
Physical Games for Learning
 Page 1

This	
 report	
 represents	
 the	
 work	
 of	
 WPI	
 undergraduate	
 students	

submitted	
 to	
 the	
 faculty	
 as	
 evidence	
 of	
 completion	
 of	
 a	
 degree	

requirement.	
 WPI	
 routinely	
 publishes	
 these	
 reports	
 on	
 its	
 website	

without	
 editorial	
 or	
 peer	
 review.	
 For	
 more	
 information	
 about	
 the	

projects	
 program	
 at	
 WPI,	
 please	
 see:	

http://www.wpi.edu/academics/ugradstudies/project-­‐learning.html

Physical Games for Learning

An Interactive Qualifying Project

Submitted to the Faculty of

 WORCESTER POLYTECHNIC INSTITUTE

May 4th, 2015

Report Submitted to Professor Ivon Arroyo

Chris Cerruti

Peter Leondires

Dylan McCarthy

Shadi Ramadan

Alex Silva

Dalton Tapply

Physical Games for Learning
 Page 2

Contents	

1. Abstract ... 3	

2. Background and Literature Review .. 4	

2.1NSF Cyberlearning: Cyberhoodies Ivon Arroyo ... 4	

2.2 Embodiment in Mathematics Teaching and Learning: Evidence From Learners’ and
Teachers’ Gestures, by Alibali and Nathan ... 5	

2.3 ZUL: A Light-weight Architecture for Zigbee-based Ubiquitous Applications, by Imran
Zualkernan .. 8	

2.4 Constraining Movement Alters the Recruitment of Motor Processes in Mental Rotation, by
David Moreau .. 8	

2.5 Immersive simulation for Smart Classrooms: Exploring Evolutionary Concepts in
Secondary Science, by Lui and Slotta .. 10	

3. First Prototype .. 12	

3.1 Goals ... 12	

3.2 Unit Design .. 12	

3.3 Server Software .. 16	

3.4 Experiment and Procedure ... 17	

3.5 Results and Observations: .. 18	

4. Second Prototype and Server Implementation .. 22	

4.1 Goals ... 22	

4.2 Unit Design .. 22	

4.3 Server Software .. 24	

4.3.1 Teacher Panel .. 25	

4.3.2 Database .. 31	

4.3.3 Server and Device Communication .. 34	

4.3.4 Device Emulator ... 37	

4.4 Playing Estimate It! ... 38	

5. Future Plans .. 42	

6. Conclusion .. 43	

Physical Games for Learning
 Page 3

1. Abstract
 The goal of this project is to teach elementary mathematics and number sense through

the use of a cyber-watch or smartphone. The device enables an alternate learning style fueled

by the use of interactive games and other technologies. The hope is to augment the learning

process for students that do not learn well in a traditional classroom by providing a fun and

engaging learning style. This research improves on the original idea presented by Professor

Ivon Arroyo, modifying the alternate learning experience to help students become more

motivated about learning mathematics, as well as providing real world applications to in-class

materials without the monotony of typical classroom teaching. Blending wireless wearable

technology, educational games, mathematics, and real time reporting could very well lead to

accelerated learning.

The outcome of this project is a novel infrastructure, which allows for the creation of a

myriad of interactive embodied learning experiences for students of all ages.

Physical Games for Learning
 Page 4

2. Background and Literature Review

2.1 NSF Cyberlearning: Cyberhoodies, by Ivon Arroyo

We started our readings with a grant proposal submitted to the Cyberlearning program at

the National Science Foundation that summarizes the work done in previous years at WPI on E-

textiles, or Electronic Textiles for Education. One of the major advantages of E-textiles is that

they blur the lines between home and school, something desirable for the future of Educational

Technologies as specified in a “Roadmap of Educational Technologies” (Woolf, 2010). By

providing students with a learning opportunity that incorporates physical activity, learners who

typically have decreased attention span for seated classroom activities may find themselves

more interested (Arroyo, p. 3). This combination of physical activity with real-world learning

experience significantly augments the learning experience and increases number sense without

making students feel as though they are participating in a stereotypical learning activity (Arroyo,

p. 5).

A few of the learning games facilitated by the E-textiles were hide and seek, scavenger

hunt, and cyber game (a technological spin-off of hide and seek). These activities engaged

students’ real world number sense by instructing them to locate objects a certain distance from

other landmarks or of a certain size. After participating in both hide and seek and scavenger

hunt pilot games, students ranked various aspects of the games on a scale from 1-5 (5 being

the highest). The study summarized in the document showed that while students enjoyed both

games they were largely unaware of the academic value of the activities. They responded to the

question “do you think you learned math playing this game” with an average of 2.67 out of 5

between each group (Arroyo, p. 10). This presents a problem, as one of the major goals of this

project is to increase the level of student interest in mathematics. If students fail to see the

correlation between classroom learning and the physical activities facilitated by the E-textiles,

Physical Games for Learning
 Page 5

they won’t associate their interest in the activities with general math skills, leading to a missed

opportunity to spark interest in mathematics in today’s young learners.

2.2 Embodiment in Mathematics Teaching and Learning: Evidence From
Learners’ and Teachers’ Gestures, by Alibali and Nathan

Another way that we can qualify that students are learning is by facilitating and

observing their use of gestures. Gestures are often taken as evidence that the body is involved

in thinking and speaking about the ideas expressed in those gestures (Alibali & Nathan, 2012, p.

247). Alibali and Nathan suggest that there are four modes of gesturing:

(a) pointing gestures, which are gestures that serve to

indicate objects or locations

(b) iconic gestures, which are gestures that depict

semantic content directly via the shape or motion

trajectory of the hand

(c) metaphoric gestures, which depict semantic content

via metaphor (e.g,cupping hands as if to “hold” an idea)

(d) beat gestures, which are rhythmic gestures that do

not express semantic content but that instead align with

the prosody of speech

(Alibali & Nathan, p. 247)

Of these four modes, they focus mainly on pointing, iconic, and metaphoric gestures.

 Pointing gestures are used as a method to physically link speech and associated mental

processes to the physical environment (Alibali & Nathan, p. 253). In other words, when a

student uses pointing gestures they are assigning a physical or visual meaning to what they are

being taught. An example figure for pointing gestures was provided by Alibali and Nathan below.

Physical Games for Learning
 Page 6

Figure 1: Pointing in a student’s explanation of a mathematical equation.
Extracted from (Alibali & Nathan, p. 256)

Iconic gestures occur because thinking is based in perception and action. Thus,

representational gestures provide support for the claim that cognition is based in the body

(Alibali & Nathan, p. 254). In other words iconic gestures help us notice that students are

learning, as well as help teachers teach, because of the assigning of an action to a certain

situation. This helps students recall their teachings by assigning a physical action to a problem.

Alibali and Nathan also provide a graphic for this type of gesturing, shown in Figure 2.

Physical Games for Learning
 Page 7

Figure 2: Representational Gestures. Extracted from (Alibali & Nathan, p. 261)

Metaphoric gestures are used because aspects of human experience are inherently

spatial and therefore readily expressed in gestures. For example, Health is up and sickness is

down (Alibali & Nathan, p. 255). These gestures are very similar to iconic gestures; the

difference is that the gesture itself is based in a metaphor, not on a representational action.

