

Figure 1.2: Examples of paired data. X is the transmitter positions, and Y is the radiation
patterns. [2]
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2
BACKGROUND

This section provides notation definitions as well as backgrounds on the techniques and algo-

rithms that our work was built on or taken inspiration from.

2.1 Notation and Definitions

Notation Definition italic
y, ŷ Scalars are non-bold and italic
z, w Vectors are lower-case and bold
X Matrices are UPPER-CASE and bold
XT T indicates matrix transpose
xi j Matrix elements are written as scalars
xi,: Indicates rows of a matrix
x:, j Indicates columns of a matrix
n Numbers of examples
m Number of features

2.2 Canonical Correlation Analysis

Canonical correlation analysis (CCA) is a method for exploring the linear relationships between

two multivariate sets of variables. For instance, let us consider variables measured on envi-

ronmental health and environmental toxins. Several environmental health variables such as

frequencies of sensitive species, species diversity, total biomass, the productivity of the environ-

ment, etc. may be measured and a second set of variables on environmental toxins are measured,

such as the concentrations of heavy metals, pesticides, dioxin, etc.

4



2.3. DEEP NEURAL NETWORKS

CCA finds two bases, one for each variable, that are optimal with respect to correlations

and, at the same time, it finds the corresponding correlations. In other words, it finds the two

bases in which the correlation matrix between the variables is diagonal and the correlations on

the diagonal are maximized. The dimensionality of these new bases is equal to or less than the

smallest dimensionality of the two variables.

Let (x1, x2) ∈Rn1×Rn2 denote random vectors with covariances (
∑

11,
∑

22) and cross-covariance∑
12. The goal of CCA is to find pairs of linear projections of the two views, (w,

1X1,w,
2X2) that are

maximally correlated:

(2.1) (w∗
1 ,w∗

2 )= argmin
w1,w2

corr(w,
1X1,w,

2X2)= argmin
w1,w2

w,
1
∑

12 w2√
w,

1
∑

11 w1w,
2
∑

22 w2

As the objective is invariant to scaling of w1 and w2, the projections are constrained to have

unit variance:

(2.2) (w∗
1 ,w∗

2 )= argmin
w1,w2

corr(w,
1X1,w,

2X2)

When finding multiple pairs of vectors (wi
1,wi

2), subsequent projections are also constrained

to be uncorrelated with previous ones, that is wi
1
∑

1 1w j
1 = wi

2
∑

2 2w j
2 for i < j. Assembling the top

k projections veectors wi
1 into the columns of a matrix A1 ∈Rn1×k, and similarly placing wi

2 into

A2 ∈Rn2×k, we obtain the following formulation to identify the top k ≤ min(n1,n2) projections:

(2.3)
maximize: tr(A,

1

∑
12

A2)

subject to: A,
1

∑
11

A1 = A,
2

∑
22

A2 = I

Canonical Correlation Analysis allows us to summarize the relationships into a lesser number

of statistics while preserving the main facets of the relationships. In a way, the motivation for

canonical correlation is very similar to principal component analysis. It is another dimension

reduction technique.

2.3 Deep Neural Networks

Deep neural networks (DNNs) [9], also known as deep feedforward networks or multilayer

perceptrons are systems that are composed of connected neurons that work in unison to solve

specific tasks. They are a subset of machine learning and the key to deep learning algorithms. For

instance, let f ∗ be a classifier function that maps input x to a class or category y, i.e. y= f ∗(x).

A deep neural network becomes the best approximation of f by defining a mapping y = f (x;θ)

and learning the value of parameters θ through a set of observations. These models are called

5



CHAPTER 2. BACKGROUND

"feedforward" because information goes through the function evaluated from x to the intermediate

computations used to define f , and to the output y. They are also called "networks" as they are

typically composed of many different functions. For example, we might have three functions f (1),

f (2), and f (3) connected in a chain in order to form f (x) = f (3)( f (2)( f (1)(x))). In this case, f (1) is

called the first layer of the neural network. f (2) is the second layer and f (3) is the third or last

layer. These chain structures are the most common structures used for neural networks. The

number of functions that f consists of, i.e. the length of the chain, is the depth of the model.

Training a neural network involves minimizing the error, i.e. minimizing the loss. During this

process, we drive f (x) to match f ∗(x), often through an algorithm called Gradient Descent.

Deep neural networks are called "neural" because they are inspired by neuroscience. In

particular, they are inspired by the human brain, mimicking the way that biological neurons

signal to one another. Since each hidden layer of a neural network is normally vector-valued.

