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Abstract 

This thesis investigates the effects of low oxygen culture conditions and fibroblast 

growth factor-2 (FGF2) on adult human dermal fibroblasts.  

It was previously shown that low oxygen and FGF2 culture conditions lead to an 

extension of proliferative lifespan, low-level activation of stem cell genes, and global 

transcriptional changes in adult human dermal fibroblasts. Additionally, an increased in 

vivo tissue regenerative response can be observed when human muscle-derived 

fibroblasts grown with FGF2 and low oxygen are implanted into mouse muscle injury, 

leading to a decrease in collagen deposition and scar formation and increase of 

functional skeletal muscle regeneration, including formation of Pax7+ muscle stem cells.  

These findings led to an analysis of key cellular oxygen sensors, hypoxia inducible 

factors (HIFs) and their role in this regenerative response. Directly linking these factors 

with the regenerative response, I have shown, with knockdown experiments, that HIF-

2 is required for the increased proliferative capability and decreased senescence of 

human dermal fibroblasts (hDFs) induced by hypoxia.   I have also determined that low 

oxygen causes an early and transient increase of HIF-1 and late and sustained 

increase of HIF-2 protein accompanied by increased nuclear translocation. Using 

overexpression and knockdown approaches via lent-virus, I determined that HIF-2 

appears to modulate FGF2 signaling through the FGF receptors. First, under low 

oxygen conditions, exogenous FGF2 led to downregulation of endogenous FGF2, which 

can be mimicked by overexpression of HIF-2. In ambient oxygen we didn’t see this 

effect. Second, HIF-2 overexpression appears to lead to increases in FGFR1 

phosphorylation and consequently increased ERK1/2 phosphorylation, and increases in 

the expression of heparan sulfate modifying enzymes (NDST1, NDST2, and EXTL2). 
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Lastly, sustained supplementation with FGF2 in low oxygen inhibits receptor-mediated 

FGF2 signaling.  

To understand these effects at the transcriptional level, using microarray 

technology, we identified oxygen-mediated FGF2 effects on genes involved in cell 

survival and proliferation.  

Through bioinformatics analyses, I determined that genes involved in wound 

healing (extracellular matrix genes, adhesion molecules, cytokines) are upregulated in 

FGF2 treated fibroblasts grown under low oxygen. By utilizing a gain-of-function 

approach, we were able to assess the effects of altered HIF-2 activity on the 

expression of Oct4, Sox2, Nanog, Rex1, and Lin28 in adult hDFs. The results indicate 

that overexpression of the HIF-2 transcription factor increases Oct4 mRNA, but not 

Oct4 protein, levels, and had no effect on Nanog and Lin28 proteins. HIF-2 

overexpression also mediated FGF2 induction of Sox2 and Rex1 proteins of higher 

molecular weight. 

This thesis expands our knowledge about effects of low oxygen and FGF2 on 

adult human dermal fibroblasts and explains in part, how FGF2 under low oxygen 

conditions may lead to increased proliferation, extended life span, regenerative 

competency and increased developmental plasticity of adult hDFs. 
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Chapter 1. Introduction and Background 

The extracellular environment specifies a cell type and determines cell plasticity, 

which is defined as ability to transition between cell types. Human embryonic stem cells, 

which are the standard in studying cellular plasticity, require basic fibroblast growth 

factor (FGF2) to maintain them in undifferentiated state. Another important 

environmental factor is low oxygen. Low oxygen culture conditions are designed to 

mimic the environment that cells experience in vivo. When simultaneously exposed to 

FGF2 and low oxygen, adult human fibroblasts exhibit additional synergetic effects not 

encountered in either culture condition in isolation. This thesis investigates the 

mechanisms and implications of this synergy. We present findings that detail these 

effects on plasticity of adult human fibroblasts, with potential applications in 

regeneration, wound healing, and cancer processes. 

1.1. Individual effects of oxygen and FGF2 on cell survival, proliferation, and 

developmental plasticity 

Oxygen levels in vivo 

Experimentation involving mammalian cells often relies on one’s ability to 

maintain explanted cells viable and functional in vitro. Conditions under which different 

embryonic, fetal, and adult mammalian cells retain both viability and functionality differ 

between species, age, and cell type. These conditions have been developed over the 

past half a century and the majority of controlled cell culture “environments” strive to 

mimic the in vivo environment. They provide adequate, species-specific temperature, 

maintain physiological osmolarity of media by minimizing evaporation by providing high 

humidity, and maintain physiological pH by increasing CO2 to 5% and using the 

buffering effects of sodium bicarbonate. Control of other critical environmental factors, 
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such as partial pressure of oxygen, however, has been largely ignored when designing 

cell culture protocols. This is surprising given that the existence of significantly lower 

oxygen concentrations in vivo, relative to ambient atmospheric pressure, 19-21% O2,
 

has been known for a long time.  

Low oxygen conditions in vivo are observed as early as the pre-implantation 

stage of embryonic development. In vitro, a significantly larger proportion of human 

embryos reach morula and blastocyst pre-implantation stages when cultured in 5% 

oxygen [1]. Similarly, the mammalian reproductive tract is maintained under low oxygen 

tension that ranges from 1.5% in the monkey uterus, to 8.7% in a rabbit oviduct, the 

rabbit and hamster uterus [2]. Human placentation also occurs in a hypoxic environment 

[3-6]. Later during development, adult stem cells remain in compartments of the body 

termed stem cell niches, which are responsible for maintaining their phenotype due to 

the presence and availability of several factors, such as secreted growth factors, 

supportive extracellular matrix, calcium ions, and low oxygen concentrations ranging 

from 1-8% [7-9]. Specifically, hematopoietic stem cells (HSCs) reside in a hypoxic niche 

that is close to the bone but is distant from capillaries, particularly in the endosteal zone 

of the bone [10-12]. Mathematical modeling of oxygen tension in the bone marrow 

showed that oxygen pressure decreases 10-fold at a distance of several cells away 

from nearest blood vessel [13, 14] and remain well below atmospheric in several tissues 

across different species [11, 15-19]. Similarly, mesenchymal stem cells (MSCs) reside 

in niches that experience low oxygen tensions [19-21], as do neural stem cells (NSCs) 

in subventicular zone (SVZ) of the mammalian brain [22-24]. 

Differentiated tissues in the adult body also experience oxygen tensions lower 

than atmospheric oxygen. Oxygen pressure drops first in the lungs due to diffusion, the 
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presence of water vapor in alveoli, the presence of air in anatomic dead spaces of the 

lungs, and air exchange between alveoli and capillaries. Alveolar air exhibits a partial 

pressure of 104 mmHg (14%) oxygen. Partial pressure of oxygen in arterial blood, 

carrying oxygen towards organs and tissues, decreases to approximately 100 mmHg 

oxygen (13%) and in the venous system measures 40 mmHg (5.3%) [25]. The 

physiological tissue distribution of oxygen is as a result of its progressive consumption 

as blood passes through different organs.  Depending on the location, the oxygen 

concentration in the body ranges from below 2% to 9% [7, 25-30] (Table 1.1).  

Table 1.1. Oxygen levels in various tissues of the body 

Tissue Oxygen, % References 

Vessels 4–14 Saltzman et al., 2003 [31] 

Heart 5–10 Roy et al., 2003 [32] 

Brain 0.5–7 

Hemphill et al., 2005 [33, 34] 

Nwaigwe et al., 2000 [35] 

Chen et al., [36] 

Kidney 4–6 Welch et al., 2001 [37] 

 

A range of oxygen concentrations can be observed throughout skin as well. Adult 

human skin is a layered organ that consists of epidermis, basement membrane, and 

dermis and is comprised of different cell types which include epidermal cells, vascular 

cells, neural cells, and cells of hematopoietic origin [38]. Oxygen delivery to the 

epidermis occurs via dermis (blood vessels) and skin surface (air). Upper skin (0.25-0.4 

mm in thickness) can be supplied with atmospheric oxygen [39]. Skin dermis was 

determined to be better oxygenated than epidermis (>7% and 0.2-8%, respectively) [40] 

(Table 1.2). 
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Table 1.2. Oxygen levels in human skin  

Tissue Oxygen, % 

Dermis >7 

Epidermis 0.2–8 

Hair follicles 0.1–0.8 

Sebaceous glands 0.1–1.3 

 

Hence, in vitro oxygen levels (19-21%) by no means correspond to in vivo 

oxygen levels (2-9%) in tissue. Therefore, culturing cells under atmospheric oxygen 

does not provide a physiological environment in which they natively reside. 

Oxygen levels – cellular effects (survival, proliferation, and developmental plasticity) 

Oxygen concentration is sensed by cells via oxygen-responsive molecular 

signaling mechanisms, including via the Hypoxia-Inducible Factors (HIFs), leading to 

alterations in proliferation, cell cycle, genomic stability, and apoptosis. Hypoxic (5% 

oxygen) culture conditions increase proliferation rates in hESCs [41] and marrow-

isolated adult multilineage inducible (MIAMI) cells [42].  

In vivo, HSCs are mostly quiescent, and this state is maintained by hypoxia [43-

45].  In vitro, quiescence is also maintained by low oxygen: after 72 hours, cord blood 

CD34+ human cells were 1.5 and 2.5 times greater in quiescence (G0) at 3% and 0.1% 

oxygen, respectively, than at ambient oxygen. Implantation of human bone marrow cells 

into a mouse triggered their entry into quiescence and maintenance in the hypoxic state 

[46, 47]. Hypoxia decreased proliferation of human mesenchymal stem cells and 

increased their migration, though chromosomal stability and cell viability were unaltered 

[48-51]. In other reports, human mesenchymal stem cells derived from bone marrow 

showed an enhanced proliferation rate [52] and prolonged lifespan [53] under hypoxic 

conditions. Human fetal mesencephalic precursor cells and NSCs show increased 
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proliferation rates and cell viability in low oxygen tensions (2-5%)[54-56], whereas 1% 

oxygen inhibits growth of NSC [55]. Hypoxia enhances the proliferative rate of mouse 

and rat NSCs in vitro and decreases apoptosis [57-62].  

In summary, low oxygen culture conditions promote human embryonic stem cell 

proliferation, but different adult stem cells respond differently to low oxygen. 

Proliferation depends on the cell type and the oxygen concentration. Concentration of 

oxygen below 1% is considered a pathophysiological condition, which in neuronal stem 

cells induces apoptosis and cell cycle arrest.  

In fibroblasts, mature mesenchymal cells characterized by heterogeneity, low 

oxygen is involved in regulating the increased proliferation rates and in protecting 

fibroblasts from DNA damage, thus prolonging their life span. WI-38 (human lung 

fibroblasts), TIG-7 and IMR-90 (human fetal lung fibroblasts), and human renal 

fibroblasts grown in low oxygen show increased growth rates and extended proliferative 

life spans [63-68], whereas severe hypoxia (0.1% oxygen) leads to cell cycle arrest [67]. 

Mouse embryonic fibroblasts (MEFs) grown in 3% oxygen also show increased 

proliferation rates, but accumulate more DNA damage in 3% oxygen compared with 

ambient oxygen, and also more damage compared with WI-38 human fibroblasts [69].  

In summary, low oxygen promotes proliferation and increases life span of fibroblasts 

from various sources. 

In addition to regulating cell proliferation rate and the cell cycle, oxygen culture 

conditions in vitro also affect the differentiation and the determination of the stem cell 

fate [70]. Hypoxia promoted self-renewing division of stem cells [71]. The delicate 

balance that needs to be maintained between the cells’ ability to self-renew as 

pluripotent, undifferentiated cells, and their commitment towards differentiation into a 
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wide spectrum of cell types is controlled by environmental cues in vitro, one of which is 

the level of oxygen present [72]. Low oxygen tensions are beneficial for the in vitro 

maintenance of hES cells through support of molecular mechanisms required for 

pluripotency [73].  

Hypoxic conditions (1-5% oxygen) as compared with ambient oxygen, reduce 

spontaneous differentiation (determined by morphological analysis) of hES colonies, 

lead to much lower levels of human chronic gonadotropin and progesterone (the 

production of which by hES cells is indicative of spontaneous differentiation along the 

trophoblast lineage), lead to enhanced formation of embryoid bodies, and maintain 

expression of  pluripotency markers Oct-4, Nanog, Sox2 and SSEA-4 [41, 74]. In 

hypoxic conditions the rate of spontaneous chromosomal aberrations was below that 

induced by ambient oxygen [75-77]. MIAMI cells show upregulation of the expression of 

pluripotency markers such as Oct4, Rex1, hTERT, and SSEA-4 when cultured under 

3% oxygen and reduced the expression of osteoblastic markers when grown in 

osteoblastic differentiation medium [42]. This general pattern of increased stem cell 

gene expression and reduced differentiation can also be observed in human bone 

marrow-derived mesenchymal stem cells [48, 49, 52, 53, 78], adipose-derived 

mesenchymal stem cells [79-81], human neuronal stem cells [56]. For example, low 

oxygen was shown to promote differentiation of mouse CNS precursors along different 

neural lineages.  Expansion and differentiation in low oxygen (2% and 5%) yielded 

neurons, astrocytes, and oligodendrocytes, while ambient oxygen yielded neurons only 

[57].  When neural crest stem cells were cultured in low oxygen, 82% retained their 

multipotency compared to 48% retention in ambient oxygen [62]. This response differs 

from the response in rodent stem cells. When mouse NSC were differentiated into 
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neurons, both low and ambient oxygen conditions showed the same differentiation 

potential, showed equal upregulation of neural markers, and equal levels of Oct4 and 

Nanog expression [58, 82].  Differentiation of rat neural precursor cells isolated from 

mesencephalon was enhanced by low oxygen culture conditions [61], indicating that the 

use of mouse and rat cells wen studying oxygen-mediated regulation may not lead to 

predictable conclusions about oxygen-mediated regulation in humans. 

Hypoxia promotes reprogramming process of fibroblasts and generation of 

induced pluripotent stem cells (iPSCs), increasing the efficiency of reprogramming by 

retroviral delivery of Oct4, Klf-4, Sox2, and c-Myc [83]. In summary, embryonic stem 

cells cultured in low oxygen conditions show decreased spontaneous differentiation, 

while adult stem cells put through differentiation protocols show decreased 

differentiation potential.  

FGF2 – cellular effects (survival, proliferation, and developmental plasticity) 

Externally supplemented growth factors regulate a number of different biological 

processes. FGF2 is a mesenchyme-derived growth factor that displays mitogenic, 

migratory, and morphogenic functions, and is also known to play role in angiogenesis, 

organ development, organ regeneration, and wound healing [84]. FGF2 stimulates 

differentiation and is involved in osteogenic differentiation, chondrogenic and adipogenic 

differentiation, trophectoderm differentiation, limb patterning, and is absolutely required 

for the maintenance of human embryonic stem cells in undifferentiated state [85, 86].  

1.2. Joint effects of low oxygen and FGF2 on cell survival, proliferation, and 

developmental plasticity 

Fibroblasts are the most ubiquitous cell type in a mammalian organism.  

Responsible for the production of extracellular matrix (ECM), which primarily consists of 
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collagen I and collagen III, fibroblasts are activated upon tissue injury and migrate to the 

wound site to produce ECM to help repair damaged tissue [87].  Even more strikingly, in 

urodeles [88, 89] and embryonic mammalian tissues they are thought to be key 

elements involved in orchestrating regeneration.  

We previously observed that culture conditions (low oxygen and addition of basic 

fibroblast growth factor FGF2) involved in maintenance of human embryonic stem cells  

were also able to induce expression of stem cell genes in adult human fibroblasts. Both 

adult human dermal and muscle fibroblasts showed expression of Oct4, Sox2, Nanog, 

Lin28, and Rex1 [90]. Low oxygen and FGF2 was also observed to extend life span, 

increase the number of population doublings, and decrease population doubling time 

[90]. When applied to adult human muscle fibroblasts seeded onto fibrin micro-threads 

and implanted into mouse muscle injury, we witnessed a decrease in collagen 

production compared to controls (less scarring) which led to the term - induced 

regeneration competence (iRC) [91]. Alternatively, iRC cells were termed ELS 

(extended life span) cells as FGF2 and low oxygen extend the life span of these cells 

[90]. This expression of stem cell genes in adult human fibroblasts cultured under these 

conditions led us to believe that they, as well as potentially other cell types, maintain 

some level of developmental plasticity.  

1.3. Mediators of oxygen activity - Hypoxia-Inducible Factors (HIFs) 

Structure of hypoxia-inducible factors  

The main molecular sensor of oxygen concentration in a cell is a family of 

transcription factors called HIFs (Hypoxia-Inducible Factors). HIF molecules are 

heterodimers that consist of two subunits:  and . The alpha subunit is responsible for 

oxygen sensing. The beta subunit, which is known as aryl hydrocarbon receptor nuclear 
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translocator (ARNT), is constitutively expressed and heterodimerizes with the alpha 

subunit. Alpha subunit members include HIF-1, HIF-2, and HIF-3. HIF-3 is the 

least studied of the three alpha subunits, but has been shown to function as a 

transcription factor [92] and as a dominant-negative regulator of HIF-1 [93, 94] and 

HIF-2[95]. 

HIF-1 was first identified as a protein binding to the hypoxia response elements 

(HRE; 5’-[A/G]CGTG-3’) in the 3’ enhancer of the human erythropoietin (EPO) gene that 

shows hypoxic induction. EPO’s function is to induce production of red blood cells [96-

99].  

HIF-2 was independently identified by four groups and termed endothelial PAS 

domain protein (EPAS1) [100], HIF1-like factor (HLF) [101], MOP2 [102], and HIF-

related factor (HRF) [103].  First, EPAS1 was identified through a screen of a HeLa 

cDNA library and mRNA was found in all human tissues, but the highest levels were 

detected in well-vascularized organs such as the heart, placenta, and lung [100]. 

EPAS1 protein was predominantly detected in endothelial cells of mouse embryos and 

was shown to dimerize with HIF-1. Ema et al. detected murine HIF-1like using HIF-1 

in a yeast two-hybrid system [104]. High HLF mRNA expression was detected in 

endothelial cells as well. Hogenesch et al. identified five novel basic helix-loop-helix-

PAS (bHLH-PAS) proteins and named them members of the PAS superfamily (MOP1-

5). MOP 1 and MOP2 were determined to be HIF-1 and HIF-2. [105]. Flamme et al. 

searched for the gene homologous to Drosophila tr1 and identified HIF-2 [103]. 

HIF-1α-null mice exhibit lethality between embryonic stage E8.5 and E10.5, and 

show severe blood vessel defects and prolapsed neural folds because of cell death 

within the cephalic mesenchyme [102]. HIF-2α-null mice also exhibit embryonic lethality 
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with abnormal lung maturation [106] and blood vessel defects, but sometimes survive 

postnatally [107]. Postnatal survival depends on the genetic background of HIF-

2deficient mice [107-109]. Specifically, in the 129Sv/ICR background, one third of 

mice were born alive, but these mice were smaller and exhibited shorter lifespan than 

wild type mice. Additionally, two thirds of homozygous mice suffered from vascular 

disorders and died in utero between E9.5 and E13.5. Homozygous HIF-2-null mice 

derived from embryonic stem cells (129Sv background) displayed embryonic lethal 

phenotype and died between E9.5 and E12.5 [107]. 

HIF-1 and HIF-2 mRNA are ubiquitously expressed and are not regulated by 

oxygen concentrations. Translation of HIF-1 and HIF-2 proteins can be regulated by 

oxygen concentrations. The 5’UTR of HIF-1 mRNA contains an internal ribosome entry 

site (IRES), which allows translation to be maintained when cap-dependent translation 

is inhibited under hypoxic conditions [110]. HIF-2 contains an iron-responsive element 

(IRE) in its 5’UTR. Hypoxia de-represses HIF-2 translation by disrupting the interaction 

between the iron regulatory protein 1 (IRP1) and HIF-2 IRE [111, 112].  

HIF-1 and HIF-2proteins, as well as HIF-1 are members of basic helix-loop-

helix (bHLH) – Per-ARNT-Sim (PAS) family of proteins (Figure 1.1).  
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Figure 1.1. Structure of HIF subunits under normoxia [113]. 
 

HIFs contain N-terminal bHLH domains, which are required for dimerization and 

DNA binding, and two PAS domains (PAS-A and PAS-B). HIF-1 and HIF-2 also 

contain oxygen-dependent degradation domains (ODDD), which contain amino acids 

important for oxygen-mediated regulation of HIF- subunit stability and activity. Two 

transactivation domains (N-TAD and C-TAD) are also present in HIF-1 and HIF-

2(Figure 1.1). The presence of N-TAD is sufficient to transcriptionally activate HIF-

responsive promoters [114]. Both HIF-1 and HIF-2 C-terminal transactivation 

Proteosome 
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domains are important for regulation of HIF target genes by interacting with co-

activators such as p300/CBP. 

Post-translational regulation of HIF stability and activity 

Under ambient oxygen conditions, HIF-1 and HIF-2can be hydroxylated by 

three prolyl hydroxylase enzymes (PHD1, PHD2, PHD3) on specific proline residues 

(Pro402 and Pro564 of HIF-1, Pro405 and Pro531 of HIF-2). PHD2 has a 

predominant role in HIF-1 regulation [115, 116], as silencing of PHD2 is sufficient to 

stabilize and activate HIF-1 in ambient oxygen, and silencing of PHD1 and PHD3 has 

no effect on the stability of HIF-1 either in ambient oxygen or upon re-oxygenation 

[117]. PHD3 is more specific to the regulation of HIF-2 [116]. Prolyl hydroxylation 

provides a recognition site for the E3 ubiquitin ligase complex containing the von Hippel-

Lindau tumor suppressor protein (pVHL). Binding of pVHL to the HIF- subunit leads to 

the degradation of the -subunit by the proteasome [118]. PHD enzymes that 

destabilize HIFs require oxygen, Fe2+, and ascorbic acid as cofactors. Thus, iron 

chelators and divalent metal ions that can substitute for iron in PHD ferroproteins 

(cobalt, nickel and manganese) can stabilize HIFs. Ascorbic acid maintains iron in the 

ferrous (Fe2+) state, and thus is required for PHD function as well [119]. 

Dimethyloxalylglycine (DMOG), which is a non-specific 2-oxoglutarate-dependent 

dioxygenase inhibitor, can also be used to prevent HIF- degradation. 

Under ambient oxygen conditions another enzyme, factor inhibiting HIF (FIH), 

hydroxylates specific asparagine residues in the C-terminal transactivation domain 

(CAD) of HIF- subunits (Asn813 of HIF-1and Asn851 of HIF-2). Asn hydroxylation 

leads to the inability of the co-transcriptional activator p300/CBP to bind the HIF- 

subunit, which in turn leads to inactivation of HIF transcriptional activity [120].  
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The PHD and FIH enzymes have different Michaelis constants (Km) for oxygen. 

The Km of FIH for O2 under low oxygen is 40% of its Km under ambient oxygen. The 

Km of FIH is about one third of the Km of the PHD. The Km values of PHDs in low 

oxygen is above the Km in ambient oxygen [121]. This indicates that a minor decrease 

in the concentration of oxygen from ambient levels decreases the activity of HIF prolyl 

4-hydroxylases, which leads to the stabilization of the HIF- subunit. A larger decrease 

in oxygen concentration is needed for significant decrease in the activity of FIH, which 

enables binding of p300 to the HIF- subunit and thus leads to maximal transcriptional 

activity of genes that promote cell survival in low oxygen conditions. 

There are also known instances when HIF- subunits escape degradation in 

ambient oxygen. In rabbit myoblasts, HIF-1 protein expression was not influenced by 

oxygen concentrations [122]. In HeLa cells, stabilization of HIF-1 was shown to be 

dependent on cellular density: denser cultures led to stabilization of HIF-1 even at 

ambient oxygen [123]. MEFs are resistant to oxygen-dependent degradation of HIF-2 

and the rate-limiting step for activation of endogenous HIF-2 is its nuclear localization 

as HIF-2 is localized to the cytoplasm of non-hypoxic cells [124]. A recent report 

showed that neuroblastoma tumor-initiating cells (TIC) have high levels of HIF-2 even 

when cultured in ambient oxygen conditions, unlike HIF-1a protein that was 

undetectable in ambient oxygen conditions in these cells [125]. This report determined 

that ambient oxygen expression of HIF-2 in TICs was due to low levels of PHD3 

(which is primarily responsible for HIF-2 degradation), as well as increased translation 

rates via the mammalian target of rapamycin (mTOR) pathway.  
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Localization of HIFs 

Hypoxia induces the nuclear localization of HIF-1. Two nuclear localization 

signals (NLS) are present in the N-terminus (amino acids 17-74) and the C-termius 

(amino acids 718-721) of HIF-1. The C-terminal NLS motif of HIF-1 plays a crucial 

role in mediating hypoxia-inducible nuclear import of the protein [126]. Nuclear 

translocation is not necessary for HIF-1 stabilization as both nuclear and cytoplasmic 

proteasomes can degrade HIF-1 in an oxygen dependent way [115]. HIF-1 

localization to the nucleus occurs independently of ARNT [127]. 

The nuclear localization signal of HIF-2 overlaps the transcription-inhibitory 

domain. Nuclear localization of HIF-2 is dependent on the bipartite nuclear localization 

signal in the C-terminus. The bipartite nuclear localization signal is 740-KLKLKR-X27-

KRMKS-747 (underlining shows the conserved bipartite nuclear localization signal).  

HIF targets: differences between HIF-1 and HIF-2 

The effects of hypoxia on the transcriptional profiles of different cell types have 

been investigated. In hES cells maintained under hypoxia and ambient oxygen, ambient 

oxygen downregulated genes involved in glycolysis, apoptosis, cellular redox regulation, 

and proliferation [76, 128]. Analysis of human umbilical vein endothelial cells (HUVECs) 

cultured under ambient and 3% oxygen showed that low oxygen-regulated genes 

function in cell cycle, cell death, migration, and organismal development [129]. Analysis 

of hypoxic and normoxic effects on a number of cell types, including primary renal 

proximal tubule epithelial cells, breast epithelial cells, smooth muscle cells, and 

endothelial cells, showed that low oxygen upregulated genes involved in glucose 

transport and metabolism, angiogenesis, cell proliferation and apoptosis [130]. Hypoxia 
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(1% oxygen) also affected genes coding for angiogenic factors, ECM regulators, 

adhesion molecules, chemokines, and cytokines in primary human monocytes [131].  

Low oxygen promotes angiogenesis via the expression of factors important for 

new vessel formation and maturation such as vascular endothelial growth factor 

(VEGF), [132], its receptor, VEGF receptor 1 (VEGFR1)  [133], and platelet-derived 

growth factor (PDGF) [134]. In addition, angiogenesis-promoting angiopoietin 1 

(ANGPT1) and angiogenesis-inhibiting angiopoietin 2 (ANGPT2) are upregulated by 

hypoxia [135].  

Low oxygen also regulates red blood cell production (hematopoiesis) by 

increasing erythropoietin (EPO) gene production [101, 136]. Other hypoxia-inducible 

activators of angiogenesis include inducible nitric oxide (NO) synthase (iNOS) [137-

139]. A hypoxic environment also stimulates synthesis of growth factors such as TGF1 

[140] and TGF3 [141]. Angiogenesis, increased migration, and inflammatory processes 

contribute to wound healing and to forming a tumor microenvironment, and are among 

processes regulated by hypoxia and hypoxia-mediated growth factor signaling.  

Low oxygen stimulates the migration of fibroblasts and keratinocytes [142-145]. 

Hypoxia stimulates the migration of malignant gliomas [146], breast cancer cells [147, 

148], and gastric cancer cells [149] and thus contributes to the metastatic phenotype. 

Low oxygen was shown to regulate insulin-like growth factor (IGF) signaling (produced 

mostly in liver, regulator of metabolism and cell proliferation) through STAT5b in HepG2 

hepatocarcinoma cells [150]. Low oxygen regulates expression of EGFR and IGFR1, 

which has been implicated in cancer progression [151]. Low oxygen has also been 

shown to be involved in regulation of WNT/-catenin through enhancing LEF-1 and 

TCF-1 expression in stem cells [152].  
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In hypoxic conditions, HIF-1 and HIF-2 are stabilized and help upregulate 

several genes to promote cell survival in low oxygen conditions. Under low oxygen 

conditions, HIF-1and HIF-2 do not undergo proline hydroxylation and are stabilized. 

The abrogation of Asn hydroxylation under low oxygen conditions allows CAD to 

interact with the p300 transcription co-activator and heterodimerize with ARNT. The 

HIFdimer binds the hypoxia response element (HRE), which is the 5’-[A/C]CGTG-

3’ consensus sequence of DNA in the promoter regions of the target genes. The core 

HRE sequence (5’-[A/G]CGTG-3’) is too short and can be found to often to accurately 

predict binding a priori. 

Benita et al. used microarray analysis and analysis of proximal promoters of 

identified genes induced under hypoxia to find HIF-1 target genes [153]. HIF-1 was 

determined to preferentially bind to transcriptionally active loci as determined by ChIP-

ChIP experiments that showed presence of trimethylation of lysine 4 on histone 3 

(H3K4me3) and RNA Polymerase II at these loci under ambient oxygen [154]. HepG2 

cells grown in normoxia and 0.5% oxygen were subjected to ChIP-ChIP and gene 

expression profiling to identify HIF-1 targets. Dioxygenases, and specifically JmjC-

containing histone demethylases (Jarid1B, JMJD1A, JMJD2B, JMJD2C) were 

determined to be direct HIF-1 targets [155]. Human keratinocytes activate HIF-1 

upon wounding which promotes transcription of laminin-332 and, hence, stimulate 

migration [145].  

HIF-2 direct targets include MMP1, MMP3, MMP9, MMP12, MMP13, 

ADAMTS4, NOS2, and PTGS2 in chondrocytes [156]. HIF-2 regulates COL10A1 and 

MMP13 [157]. HIF-2 has important implications in the proliferation of cancerous cells. 