Again, Alibali and Nathan provide a graphic to help understand this type of gesturing, illustrated

in Figure 3 below (p. 269).

By observing the students during the case studies such as the tangrams race and

Estimate It!, we can tell whether or not the students are using gestures to help solve the

problems presented by the cyber watch. The science of gesture based learning is hard to

quantify since it is based purely off of observation and is hard to test. By studying and keeping a

video record of the case studies we can hopefully provide more insight to the science of gesture

based learning and teaching.

Figure 3: Metaphoric Gesture. Extracted from (Alibali and Natan, 2012)

Physical Games for Learning
 Page 8

2.3 ZUL: A Light-weight Architecture for Zigbee-based Ubiquitous
Applications, by Imran Zualkerman

One of the ideas that was presented and used as inspiration for an early iteration of the

cyber watch design was a Zigbee-Based Ubiquitous Layer, nicknamed ZUL (Zualkernan, 2011).

This system would be used as a way for testers to simply apply a catalog of questions to an end

node like a screen. This happens through the use of sensors that input to the host and then to

the internet where it can be stored and analyzed at a later date. There are some restrictions in

regard to this system, a few being:

a) Host and end node processing require a large amount of resources

b) The system is asynchronous when receiving input information and exporting that

information to the host and the only way for a signal to be sent is through event-driven

timing

The software associated with ZUL technology consists of two virtual machines designated to be

the host system and the Zigbee-node transceivers. Both of the virtual machines are designed in

the C programming language and .NET framework. One of the systems is a ZUL-H system

designed for the host, allowing the host to send and receive information based on the results of

the nodes. The nodes use a ZUL-E system for easy translation to the host and to interpret the

signals from the ZUL-H system. Finally, the entire system together consists of: a group of co-

processor configured Zigbee nodes, two 8-bit RISC architecture low-power microcontrollers in

master-slave mode, and the output systems such as buzzers and lights.

2.4 Constraining Movement Alters the Recruitment of Motor Processes in
Mental Rotation David Moreau

 Some of the readings we did corresponded to understanding the importance of

embodiment for performance and cognition, trying to answer questions such as: “Does mental

rotation depend on readiness to act?” Moreau suggests that different levels of motor ability may

result in different strategies to solve problems or that motor processes in mental rotation are

Physical Games for Learning
 Page 9

experience-dependent (Moreau, 2012, p. 447). In order to test this claim Moreau ran a test with

a control group of non-athletes and a group of nationally ranked Wrestlers (more mechanically

inclined). He claims that movement restriction should result in detrimental performance for all

individuals when mental rotation involves body items and that, when presented with non-body

items, only motor experts should be affected, as they rely on motor recoding of abstract shapes.

In short, how important is the readiness to act when attempting to solve mental rotation

problems?

 The test consisted of the two aforementioned groups. The first group was a control that

consisted of 7 females and 9 males who did not practice any sport or physical activity. The test

group consisted of 7 females and 9 males who practiced wrestling at an elite level (p. 449).

Participants were sat in front of a computer screen, either bound by ribbon ties or allowed to

have their hands free. They were shown a real object, either a hand model or a three

dimensional shape, that they would have to identify from a set of rotated images on the

computer. Sample images were provided on page 449 and shown below.

Figure 4: Computer Images (Moreau, p. 450)

Physical Games for Learning
 Page 10

 From the results above we can conclude that mental rotation and visualization is indeed

hindered by being constrained and not allowed the freedom to act, having motor activity

unavailable to them. We may also conclude that the test group of wrestlers, who are more

mechanically inclined, were both faster in response time and more correct in the mental rotation

task. This paper suggests a clear association between cognition, performance and motor

activity, as if ideas were encoded in motor form and we need motor action to encode and

retrieve concepts related to geometry and visual rotations.

2.5 Immersive simulation for Smart Classrooms: Exploring Evolutionary
Concepts in Secondary Science, by Lui and Slotta
 We believe that having students learn through activities promotes learning and greater

retention of knowledge. In their paper, Lui and Slotta discuss an application of this facilitation

through the use of an ‘EvoRoom’ which consisted of networked tablet computers working with

servers and projectors to produce an immersive environment (Lui and Slotta, 2014, p. 3).

Students would register with the room so that the software agents would be able to track

interactions with other students and the materials included in the room. Once all students had

Figure 4: Sample images shown to test groups. Extracted from (Moreau, p. 449)

Figure 5: Results graphs comparing correctness and response times between the control group
and the wrestlers. Extracted from (Moreau, p. 450)

Physical Games for Learning
 Page 11

logged into the room, the instructor would assign the role of ‘field researchers’ to groups

instructed to complete tasks. All real time updates would be shown on a board visible to the

entire class (Lui and Slotta, p. 16). This process of completing tasks is most easily

accomplished through cooperation between the instructor and the research team. Cooperation

enables the research team to hand off the ‘ownership’ of the instructional design. Getting a

complex system such as this one to work fluidly takes time and requires contribution from all

parties. This activity took a cumulative six months to design the first trial and another six months

to redesign the activity and perform it a second time (Lui and Slotta p. 19). The results of this

trial were heavily in favor of the use of tablets and being in an immersive environment produced

by the EvoRoom. For the use of tablets the average ratings were 8.5 and 7 out of a possible

ten for iterations one and two respectively. The EvoRoom itself received an average score of

nine for both iterations. All responses were taken as post activity questionnaires given out to

the students participating on each day. These scores were students’ perceptions and do not

relate to how well the material was understood by the students. Performance data was obtained

through an independent posttest based on the material in the activity. The posttest yielded much

higher results (average of 78.75 with a standard deviation of 16.16) compared to a pretest on

the same material (average of 59.40 with a standard deviation of 19.00). This indicates an

improvement in the students understanding of the material (Lui and Slotta, p. 24). The final

findings of this paper were that the use of personal tablets was beneficial to learning but

students still required some form of scaffolding to encourage student collaboration (Lui and

Slotta p. 30).

Physical Games for Learning
 Page 12

3. First Prototype
 For the first stage we needed to create a prototype that would be able to facilitate one of

the games, such that we could determine the effectiveness and usability of our device. The

result of this first prototype was a smart-watch style device that allowed for the game play of one

of the simpler games, Tangrams Race. This stage did not require any communication between

devices, and the games were simply pre-programmed onto the set of devices.

3.1 Goals
 Our major goal was to redesign the old hoodie/backpack E-Textiles devices into

something that was more appealing, safer, and robust. We hypothesize that the use of this

more attractive and smaller intuitive design will enable younger students to use the device as

well as spark their interest in the games being played, and technology in general. We also

believe that our design will be more accommodating in that it will fit a larger number of students,

without restrictions of age or body size.

3.2 Unit Design
The original designs were two-fold:

a) A backpack style device with all of the key components placed on a backpack with a

display on the sleeve for interaction, based completely on textiles and the Lilypad

Arduino microprocessor

b) A cyber-hoodie design, containing a display within the sleeve and wires running along

the sleeve to the back where the majority of the hardware would be placed.