Every element of the vector can be interpreted as a neuron. Hence, instead of thinking of each

layer as representing a single vector-to-vector function, we can think of the layer as consisting of

many nodes act in parallel.

Figure 2.1: An example of a feed forward neural network

2.4 Autoencoder

The idea of autoencoders dates back to decades ago. They are first introduced in the 1980s by

Hinton and the PDP group [10] to address the problem of "backpropagation without a teacher".

6



2.5. DENOISING AUTOENCODERS

More recently, autoencoders have adopted deeper architectures [11] [12] [13] [14] [9].

An autoencoder is a type of neural network that is trained in order to copy its input to

its output. It is a learning technique in which we leverage neural networks for the task of

representation learning. Specifically, we will design a neural network architecture such that

we impose a bottleneck in the network which forces a compressed knowledge representation of

the original input. If the input features were each independent of one another, this compression

and subsequent reconstruction would be a very difficult task. However, if some sort of structure

exists in the data, i.e. correlations between input features, this structure can be learned and

consequently leveraged when forcing the input through the network’s bottleneck. Internally, it

has a hidden layer h that can represent the input through a "code". The autoencoder can be

viewed as consisting of two parts: an encoder and a decoder. The encoder is a function c = g(x)

and the decoder is a function that produces the reconstruction x, = g†(c). Normally, autoencoders

are restricted in ways that only allow them to copy approximately, and to copy only input that

resembles the training data. Since the model can prioritize which aspects of the input are copied,

so it can learn useful information of the data. In addition to being used for dimensionality

reduction or feature learning purposes, autoencoders have been used for generative modeling as

well.

Figure 2.2: The general structure of an autoencoder. g maps an input x to the internal represen-
taion c, while g† maps c to the output x,, i.e. the reconstruction

2.5 Denoising Autoencoders

The denoising autoencoder (DAE) [9] [15] is autoencoder that receives a corrupted data point as

input and is trained to predict the original, uncorrupted data point as its output. Traditionally,

autoencoders are trained to minimize some objective function

(2.4) L(x, g†(g(x)))

where L is a loss function penalizing g†(g(x)) for being dissimilar from x, i.e. the L2 norm of their

difference for example. This would encourage g†◦ g to learn to become the identity function, given

the capacity to do so.

For denoising autoencoders, we would minimize the following instead

(2.5) L(x, g†(g(x̃)))

7



CHAPTER 2. BACKGROUND

Figure 2.3: Example of an architecture of an autoencoder

where x̃ is a corrupted copy of x. This corruption is caused by some form or noise. Denoising

autoencoders aim to remove this noise, i.e. undo this corruption, rather than simply copying their

input.

2.6 Variational Autoencoders

A variational autoencoder (VAE) [16] provides a probabilistic manner for describing an observa-

tion in latent space. Thus, rather than building an encoder that outputs a single value to describe

each latent state attribute, we will formulate our encoder to describe a probability distribution

for each latent attribute.

By constructing our encoder model to output a range of possible values (a statistical distribu-

tion) from which we’ll randomly sample to feed into our decoder model, we’re essentially enforcing

a continuous, smooth latent space representation. For any sampling of the latent distributions,

we’re expecting our decoder model to be able to accurately reconstruct the input. Thus, values that

are nearby to one another in latent space should correspond with very similar reconstructions.

The loss of the variational autoencoder consist of two terms. One penalizes the reconstruction

loss, while the other one encourages the learned distribution of the encoder to be similar to a true

prior distribution p(c), which we will assume to follow a unit Gaussian distribution, i.e. N (0,I).

(2.6)
1
n

n∑
i=1

∥∥∥x(i) − g†(g(x(i)))
∥∥∥2

2
+DKL(g(x),N (0,I))

where DKL is the Kullback-Leibler divergence.

8



2.7. REPRESENTATION LEARNING

Figure 2.4: For variational autoencoders, the encoder model is sometimes referred to as the
recognition model whereas the decoder model is sometimes referred to as the generative model [3]

Figure 2.5: VAE as as generative model illustration [3].

2.7 Representation Learning

Representation learning [17] is learning representations of input data typically by transforming

it or extracting features from it, which makes it easier to perform a task like classification

or prediction. There are various ways of learning representations. For instance, in the case of

probabilistic models, the goal is to learn a representation that captures the probability distribution

of underlying explanatory features for the observed input. Such a learned representation can

9



CHAPTER 2. BACKGROUND

then be used for prediction. In deep learning, the representation is formed by the composition of

multiple non-linear transformations of the input data to yield abstract and useful representations

for tasks like classification, prediction, etc.