Silencing of HIF-2 stops in vivo proliferation through inactivation of EGFR and IGFR1 



Chapter 1. Introduction and Background                     

30 

 

downstream signaling [151]. In astrocytes, erythropoietin (EPO) is under the control of 

HIF-2, whereas VEGF and lactate dehydrogenase (LDH) were under HIF-1 control 

[136]. In renal cell carcinoma, cyclin D1 was suppressed upon siRNA-mediated 

knockdown of HIF-2 [158]. 

Evidently, HIF-1 and HIF-2 are closely related as they have similar regulation 

mechanisms, but they have tissue-specific expression patterns with overlapping, yet 

distinct, targets. Bracken et al. have demonstrated cell-type specific regulation of HIF-

2 [159]. HeLa, HEK-293T, COS-1, PC-12, HEPG2, and CACO2 cells showed different 

HIF-1 and HIF-2 stabilization and transactivation patterns. Erythropoietin (EPO) is 

preferentially regulated by HIF-2 in hepatocytes in mouse liver which was shown using 

conditional HIF-1 and HIF-2 knockout mice [101]. HIF-2 was detected in mouse ES 

cells but did not induce target gene expression. HIF-2 induced HIF-1 targets when 

HIF-1 was deleted, suggesting some degree of redundancy [102, 160]. 

Expression of HIF- in skin 

HIF- subunits show low levels of expression in human skin. Hair follicles and 

glands, which experience very low levels of oxygen, are the exception for skin, and 

exhibit high HIF-1 levels. HIF-1 has been detected in human and mouse epidermis 

and dermis, and HIF-2 is expressed in human epidermis and dermis [161, 162]. HIF-

1 is expressed in keratinocytes in skin [163]. Interstingly, when HIF-2 was deleted in 

keratinocytes in mice, there was accelerated wound closure, accelerated migration, and 

less inflammation [164]. 
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1.4. FGF2, FGF2 signaling and regulation by Heparan Sulfate (HS) modifying 

enzymes  

Fibroblast growth factors comprise a family of glycoproteins involved in FGF 

signaling that participate in embryonic development, angiogenesis, proliferation, 

migration and wound healing. FGF2 is a member of the FGF gene family which consists 

of FGF1-FGF23 in humans but lacks FGF15, which is a mouse gene and ortholog of 

human FGF19 [165]. Thus, there are a total of 22 FGF family members in humans. 

FGF11-14 do not activate FGF receptors as they remain intracellular. Thus, there are 

eighteen true FGF ligands.  

FGF2 or basic fibroblast growth factor is a protein with 5 isoforms. The isoforms 

include a low-molecular weight, secreted 18kDa isoform, and 4 high molecular weight, 

nuclear isoforms (22kDA, 22.5kDa, 24kDa, and 34kDa). The isoforms result from the 

translation of alternative in-frame start codons (alternative initiation) (Figure 1.2).  

 

Figure 1.2. Alternative FGF2 isoforms. A. FGF2 mRNA showing alternative translation 
start sites.  B. FGF2 protein isoforms. NLS, nuclear localization signal. 
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The 18kDa FGF2 isoform utilizes an AUG start codon, whereas 22kDa, 22.5kDa, 

24kDa, and 34kDa utilize CUG start codons (Figure 1.2). All FGF2 isoforms except the 

34kDa isoform utilize an IRES-dependent mechanism of translation, whereas the 34kDa 

isoform is cap-dependent and IRES-independent [166]. FGFs are usually secreted 

through utilization of a secretory signal sequence and the ER-Golgi complex. The 

18kDa FGF2 isoform is secreted even though it lacks a canonical secretory sequence. 

FGF2 isoforms that do not get secreted (high molecular weight) are accumulated in the 

nucleus. The GR-motif is required for nuclear localization of HMW isoforms [167]. The 

34kDa isoform contains an additional NLS in its N-terminal region (HIV Rev-like) [166]. 

Secreted FGFs act on the same cell (autocrine signaling) or on a neighboring cell 

(paracrine signaling). The 18kDa isoform is secreted but can also be targeted to the 

nucleus using a C-terminal NLS (bipartite) [168].  

FGFs signal through binding to their receptors. There are four known 

transmembrane receptors for FGFs (FGFR1, FGFR2, FGFR3, and FGFR4) encoded by 

4 different FGFR genes. Each FGFR contains an extracellular ligand-binding domain, 

transmembrane domain, and intracellular tyrosine kinase domain. The extracellular 

domain contains three immunoglobulin-like domains (Ig): Ig I, Ig II, and Ig III (Figure 

1.3). Alternative splicing at the C terminus of the Ig III domain creates isoforms IIIb and 

IIIc of the FGFR genes. Thus, FGFR1 codes for FGFR1b and FGFR1c proteins, FGFR2 

codes for FGFR2b and FGFR2c, and FGFR3 codes for FGFR3b and FGFR3c. Splice 

variant IIIa, which codes for secreted extracellular protein, is also known for FGFR1, 

FGFR2, and FGFR3 [169]. Ig I and Ig II are separated by an acidic domain (AD). The 

transmembrane domain is located after the Ig III region [170].  Two kinase domains are 
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located near the N-terminus of FGFR. The structures of different FGFRs are depicted in 

Figure 1.3. 

 

Figure 1.3. Structure of the FGF receptors. FGFR1 is comprised of FGFR1 containing 
only Ig I, by FGFR IIIa, FGFR1 IIIb alpha, FGFR1 IIIc alpha, FGFR1 IIIc beta. FGFR2 is 

comprised of FGFR2 IIIb and FGFR2 IIIc.  FGFR3 is comprised of FGFR3 IIIb and 
FGFR3 IIIc. FGFR4 is comprised of FGFR4 IIIc only. SP, hydrophobic signal peptide for 
secretion. AD, acidic domain. TM, transmembrane domain. TK, tyrosine kinase domain. 

KI, kinase insert. Ig, Ig-like domain. 
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In mouse tails, FGFR1 is expressed at high levels in the dermis (and at low levels 

in the epidermis) with FGFR1 IIIc being the predominant form (95%). Human FGFR2 

IIIc (BEK) and mouse BEK were cloned [171, 172]. FGFR2 IIIb (also known as KGFR) 

is expressed in epithelial cells (keratinocytes, hair follicles, and sebaceous glands), and 

fibroblasts (mesenchymal cells) express only FGFR2 IIIc (also known as BEK) [173]. 

FGFR2 IIIc is found in dermis, with FGFR2 IIIb found in epidermis (and at a low levels in 

dermis) [174]. Mouse FGFR2 IIIc regulates ossification affecting osteoblasts and 

chondrocytes as shown by mutations of murine FGFR2 IIIc [175]. Human FGFR2 IIIb 

plays a role in skin homeostasis and guides epithelial differentiation [176]. FGFR3 has 

IIIb and IIIc isoforms due to alternative splicing [177]. FGFR3 IIIb is predominantly 

expressed in epithelial cells, while the IIIc isoform is expressed predominantly in 

mesenchymal cells. Fibroblast cells express both IIIb and IIIc [173].  FGFR4 is 

expressed as the FGFR4 IIIc isoform only because it has only 18 exons and does not 

have the exon between 8 and 9 responsible for coding alternatively spliced isoform Ig 

IIIb [178].  

The diversity of FGFs and FGFRs allows for fine tuning and control of the 

signaling. The existence of different splice isoforms (IIIb versus IIIc) allows receptors to 

have specific and unique binding. The expression of FGFs and FGFRs is tissue-specific 

[179]. There is specificity and diversity in FGF binding to FGF receptors [180, 181]. 

FGF2 shows the highest activity towards FGFR1c and FGFR3c, followed by FGFR2c 

and FGFR1b [180, 181]. 

Canonically, FGFRs dimerize upon binding their FGF ligands, leading to 

autophosphorylation within the intracellular [182] region at seven tyrosine residues. 

Seven tyrosines are phosphorylated on FGFR1: Tyr463, Tyr583/585, Tyr653/654, 
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Tyr730, and Tyr 766 [183]. Interestingly, phosphorylation of Ser777 of the C-terminus of 

FGFR1 by ERK has been shown to inhibit FGFR1 signaling [184]. Dimerization of 

FGFRs leads to activation of the MAPK and PI3K (Phosphatidylinositol 3-Kinase) 

pathways (Figure 1.4).  

 

Figure 1.4. Canonical FGF2 signaling pathways. HS, heparan sulfate. 

The docking protein FRS2a is constitutively bound to the juxtamembrane region 

of FGFR via its phosphotyrosine-binding domain [185]. Following activation of FGFR1 

by FGF2, FRS2a is phosphorylated on multiple residues by FGFR1 and serves as a 

docking protein for the assembly of a complex that includes Src homology (SH) 2-

domain containing adaptors Grb2 (growth factor receptor-bound protein 2) and protein 

tyrosine phosphatase Shp2 [186]. The complex recruits guanine nucleotide exchange 

(GEF) factor, son of sevenless protein (SOS), which is constitutively bound to Grb2. 

SOS activates Ras by inducing release of GDP in exchange for GTP, thus converting 
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Ras from its inactive GDP-bound state into an active GTP-bound form. GTP-bound 

active Ras binds Raf, resulting in activation of MAPKK (MEK1/2) and leads to activation 

of MAPK (ERK1/2) and thus activation of downstream MAPK pathway signaling. In 

addition, the FRS2-Grb2 complex can recruit docking protein Gab1 (Figure 1.4, right 

side), phosphorylation of which leads to recruitment and activation of PI3Ks, leading to 

activation of the AKT survival pathway [187].  

FGF signaling also activates p38 and JNK pathways through activation of Rac. In 

addition to activating aforementioned protein kinases, active Ras also stimulates Rho 

family GTPases, Rac and CDC42 (Cell Division Cycle-42) (Figure 1.4, diagram center). 

Rac and CDC42 target PAK (p21-activated kinase) which phosphorylates MKKs and 

thus activates p38 and JNK MAPKs [188, 189]. In addition, the binding of Tyr766 of 

FGFR to the SH2 domain of phospholipase-C-gamma (PLCgamma) stimulates 

production of diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) which releases 

intracellular Ca2+ and activates Ca2+ dependent Protein Kinase-C (PKCs) (Figure 1.4). 

FGF signaling can also occur through non-canonical pathways that are not mediated by 

phospho tyrosine kinases (PTKs). Non-canonical signaling cascades include utilization 

of syndecans, integrins, NCAM, and N-cadherin [190].  

Heparan sulfate modifying enzymes 

The binding of FGF2 to its receptors is facilitated by membrane-bound heparan 

sulfate proteoglycans, glycoproteins that consist of a core protein and a covalently 

bound heparan sulfate (HS) chain. Heparan sulfate is a carbohydrate, and a member of 

glycosaminoglycan family (GAG). Core proteins include syndecan 1-4, glypican 1-6, 

betaglycan, neurophilin-1, and CD44v3 (for membrane-bound HSPG), serglycin 

(secretory vesicles), perlecan, agrin, and collagen XVIII (extracellular matrix HSPG). HS 
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chains and their modifications are placed by HS modifying enzymes on the core protein 

inside the Golgi. These HS modifying enzymes include enzymes that extend the chain, 

sulfate the chain at different positions, and add other chemical groups in different 

positions [191] (Figure 1.5).  

 

Figure 1.5. Structure of heparan sulfate. Adapted from [192, 193]. Saccharide moieties 
are depicted accordingly to Symbol Consortium for Functional Glycomics [194]. 

 

Heparan sulfate biosynthesis is initiated by the addition of xylose to the serine of 

the core protein. The tetrasaccharide linkage region consists of xylose (Xyl), galactose 

(Gal), and glucuronic acid (GlcA). Exostosin (multiple)-like 2 (EXTL2) is required for 

chain initiation by addition of the first N-acetyl-D-glucosamine (GlcNAc) [195]. EXTL2 
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was also shown to be involved in HS chain termination [196]. Next, EXT1 and EXT2 

enzymes alternately add GlcA and GlcNac. NDST1-4 (N-deacetylase-N-

sulfotransferase) enzymes catalyze the substitution of free amino groups on GlcNAc 

(after acetyl removal) with sulfate [197, 198]. NDST have equal N-deacetylase and N-

sulfotransferase activities. NDST (specifically, NDST2) however, can also act on HS 

that already contain 6-O-sulfation [199]. D-glucoronic acids adjacent to N-

sulfoglucosamine units are epimerized to L-iduronic acid (IdoA) by the C5 epimerase 

HS glucuronyl C5 epimerase (HsGlce). HS2ST (uronyl 2-O-sulfotransferase) adds 

sulfate group at C2 of the iduronic acid (IdoA) and less frequently to glucuronic acid 

(GlcA). HS6ST1-2 (6-O-sulfotransferase) catalyzes the transfer of sulfate at the C6 

position of the N-sulfoglucosamine residue (GlcNS) [200] (Figure 1.5). HS 

sulfotransferases are important for placing modifications responsible for FGF2 binding 

[201]. It was previously shown that low oxygen potentiates the expression of HS 

modifying enzymes in human umbilical vein endothelial cells (HUVECS) [202]. 

FGF2 signaling and heparan sulfate  

Heparan sulfate is required for and potentiates FGF2 binding to FGFR, and the 

heparan sulfate moieties do not have to be on the surface of the same cell as the 

receptor [203]. The minimal structural requirement for FGF2 binding includes the sulfate 

at the C6 position of the N-sulfoglucosamine residue (NS) and the sulfate group at the 

C2 position of the iduronic acid (2S) [204-206]. Syndecan-4 and ERK were required for 

TGF--mediated induction of the contractile phenotype in adult human dermal 

fibroblasts [207, 208]. The crystal structure of the ternary complex (FGF2-FGFR1-

Heparin) has been resolved [209]. 
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The smallest, least sulfated HS capable of binding FGF2 was determined to be 

octosaccharide consisting of N-sulfated GlcN units and a single IdoA 2-O-sulfate 

residue, but generally fewer than one GlcN 6-O-sulfate group [210]. N-sulfate groups 

and iduronate-2-sulfates (IdoA(2-OSO3)) (sequence IdoA(2OSO3)alpha1,4GlcNSO3)) 

mediates the interaction between HS and FGF2 [211]. In one study, it was determined 

that five repeating sequences of IdoA-2-OSO3 GlcN-SO3 were determined to be 

necessary for FGF2 binding [211], though another publication reported only three [212]. 

It was also reported that an octosaccharide can displace FGF2 from HS binding sites in 

vascular endothelial cell ECM [213]. The HS sequence has to be long enough to bind 

both FGF2 and FGFR1. 6-O-DS heparin can bind FGF2 but cannot bind FGFR1 and 

thus inhibits activity, and 2-O-DS binds neither FGF2 nor FGFR1 [214]. 

Octosaccharides with specific numbers of 2-O-sulfates can inhibit FGF2 signaling, 

whereas 6-O-sulfation has no effect [215]. 

Heparan sulfate and internalization of ligand-receptor complexes 

Heparan sulfate proteoglycans (HSPG) play a role in immobilizing paracrine 

FGFs that have high affinity towards HSPG. Thus, FGF2 (both exogenous and 

endogenous) would display significant binding activity at the cell surface [216]. 

Extracellular heparan sulfate (HS has to be in close proximity to the membrane but can 

be attached to a different cell) is required for secretion of FGF2, which remains 

associated with cell-surface HSPG after secretion [217].  

Heparan sulfate proteoglycans contribute to internalizing FGF2 in complex with 

FGFR1. FGF2 uses lipid rafts to internalize the FGF2-FGFR1 complex [218]. Heparan 

sulfate was able to internalize FGF2 in L6 myoblasts lacking endogenous FGFRs [219] 

and in CHO cells normally expressing low levels of FGFR [220]. When Swiss 3T3 
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fibroblasts were treated with FGF2, FGFR1 and FGF2 were internalized and 

transported into the nucleus [221-223]. NDST1-dependent heparan sulfate is required 

for BMP internalization independent of BMP receptor [224]. 

1.5. Thesis objectives 

The overall objective of this thesis was to investigate the effects of low oxygen 

and FGF2 on adult human dermal fibroblasts and their mechanistic links to a pro-

regenerative outcome, specifically, the observed phenotypes of expression of stem cell 

genes, increased proliferative capability, and decreased senescence.   

First, we hypothesized that both low oxygen and FGF2 are required for the 

stabilization of key transcriptional low oxygen sensors, HIFs, in adult hDFs. Thus, I 

investigated the effects of low oxygen and FGF2 culture conditions on the expression of 

HIFs (Chapter 2). From this, I determined that:  

1) low oxygen causes early and transient increase of HIF-1 protein;  

2) low oxygen causes late and sustained increase of HIF-2 protein 

accompanied by increased nuclear translocation;  

3) a combination of low oxygen and FGF2 effects is pronounced during the 

first 3 days of treatment; 

4) levels of HIF-2 localizing to the nucleus increase with low oxygen; 

5) transient increase in HIF-1 is observed at 2h of culture, whereas increase 

in HIF-2 is observed at day 3 and sustained over several days; and 

6) FGF2 is potentiating increase of HIF-2.  

Next, I hypothesized that oxygen levels affect FGF2 signaling. To investigate 

this, in chapter 3, I examined the effects of low oxygen culture conditions on FGF2 

signaling. These results suggest that: 
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1) low-oxygen mediated FGF2 activity leads to downregulation of exogenous 

FGF2 production; 

2) this FGF2 downregulation was mimicked by HIF-2 overexpression; and 

3) sustained supplementation with FGF2 in low oxygen inhibits receptor-

mediated FGF2 signaling. 

I have also investigated the effect of low oxygen and FGF2 on expression of 

heparan sulfate modifying enzymes involved in FGF2 binding to the receptors and thus 

in regulating FGF2 signaling and internalization of FGF2-FGFR1 complex. I also 

hypothesized that FGF2 and low oxygen would result in transcriptional changes to 

genes involved in survival and proliferation and in chapter four, tested whether low 

oxygen-mediated FGF2 signaling is indeed required for survival and proliferation of 

adult hDFs.  My results are consistent with this, providing further support for a role for 

low O2 and FGF in regeneration competence. Next, we hypothesized that low-oxygen 

mediated FGF2 signaling regulates developmental plasticity. Thus, I investigated the 

effects of FGF2 on global gene expression in adult hDFs under low oxygen culture 

conditions and whether HIFs mediate the expression of stem cell genes in adult hDFs 

(Chapter 5).  
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Chapter 2. Effects of oxygen and FGF2 on HIFs  

2.1. Introduction 

In adult hDFs, iRC phenotype is induced by a combination of low oxygen and 

FGF2. Thus, to dissect molecular mechanisms of low oxygen-mediated induction of iRC 

phenotype we will investigate the key molecular sensors of low oxygen in a cell - 

hypoxia-inducible factors (HIFs). These transcription factors are stable under low 

oxygen conditions and are rapidly degraded under ambient oxygen via ubiquitin-

mediated proteosomal degradation. Stabilizing HIFs in low oxygen leads to 

transcriptional response and thus will induce the expression of genes that could lead to 

iRC phenotype. 

To determine whether HIFs are involved in iRC phenotype, we investigated the 

expression and localization changes of HIF-1 and HIF-2 subunits in adult human 

dermal fibroblasts resulting from low oxygen culture conditions and the addition of 

FGF2. Determining HIF-1 and HIF-2 expression in adult hDFs will allow us to model 

in vivo hypoxic response of fibroblasts and will also provide information about HIF-1 

and HIF-2 potential involvement in wound healing, reprogramming, and cancerous 

transformations. 

These experiments allowed us to investigate whether FGF2 is involved in 

regulating HIF- subunit expression and thus whether FGF2 modulates iRC phenotype 

through regulating HIFs. FGF2 regulation of HIFs would give more insight into 

regulation of wound healing, reprogramming, and cancerous transformation processes. 

2.2. Results 

Expression of HIF- subunits in adult human dermal fibroblasts 
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In order to investigate how low oxygen and FGF2 affect HIFs expression with the 

goal to determine the causality of HIF expression in iRC phenotype, we looked at the 

expression levels of key oxygen sensors HIF-1 and HIF-2 in hDFs cultured under 2% 

and 19% oxygen, with and without addition of exogenous FGF2, for seven days. As 

expected, HIF-1 and HIF-2 mRNA levels did not change with different culture 

conditions (Figure 2.1). Interestingly, it appears that hES show lower levels of HIF-2 

mRNA compared to adult hDFs (Figure 2.1). 

 

Figure 2.1. Expression levels of mRNA of HIF- subunits in adult hDFs after seven 
days of culture assayed with RT-PCR. M, marker. hES, human embryonic stem cells. 

hDF, human dermal fibroblasts. NTC, no template control. 
 

We also assayed the mRNA expression of HIF-1 and HIF-2 over time in order 

to determine whether low oxygen has a transient effect on expression of HIF-1 and 

HIF-2. HIF-1 and HIF-2 showed no difference of mRNA levels when adult hDF were 

cultured under 2% oxygen for different time periods (Figure 2.2A). FGF2 had no effect 

on the mRNA expression levels of HIF-1 and HIF-2(Figure 2.2B). 
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Figure 2.2. Expression levels of mRNA of HIF- subunits in adult hDFs cultured in low 
oxygen for different periods of time. A. Adult hDF were cultured without FGF2. B. Adult 

hDFs were cultured with FGF2. hDF, human dermal fibroblasts. NTC, no template 
control. 

 

Next, we examined the presence of HIF-1 and HIF-2 proteins in adult hDF 

cultured for seven days in different oxygen conditions (Figure 2.3). HIF-1 protein was 

undetected in adult hDF at day seven of culture in both ambient and low oxygen (Figure 

2.3A), but was detected in teratocarcinoma cells (CRL-2073) cultured in low oxygen 

(2%) for 4 hours, as well as in teratocarcinoma cells cultured in ambient oxygen treated 

with a hypoxia mimetic, 100mM CoCl2, for 4 hours (Figure 2.3B). 

B. 

A. 
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Figure 2.3. Analysis of HIF-1 protein expression. A. Western blot showing HIF-

1 protein levels in adult hDF cultured in ambient and low oxygen for 7 days B. Western 

blot showing HIF-1 protein expression in teratocarcinoma cells grown in ambient 
oxygen, low oxygen for 4 hours, or ambient oxygen and 100mM CoCl2 for 4 hours. M, 

marker. 
 

Interestingly, HIF-1 protein was also undetected in hES cells after prolonged 

culture in 5% oxygen (Figure 2.4). 

 

Figure 2.4. Immunocytochemistry analysis of HIF-1 expression in hES cells cultured in 

5% oxygen. Primary antibody was anti-HIF-1 (ab1, Abcam). Secondary antibody was 
Alexa Fluor 488 Goat Anti-Mouse IgG (A11029, Invitrogen). 

 

B. 

A. 

B. 

A. 
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Because HIF-1 was not detected in hDF at 7 days under any conditions, we 

hypothesized that stabilization of HIF-1 protein might be an early short-term, transient 

event in hDFs. Immunocytochemistry was performed and HIF-1protein was detected 

in the nuclei of adult hDFs and the signal levels were comparable within 15-30minutes 

(Figure 2.5A and Figure 2.5B), but became undetectable after 2 hours of low oxygen 

culture (Figure 2.5C). Within 15-30 minutes, HIF-1 protein levels were higher in the 

nuclei than in cytoplasm (Figure 2.5B) but after 2 hours of low oxygen culture, HIF-1 

protein was observed to localize in the cytoplasm of adult hDFs (Figure 2.5C). 
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Figure 2.5. Immunocytochemistry analysis of HIF-1 protein levels in adult hDFs 

cultured in 2% oxygen for various periods of time. A. HIF-1 protein levels in adult hDFs 
grown in 2% oxygen for indicated periods of time. B. Quantification of the nuclear and 

cytoplasmic HIF-1 protein levels in A. At 60min there was no cytoplasmic staining 

present. C. HIF-1 protein levels in adult hDFs grown with and without FGF2 in 2% 

A. B. 

C. 
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oxygen for indicated periods of time. Primary antibody was anti-HIF-1 (ab1, Abcam). 
Secondary antibody was Alexa Fluor 488 Goat Anti-Mouse IgG (A11029, Invitrogen). 

 

HIF-1 mRNA was previously shown to be regulated by antisense HIF-1mRNA 

[225-227]. Thus, we investigated if low oxygen changes expression levels of antisense 

HIF-1. Indeed, there was an upregulation of antisense-HIF-1 mRNA with prolonged 

exposure to low oxygen culture conditions (Figure 2.6A) which is concomitant with 

downregulation of HIF-1 protein. Prolonged low oxygen culture conditions, especially 

3-7 days, caused upregulation of antisense HIF-1 (Figure 2.6B).  

 

 

Figure 2.6. Expression of anti-sense HIF-1 mRNA in adult hDFs. A. Expression of 

anti-sense HIF-1 mRNA in adult hDFs at seven days depending on culture conditions. 

B. Antisense HIF-1 mRNA levels in adult hDFs change with prolonged culture 
conditions in low oxygen culture conditions. 

 

A. 

B. 
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Next, we set out to investigate the expression of HIF-2 protein (Figure 2.7). HIF-

2 protein was detected in teratocarcinoma cells grown in low oxygen for 4 hours, and 

after treatment with a hypoxia mimetic, 100mM CoCl2 (Figure 2.7). 

 

Figure 2.7. HIF-2 protein expression in teratocarcinoma cells. Teratocarcinoma (TC) 

cells were grown in 19% oxygen, 2% oxygen for 4 hours, or 100mM CoCl2 for 4 hours. 

Primary antibodies were anti-HIF-2 (Novus Biologicals; NB100-122) and anti-Actin 

(Millipore).  

Human embryonic stem cells showed nuclear HIF-2 localization when they 

were cultured in low oxygen (5%) for 7 days (Figure 2.8).  

 

Figure 2.8. Immunocytochemistry analysis of HIF-2 protein levels in human embryonic 

stem cells cultured for 7 days in 5% oxygen. Primary antibody was anti-HIF-2 (NB100-
122, Novus Biologicals). Secondary antibody was Alexa Fluor 488 Donkey Anti-Rabbit 

IgG (A21206, Invitrogen). 
 

In adult hDFs, HIF-2 protein was detected at early time points (Figure 2.9) and 

in ambient oxygen. 
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Figure 2.9. HIF-2 protein levels in adult hDFs after short-term culture in low oxygen. 

Western blots showing levels of HIF-2 protein in adult human dermal fibroblasts grown 
in ambient oxygen and  grown in ambient oxygen and then transferred into low oxygen 

B. 

A. 

C. 

D. 



Chapter 2. Effects of oxygen and FGF2 on HIFs  

51 

 

for indicated periods of time. A and C. Adult hDFs were grown without FGF2. B and 
D.Adult hDFs were grown with FGF2. Total cell lysates, nuclear and cytoplasmic 

fractions were isolated and analyzed. Cos7 cells treated with CoCl2 were used as a 
positive control. TCL, total cell lysate. N, nuclear fraction. C, cytoplasmic fraction. 

 

FGF2 appears to upregulate HIF-2protein levels (compare Figure 2.9C and 

Figure 2.9D). HIF-2 protein was observed in both nuclear and cytoplasmic fractions 

(Figure 2.9C and Figure 2.9D) and was enriched in nuclear fractions. 

HIF-2 protein was also detected by western blot in prolonged cultures: at day 3 

and day 7 (Figure 2.10A and Figure 2.10B). HIF-2 was detected after 2 hours of 

culture in low oxygen as well. Addition of exogenous FGF2 had no effect on HIF-2 in 

prolonged cultures (Figure 2.10C and Figure 2.10D). Treatment with the hypoxia 

mimetic CoCl2 led to increased amounts of HIF-2 protein levels (Figure 2.10E and 

Figure 2.10F). When adult hDFs were cultured with the proteasome inhibitor MG-132 for 

2 hours prior to sample isolation, HIF-2 levels were also comparable to the amount of 

protein detected without proteasome inhibition (Figure 2.10G and Figure 2.10H). After 

treatment with MG-132, HIF-2 was detected in both nuclear and cytoplasmic fractions 

(Figure 2.10G and Figure 2.10H).  
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Figure 2.10. HIF-2 protein levels in adult hDFs after long-term culture in low oxygen. 
Adult hDFs were grown in ambient oxygen without FGF2. They were cultured in low 

oxygen without FGF2 (A), with FGF2 (C), with CoCl2 (E) for indicated periods of time. 
(G) Adult hDFs were treated with MG-132 for 2 hours prior to isolation of nuclear and 

cytoplasmic fractions. B, D, F, and H represent quantification sof the Western blots in A, 
C, E, and G, respectively. Cos7 cells treated with CoCl2 were used as a positive control. 

N, nuclear fraction. C, cytoplasmic fraction.  

G. 

A. B. 

C. D. 

E. 

H. 

F. 
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Nuclear and cytoplasmic localization of HIF-2 under both ambient and low 

oxygen conditions at various time points was confirmed using immunocytochemistry 

(Figure 2.11).  

 

Figure 2.11. Expression of HIF-2 protein in adult hDFs at day 3 and day 7 of ambient 

and low oxygen cultures. A. Immunocytochemistry showing HIF-2 staining at day 3 

A. 

B. 
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and day 7 of culture conditions at ambient and low oxygen. Primary antibody was anti-

HIF-2 (NB100-122, Novus Biologicals). Secondary antibody was Alexa Fluor 488 
Donkey Anti-Rabbit IgG (A21206, Invitrogen). Hoechst was used to counterstain DNA. 

B. Quantification of the nuclear and cytoplasmic intensity staining in A. 
 

The data indicated that amount of nuclear HIF-2 protein increases at day 3 

under hypoxic conditions. 

Adult hDFs cultured in both ambient and low oxygen show nuclear localization of 

HIF-2 after 2 hours of culture (Figure 2.12) and the intensity increased under hypoxic 

conditions.  

