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Abstract 

In microarray analysis, people are interested in those features that 

have different characters in diseased samples compared to normal samples. 

The usual p-value method of selecting significant genes either gives too 

many false positives or cannot detect all the significant features. The False 

Discovery Rate (FDR) method controls false positives and at the same time 

selects significant features. We introduced Benjamini’s method and Storey’s 

method to control FDR, applied the two methods to human Meningioma 

data. We found that Benjamini’s method is more conservative and that, after 

the number of the tests exceeds a threshold, increase in number of tests will 

lead to decrease in number of significant genes. In the second chapter, we 

investigate ways to search interesting gene expressions that cannot be 

detected by linear models as t-test or ANOVA. We propose a novel 

approach to use quadratic logistic regression to detect genes in Meningioma 

data that have non-linear relationship within phenotypes. By using quadratic 

logistic regression, we can find genes whose expression correlates to their 

phenotypes both linearly and quadratically. Whether these genes have 

clinical significant is a very interesting question, since these genes most 

likely be neglected by traditional linear approach.  
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Chapter 1.  Microarray Analysis Using FDR 

 

1.1 Introduction 

In microarray analysis, people are interested in those features that 

have different characters in diseased samples compared to normal samples. 

In order to test if a specific feature is significant or not, we  need to select an 

appropriate test statistic, decide the significant level of the test, and compute 

the corresponding test statistic. One popular way to decide the significant 

features is to compare the p-value with the significant level of the test (e.g. α 

= 5% or 1%). If the p-value of the test is greater than or equal to α, wesupp 

conclude that the feature is significant; otherwise it is not significant. 

However, the p-value method is not practical in microarray analysis. For 

example, suppose we need to test n features at the same time, with each 

feature we control the test at significant level α. Then the family-wise 

significance level would be at most , which is greater than level α. 

Alternatively, we can set very low significant level for each test to make 

sure the family-wise significant level is low, however the resulting false 

positive rate will be high. Bonferroni (1936) correction can be used to test n 

independent tests at the same time and control the overall significant level at 

n)1(1 α−−
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α.  It states that if an experimenter is testing n independent hypotheses on a 

set of data, then the statistical significant level that should be used for each 

hypothesis is 1/n times what it would be if only one hypothesis were tested. 

The main problem for using this method is that when the number of the tests 

n becomes larger, the significant level for each test will become smaller; 

eventually all the features are declared to be non-significant for sufficiently 

large n. So the Bonferroni method is too conservative when the number of 

hypothesis tests is large. To control the false positives, Benjamini (1995) and 

Storey (2003) proposed approaches to measure the statistical significance in 

the genome-wide studies based on the concept of False Discovery Rate 

(FDR). These approaches offer a sensible balance between the number of 

true and false positives. The first objective of this chapter is to introduce 

these two methods to control FDR. The second objective of our project is to 

apply Benjamini’s and Storey’s methods to analyze real data and compare 

their results. In addition, we will investigate what type of effect data 

transformation has on FDR methods. 

In Section 1.2, we introduced the background to our project. The 

definition of FDR, and different methods to control the FDR are given in 

Section 1.3.  In Section 1.4, we apply the methods to Meningioma data. The 
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effects of filtering criterion on FDR method will be discussed in Section 1.5. 

Conclusions and future work will be given in Section 1.6. 

 

1.2 Scientific problem and data description 

 Meningioma is a type of brain tumor. The data in this report were 

collected by the experimenters in University of Texas Southwestern to study 

the relationship between genes and Meningioma types. In this project, we 

analyzed three groups of the Meningioma:  A (mildest), B and C (most 

sever). We try to find the differentially expressed genes among the three 

groups.  

 By obtaining several samples from each cell type, we need to find 

genes that are differentially expressed among group A, B and C, where 

group A being the mildest and group C is the most severe. Our goal of this 

chapter is to use FDR of Benjamini’s method and Storey’s method to detect 

the significant genes, and compare the results of the two methods. What 

should be the cutoff for gene filtering criterion if the coefficient of variation 

is used as our filtering criterion?  

 Table 8 shows the data structure of our study; we first filtered out 

noisy genes based on coefficient of variation and obtain nested data sets with 
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different number of genes. For each data set there are three groups with 

sample size 7(A), 7(B) and 9(C), and then we took the log-transformation. 