Focusing specifically on deep learning, representation learning is the consequence of the

function a model learns where the learning is captured in the parameters of the model, as the

function transforms input to output, during training. Representation learning here is referring to

the nature/characteristics of the transformed input - not the model parameters/ function that

is causal to it. The casual role is played both by the architecture of the model, and the learned

parameters (e.g. does a parameter play a role in representing part or all of the input, etc.) in

mapping input to output.

10
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3
METHODOLOGY

This section discusses the dataset we used for our experiments and the evaluation metric we

utilized to measure the performances of our neural networks.

3.1 Experimental Design

3.1.1 Data

Throughout different stages of this project, we used the MNIST (Modified National Insitute

of Standards and Technology) dataset [18] of handwritten digits that is commonly used for

training image processing systems. It includes 70,000 small square 28x28 pixel grayscale images

of handwritten single digits from 0 to 9. The dataset is split into a training set, which consists of

60,000 images, and a testing set, which consists of 10,000 images.

Figure 3.1: Examples of MNIST images from 0 to 9.

As a simple example of our desire to transform X to Y, we we slice the images horizontally

and wish to train a neural network to predict the top halves from the bottom halves and vice

versa. We also scaled the pixel values to range from -1 to 1. We chose to use MNIST since it

is a free dataset with tens of thousands of images. Secondly, since it is an image dataset, the

evaluation can be easily defined, i.e. we can use mean squared error (MSE), root mean squared

error (RMSE), binary cross-entropy, etc. Lastly, as the dimension of an MNIST image is 28×28,

it is faster to train our neural networks.

11



CHAPTER 3. METHODOLOGY

Figure 3.2: Examples of top halves of MNIST images from 0 to 9.

Figure 3.3: Examples of bottom halves of MNIST images from 0 to 9.

3.1.2 Evaluation

Once we finished training our neural networks, we would need to compare the images that our

models produced with the original images, i.e, the ground truths, and assess their visual quality.

The two metrics we used were Mean Square Error (MSE).

In order to compute the MSE, we took the average of the square of the difference in pixel

values between the actual and the predicted images. In some cases, the MSE alone does not tell

us anything about the visual quality of the output images. However, for our problem, we did

observe a negative correlation between the MSE and the quality of the predicted images, i.e. the

lower the MSE, the better the image quality. Hence, we decided to use MSE as one of our metrics.

(3.1) MSE = 1
n

n∑
n=1

(yi − ỹi)2

Figure 3.4: Three images with different MSE compared to the ground truth: Left (ground truth),
Middle (MSE: 0.005), Right (MSE: 0.173)

12
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4
PROPOSED SOLUTIONS

In this chapter, we propose several solutions to our problem. These algorithms took inspiration

from both canonical correlation analysis and autoencoders. Additionally, some are based on the

performances of others. Besides describing each approach in detail, we discuss how we came up

with the original idea as well as analyzed its performances.

4.1 Baseline

One simple baseline solution to this problem is training directly two neural networks to predict

the variable Y from X as well as X from Y. We defined two neural networks f : Rm → Rm and

f † : Rm → Rm. We want f to be able to take in X and predict Y, while f † performs the opposite

task. For the baseline approach, we have access to 10,000 paired MNIST halves, i.e. 10,000 top

halves and the corresponding 10,000 bottom halves.

4.1.1 Experiment Setup

For our experiment, we sliced MNIST images into top halves and bottom halves. The dimension

of an MNIST image is 28×28, so the dimension of the top and bottom half is 14×28. Afterward,

we reshaped the top and bottom halves to have a dimension of 392×1. We let the variable X and

Y be the top and bottom halves respectively. Hence, m = 392 and in our implementations, f and

f † with architectures shown below:

f : FCN(392)→ LeakyRelu → FCN(256)→ LeakyRelu → FCN(100)→ Sigmoid → FCN(100)→
LeakyRelu → FCN(256)→ LeakyRelu → FCN(392)→ Tanh

13
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Figure 4.1: f and f †

f † : FCN(392)→ LeakyRelu → FCN(256)→ LeakyRelu → FCN(100)→ Sigmoid → FCN(100)→
LeakyRelu → FCN(256)→ LeakyRelu → FCN(392)→ Tanh

LeakyRelu is defined as max(0.1x,x)

We want f to be able to map the top halves of MNIST images to the bottom halves, and f †

to perform the opposite task. Hence, we train them to minimize equation 4.1. This equation

computes the average squared pixel difference between the predicted image and the ground truth

one.