 

A. 
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Figure 2.12. Immunocytochemistry showing nuclear staining of HIF-2 in adult hDFs 
after ambient culture and exposure to low oxygen for 2 hours. Primary antibody was 

anti-HIF-2 (NB100-122, Novus Biologicals). Secondary antibody was Alexa Fluor 488 
Donkey Anti-Rabbit IgG (A21206, Invitrogen). Nuclei were counterstained with Hoechst. 

Overlay of HIF-2 and Hoechst is also shown. B. Quantification of the nuclear and 
cytoplasmic intensity staining. 

 

Expression of HIF-2after 2 hours was influenced neither by FGF2 treatment nor 

addition of CoCl2. As can be seen in Figure 2.13A, HIF-2 was detected in the total cell 

lysates of adult hDFs grown in 2% oxygen, 2% oxygen and FGF2, as well as 2% 

oxygen and CoCl2 and the signals were all approximately equal at this 2 hour time point. 

HIF-2 was detected in the nucleus and cytoplasm of adult hDFs grown in 2% oxygen, 

2% oxygen and FGF2, and  2% oxygen and CoCl2 as was determined by ICC (Figure 

2.13B), and the signals were approximately equal at this 2 hour time point. 

  

B. 
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Figure 2.13. HIF-2 protein expression in adult hDFs after culture in low oxygen for 2 
hours. Adult hDFs were grown in ambient oxygen without FGF2. Next, they were 

transferred into low oxygen, 150M CoCl2 or FGF2 for 2 hours. A. Western blot showing 

HIF-2 protein expression. Cos7 cells treated with CoCl2 for 16h were used as a 
positive control. N, nuclear fraction. TCL, total cell lysate. B. Quantification of the 

Western blot in A. C. Immunocytochemistry showing HIF-2 protein expression. Primary 

antibody was anti-HIF-2 (NB100-122, Novus Biologicals). Secondary antibody was 
Alexa Fluor 488 Donkey Anti-Rabbit IgG (A21206, Invitrogen). Hoechst was used to 

counterstain DNA. D. Quantification of nuclear and cytoplasmic staining intensity in C. 
 
 

In order to investigate the half-life of HIF-2 protein and determine whether HIF-

2 protein stability depends on protein degradation or protein translation, adult human 

C. 

B.

D.

A. 
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dermal fibroblasts were treated with cycloheximide (CHX), an inhibitor of protein 

translation. HIF-2 was still detected in total cell lysates, and in both nuclear and 

cytoplasmic fractions, after adult hDFs were treated with CHX for 6 hours (Figure 2.14).  

At the 6 hour CHX time point tested, all HIF-2 signals appeared about equal. 

 

 

Figure 2.14. Effect of cycloheximide on HIF-2 protein expression at 2 hours of culture 
and 6 hours of CHX. Adult hDFs were grown in ambient oxygen with and without FGF2. 

Then, they were transferred into low oxygen or kept at ambient oxygen for 2 hours. 
Next, cells were treated with cycloheximide for 6 hours both at low and ambient oxygen, 
with and without FGF2. A. Western blot analysis of total cell lysates. B. Quantification of 
the Western blot in A. C. Western blot analysis of nuclear and cytoplasmic fractions. D. 
Quantification of the Western blot in C. Cos7 cells treated with CoCl2 for 16h were used 
as a positive control. CHX, cycloheximide. N, nuclear fraction. C, cytoplasmic fraction. 

TCL, total cell lysate. 
 

A. B. 

C. 

D. 
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The effects of CHX were also tested at short time periods. Cycloheximide 

treatment for short periods of time led to rapid degradation of HIF-2 protein in less than 

15 minutes (Figure 2.15). FGF2 had no effect on stability of HIF-2 protein (Figure 

2.15B).  

 
 

 

Figure 2.15. Effect of short-term incubation with cyclocheximide on HIF-2 protein 
levels. A. Adult hDFs were grown in ambient oxygen without FGF2. Then, they were 
transferred into low oxygen and cycloheximide for indicated periods of time. B. Adult 
hDFs were grown in ambient oxygen with FGF2. Then, they were transferred into low 
oxygen and cycloheximide for indicated periods of time. Cos7 cells treated with CoCl2 

were used as a positive control. CHX, cycloheximide. N, nuclear fraction. C, cytoplasmic 
fraction. 

 

A. 

B. 
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Next, adult hDF were treated with CHX for 6 hours, and then were allowed to 

recover in ambient and low oxygen for 2 and 4 hours(Figure 2.16). The data showed 

that the CHX-induced decrease in HIF-2 levels was reversible. 

 

Figure 2.16. Effect of cycloheximide reversal on expression of HIF-2 protein. Adult 

human dermal fibroblasts were grown in ambient oxygen without FGF2 and then 

transferred into low oxygen and cycloheximide for 6 hours, and then were allowed to 

recover for 2 and 4 hours. A. Western blot. Cos7 cells treated with CoCl2 were used as 

a positive control. CHX, cycloheximide. B. Quantification of the Western blot in A. 

 

A. 

B. 
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2.3. Discussion 

 Adult human dermal fibroblasts reside in microenvironments within the human 

body in which the percentage of oxygen varies significantly depending on the location 

and how far removed they are from blood vessels, but in all cases experience lower 

than 8% oxygen. Routine mammalian cell culture is performed under ambient oxygen, 

which is not representative of the oxygen concentrations experienced by adult human 

dermal fibroblasts in vivo. Thus, in order to better emulate the physiological state, iRC 

cells are induced in low oxygen. The chosen low oxygen condition of 2% is lower than 

conventional stem cell culture oxygen concentration of 5% but might demonstrate a 

more drastic effect. The latter may be even dose-dependent. 

 In order to confirm that adult human dermal fibroblasts are experiencing hypoxia 

and to further study the effects of low oxygen on adult human dermal fibroblasts, we 

have investigated the expression of hypoxia-inducible factors. The half-life of HIF 

proteins is typically shorter than 5 minutes and, upon exposure to ambient oxygen, they 

undergo rapid proteasome-mediated degradation, impairing their ability to be detected. 

My results indicated that the detected levels of both HIF-1 and HIF-2 in hDFs were 

low generally and were lower than that observed in cancer cells. Cancer cells are 

known to utilize HIFs to survive in the hypoxic conditions present in tumor 

microenvironment and continue proliferating under these conditions.  

 My work showed that the HIF mRNA appeared to remain about equal under all 

conditions, but low oxygen led to transient, short-term stabilization of HIF-1 protein in 

hDFs with levels subsequently decreasing upon prolonged hypoxic culture (Figure 

2.17).  
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Figure 2.17. Schematic representation of HIF- protein stability in adult human dermal 
fibroblasts over time 

 

 Such a decrease in HIF-1 protein can be partially explained by increased 

expression of antisense-HIF1mRNA, as antisense-HIF-1 mRNA was up-regulated in 

adult hDFs upon prolonged culture in low oxygen (Figure 2.18). The antisense HIF-1-

mediated inhibition of HIF-1 translation could be leading to decrease in the amount of 

HIF-1 protein present over time. 

 

Figure 2.18. Schematic illustration of HIF-1 protein stability in adult human dermal 

fibroblasts and a potential role of antisense-HIF-1 in the regulation of HIF-1 mRNA. 
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We found that HIF-2 protein persists in hDFs maintained in low oxygen for 

prolonged periods of time. Culturing adult hDFs in low oxygen for prolonged periods of 

time increased nuclear levels of HIF-2 (Figure 2.19). 

 

Figure 2.19. Overall model of low oxygen and FGF2 effects on HIF-. 

In the remainder of this work, we investigate overexpression and knockdown of 

HIF-2 in adult human dermal fibroblasts. We look into effects of HIF-2overexpression 

and knock down on downstream target genes which would lead to a better 

understanding of how HIFs contribute to plasticity of adult hDFs and how they can be 

potentiating reprogramming in vitro.  

If HIF control levels in hDFs is representative of the in vivo situation in human 

skin, it would lead to better understanding of wound healing and cancer transformation 

processes. Understanding mechanisms of HIF regulation would to create a more 

accurate in vitro wound model. This model would give researchers a better tool to study 

diabetes and other diseases associated with poor wound healing. 

HIFs are primarily low oxygen sensors and effectors of various cell phenotypes 

when cells are exposed to low oxygen, but they are not alone in effecting the response 

to varied oxygen concentrations. Culture in low oxygen leads to reductions in DNA 
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damage signaling and reductions in the amount of ROS produced. In addition to 

canonical signaling via HIFs, changes in oxygen tension can differentially regulate 

processes such as the aforementioned DNA damage response via the ATM and ATR 

kinases, resulting in different cell processes and phenotypes (DNA repair, apoptosis, 

cell cycle arrest, senescence) that occur in a manner dependent on oxygen levels but 

independent of HIF signaling. Therefore, these kinases should also be examined in our 

iRC cells. 
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Chapter 3. Molecular relationship between oxygen and FGF2 signaling 

3.1. Introduction 

Low oxygen and FGF2 lead to an iRC phenotype in adult hDFs, characterized by 

extended life span and increased proliferation. The response of hDFs to low oxygen is 

likely mediated through HIF-2, which is increased in prolonged low oxygen culture 

conditions and shows higher nuclear translocation. Previously, with exogenous FGF2 

after prolonged low oxygen culture, we observed FGF2, as well as FGFR1 and FGFR2, 

translocation into the nucleus. Given the synergy of FGF and low oxygen, we 

hypothesized that low oxygen mediates FGF2 signaling through HIF-2 in adult hDFs. 

FGF2 receptor binding, dimerization, and internalization is mediated by heparan sulfate 

proteoglycans, glycoprotein’s modified by heparan sulfate modifying enzymes. I 

hypothesized that low oxygen, through the action of HIF-2, regulates heparan sulfate 

proteoglycans and therefore FGF2-FGFR dimerization, internalization and activity.  

To test this possibility, I have investigated the effects of HIF-2 overexpression 

and knock down on FGF2 signaling in adult hDFs. These findings will further our 

understanding of low oxygen-mediated FGF2 effects on the iRC phenotype in adult 

hDFs. 

3.2. Results 

Effects of low oxygen and HIF-2on FGF2 signaling 

Our data showed that HIF-2 is expressed in adult hDFs for prolonged periods of 

time. Thus, I hypothesized that low oxygen, through HIF-2positevely modulated FGF2 

signaling, leading to the observed iRC related phenotypes in hDFs. Previously, we 

showed nuclear translocation of endogenous FGF2, FGFR1 and FGFR2 after 

prolonged culture with addition of exogenous FGF2 culture in low oxygen [90]. In order 
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to investigate the effects of HIF-2 on FGF2 signaling, we overexpressed a stable form 

of HIF-2 (Figure 3.1) that contains two prolines mutated into alanines (P405A and 

P530A), which allows HIF-2 to escape proteasomal degradation. 

 

 Figure 3.1. Overexpression of HIF-2 in hDFs. HeLa cells transiently expressing 

HA-HIF2-P405A/P530A were used as a positive control. A. Western blot. B. RT-PCR. 
NTC, no template control. 

 
We tested the levels of endogenous FGF2 in adult hDFs at day seven. The data 

show that under conditions where FGF2 is not exogenously added to the medium, the 

cellular levels of FGF2 protein increase under low oxygen (Figure 3.2B and Figure 

3.2C). HIF-2 overexpression also led to an increase of FGF2 when FGF2 was not 

exogenously added (Figure 3.2B and Figure 3.2C).   

 

 

B. 

A. 
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Figure 3.2. Effect of HIF-2 overexpression on the levels of endogenous 18kDa FGF2 
in adult human dermal fibroblasts. A. Western blot showing cellular protein levels of 

18kDa FGF2 in adult hDFs. B. RT-PCR analysis showing 18kDa FGF2 transcript levels 
in adult hDFs. C. Quantification of the Western blot in A 

 

C. 

B. 

A. 
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Addition of exogenous FGF2 appeard to lead to downregulation of both FGF2 

mRNA and protein (Figure 3.2). This downregulation was potentiated by low oxygen 

and overexpression of HIF-2 (Figure 3.2). 

On the contrary, short-term stimulation with FGF2 appeared to lead to an 

increase in endogenous 18kDa FGF2 in adult hDFs under both ambient and low oxygen 

(Figure 3.3). The levels of endogenous FGF2 were higher under low oxygen (Figure 

3.3). Thus, the decrease in endogenous FGF2 due to addition of exogenous FGF2 is 

likely not an immediate response, but rather happens after prolonged FGF2 

supplementation. 

 

Figure 3.3. Effect of FGF2 stimulation on expression of endogenous 18kDa FGF2 
isoform. A. Western blot. B. Quantification of the Western blot in B. 

A. 

B. 
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Next, we measured the levels of ERK1/2 activation at 7 days, as a potential 

downstream indicator of FGF2 signaling (Figure 3.4). The data suggest that at 7 days 

HIF-2 overexpression increases phospho-ERK1/2 levels, while addition of exogenous 

FGF2 appears to inhibit ERK1/2 phosphorylation after seven days of FGF2 

supplementation.  

Figure 3.4. Levels of ERK activation in hDFs at 7 days. A. Western blot showing 
the levels of both phospho-ERK1/2 and total ERK-1/2 in adult hDFs. B. Quantification of 

the Western blot in A. 
 

B. A. 

B. 
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Binding of FGF2 leads to receptor dimerization and its phosphorylation. FGF2 

has the highest affinity for FGFR1. In order to detect the first event in the cascade of 

signaling events upon FGF2 binding, we measured the increase in FGFR1 

phosphorylation on serine 564 and 653 (Figure 3.5). After seven days of culture, 

exogenous FGF2 appears to increase amounts of phosphorylated FGFR1 in adult hDFs 

grown in low oxygen (Figure 3.5C). Overexpression of HIF-2 alone or with addition of 

exogenous FGF2 also appeared to increase in FGFR1 activation after seven days of 

culture (Figure 3.5C). The levels of total FGFR1 protein didn’t change dramatically with 

different treatments (Figure 3.5B). 

 

 

 

 

 

B. 

A. 
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Figure 3.5. Levels of FGFR1 phosphorylation and total FGFR1 at 7 days in adult hDFs. 
A. Western blot showing phosphorylated FGFR1 in adult hDFs. B. Levels of total 

FGFR1 in adult hDFs. C. Quantification of the Western blot in A. 
 

In order to investigate the acute FGF2 signaling response, we stimulated adult 

hDFs with FGF2 for 45 min and 2 hours under both ambient and low oxygen (Figure 

3.6). Low oxygen appeared to upregulate levels of phosphorylated FGFR1. 

Exogenously added FGF2 downregulated activation of phosphorylation of FGFR1 in 

hDFs after 2 hours of FGF2 culture. Thus, it appears that FGF2 signaling is activated in 

a time frame shorter than 45 minutes. 

. 

C. 
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Figure 3.6. Effect of short-term FGF2 stimulation on activation of FGFR1 in adult hDFs. 
A. Western blot. B. Quantification of the Western blot in A. 

 
Heparan sulfate plays a crucial role in modulating FGF2 signaling through 

regulating FGF2 binding to its receptors. Heparan sulfate also regulates FGF2-FGFR1 

complex internalization. After prolonged FGF2 and low oxygen culture, downregulation 

of endogenous FGF2 and ERK1/2 phosphorylation appears to occur. Hence, supporting 

a model in which exogenous FGF2 leads to downregulation of receptor-mediated FGF2 

A. 

B. 
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signaling. After sustained FGF2 treatment, FGF2-FGFR1 complex is internalized and is 

translocated into the nucleus. altering gene expression profiles. 

FGFR1 activation, observed with HIF-2 overexpression, might be caused by 

increased endogenous FGF2 binding to the receptor and could be regulated by heparan 

sulfate. I hypothesized that heparan sulfate is involved in internalization of FGF2-

FGFR1 complex under low oxygen. A change in the amounts of heparan sulfate 

modifying enzymes would lead to the change in sulfation pattern of heparan sulfate 

glycoproteins and thus regulate FGF2 binding to the receptor and FGF2-FGFR1 

internalization. 

Involvement of heparan sulfate in FGF2 signaling 

Therefore I set out to determine the effects of low oxygen and FGF2 culture 

conditions on the mRNA (Figure 3.7) and protein (Figure 3.8)  levels of heparan sulfate 

enzyme in hDFs. 

 
Figure 3.7. Effect of HIF-2 overexpression on mRNA levels of heparan sulfate 
modifying enzymes in adult hDFs as assayed by RT-PCR at day seven. NTC, no 

template control. 
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The data suggest that NDST1 protein levels were increased in stem cells and 

with overexpression of HIF-2 in human dermal fibroblasts (Figure 3.8), although this 

trend was the opposite at the transcriptional level (Figure 3.7). 

Figure 3.8. Effects of HIF-2overexpression on heparan sulfate modifying enzymes 

A. 

B. 
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protein levels by western blot at day seven. A. Western blot. B. Quantification of the 
Western blot in A. 

 
NDST2 mRNA expression was absent in hESCs but was detected in adult hDFs 

(Figure 3.7). Low oxygen and overexpression of HIF-2 appeared to increase transcript 

levels and protein levels of NDST2 (Figure 3.7 and Figure 3.8). HIF-2 overexpression 

also led to an apparent increase in EXTL2 protein levels (Figure 3.8). 

HS2ST2 mRNA levels increased with overexpression of HIF-2 in hDFs (Figure 

3.7), but this overexpression had no effect on the translation of HS6ST2 (Figure 3.9). 

Figure 3.9. Effect of HIF-2 overexpression on HS6ST2 protein levels. A. Western blot. 
B. Quantification of the Western blot in A. 

 

A. 

B. 
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Overall, the experiments support a model in which HIF-2 overexpression 

causes an increase in cellular level of at least three heparan sulfate modifying enzymes 

(NDST1, NDST2, and EXTL2).  

In order to determine the role of HIF-2 on FGF2 signaling regulation via heparan 

sulfate modifying enzymes we have performed a knock down of HIF-2 in adult hDFs 

(Figure 3.10).  

 

Figure 3.10. HIF-2 knock down in adult hDFs. A. qRT-PCR confirming HIF-2 

knockdown in adult hDFs. B. Western blot showing HIF-2 knockdown in adult human 
dermal fibroblasts. 

 

When expression of HIF-2 was abrogated, under both ambient and low oxygen, 

phosphorylation levels of FGFR1 appeared reduced, which suggests the lack of 

activation under prolonged culture conditions. Addition of exogenous FGF2 rescued this 

phenotype (Figure 3.11). 

A. 

B. 
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Figure 3.11. Effect of HIF-2 knockdown on FGFR1 phosphorylation in adult 
hDFs. 

 

When HIF-2 was overexpressed in adult hDFs, I observed upregulation of 

EXTL2. Thus, I also investigated the effects of HIF-2 knockdown on EXTL2 protein 

levels. HIF-2 knockdown led to low levels of EXTL2 translational upregulation in adult 

hDFs (Figure 3.12).  

 

 

A. 
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Figure 3.12. Effect of HIF-2 knockdown on EXTL2 protein levels in adult hDFs. A. 

Western blot. B. Quantification of the Western blot in A. EXTL2 protein levels after the 

HIF-2 knock down were compared to the EXTL2 protein levels in the adult hDFs 

before knockdown cultured in the same conditions. 

 

Oxygen-mediated FGF2 effects on transcription of genes involved in survival and 

proliferation 

Internalization of the FGF2-FGFR1 complex, after sustained FGF2 treatment, 

translocates into the nucleus and could lead to altered gene expression patterns. I set 

out to investigate these oxygen-mediated FGF2 effects on the transcriptomes of adult 

hDFs. Adult human dermal fibroblasts were cultured under four different conditions: 2% 

oxygen, ambient oxygen, 2% oxygen with addition of 4ng/ml FGF2, and 19% oxygen 

with addition of 4ng/ml FGF2, and their transcriptomes were compared by hybridization 

array (n=1). This initial analysis included only one biological replicate, so it is impossible 

to perform testing for statistical significance. Nonetheless, after the dataset was filtered 

B. 
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and yielded 10,471 probes, the fold change was determined for all the genes to 

compare relative gene expression levels between different treatment groups. When 

human dermal fibroblasts were cultured without FGF2, low oxygen appeared to 

upregulate 121 genes and downregulate 44 genes more than fourfold (Supplementary 

Table 3.1 and Supplementary Table 3.2). When adult hDFs were cultured with FGF2, 

low oxygen upregulated 52 genes and downregulated 35 genes more than 4-fold 

(Supplementary Table 3.3 and Supplementary Table 3.4). When adult hDFs were 

cultured under low oxygen, FGF2 upregulated 66 genes and downregulated 271 genes 

more than 4-fold (Supplementary Table 3.5 and Supplementary Table 3.6). Under 

ambient culture conditions, FGF2 upregulated 33 genes and downregulated 33 genes 

more than 4-fold (Supplementary Table 3.7 and Supplementary Table 3.8). Genes that 

were upregulated or downregulated with FGF2 treatment under low oxygen differ from 

those that were up- or downregulated with FGF2 treatment under ambient oxygen 

(compare Supplementary Table 3.5 and Supplementary Table 3.6 with Supplementary 

Table 3.7 and Supplementary Table 3.8).  

When adult hDFs were grown in low oxygen, FGF2 upregulated several growth 

factors that could be implicated in increased proliferation (Supplementary Table 3.5). 

FGF2 upregulated hepatocyte growth factor (HGF) 7.2-fold and bone morphogenic 

protein 4 (BMP4) 5-fold. Growth differentiation factor (GDF6) is involved in regulation of 

cell growth and development, known to bind BMP, and is known to be a hypoxia-

inducible gene in mesenchymal stem cells [228]. An 11-fold upregulation of GDF6 with 

low oxygen in the absence of FGF2 was observed. Under low oxygen culture 

conditions, FGF2 downregulated GDF6 7.6-fold.  

When adult hDFs were grown in low oxygen, FGF2 upregulated ets variant 1 

(ETV1) transcription factor 5.2-fold. This transcription factor is known to be activated by 
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FGF signaling and is involved in regulating genes involved in proliferation, cell growth, 

migration, and differentiation.  

When adult hDFs were grown in low oxygen, FGF2 downregulated the following 

genes involved in regulation of cell cycle: cell cycle progression 1 (CCPG1) was 

downregulated 7.6-fold, G0/G1switch2 (G0S2) was downregulated 6-fold. G0S2 

promotes apoptosis by binding to BCL2 and is involved in metabolism and cell cycle 

progression [229-231]. Cyclin-dependent kinase inhibitor 2B (CDKN2B, p15) was 5.6-

fold downregulated due to FGF2 treatment under low oxygen (Supplementary Table 

3.6). CDKN2B binds CDK4 and inhibits CDK4 interaction with cyclin D1, which prevents 

transition into G1. Thus, downregulation of CDKN2B would allow for transition into G1 

when adult hDFs are cultured with FGF2 under low oxygen, allowing for progression 

through the cell cycle. 

FGF2 also downregulated fibroblast growth factor receptor 2 (FGFR2) 7-fold, 

E2F transcription factor 3(E2F3) 7.6-fold, platelet derived growth factor D (PDGFD) 5-

fold, which could be involved in regulation of increased survival and proliferation 

(Supplementary Table 3.6). 

Transcriptome analysis confirmed that FGF2 mRNA levels are regulated by the 

interplay between low oxygen and the addition of exogenous FGF2. When adult hDF 

were cultured without FGF2, low oxygen upregulated FGF2 4-fold (Supplementary 

Table 3.1), whereas when adult hDF were cultured under low oxygen, addition of 4ng/ml 

exogenous FGF2 downregulated FGF2 7.5-fold (Supplementary Table 3.6) and had no 

effect at ambient oxygen.  

3.3. Discussion 

In vivo, adult hDFs experience low oxygen compared to the fraction of oxygen 

present in the atmosphere. I showed that hDFs express HIF-1 transiently under 
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hypoxic conditions. I also showed strong expression of HIF-2 when hDFs were 

cultured in vitro in low oxygen for prolonged periods of time and also nuclear 

accumulation of FGF2-FGFR1 after sustained FGF2 treatment.  

Thus, I set out to determine how low oxygen, through HIF-2 modulates FGF2 

signaling in adult hDFs.  My results support the following model.  Low oxygen and HIF-

2 increase endogenous FGF, while exogenous FGF2 downregulates FGF2 and 

downstream signaling (represented by inactivation of ERK1/2 phosphorylation after 

seven days). Low oxygen and HIF-2 overexpression potentiated FGF2 

downregulation. Also, we showed that FGF2 downstream signaling inactivation was not 

dependent on FGFR1 activation, as FGFR1 activation was caused only by HIF-2 

overexpression.  

An overall model of molecular events at day seven is depicted in Figure 3.13.  

 

Figure 3.13. Overall model of low oxygen effects on FGF2 signaling 

Since heparan sulfate proteoglycans are known to modulate the binding of FGFs 

to their receptors and internalization of FGF2-FGFR1 complex, I tested the effects of 

HIF-2 on expression of heparan sulfate modifying enzymes, which might lead to a 
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change in the ability of FGF2 to bind its receptors. Overexpression of HIF-2 increased 

the transcription of HS6ST2, but no parallel change in translation was observed. 

Overexpression of HIF-2 led to an increase of NDST1, NDST2, and EXTL2 protein 

levels, which can be explained by a shift in protein translation regulated by HIF-2. HIF-

2 knock down led to low levels of EXTL2 translation increase. Thus, even though HIF-

2 potentiates FGFR1 signaling through EXTL2, HIF-2 is not required to sustain FGF2 

binding through EXTL2.  

Internalization of FGF2-FGFR1 complex leads to its nuclear translocation and 

thus, potentially activation of gene targets. A preliminary transcriptome analysis was 

carried out (although only n=1 here) to investigate the effects of low oxygen-mediated 

FGF2 signaling on the gene expression in adult hDFs. This led to the identification of 

pathways potentially regulating prolonged life span, survival, and proliferation. Growth 

factor genes (HGF, FGF2, GDF6, FGFR2, and PDGFD) are potential targets for being 

regulated by FGF2 signaling under low oxygen. Genes involved in cell cycle regulation, 

such as CCPG1, G0S2, and CDKN2B were also among genes regulated by low 

oxygen-mediated FGF2 signaling. Changes of transcript levels represent a good 

starting point that enables identification of low oxygen-mediated FGF2 global effects on 

the phenotype of adult human dermal fibroblasts, and should be further analyzed at the 

protein level and ultimately for functional relevance subsequently.  

Future analysis of the role of nuclear FGF2 and FGFR1 is needed in order to 

identify their role in iRC phenotype. It will also be valuable to understand heparan 

sulfate regulation.  This is not only for increased general knowledge about how this 

increases the rate of cell division when growth factor pathways are activated, but also 

because it may reveal the mechanisms of activation of specific sulfation patterns on 

heparan sulfates. In summary, understanding oxygen-mediated regulation of FGF2 
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signaling would provide insight to the iRC phenotype, as well as normal skin 

homeostasis and wound healing and would be useful for study and treatment of 

diseases associated with poor wound healing, such as diabetes.  
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Chapter 4. Oxygen-mediated FGF2 effects on cell survival and proliferation 

4.1. Introduction 

We have observed that low oxygen and FGF2 lead to extended life span and 

increased proliferation of adult hDFs. HIF-2 appears to be a predominant player 

involved in the sustained low oxygen response in adult hDFs, as increased levels of 

HIF-2 were detected in the nuclei of adult hDFs after prolonged culture in low oxygen. 

HIF-2 expression was also detected in adult hDFs cultured in ambient oxygen, though 

the levels were lower than those observed in low oxygen cultures.  

Thus, I hypothesized that HIF-2 is necessary for the survival and proliferation of 

adult hDFs, and therefore could be involved in extended life span and linked to the iRC 

phenotype. In order to test this hypothesis, I performed HIF-2 knockdown and assayed 

for survival, proliferation, and senescence. My results also appear to show that low 

oxygen, through the action of HIF-2 mediates FGF2 signaling in adult hDFs. Thus, I 

also tested whether FGF2 is involved in regulating HIF-2-mediated survival and 

proliferation.  

Analysing the effects of HIF-2 knockdown in adult hDFs would provide direct 

information about the function of HIF-2 in these cells and the iRC phenotype. I also 

looked into specific mechanisms that might lead to increased life span and proliferation 

under low oxygen culture conditions by investigating the cell cycle, the induction of 

senescence, and the expression of cyclins in response to HIF-2 knockdown. 

4.2. Results 

First, I performed a knockdown of HIF-2 in adult hDF (Figure 4.1).  
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Figure 4.1. HIF-2 knockdown in adult hDFs. A. qRT-PCR confirming HIF-2 

knockdown in adult hDFs. B. Western blot showing HIF-2 knock down in adult hDFs. 
 

Interestingly, HIF-2 knockdown under low oxygen led to senescence and 

cellular death. FGF2 appeared to partially rescue this phenotype (Figure 4.2). 

A. 

B. 
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Figure 4.2. Cumulative PDs (A) and doubling time (B) of adult hDFs after HIF-2 
knock down. Histobars represent n=1. 

 

The effect of HIF-2 knockdown leading to cell senescence was also shown by 

assaying senescence-associated--galactosidase staining after 7 days of treatment 

(Figure 4.3).  

 

 

 

 

 

 

 

 

A. B. 

A. 
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Figure 4.3. Senescence associated--galactosidase assay showing presence of 
senescent cells after 7 days of treatment of adult hDFs. A. Quantification. Histobars 

denote n=1. B. Representative images. 
 

HIF-2 knockdown was also shown to affect the proliferation of adult hDF, as 

determined by BrdU staining (Figure 4.4). Adult hDFs proliferate faster (show higher 

rate of BrdU incorporation) in 2% oxygen than in ambient oxygen: compare almost 60% 

BrdU-positive cells in 2% oxygen to almost 40% BrdU-positive cells in ambient oxygen, 

respectively. FGF2 treatment increased the proportion of BrdU-positive cells in both 2% 

and ambient oxygen.  