In this case the backpack is preferable as it is easier to accommodate students of varying age

groups, given that a single backpack should fit the majority of children. The drawback in this

case is that the components are very exposed, making them more susceptible to damage or

potentially harmful to the children using them. We felt this design was outdated and could be

improved and simplified down to the size of a large watch with all of the components

consolidated underneath the display. The goal was to design a watch-like device that was small,

Physical Games for Learning
 Page 13

easily adjustable, and better protected the components. To make this design change, Shadi,

Alex, and Dylan worked on a SolidWorks model for the new device.

Figure 6: Housed Cyberwatch Render

To implement this new format the device needed a custom printed circuit board (PCB) that

replaces all of the manual wiring that was used in the backpack design. In order to lay out the

custom PCB the team utilized a program called Kicad. This allowed us to export a schematic

that we in turn sent to a PCB printing company called OSH Park. The final PCB models can be

seen below.

Figure 7: Design layout

Physical Games for Learning
 Page 14

Figure 8: PCB Front

Figure 9: PCB Back

Upgrading the design and creating a PCB allowed us to replace multiple parts including the

Arduino Lilypad microprocessor and power regulator. This allowed for the design to become

much smaller and more manageable when working in the field as well as far more robust.

 As this was our first experience with designing PCBs, it’s no surprise that we ran into

some issues. The PCB printing company also ‘mills’ the boards by drilling holes for the

components. Our planning didn’t take this into account, and as such we did not properly

configure the holes on the PCB design. As a result, the holes were too small and parts, such as

the four outer buttons, did not fit. To correct this, we crimped the leads of the push buttons in

half so that contact would still be made. Additionally, the WiFly module did not fit correctly due

to the same pin hole issue. We ended up leaving the WiFly module out of this prototype

because it was ultimately unnecessary as we required no communication to meet our goals for

the initial iteration. Finally, there were two pins for the screen that were misplaced on the board;

we ran soft wires between the PCB and the screen to correct the issue.

Physical Games for Learning
 Page 15

Figure 10: Cyberwatch Prototype 1 without housing

Figure 11: Cyberwatch Prototype 1 backside without housing

 Eventually, we added a casing to improve the look and safety of the device and we

added a wrist strap to secure the device to the user’s arm. We added the casing because safety

is an important factor and to prevent any damage to the watches or any harm to the user. The

casing also provided the ability to make the On/Off switch for the units more difficult to access

which prevented the children from accidentally or intentionally turning of their units mid game.

The casing was designed from a solid acrylic box to dramatically increase the durability and

secure the components. It was manufactured by laser cutting large acrylic sheets to fit the

dimensions of the watch components, which were then bonded together using Methylene

Chloride to form one single piece.

Physical Games for Learning
 Page 16

Figure 12: Housed Cyberwatch Prototype 1

3.3 Server Software
 For this stage, the project didn’t require any server or other external system to run the

game; however, looking ahead we began to lay out groundwork for the server that would

facilitate different kinds of games. In the interest of keeping the devices robust and adaptable to

a variety of games, we began designing a system that would deliver live questions and

responses to the device to provide students with instructions for gameplay. The major

component of this improved system is a database that stores all of the information for a game:

students, their assigned devices, and the responses that should be displayed on each device.

We needed to build a server that would send and receive requests to and from the devices

based on each student’s progress. The original plan was to design the server using the open

Physical Games for Learning
 Page 17

source TOMCAT Java Servlet and Java Server tools. We decided that this was not optimal

because there are already programming languages and platforms designed to handle live

communication (a la HTTP). Because of this, we began implementing a web application using

the Ruby on Rails platform which simplifies web server design, is nearly infinitely scalable, and

allows incredibly easy expandability through packages called gems. We’ll go into more detail

about our work in our description of the second prototype as the server implementation was

incomplete and unused for this part of the project.

3.4 Experiment and Procedure
The first trial of the newly designed cyber-watches was performed on November 7th,

2014, with 18 children at an after school program called The Kumon Center in Shrewsbury, MA,

USA. The watches were tested using the ‘Tangrams Race’ game, which was the M.S. project of

a student in Interactive Media & Game Development (IMGD) studies (Liu, 2014). The procedure

for the experiment was to quickly and informally teach brief and rudimentary geometry to the

children, followed by giving them a pre-survey and mathematics pre-test (with items extracted

from MCAS). Next, the children played the game, and then were given a post-survey and a

similar math post-test. Math pre-tests and post-tests were counterbalanced to guarantee

accurate measurement of student learning. The game was designed in a team format and each

team was given a bucket of tangram pieces. The students each received a number of questions

that related to one of the shapes in the buckets using mathematical terms and each question

had a corresponding hint. Each team sent one student to run and grab the piece described by

their current question. The students rotated through until they had collected all of the pieces,

and then each team worked to solve a tangram puzzle on a table at the starting line. Each

student was given a cyber-watch that was programmed with four questions, and four hints for

each question. The watches were strategically handed out so that each team would collect all of

the same pieces in the end. The questions were displayed on the watch screen and they could

Physical Games for Learning
 Page 18

use the watch to access hints or proceed to the next question. The game was played twice with

three teams of three students each.

3.5 Results and Observations:
 There was a ~10% difference between the pre and post-test scores, indicating the game

was to some extent successful in teaching the children about geometry. You can see below that

there is almost a 10pt difference in the means of the two tests.

Table 1: Paired Sample Statistics for Pretest and Posttest score in the Math Tests

	

All of the pre and post-survey questions were based on a 1-5 scale, 1 being the lowest

rating, and 5 the highest. The pre-survey focused on student’s confidence and general interest

in math. The post-survey focused on interest and confidence in math, as well as the student’s

interest and reaction to the game. The overall results showed an increase in both learning and

Physical Games for Learning
 Page 19

happiness of the children playing. Figures 13 and 14 show the children playing the Tangram

Race.

Figure 13: Pre-race team setup at The Kumon Center

Figure 14: Mid game, building of the tangrams

Physical Games for Learning
 Page 20

Question Average

Do you think math is an interesting subject? 4.2

In general, how confident are you when solving math problem? 4.2

How good would you be at learning something new in math? 4.2

How much do you like math? 4.5

Compared to most of your other school subjects, how good are you in math? 4.5

Table 2: Pre-survey Questions and average responses

Question Average

After playing this game, do you think math is an interesting subject? 4.2

How confident will you be when solving a math problem in the future? 4

In the future, how good would you be at learning something new in
math?

4.9

After playing this game, how much do you like math? 4.8

Do you prefer to learn math in the playground by playing games or sitting
in the classroom taught by teachers?