(4.1) Lbaseline(θ f ,θ f †
)= 1

n

n∑
i=1

∥∥∥ f (x(i))−y(i)
∥∥∥2

2
+

∥∥∥ f †(y(i))−x(i)
∥∥∥2

2

We trained both networks for 1,000 epochs on 10,000 MNIST images using opt optimizer and

a learning rate of lr. Finally, we computed the testing MSE at every epoch and reported the best

one. We varied lr ∈ {0.001,0.0001}, and opt ∈ {SGD, Adam, AdaGrad}.

Algorithm 1: Baseline

for number of training iterations do
• Sample minibatch of n images, and sliced them horizontally into top halves

{x(1), ...,x(n)} and bottom halves {y(1), ...,y(n)}.

θ f ← θ f −α×∇θ f baseline(θ f ,θ f †
)

θ f † ← θ f † −α×∇
θ f † Lbaseline(θ f ,θ f †

)

end

4.1.2 Result

The best recorded testing MSE is 0.1357.
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Figure 4.2: Original testing images (top) versus reconstructed images using the baseline approach
(bottom)

4.1.3 Discussion

One interesting question is whether the bad reconstruction loss described above is because (a) for

the baseline method, there exists no such mapping (i.e., no instantiation of the weights) from

X to Y or from Y to X that delivers good accuracy; or because (b) such a mapping does exist but

it is unlikely to be found by a search procedure such as SGD [19], Adam [20], or Adagrad [21].

One example of where (a) could be true is if Y is statistically independent of X; in that case, it

is obvious that no good mapping can exist. However, given that in the MNIST problem there is

obviously a strong dependency between the top and bottom halves of the image, we suspect this

is not the case.

4.2 Utilizing unpaired data

Our goal is to do better than just training directly two neural networks. We are inspired by

canonical analysis to think about our problem by cutting the neural networks f and f †. The

"canonical" in CCA means we have a special space, c, where we can get by taking f or f † and

indentifying one of its layers as the canonical space. This would split f and f † each into two

neural networks. f is split into h† and g (i.e. f = h† ◦ g), while f † is split into h and g† (i.e.

f † = h◦ g†). We defined neural networks g :Rm →Rd, g† :Rd →Rm, h :Rm →Rd, and h† :Rd →Rm

(m > d). We want f to be able to take in X and predict Y, while f † performs the opposite task.

Given f and f † have the same architectures, we choose the layer to slice f similar to that we

choose to slice f †. Hence, from figure 4.3, we can see that all Cs are the same. This gives us the

intuition that these four networks g†, h, g, and h† are like LEGO blocks that can be switched

and connected in various ways. Figure 4.3 is the baseline configuration that shows that f consists

of g, which maps X to C, and h†, which maps C to Y; f † consists of h, which maps Y to C, and g†,

which maps C to X.

We can also rearrange the neural networks as figure 4.4. Now the new configuration shows

that g maps X to C and g† maps C to X, while h maps Y to C and h† maps C to Y. We can easily

notice that this configuration in fact consists of 2 autoencoders trained on X and Y respectively.

Training a forward mapping from X to Y and a backward mapping from Y to X "magically" gives

us autoencoders. This raises the question: Can we utilize the abundance of unpaired data to

perform pre-training on g and g† as well as h and h† as two autoencoders?
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Figure 4.3: Neural Network Blocks Configuration 1. Training the top and bottom neural networks
require Xs and Ys that are associated with each other. However, the C that arises from X, and the
C that arises from Y are identical.

Figure 4.4: Neural Network Blocks Configuration 2. We can use Xs and Ys that are independent
of each other to train the left and the right neural networks. However, the C that arises on the left
and the C that arises on the right are not identical.