 

1.3 FDR and Sensitivity 

FDR can be defined as the expected proportion of false positives 

among the declared significant results, which can be expressed as: 

⎥
⎦

⎤
⎢
⎣

⎡
=

)(
)(

TS
TFEFDR          (1) 

Sensitivity of the test using the FDR method is defined as the 

expected proportion of declared significant genes among the true significant 

genes. The statistics of the FDR method can best be described using Table 1 

where 10,000 genes are classified according to their true status and the test 

result. In this example, the FDR is B/(B+D) = 475/875 = 54%, the sensitivity 

is D/(C+D)=80%, and the false positive rate (type I error) B/(A+B) = 

475/9500 = 5%, which means that we have a test with 95% specification and 

80% sensitivity, but more than half of the ‘discovered’ genes are false 

positive. This shows that the standard control of significant level leads to a 

high rate of false discoveries even when the power of the test would be 

considered adequate for a single-gene study. 

 10 



In this section, we discuss the two methods to control FDR. One is 

Benjamini’s method (1995) and another is Storey’s method (2003). 

 

1.3.1 Benjamini’s Method 

Benjamini’s method for controlling the FDR includes the following 

steps: (1) Consider hypothesis H1, H2…Hm based on corresponding P-values 

P1, P2…Pm. (m is the total number of the hypothesis tests), (2) Order P-

values P(1) ≤P(2) ≤… P≤ (m) and let H(i) be the corresponding hypothesis to 

P(i), (3) Let K be the largest I for which P(i) ≤  (i/m)a. Reject all H(i), for I = 

1,…,k, (4) Under the assumption that the test statistics are independent, it 

can be proved that this procedure controls FDR at level a.  

The Benjamini’s method is a conservative method, when tests for true 

null hypotheses are independent, this procedure will ensure FDR a. ≤

 

1.3.2 Storey’s Method 

Storey’s method for controlling FDR is more specific than 

Benjamini’s method. In Storey’s method, instead of defining FDR, we 

estimate FDR and then use the estimated FDR to control the tests.  Let’s first 

define a threshold t (0<t<1), where we call all features significant whose P-

 11



value is less than or equal to t. If there are m hypothesis tests and we denote 

corresponding p-values by P1, P2 … Pm, then  

F(T) = # {null Pi ≤ t; i = 1 … m}                  (2) 

S(T) = #{Pi ≤  t; i=1 … m}                            (3) 

We then can define  

⎥
⎦

⎤
⎢
⎣

⎡
=

)(
)()(

TS
TFEtFDR                                                (4) 

Because we are considering many features, it can be approximated by 
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⎡
=                                 (5) 

A simple estimate of E [S(T)] is the observed S(T); that is the number of 

observed P-values less than t. In estimating E [F(T)], recall that p-values 

corresponding to truly null hypotheses should be uniformly distributed. Thus 

the probability a null P-values less than or equal to t is simply t, so E [F(T)] 

= m0*t (m0 is the true null). Because the total number of truly null features is 

unknown it has to be estimated. Equivalently, one can estimate the 

proportion of features that are truly nulls, which we denote by 
m
m0

0 =π . 

It is hard to estimate 0π  without specifying the distribution of the truly 

alternative P-values. However, using the factor that p-values of true nulls are 

uniformly distributed, a reasonable estimate can be formed. Storey defines 
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the point λ of the histogram of all p-values such that the distribution of p-

values greater than the point the plot becomes flat: it means that there are 

mostly null p-values in this region. The height of this flat portion actually 

gives a conservative estimate of the overall proportion of null p-values. This 

can be quantified with 

)1(
},...,1;{#

)(ˆ0 λ
λ

λπ
−
=>

=
m

miPi                                              (6)                          

Once we obtain the estimate of 0π , it is easy to obtain the estimate of FDR. 

The formula for estimating FDR is: 
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And the sensitivity of the test is: 
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1.4 Data analysis 

1.4.1 Benjamini’s method of controlling FDR 

First, we will use Benjamini’s method to control FDR to select the 

significant genes. We first filtered out genes with low coefficient of 

variation and obtained nested data sets with different number of genes/tests. 

We calculated p-values by performing ANOVA to each gene; the significant 

genes for each data set are obtained by controlling FDR at 0.1 level. The null 

hypothesis here is that the gene is not differentially expressed among group 

A, B and C. Table 2 shows the relationship of the number of tests and the 

number of significant genes. As we expected, the more the number of 

hypothesis tests, the less the number of significant genes selected.  