42% classroom
58% playground

How much did you enjoy playing this game? 4

How much did you learn by playing this game? 3.8

Would you play it again? 4

Table 3. Post-survey questions and averages responses

Observing the gameplay gave us some insight into the effectiveness of the watch as well

as future improvements that could be made. One issue with the watches is that the text rate is

non-adjustable for the students. This means that for some students the speed with which the

text scrolls across the screen was too slow, and for some the text moved too quickly. Another

issue was that students have access to the hints for each question before the question has

Physical Games for Learning
 Page 21

been completely displayed. We found that students were abusing this feature to immediately

proceed to the hints instead of waiting to read the entire question because the hints made it

much easier to find the correct piece. The last issue with the watches was that there was no

indication to students of how many pieces had been collected. Consequently, students were

confused because they could wrap around to questions they had already completed; an

indicator for the number of pieces collected could solve this problem. One solution, although not

implemented in this first prototype, would be to use RFID tags for the students to scan the

pieces collected, so that the game engine is aware of the pieces collected by each team.

In regard to other aspects of the experiment, during the game there was too much

outside stimulus from people and things not associated with the game and the children were

easily distracted (as it was “game night” in an afterschool program). Playing the game in an

actual classroom instead of in an afterschool environment would likely improve this

inconvenience. Similarly, a classroom environment should improve the results of the pre and

post-tests, during which we observed a few students cheating due to the seating arrangements.

A classroom would provide a better test-taking environment that would give us more reliable

results. Throughout the game, students were using the Tangram outline to determine pieces

that would fit in the figure, so the outline should be given to each team once they have collected

all of the pieces. The last concern is that students may be disheartened because of the

competitive component of the game. The students on the losing team were found to have the

most negative survey results in regard to the game as well as their interest in math. Providing a

prize or reward for all players in the game might improve the reactions of those children and

avoid students developing a negative attitude towards math and the games simply because they

aren’t winning.

Physical Games for Learning
 Page 22

4. Second Prototype and Server Implementation
 For the second prototype we had to modify the original design to accommodate all of the

necessary components for the more complicated “Estimate It!” game, also created by an IMGD

graduate student, Leigh Rountree. This meant reprinting new boards and recreating the

watches with new components. This game also required the server system to be fully functional.

The server was used to transfer necessary game information between itself and the devices.

We also created a user interface that allows for the creation, setup, and monitoring of games.

4.1 Goals
 The major goal of this second stage was to design the server and redesign the device to

accommodate the Estimate It! game. We expanded the scope beyond just educational games,

and began designing the interface with the idea that it could be used in a variety of fields of

work.

4.2 Unit Design
 In designing our second prototype we had to add several new components in order to

meet the requirements of the Estimate It! game. This required us to redesign our PCBs.

Figure 15: PCB Prototype 2, Front

Physical Games for Learning
 Page 23

Figure 16: PCB Prototype 2, Back

We replaced the old OLED character display with a new OLED pixel display. This makes it

somewhat more difficult to print things to the screen; however, the tradeoff is that we can draw

anything we want to the screen, beyond a single line of text. We kept the same Arduino Pro-

mini, battery, buttons, and on/off switch. In retrospect, we shouldn’t have used the Arduino, and

should have instead used a custom integrated circuit (IC) to accommodate the increased CPU

costs of writing to the screen, as well as handling all of the communication responses. The new

components were an RGB LED, a buzzer, an NFC reader, and the WiFly module. The LED and

buzzer provide additional feedback to the student as they progress through a game. The WiFly

module was added so that we would be able to communicate between the devices and the

server. The NFC reader gives us the ability to read NFC tags which would be used to identify

objects within a game. The tags could be placed on any object or a place within the game

environment, and the children could scan the tag with their watch in order to progress through

the game. This gives the capability to provide feedback to students on their answers such as

whether or not they scanned the correct object.

 For this iteration we were unable to build a plastic case for each device. While a case

provides a valuable means of protection for both the device itself and the child wearing it, the

ability to effectively run games has no dependence on having a securely encased device. The

cases could easily be implemented at a later date.

Physical Games for Learning
 Page 24

Figure 17: Prototype 2 Front

Figure 18: Prototype 2 Back

4.3 Server Software
 As stated earlier, we implemented the server as a web application by using Ruby on

Rails. There are seven goals the server needed to accomplish:

1. Allow teachers to create students and devices and pair them.

2. Allow teachers to create games.

3. Allow teachers to set up games.

4. Allow teachers to sign in and access games that they have previously created

5. Start and monitor games.

6. Maintain a database of all game information.

7. Send and receive responses to and from devices.

Physical Games for Learning
 Page 25

The server can be distributed into four major segments: the teacher panel, the database, the

code to accommodate the server and device communication, and the device emulator.

4.3.1 Teacher Panel
 The teacher panel supports the creation, setup, and monitoring of any games that a

teacher has on their account. You can see examples of the teacher interface and its different

sections in the figures below. The teacher panel is implemented on a Ruby on Rails server

which could be run on a teacher’s computer or on a remote web server. This server uses

Bootstrap 3, a useful tool that assists in graphically designing a website. There are menus to

access the game, student, and device lists which also hold their respective creation pages. The

actual functionality for managing and creating games is split into three panels: a create game

panel, a game setup panel, and a monitor game panel. In addition to the three panels, there is a

landing/home page as well as the sign in and sign up pages, which follow a standard format.

The graphical user interface (GUI) currently lacks any means to add teams to games or to

assign a student to a team. This is because of time constraints, which we address later on.

Despite this, the teams can be implemented in the database, which is described in section

4.3.2. It is worthy to note that this functionality is relatively simple to add and will likely be

implemented in the future.

Currently, the home page defaults to the games menu. It lists all of the games

associated with the teacher account. We’ll go into more detail further along. You can see links

across the top that lead to the Home (this page), Sign in, and Sign up sections. This navigation

is always available. Figures 19 and 20 show the Sign in and Sign up pages. These pages are

very similar to the account creation pages of other services. In the future, we may decide

against any need for teachers to maintain accounts, but for the time being, the functionality

remains.

Physical Games for Learning
 Page 26

Figure 19: Sign up page

Figure 20: Sign in page

 This next section displays and describes the different menus. The teacher panel will be

explained in further detail later. There are three menus that list the Games, Students, and

Devices, all of which are accessible from the top menu-bar of the web page.

Figure 21: Menu-Bar

Selecting the Games menu displays the page illustrated in Figure 22, which lists all of the

currently available games on the account that is currently signed in. The game id, title, number

of responses (frames) and number of students is listed for each game. From here a teacher can

begin creating a new game, edit an existing game, or start any games that are available on the

account. The create game will navigate to the create game panel, which is better explained later

on.

Physical Games for Learning
 Page 27

Figure 22: Games Menu

Selecting the Students Menu displays the following page which lists all of the students that a

teacher has added. Teachers can edit any of the students they already have, or create a new

student, which brings up the page shown in Figure 24.

Figure 23: Student Menu

Figure 24: Create Student Page

Selecting the Devices Menu lists all of the currently registered devices and their universally

unique identifiers (UUIDs). From here a teacher can create a new device or delete any of the

current devices.

Figure 25: Devices Menu

Physical Games for Learning
 Page 28

Now we get into the Teacher Panel which takes us through the entire game process. We create

a game, set it up, and monitor games through the panel. The create game functionality is

accessible from the Games Menu by using the Create Game button on the page.