Before training f and f † to map the variable X to Y and Y to X respectively, we propose to

train g and g† as well as h and h† as autoencoders. g and g† are trained using the variable

X, while h and h† are trained on the variable Y. Notice that during the pre-training phase the

first autoencoder is only trained on the variable X, and the second autoencoder is trained on the

variable Y. Hence, we do not need to sample X and Y that are dependent on each other, i.e. we

can use X and Y that are collected independently for unsupervised pre-training, which can be

easier to do than collecting paired X - Y.
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Figure 4.5: Networks Task Visualization

4.2.1 Experiment Setup

Let us denote the unpaired data as xunpaired and yunpaired. We began by training g, g†, h, and

h† to optimize equation 4.2. We trained those networks on 60,000 images (60,000 top halves and

60,000 bottom halves) using Adam with a learning rate of 0.0001 for pre_training epochs, where

pre_training ∈ {25,50,100,200}

(4.2) L1(θg,θg†
,θh,θh†

)= 1
n

n∑
i=1

∥∥∥g†(g(x(i)
unpaired))−x(i)

unpaired

∥∥∥2

2
+

∥∥∥h†(h(y(i)
unpaired))−y(i)

unpaired

∥∥∥2

2

Afterward, we trained f and f † similar to the baseline method in the previous section for 150

epochs with a learning rate of 0.0001 using Adam.

Algorithm 2: Unsupervised Pre-training

for number of training iterations for unsupervised pre-training do
• Sample minibatch of n top halves {x(1)

unpaired, ...,x(n)
unpaired} and bottom halves

{y(1)
unpaired, ...,y(n)

unpaired}.

θz ← θz −α×∇θz L1(θz,θz†
))

θz ← θz −α ×∇
θz† L1(θz†

,θz†
))

end
for number of training iterations do

• Sample minibatch of n images, and sliced them vertically into top halves

{x(1), ...,x(n)} and bottom halves {y(1), ...,y(n)}.

θ f ← θ f −α×∇θ f baseline(θ f ,θ f †
)

θ f † ← θ f † −α×∇
θ f † Lbaseline(θ f ,θ f †

)

end
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4.2.2 Results

Figure 4.6 shows that all models converge to a testing MSE of approximately 0.28.

Figure 4.6: Testing MSE

4.2.3 Discussion

Unsupervised pre-training hurts the performance of our models, yielding a 79% increase in terms

of testing MSE. We conducted a sub experiment to see why there is such a surge in MSE. We

trained a separate neural network to predict the digit from the encoded representation h(y) or

g(x) at different stages of the algorithm.

Accuracy
Baseline for 400 epochs 0.9268
Pretrain 200 + Baseline 400 0.9172
Pretrain 1000 + Baseline 400 0.9131

Table 4.1: Accuracy Top

Accuracy
Baseline for 400 epochs 0.8945
Pretrain 200 + Baseline 400 0.8901
Pretrain 1000 + Baseline 400 0.8852

Table 4.2: Accuracy Bottom

The first row of table 4.2 and 4.1 shows the accuracy when training a separate neural network

to predict h(y) and g(x) after training only stage 2 of Algorithm 2 for 400 epochs. Row 2 and row

3 add unsupervised pre-training as a prior step, both of which yield a decrease in accuracy. The

reason for this is that by adding an unsupervised pre-training step, the encoded representations

might lose information and therefore result in reduced accuracy.
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4.3 Autoencoder-Inspired Method

In figure 4.3, to train the top and bottom neural networks, we will need the Xs and the Ys that

are associated with each other. However, in figure 4.4, we can use Xs and Ys that are independent

of each other. Canonical correlation analysis teaches us that C is important. In figure 4.3, we

compute the C from X and Y. The C that arises from X and the C that arises from Y are identical,

but we would need paired data for it. While in figure 4.4, if we take the autoencoders perspective,

we can compute C by just X or Y. The C that C that arises on the left, and the C that arises on

the right are not connected anymore. Nonetheless, we can take advantage of the abundance of

unpaired data for this approach. This raises a question: "How we can reconnect the C in a way?"

From an experiment that shows that the top and bottom of an image can be well reconstructed

from an information-rich representation, i.e. a representation that contains information of both

the top and bottom of an image. We investigate if an autoencoder might be used as a way of

"bootstrapping" the training process of the map from X to Y, and vice versa. We defined an encoder

z :R2m →Rd, z† :Rd →R2m, g :Rm →Rd, g† :Rd →Rm, h :Rm →Rd, and h† :Rd →Rm. We want to

train z and z† as an autoencoder so that z can take in both the variable X as well as the variable

Y to encode a hidden representation that is information-rich. We want g and h to map X and Y

respectively to the same rich-information representation produced by z.

4.3.1 Experiment Setup

The architectures of h, h†, g, and g† are keps the same as the previous sections. The architectures

of z and z† are:

z : FCN(784)→ LeakyRelu → FCN(256)→ LeakyRelu → FCN(100)→ Sigmoid

z† : FCN(100)→ LeakyRelu → FCN(256)→ LeakyRelu → FCN(784)→ Tanh

We first trained z and z† as an autoencoder using the objective function 4.3. This objective

function lets z learn an "information-rich" C.