 We also studied the relationship between FDR and the statistic 

cutoffs. Using all 46713 genes, we performed ANOVA to each gene and 

obtained the p-value and F-statistic for each gene. By controlling FDR at a 

certain level we can calculate the p-value cutoff; we then compare the p-

value of each gene and the p-value cutoff to decide if the gene is significant 

or not. The F-statistic cutoff can be calculated based on the p-value cutoff.  

Repeating above steps for different FDR levels, we can obtain the F-statistic 

cutoff for different FDR levels.  The black dotted line in Figure1 shows the 
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relationship between FDR and F-statistic in Benjamin’s method.   Just for 

information, table 3 lists the top 15 significant genes selected. 

 

1.4.2 Storey’s method of controlling FDR 

 In order to use Storey’s method, we need to estimate 0π  first. 

According to Storey (2003), there is a tradeoff between bias and variance in 

choosing the λ to use in )(0 λπ . It should be the case that the bias of 

)(0 λπ should be decreasing with the increasing λ, the bias being the smallest 

when λ close to 1.  Therefore, the method we used here is to estimate  

)(lim 010 λππ λ >−= . As showed in Figure 2 for a range of λ, we plot λ versus 

)(0 λπ  and fit a cubic spline  for the data points then estimate the value of 

. After we obtain the value of 

f̂

)1(ˆ)(0 f=λπ 0π , we can estimate FDR and 

sensitivity of test for different cutoff values.  

 Using the 0π value obtained above, we can obtain the estimation of 

FDR and sensitivity using formulas (7) and (8) for different statistical 

cutoffs. The red line in Figure 1 shows the relationship between the 

estimated FDR and the cutoff of F-statistics in Storey’s method. The blue 

dashed line shows the estimated sensitivity. 
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In order to see the effect of filtering to Storey’s method, we obtained 

different number of significant genes by controlling FDR at level of 0.1 for 

various nested data sets. The results are presented in Table 4. 

 

1.4.3 Comparison of Benjamini’s method and Storey’s method  

 As shown in the previous section, both Benjamini’s method and 

Storey’s method can be used to select the significant genes by controlling 

FDR at certain level. Our goal in this section is to investigate the difference 

between Benjamini’s method and Storey’s method. 

 Figure 1 demonstrates that Benjamini’s method is more conservative 

than Storey’s method : this is what we expected because Benjamini’s 

method controls the upper bound of FDR. Figure 5 is the ROC curve, a plot 

of FDR versus sensitivity, for the two methods. From the figure, we again 

see that Storey’s method is more sensitive than Benjamini’s method, because 

at the same level of FDR, Storey’s method has higher sensitivity than 

Benjamini’s method. More interesting comparison of two methods are 

demonstrated in next section.  
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1.5 Investigation of the effect of data filtering 

One of the common filtering criteria used by researchers is to analyze 

only genes with level of the coefficient of variation higher than certain level.   

Table 2 and Table 4 show that for the same number of tests and FDR level, 

using different methods the number of selected genes is different. Figure 4 

plots the results from Table 2 and Table 4. From the Figure 1, we see that 

after the number of hypothesis tests reached certain threshold, increasing the 

number of tests will lead to decrease of the number of significant genes. It 

again shows that Benjamini’s method is more conservative than Storey’s 

method.  

 In the ideal case, all filtered-out genes are noisy when the filtering 

criterion (coefficient of variation) is less than a certain level. We might 

expect that the number of selected genes have nothing to do with the number 

of tests as long as we use Storey’s method; while the number of selected 

genes should decrease when the number of the tests increases with 

Benjamini’s method. This means that Storey’s method should be more stable 

once the number of tests reached certain threshold. However, Figure 4 shows 

different result from what we expected. In this section we will investigate 

what may cause the difference.  
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 We investigated the effect of changing the order of filtering and 

transformation. In all above analysis, we first filtered out the genes by 

coefficient of variation and made log transformation before performing 

hypothesis tests; but this may throw out some significant genes at the log 

scale. Table 6 gives the analysis result for the new analysis after we changed 

the order of filtering and transformation. Comparing Table 3 and Table 6, 

we can see that changing the scale for filtering process can affect the 

analysis result. In addition, by comparing the sensitivity of the two methods 

we can find that the second filtering scheme (first log-transform and then 

filter) has higher sensitivity than the first one (filter in original scale and then 

transform in log scale for hypothesis tests). Figure 7 and Figure 8 are the 

plots of number of significant genes versus number of all genes tested and 

plot of ROC respectively for the data analysis using the second filtering 

scheme. Comparing the plot of Figure 5 and Figure 8, we notice that for the 

same level of FDR the sensitivity of the test using the second filtering 

scheme is higher than using the first filtering scheme. This shows that 

filtering scheme do affect the analysis result.  