B. 
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Figure 4.4. BrdU stain showing proliferation rates in adult hDFs. A. Quantification. 
Histobars denote n=1. B. Representative images. 

A. 

B. 
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In order to further investigate the effects of HIF-2 knockdown on proliferation of 

adult hDFs, a flow cytometric cell cycle analysis was performed on cells stained with 

propidium iodide (PI) to determine the fraction of cells in each stage of the cell cycle. PI 

allows for distinction between cells in different stages of the cell cycle: G0/G1 phase, S 

phase, and G2/M phase.  

 

A. 
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Figure 4.5. Cell cycle analysis of adult hDFs grown in ambient and low oxygen, with 

and without FGF2 for seven days. A. Flow cytometry analysis of DNA content in adult 

hDFs grown in ambient oxygen (19), ambient oxygen and FGF2 (19F), low oxygen (2), 

low oxygen and FGF2 (2F). The samples were stained with propidium iodide (n=2). B. 

Quantification of flow cytometry data. 

 Figure 4.5 shows the cell cycle profile of adult hDFs grown in ambient and low 

oxygen, with and without FGF2. An ANOVA analysis was performed to determine if 

there was any significant effect of oxygen concentration or FGF2 on the percent of cells 

in each phase of cell cycle. The ANOVA showed that there is no statistically significant 

difference in the fraction of cells in each stage of the cell cycle between varying 

treatment conditions.  

 Next, flow cytometry was performed on propodium iodide-treated cells after HIF-

2knockdown (Figure 4.6). Cells treated with 50M H2O2 for 2 hours were used as a 

senescence control. 

B. 
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Figure 4.6. Flow cytometry cell cycle analysis of HIF-2 knockdown cells stained 
with propidium iodide. 

 

Adult hDFs with HIF-2 knockdown show a decreased fraction of cells in S 

phase, which also indicates that HIF-2 knockdown leads to a decrease in proliferation 

rate (Figure 4.6).   

Because of the observed effect of HIF-2 knockdown on cell proliferation and S-

phase, we evaluated the expression of Cyclin D1, which is known to be activated by 

FGF2 signaling and is responsible for the mitogenic effects of FGF2. Cyclin D1 is a 

positive regulator of the G1/S transition. Neither HIF-2 knockdown nor FGF2 treatment 

had an effect on the transcription of Cyclin D1 (Figure 4.7B). HIF-2 knockdown had a 

negative effect on the protein level of Cyclin D1 (Figure 4.7A) when adult hDFs were 

cultured without FGF2 (Figure 4.7A and Figure 4.7C). FGF2 seemed to increase levels 

of Cyclin D1 protein in response to HIF-2 knockdown (Figure 4.7A and Figure 4.7C). 
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Figure 4.7. Effects of HIF-2 knockdown on expression levels of Cyclin D1. A. Western 
blot. B. RT-PCR. KD, knockdown. C. Quantification of the Western blot in A. Cyclin D1 

protein levels after the HIF-2 knockdown were compared to the Cyclin D1 protein 
levels in the adult hDFs before knockdown cultured in the same conditions. 

 

A. 

B. 

C. 
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4.3. Discussion 

HIF-2 knockdown led to decreased proliferation (decrease in fraction of cells in 

S phase and decrease in BrdU incorporation). Cyclin D1, a positive regulator of 

progression through G1 into S phase, was decreased at the protein level with HIF-2 

knockdown. The decrease in protein levels of Cyclin D1 could be due to decreased 

levels of translation, increased levels of degradation, or some combination of the two. 

Surprisingly, FGF2 was able to rescue the proliferation and viability of cells with HIF-2 

knockdown. This effect could be explained in several ways.  

First, upon addition of exogenous FGF2, we see upregulated levels of FGFR1 

and Cyclin D1 in the absence of HIF-2, which could lead to a rescue of cell 

proliferation and survival. Alternatively, HIF-2 could regulate expression of a plethora 

of targets that are not limited in function to the cell cycle. It would perhaps be more 

plausible to hypothesize that FGF2 does not rescue proliferation and viability via only 

one target gene, such as Cyclin D1, but that it instead activates an alternative response 

to low oxygen, for example through reactivation of HIF-1. If HIF-2 knockdown leads 

to constant reactivation of HIF-1 then we would not expect to see a death phenotype 

upon HIF-2 knockdown under ambient and low oxygen. If FGF2 reactivates HIF-1 

expression, we would expect to see this reactivation in adult hDF grown in ambient and 

low oxygen upon addition of FGF2, but we did not.  

Potentially, FGF2 could be upregulating HIF-3, yet another low oxygen sensor. 

Transcriptome analysis has shown that FGF2 significantly upregulates HIF-3 at the 

transcript levelHIF-3 is a less-studied protein that is characterized by numerous 

alternative transcripts that code for various protein isoforms that were shown to inhibit 

HIF-1 [95, 232] as well as activate transcription of target genes [92]. We previously 



Chapter 4. Oxygen-mediated FGF2 effects on cell survival and proliferation 

93 

 

observed that adult hDFs express HIF-3 under both ambient and low oxygen, with 

higher levels observed in low oxygen (data not shown). FGF2 significantly upregulated 

the expression of HIF-3 in adult hDFs under low oxygen (Chapter 3 transcriptome 

analysis and data not shown). This upregulation might be sufficient to induce HIF- 

transcriptional program and thus rescue the cell death phenotype observed upon 

knockdown of HIF-2, a phenotype that was observed to develop more quickly in low 

oxygen culture than culture in ambient oxygen. A greater understanding of this 

mechanism could lead to in vitro models that are more physiologically accurate. Cell 

culture is typically performed at ambient oxygen, where HIF accumulation is low, and 

given that HIF is so important for cell proliferation and survival, these data reveal a 

potential cause for the limitation of the number of population doublings with current cell 

culture approaches. When we grow cells in ambient oxygen, we are limiting the amount 

of essential proteins (HIFs) that the cells produce. This may also have therapeutic 

implications. Since tumor cells are immortal and tumor centers are known to be hypoxic, 

HIFs could be targeted to help prevent cancerous proliferation. 

 Overall, these data show that HIF-2 is required for the survival and proliferation 

of adult hDFs, and that FGF2 is able to rescue the survival phenotype of adult hDFs 

with HIF-2 knockdown (Figure 4.8). 
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Figure 4.8. Overall model of low oxygen and FGF2 effects on survival and proliferation
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Chapter 5. Oxygen-mediated FGF2 effects on developmental plasticity 

5.1. Introduction  

Previous work investigated the effects of FGF2 and low oxygen on adult human 

fibroblasts [90]. It was observed that adult human fibroblasts demonstrated FGF2- and 

low oxygen-mediated induction of some endogenous stem cell genes and a capacity to 

acquire a more developmentally plastic phenotype. This low level of activation of stem 

cell genes was not sufficient for induction of a phenotypic conversion into a pluripotent 

cell phenotype [90]. However, when transplanted into injured skeletal muscle, adult 

human fibroblasts grown in low oxygen and with supplementation of FGF2 had the 

capacity to tip the healing outcome of skeletal muscle injury – by favoring the 

regeneration response in vivo over scar formation [91].  

During development, distinct cell phenotype differentiation is guided by finely 

tuned changes in the transcriptional activity of specific groups of genes that become 

gradually activated (lineage-specific), gradually repressed (stem cell and progenitor cell 

genes), or whose activity does not change substantially (housekeeping genes). 

Ultimately, analyzing the transcriptome of a cell type offers an opportunity to broadly 

identify transcripts that define it. In addition to these either developmentally regulated or 

artificially induced phenotype changes that are accompanied by distinct transcriptional 

changes, the transcriptome of any given cell type can vary substantially depending on 

cell cycle [233-235], passage number, and environmental factors such as oxygen 

concentration [128], temperature, presence of serum [236], and presence of growth 

factors, for example, FGF2.   Another important factor, that causes transcriptional 

changes and is crucial for maintaining a cell phenotype, is growth substrate.  For 

example, maintaining undifferentiated state of embryonic stem cells is dependent on 

favorable substrate, composed of laminin [237-240], vitronectin [240-243], fibronectin 
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[240], and collagen IV [239]. In addition to chemical composition, physical properties of 

substrate also determine cell fate. The roughness and stiffness of the surfaces have 

also been shown to affect developmental plasticity of cells. Smooth and rigid glass 

surface supports undifferentiated phenotype, while rough and soft substrates promote 

differentiation [244, 245]. 

A groundbreaking 2006 study by Takahashi and Yamanaka showed that 

terminally differentiated somatic cells can be reprogrammed back into stem cells using 

ectopic expression of defined transcription factors [246]. The core reprogramming 

transcription factors include Oct4, Sox2, Nanog, Klf4, cMyc, Rex1, and Lin28. [247-249] 

[250]. It appears that Oct4 is the most important factor in the hierarchy of 

reprogramming factors [251]. Oct4 shows high expression levels in ICM and is 

downregulated in trophectoderm. Oct4 functions are concentration dependent [252]. In 

order to reprogram somatic cells into iPSCs high amounts of Oct4 are required, though 

overexpression of Oct4 leads to spontaneous ES cell differentiation. Low levels of Oct4 

in iPSCs lead to tumorigenicity of chimeric mice, low tetraploid complementation, and 

lack of Dlk1-Dio3 imprinting [251, 253]. Oct4 also leads stem cells into endoderm 

lineage differentiation [251], because overexpression of Oct4 in hES leads to enhanced 

endoderm differentiation rather than loss of differentiation (when respective culture 

conditions are used), and decreased neural capacity [251].  

Oct4 expression is regulated by promoter methylation. DNA methyltransferases 

DNMT3a and DNMT3b are initially responsible for the methylation of core regulatory 

regions of Oct4 (2000bp), with de novo methyltransferase DNMT3a and maintenance 

methyltransferase DNMT1 being required at later stages as mouse ES cells differentiate 

[254, 255]. Interestingly, Oct4 (POU5F1) has alternative transcript variants and 

pseudogenes that complicate the characterization of Oct4 presence in somatic cells. 
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The POU5F1 gene produces three transcripts by alternative splicing – Oct4A, Oct4B, 

and Oct4B1 but only Oct4A is responsible for the pluripotency phenotype. Oct4 

pseudogene 1 (located on chromosome 8, 359aa, 39kDa), pseudogene 3 (located on 

chromosome 12, 186aa, 19kDa), and pseudogene 4 (located on chromosome 1, 86aa, 

30kDa) share the most sequence homology with Oct4A. We previously showed that 

adult hDFs express these 3 pseudogenes, whereas hES express only embryonic Oct4A 

[256]. Addition of FGF2 and low oxygen culture conditions lead to expression of 

embryonic Oct4A in adult human dermal fibroblasts instead of pseudogenes.  

Sox2, which belongs to the Sry-related HMG box (Sox) family of proteins that 

contain a high-mobility-group (HMG) domain, is another reprogramming factor often 

used.  

Nanog, another reprogramming factor, is a transcription factor that contains 

homeodomain, and whose dimerization leads to pluripotency maintenance [257, 258]. 

Nanog also has pseudogenes: 10 processed pseudogenes (Nanog P2 through Nanog 

P11) and one tandem duplication (Nanog P1) [259]. We showed that hESCs contain 

only embryonic Nanog (eNanog), whereas adult fibroblasts (grown in 5% oxygen 

without FGF2, as the effects of oxygen concentration were not studied) were 

determined to express both eNANOG and NanogP8 (both protein-producing) [260].  

Oct4 is a transcription factor that binds the octamer sequence ATGCAAAT [261]. 

Oct4 together with Sox2 bind DNA and regulate the expression of each other, as well as 

Nanog, FGF4, Utf1, Lefty1, Fbxo15 and other genes [262, 263]. In order to detect genes 

that are regulated by Oct4 in human ES cells, RNAi was used to silence Oct4 and study 

gene expression [262]. The circulatory program of reprogramming factors involves 

interaction between Oct4, Sox2 and Nanog. Oct4 and Sox2 regulate transcriptional 

activity of Nanog by binding to the Nanog promoter in human and mouse ES cells [264, 
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265]. Oct4 and Sox2 demonstrate reciprocal regulation, as both Oct4 and Sox2 contain 

a sox-oct element in the enhancer region [266].  

Rex1 (ZFP-42) is a zinc finger protein transcription factor that is regulated by 

Oct4.  

Lin28 (expressed as two transcripts, Lin28a and Lin28b), another factor important 

for generation of iPSCs, is an RNA-binding protein that has been shown to post-

transcriptionally bind and inhibit the translation of such RNAs as the let-7 family of 

microRNAs in order to inhibit differentiation of ICM and epiblast [267]. Lin28a binds 

Sox2 in the nucleus [268].  Lin28a was also shown to bind Oct4 mRNA, and Lin28 

depletion leads to a decrease in Oct4 levels (but not a complete abrogation) [269].  

Here, the transcriptomes of control fibroblasts and regeneration-competent 

fibroblasts were compared. Thus, providing a way to determine whether the 

transcriptional profile that characterizes regeneration-competent cells reflects the 

disregulation of genes involved in the default wound healing pathway leading to scar 

formation – turning the cells into a more pro-regenerative phenotype.  

I also investigated whether HIF-2 (one of the main oxygen sensors in the cell) is 

capable of inducing expression of the aforementioned stem cell genes (Oct4, Sox2, 

Nanog, Rex1, and Lin28) in adult hDFs. By utilizing gain-of-function approach, we were 

able to assess expression of Oct4, Sox2, Nanog, Rex1, and Lin28 in adult human 

dermal fibroblasts. 

5.2. Results  

FGF2-induced effects on transcriptome associated with regeneration competence 

in adult hDFs  

The effect of cell growth surface and FGF2 on fibroblast transcriptome 
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To obtain a sense of the effects of surface and FGF2 treatment on global 

transcription, two independent samples (each in three technical replicates) of human 

dermal fibroblasts grown on glass, glass with FGF2, plastic, and plastic with FGF2 were 

hybridized to the Human Whole Genome OneArray® microarray, which contains 29,187 

human oligonucleotide probes. Background-corrected intensity data was normalized 

and filtered, which identified 11,124 probes of detectable level of intensity. The gene 

expression dataset is of excellent quality as indicated by Pearson’s correlation 

coefficients for biological replicates: 0.987 for glass, 0.973 for glass with FGF2, 0.960 

for plastic, and 0.971 for plastic with FGF2 (Figure 5.1).  

Figure 5.1. Pearson’s correlation coefficients. Scatter plots and correlation coefficients 
comparing two biological replicates for each of four experimental groups: A. adult 
human dermal fibroblasts cultured on glass with addition of 4ng/ml FGF2, B. adult 

human dermal fibroblasts cultured on glass, C. adult human dermal fibroblasts cultured 
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on plastic with addition of 4ng/ml FGF2, and D. adult human dermal fibroblasts cultured 
on plastic. 

 

To investigate cell culture effects, significantly differentially expressed genes 

were examined using a moderated t-statistic and based on the false discovery rate 

(FDR) cutoff value of 0.05. Comparison of transcriptomes between cells grown on glass 

versus plastic in the absence of FGF2 did not identify any differentially expressed 

genes. However, FGF2-induced changes in gene expression depended on the surface. 

FGF2 had a more prominent effect on cells grown on plastic rather than on glass, 

as determined by the overall increased number of differentially expressed genes (3,349 

on plastic versus 2,185 on glass) (Figure 5.2.A). In response to FGF2 treatment, 2,012 

differentially expressed gene probes (1,767 genes) were identified that were 

disregulated on both surfaces: 1,209 common gene probes were upregulated (1,071 

genes) (Figure 5.2.B), and 803 common gene probes downregulated (696 genes) 

(Figure 5.2.C). In addition to these common genes, FGF2 treatment dysregulated 173 

unique gene probes (168 genes: 139 upregulated and 29 downregulated) on glass and 

1,337 unique gene probes (1,282 genes: 753 upregulated and 529 downregulated) on 

plastic (Figure 5.2).  

 

Figure 5.2. FGF2 changes gene expression in human fibroblasts. A. Venn diagram 
showing the overlap between differentially expressed gene probes on plastic and glass. 
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B. Venn diagram depicting the overlap between upregulated gene probes on plastic and 
glass. C. Venn diagram depicting the overlap between downregulated gene probes on 

plastic and glass. 
 

The top 50 significantly differentially expressed genes are represented in the heat 

maps (Figure 5.3.A and 5.3.B, respectively). All further analyses were performed on 

genes whose expression was dysregulated in cells grown in the presence of FGF2 on 

plastic. 
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Figure 5.3. Top 50 differentially expressed genes due to FGF2 treatment. A. Heat map 
showing level of gene expression on glass. B. Heat map showing level of gene 

expression on plastic. 
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Gene Ontology analysis  

Differentially expressed genes were analyzed for functional enrichment. To 

determine the functions of the genes affected by FGF2 treatment and consequently 

identify the cellular processes that are affected by these transcriptional changes, a 

Gene Ontology (GO) analysis was performed. A total of 664 overrepresented GO terms 

(p < 0.05) associated with biological processes were identified. These included genes 

involved in regulation of cell cycle, cardiovascular system development, extracellular 

matrix organization, cell proliferation, cell adhesion, angiogenesis, cell migration, and 

wound healing. Seventy-seven overrepresented GO terms (p < 0.05) were associated 

with molecular function. The genes belonged to extracellular matrix structural 

constituents, genes regulating collagen, heparin, integrin binding, and genes regulating 

cytokine activity. Sixty-five overrepresented GO terms (p < 0.05) were associated with 

cellular components and belonged primarily to extracellular components. 

Expression of genes associated with wound healing 

As FGF2-treated human dermal fibroblasts were previously shown to participate 

in wound healing of volumetric skeletal muscle wound by contributing directly to the pool 

of satellite PAX7 positive cells and by stimulating regeneration of endogenous skeletal 

muscle tissue [91], I focused further analysis of differentially expressed genes on those 

that play a role in wound healing and could be uniquely identifying regeneration-

competent fibroblasts. 

Overall, many select genes belonging to extracellular matrix and its remodeling, 

inflammation, cytoskeleton and migration, and growth factor signaling were found to be 

affected by FGF2.  

Extracellular matrix, matrix remodeling enzymes, and adhesion molecules: FGF2 

treatment led to the downregulation of most collagens (COL11A1, COL4A2, COL8A1, 
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COL5A1, COL1A1, COL12A1, COL15A1) and fibronectin (FN1) and to the upregulation 

of several laminins (LAMB1, LAMB3, LAMA3). FGF2 increased the expression of select 

metallopeptidases (stromelysines MMP3, MMP10, and MMP11; MMP1; ADAMTS8), 

and metallopeptidase inhibitor TIMP4. Among downregulated genes were TIMP3, and 

several other ADAMTS proteinases (ADAMTS5 and ADAMTS1). Different members of 

the integrin family responded by significant upregulation (ITGA2, ITGA10, ITGB3) or 

downregulation (ITGA11, ITGB2). Significantly (p<0.05) disregulated genes identified by 

the microarray are presented in Table 5.1.  

Table 5.1. ECM, adhesion, and matrix remodeling genes affected by FGF2 treatment  

Symbol Name 
Log2 
Fold 

Change 

Fold 
Change 

Adjusted 
p-value 

ECM 

Collagens 

COL21A1 Collagen, type XXI, alpha 1 2.99 7.97 4.40E-06 

COL14A1 Collagen, type XIV, alpha 1 2.25 4.74 3.58E-05 

COL13A1 Collagen, type XIII, alpha 1 1.62 3.07 0.003150228 

COL18A1 Collagen, type XVIII, alpha 1 1.40 2.64 0.026150843 

COL6A3 Collagen, type VI, alpha 3 1.02 2.02 0.026527481 

COL10A1 Collagen, type X, alpha 1 0.61 1.52 0.033185205 

COL27A1 Collagen, type XXVII, alpha 1 -0.59 -1.50 0.000481652 

COL16A1 Collagen, type XVI, alpha 1 -0.86 -1.82 0.000501675 

COL1A2 Collagen, type I, alpha 2 -0.92 -1.90 0.001062514 

COL12A1 Collagen, type XII, alpha 1 -1.16 -2.23 0.001285122 

COL5A1 Collagen, type V, alpha 1 -1.17 -2.25 0.000370081 

COL1A1 Collagen, type I, alpha 1 -1.26 -2.40 2.50E-05 

COL15A1 Collagen, type XV, alpha 1 -1.40 -2.64 6.04E-06 

COL8A1 Collagen, type VIII, alpha 1 -1.92 -3.77 5.23E-08 

COL5A2 Collagen, type V, alpha 2 -1.99 -3.96 0.000570978 

COL5A3 Collagen, type V, alpha 3 -2.24 -4.72 8.97E-06 

COL4A4 Collagen, type IV, alpha 4 -2.34 -5.07 0.001283892 

COL4A2 Collagen, type IV, alpha 2 -2.40 -5.28 3.02E-14 

COL11A1 Collagen, type XI, alpha 1 -4.27 -19.37 4.50E-12 

COL4A1 Collagen, type IV, alpha 1 -4.61 -24.43 3.58E-05 

Laminins 

LAMA5 Laminin, alpha 5 1.74 3.35 5.24E-06 

LAMB1 Laminin, beta 1 0.68 1.60 0.026626565 

LAMA4 Laminin, alpha 4 0.66 1.58 0.030288975 
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LAMA3 Laminin, alpha 3 0.62 1.54 0.033413419 

LAMC2 Laminin, gamma 2 -0.78 -1.72 0.001416011 

LAMA2 Laminin, alpha 2 -0.81 -1.76 0.048073235 

LAMB2 Laminin, beta 2 (laminin S) -0.88 -1.84 0.016068977 

LAMC1 Laminin, gamma 1 (formerly LAMB2) -1.34 -2.53 8.56E-05 

Fibronectins 

FNDC4 Fibronectin type III domain containing 4 1.27 2.41 0.000256057 

FNDC3A Fibronectin type III domain containing 3A 0.81 1.75 0.036705362 

FNDC3B Fibronectin type III domain containing 3B -1.12 -2.17 0.001723239 

FN1 Fibronectin 1 -1.14 -2.20 0.00019286 

FNDC1 Fibronectin type III domain containing 1 -4.06 -16.64 2.29E-12 

Adhesion molecules 

Integrins 

ITGA2 
Integrin, alpha 2 (CD49B, alpha 2 subunit of 
VLA-2 receptor) 

3.69 12.92 4.74E-06 

ITGA10 Integrin, alpha 10 2.62 6.14 3.90E-07 

ITGB3 
Integrin, beta 3 (platelet glycoprotein IIIa, 
antigen CD61) 

2.37 5.16 8.55E-05 

ITGB1 
Integrin, beta 1 (fibronectin receptor, beta 
polypeptide, antigen CD29 includes MDF2, 
MSK12) 

-1.66 -3.15 6.42E-06 

ITGBL1 
Integrin, beta-like 1 (with EGF-like repeat 
domains) 

-2.31 -4.97 6.78E-08 

ITGB2 
Integrin, beta 2 (complement component 3 
receptor 3 and 4 subunit) 

-3.34 -10.15 0.000457236 

Cadherins 

CDHR3 Cadherin-related family member 3 1.22 2.33 0.008261441 

PCDHGC3 Protocadherin gamma subfamily C, 3 1.21 2.32 0.007298787 

PCDH9 Protocadherin 9 1.19 2.29 0.001804197 

PCDH10 Protocadherin 10 1.08 2.11 0.00089387 

CDH11 Cadherin 11, type 2, OB-cadherin (osteoblast) -0.72 -1.64 0.025796984 

PCDHB2 Protocadherin beta 2 -0.76 -1.69 0.010987526 

CDH2 Cadherin 2, type 1, N-cadherin (neuronal) -2.05 -4.14 1.11E-05 

PCDH7 Protocadherin 7 -2.36 -5.12 0.002357001 

Matrix remodeling 

MMP1 
Matrix metallopeptidase 1 (interstitial 
collagenase) 

4.37 20.61 8.28E-12 

ADAMTS8 
ADAM metallopeptidase with thrombospondin 
type 1 motif, 8 

3.31 9.94 1.65E-10 

MMP27 Matrix metallopeptidase 27 1.90 3.72 4.70E-06 

MMP10 Matrix metallopeptidase 10 (stromelysin 2) 1.81 3.52 0.000118221 

MMP3 
Matrix metallopeptidase 3 (stromelysin 1, 
progelatinase) 

1.81 3.51 7.05E-06 

TIMP4 TIMP metallopeptidase inhibitor 4 1.53 2.88 0.000259942 

ADAM15 ADAM metallopeptidase domain 15 1.04 2.06 0.000703266 

ADAMTSL4 ADAMTS-like 4 0.83 1.77 0.040463485 

MMP11 Matrix metallopeptidase 11 (stromelysin 3) 0.82 1.76 0.009142377 

ADAMTSL1 ADAMTS-like 1 0.68 1.60 0.024404628 
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THBS2 Thrombospondin 2 -0.60 -1.52 0.033809806 

ADAM19 ADAM metallopeptidase domain 19 -0.82 -1.77 0.016522395 

TIMP3 TIMP metallopeptidase inhibitor 3 -1.48 -2.78 8.49E-06 

ADAM12 ADAM metallopeptidase domain 12 -2.72 -2.23 1.30E-08 

ADAMTS1 
ADAM metallopeptidase with thrombospondin 
type 1 motif, 1 

-3.06 -8.32 4.12E-08 

ADAMTS5 
ADAM metallopeptidase with thrombospondin 
type 1 motif, 5 

-3.99 -15.84 0.000108412 

 

For validation purpose, the expression levels of select target genes identified by 

the microarray (Figure 5.4A) were examined by qRT-PCR (Figure 5.4B). Each of the 22 

genes tested by qRT-PCR reflected the corresponding up or downregulation from the 

array. 

 

Figure 5.4. FGF2 affects expression levels of genes associated with extracellular matrix 
remodeling. A. Heat map showing expression levels of select genes as identified by 

microarray analysis. B. qRT-PCR validation of microarray data for select genes. 
Expression levels were normalized to ACTB and are represented as log2 Fold Change 

(FGF2-treated compared to untreated).  Error bars represent SEM. qRT-PCR for 
COL1A2 did not show change in the expression levels. 

 

Cytoskeleton: Another group of genes found to be regulated by FGF2 treatment 

were components of the cytoskeleton, which are also involved in wound healing (Table 

5.2).  
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Table 5.2. Cytoskeleton genes regulated by FGF2 treatment 

Symbol Name 
Log2 
Fold 

Change 

Fold 
Change 

Adjusted 
p-value 

TUBA4A Tubulin, alpha 4a  1.29 2.44 0.000256991 

TUBB3 Tubulin, beta 3 class III  1.14 2.20 0.00119515 

TUBA1C Tubulin, alpha 1c  0.95 1.93 0.002708545 

TUBB2C Tubulin, beta 2c  0.60 1.52 0.020192536 

ACTA2 Actin, alpha 2, smooth muscle, aorta  -0.86 -1.81 0.00445901 

ACTN1 Actinin  -1.38 -2.60 1.90E-05 

TUBE1 Tubulin, epsilon 1  -1.42 -2.68 0.000182139 

TUBG2 Tubulin, gamma 2 -2.71 -6.53 0.000159057 

ACTC1 Actin, alpha, cardiac muscle 1  -4.38 -20.83 4.46E-11 

ACTG2 Actin, gamma 2, smooth muscle, enteric  -6.01 -64.33 1.52E-13 

 

Of the cytoskeleton genes, the most significant effect was observed on ACTC1 

and ACTG2. Expression levels of ACTC1 and ACTG2 identified by the microarray 

(Figure 5.5A) were examined by qRT-PCR (Figure 5.5B). Each of the eight genes 

validated by RT-PCR correlated with the up- or downregulation in the array. 
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Figure 5.5. FGF2 affects expression levels of cytoskeleton genes and chemokines. A. 
Heat map showing expression levels of select genes as identified by microarray 

analysis. B. qRT-PCR validation of microarray data for select genes. Expression levels 
were normalized to ACTB and are represented as log2 Fold change (FGF2-treated 

compared to untreated).  Error bars represent SEM. qRT-PCR for IL1B, ACTG2, and 
TGFBR3 did not show change in the expression levels. 