The Create Game Panel is where we define the progression of the game. Responses

are added with the specified content and potential inputs that a student can make from the

device. First a user defines a title for the game. After that, responses are added one by one, by

first selecting the type of response to add. There are three possible response types: Text, LED,

and Buzz. As the response type is selected, the content input changes accordingly so the user

will enter text for text, a color for the LED, etc. A text response would represent any kind of text

to be printed to the display. This could be a question, a hint, or simply a welcome screen. The

LED response triggers the LED to display the selected color. When the LED response type is

selected, a color selector becomes available for the user to easily set the LED color. For the

buzzer, the user simply enters the amount of time they want the device to buzz for in

milliseconds. In order to specify the next step of the game, the teacher will first press the circular

plus button in the lower right-hand corner of the page. Next, they will change the “Do Nothing”

dropdown to the correct response to jump to if that button is pressed. For example, the first step

could be of type text saying “Welcome to the Game”, with every button dropdown set to “Go to

Step 2”. Step two could be of type text with further game instructions. In this example, the cyber-

watch would first display the welcome message, and when any button is pressed, display the

second step with further game instructions. The teams menu at the top allows the teacher to

specify the number of teams and the number of players per team. This in turn will generate

more “Do Nothing” dropdowns, with one set of four dropdowns (for each of the four buttons) per

team. Building the game in this dynamic manner allows us to specify different steps for different

teams, and allows us to allocate specific steps to specific teams. Using this interface, nearly any

game can be designed as long as it follows the state-based structure of a finite-state machine.

Physical Games for Learning
 Page 29

Upon entrance to a state, a light might turn on, or text can be displayed. Transitions between

states happen instantaneously, via timers, button presses, or scans using the NFC scanner.

Figure 26: Creating new game menu

The next stage is the student association page of the game setup panel. The game

setup is where a teacher selects a game and can assign students to the game and assign

devices to each student. Figure 27 shows the student association page. All of the students that

a teacher has entered are displayed and the teacher simply checks off which students to add to

the specific game. It also alerts the teacher to which students already belong to a game. If

checked, these students will automatically be re-assigned to this new game.

Physical Games for Learning
 Page 30

Figure 27: Assigning players to a created game

Next, there is the device assignment page of the game setup panel, shown below in

Figure 28. This page displays each of the previously checked students and allows them to be

associated with a previously inputted device via a drop down menu.

Figure 28: Device Assignment Page

 Finally, there is the panel to monitor a game that has already been started. There is

currently no implementation for adding teams to a game, so there is no information being

displayed on team progress in this panel. The only information is the progress of an individual

student. As you can see below, for each student we display the UUID of their assigned device

Physical Games for Learning
 Page 31

and the progress of that student, which is based on the responses that they have progressed

through.

Figure 29: Teacher panel showing student progression

4.3.2 Database
 The database is designed using the idea of a list of responses associated with each

game. The response table represents a step by step progression of the game, where each

device action directs to some other response in the table. The idea is that this opens up the

game development to be as versatile as possible. There are 6 tables in the database, however

for the following graphic and information we are going to ignore the user table. The user table

simply stores account information for the teacher and it is entirely independent of successfully

running a game, so for simplicity we will exclude it. Below is an example of the relations

between the tables for the current implementation of the database. Each block represents one

of the tables, and contains the tables’ title and all of its columns. The arrows and lines show the

relationship between the identifiers and the table entry they would direct to.

Physical Games for Learning
 Page 32

Figure 30: Database Relations

Below, there is a description of each table and its fields to assist in understanding the

database structure. All of the tables maintain timestamps to represent the time an entry was

created and the last time an entry was updated.

devices: id, uuid, student_id, created_at, updated_at, temp_ip, user_id, online

The id is a primary key.

The uuid is an assigned device-specific unique identifier.

Physical Games for Learning
 Page 33

The student_id creates the relation between the device and the student assigned to that device.

The temp_ip is used to keep track of the IP address that the device is using to connect to the server.

The user_id keeps track of the teacher account that the device is associated with.

The online boolean is used to tell the server if a device is currently active or not.

students: id, first_name, last_name, game_id, team_id, user_id, response_id, player_number

The id is a primary key.

The first_name field is the text of the student's first name.

The last_name field is the text of the student's last name.

The game_id field links the game that the student is currently playing.

The team_id represents the team that a current student is assigned to.

The user_id keeps track of the account that the student is associated with.

The response_id represents the response in the response table that a student is currently on..

The player_number represents the order of the player on the team. For a three person team, the player

numbers would be 1, 2, and 3.

games: id, title, in_progress, user_id

The id is a primary key.

The title is simple text for the name of the game.

The in_progress field is a boolean to determine if the instance of the game is active or inactive.

The user_id keeps track of the teacher account that the game is associated with.

responses: id, game_id, response_type, content, receive_actions, delay, next_id, stall

The id is a primary key.

The game_id defines the game that the response is associated with.

The response_type defines the type of the response. This could be text, buzzer, or LED.

The content defines the actual content describes the information for the associated response_type.

The receive_actions is a hashmap that defines the net response to go to depending on the read input.

The delay represents the time for some response to be performed. Used to define the times the LED or

buzzer are activated.

The next_id defines what the next response will be after this current response has finished.

Physical Games for Learning
 Page 34

The stall boolean indicates whether or not to stop all players on a step until the entire team has reached

that step.

teams: id, name, game_id, user_id, team_number

The id is a primary key.

The name represents the name of a team.

The game_id represents the game that a team is associated with.

The user_id keeps track of the teacher account that the team is associated with.

The team_number keeps track of the order of each team.

4.3.3 Server and Device Communication
 The communication between the device and the server are accomplished by using

websockets. When a watch is turned on it opens a web socket to the server performing a

websocket handshake to establish a connection. Once connected, the watch immediately sends

an authentication request to the server with its UUID. This is our own authentication request,

separate from HTTP authentication. Once the device has been authenticated, the server will

update the device’s entry in the devices table in the database to specify that this device is

online. Once the device is online, the socket connection remains open but we send no

messages between the device and server until the game the device is associated with begins.

Note that the websocket protocol implementation we utilized has a “ping”, “pong” method of

keeping the socket open. Every specified amount of time (usually a second or so), the server

sends the device a special “ping” message. If the device does not reply with a special “pong”

message, both devices assume the connection has been closed and can take action

accordingly.