In conclusion, we found that many significant genes in log scale have 

very low coefficient of variation in original scale. Figure 9 gives the box-

plot of such an example.  It shows an example gene that have CV less than 
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0.05 in original scale are differentially expressed between the three groups in 

log scale.  The coefficient of variation for this gene is 0.038 in original scale, 

but the box-plot shows that the gene is differentially expressed between the 

three groups.  

  

1.6 Conclusion and discussion 

As we expected, Storey’s method is more sensitive than Benjamini’s 

method, because the sensitivity of the test at the same level of FDR is higher 

using Storey’s method.  And when the number of hypothesis tests reaches 

certain threshold, increasing the number of hypothesis tests will lead to 

decreasing the number of significant genes. 

In addition, the order of filtering and transformation can affect the 

analysis results. We need to be careful in what scale the computation of 

coefficient of variation is performed. In this project, we investigated to find 

that many significant genes in log scale have very low coefficient of 

variation in original scale. Therefore, we need to pay attention to this 

method to filter genes. 

Proper scaling of expression indices from microarray is critical 

however not enough attention has been given to this aspect. Most widely 

recommended scaling is log transformation.  However, change in expression 
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of genes with high expression levels may lead to different test result. The 

proper scaling may be different according to the mean expression level.  In 

the future, we may study the effect of Box-Cox transformation and then find 

a better way to filtering the noise genes. Another remedy is to use estimating 

non-linear relationship between expression and sample labels.  In the next 

chapter of this project, we will discuss using quadratic logistic regression to 

select genes. 
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Chapter 2.  Application of logistic regression in 

microarray analysis 

2.1 Introduction 

In microarray analysis, usually several samples for each phenotype of 

a disease are given. We are interested in selecting genes that are 

differentially expressed between phenotypes. There are different methods to 

detect these genes. The most popular methods are to use multiple t-test or 

ANOVA to obtain the significant genes as we discussed in chapter 1. But 

such linear models, can only detect genes that have linear relationship 

between the response variable and predictors. However, expression of some 

biologically meaningful genes may have non-linear relationship with 

phenotypes; such genes cannot be detected using t-test. These genes can be 

detected using the quadratic logistic regression method, which we will 

discuss in this chapter. We will compare the quadratic logistic regression 

result with linear methods. In this chapter we again use the same 

Meningioma data from chapter 1, but we only consider group A (mild status) 

and group C (the most sever status). 
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2.2 Logistic regression models 

 Linear logistic model: 
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Quadratic logistic regression model: 
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In both the linear (equation 9) and quadratic (equation 10) models, Yi = 1 if 

the sample is in group C and Yi = 0 if the sample is in group A. Xi is the log-

transformed expression index for each gene in sample i. We assume that the 

gene expressions from all the samples are independent from each other. 

 

2.3 Analysis Results 

We fitted each gene in the data set using linear and quadratic logistic 

regression. We decided if the quadratic logistic regression model is suitable 

for the gene based on the p-value (p2) obtained from the corresponding 

ANOVA (i.e. Ho: 021 == ββ ). Later for internal investigation, we also tested 
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if the quadratic logistic regression is more appropriate than linear logistic 

regression based on the p-values (p1vs2) obtained from ANOVA (i.e. Ho: β2 

= 0). By controlling FDR at 0.05 level we can obtain the significant genes 

base on p2. The expression of significant genes we obtained based on the 

quadratic logistic regression method may have non-linear relationship with 

the phenotypes. Many of these genes cannot be detected by the usual t-test 

method.  

In order to compare t-test and quadratic logistic regression method, 

we applied t-test to each individual gene. First we obtained the p-values of 

multiple t-test of the sample means of their expression indices in group A 

and C. Based on these p-values, by controlling FDR at 0.05, we obtained 

158 significant genes. We found that all the 158 significant genes are in the 

group of significant genes selected by quadratic logistic regression. In 

summary, among all the 46713 genes, 1395 significant genes are detected 

using quadratic logistic regression at FDR 0.05, 158 significant genes are 

detected using t-test at FDR 0.05. We also selected top 1000 genes with the 

smallest p-values from t-test and top 1000 genes with the smallest p-values 

from quadratic logistic regression. By comparing the 2000 genes, we found 

that there are 415 genes overlapped in both top 1000 genes. Table8 shows 

the relationship between t-test and quadratic logistic regression results. In 
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figure 11, I gave several examples plots of gene expressions that can be 

detected by quadratic logistic regression but cannot be detected by t-test.   