 

Cytokines, their receptors, and downstream signaling molecules: Cytokines that 

were identified as differentially expressed in cells with and without FGF2 are listed in 

Table 5.3.  
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Table 5.3. Representative cytokines regulated by FGF2 

Symbol Name 
Log2 
Fold 

Change 

Fold 
Change 

Adjusted 
p-value 

Chemokines 

CXCL5 Chemokine (C-X-C motif) ligand 5 4.58 16.78 9.18E-07 

CXCL6 
Chemokine (C-X-C motif) ligand 6 
(granulocyte chemotactic protein 2)  

2.50 5.64 1.23E-07 

CXCL1 
Chemokine (C-X-C motif) ligand 1 
(melanoma growth stimulating 
activity, alpha)  

2.06 4.17 1.59E-05 

CCL22 Chemokine (C-C motif) ligand 22  1.55 2.93 
0.0335470
76 

C5 Complement component 5  0.88 1.85 
0.0011964
77 

CCL26 Chemokine (C-C motif) ligand 26  -0.67 -1.59 
0.0279669
18 

CCL14 Chemokine (C-C motif) ligand 14  -1.15 -2.22 
0.0001919
18 

CCL25 Chemokine (C-C motif) ligand 25  -1.23 -2.35 
0.0071935
43 

CCL2 Chemokine (C-C motif) ligand 2  -1.79 -3.46 6.20E-06 

Chemokine receptors 

CCRL1 Chemokine (C-C motif) receptor-like 1  2.02 4.06 1.37E-05 

CCR10 Chemokine (C-C motif) receptor 10  0.98 1.97 
0.0434115
65 

CCR8 Chemokine (C-C motif) receptor 8  -0.58 -1.49 
0.0474964
14 

CXCR7 Chemokine (C-X-C motif) receptor 7  -2.26 -4.79 1.24E-06 

Interleukins 

IL8 Interleukin 8 1.47 2.77 
0.0132427
16 

IL17D Interleukin 17D  1.41 2.66 
0.0001244
42 

IL1RN Interleukin 1 receptor antagonist  1.18 2.27 
0.0076029
93 

IL1B Interleukin 1, beta  -1.10 -2.14 
0.0023404
69 

IL2 Interleukin 2  -1.19 -2.28 
0.0346730
96 

IL32 Interleukin 32  -1.19 -2.28 
0.0009742
57 

IL1RAP 
Interleukin 1 receptor accessory 
protein  

-1.91 -3.76 8.85E-06 

IL33 Interleukin 33  -2.59 -6.02 
0.0006133
27 

IL6 Interleukin 6 (interferon, beta 2)  -5.07 -33.59 2.75E-07 

Interleukin receptors 

IL17RD Interleukin 17 receptor D  2.24 4.72 
0.0002643
5 

IL13RA2 Interleukin 13 receptor, alpha 2  1.84 3.58 3.65E-05 

IL15RA Interleukin 15 receptor, alpha  0.71 1.64 
0.0150335
55 

IL21R Interleukin 21 receptor  -0.86 -1.82 
0.0049743
39 
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IL20RB Interleukin 20 receptor beta  -1.29 -2.45 
0.0002382
76 

IL1RL1 Interleukin 1 receptor-like 1  -1.99 -3.97 
0.0027084
22 

STAT 

STAT4 
Signal transducer and activator of 
transcription 4  

-1.51 -2.85 1.15E-06 

STAT1 
Signal transducer and activator of 
transcription 1 

-0.87 -1.83 0.006745 

STAT3 
Signal transducer and activator of 
transcription 3 (acute-phase response 
factor)  

-0.87 -1.83 0.021783 

Tumor necrosis factor family 

TNFAIP8L1 
Tumor necrosis factor, alpha-induced 
protein 8-like 1  

3.90 14.93 8.62E-07 

TNFRSF25 
Tumor necrosis factor receptor 
superfamily, member 25  

1.89 3.71 
0.0004327
46 

TNFSF10 
Tumor necrosis factor (ligand) 
superfamily, member 10  

1.74 3.34 
0.0055369
98 

TNFAIP8L3 
Tumor necrosis factor, alpha-induced 
protein 8-like 3  

1.31 2.48 9.01E-05 

TNFRSF1B 
Tumor necrosis factor receptor 
superfamily, member 1B  

1.20 2.30 
0.0278819
15 

TNFRSF21 
Tumor necrosis factor receptor 
superfamily, member 21  

0.67 1.59 
0.0298236
86 

C1QTNF6 
C1q and tumor necrosis factor related 
protein 6  

-0.70 -1.62 
0.0359694
62 

TNFRSF10B 
Tumor necrosis factor receptor 
superfamily, member 10b  

-0.75 -1.68 
0.0259937
15 

C1QTNF3 
C1q and tumor necrosis factor related 
protein 3  

-0.81 -1.75 
0.0131421
51 

TNFAIP6 
Tumor necrosis factor, alpha-induced 
protein 6  

-0.85 -1.80 
0.0219302
55 

TNFAIP1 
Tumor necrosis factor, alpha-induced 
protein 1 (endothelial)  

-0.87 -1.83 
0.0026709
69 

TNFRSF10D 
Tumor necrosis factor receptor 
superfamily, member 10d, decoy with 
truncated death domain  

-1.14 -2.20 
0.0035642
67 

TNFRSF11B 
Tumor necrosis factor receptor 
superfamily, member 11b  

-1.59 -3.01 4.04E-05 

C1QTNF5|MFRP 
Membrane frizzled-related protein, 
C1q and tumor necrosis factor related 
protein 5 transcription unit  

-2.42 -5.35 5.17E-10 

TNFSF4 
Tumor necrosis factor (ligand) 
superfamily, member 4  

-2.83 -7.11 4.13E-09 

TGF pathway 

TGFBR3 
Transforming growth factor, beta 
receptor 3 

0.94 1.92 
0.0012595
18 

TGFBI 
Transforming growth factor, beta-
induced, 68kDa  

-0.66 -1.58 
0.0144419
76 

TGFBR1 
Transforming growth factor, beta 
receptor 1  

-0.96 -1.91 
0.0057467
81 
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FGF2-induced transcriptional increases were observed in genes associated with 

inflammation (CXCL1, CXCL5, PTGS2), and growth factor signaling (EGFR, HGF, 

MAPK1). Expression of pro-inflammatory cytokines interleukin-1B (IL1B) and IL6 

decreased upon FGF2 treatment. Signal transducer and activator of transcription 3 

(STAT3), which is a known downstream target of IL6 signaling, was downregulated, as 

well as was another gene downstream of IL6/STAT3, CC chemokine ligand CCL2. The 

expression levels of all these targets identified by the microarray (Figure 5.5A) were 

confirmed by qRT-PCR (Figure 5.5B). The FGF2 effect on expression of TGFB pathway 

genes included an increase in TGFBR3 expression, a decrease in TGFBR1, and a 

decrease in TGFBI (Table 5.3). TGFB1 and TGFB3 were not significantly differentially 

expressed due to FGF2 treatment. qRT-PCR results for TGFB1 and TGFBR1 are 

presented in Figure 5.5B. 

Effects of HIF-2 on the expression of stem cell genes in adult hDFs 

We previously showed that addition of FGF2 and culture under low oxygen 

conditions leads to expression of stem cell genes in adult human fibroblasts [90]. 

Specifically, Oct4 expression was induced at the protein level, while low oxygen and 

FGF2 had no effect on the transcript level. At 5% oxygen, FGF2 induced protein 

expression of Oct4. Nanog expression was also induced by FGF2 only at the protein 

level. Sox2 was induced at both the mRNA and protein levels upon stimulation with 

FGF2 at 5% oxygen. Rex1 and Lin28 were upregulated by low oxygen and FGF2 

treatment at the transcriptional level. 

I have shown that HIF-2 is expressed in adult human dermal fibroblasts cultured 

under low oxygen conditions for prolonged periods of time (Chapter 2 of this thesis). 

Therefore, I set out to determine whether HIF-2 affects the expression of stem cell 

genes in adult hDFs, which might lead to a more “plastic” phenotype.   
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In order to investigate the effects of HIF-2 on the expression levels of stem cell 

genes, a mutated HIF-2 variant with a longer half-life was overexpressed using a 

lentiviral approach (Figure 5.6). Mutated HIF-2 carries mutations of prolines 405 and 

531 into alanines that leads to stabilization of HIF-2 even under ambient oxygen 

culture conditions. This overexpressed HIF-2 variant was tagged with Hemagglutinin 

(HA) at the N-terminus, so it could be detected by HA western blot (Figure 5.6, upper 

row). 

 
Figure 5.6. Western blot showing overexpression of HA-HIF-2-P405A/P531A in adult 

hDFs. 
 

Figure 5.7 shows the transcript levels of stem cell genes Oct4, Sox2, Nanog, 

Rex1, and Lin28 in adult hDFs overexpressing the HIF-2 variant. From Figure 5.7, it 

can be observed that low oxygen alone upregulated only Rex1 mRNA. FGF2 treatment 

did not have an effect on the mRNA levels of stem cell genes, regardless of oxygen 

concentration in the absence of HIF-2 variant overexpression. Variant overexpression 

increased levels of Oct4 transcript (Figure 5.7), which was expected because Oct4 is a 

known target of HIF-2 [270]. This increase was the same when hDFs were cultured 

with and without FGF2. Variant overexpression did not affect levels of Sox2, Nanog, 
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and Lin28 mRNA levels. HIF-2 variant overexpression did further increase levels of 

Rex1 mRNA compared to low oxygen alone. 

Figure 5.7. mRNA expression levels of stem cell genes in adult hDFs assayed by RT-
PCR. Cells were treated as listed for 7 days. 

 

This upregulation of Oct4 message, however, did not lead to an increase in 

protein expression unless supplemented with FGF2 (Figure 5.8).  
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Figure 5.8. Expression levels of Oct4 and Sox2 proteins in adult hDFs assayed by 
western blot. 

 

Sox2 protein was detected upon overexpression of the HIF-2 variant and 

treatment with FGF2 (Figure 5.8), which was expected, as Sox2 is a known to be a 

direct target of HIF-2 [271].  

Nanog protein was undetected in adult hDFs regardless of the culture conditions 

(Figure 5.9).  
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Figure 5.9. Expression levels of Nanog protein in adult hDFs assayed by western blot. 
 

Rex1 protein was not detected in adult hDFs following overexpression of the HIF-

2variant (Figure 5.10), although a larger molecular weight protein was visible, which 

could be a Rex1 isoform.  

 

Figure 5.10. Expression levels of Rex1 protein in adult hDFs assayed by western blot. 
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Lin28 protein was not detected in adult hDFs, under any conditions, including 

overexpression of the HIF-2 variant in adult hDFs (Figure 5.11). 

 

Figure 5.11. Expression levels of Lin28 protein in adult hDFs assayed by western blot. 
 

5.3. Discussion  

The comparative transcriptome analysis described here demonstrates a unique 

molecular signature for induced regeneration-competent (iRC) fibroblasts compared 

with control fibroblasts. Consistent with the notion that these two cell types are distinctly 

different, we have used both cell types in in vivo regeneration experiments and 

demonstrated that the induced regeneration-competent fibroblasts participate in 

regenerative response of skeletal muscle (concomitant with decreased scar formation), 

contribute to the pool of newly established satellite cells (PAX7+ cells) in a mouse injury 

model, as well as form mature myotubes [91].  

The identification of differentially expressed genes and the subsequent Gene 

Ontology analysis determined that a large number of genes important for the outcome 

of wound healing, such as extracellular matrix genes, adhesion molecules, matrix 

remodeling genes, and genes involved in inflammation were regulated by FGF2. During 

dermal wound healing, fibroblasts are responsible for ECM production [272] and, here, I 

show that FGF2 treatment affects a number of genes involved in production and 

remodeling of ECM. FGF2 caused downregulation of a number of collagens such as 
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collagen IV, collagen XI, collagen V, and collagen I, as well as caused the upregulation 

of collagen XXI and collagen XIV (Table 5.1). qRT-PCR analysis confirmed the 

downregulation of COL1A1, COL4A1, COL4A2, COL4A4, COL8A1, and COL11A1 

(Figure 5.4B). FGF2 was previously shown to downregulate expression of interstitial 

collagen I and III [273].  Collagen I is a major component of ECM in skin, and during 

wound healing it is the main scar forming collagen. Collagen IV is a major constituent of 

the basement membrane (other components include laminin, nidogen, and heparan 

sulfate proteoglycan perlecan) and is a predominant type of collagen found in skeletal 

muscle. Other ECM genes affected by FGF2 treatment included laminins and 

fibronectins (Table 5.1). The most profoundly affected ECM genes by FGF2 treatment 

were laminin gamma 1 (LAMC1) and laminin alpha 5 (LAMA5). qRT-PCR confirmed the 

increased expression levels of these two laminins (Figure 5.4B).  Fibronectin 1 was 

downregulated by FGF2 treatment (Figure 5.4B).  FGF2 treatment of human fibroblasts 

modulates the production of the ECM. The ECM composition of the FGF2-treated 

fibroblasts favors the pro-regenerative outcome in the wound site directly by affecting 

the balance between scar formation and tissue regeneration and potentially thorough 

changes in cell attachment to ECM, cell migration, and cell proliferation.  

Cell attachment to the ECM is regulated through integrins, heterodimers that 

recognize specific substrates. Adhesion and migration on a collagen substrate is 

performed through the heterodimers 11 and 21, and formation of collagen type I 

and type III network is dependent on fibronectin and 21 [274-276]. We show FGF2-

induced upregulation of 1 and 2 (Figure 5.4B). Integrins 1, V3, and 41 pairs 

are utilized to bind a fibronectin matrix [277, 278], V5 is used to adhere to vitronectin, 

and 61, 21, and 31 adhere to laminin and entactin [241, 243, 279]. FGF2 

treatment downregulated ITGB2, and upregulated ITGB3 and ITGA10 (Figure 5.4B). 
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Integrins connect the ECM to actin cytoskeleton via focal adhesions rich in talin, which 

is recruited to F-actin, and binds integrin pairs, which in turn leads to transmission of F-

actin movements to the ECM [278]. Change in the composition of integrins, as well as in 

the components of focal adhesions leads to change in migration, as well as preferential 

binding to specific substrate, production of which is regulated by FGF2 treatment, and 

may benefit a pro-regenerative response.  

During wound healing, fibroblasts acquire a highly migratory phenotype.  The 

process is driven by actin polymerization and resulting microfilaments of the cell’s 

leading edge link to ECM via integrins. Actomyosin contraction then allows for the 

disassembly of adhesions in the rear and forward motion [280]. Thus, movement of the 

fibroblasts in the wound site is regulated not only by the ECM and adhesion molecules, 

but also by the actin cytoskeleton.  The actin cytoskeleton is also involved in the 

fibroblast contractile phenotype. During dermal healing, fibroblasts generate stress 

fibers (weakly contractile actin bundles) to enable contraction [281]. The shape of 

fibroblasts is regulated by the environment, and cell-matrix adhesion determines the cell 

shape, via mechanisms such as strong cell-ECM adhesion promotion of spindle-shaped 

fibroblasts [282]. In vitro fibroblasts were shown to have different morphology depending 

on the substrate they are grown on; in 3D cultures resembling an in vivo environment, 

fibroblasts display an elongated shape, well-developed actin cortex, and filopodia at the 

leading edge [283]. Alpha actin ACTC1, which is a constituent of the contractile 

apparatus, was downregulated in human dermal fibroblasts treated with FGF2 (Table 

5.2., Figure 5.5B). Gamma actin ACTG2, which is involved in cellular motility and 

adhesion, was 64-fold downregulated (Table 5.2), though qRT-PCR did not confirm this 

downregulation. By regulating cytoskeletal gene expression, FGF2 potentially promotes 
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cell migration in the wound site and reduces contraction leading to the favorable pro-

regenerative outcome. 

Previously, it was shown that administration of FGF2 alone into a dermal wound 

cause reduced scar formation [84], which can be attributed to upregulation of matrix 

metalloproteinase MMP1 [272]. Our data show strong upregulation of MMP1 (Figure 

5.4B), the metalloproteinase responsible for cleaving collagen type I, II, and III [284]. 

FGF2 signaling was shown to activate the MMP1 promoter [285].  MMP1 was able to 

directly improve the skeletal muscle regeneration process by reducing scar tissue 

formation [286-288] and by promoting migration of myoblasts involved in regeneration of 

skeletal muscle [289, 290]. Interestingly, integrin 21 (upregulated in our iRC cells) 

was shown to increase MMP1 expression [291, 292]. By transplanting FGF2 treated 

human dermal fibroblasts, the strong continuous increase in production of MMP1 

(among other factors), led to decreased collagen production. This may also occur at 

earlier stages of wound healing, for example during the inflammation stage. Other MMP 

molecules, such as stromelysins MMP3, MMP10, and MMP11 were upregulated in iRC 

cells as well (Table 5.1. and Figure 5.4). MMP3 was previously shown to be responsible 

for the contraction of fibroblasts during wound healing [293] and was regulated by FGF2 

in a mouse model [294]. MMPs, mostly MMP2, 3, 9 and 10, are highly upregulated 

during amphibian limb regeneration [295-297]. All of these observations point toward a 

favorable role of MMPs in the regeneration process. Thus, FGF2-stimulated change in 

the transcriptional profile of various MMPs is likely an important factor contributing to the 

regeneration competence of fibroblasts. 

FGF2 treatment also led to a favorable ratio between MMPs and tissue inhibitors 

of metalloproteinases (TIMPs). An imbalance between MMPs and TIMPs has been 

shown to increase scar formation. FGF2 upregulated TIMP4 and downregulated TIMP3 



Chapter 5. Oxygen-mediated FGF2 effects on developmental plasticity 

120 

 

expression (Figure 5.4B). ADAM and ADAMTS proteinases that were shown to be 

differentially regulated by FGF2 (Table 5.1) are regulators of ECM and adhesion 

molecules and affect cell motility, adhesion, and signaling during wound healing 

processes. ADAMTS1 and ADAMTS5 were downregulated by FGF2 treatment (Figure 

5.4B). ADAM transmembrane proteinases are involved in cleavage and activation of 

various cell surface molecules, whereas ADAMTS are secreted proteinases that can 

bind ECM. ADMATS8 which was upregulated by FGF2 treatment (Figure 5.4B) has 

anti-angiogenic properties [298].  

The ratio of TGFB1/TGFB3 is a factor that predicts scar formation; a decrease in 

this ratio is indicative of reduced scar formation [242]. Fetal wounds known to heal 

without scar formation exhibit decreased TGFB1 levels [299]. Administration of TGFB3 

has also been shown to reduce scar formation [84]. The TGFB pathway was previously 

shown to be induced by FGF2 treatment in mouse embryonic fibroblasts (MEFs) [300]. I 

observed no change in the levels of TGFB1 due to FGF2 treatment by microarray 

analysis whereas qRT-PCR showed downregulation of TGFB1 levels (Figure 5.5B) and 

qRT-PCR confirmed downregulation of TGFBR1 (Figure 5.5B). Upregulation of 

TGFBR3 from FGF2 treatment was observed in the array, but qRT-PCR showed no 

change in expression levels (Figure 5.5B). These observations may be due to 

differences between mouse embryonic fibroblasts and adult hDFs, indicating that the 

FGF2 responses in these cells may be unique. 

Decreasing inflammation has been shown to decrease scar formation. For 

example, when wounds of skin and oral mucosa were compared, there was less 

inflammation and scarring in oral mucosa [301]. Non-scar wound healing in fetal 

wounds is also characterized by the absence of inflammation [302-306]. Inflammatory 

events are integrated by chemokines. Chemokines are chemotactic cytokines that 
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regulate migration of cells during the inflammatory process. ELR(+) CXC chemokines 

are neutrophil attractants and activators. CXCL6 or granulocyte chemotactic protein-2 

(GCP-2) is a ELR(+) CXC chemokine. FGF2 treatment led to an increase in CXCL6 

chemokine expression (Figure 5.5B). CXCL5, a chemokine that attracts and activates 

neutrophils, amplifies the inflammatory cascade, and stimulates the local production of 

cytokines was shown to be upregulated by FGF2 treatment (Figure 5.5B). Interestingly, 

when CXCL5 is cleaved by MMP1, 2, 8, 9, and 13, increased inflammation is observed 

and cell recruitment to the wound site is activated [307]. CCL2 (monocyte 

chemoattractant protein-1, MCP-1), which is involved in inflammatory cell recruitment, 

can be induced through focal adhesion kinase (FAK) leading to inflammation and scar 

production in a cutaneous injury, and CCL2 knock-out mice showed decreased scarring 

[308]. Here, we observed downregulation of CCL2 due to FGF2 treatment (Figure 5.5B).  

In agreement with previous publications, implantation of FGF2-treated fibroblasts, which 

show CCL2 downregulation, into a mouse wound site leads to reduced scar formation 

[91]. We also show in this transcriptome analysis that the IL6/STAT3 signaling pathway 

is regulated by FGF2 (Figure 5.5B). Interleukin 6 (IL6) is a pleiotropic cytokine that is 

produced by a variety of cells such as epidermal cells, endothelial cells, and fibroblasts 

[309]. IL6 is known to increase the production of collagen [310], thus the decrease in 

collagen synthesis that we observe in skeletal muscle injury can be partially explained 

by a decrease in IL6. CCL2 was shown to induce IL6 secretion in human lung 

fibroblasts, has a role in regulating fibrosis [311], and was shown previously to be 

regulated by FGF2 [312]. Scarless fetal wounds are characterized by diminished 

expression of pro-inflammatory IL6 and IL8 [302, 303]. FGF2 treatment significantly 

reduces IL6 levels (Figure 5.5B), whereas the levels of IL8 are upregulated with FGF2 

treatment (Table 5.3). The FGF2-induced decrease in IL6 levels could be contributing to 
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a pro-regenerative phenotype of adult human fibroblasts. Signal transducer and 

activator of transcription (STAT3) conveys signals from IL6. Loss of IL6 was shown to 

result in a deficiency of proliferation and migration of myoblasts [313-315]. IL6/STAT3 

was shown recently to be involved in excessive ECM production and increased cellular 

proliferation in hypertrophic scars compared to normal human fibroblasts [316]. 

Overall, the comparison of transcriptomes between control and regeneration-

competent fibroblasts indicates significant differences in expression of genes involved in 

several biological processes associated with wound healing. Downregulation of 

collagens, upregulation of ECM remodeling enzymes, and downregulation of pro-

inflammatory cytokines are strong candidates for the iRC cells’ pro-regenerative 

phenotype. A choice between scar-forming and pro-regenerative wound healing 

responses may depend on a balance between ECM production, degradation, 

consequent ECM contractility, and decreased inflammatory response.  Further studies 

are needed to elucidate the requirement and functional significance of specific 

dysregulated genes.  

Here, I also investigated effects of low oxygen, through the action of HIF-2, on 

the expression of stem cell genes (Oct4, Sox2, Nanog, Rex1, and Lin28) in adult hDFs. 

By utilizing an overexpression approach I was able to determine the ability of HIF-2 to 

induce a stem cell-like expression profile in a terminally differentiated cell type. 

Overexpression of the HIF-2 transcription factor did not appear to increase Oct4 

protein levels, but it did increase the mRNA (Figure 5.7 and Figure 5.8). Other factors 

are necessary for an increase in transcript expression of Oct4 at a level comparable to 

stem cells, and other factors are necessary to activate translation of pluripotency marker 

Oct4 in adult hDFs. The first modification that occurs at the Oct4 promoter that allows 

for endogenous Oct4 to be expressed during reprogramming includes active 
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demethylation of the promoter. It would be of interest to investigate the DNA methylation 

status of Oct4 promoter after adult hDFs have been cultured in FGF2 and low oxygen, 

as well as after overexpression of HIF-2. Also, it would be necessary to determine if 

observed Oct4 protein bands belong to Oct4A or to its pseudogenes after 

overexpression of stable HIF-2. Sox2, Nanog, Rex1, and Lin28 proteins were not 

detected in adult hDFs grown in ambient oxygen and in adult hDFs grown in ambient 

oxygen and expressing stable HIF-2(Figure 5.7, Figure 5.8, Figure 5.9, Figure 5.10, 

Figure 5.11). However, Sox2 and Rex1 proteins of higher molecular weight increased if 

FGF2 was also added in addition to the HIF-2 overexpression (Figure 5.9 and Figure 

5.10). Thus, I have determined that overexpression of HIF-2 alone is not able to 

induce protein expression of Oct4, Sox2, Nanog, Rex1, and Lin28, suggesting the 

existence of other mechanisms of regulation of these genes in adult hDFs in response 

to low oxygen.  

 

Figure 5.12. Overall model of low oxygen and FGF2 effects on developmental plasticity 
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Overall, these data show that under low oxygen FGF2 confers developmental 

plasticity to adult hDFs (Figure 5.12). Developmental plasticity is represented by two 

phenotypes: regeneration competence and activation of stem cell gene expression in 

adult hDFs.  
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Chapter 6. Conclusions and Future Work 

The extracellular environment and molecular cues that cells experience are 

important cell fate determinants. They guide development and cell type specifications 

and are important in establishing a specific cell type identity in vitro. 

Oxygen can be considered both an intrinsic and extrinsic factor as its delivery to 

the cells in human body is performed via blood vessels (inside the body) or through skin 

diffusion (from outside the body). Throughout development, oxygen concentration is an 

important factor that helps establish a specific cell lineage and then later (after the 

organism has matured) keeps cells locked in the particular phenotype. Thus, there is 

interplay between the oxygen environment and other cell signaling events.  

Adult human dermal fibroblasts are a “terminally” differentiated (“stably-locked” 

[317]) cell type. They are located in the human body ubiquitously and reside in low 

oxygen. Human fibroblasts have been successfully reprogrammed into iPSCs before, 

and we have shown that by using FGF2 and low oxygen to create iRCs we can impart 

greater plasticity onto them as evidenced by the induced expression of certain stem cell 

genes and prolonged life span. This plasticity was conferred without full reprogramming 

as they were non-tumorigenic when injected into SCID mice. 

The observed prolonged life span and delayed replicative senescence of iRC 

cells is currently under investigation, while the “plasticity” of the adult human dermal 

fibroblasts phenotype has remained uncharacterized. It is imperative to define 

“plasticity” and characterize global effects that low oxygen and FGF2 have on the 

epigenome of adult human dermal fibroblasts. Whether low oxygen and FGF2 alone, 

and in the quantities we provide, is sufficient to drastically reprogram the epigenetic 

landscape of adult human dermal fibroblast phenotype should be investigated. 

Determining the changes to the epigenome that low oxygen and FGF2 are causing will 
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advance our understanding of how extracellular cues reprogram cells and control cell 

types. 

Hypoxia-inducible factors are the main oxygen sensors, and analyzing their 

expression profile is crucial for understanding the mechanisms of gene-expression of 

cells in vivo and modeling of the physiological state in vitro. Adult human fibroblasts 

residing in the dermis experience low oxygen tension throughout their life compared to 

ambient oxygen. We have determined that low oxygen tension stabilizes HIF-1 upon 

early encounter of low oxygen whereas HIF-2 is upregulated by prolonged hypoxia. 

Does HIF- protein expression change during wound healing? Is one of the isoforms 

more tumorigenic and induced in cancerous cells in the human body? These are global 

questions waiting to be answered. The immediate questions to be answered, in order to 

better understand involvement of HIF in wound healing and reprogramming, involve 

determining whether the early transient expression of HIF-1 is functionally relevant, 

and how HIF-1 is repressed in adult hDFs after prolonged periods of time in low 

oxygen, and whether HIF-2 is equally active in both low oxygen and ambient oxygen. It 

also would be necessary to investigate direct HIF-1 and HIF-2 target genes in adult 

hDFs by utilizing ChIP-sequencing. HIF-1 and HIF-2 share the same hypoxia-

responsive element and it is believed that specificity is provided through differential 

expression of these alpha subunits. Different PHD enzymes regulate stability of HIF-1 

and HIF-2. Investigating levels and activity of PHD1-3 enzymes in adult hDFs might 

identify the mechanism involved in observed patterns of HIF-1 and HIF-2 expression 

in adult hDFs. The third alpha subunit, HIF-3, less characterized than its counterparts, 

could also be involved in regulating HIF- subunit expression, and it is imperative to 
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investigate its potential role in light of wound healing, regeneration, and malignant 

transformation of cells.  

The interplay between low oxygen and FGF2 signaling is important for 

understanding signaling in adult hDFs in the context of normal development, 

reprogramming, wound healing, and regeneration. Thus, understanding the effects of 

HIF-2 on FGF2 signaling is important. We have shown that low oxygen (through the 

action of HIF-2) modulates FGF2 signaling by regulating expression of heparan sulfate 

enzymes, which in turn increase the binding of endogenous FGF2 ligand to the cell 

surface. Next, binding of FGF2 to the cell surface should be investigated through 

incubation with biotin-labeled FGF2. Assays could be performed with flow cytometry (for 

quantification) and ICC (for visualization). Heparan sulfate proteoglycans are important 

in stabilizing ligands (preventing their degradation), timely release of ligands, and 

activation of downstream signaling. Specificity of ligand binding to the receptors is 

regulated by sulfation on the heparan sulfate chains. It would be relevant to analyze 

amounts of specific sulfate-groups on heparan sulfate and whether there is a change 

due to specific culture conditions. Performing ChIP to determine HIF- target genes 

would determine if any of heparan sulfate modifying enzymes are direct HIF- targets in 

adult hDFs. Another assay, RNA immunoprecipitation, could identify which mRNAs are 

bound by HIF-subunits, which would allow for identification of translational target 

genes of HIF-. EXTL2, whose protein expression was identified to be potentiated by 

HIF-2, could be a translational target of HIF-2. It is worth noting, that ChIP and RNA 

immunoprecipitation assays should be performed with both wild-type endogenous HIF-

2 protein present in hDFs and overexpressed HIF-2, because overession of mutated 

stable HIF-2 protein might not represent the native binding partners. 
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HIF-2 knockdown in adult hDFs led to a decrease in proliferation, an increase in 

senescence, and cell death. Investigating the mechanism by which HIF-2 knockdown 

causes cell death would help identify the role of HIF-2 in skin homeostasis. 

Investigating this mechanism could also help develop models that have more 

physiological relevance. Because HIF-2 was shown to have such a vital role in cell 

viability, current cell culture models that use atmospheric oxygen tension limit the 

validity of data obtained from these methods as an in vivo model by potentially 

producing biological artifacts due to less than physiological concentrations of HIFs. A 

better understanding of the physiological state is critical for the development of in vitro 

model systems to allow for accurate translation of therapeutic molecules from benchtop 

to bedside. We have observed that addition of exogenous FGF2 was able to rescue 

adult hDFs’ viability upon HIF-2 knockdown. Understanding the mechanisms of this 

rescue would provide further information about the interplay between HIF-2 and FGF2 

signaling. In order to identify the mechanism by which FGF2 is able to rescue HIF-2 

knockdown phenotype, we would identify HIF-2 target gene(s) that reactivate its 

expression and could be involved in cell viability.  