 On game start, the game queries the database for all of the students associated with it,

and looks for all those students that have a device that is currently online. Once the list of online

devices has been established we immediately push the first response associated with the game

Physical Games for Learning
 Page 35

to all of the devices. The game functionality continues through the use of seven main functions

within the game.rb model: gameStart, transmitResponse, reportToPanel, resetIfDone,

returnNextResponse, gameEnd and interpretNextAction.

gameStart(student_id): This method takes a student and determines the title of the current

game associated with the student. It then transmits the title of the game to the device.

transmitResponse(student_id): This method takes a student_id and determines the current

response associated with that student by looking at that student’s response_id in the students

table. The function reads the response from the table, transmits it to the device, and increments

the response_id appropriately. The function recursively calls itself until it reaches a response

that depends on user input, because it will just continue incrementing the response and

proceeding each time.

reportToPanel(student_id): This function takes a student_id and determines what response

the student is currently on by consulting the students table. The function then determines the

total number of responses in the game, which it compares to the student’s current response to

determine the total progress the student has made. Note that with the current team

implementation, some students are never meant to see certain responses. Due to this, the

progress percentage is not accurate, because a student’s progress is measured against the

entire list of responses, instead of just the responses they are intended to progress through. In

the future the progress calculation should be modified to more accurately determine a student’s

progress.

resetIfDone(tp_uuid): This function determines if all of the students are at the end of a game,

and will reset the game to no longer be in progress, and will reset all students to a clean

state(no longer assigned to a game).

returnNextResponse(response_id): This method takes a response_id and returns the next

response in the progression.

Physical Games for Learning
 Page 36

gameEnd(student_id): This method sends a message to the devices to inform them that a

game has been completed.

interpretNextAction(uuid, action_id): This method is called whenever there is user input from

the watch. This could be either a button press or an NFC tag read. When input is received, the

method determines the response that is expecting the received input by finding the current

response of the student associated with the device uuid. The action_id is used with the

receive_actions hashmap in the responses table to determine the id of the next response based

on the input, and then updates the student’s response_id. The function then calls the

transmitResponse function with the student_id to return a response to the device.

 There are methods to call these helper functions through the web-socket connection,

which are: client_connected, client_disconnected, button_pressed, and nfc_scanned. As the

inputs occur on the devices the appropriate function is called, which then refers to the helper

functions on the server. These functions are located in the device_controller.rb file.

 Besides creating the functions to facilitate the server-device communication, we needed

to create our own format for the responses being sent to the device. For each response we

specify the game_id, the response_type (text, led, buzz), the content of the response, and the

receive_actions (the next response based on device input). Additionally, the stall condition can

be specified which is used to halt a team until all players arrive at that response. Leaving the

stall field out of a response defaults the stall state to false. Below is an example response from

the seeds.rb file we used to populate our database.

Response.create(

 game_id: game.id,

 response_type: "text",

 content: "{:text => 'That was not the right color...\nPress any button to try again.'}",

 receive_actions: "{'button1' => 7, 'button2' => 7, 'button3' => 7, 'button4' => 7}");

Physical Games for Learning
 Page 37

Due to time constraints we were unable to build the fully functioning GUI interface required to

specify the Estimate It! game completely. We created the responses using the syntax above,

and added them to the game using the seeds.rb file.

 The Estimate IT! Game was specified by Leigh Rountree (IMGD Masters student) and

consisted of different levels, and students working in teams. Watches are synchronized for

people in the team at all times, so that they cannot move on beyond certain moments/states

unless every person in the team has gotten there.

4.3.4 Device Emulator
 To facilitate our testing we developed a device emulator on the server. Using JavaScript,

we created an emulator to fully mimic the actions of an actual device. It has functionality to

represent each of the different components on the physical watch. The emulator uses the same

communication methods as the actual device does. Just like the physical devices we designed,

the virtual device must be assigned to a student (by assigning it a UUID), and can only receive

messages from a game that has begun. The top circle represents the LED. To recreate NFC tag

reads, NFC tags were supplemented with specific sequences of button presses.

To use the virtual device, you must first enter a UUID that is assigned to a student

associated with a game that has begun. After the UUID is entered and set, the virtual device

can be powered on by pressing the switch displayed in the bottom left. At this point a user will

receive responses and can progress through the game just as they would with a physical

device.

Physical Games for Learning
 Page 38

Figure 31: Virtual Device Emulator

 The device emulator proved to be more than just a means of testing our server

implementation. Due to the constraints of the Arduino Pro-mini used in our smart-watches, we

were unable to implement all of the requirements for the Estimate It! game on our physical

devices. The costs of writing to the screen, processing device inputs, and maintaining a wireless

communication proved to be too much for the processor we built our device around. It was

infeasible to redesign and reprint PCBs around a processor that met our requirements due to

time constraints. In order to trial the Estimate It! game with a group of students we resorted to

using the virtual device in place of the physical devices which were not capable of facilitating all

of the games requirements.

4.4 Playing Estimate It!
 Despite issues with our device, and in getting the game creation pages to be able to

facilitate all aspects of the Estimate It! game we were able to trial the game with a group of

students. The game was built by manually entering messages, teams, students, and state

specifications and state transitions constraints as well as device specifications into the database

via a seeds.rb file (an initialization file that populates the PostGres database completely, and

sets up initialization parameters). Once the database was properly seeded we were able to

launch a game from our web page, and monitor individual progress via the game monitor panel.

Physical Games for Learning
 Page 39

 The Estimate It! game was designed as a scavenger hunt that is meant to encourage

practice and learning of a child’s estimation skills and properties of geometric objects. As they

play, students are delivered responses that provide clues (a mathematical description) about

some 3D shape (volumes such as spheres, cubes, prisms and cylinders) that is hidden in the

play area. Each question is paired with a “hint” that a student can access by pressing the

specified button, that is meant to teach students as they get stuck and cannot find the object.

Students use their knowledge of geometry and estimation skills to determine what shape they

are being asked to find.

At the same time, each shape is assigned some sequence of button presses

(represented by the button colors) that the student must enter into the virtual device to assess

whether that is the correct sought object. As the sequence is input, the students receive

immediate feedback on whether or not the button press was correct. There are 3 levels to the

Estimate It! game. Level 1 calls for the students to find different objects as individuals, where

the accomplishment of each student makes the whole team win and progress further (we call

this cooperation, as players are given individual tasks that are compatible for the team to

succeed). Levels 2 and 3 require the teams to work together to find single objects (we call this

collaboration, as all students in the team discuss about the sought object).

Synchronization of watches for a team happen through a “stall” condition, so that

students in the same team are stalled at specific states in the game, so that the team doesn’t

progress until all members have successfully input the sequence of the correct object, or

managed to find the right object. The first level of the Estimate It! Game is specified in Figure

32.

Physical Games for Learning
 Page 40

Figure 32. Finite State Transition Diagram for Level 1 of the Estimate it! Game

Figure 32 shows the level of complexity that the software component (server) needs to handle.

As students move through states during the game, students within the same team need to be

synchronized to some extent, as well as their watches. For instance, as students push buttons

and read messages and arrive at state 6, after InstructionMsg3 (a label that corresponds to a

full message in two lines on each students’ watch), the members of the team diverge into 3

different messages, as every member of the team will start searching for a different object. As

students search and find objects that follow geometric and measurement constraints (with a 12

inch dowel provided as the only measurement tool), they try answers (which they input as a

sequence of colored buttons) , request the watch for help/hints, until they get to the correct

object. When a student reaches state 17 (and read InstructionMsg4) they stall and cannot

move on until all members of the team have reached that point when they found the correct

object. The role of the children is now to help other members of their team to find the objects

that they are looking for.