From the plot, we can clearly see that the curvature plot instead of linear plot 

better describes those genes selected by quadratic logistic regression.        

Figure12 is a plot of one specific significant genes selected by 

quadratic logistic regression. We can clearly see samples with mid-range 

expression have lower chance of cancer. We drawn the box-plot of a 

significant gene selected by quadratic logistic regression to see if there is 

any difference between the sample means of the gene expression indices of 

group A and C.  The box-plot shows that there is no difference between the 

means of the two groups, which means that this gene cannot be detected by 

t-test.  

From the above results we can conclude that there are some genes that 

are nonlinearly correlated between group A and C, so cannot be detected by 

t-test. But they can be detected by quadratic logistic regression. And the 

quadratic logistic regression is an appropriate method to select genes, which 

have significant curvature relationship between response variable and 

predictors. 
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2.4 Conclusion  

In microarray analysis, there are many genes that their expression may 

be non-linearly correlated with the phenotypes. These genes cannot be found 

by linear tests such as t-test or ANOVA. By using quadratic logistic 

regression, we can find genes whose expression correlates to their 

phenotypes both linearly and quadratically. Whether these genes have 

clinical significant is a very interesting question, since these genes most 

likely be neglected by traditional linear approach.  Quadratic regression is an 

appropriate method to select genes, which have curvature relationship 

between response variable and predictors. 
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Figure 1, Plot of FDR and Sensitivity versus F-value cutoff. The red line 

is the curve of Storey’s FDR versus cutoff; the blue dot line is the 

Storey’s Sensitivity versus cutoff; the black slash line is the curve of 

Benjamini’s FDR versus cutoff. 

 

 27



0.0 0.2 0.4 0.6 0.8

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Lambda vs. Pi

lambda

pi

 

Figure 2, The )(0 λπ versus λ for the data set with 46713 number of test. 

The solid line is a cubic spline fit to these points to estimate )1(0 =λπ  
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Figure 3, Top left is the plot of cutoff vs. FDR for Benjamini’s method; top 

center is number of tests vs. FDR; top right is the histogram of the p-values; 

bottom left is cutoff vs. FDR for Storey’s method; bottom center is cutoff vs. 

sensitivity for Storey’s method; bottom right is cutoff vs. FDR and 

sensitivity for the two methods. 
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Figure 4, Here the genes are filtered first and then log transformed. Number 

of all genes tested versus the significant genes using two FDR methods 

controlling FDR at 0.01.The red line plot of number of test versus significant 

genes using Benjamini’s method, the black line is the plot using Storey’s 

method. 
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Figure 5, Here the genes are filtered first and then log transformed. Plot 

of FDR versus sensitivity using different method. The red line is plot of 

FDR versus sensitivity using Benjamini’s method; the black line is the 

plot of FDR versus sensitivity using Storey’s method. 
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Figure 6, Here the genes are log transformed first and then filtered.  Number 

of all genes tested versus the significant genes using two FDR methods 

controlling FDR at 0.01. The red line plot of number of test versus 

significant genes using Storey’s method, the black line is the plot using 

Benjamini’s method. 
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Figure 7, Here the genes are log transformed and then filtered. Plot of FDR 

versus sensitivity using different method. The red line is plot of FDR versus 

sensitivity using Benjamini’s method; the black line is the plot of FDR 

versus sensitivity using Storey’s method. 
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Figure 8, Box-plot of an example gene expression, which has small 
coefficient of variation in original scale 0.038 but large group difference in 
log scale. 
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Figure 9, Heatmap diagram of clustering analysis result for the 655 

significant genes in Table 4.  
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Figure 10, Plot of five example genes selected by quadratic regression 

method. 
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Figure 11, Plot of fitted regression model and box-plot for an example gene 

selected by logistic regression. 
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Table 1. A simple two-by-two table where 10,000 genes are classified 

according to their true status and the test result 

Test result 

 Non-DE DE Total 

True  

Non-DE A=9,025 B=475 9,500 

DE C=100 D=400 500 

Total 9,125 875 10,000 

 

Table 2. Number of significant genes selected for the same data set using 

different number of test when control Benjamini’s FDR at 0.1 level. 