Transcriptome analysis showed that FGF2 affected genes involved in wound 

healing, cytokine and chemokine expression, and extracellular matrix remodeling. The 

last part of this thesis investigated the effects of low oxygen on the expression of stem 

cell genes in adult human dermal fibroblasts. HIF-2 and FGF2 were not able to induce 

expression of stem cell genes (Oct4, Nanog, Sox2, Rex1, and Lin28) in adult human 

dermal fibroblasts in the 7-day culture period. Even though HIF-2 was able to induce 

expression of Oct4 and Rex1 at the level of transcription, HIF-2 and FGF2 treatment 

for a week is not sufficient to reprogram adult human dermal fibroblasts.  
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Overall, this thesis provides information about the effects of low oxygen on adult 

hDFs and investigates the interplay between HIF-2 and FGF2 signaling (Figure 6.1). 

Investigating low oxygen effects on adult hDFs would improve our understanding of skin 

homeostasis, wound healing, and provide laboratories with a tool for better cell culture. 

This work could also be used to develop small molecule inhibitors of HIFs or HIF targets 

in cancers to take advantage of the death phenotype produced by HIF-2 knockdown. 

This could be very useful for cancer research or for other diseases associated with  

overgrowth of cells, especially in regions of the body with very low oxygen concentration 

and thus have high levels of HIF protein and activity.   

Figure 6.1. Overall model
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Chapter 7. Materials and Methods 

Cell culture 

Adult human dermal fibroblasts were obtained from ATCC (CRL-2352) at 

passage number 1 (p1). Cells were expanded using culture conditions recommended by 

the supplier, namely ambient oxygen, 5% CO2 in air, 37°C in DMEM/F12 and 10% FBS. 

Cell expansion was done by trypsinizing (0.05% trypsin, Cellgro) the cells at 80% 

confluence and re-plating them at a density of 14,000 cells/cm2. Cells were 

cryopreserved with 10% DMSO, and the same passage was used for all the 

experimental groups.  

For FGF2 and low oxygen transcriptome analysis, cells from the same passage 

number 7 were grown for seven days on glass, 5% CO2, 37°C in DMEM/F12 and 10% 

FCIII in one of the following culture conditions: 1) with 4 ng/ml human recombinant 

FGF2 (PeproTech) at 2% oxygen; 2) with 4 ng/ml human recombinant FGF2 at 19% 

oxygen; 3) at 2% oxygen; and 4) at 19% oxygen.  

For FGF2 and cell surface transcriptome analysis, cells from the same passage 

number 7 were grown for seven days at 5% O2, 5% CO2, 37ºC in DMEM/F12 and 10% 

FCIII in one of the following culture conditions: 1) with 4 ng/ml human recombinant 

FGF2 (PeproTech) on tissue culture plastic; 2) with 4 ng/ml human recombinant FGF2 

on glass culture surface; 3) on tissue culture plastic; and  4) on glass culture surface. 

Human embryonic stem (hES) cells (H9, WiCell) were cultured on mitomycin C-

treated mouse embryonic fibroblasts (MEFs) seeded onto 0.1% gelatin coated six-well 

plates using 80% Knockout DMEM (Invitrogen), 20% knockout serum replacement 

supplemented with 2.0mM L-Gln, 0.055mM 2-mercaptoethanol, and 4ng/mL FGF2. 

MEFs were grown in 19% oxygen in DMEM/F12 (50:50) with the addition of 10% 

FCIII. 
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Teratocarcinoma cells (TC) (CRL-2073) were obtained from ATCC and grown in 

19% oxygen in DMEM/F12 (50:50) with the addition of 10% FCIII. 

HeLa cells were obtained from ATCC and grown in 19% oxygen in DMEM/F12 

(50:50) with the addition of 10% FCIII. 

Cos-7, an African green monkey SV-40 transformed kidney cell line, obtained 

from ATCC were grown in 19% oxygen in DMEM/F12 (50:50) with the addition of 10% 

FCIII. 

For viral packaging, human embryonic kidney HEK-293T cells obtained from 

ATCC were grown in 19% oxygen in DMEM/F12 (50:50) with the addition of 10% TET-

free FBS. 

 

Cycloheximide (CHX) treatment 

In order to evaluate protein stability, adult human dermal fibroblasts were treated 

with cycloheximide, which inhibits the eEF2-mediated translocation step in elongation 

during protein translation by binding ribosome [318]. 

Adult hDF were expanded in ambient oxygen and then transferred into 2% or 

ambient oxygen, and were incubated for 2 hours.  Next, protein synthesis was blocked 

by the addition of 60g/ml (stock concentration 100mg/ml) CHX for 6 hours. Next, total 

cell lysates, nuclear and cytoplasmic fractions were isolated. 

In another experiment, adult hDF were expanded in ambient oxygen. Next, the 

medium was changed and cells were cultured in low oxygen (2%) with the addition of 

CHX at a final concentration of 60g/ml (stock concentration 100mg/ml) for various 

periods of time (15 minutes, 30 minutes, 1 hour, and 2 hours). Next, total cell lysates, 

nuclear and cytoplasmic fractions were isolated. 
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In the next experiment, adult hDF were incubated with the addition of CHX at a 

final concentration of 60g/ml (stock concentration 100mg/ml) for 6 hours at both 

ambient and low oxygen conditions.  After 6 hours the media was changed to standard 

media, and the cells were allowed to recover for 2 and 4 hours.   

 

Cobalt chloride hexahydrate (CoCl2 • 6H2O) treatment  

Cells were grown in 150M cobalt chloride hexahydrate (hypoxia mimetic 

through binding iron-binding site of PHD enzymes and potentially binding pVHL-binding 

domain of HIF-[319]) for 16 hours prior to sample collection. 

 

MG-132 treatment 

Adult human dermal fibroblasts were treated with 25M of proteasome inhibitor 

MG-132 (stock concentration 10mM) for 2 hours prior to collecting samples. 

 

Hydrogen peroxide (H2O2) treatment  

Adult human dermal fibroblasts were treated with 50M H2O2 solution for 2 hours 

prior to sample collection. 

 

RNA isolation 

Total RNA was isolated from cells using TRIZOL reagent (Invitrogen) following 

the manufacturer’s protocol.  

 

 

 

 



Chapter 7. Materials and Methods 

133 

 

RT-PCR 

1g of total RNA was used to perform cDNA using qScript cDNA SuperMix 

(Quanta Biosciences). Green GoTaq master mix (Promega) was used to perform PCR 

reactions. 400nM of each primer (forward and reverse) were used per each reaction, 

except for Lin28 and Rex1 PCR, where 250 nM of each primer (forward and reverese) 

were used per reaction. 1600nM of each primer (forward and reverse) were used per 

reaction to amplify antisense-HIF-1. The primers used to amplify genes in the RT-PCR 

can be found in Table 7.1.  

Table 7.1. List of primers used to amplify genes in RT-PCR 

 Product Forward primer Reverse primer 

1 Actin TCTGGCACCACACCTTCTACAA CTTCTCCTTAATGTCACGCACG- 

2 HIF-1 CACCACAGGACAGTACAGGATGCT GGTACTTCCTCAAGTTGCTGGTCA 

3 HIF-2 GCCGAAGCTGACCAGCAGATGG CCGTGCAGTGCAAGACCTTCCA 

4 Transgene GAGATATCACCATGTATCCATATGAT CCGTGCAGTGCAAGACCTTCCA 

5 HS2ST1 GGAGGGGGACTGGAGAGGCG AGCCCTTTCTAGCTTCGAGCGG 

6 HS6ST1 CTGCGCACGCCCAGGAAGTT CACCAGGCTCAGGTCGGCCA 

7 HS6ST2 ATGGCCAGCGTCGGGAACAT GGTGCCCCCGGTCTTCTGGA 

8 HS6ST3 GCAACCACAGCCACACCAGGAAT AGCATGCGCACCTGGCGATT 

9 NDST1 CGCAACTGGGCCAGGAGGTG CTGCGCACTCAGCAGGCTGT 

10 NDST2 CCCCGAAAGCAGGGAAGCCG CCTGGCCCATGGCTTCAGGC 

11 EXTL2 TCCAGGCGCTCACTTTGCGG TTGCAGATGTGGCAACACCTCA 

12 Oct4 GTTGATCCTCGGACCTGGCTA GGTTGCCTCTCACTCGGTTCT 

13 Sox2 GCCGAGTGGAAACTTTTGTCG GCAGCGTGTACTTATCCTTCTT 

14 Nanog TGTCTTCTGCTGAGATGCCTCACA CCTTCTGCGTCACACCATTGCTAT 

15 Rex1 GCCAAGACCTGCAGGCGGAA GAGAGCCTGAGGGCCAGGCT 

16 Lin28 TCATGCTTGGAGTGTCTCCACAAC AGGAGGTTGGGAACAAGGGATGGA 

17 FGF2 CTGGCTATGAAGGAAGATGG CAGCTCTTAGCAGACATTGG 

18 CCND1 CATGCTAAATTAGTTCTTGCA CTGGGGAGACCACGAGAA 

19 

Anti-
sense-

HIF-1 

ACTTTGGAGTCAGGAGACTTGAGCT GGGATGGAAGCAGTTCTCAGC 

 

PCR cycling conditions varied depending on the gene product, and can be found 

below. 

For Actin they were as follows: initial denaturation at 950C for 2min, followed by 

35 cycles of denaturation at 950C for 15sec, annealing at primer-specific annealing 
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temperature for 30sec, and extension at 720C for 1min. The final extension was done at 

720C for 10min.  

For HIF-1 and HIF-2 they were as follows: initial denaturation at 950C for 2min, 

followed by 35 cycles of denaturation at 950C for 15sec, annealing at 580C for 30sec, 

and extension at 720C for 1min. The final extension was done at 720C for 10min.  

For NDST1 they were as follows: initial denaturation at 950C for 2min, followed by 

30 cycles of denaturation at 940C for 15sec, annealing at 610C for 30sec, and extension 

at 720C for 1min. The final extension was done at 720C for 10min. 

For NDST2 they were as follows: initial denaturation at 950C for 2min, followed by 

30 cycles of denaturation at 950C for 15sec, annealing at 610C for 30sec, and extension 

at 720C for 1min. The final extension was done at 720C for 10min. 

For HS2ST1 they were as follows: initial denaturation at 950C for 2min, followed 

by 30 cycles of denaturation at 940C for 15sec, annealing at 610C for 30sec, and 

extension at 720C for 1min. The final extension was done at 720C for 10min. 

For HS6ST1 they were as follows: initial denaturation at 950C for 2min, followed 

by 30 cycles of denaturation at 940C for 15sec, annealing at 610C for 30sec, and 

extension at 720C for 1min. The final extension was done at 720C for 10min. 

For HS6ST2 they were as follows: initial denaturation at 950C for 2min, followed 

by 35 cycles of denaturation at 940C for 15sec, annealing at 610C for 30sec, and 

extension at 720C for 1min. The final extension was done at 720C for 10min. 

For HS6ST3 they were as follows: initial denaturation at 950C for 2min, followed 

by 40 cycles of denaturation at 940C for 15sec, annealing at 600C for 30sec, and 

extension at 720C for 1min. The final extension was done at 720C for 10min. 
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For EXTL1 they were as follows: initial denaturation at 950C for 2min, followed by 

35 cycles of denaturation at 940C for 15sec, annealing at 580C for 30sec, and extension 

at 720C for 1min. The final extension was done at 720C for 10min. 

For Oct4 they were as follows: initial denaturation at 950C for 2min, followed by 

35 cycles of denaturation at 950C for 15sec, annealing at 550C for 30sec, and extension 

at 720C for 1min. The final extension was done at 720C for 10min.  

For Sox2 they were as follows: initial denaturation at 950C for 2min, followed by 

35 cycles of denaturation at 950C for 15sec, annealing at 520С for 30sec, and extension 

at 720C for 1min. The final extension was done at 720C for 10min.  

For Nanog they were as follows: initial denaturation at 950C for 2min, followed by 

35 cycles of denaturation at 950C for 15sec, annealing 580С for 30sec, and extension at 

720C for 1min. The final extension was done at 720C for 10min.  

For Lin28 they were as follows: initial denaturation at 950C for 5min, followed by 

35 cycles of denaturation at 950C for 15sec, annealing at 580C for 15sec, and extension 

at 720C for 15sec. The final extension was done at 720C for 7min.  

For Rex1 they were as follows: initial denaturation at 950C for 5min, followed by 

35 cycles of denaturation at 950C for 15sec, annealing at 580C for 15sec, and extension 

at 720C for 15sec. The final extension was done at 720C for 7min.  

For FGF2, they were as follows: initial denaturation at 950C for 2min, followed by 

30 cycles of denaturation at 950C for 15sec, annealing at 550C for 15sec, and extension 

at 720C for 45sec. The final extension was done at 720C for 5min.  

In order to amplify the transgene (HA-HIF-2-P405A/P531A) the following PCR 

conditions were used: initial denaturation at 950C for 2min, followed by 30 cycles of 

denaturation at 950C for 15sec, annealing at 550C for 15sec, and extension at 720C for 

45sec. The final extension was done at 720C for 5min. 
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For CCND1 they were as follows: initial denaturation at 950C for 2min, followed 

by 35 cycles of denaturation at 940C for 15sec, annealing at 530C for 30sec, and 

extension at 720C for 1min. The final extension was done at 720C for 10min.  

For antisense-HIF-1 they were as follows: initial denaturation at 950C for 2min, 

followed by 30 cycles of denaturation at 940C for 15sec, annealing at 580C for 30sec, 

and extension at 720C for 1min. The final extension was done at 720C for 10min.  

All PCR products were resolved on 1%-2% agarose gels.  

 

OneArray microarray sample and data processing 

In order to analyze the global effects of low oxygen and FGF2, three technical 

replicates of four samples (in one biological replicate each) of cells grown on in 2% 

oxygen, 2% oxygen with FGF2, ambient oxygen, and ambient oxygen with FGF2 were 

hybridized to the Human Whole Genome OneArray® v5 (Phalanx Biotech, Palo Alto, 

CA). 

RNA quality and integrity were determined using an Agilent 2100 Bioanalyzer 

(Agilent Technologies, Palo Alto, CA, USA) and absorbance at A260/A280. Only high 

quality RNA, having a RIN of >7.0 and an A260/280 absorbance ratio of >1.8, was 

utilized for further experimentation. RNA was converted to double-stranded cDNA and 

amplified using in vitro transcription that included amino-allyl UTP, and the aRNA 

product was subsequently conjugated with Cy5™ NHS ester (GEH Lifesciences). 

Fragmented aRNA was hybridized at 50°C overnight using the HybBag mixing system 

with 1X OneArray Hybridization Buffer (Phalanx Biotech), 0.01 mg/ml sheared salmon 

sperm DNA (Promega, Madison, WI, USA), at a concentration of 0.025 mg/ml labeled 

target. After hybridization, the arrays were washed according to the OneArray protocol. 

Raw intensity signals for each microarray were captured using a Molecular Dynamics™ 
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Axon 4100A scanner, measured using GenePixPro™ Software, and stored in GPR 

format.  

 

Transcriptome data analysis 

Chapter 3  

In order to perform the transcriptome analysis found in Chapter 3, a 

R/Bioconductor was used [320, 321]. The analysis was performed in the following order. 

First, data was background corrected, normalized, and filtered to remove probes with 

very low expression or low variance (expression but no variation) across conditions. 

Next, we determined fold changes in the different experimental groups because there 

was only one biological replicate, and the data could not be analyzed for statistical 

significance.  

Chapter 5 

The data was analyzed with R/bioconductor using standard statistical functions 

and analysis modules for the ANOVA, T test, FDR, and functional analysis [320, 322]. 

The analysis was performed in the following order. First, data was background 

corrected, normalized, and filtered to remove probes with very low expression or low 

variance (expression but no variation) across conditions. Next, 2-way ANOVA was 

performed to determine the significant gene probes for the two factors and for the 

possible interactions between the cell culture surface and FGF2. The LIMMA package 

was used to determine significantly differentially expressed genes (DEG) with moderate 

t-statistic as main statistic of significance and standard errors moderated using 

Bayesian model [323-325].  P-values were adjusted for multiple comparisons using the  

Benjamini and Hochberg method to control the false discovery rate (FDR) [326].  A FDR 

cutoff value of 0.05 was used. Gene Ontology (GO) analysis was performed to analyze 
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functional enrichment within DEG due to FGF2 treatment in human dermal fibroblasts 

cultured on plastic. In order to perform GO analysis, GOstats package was used [327]. 

Hypergeometric conditional testing was performed to obtain overrepresented GO terms 

that belong to three groups: biological process, molecular function, and cellular 

component.  

 

Availability of supportive data 

The data sets supporting the results found in Chapter 3 of this thesis are 

available in Gene Expression Omnibus (GEO) repository (GSE60580). The data sets 

supporting the results found in Chapter 5 of this thesis are available in Gene Expression 

Omnibus (GEO) repository (GSE48967).  

 

Quantitative RT-PCR 

qRT-PCR was performed in order to confirm the array transcriptome analysis.  

cDNA was prepared from total RNA using a QuantiTect Reverse Transcription kit 

(Qiagen) using a mixture of oligo-dT and random primers methods. The kit includes the 

elimination of genomic DNA prior to reverse transcription. 1 μg of total RNA was used 

for cDNA preparation.  For each qPCR reaction 20ng of cDNA were used. qPCR was 

performed using a SYBR SELECT  master mix  (Invitrogen).  The list of primers is 

shown in Table 7.2. Quantification of qPCR results was performed using the ΔΔCT 

method. 

Table 7.2. List of primers used for qRT-PCR analysis 
Gene Forward Reverse 

ACTB AGAGCTACGAGCTGCCTGAC GGATGCCACAGGACTCCA 

ACTC1 GCTTCCGCTGTCCTGAGA ATGCCAGCAGATTCCATACC 

ACTG2 ATGGGCAGGTTATCACCATT GAATTCCAGCGGACTCCAT 

ADAMTS1 AAGCTGCTCCGTCATAGAAGA GCATCATCATGTGGCATGTTA 
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ADAMTS5 TAAGCCCTGGTCCAAATGC AGGTCCAGCAAACAGTTACCA 

ADAMTS8 CTGGCCCATGAACTAGGG GTGTGCAGGGCTTGGAGT 

CCL2 AGTCTCTGCCGCCCTTCT GTGACTGGGGCATTGATTG 

COL11A1 TTTTCCAGGATTCAAAGGTGA TGGGCCAATTTGACCAAC 

COL1A1 GATGGAGAGGCTGGAGCTCA GCCAAGGTCTCCAGGAACAC 

COL1A2 CTGGAGAGGCTGGTACTGCT AGCACCAAGAAGACCCTGAG 

COL4A1 TGGTGACAAAGGACAAGCAG GGTTCACCCTTTGGACCTG 

COL4A2 GAGAAGGCGCACAACCAG CCGGCTGGCATAGTAGCA 

COL4A4 TGGTCCTCCAGGTCCAAA CTCTTTCTCCGGGAAAACCT 

COL8A1 CATCTCAAGAACAAAAGACAACTGA TTGCTGGTGCCTTCCTGT 

COL11A1 TTTTCCAGGATTCAAAGGTGA TGGGCCAATTTGACCAAC 

CXCL5 GGTCCTTCGAGCTCCTTGT GCAGCTCTCTCAACACAGCA 

CXCL6 GTCCTTCGGGCTCCTTGT CAGCACAGCAGAGACAGGAC 

FN1 CTGGCCGAAAATACATTGTAAA CCACAGTCGGGTCAGGAG 

IL1B TACCTGTCCTGCGTGTTGAA TCTTTGGGTAATTTTTGGGATCT 

IL6 GATGAGTACAAAAGTCCTGATCCA CTGCAGCCACTGGTTCTGT 

ITGA10 GTGTGGATGCTTCATTCCAG GCCATCCAAGACAATGACAA 

ITGA2 TCGTGCACAGTTTTGAAGATG TGGAACACTTCCTGTTGTTACC 

ITGB1 CGATGCCATCATGCAAGT AACAATGCCACCAAGTTTCC 

ITGB2 CAGCAATGTGGTCCAACTCA GAGGGCGTTGTGATCCAG 

ITGB3 CAAAATGGGACACAGCCAACA ACAGGCTGATAATGATCTGAGGAT 

LAMA5 CCTCGTCCTCCAATGACAC GCGCTGCAGTCACAATTC 

LAMC1 CTGTTACTAGCCTCCTCAGCATTA GCTTATTCAGGTCCACTGTATCC 

MMP1 GCATATCGATGCTGCTCTTTC GATAACCTGGATCCATAGATCGTT 

MMP10 GCAAAAGAGGAGGACTCCAA TCACATCCTTTTCGAGGTTGTA 

MMP3 CTCCAACCGTGAGGAAAA CATGGAATTTCTCTTCTCATCAAA 

STAT3 CCCTTGGATTGAGAGTCAAGA AAGCGGCTATACTGCTGGTC 

TGFB1 CATTGGTGATGAAATCCTGGT TGACACTCACCACATTGTTTTTC 

TGFBR1 GCAGACTTAGGACTGGCAGTAAG AGAACTTCAGGGGCCATGT 

TGFBR3 CTGGTGTGGCATCTGAAGAC GGACCACAGAACCCTCAGAC 

TIMP3 GTGCAACTTCGTGGAGAGGT AGCAGGACTTGATCTTGCAGT 

TIMP4 TTGGTGCAGAGGGAAAGTCT GGTACTGTGTAGCAGGTGGTGA 

 

Isolation of nuclear and cytoplasmic fractions 

Cells were collected using 0.05% trypsin (Cellgro), then washed twice with PBS 

and pelleted at 1000rpm for 5min. Buffer A  (50mM NaCl, 10mM HEPES pH8.0, 500mM 

sucrose, 1mM EDTA, 0.5mM spermidine, 0.15mM spermine, 0.2% Triton X-100, 7mM 

2-mercaptoethanol) supplemented with a complete protease inhibitor cocktail (Roche) 

was used to isolate cytoplasmic fractions. Nuclei were spun out at 5000g for 2min. The 
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cell pellets were then washed with buffer B (50mM NaCl, 10mM HEPES pH8.0, 25% 

glycerol, 0.1mM EDTA, 0.5mM spermidine, 0.15mM spermine, 7mM -

mercaptoethanol) supplemented with a complete protease inhibitor cocktail (Roche). 

Nuclei were spun at 5000g for 2min. Buffer C (350mM NaCl, 10mM HEPES pH8.0, 25% 

glycerol, 0.1mM EDTA, 0.5mM spermidine, 0.15mM spermine, 7mM -

mercaptoethanol) supplemented with a complete protease inhibitor cocktail (Roche) 

was used to isolate nuclear extracts. Nuclei were spun at 14000g for 15min. Protein 

concentration was quantified using a Coomassie (Bradford) Protein Assay Kit (Thermo 

Scientific). 

 

Western blotting 

Protein lysates were prepared by lysing cells in lysis buffer (40mM Tris pH7.5, 

150mM NaCl, 8% glycerol, 0.0125% Triton x-100, 0.005% Tween 20, 0.02% NP-40). 

After separation on SDS-PAGE gels, proteins were transferred to PVDF membrane. 

Membranes were blocked in 5% milk for 2h at room temperature. Primary antibodies 

included: anti-HA (Covance, MMS-101P, 1:1000), anti-HIF-2 (Novus Biologicals, 

NB100-122, 1:500), anti-Tubulin (Developmental Studies Hybridoma Bank, E7, 1:300), 

anti-Oct4 (Santa Cruz, sc-5279, 1:1000), anti-Sox2 (Cell Signaling Technology, D6D9; 

1:1000), anti-Nanog (Santa Cruz, sc-33759, 1:500), anti-Rex1 (Abgent, AP2051a, 

1:1000), anti-Lin28 (Abcam, ab46020, 1:1000), anti-Actin (Santa Cruz, sc-1615, 

1:1000), anti-NDST1 (Abgent, AP13224b-ev, 1:1000), anti-NDST2 (Abgent, AP5759b-

ev; 1:1000), anti-EXTL2 (Abgent, AP9234b-ev, 1:1000), anti-HS6ST2 (R&D Systems, 

AF2710, 2g/ml), anti-FGFR1-P (Invitrogen, 44-1140G, 1:1000), anti-FGFR1 (Abgent, 

AP7636i; 1:1000). Secondary antibodies were: immun-star goat anti-mouse GAM-HRP 

conjugate (Bio-Rad, 170-5047, 1:3,000), goat anti-rabbit IgG-HRP (Santa Cruz, sc-
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2004, 1:5000), donkey anti-goat IgG-HRP (R&D Systems, HAF109, 1:1,000). 

SuperSignal West Pico Chemiluminescent Substrate (cat#34080, Thermo) was used for 

development.  

Immunocytochemistry (ICC) 

Cells were fixed using ice-cold methanol and permeabilized with 1.5N HCl. Cells 

were blocked using 5%serum in PBS. Primary antibody incubations were performed in 

PBST for 30min at RT. Primary antibodies used for ICC included: anti-HIF-1 (Abcam, 

ab1, 1:200), anti-HIF-2 (Novus Biologicals, NB100-122, 1:200).  Secondary antibody 

incubations were performed in PBST for 30min at RT. Secondary antibodies included: 

goat anti-mouse IgG Alexa-488 (Invitrogen, A11029, 1:500), donkey anti-rabbit IgG 

Alexa-488 (Invitrogen, A21206, 1:500). Then, cells were washed with PBS. If cells were 

grown on coverslips, the coverslips were mounted on a glass slide using Prolong gold.  

 

Overexpression of HA-HIF-2-P405A/P531A 

Human HA-HIF-2-P405A/P531A was cloned into pLVX. Briefly, HA-HIF-2-

P405A/P531A in pcDNA3 (Figure 7.1) was a gift from William Kaelin (Addgene plasmid 

# 18956) [114]. HA-HIF-2-P405A/P531A was excised from pcDNA3 using HindIII 

restriction enzyme, and was subsequently cut with NotI restriction enzyme. pLVX was 

cut with SmaI and treated with calf intestine alkaline phosphatase to dephosphorylate 

the ends of DNA. HA-HIF-2-P405A/P531A-HindIII/NotI was then endfilled and cloned 

into pLVX. HA-HIF-2-P405A/P531A in pLVX was used to generate viral particles in 

HEK-293T cells.  
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Figure 7.1. Map of HA-HIF-2-P405A/P531A-pcDNA3  
 

Early passage adult hDF were transduced with viral particles for 24 hours using 

polybrene (4ug/ml) and selected using puromycin (2mg/ml). After transduction, cells 

were grown under four different culture conditions: 2% oxygen, 2% oxygen and 4ng/ml 

FGF2, ambient oxygen, ambient oxygen and 4ng/ml FGF2.  

 

HIF-2 knock-down 

Early passage adult human dermal fibroblasts were transduced with shRNA 

lentiviral particles (MOI=7) for 24 hours using polybrene (4ug/ml) and selected with 

puromycin (0.5mg/ml). Two shRNA constructs were used: control (SHC005, Sigma-

Aldrich) and HIF-2 shRNA (TRCN0000003806, Sigma-Aldrich).  

Sequences were as follows:   
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 eGFP  

5’-CCGGTACAACAGCCACAACGTCTATCTCGAGATAGACGTTGTGGCTGTTGTATTTTT-3’ 

 HIF-2  

5’-CCGGCAGTACCCAGACGGATTTCAACTCGAGTTGAAAATCCGTCCGTCTGGGTACTGTTTTT-3’ 

After transduction, cells were grown under four different culture conditions: 2% 

oxygen, 2% oxygen and 4ng/ml FGF2, 19% oxygen, 19% oxygen and 4ng/ml FGF2. 

Knock-down was confirmed with qRT-PCR using HIF-2 primers listed in Table 7.1.  

 

BrdU staining 

Synthetic nucleoside and analog of thymidine, bromodeoxyuridine (BrdU), was 

used to measure the rate of DNA replication and thus the number of cells that entered 

the S phase of cell cycle. Live cells were incubated with 10M BrdU solution (10mM 

stock) for 6 hours prior to fixation. Next, cells were washed twice with PBS and fixed 

with ice-cold methanol. Next, cells were washed with PBS and blocked with 5% FBS in 

PBS. After that, cells were incubated with anti-BrdU primary antibody in PBST 

(Developmental Studies Hybridoma Bank, G3G4, dilution 1:200). Next, cells were 

washed with PBST. Incubation with goat anti-mouse IgG Alexa-568 secondary antibody 

(Invitrogen, cat# A-11004, dilution 1:500) was performed in PBST for 30min at room 

temperature. Cell were washed with PBS and imaged. 

 

Beta-galactosidase staining 

1ml of Senescence Associated (SA)-beta-galactosidase staining solution (Cell 

Signaling Technolgies, cat # 9860S) was prepared to contain the following reagents: 

930 μl 1X Staining Solution (40 mM citric acid/sodium phosphate (pH 6.0), 0.15 M NaCl, 

2 mM MgCl2); 10 μl Staining Supplement A (50 mM potassium ferrocyanide); 10 μl 
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Staining Supplement B (50 mM potassium ferricyanide); and 50 μl 20 mg/ml X-gal (5-

bromo-4-chloro-3-indolyl-D-galactopyranoside powder) in N-N-dimethylformamide 

(DMF). The final pH was 6.0. Cells were washed twice with PBS. Next, cells were fixed 

by incubating with 4% PFA for 20min at room temperature. Next, cells were washed 

twice with PBS. SA-beta-galactosidase staining solution was added to cells and 

incubated at 370C (no CO2) for up to 24h. Cells were monitored every 4h and imaged.  

 

Propidium Iodide (PI) staining 

Cells were washed with PBS twice, fixed with 70% ethanol at 40C for 30min, and 

washed with PBS twice. Then cells were incubated with RNaseA (Rockland, cat#113-

0005, final concentration 100g/ml) for 20min at 370C. Next, cells were incubated with 

propidium iodide (Invitrogen, cat#P3566, final concentration 40g/ml) for 30 min at room 

temperature in the dark and analyzed using flowcytometry. Propidium iodide is excluded 

from viable cells. 