(4.3) L1(θz,θz†
)= 1

n

n∑
i=1

∥∥∥z†(z(x(i),y(i)))− (x(i),y(i))
∥∥∥2

2

We then fixed parameters of z and trained encoders g and h following 4.4. We want to train g

and h to encode the top (X) and bottom of an image (Y) respectively to a latent variable similar to

when we encode the whole image (X,Y) with z. This second objective helps h and g approximate

z.

(4.4) L2(θg,θh)= 1
n

n∑
i=1

∥∥∥g(x(i))− z(x(i),y(i))
∥∥∥2

2
+ 1

n

n∑
i=1

∥∥∥h(y(i))− z(x(i),y(i))
∥∥∥2

2
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Finally, after freezing the parameters of g and h, we trained g† and h† with the objective

function 4.5. The last objective function makes g† and h† learn to reconstruct the approximations

of C encoded by g and h respectively.

(4.5) L3(θg†
,θh†

)= 1
n

n∑
i=1

∥∥∥y(i) −h†(g(x(i)))
∥∥∥2

2
+ 1

n

n∑
i=1

∥∥∥x(i) − g†(h(y(i)))
∥∥∥2

2

Algorithm 3: Autoencoder-Inpsired Training Algorithm

for number of training iterations for stage 1 do
• Sample minibatch of n images, and sliced them horizontally into top halves

{x(1), ...,x(n)} and bottom halves {y(1), ...,y(n)}.

θz ← θz −α1 ×∇θz L1(θz,θz†
))

θz ← θz −α1 ×∇
θz† L1(θz†

,θz†
))

end
Freeze parameters of z.

for number of training iterations for stage 2 do
• Sample minibatch of n images, and sliced them vertically into top halves

{x(1), ...,x(n)} and bottom halves {y(1), ...,y(n)}.

θg ← θg −α2 ×∇θg L2(θg,θh))

θh ← θh −α2 ×∇θh L2(θg,θh))
end
Freeze parameters of g and h.

for number of training iterations for stage 3 do
• Sample minibatch of n images, and sliced them vertically into top halves

{x(1), ...,x(n)} and bottom halves {y(1), ...,y(n)}.

θg† ← θg† −α3 ×∇
θg† L3(θg†

,θh†
))

θh† ← θh† −α3 ×∇
θh† L3(θg†

,θh†
))

end

We trained stage 1 for 300 epochs, stage 2 for 300 epochs, and stage 3 for 2,000 epochs on

10,000 MNIST images. For all three stages, we trained all neural networks using Adam with a

learning rate of 0.0001.

4.3.2 Results

After training, we achieved a MSE of 0.0143 (Figure 4.7 row 2), which showed that we can

get a visually pleasing reconstruction of the top and bottom of MNIST images from c - the

encoded representation of the whole MNIST images, i.e. z(x(i),y(i))= c. In order to investigate the

relationship between the encoded representation c and the prediction performance, we trained

z and z† from stage 1 only for 2 iterations while keeping the number of epochs of the other

stages the same. This experiment resulted in a testing MSE of 0.0683 (Figure 4.7 row 3). This
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shows that the encoded representation c is crucial for our problem. An information-rich C that

stores sufficient information of the top and bottom halves of the MNIST images can facilitate

the prediction task. In contrast, an information-poor c will lead to a worse MSE. Our proposed

algorithm yields a testing MSE of 0.1456, which is still higher than the baseline (MSE of 0.1369).

Figure 4.7: Examples of reconstructed images using Algorithm 4

MSE
Reconstructing Images From Rich-Information C 0.0143
Reconstructing Images From Rich-Information C (training stage 1 for 2 iterations) 0.0683
Autoencoder-inspired 0.1456

Table 4.3: Testing MSE of Algorithm 4, corresponding to Figure 4.7. The first row is the testing
MSE right after we finished training stage 1 for 300 epochs. The second row is the testing MSE
right after we finished training stage 1 for 2 iterations. The third row is the testing MSE right
after we finished training Algorithm 4

4.3.3 Discussion

In this section, we provide an analysis of the representations encoded by f,g and z. Let us denote

the approximations of C using h and g as c̃1 and c̃1 respectively, i.e. h(y)= c̃1 and g(x)= c̃2.