 The specification of a game via a state transition diagram, with events to transition

between them, and being able to enter them (author games at this level of detail) into the

system, for later transmission via WiFy to the watches, as well as monitoring of students and

Physical Games for Learning
 Page 41

teams, makes this a sophisticated piece of machinery, infrastructure that can serve a variety of

educational games (or simply games) for different disciplines and children ages.

 We tested the Estimate It! game with a group of thirteen 4th grade students at the Kumon

Center on May 1st, 2015. The study was a pilot study, and we divided the 13 children to play two

separate games, the first using two teams of three players and the second using two teams of

two players and a team of three players. There were a number of issues we encountered during

our trial at the Kumon Center. For reasons unknown, the machine we used to run the server

failed to stall students correctly. This issue was overcome by manually editing the database to

place students at the correct response which allowed them to continue gameplay. Another issue

was that the students were repeatedly being disconnected from the game. There were several

reasons for the disconnects: students accidently turning their virtual device off, students

accidently leaving the webpage, or the device disconnecting itself from the network. This issue

can be solved by using the physical device instead of using smart phones or tablets to run the

game through the virtual device.

Figure 33. Student analyzing the Cylinder object and verifying that it satisfies constraints on his
Cyberwatch (left); Full group analyzing a cube and verifying if this one satisfies constraints

(right)

Physical Games for Learning
 Page 42

 In spite of these technical issues, we were able to complete the two instances of the

Estimate It! Game (see Figure 33 for a team of students playing the game), and the IMGD

graduate student is analyzing results in relation to student learning and motivation. We (IQPs)

informally wrote observations by following teams, and analyzed students reactions, which were

generally positive. Students enjoyed playing the game, though they found the questions and

hints to be too simple, and reported they could have used more challenge.

Students also commented on the devices themselves: all students would have preferred

to use tablets instead of smart phones for the larger display; also, the majority of students would

have preferred tactile buttons instead of touch screens. Students seemed satisfied after the

game; regardless of how well they performed, which was encouraging, as the technology and

Internet connection did not fail enough to make them unmotivated. We believe that in the future

we can obtain much more meaningful results by running the game via dedicated devices, and a

server that is fully operational.

5. Future Plans
 In our final design stages we started working towards a versatile implementation that we

believed would facilitate a variety of games. By changing our whole design to use a set of

responses, a step-by-step progression for a game, we designed a system that should in theory

allow for the creation of any kind of game. The games have the potential to use any of the

current components: pixel display, buzzer, and RGB LED. Based on the current server design it

should be relatively simple to add new components that would simply constitute different types

of responses. There is a lot of potential for our system to accommodate all kinds of learning

games that could benefit from the use of a technical device.

 Currently the server is not fully implemented. The GUI for creating a game needs to be

redesigned such that it can more elegantly handle creating responses that are specific to an

individual or team. We believe that using a wizard to facilitate game creation would make the

Physical Games for Learning
 Page 43

implementation easier to build upon, more visually appealing, and easier to use. Necessary

additions to the front end include the ability to edit a game and improvements to the game

monitor panel to provide more accurate information about games and players. Furthermore, the

backend should be refactored to improve efficiency. A function should be created that can

traverse the game tree; this would allow the system to better handle the delivery of responses to

students, and would allow for easier, more accurate monitoring.

 The device itself requires a complete overhaul. The PCBs need to be redesigned and

reprinted, ideally with an IC that would be significantly more powerful than the current Arduino

processor. Improving the device processor will remove the necessity to do any extreme code

optimization. This should also make the device thinner, and a smaller device is more suitable for

young kids. The new device should accommodate all of the components on the current

prototype, as well as the NFC reader which went unused. Similar to the first prototype, a final

design should implement a case and a strap.

6. Conclusion
 This project went through much iteration to reach the current state, and could undergo

many more iterations in order to become a polished and finished product. However, we have put

countless hours into building what has culminated in a mobile platform that can serve

specialized data from a server, allow games creation and game play in real-time.

Although we chose to focus on the educational aspect of this platform, the potential for

expansion in nearly any field such as business optimization, quality control, or firefighting is

unlimited. Smartphones are popular and perform many functions well but they are prohibitively

expensive. Instead, the device we have created is very inexpensive and performs one function

without fail. Furthermore, the networked nature of this device makes it a prime candidate for

future development as the industry of tech wearables grows at an ever increasing rate.

Physical Games for Learning
 Page 44

We found success with this platform when applied in an educational setting, as we used

it to engage young students’ attention and encourage teamwork, creativity, and problem solving.

Ultimately, this platform was built on the concept of scalability and with the idea of having a

dynamic nature so as to be able to adapt to any game type. With the assistance of Professor

Ivon Arroyo, Leigh Rountree, and many other mentors and helpers, we were able to build what

we are proud to call a new technology – that is, we were able to build a system from the ground

up, applying our knowledge gained here at Worcester Polytechnic Institute. This, we believe, is

telling not only of the success of the IQP but also that the knowledge gained at WPI will assist

us in our future endeavors.

Physical Games for Learning
 Page 45

References

Alibali, M. W.; Nathan, M.l J. (2012): “Embodiment in Mathematics Teaching and Learning:

Evidence From Learners' and Teachers' Gestures”, Journal of the Learning Sciences,

21:2, 247-286 https://docs.google.com/file/d/0B_dUxqCpzSjOSVhZblVGRDlwYlk/edit

Arroyo, I. (2014) “NSF Cyberlearning: Grant Proposal on Cyber Hoodies”

https://docs.google.com/file/d/0B_dUxqCpzSjOeEpFSGI5cHhpdEU/edit

Liu, Y. (2014) Tangram Race Mathematical Game: Combining Wearable Technology and

Traditional Games for Enhancing Mathematics Learning

Thesis presented towards completion of the MS in Interactive Media and Game Development at

WPI.

Lui, M.; Slotta, J. D. “Immersive simulations for smart classrooms: Exploring evolutionary

concepts in secondary science” Ontario Institute for Studies in Education, University of

Toronto, Toronto, Canada; n. p. Google Drive. Web.

https://docs.google.com/document/d/1S4OklqYS5lWAn2D118eUB4hskUbneNVKaOKEn

OH8RLo/edit#heading=h.gjdgxs

Moreau, D. “Constraining movement alters the recruitment of motor processes in mental

rotation” Springer-Verlag Berlin Heidelberg 2012,

https://docs.google.com/file/d/0B_dUxqCpzSjOWG5fU1VtLWI1ZHM/edit

Wilson, M. “Six views of Embodied Cognition” (2002): n. p. Google Drive. Web.

https://docs.google.com/file/d/0Bx06nt2HVJ-FTC1TcDhSQzhCUEk/edit

Woolf, B.P. (2010). A Roadmap for Education Technology. funded by the National Science

Foundation # 0637190.

http://www.cra.org/ccc/files/docs/groe/GROE%20Roadmap%20for%20Education%20Te

chnology%20Final%20Report.pdf

Physical Games for Learning
 Page 46

Zualkerman, I. A. "ZUL – A Light-Weight Architecture for Zigbee-based Ubiquitous

Applications." (2011): n. p. Google Drive. Web.