 

Flow cytometry 

Flow cytometry was performed using a BD accuri C6 flow cytometer according to 

manufacturers instructions. 10000 events on slow were collected per each sample. Data 

were analyzed usig BD accuri software. 
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Supplementary Tables 

Supplementary Table 3.1. Genes for which expression was upregulated 4-fold and 
more due to low oxygen when hDFs were grown without FGF2 

 Name U.LvsH 
Fold 

change 
Description 

1 DUPT 6.34 80.90 deoxyuridine triphosphatase pseudogene 1 

2 C3orf57 4.61 24.48 chromosome 3 open reading frame 57 

3 WARS2 4.60 24.25 tryptophanyl tRNA synthetase 2, mitochondrial 

4 FGF11 4.41 21.20 fibroblast growth factor 11 

5 IGSF11 4.38 20.86 immunoglobulin superfamily, member 11 

6 MRGPRG 4.28 19.38 MAS-related GPR, member G 

7 GJA3 4.06 16.73 gap junction protein, alpha 3, 46kDa 

8 TACR1 3.93 15.29 tachykinin receptor 1 

9 FAM158A 3.84 14.29 family with sequence similarity 158, member A 

10 C5orf46 3.83 14.21 chromosome 5 open reading frame 46 

11 PLOD2 3.54 11.59 procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 

12 HECTD1 3.49 11.26 HECT domain containing 1 

13 GDF6 3.48 11.19 growth differentiation factor 6 

14 LEP 3.45 10.94 leptin 

15 DEPDC1B 3.41 10.64 DEP domain containing 1B 

16 SORBS2 3.23 9.42 sorbin and SH3 domain containing 2 

17 TM4SF20 3.23 9.35 transmembrane 4 L six family member 20 

18 SPAG4 3.22 9.31 sperm associated antigen 4 

19 ASGR1 3.20 9.16 asialoglycoprotein receptor 1 

20 BHLHE40 3.19 9.10 basic helix-loop-helix family, member e40 

21 COL11A1 3.17 9.00 collagen, type XI, alpha 1 

22 CA9 3.12 8.67 carbonic anhydrase IX 

23 DUS4L 3.07 8.42 dihydrouridine synthase 4-like (S. cerevisiae) 

24 LRRC39 3.02 8.13 leucine rich repeat containing 39 

25 ZNF395 3.02 8.11 zinc finger protein 395 

26 UBE2NL 3.01 8.08 
ubiquitin-conjugating enzyme E2N (UBC13 homolog, 
yeast)|ubiquitin-conjugating enzyme E2N-like 

27 CCDC64B 2.97 7.86 coiled-coil domain containing 64B 

28 RIMS1 2.93 7.64 regulating synaptic membrane exocytosis 1 

29 DACT1 2.91 7.53 
dapper, antagonist of beta-catenin, homolog 1 
(Xenopus laevis) 

30 LOC100132735 2.89 7.41 uncharacterized LOC100132735 

31 AK3L1 2.88 7.36 adenylate kinase 3-like 1 

32 FER1L4 2.87 7.30 fer-1-like 4 (C. elegans) 

33 KCNH1 2.86 7.26 
potassium voltage-gated channel, subfamily H (eag-
related), member 1 

34 HAPLN1 2.83 7.11 hyaluronan and proteoglycan link protein 1 

35 KLF5 2.83 7.10 Kruppel-like factor 5 (intestinal) 

36 KIAA0564 2.82 7.07 KIAA0564 

37 NR4A2 2.78 6.88 nuclear receptor subfamily 4, group A, member 2 
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38 SFRP1 2.76 6.76 secreted frizzled-related protein 1 

39 PRR5L 2.71 6.56 proline rich 5 like 

40 GSTA3 2.70 6.48 
glutathione S-transferase alpha 3|glutathione S-
transferase alpha 1|glutathione S-transferase alpha 2 

41 APLN 2.69 6.47 apelin 

42 CCL28 2.67 6.37 chemokine (C-C motif) ligand 28 

43 SYNPO 2.66 6.34 synaptopodin 

43 LIMCH1 2.66 6.31 LIM and calponin homology domains 1 

45 PGK1 2.65 6.29 phosphoglycerate kinase 1 

46 SERPINB7 2.65 6.27 
serpin peptidase inhibitor, clade B (ovalbumin), 
member 7 

47 SNTB1 2.65 6.26 
syntrophin, beta 1 (dystrophin-associated protein A1, 
59kDa, basic component 1) 

48 COL10A1 2.61 6.10 collagen, type X, alpha 1 

49 SHROOM2 2.55 5.85 shroom family member 2 

50 SLC2A1 2.55 5.85 
solute carrier family 2 (facilitated glucose 
transporter), member 1 

51 HK2 2.55 5.85 hexokinase 2 

52 BNIP3 2.54 5.83 BCL2/adenovirus E1B 19kDa interacting protein 3 

53 JAM2 2.54 5.82 junctional adhesion molecule 2 

54 MCHR1 2.50 5.68 melanin-concentrating hormone receptor 1 

55 BNIP3L 2.49 5.61 
BCL2/adenovirus E1B 19kDa interacting protein 3-
like 

56 PDK1 2.46 5.50 pyruvate dehydrogenase kinase, isozyme 1 

57 TRIM36 2.46 5.49 tripartite motif-containing 36 

58 C10orf54 2.46 5.49 chromosome 10 open reading frame 54 

59 RORA 2.46 5.49 RAR-related orphan receptor A 

60 MEGF6 2.45 5.46 multiple EGF-like-domains 6 

61 NEXN 2.44 5.44 nexilin (F actin binding protein) 

62 ASPN 2.42 5.37 asporin 

63 C4orf47 2.39 5.25 chromosome 4 open reading frame 47 

64 MAMDC2 2.39 5.24 MAM domain containing 2 

65 HTR2A 2.39 5.24 5-hydroxytryptamine (serotonin) receptor 2A 

66 VCAN 2.39 5.23 versican 

67 SECISBP2L 2.38 5.21 SECIS binding protein 2-like 

68 RDH11 2.38 5.20 retinol dehydrogenase 11 (all-trans/9-cis/11-cis) 

69 FGF1 2.38 5.19 fibroblast growth factor 1 (acidic) 

70 CADM1 2.36 5.15 cell adhesion molecule 1 

71 NRCAM 2.35 5.10 neuronal cell adhesion molecule 

72 RNF144B 2.29 4.90 ring finger protein 144B 

73 SOX9 2.29 4.90 SRY (sex determining region Y)-box 9 

74 C14orf145 2.29 4.89 chromosome 14 open reading frame 145 

75 LOC154761 2.28 4.87 hypothetical LOC154761 

76 SLC8A1 2.28 4.86 
solute carrier family 8 (sodium/calcium exchanger), 
member 1 

77 CPE 2.27 4.84 carboxypeptidase E 

78 FAM101B 2.27 4.81 family with sequence similarity 101, member B 
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79 C8orf46 2.26 4.77 chromosome 8 open reading frame 46 

80 STC1 2.24 4.71 stanniocalcin 1 

81 PTPRB 2.22 4.66 protein tyrosine phosphatase, receptor type, B 

82 EXPH5 2.21 4.64 exophilin 5 

83 INHBE 2.21 4.64 inhibin, beta E 

84 COPG2 2.20 4.61 coatomer protein complex, subunit gamma 2 

85 NCRNA00105 2.20 4.58 non-protein coding RNA 105 

86 WISP1 2.19 4.57 WNT1 inducible signaling pathway protein 1 

87 PLCB4 2.19 4.55 phospholipase C, beta 4 

88 ZBTB1 2.17 4.50 zinc finger and BTB domain containing 1 

89 SDHC 2.17 4.49 
succinate dehydrogenase complex, subunit C, 
integral membrane protein, 15kDa 

90 ARL4A 2.16 4.48 ADP-ribosylation factor-like 4A 

91 USP27X 2.15 4.44 ubiquitin specific peptidase 27, X-linked 

92 RDH10 2.14 4.42 retinol dehydrogenase 10 (all-trans) 

93 BHLHE41 2.13 4.38 basic helix-loop-helix family, member e41 

94 SMAD5 2.12 4.36 SMAD family member 5 

95 VLDLR 2.12 4.35 very low density lipoprotein receptor 

96 NALCN 2.11 4.32 sodium leak channel, non-selective 

97 PTGS2 2.11 4.32 
prostaglandin-endoperoxide synthase 2 
(prostaglandin G/H synthase and cyclooxygenase) 

98 FGF2 2.11 4.32 fibroblast growth factor 2 (basic) 

99 SYNPO2 2.11 4.31 synaptopodin 2 

100 ARHGAP5 2.11 4.30 Rho GTPase activating protein 5 

101 VEGFA 2.10 4.27 vascular endothelial growth factor A 

102 SULF1 2.09 4.27 sulfatase 1 

103 MYH1 2.09 4.26 myosin, heavy chain 1, skeletal muscle, adult 

104 FAM164A 2.08 4.23 family with sequence similarity 164, member A 

105 AMIGO2 2.08 4.22 adhesion molecule with Ig-like domain 2 

106 RAB6A|WTH3DI 2.07 4.20 RAB6A, member RAS oncogene family|RAB6C-like 

107 MFAP3L 2.07 4.19 microfibrillar-associated protein 3-like 

108 INS|INS-IGF2 2.05 4.15 INS-IGF2 readthrough transcript|insulin 

109 PFKFB3 2.05 4.15 
6-phosphofructo-2-kinase/fructose-2,6-
biphosphatase 3 

110 WDFY1 2.04 4.12 WD repeat and FYVE domain containing 1 

111 COL4A1 2.04 4.10 collagen, type IV, alpha 1 

112 GMFB 2.03 4.09 glia maturation factor, beta 

113 AP1M2 2.03 4.09 adaptor-related protein complex 1, mu 2 subunit 

114 SH3BP5 2.03 4.08 SH3-domain binding protein 5 (BTK-associated) 

115 PFKFB4 2.03 4.08 
6-phosphofructo-2-kinase/fructose-2,6-
biphosphatase 4 

116 SLC22A15 2.03 4.08 solute carrier family 22, member 15 

117 ERO1L 2.01 4.04 ERO1-like (S. cerevisiae) 

118 PBX2 2.01 4.02 pre-B-cell leukemia homeobox 2 

119 ABCA1 2.01 4.02 
ATP-binding cassette, sub-family A (ABC1), member 
1 
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120 LY96 2.00 4.00 lymphocyte antigen 96 

121 KDM3A 2.00 4.00 lysine (K)-specific demethylase 3A 

 

Supplementary Table 3.2. Genes for which expression was downregulated 4-fold and 
more due to low oxygen when hDFs were grown without FGF2 

 
Name U.LvsH 

Fold 
change 

Description 

1 ELF4 -5.54 -46.51 E74-like factor 4 (ets domain transcription factor) 

2 ADH1B -5.46 -44.02 alcohol dehydrogenase 1B (class I), beta polypeptide 

3 ADH1C -3.94 -15.32 

alcohol dehydrogenase 1B (class I), beta 
polypeptide|alcohol dehydrogenase 1C (class I), 
gamma polypeptide|alcohol dehydrogenase 1A 
(class I), alpha polypeptide 

4 CLU -3.09 -8.54 clusterin 

5 ADH1A -3.07 -8.41 

alcohol dehydrogenase 1B (class I), beta 
polypeptide|alcohol dehydrogenase 1C (class I), 
gamma polypeptide|alcohol dehydrogenase 1A 
(class I), alpha polypeptide 

6 CILP -3.02 -8.13 
cartilage intermediate layer protein, nucleotide 
pyrophosphohydrolase 

7 COL14A1 -3.01 -8.04 collagen, type XIV, alpha 1 

8 DIRAS3 -2.87 -7.32 DIRAS family, GTP-binding RAS-like 3 

9 CLEC3B -2.85 -7.23 C-type lectin domain family 3, member B 

10 VDAC1 -2.82 -7.06 
voltage-dependent anion channel 1 pseudogene 
1|voltage-dependent anion channel 1 

11 PECR -2.80 -6.95 peroxisomal trans-2-enoyl-CoA reductase 

12 PPL -2.73 -6.65 periplakin 

13 SOD3 -2.68 -6.42 superoxide dismutase 3, extracellular 

14 NTSR1 -2.67 -6.38 neurotensin receptor 1 (high affinity) 

15 TNXB|TNXA -2.65 -6.29 tenascin XA pseudogene|tenascin XB 

16 C1R -2.58 -5.96 complement component 1, r subcomponent 

17 BMP4 -2.56 -5.89 bone morphogenetic protein 4 

18 TNFSF10 -2.55 -5.87 
tumor necrosis factor (ligand) superfamily, member 
10 

19 H19 -2.51 -5.69 
H19, imprinted maternally expressed transcript (non-
protein coding) 

20 CXCL1 -2.49 -5.64 
chemokine (C-X-C motif) ligand 1 (melanoma growth 
stimulating activity, alpha) 

21 EPHB6 -2.49 -5.61 EPH receptor B6 

22 SERPINF1 -2.47 -5.54 
serpin peptidase inhibitor, clade F (alpha-2 
antiplasmin, pigment epithelium derived factor), 
member 1 

23 APOD -2.44 -5.42 apolipoprotein D 

24 WIF1 -2.43 -5.41 WNT inhibitory factor 1 

25 STEAP4 -2.43 -5.37 STEAP family member 4 

26 ADAMTS8 -2.42 -5.36 
ADAM metallopeptidase with thrombospondin type 1 
motif, 8 

27 PDGFRL -2.41 -5.30 platelet-derived growth factor receptor-like 

28 
PCDHA8|PCDHA6| 
PCDHA1|PCDHA2| 

-2.33 -5.01 
protocadherin alpha 11|protocadherin alpha 
1|protocadherin alpha 4|protocadherin alpha 
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PCDHA11|PCDHA10| 
PCDHA4|PCDHA5| 
PCDHA13| 
PCDHA3 

3|protocadherin alpha 13|protocadherin alpha 
5|protocadherin alpha 6|protocadherin alpha 8 

29 CFD -2.32 -5.00 complement factor D (adipsin) 

30 PPARG -2.32 -5.00 peroxisome proliferator-activated receptor gamma 

31 SPSB2 -2.31 -4.96 
splA/ryanodine receptor domain and SOCS box 
containing 2 

32 CCDC69 -2.30 -4.92 coiled-coil domain containing 69 

33 IL15RA -2.23 -4.68 interleukin 15 receptor, alpha 

34 TMEM176B -2.20 -4.58 transmembrane protein 176B 

35 PROCR -2.16 -4.47 protein C receptor, endothelial 

36 IFI30 -2.12 -4.34 interferon, gamma-inducible protein 30 

37 OGN -2.11 -4.32 osteoglycin 

38 CXCL12 -2.11 -4.32 chemokine (C-X-C motif) ligand 12 

39 OLFML2A -2.08 -4.24 olfactomedin-like 2A 

40 TRIM47 -2.08 -4.23 tripartite motif-containing 47 

41 HLA-F -2.07 -4.19 major histocompatibility complex, class I, F 

42 FOS -2.05 -4.15 FBJ murine osteosarcoma viral oncogene homolog 

43 FLT3LG -2.02 -4.04 fms-related tyrosine kinase 3 ligand 

44 PREX1 -2.01 -4.04 
phosphatidylinositol-3,4,5-trisphosphate-dependent 
Rac exchange factor 1 

 

Supplementary Table 3.3. Genes for which expression was upregulated 4-fold and 
more due to low oxygen when hDFs were grown with FGF2 

 
Name G.LvsH 

Fold 
change 

Description 

1 CA9 7.64 199.94 carbonic anhydrase IX 

2 FGF11 5.04 32.96 fibroblast growth factor 11 

3 SLC26A6 4.94 30.71 solute carrier family 26, member 6 

4 FER1L4 4.48 22.29 fer-1-like 4 (C. elegans) 

5 SYNPO 4.26 19.19 synaptopodin 

6 SPAG4 4.12 17.41 sperm associated antigen 4 

7 CCDC64B 3.97 15.62 coiled-coil domain containing 64B 

8 APLN 3.67 12.71 apelin 

9 MCHR1 3.65 12.53 melanin-concentrating hormone receptor 1 

10 BHLHE40 3.41 10.66 basic helix-loop-helix family, member e40 

11 RPS7 3.36 10.25 ribosomal protein S7 

12 C4orf47 3.27 9.63 chromosome 4 open reading frame 47 

13 ELF4 3.20 9.22 E74-like factor 4 (ets domain transcription factor) 

14 HIF3A 3.14 8.84 hypoxia inducible factor 3, alpha subunit 

15 PDK1 3.13 8.74 pyruvate dehydrogenase kinase, isozyme 1 

16 COL11A1 3.06 8.34 collagen, type XI, alpha 1 

17 CCL28 2.92 7.55 chemokine (C-C motif) ligand 28 

18 ALDOC 2.91 7.52 aldolase C, fructose-bisphosphate 

19 TMEM45A 2.82 7.05 transmembrane protein 45A 
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20 ZNF655 2.80 6.98 zinc finger protein 655 

21 KIAA1324 2.73 6.65 KIAA1324 

22 HOXC13 2.73 6.64 homeobox C13 

23 NDUFA4L2 2.58 5.99 
NADH dehydrogenase (ubiquinone) 1 alpha 
subcomplex, 4-like 2 

24 PDS5A 2.51 5.70 
PDS5, regulator of cohesion maintenance, homolog 
A (S. cerevisiae) 

25 ENPEP 2.50 5.64 glutamyl aminopeptidase (aminopeptidase A) 

26 ZNF395 2.42 5.35 zinc finger protein 395 

27 C1QTNF9 2.40 5.29 C1q and tumor necrosis factor related protein 9 

28 DSC3 2.37 5.16 desmocollin 3 

29 AK3L1 2.36 5.12 adenylate kinase 3-like 1 

30 PFKFB3 2.33 5.04 
6-phosphofructo-2-kinase/fructose-2,6-
biphosphatase 3 

31 PFKFB4 2.33 5.02 
6-phosphofructo-2-kinase/fructose-2,6-
biphosphatase 4 

32 BNIP3 2.32 4.99 BCL2/adenovirus E1B 19kDa interacting protein 3 

33 C7orf68 2.31 4.95 chromosome 7 open reading frame 68 

34 CSRP2 2.30 4.92 
cysteine and glycine-rich protein 2|similar to smooth 
muscle LIM protein 

35 STMN2 2.27 4.83 stathmin-like 2 

36 VEGFA 2.26 4.80 vascular endothelial growth factor A 

37 PGK1 2.25 4.77 phosphoglycerate kinase 1 

38 PLOD2 2.25 4.76 procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 

39 BNIP3 2.23 4.71 BCL2/adenovirus E1B 19kDa interacting protein 3 

40 ANKRD37 2.22 4.67 ankyrin repeat domain 37 

41 MXI1 2.22 4.66 MAX interactor 1 

42 TFR2 2.22 4.65 transferrin receptor 2 

43 HMHA1 2.18 4.54 histocompatibility (minor) HA-1 

44 LOC100134259 2.16 4.48 similar to hCG1987718 

45 RPS15 2.15 4.42 ribosomal protein S15 

46 C11orf20 2.14 4.42 chromosome 11 open reading frame 20 

47 SYTL2 2.14 4.41 synaptotagmin-like 2 

48 CPE 2.12 4.34 carboxypeptidase E 

49 LOC154761 2.11 4.32 hypothetical LOC154761 

50 ENO2 2.08 4.24 enolase 2 (gamma, neuronal) 

51 HK2 2.04 4.11 hexokinase 2 

52 BRWD1 2.01 4.02 bromodomain and WD repeat domain containing 1 

 

Supplementary Table 3.4. Genes for which expression was downregulated 4-fold and 
more due to low oxygen when hDFs were grown with FGF2 

 
Name G.LvsH 

Fold 
cahnge 

Description 

1 DUTP1 -3.89 -14.80 deoxyuridine triphosphatase pseudogene 1 

2 WARS2 -3.67 -12.69 tryptophanyl tRNA synthetase 2, mitochondrial 

3 HSPA6|HSPA7 -3.21 -9.23 
heat shock 70kDa protein 7 (HSP70B)|heat shock 
70kDa protein 6 (HSP70B) 
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4 GDF15 -3.16 -8.94 growth differentiation factor 15 

5 IL8 -3.13 -8.78 interleukin 8 

6 CXCL2 -2.83 -7.13 chemokine (C-X-C motif) ligand 2 

7 ANKRD9 -2.80 -6.95 ankyrin repeat domain 9 

8 AFG3L2 -2.78 -6.87 AFG3 ATPase family gene 3-like 2 (yeast) 

9 SST -2.77 -6.82 somatostatin 

10 CXCL1 -2.76 -6.78 
chemokine (C-X-C motif) ligand 1 (melanoma growth 
stimulating activity, alpha) 

11 TAF9B -2.67 -6.37 
TAF9B RNA polymerase II, TATA box binding protein 
(TBP)-associated factor, 31kDa 

12 C3 -2.58 -5.97 
complement component 3|similar to Complement C3 
precursor 

13 HIST2H2BE -2.58 -5.96 histone cluster 2, H2be 

14 SQSTM1 -2.56 -5.88 sequestosome 1 

15 CACHD1 -2.52 -5.74 cache domain containing 1 

16 METT5D1 -2.51 -5.70 methyltransferase 5 domain containing 1 

17 FOS -2.50 -5.64 FBJ murine osteosarcoma viral oncogene homolog 

18 CHAC2 -2.44 -5.44 ChaC, cation transport regulator homolog 2 (E. coli) 

19 NTSR1 -2.43 -5.39 neurotensin receptor 1 (high affinity) 

20 C3orf57 -2.29 -4.88 chromosome 3 open reading frame 57 

21 MPV17L2 -2.27 -4.83 MPV17 mitochondrial membrane protein-like 2 

22 UBE2NL -2.26 -4.79 
ubiquitin-conjugating enzyme E2N (UBC13 homolog, 
yeast)|ubiquitin-conjugating enzyme E2N-like 

23 DNAJB9 -2.23 -4.70 DnaJ (Hsp40) homolog, subfamily B, member 9 

24 SPSB2 -2.22 -4.65 
splA/ryanodine receptor domain and SOCS box 
containing 2 

25 SLC43A2 -2.22 -4.64 solute carrier family 43, member 2 

26 TFPI2 -2.21 -4.64 tissue factor pathway inhibitor 2 

27 SLC3A2 -2.17 -4.49 
solute carrier family 3 (activators of dibasic and 
neutral amino acid transport), member 2 

28 CHI3L2 -2.15 -4.42 chitinase 3-like 2 

29 C12orf32 -2.12 -4.34 chromosome 12 open reading frame 32 

30 CXCL6 -2.09 -4.27 
chemokine (C-X-C motif) ligand 6 (granulocyte 
chemotactic protein 2) 

31 PTGDS -2.07 -4.21 prostaglandin D2 synthase 21kDa (brain) 

32 SDF2L1 -2.04 -4.12 stromal cell-derived factor 2-like 1 

33 NGEF -2.01 -4.03 neuronal guanine nucleotide exchange factor 

34 IL4I1 -2.01 -4.02 interleukin 4 induced 1 

35 RP11-352D3.2 -2.00 -4.00 novel lincRNA 

 

Supplementary Table 3.5. Genes for which expression was upregulated 4-fold and 
more due to FGF2 when hDFs were grown at low oxygen 

 
Name L.FvsU 

Fold 
change 

Description 

1 WIF1 3.96 15.60 WNT inhibitory factor 1 

2 CA9 3.91 15.08 carbonic anhydrase IX 

3 THBS4 3.26 9.57 thrombospondin 4 
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4 ADH1B 3.21 9.26 alcohol dehydrogenase 1B (class I), beta polypeptide 

5 RPSAP52 3.12 8.70 ribosomal protein SA pseudogene 52 

6 PPARG 3.03 8.18 peroxisome proliferator-activated receptor gamma 

7 NTSR1 3.01 8.06 neurotensin receptor 1 (high affinity) 

8 CPXM1 2.90 7.47 carboxypeptidase X (M14 family), member 1 

9 RNF157 2.88 7.38 ring finger protein 157 

10 PECR 2.88 7.35 peroxisomal trans-2-enoyl-CoA reductase 

11 HPGD 2.85 7.22 hydroxyprostaglandin dehydrogenase 15-(NAD) 

12 HGF 2.85 7.20 
hepatocyte growth factor (hepapoietin A; scatter 
factor) 

13 FAM46C 2.84 7.15 family with sequence similarity 46, member C 

14 CIT 2.79 6.92 citron (rho-interacting, serine/threonine kinase 21) 

15 PPL 2.75 6.72 periplakin 

16 ADAMTS8 2.70 6.50 
ADAM metallopeptidase with thrombospondin type 1 
motif, 8 

17 SLC14A1 2.70 6.48 
solute carrier family 14 (urea transporter), member 1 
(Kidd blood group) 

18 HIF3A 2.68 6.43 hypoxia inducible factor 3, alpha subunit 

19 MYH15 2.68 6.43 myosin, heavy chain 15 

20 PHLDA1 2.68 6.40 pleckstrin homology-like domain, family A, member 1 

21 DIRAS3 2.65 6.28 DIRAS family, GTP-binding RAS-like 3 

22 TIMP4 2.62 6.16 TIMP metallopeptidase inhibitor 4 

23 BCAS1 2.61 6.11 breast carcinoma amplified sequence 1 

24 CLU 2.58 5.96 clusterin 

25 MCHR1 2.56 5.89 melanin-concentrating hormone receptor 1 

26 RPS7 2.54 5.81 ribosomal protein S7 

27 COL14A1 2.53 5.78 collagen, type XIV, alpha 1 

28 CXCL6 2.50 5.65 
chemokine (C-X-C motif) ligand 6 (granulocyte 
chemotactic protein 2) 

29 ETV1 2.49 5.61 ets variant 1 

30 BMP4 2.49 5.61 bone morphogenetic protein 4 

31 PDGFRL 2.46 5.51 platelet-derived growth factor receptor-like 

32 KY 2.44 5.44 kyphoscoliosis peptidase 

33 TMEM35 2.40 5.28 transmembrane protein 35 

34 ALDOC 2.40 5.27 aldolase C, fructose-bisphosphate 

35 SLC26A6 2.37 5.17 solute carrier family 26, member 6 

36 ADH1C 2.37 5.16 

alcohol dehydrogenase 1B (class I), beta 
polypeptide|alcohol dehydrogenase 1C (class I), 
gamma polypeptide|alcohol dehydrogenase 1A 
(class I), alpha polypeptide 

37 PDS5A 2.36 5.13 
PDS5, regulator of cohesion maintenance, homolog 
A (S. cerevisiae) 

38 SLC9A9 2.36 5.12 
solute carrier family 9 (sodium/hydrogen exchanger), 
member 9 

39 MAP7 2.35 5.10 microtubule-associated protein 7 

40 F2R 2.34 5.07 coagulation factor II (thrombin) receptor 

41 F2RL1 2.31 4.95 coagulation factor II (thrombin) receptor-like 1 

42 CXCL1 2.28 4.87 chemokine (C-X-C motif) ligand 1 (melanoma growth 
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stimulating activity, alpha) 

43 C17orf44 2.24 4.73 chromosome 17 open reading frame 44 

44 F10 2.24 4.73 coagulation factor X 

45 PTN 2.24 4.72 pleiotrophin 

46 IL1RN 2.24 4.72 interleukin 1 receptor antagonist 

47 LY75 2.23 4.69 lymphocyte antigen 75 

48 OSBP2 2.23 4.68 oxysterol binding protein 2 

49 C1QTNF9 2.22 4.67 C1q and tumor necrosis factor related protein 9 

50 COL21A1 2.22 4.66 collagen, type XXI, alpha 1 

51 CDCP1 2.19 4.55 CUB domain containing protein 1 

52 GSN 2.18 4.53 gelsolin 

53 GCK 2.15 4.45 glucokinase (hexokinase 4) 

54 C13orf16 2.13 4.39 chromosome 13 open reading frame 16 

55 CDON 2.13 4.38 Cdon homolog (mouse) 

56 ZNF695 2.13 4.38 zinc finger protein 695 

57 ZNF655 2.12 4.36 zinc finger protein 655 

58 AKR1C1|AKR1C3 2.12 4.36 

aldo-keto reductase family 1, member C3 (3-alpha 
hydroxysteroid dehydrogenase, type II)|aldo-keto 
reductase family 1, member C1 (dihydrodiol 
dehydrogenase 1; 20-alpha (3-alpha)-hydroxysteroid 
dehydrogenase) 

59 LOC340515 2.10 4.29 hypothetical protein LOC340515 

60 SERPINF1 2.10 4.29 
serpin peptidase inhibitor, clade F (alpha-2 
antiplasmin, pigment epithelium derived factor), 
member 1 

61 WLS 2.07 4.20 wntless homolog (Drosophila) 

62 C1R 2.07 4.19 complement component 1, r subcomponent 

63 IL13RA2 2.06 4.16 interleukin 13 receptor, alpha 2 

64 PGA5|PGA4|PGA3 2.01 4.04 
pepsinogen 5, group I (pepsinogen A)|pepsinogen 3, 
group I (pepsinogen A)|pepsinogen 4, group I 
(pepsinogen A) 

65 PTGFR 2.01 4.04 prostaglandin F receptor (FP) 

66 NES 2.01 4.03 nestin 

 

Supplementary Table 3.6. Genes for which expression was downregulated 4-fold and 
more due to FGF2 when hDFs were grown at low oxygen 

 
Name L.FvsU 

Fold 
change 

Description 

1 DUTP1 -6.03 -65.27 deoxyuridine triphosphatase pseudogene 1 

2 RDH10 -5.27 -38.62 retinol dehydrogenase 10 (all-trans) 

3 ASPN -5.12 -34.82 asporin 

4 HAPLN1 -5.02 -32.53 hyaluronan and proteoglycan link protein 1 

5 KRT7 -4.67 -25.50 keratin 7 

6 ACTC1 -4.66 -25.26 actin, alpha, cardiac muscle 1 

7 EFEMP1 -4.61 -24.35 
EGF-containing fibulin-like extracellular matrix 
protein 1 

8 SLC7A5 -4.59 -24.11 solute carrier family 7 (cationic amino acid 
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transporter, y+ system), member 5 