Column 1: MSE((g†(c̃1),h†(c̃2)),(x,y)) Column 2: MSE((g†(c),h†(c)),(x,y))
Training 0.14604566 0.06882905
Testing 0.14566344 0.06830042

Table 4.4: Reconstruction Error

Column 1 in 4.4 reports mean squared error between the original and the reconstructed

images from C in the training and testing data, while column 2 reports the same measurements

but using c̃1 and c̃2. We can see that using c̃1 and c̃2, rather than c, to reconstruct the top and

bottom of the images will lead to an increase of 117% and 131% in mean squared error on training

and testing data respectively. Such an increase in MSE might result from the fact that c̃1 and c̃2

are bad approximations of c.
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MSE(c,c̃2) MSE(c,c̃1)
Training 0.017277006 0.015227813
Testing 0.017503608 0.015561547

Table 4.5: Encoding error (Mean Sqaured Error)

MAPE(c,c̃2) MAPE(c,c̃1)
Training 23.4239% 21.3456%
Testing 23.5342% 22.6087%

Table 4.6: Encoding error (Mean Absolute Percentage Error)

Having observed such a significant in MSE, one might think that c̃1 and c̃2 are bad approx-

imations of C. Table 3 reports the Mean Absolute Percentage Error between each pair of the

encoded representation. Indeed, c̃1 and c̃2 are bad approximations of C, yielding a MAPE of

around 22% - 24%.

4.4 Mapping Enrichment Using Random Samples

In the previous section, we managed to show that our approximations of c using either the top

or bottom half of an image, i.e. c̃1 and c̃2 yielded a MAPE of 22% - 24% and a MSE of 0.145.

Consequently, one idea comes up: we do not just want g and h to match z on just training data

but on arbitrary data as well, which allows us to evaluate them anywhere. Hence, we proposed to

make some modifications to the algorithm in the previous section by adding random data to stage

2 and stage 3. The only reason we are allowed to use this trick is due to the objective function of

the second stage of the algorithm 4.

In this section, we investigate an approach to reduce the error both in terms of MAPE and

MSE to see how it would affect the reconstruction error.

4.4.1 Experiment Setup

We propose to use Algorithm 4 with some small modifications to the loss functions 4.4 and 4.5. In

particular, we replaced equation 4.4 with the following objective function:

(4.6) L4(θg,θh)= 1
n

n∑
i=1

∥∥∥g(x(i))− z(x(i),y(i))
∥∥∥2

2
+

∥∥∥h(y(i))− z(x(i),y(i))
∥∥∥2

2
+

∥∥∥h(r(i))− z(p(i),q(i))
∥∥∥2

2

(4.7) ∇θg,θh
1
n

n∑
i=1

∥∥∥g(x(i))− z(x(i),y(i))
∥∥∥2

2
+

∥∥∥h(y(i))− z(x(i),y(i))
∥∥∥2

2
+

∥∥∥h(r(i))− z(p(i),q(i))
∥∥∥2

2

Additionally, we replaced function 4.5 with the the loss function 4.10:
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(4.8) L5_1(θg†
,θh†

)= 1
n

n∑
i=1

∥∥∥y(i) −h†(g(x(i)))
∥∥∥2

2
+

∥∥∥x(i) − g†(h(y(i)))
∥∥∥2

2

(4.9) L5_2(θg†
,θh†

)= 1
n

n∑
i=1

∥∥∥r(i) −h†(g(p(i)))
∥∥∥2

2
+

∥∥∥p(i) − g†(h(r(i)))
∥∥∥2

2

(4.10) L5(θg†
,θh†

)= L5_1(θg†
,θh†

)+L5_2(θg†
,θh†

)

where r, p and q are random data drawn from a known data prior.

The algorithm can now be summarized as:

Algorithm 4: Autoencoder-Inpsired Training Algorithm

for number of training iterations for stage 1 do
• Sample minibatch of n images, and sliced them vertically into top halves

{x(1), ...,x(n)} and bottom halves {y(1), ...,y(n)}.

θz ← θz −α1 ×∇θz L1(θz,θz†
))

θz ← θz −α1 ×∇
θz† L1(θz†

,θz†
))

end
Freeze parameters of z.

for number of training iterations for stage 2 do
• Sample minibatch of n images, and sliced them vertically into top halves

{x(1), ...,x(n)} and bottom halves {y(1), ...,y(n)}.

• Sample minibatch of 3×n random vectors from a known data prior.