Number of test Significant genes 

46713 200 

40284 299 

31640 392 

19831 536 

10246 370 

7716 389 

2264 184 
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Table3 gives the top 15 significant genes selected using Benjamini method: 

Table3. Top 15 significant genes 

 Probe.set ANOVA.F ANOVA.P Q 

37135 ILMN_5690 32.43616 5.28E-07 4.42E-05 

582 ILMN_10261 28.53456 1.39E-06 8.83E-05 

31629 ILMN_36696 25.89491 2.82E-06 1.33E-04 

9502 ILMN_121343 19.12381 2.28E-05 1.77E-04 

10205 ILMN_12337 18.44667 2.88E-05 2.21E-04 

167 ILMN_10076 18.07336 3.29E-05 2.65E-04 

36729 ILMN_5150 16.7922 5.25E-05 3.09E-04 

42995 ILMN_8501 16.78053 5.27E-05 3.53E-04 

27820 ILMN_29852 15.27435 9.40E-05 3.98E-04 

22252 ILMN_22168 15.26481 9.44E-05 4.42E-04 

24701 ILMN_25474 14.6905 1.19E-04 4.86E-04 

20912 ILMN_20369 14.5146 1.28E-04 5.30E-04 

18452 ILMN_17047 14.48072 1.29E-04 5.74E-04 

42297 ILMN_8258 14.06279 1.54E-04 6.18E-04 

10306 ILMN_12367 13.8236 1.70E-04 6.63E-04 
 

 

 

 

 39



Table 4. Related measurements for different number of test using Storey’s 

method controlling FDR near to 0.1.  

No. tests π0 M0 FDR  Sensitivity Significant genes

46713 0.6286724 29368 0.1007958 0.03395507 655 

40284 0.6098355 24567 0.1002720 0.04699743 821 

31640 0.5613401 17761 0.1001688 0.07922603 1222 

19831 0.4923403 9764 0.1030084 0.154497 1734 

10246 0.5138269 5265 0.1010489 0.1743283 966 

7716 0.4904709 3785 0.0999379 0.2154274 941 

2264 0.402649 912 0.100306 0.3006957 452 
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Table 5. Top 15 significant genes selected using Storey’s method 

 Probe.set ANOVA.F ANOVA.P 

37135 ILMN_5690 32.43616 5.28E-07 

582 ILMN_10261 28.53456 1.39E-06 

31629 ILMN_36696 25.89491 2.82E-06 

9502 ILMN_121343 19.12381 2.28E-05 

10205 ILMN_12337 18.44667 2.88E-05 

167 ILMN_10076 18.07336 3.29E-05 

36729 ILMN_5150 16.7922 5.25E-05 

42995 ILMN_8501 16.78053 5.27E-05 

27820 ILMN_29852 15.27435 9.40E-05 

22252 ILMN_22168 15.26481 9.44E-05 

24701 ILMN_25474 14.6905 1.19E-04 

20912 ILMN_20369 14.5146 1.28E-04 

18452 ILMN_17047 14.48072 1.29E-04 

42297 ILMN_8258 14.06279 1.54E-04 

10306 ILMN_12367 13.8236 1.70E-04 
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Table 6. Related measurements for different number of tests using Storey’s 

method controlling FDR near to 0.1 after changing the order of filtering and 

transformation.  

No. tests π0 M0 FDR  Sensitivity Significant genes 

46713 0.6286724 29368 0.100796 0.033955 655 

39099 0.6027634 23568 0.099926 0.047925 827 

22758 0.5203729 11843 0.100349 0.124702 1513 

14970 0.4710356 7052 0.100089 0.193537 1703 

8307 0.4319756 3589 0.099832 0.292261 1532 

4081 0.2989897 1221 0.102538 0.478717 1526 

1975 0.2598582 513 0.103219 0.582811 950 

 

 

Table 7. Comparison of t-test result and logistic regression result. 

Significant genes 
 

Logistic Regression T-test Overlap 

FDR = 0.05 1395 158 158 

Top 10000 1000 1000 415 
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Table 8. Data structure that is used 

Sample Size 

A B C 

 

Number of Tests 

Filter Criteria 

Variation of Coefficient

7 7 9 2264 Larger than 0.5 

7 7 9 7716 Larger than 0.25 

7 7 9 10246 Larger than 0.1 

7 7 9 19831 Larger than 0.09 

7 7 9 31640 Larger than 0.07 

7 7 9 40284 Larger than 0.06 

7 7 9 46713 No 
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