9 ELN -4.51 -22.81 elastin 

10 DACT1 -4.45 -21.91 
dapper, antagonist of beta-catenin, homolog 1 
(Xenopus laevis) 

11 SULF1 -4.43 -21.54 sulfatase 1 

12 MYH2 -4.41 -21.27 myosin, heavy chain 2, skeletal muscle, adult 

13 SLC38A1 -4.39 -21.02 solute carrier family 38, member 1 

14 FNDC1 -4.35 -20.41 fibronectin type III domain containing 1 

15 ADAMTS5 -4.31 -19.90 
ADAM metallopeptidase with thrombospondin type 1 
motif, 5 

16 COL4A1 -4.31 -19.79 collagen, type IV, alpha 1 

17 LIMCH1 -4.23 -18.83 LIM and calponin homology domains 1 

18 SORBS2 -4.19 -18.25 sorbin and SH3 domain containing 2 

19 WARS2 -4.06 -16.66 tryptophanyl tRNA synthetase 2, mitochondrial 

20 SLC7A11 -4.04 -16.46 
solute carrier family 7, (cationic amino acid 
transporter, y+ system) member 11 

21 C5orf46 -3.88 -14.75 chromosome 5 open reading frame 46 

22 C3orf57 -3.88 -14.71 chromosome 3 open reading frame 57 

23 FGF9 -3.86 -14.52 fibroblast growth factor 9 (glia-activating factor) 

24 LYPD6B -3.83 -14.19 LY6/PLAUR domain containing 6B 

25 MRGPRG -3.81 -14.04 MAS-related GPR, member G 

26 MAMDC2 -3.78 -13.73 MAM domain containing 2 

27 CACHD1 -3.77 -13.65 cache domain containing 1 

28 MFAP3L -3.74 -13.33 microfibrillar-associated protein 3-like 

29 POLR2D -3.63 -12.37 polymerase (RNA) II (DNA directed) polypeptide D 

30 NALCN -3.58 -11.97 sodium leak channel, non-selective 

31 SEMA3C -3.58 -11.94 
sema domain, immunoglobulin domain (Ig), short 
basic domain, secreted, (semaphorin) 3C 

32 PI16 -3.57 -11.87 peptidase inhibitor 16 

33 CNN1 -3.56 -11.76 calponin 1, basic, smooth muscle 

34 GJA3 -3.55 -11.75 gap junction protein, alpha 3, 46kDa 

35 RIMS1 -3.52 -11.51 regulating synaptic membrane exocytosis 1 

36 PSAT1 -3.52 -11.44 phosphoserine aminotransferase 1 

37 KLF2 -3.44 -10.88 Kruppel-like factor 2 (lung) 

38 CTGF -3.39 -10.47 connective tissue growth factor 

39 NEK7 -3.39 -10.46 NIMA (never in mitosis gene a)-related kinase 7 

40 AMIGO2 -3.38 -10.44 adhesion molecule with Ig-like domain 2 

41 DKK2 -3.37 -10.31 dickkopf homolog 2 (Xenopus laevis) 

42 SOX9 -3.35 -10.19 SRY (sex determining region Y)-box 9 

43 TM4SF20 -3.34 -10.09 transmembrane 4 L six family member 20 

44 CADM1 -3.30 -9.86 cell adhesion molecule 1 

45 KLF5 -3.28 -9.70 Kruppel-like factor 5 (intestinal) 

46 CHAC1 -3.25 -9.53 ChaC, cation transport regulator homolog 1 (E. coli) 

47 CDH2 -3.25 -9.49 cadherin 2, type 1, N-cadherin (neuronal) 

48 IGSF11 -3.23 -9.39 immunoglobulin superfamily, member 11 

49 SCRG1 -3.22 -9.35 stimulator of chondrogenesis 1 
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50 INS-IGF2|IGF2 -3.22 -9.30 
insulin-like growth factor 2 (somatomedin A)|INS-
IGF2 readthrough transcript 

51 COL11A1 -3.20 -9.19 collagen, type XI, alpha 1 

52 SLC1A4 -3.19 -9.14 
solute carrier family 1 (glutamate/neutral amino acid 
transporter), member 4 

53 CYP1B1 -3.19 -9.10 
cytochrome P450, family 1, subfamily B, polypeptide 
1 

54 TAGLN -3.16 -8.93 transgelin 

55 RARRES2 -3.16 -8.92 
retinoic acid receptor responder (tazarotene induced) 
2 

56 SLC22A15 -3.14 -8.83 solute carrier family 22, member 15 

57 ITGA11 -3.12 -8.70 integrin, alpha 11 

58 MTHFD2 -3.12 -8.69 
methylenetetrahydrofolate dehydrogenase (NADP+ 
dependent) 2, methenyltetrahydrofolate 
cyclohydrolase 

59 INHBE -3.06 -8.37 inhibin, beta E 

60 TPD52L1 -3.06 -8.35 tumor protein D52-like 1 

61 OXTR -3.06 -8.35 oxytocin receptor 

62 NEXN -3.05 -8.29 nexilin (F actin binding protein) 

63 C16orf80 -3.04 -8.22 chromosome 16 open reading frame 80 

64 NRCAM -3.04 -8.21 neuronal cell adhesion molecule 

65 MKX -3.02 -8.12 mohawk homeobox 

67 COMP -3.01 -8.05 cartilage oligomeric matrix protein 

68 LMCD1 -3.00 -7.99 LIM and cysteine-rich domains 1 

69 C1orf133 -2.97 -7.82 chromosome 1 open reading frame 133 

70 SGPP1 -2.97 -7.82 sphingosine-1-phosphate phosphatase 1 

71 CCDC85A -2.96 -7.77 coiled-coil domain containing 85A 

72 TANC1 -2.96 -7.76 
tetratricopeptide repeat, ankyrin repeat and coiled-
coil containing 1 

73 AFF3 -2.95 -7.72 AF4/FMR2 family, member 3 

74 TPM1 -2.95 -7.71 tropomyosin 1 (alpha) 

75 LOC653550 -2.94 -7.66 similar to TP53 target 3 

76 PLCB4 -2.93 -7.64 phospholipase C, beta 4 

77 WDFY1 -2.93 -7.64 WD repeat and FYVE domain containing 1 

78 GDF6 -2.93 -7.64 growth differentiation factor 6 

79 TACR1 -2.92 -7.59 tachykinin receptor 1 

80 E2F3 -2.92 -7.57 E2F transcription factor 3 

81 CCPG1 -2.92 -7.56 cell cycle progression 1 

82 VCAN -2.91 -7.53 versican 

83 LIMS2 -2.91 -7.51 LIM and senescent cell antigen-like domains 2 

84 FGF2 -2.91 -7.51 fibroblast growth factor 2 (basic) 

85 PTPRB -2.90 -7.47 protein tyrosine phosphatase, receptor type, B 

86 EXPH5 -2.89 -7.42 exophilin 5 

87 ARL4A -2.89 -7.42 ADP-ribosylation factor-like 4A 

88 FGFR2 -2.88 -7.37 fibroblast growth factor receptor 2 

89 ASNS -2.86 -7.25 asparagine synthetase (glutamine-hydrolyzing) 

90 TRIM36 -2.85 -7.19 tripartite motif-containing 36 
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91 GFRA1 -2.83 -7.09 GDNF family receptor alpha 1 

92 KCNH1 -2.82 -7.06 
potassium voltage-gated channel, subfamily H (eag-
related), member 1 

93 SERTAD4 -2.82 -7.05 SERTA domain containing 4 

94 KRT34 -2.80 -6.95 keratin 34 

95 MEGF6 -2.77 -6.83 multiple EGF-like-domains 6 

96 UBE2NL -2.77 -6.81 
ubiquitin-conjugating enzyme E2N (UBC13 homolog, 
yeast)|ubiquitin-conjugating enzyme E2N-like 

97 GPR133 -2.74 -6.66 G protein-coupled receptor 133 

98 MBNL2 -2.73 -6.65 muscleblind-like 2 (Drosophila) 

99 ASGR1 -2.73 -6.65 asialoglycoprotein receptor 1 

100 SYNPO2 -2.72 -6.57 synaptopodin 2 

101 WFDC1 -2.69 -6.44 WAP four-disulfide core domain 1 

102 WNT2 -2.68 -6.43 
wingless-type MMTV integration site family member 
2 

103 GSTA3 -2.67 -6.39 
glutathione S-transferase alpha 3|glutathione S-
transferase alpha 1|glutathione S-transferase alpha 2 

104 FAM164A -2.66 -6.34 family with sequence similarity 164, member A 

105 B3GALT2 -2.65 -6.28 
UDP-Gal:betaGlcNAc beta 1,3-galactosyltransferase, 
polypeptide 2 

106 JUB -2.63 -6.21 jub, ajuba homolog (Xenopus laevis) 

107 SPINT2 -2.63 -6.19 serine peptidase inhibitor, Kunitz type, 2 

108 G0S2 -2.63 -6.17 G0/G1switch 2 

109 ACVR2A -2.60 -6.07 activin A receptor, type IIA 

110 GLS -2.60 -6.06 glutaminase 

111 PRSS23 -2.59 -6.01 protease, serine, 23 

112 ITGB2 -2.58 -6.00 
integrin, beta 2 (complement component 3 receptor 3 
and 4 subunit) 

113 FOXC1 -2.58 -5.96 forkhead box C1 

114 PCK2 -2.57 -5.96 
phosphoenolpyruvate carboxykinase 2 
(mitochondrial) 

115 DEPDC6 -2.57 -5.92 DEP domain containing 6 

116 TNFSF4 -2.56 -5.90 tumor necrosis factor (ligand) superfamily, member 4 

117 LEP -2.55 -5.86 leptin 

118 DNAJB9 -2.55 -5.85 DnaJ (Hsp40) homolog, subfamily B, member 9 

119 HINT3 -2.55 -5.85 histidine triad nucleotide binding protein 3 

120 ID4 -2.54 -5.83 
inhibitor of DNA binding 4, dominant negative helix-
loop-helix protein 

121 MRVI1 -2.54 -5.81 murine retrovirus integration site 1 homolog 

123 F3 -2.53 -5.79 coagulation factor III (thromboplastin, tissue factor) 

124 LY96 -2.53 -5.78 lymphocyte antigen 96 

125 MYH1 -2.52 -5.74 myosin, heavy chain 1, skeletal muscle, adult 

126 FAM101B -2.52 -5.73 family with sequence similarity 101, member B 

127 HIST2H2BE -2.52 -5.72 histone cluster 2, H2be 

128 KCND2 -2.51 -5.68 
potassium voltage-gated channel, Shal-related 
subfamily, member 2 

129 C5orf28 -2.50 -5.67 chromosome 5 open reading frame 28 

130 ANGPT1 -2.48 -5.57 angiopoietin 1 
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131 CDKN2B -2.48 -5.57 
cyclin-dependent kinase inhibitor 2B (p15, inhibits 
CDK4) 

132 GULP1 -2.47 -5.54 GULP, engulfment adaptor PTB domain containing 1 

133 WISP1 -2.47 -5.53 WNT1 inducible signaling pathway protein 1 

134 MAMLD1 -2.46 -5.52 mastermind-like domain containing 1 

135 EGR2 -2.46 -5.50 early growth response 2 

136 IL1RAP -2.45 -5.46 interleukin 1 receptor accessory protein 

137 CEBPG -2.45 -5.45 CCAAT/enhancer binding protein (C/EBP), gamma 

138 FSIP1 -2.44 -5.42 fibrous sheath interacting protein 1 

139 GMFB -2.43 -5.40 glia maturation factor, beta 

140 RAPH1 -2.43 -5.39 
Ras association (RalGDS/AF-6) and pleckstrin 
homology domains 1 

141 MDFIC -2.42 -5.37 MyoD family inhibitor domain containing 

142 ADRA2A -2.42 -5.36 adrenergic, alpha-2A-, receptor 

143 ULBP1 -2.42 -5.33 UL16 binding protein 1 

144 PDE1C -2.41 -5.32 phosphodiesterase 1C, calmodulin-dependent 70kDa 

145 ODZ2 -2.41 -5.32 odz, odd Oz/ten-m homolog 2 (Drosophila) 

146 MID2 -2.41 -5.31 midline 2 

147 RWDD4A -2.41 -5.30 RWD domain containing 4A 

148 PYROXD1 -2.41 -5.30 
pyridine nucleotide-disulphide oxidoreductase 
domain 1 

149 MAP3K1 -2.40 -5.29 mitogen-activated protein kinase kinase kinase 1 

150 PPP1R3C -2.40 -5.28 
protein phosphatase 1, regulatory (inhibitor) subunit 
3C 

151 CCDC85A -2.39 -5.25 coiled-coil domain containing 85A 

152 ZHX1 -2.39 -5.25 zinc fingers and homeoboxes 1 

153 ADAMTS1 -2.39 -5.24 
ADAM metallopeptidase with thrombospondin type 1 
motif, 1 

154 C8orf46 -2.39 -5.23 chromosome 8 open reading frame 46 

155 HHAT -2.39 -5.23 hedgehog acyltransferase 

156 GDF15 -2.39 -5.23 growth differentiation factor 15 

157 SECISBP2L -2.38 -5.21 SECIS binding protein 2-like 

158 FAM160B1 -2.38 -5.20 family with sequence similarity 160, member B1 

159 HSPA13 -2.38 -5.20 heat shock protein 70kDa family, member 13 

160 TMEM47 -2.37 -5.18 transmembrane protein 47 

161 RP11-554D15.1 -2.37 -5.16 novel lincRNA 

162 SDC2 -2.36 -5.13 syndecan 2 

163 COL4A2 -2.34 -5.07 collagen, type IV, alpha 2 

164 ADAM12 -2.33 -5.04 ADAM metallopeptidase domain 12 

165 SAA1 -2.33 -5.02 serum amyloid A1 

166 TAF1D  -2.32 -5.01 
TATA box binding protein (TBP)-associated factor, 
RNA polymerase I, D, 41kDa 

167 SMOC2 -2.32 -5.00 SPARC related modular calcium binding 2 

168 S100P -2.32 -4.99 S100 calcium binding protein P 

169 PDGFD -2.32 -4.98 platelet derived growth factor D 

170 AP1M2 -2.31 -4.97 adaptor-related protein complex 1, mu 2 subunit 

171 LRRC39 -2.31 -4.95 leucine rich repeat containing 39 
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172 IRS2 -2.30 -4.92 insulin receptor substrate 2 

173 WARS -2.28 -4.86 tryptophanyl-tRNA synthetase 

174 FGF19 -2.28 -4.85 fibroblast growth factor 19 

175 PAWR -2.27 -4.84 PRKC, apoptosis, WT1, regulator 

176 PPM1A -2.27 -4.83 protein phosphatase, Mg2+/Mn2+ dependent, 1A 

177 SULF2 -2.27 -4.81 sulfatase 2 

178 LHX8 -2.26 -4.79 LIM homeobox 8 

179 TPM1 -2.26 -4.79 tropomyosin 1 (alpha) 

180 LOH3CR2A -2.25 -4.77 
loss of heterozygosity, 3, chromosomal region 2, 
gene A 

181 HNRNPA0 -2.25 -4.76 heterogeneous nuclear ribonucleoprotein A0 

182 TNFRSF11B -2.24 -4.74 
tumor necrosis factor receptor superfamily, member 
11b 

183 SFRP1 -2.24 -4.73 secreted frizzled-related protein 1 

184 GABPA -2.24 -4.73 
GA binding protein transcription factor, alpha subunit 
60kDa 

185 PPP6C -2.24 -4.72 protein phosphatase 6, catalytic subunit 

186 EEA1 -2.24 -4.71 early endosome antigen 1 

187 DDAH1 -2.23 -4.70 dimethylarginine dimethylaminohydrolase 1 

188 SMAD5 -2.23 -4.68 SMAD family member 5 

189 SEMA3D -2.22 -4.67 
sema domain, immunoglobulin domain (Ig), short 
basic domain, secreted, (semaphorin) 3D 

190 SDHC -2.22 -4.67 
succinate dehydrogenase complex, subunit C, 
integral membrane protein, 15kDa 

191 TDG|LOC732360 -2.21 -4.63 
thymine-DNA glycosylase|similar to G/T mismatch-
specific thymine DNA glycosylase 

192 PFDN4 -2.21 -4.62 prefoldin subunit 4 

193 CAMSAP1L1 -2.20 -4.60 
calmodulin regulated spectrin-associated protein 1-
like 1 

194 KIAA0564 -2.20 -4.60 KIAA0564 

195 TNNT3 -2.20 -4.60 troponin T type 3 (skeletal, fast) 

196 KLHL28 -2.19 -4.56 kelch-like 28 (Drosophila) 

197 TRIB3 -2.19 -4.56 tribbles homolog 3 (Drosophila) 

198 SLC3A2 -2.19 -4.55 
solute carrier family 3 (activators of dibasic and 
neutral amino acid transport), member 2 

199 STAT4 -2.19 -4.55 signal transducer and activator of transcription 4 

200 SGMS2 -2.18 -4.52 sphingomyelin synthase 2 

201 BCAT1 -2.18 -4.52 branched chain amino-acid transaminase 1, cytosolic 

202 COL4A4 -2.17 -4.51 collagen, type IV, alpha 4 

203 CUL5 -2.17 -4.49 cullin 5 

204 YOD1 -2.17 -4.49 
YOD1 OTU deubiquinating enzyme 1 homolog (S. 
cerevisiae) 

205 SLC36A1 -2.17 -4.49 
solute carrier family 36 (proton/amino acid 
symporter), member 1 

206 PLOD2 -2.17 -4.49 procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 

207 SORT1 -2.16 -4.48 sortilin 1 

208 CPEB2 -2.16 -4.47 
cytoplasmic polyadenylation element binding protein 
2 

209 MOCOS -2.16 -4.47 molybdenum cofactor sulfurase 
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210 AFG3L2 -2.15 -4.45 AFG3 ATPase family gene 3-like 2 (yeast) 

211 FAM76B -2.15 -4.43 family with sequence similarity 76, member B 

212 JMY -2.14 -4.42 
junction mediating and regulatory protein, p53 
cofactor 

213 HIF1A -2.14 -4.41 
hypoxia inducible factor 1, alpha subunit (basic helix-
loop-helix transcription factor) 

214 GPC6 -2.14 -4.41 glypican 6 

215 MYBL1 -2.14 -4.40 
v-myb myeloblastosis viral oncogene homolog 
(avian)-like 1 

216 SOX4 -2.13 -4.39 SRY (sex determining region Y)-box 4 

217 LOC642131 -2.12 -4.35 similar to hCG1812074 

218 NEDD9 -2.12 -4.35 
neural precursor cell expressed, developmentally 
downregulated 9 

219 RHOBTB1 -2.12 -4.35 Rho-related BTB domain containing 1 

220 NAB1 -2.12 -4.34 NGFI-A binding protein 1 (EGR1 binding protein 1) 

221 C3orf64 -2.12 -4.34 chromosome 3 open reading frame 64 

222 WNT5A -2.12 -4.33 
wingless-type MMTV integration site family, member 
5A 

223 EIF3J -2.11 -4.32 eukaryotic translation initiation factor 3, subunit J 

224 TRAM1 -2.11 -4.31 translocation associated membrane protein 1 

225 HHAT -2.11 -4.31 hedgehog acyltransferase 

226 COL5A2 -2.10 -4.30 collagen, type V, alpha 2 

227 CDC73 -2.10 -4.30 
cell division cycle 73, Paf1/RNA polymerase II 
complex component, homolog (S. cerevisiae) 

228 TSC22D2 -2.10 -4.29 TSC22 domain family, member 2 

229 PEAR1 -2.10 -4.29 platelet endothelial aggregation receptor 1 

230 ROD1 -2.10 -4.29 ROD1 regulator of differentiation 1 (S. pombe) 

231 C1orf25 -2.10 -4.28 chromosome 1 open reading frame 25 

232 GRHL1 -2.10 -4.27 grainyhead-like 1 (Drosophila) 

233 UHRF1BP1 -2.09 -4.27 UHRF1 binding protein 1 

234 LIMA1 -2.09 -4.25 LIM domain and actin binding 1 

235 FOXN2 -2.09 -4.25 forkhead box N2 

236 SHOC2 -2.09 -4.25 soc-2 suppressor of clear homolog (C. elegans) 

237 N4BP2L2 -2.09 -4.24 NEDD4 binding protein 2-like 2 

238 GOPC -2.08 -4.24 golgi-associated PDZ and coiled-coil motif containing 

239 TJP1 -2.08 -4.24 tight junction protein 1 (zona occludens 1) 

240 KPNA4 -2.08 -4.23 karyopherin alpha 4 (importin alpha 3) 

241 ROR1 -2.08 -4.22 receptor tyrosine kinase-like orphan receptor 1 

242 MAOA -2.07 -4.21 monoamine oxidase A 

243 RHOB -2.07 -4.21 ras homolog gene family, member B 

244 DDX21 -2.07 -4.20 DEAD (Asp-Glu-Ala-Asp) box polypeptide 21 

245 RAB6A|WTH3DI -2.07 -4.20 RAB6A, member RAS oncogene family|RAB6C-like 

246 TSC22D3 -2.07 -4.20 TSC22 domain family, member 3 

247 RBBP8 -2.07 -4.20 retinoblastoma binding protein 8 

248 SEL1L -2.07 -4.19 sel-1 suppressor of lin-12-like (C. elegans) 

249 MARCH7 -2.07 -4.19 membrane-associated ring finger (C3HC4) 7 

250 BCLAF1 -2.06 -4.18 BCL2-associated transcription factor 1 
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251 PRKAB2 -2.06 -4.17 
protein kinase, AMP-activated, beta 2 non-catalytic 
subunit 

253 TMX3 -2.06 -4.16 thioredoxin-related transmembrane protein 3 

254 NR4A2 -2.06 -4.16 nuclear receptor subfamily 4, group A, member 2 

255 FERMT2 -2.05 -4.15 fermitin family homolog 2 (Drosophila) 

256 RFX7 -2.05 -4.14 regulatory factor X, 7 

257 ACAN -2.05 -4.13 aggrecan 

258 HSPH1 -2.04 -4.11 heat shock 105kDa/110kDa protein 1 

259 CAPN7 -2.03 -4.10 calpain 7 

260 UTRN -2.03 -4.10 utrophin 

261 MTF2 -2.03 -4.09 metal response element binding transcription factor 2 

262 GOLT1B -2.03 -4.09 golgi transport 1 homolog B (S. cerevisiae) 

263 ARL8B -2.03 -4.08 ADP-ribosylation factor-like 8B 

264 PLXDC2 -2.03 -4.07 plexin domain containing 2 

265 KIAA1199 -2.02 -4.07 KIAA1199 

266 FAT4 -2.02 -4.06 FAT tumor suppressor homolog 4 (Drosophila) 

267 RCOR3 -2.01 -4.02 REST corepressor 3 

268 FGF1 -2.01 -4.02 fibroblast growth factor 1 (acidic) 

269 TMEM167A -2.00 -4.01 transmembrane protein 167A 

270 AZI2 -2.00 -4.00 5-azacytidine induced 2 

271 RAB33B -2.00 -4.00 RAB33B, member RAS oncogene family 

 

Supplementary Table 3.7. Genes for which expression was upregulated 4-fold and 
more due to FGF2 when hDFs were grown at ambient oxygen 

 
Name H.FvsU 

Fold 
change 

Description 

1 FAM158A 6.11 68.97 family with sequence similarity 158, member A 

2 WARS2 4.21 18.48 tryptophanyl tRNA synthetase 2, mitochondrial 

3 DUTP1 4.20 18.35 deoxyuridine triphosphatase pseudogene 1 

4 SST 3.54 11.63 somatostatin 

5 HSPA6|HSPA7 3.50 11.33 
heat shock 70kDa protein 7 (HSP70B)|heat shock 
70kDa protein 6 (HSP70B) 

6 IL8 3.37 10.32 interleukin 8 

7 CXCL6 3.06 8.32 
chemokine (C-X-C motif) ligand 6 (granulocyte 
chemotactic protein 2) 

8 C3orf57 3.02 8.12 chromosome 3 open reading frame 57 

9 NTSR1 2.77 6.81 neurotensin receptor 1 (high affinity) 

10 NR0B1 2.72 6.60 nuclear receptor subfamily 0, group B, member 1 

11 CXCL1 2.55 5.86 
chemokine (C-X-C motif) ligand 1 (melanoma growth 
stimulating activity, alpha) 

12 CXCL5 2.54 5.80 chemokine (C-X-C motif) ligand 5 

13 MMP1 2.51 5.70 matrix metallopeptidase 1 (interstitial collagenase) 

14 UBE2NL 2.51 5.68 
ubiquitin-conjugating enzyme E2N (UBC13 homolog, 
yeast)|ubiquitin-conjugating enzyme E2N-like 

15 CXCL2 2.46 5.50 chemokine (C-X-C motif) ligand 2 

16 CDCP1 2.44 5.41 CUB domain containing protein 1 
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17 MRGPRG 2.41 5.33 MAS-related GPR, member G 

18 GJA3 2.33 5.03 gap junction protein, alpha 3, 46kDa 

19 IGSF11 2.33 5.02 immunoglobulin superfamily, member 11 

20 TACR1 2.28 4.85 tachykinin receptor 1 

21 SLU7 2.27 4.82 SLU7 splicing factor homolog (S. cerevisiae) 

22 GINS4 2.25 4.77 GINS complex subunit 4 (Sld5 homolog) 

23 TFPI2 2.23 4.70 tissue factor pathway inhibitor 2 

24 RP11-352D3.2 2.23 4.69 novel lincRNA 

25 DOCK10 2.20 4.60 dedicator of cytokinesis 10 

26 AFG3L2 2.19 4.56 AFG3 ATPase family gene 3-like 2 (yeast) 

27 HECTD1 2.19 4.55 HECT domain containing 1 

28 CD36 2.15 4.44 CD36 molecule (thrombospondin receptor) 

29 F2RL1 2.13 4.38 coagulation factor II (thrombin) receptor-like 1 

30 CHI3L2 2.04 4.12 chitinase 3-like 2 

31 SLC14A1 2.02 4.04 
solute carrier family 14 (urea transporter), member 1 
(Kidd blood group) 

32 FICD 2.01 4.04 FIC domain containing 

 

Supplementary Table 3.8. Genes for which expression was downregulated 4-fold and 
more due to FGF2 when hDFs were grown at ambient oxygen 

 
Name H.FvsU 

Fold 
change 

Description 

1 ELF4 -8.39 -336.39 E74-like factor 4 (ets domain transcription factor) 

2 KRT7 -3.55 -11.70 keratin 7 

3 ACTC1 -3.32 -9.99 actin, alpha, cardiac muscle 1 

4 SCRG1 -3.30 -9.86 stimulator of chondrogenesis 1 

5 COL4A1 -3.28 -9.72 collagen, type IV, alpha 1 

6 COL11A1 -3.09 -8.52 collagen, type XI, alpha 1 

7 ELN -3.05 -8.30 elastin 

8 LYPD6B -2.88 -7.36 LY6/PLAUR domain containing 6B 

9 FGF9 -2.74 -6.70 fibroblast growth factor 9 (glia-activating factor) 

10 HAPLN1 -2.71 -6.56 hyaluronan and proteoglycan link protein 1 

11 SMOC2 -2.66 -6.33 SPARC related modular calcium binding 2 

12 MYH2 -2.62 -6.16 myosin, heavy chain 2, skeletal muscle, adult 

13 PI16 -2.53 -5.76 peptidase inhibitor 16 

14 TPD52L1 -2.48 -5.57 tumor protein D52-like 1 

15 SLC7A5 -2.36 -5.13 
solute carrier family 7 (cationic amino acid 
transporter, y+ system), member 5 

16 CHAC1 -2.35 -5.10 ChaC, cation transport regulator homolog 1 (E. coli) 

17 ASPN -2.33 -5.03 asporin 

18 

PCDHA8|PCDHA6| 
PCDHA1|PCDHA2| 
PCDHA11|PCDHA10| 
PCDHA4|PCDHA5| 
PCDHA13|PCDHA3 

-2.29 -4.89 

protocadherin alpha 11|protocadherin alpha 1| 
protocadherin alpha 4|protocadherin alpha 
3|protocadherin alpha 13|protocadherin alpha 
5|protocadherin alpha 6|protocadherin alpha 8 

19 SULF1 -2.26 -4.80 sulfatase 1 
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20 COMP -2.26 -4.79 cartilage oligomeric matrix protein 

21 PSAT1 -2.24 -4.71 phosphoserine aminotransferase 1 

22 OXTR -2.23 -4.70 oxytocin receptor 

23 RP11-554D15. -2.18 -4.52 novel lincRNA 

24 ODZ2 -2.14 -4.40 odz, odd Oz/ten-m homolog 2 (Drosophila) 

25 PRSS23 -2.12 -4.33 protease, serine, 23 

26 DAB1 -2.11 -4.31 
Dab, reelin signal transducer, homolog 1 
(Drosophila) 

27 DEPDC6 -2.11 -4.31 DEP domain containing 6 

28 RDH10 -2.10 -4.29 retinol dehydrogenase 10 (all-trans) 

29 AFF3 -2.09 -4.25 AF4/FMR2 family, member 3 

30 ITGA11 -2.07 -4.19 integrin, alpha 11 

31 GRIA1 -2.03 -4.08 glutamate receptor, ionotropic, AMPA 1 

32 LOC728264 -2.03 -4.07 hypothetical LOC728264 

33 MEGF6 -2.00 -4.00 multiple EGF-like-domains 6 

 