θg ← θg −α2 ×∇θg L4(θg,θh))

θh ← θh −α2 ×∇θh L4(θg,θh))
end
Freeze parameters of g and h.

for number of training iterations for stage 3 do
• Sample minibatch of n images, and sliced them vertically into top halves

{x(1), ...,x(n)} and bottom halves {y(1), ...,y(n)}.

• Sample minibatch of 3×n random vectors from a known data prior.

θg† ← θg† −α3 ×∇
θg† L5(θg†

,θh†
))

θh† ← θh† −α3 ×∇
θh† L5(θg†

,θh†
))

end

4.4.2 Results

By making some modifications, i.e. adding random data, to stage 2 and stage 3 of algorithm 4, we

can see that the testing MSE reduced from 0.1456 to 0.138, which is much closer to the baseline
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MSE
Baseline 0.1357
Utilizing Unpaired Data 0.2723
Autoencoder-Inspired Method 0.1456
Mapping Enrichment Using Random Samples 0.138

Table 4.7: Testing MSE of Algorithm 1, corresponding to Figure 4.7

approach. It very surprising that random data helps. But it not very surprising that we want g,

h, and z to agree everywhere not just agreeing on the training data.

4.4.3 Discussion

In this section, we again provide an analysis of the representations encoded by f,g and z. Let

us denote the approximations of C using h and g as c̃1 and c̃1 respectively, i.e. h(y) = c̃1 and

g(x)= c̃2.

Column 1: MSE((g†(c̃1),h†(c̃2)),(x,y)) Column 2: MSE((g†(c),h†(c)),(x,y))
Training 0.13401326 0.05452401
Testing 0.13564417 0.05635012

Table 4.8: Reconstruction Error

MSE(c,c̃2) MSE(c,c̃1)
Training 0.017277006 0.015227813
Testing 0.017503608 0.015561547

Table 4.9: Encoding error (Mean Sqaured Error)

MAPE(c,c̃2) MAPE(c,c̃1)
Training 23.4239% 21.3456%
Testing 23.5342% 22.6087%

Table 4.10: Encoding error (Mean Absolute Percentage Error)

By enforcing g and h to match z on arbitrary data, table ?? and table 4.10 shows that we

achieve a reduction in both MSE and MAPE for C and its approximations.
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5
CONCLUSION

This Major Qualifying Project presented an investigation into the classic machine learning

problem of predicting one random variable from another. Particularly, we propose 4 approaches to

tackle this problem and provide an analysis of each of them. The first obvious baseline approach is

to train directly two neural networks f and f † to map X to Y, and vice versa. We reported a testing

MSE of 0.1357 using this approach. For the second approach, we took an autoencoder perspective

and performed unsupervised pre-training first before training two neural networks similar to the

baseline method. This approach yielded a significantly higher testing MSE than the previous

one. We show that this is because the unsupervised pre-training step is making the encoded

representations C lose information, i.e. less rich-information, which leads to a surge in testing

MSE. In the Autoencoder-inspired method, we demonstrated the importance of a rich-information

representation C to our problem. Moreover, we provided an analysis of why our testing MSE is

close but still higher than the baseline method. The reason was that the approximations of C

using g and h were not sufficient. Hence, from the same analysis, we proposed the final approach

that utilizes random data to enhance the approximations of C. In particular, we want g, h, and z

to match anywhere not just on training data. A second analysis showed that we achieve better

approximations of C using this approach and a testing MSE closer to the baseline than without

using random data.

5.1 Future Work

To begin with, during our project, we only used simple feedforward neural networks to train our

neural networks. Since our experiments use the MNIST dataset, i.e. an image dataset, we might

want to try using convolutional neural networks instead. Secondly, in section 4.4, we show that a
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better approximation of the rich-information C can lead to a reduction in the testing MSE. Hence,

better approaches to improve this approximation are worth investigating.

5.2 Reflections

The process of completing this Major Qualifying Project was a valuable and rewarding experience.

To begin with, I learn that in addition to having a good research plan that needs to be followed

diligently, the ability to adapt and shift the project’s focus is equally important. Secondly, I realize

the importance of being attentive to details as well as having a well-documented research journal

about your experiments and ideas. Thirdly, I attained a lot of knowledge regarding Generative

Adversarial Networks [22], especially how to train them stably, and Autoencoders. Last but

not least, my ability to convey scientific ideas concisely through writing has been sharpened

throughout the MQP.

For future students who would like to continue this project, I would suggest spending time

conducting a literature review in the early stages of the project and finding a way to keep track

of the experiments as well as ideas.
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