<https://docs.google.com/file/d/0Bx06nt2HVJ-FYzlIMHJNMnY0QWs

Physical Games for Learning
 Page 47

7. Abstract

7.1 bounce.cpp
#include	
 "Arduino.h"	

#include	
 "bounce.h"	

	

#define	
 DEBOUNCED_STATE	
 0	

#define	
 UNSTABLE_STATE	
 	
 1	

#define	
 STATE_CHANGED	
 	
 	
 3	

	

Bounce::Bounce()	

	
 	
 	
 	
 :	
 previous_millis(0)	

	
 	
 	
 	
 ,	
 interval_millis(5)	

	
 	
 	
 	
 ,	
 state(0)	

	
 	
 	
 	
 ,	
 pin(0)	

{}	

	

void	
 Bounce::attach(int	
 pin)	
 {	

	
 	
 	
 	
 this-­‐>pin	
 =	
 pin;	

	
 	
 	
 	
 bool	
 read	
 =	
 digitalRead(pin);	

	
 	
 	
 	
 state	
 =	
 0;	

	
 	
 	
 	
 if	
 (digitalRead(pin))	
 state	
 =	
 _BV(DEBOUNCED_STATE)	
 |	
 _BV(UNSTABLE_STATE);	

	
 	
 	
 	
 previous_millis	
 =	
 millis();	

}	

	

void	
 Bounce::interval(uint16_t	
 interval_millis)	
 {	

	
 	
 	
 	
 this-­‐>interval_millis	
 =	
 interval_millis;	

}	

	

bool	
 Bounce::update()	
 {	

	
 	
 	
 	
 //	
 Read	
 the	
 state	
 of	
 the	
 switch	
 in	
 a	
 temporary	
 variable.	

	
 	
 	
 	
 bool	
 currentState	
 =	
 digitalRead(pin);	

	
 	
 	
 	
 state	
 &=	
 ~_BV(STATE_CHANGED);	

	

	
 	
 	
 	
 //	
 If	
 the	
 reading	
 is	
 different	
 from	
 last	
 reading,	
 reset	
 the	
 debounce	
 counter	

	
 	
 	
 	
 if	
 (
 currentState	
 !=	
 (bool)(state	
 &	
 _BV(UNSTABLE_STATE))	
)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 previous_millis	
 =	
 millis();	

	
 	
 	
 	
 	
 	
 	
 	
 state	
 ^=	
 _BV(UNSTABLE_STATE);	

	
 	
 	
 	
 }	
 else	

	
 	
 	
 	
 	
 	
 	
 	
 if	
 (
 millis()	
 -­‐	
 previous_millis	
 >=	
 interval_millis	
)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 We	
 have	
 passed	
 the	
 threshold	
 time,	
 so	
 the	
 input	
 is	
 now	
 stable	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 If	
 it	
 is	
 different	
 from	
 last	
 state,	
 set	
 the	
 STATE_CHANGED	
 flag	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 ((bool)(state	
 &	
 _BV(DEBOUNCED_STATE))	
 !=	
 currentState)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 previous_millis	
 =	
 millis();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 state	
 ^=	
 _BV(DEBOUNCED_STATE);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 state	
 |=	
 _BV(STATE_CHANGED);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	

	
 	
 	
 	
 return	
 state	
 &	
 _BV(STATE_CHANGED);	

}	

	

bool	
 Bounce::read()	
 {	

	
 	
 	
 	
 return	
 state	
 &	
 _BV(DEBOUNCED_STATE);	

}	

	

Physical Games for Learning
 Page 48

bool	
 Bounce::rose()	
 {	

	
 	
 	
 	
 return	
 (
 state	
 &	
 _BV(DEBOUNCED_STATE)	
)	
 &&	
 (
 state	
 &	
 _BV(STATE_CHANGED));	

}	

	

bool	
 Bounce::fell()	
 {	

	
 	
 	
 	
 return	
 !(
 state	
 &	
 _BV(DEBOUNCED_STATE)	
)	
 &&	
 (
 state	
 &	
 _BV(STATE_CHANGED));	

}	

7.2 bounce.h
#ifndef	
 BOUNCE_H	

#define	
 BOUNCE_H	

	

#include	
 <inttypes.h>	

	

class	
 Bounce	
 {	

	
 public:	

	
 	
 	
 	
 //	
 Create	
 an	
 instance	
 of	
 the	
 bounce	
 library	

	
 	
 	
 	
 Bounce();	

	

	
 	
 	
 	
 //	
 Attach	
 to	
 a	
 pin	
 (and	
 also	
 sets	
 initial	
 state)	

	
 	
 	
 	
 void	
 attach(int	
 pin);	

	

	
 	
 	
 	
 //	
 Sets	
 the	
 debounce	
 interval	

	
 	
 	
 	
 void	
 interval(uint16_t	
 interval_millis);	

	

	
 	
 	
 	
 //	
 Updates	
 the	
 pin	

	
 	
 	
 	
 //	
 Returns	
 1	
 if	
 the	
 state	
 changed	

	
 	
 	
 	
 //	
 Returns	
 0	
 if	
 the	
 state	
 did	
 not	
 change	

	
 	
 	
 	
 bool	
 update();	

	

	
 	
 	
 	
 //	
 Returns	
 the	
 updated	
 pin	
 state	

	
 	
 	
 	
 bool	
 read();	

	

	
 	
 	
 	
 //	
 Returns	
 the	
 falling	
 pin	
 state	

	
 	
 	
 	
 bool	
 fell();	

	

	
 	
 	
 	
 //	
 Returns	
 the	
 rising	
 pin	
 state	

	
 	
 	
 	
 bool	
 rose();	

	

	
 protected:	

	
 	
 	
 	
 unsigned	
 long	
 previous_millis;	

	
 	
 	
 	
 uint16_t	
 interval_millis;	

	
 	
 	
 	
 uint8_t	
 state;	

	
 uint8_t	
 pin;	

};	

	

#endif	

7.3 buzzer.cpp
#include	
 "Arduino.h"	

#include	
 "buzzer.h"	

	

#define	
 OFF_STATE	
 0	

Physical Games for Learning
 Page 49

#define	
 ON_STATE	
 1	

#define	
 ON_DURATION_STATE	
 2	

	

Buzzer::Buzzer()	

	
 	
 :	
 previous_millis(0)	

	
 	
 ,	
 duration_millis(1000)	

	
 	
 ,	
 state(0)	

	
 	
 ,	
 pin(0)	

{}	

	

void	
 Buzzer::attach(uint8_t	
 pin)	
 {	

	
 	
 this-­‐>pin	
 =	
 pin;	

	
 	
 state	
 =	
 OFF_STATE;	

	
 	
 previous_millis	
 =	
 millis();	

}	

	

void	
 Buzzer::onDuration(uint16_t	
 duration_millis)	
 {	

	
 	
 on();	

	
 	
 state	
 =	
 ON_DURATION_STATE;	

	
 	
 this-­‐>duration_millis	
 =	
 duration_millis;	

	
 	
 previous_millis	
 =	
 millis();	

}	

	

void	
 Buzzer::update()	
 {	

	
 	
 if(state	
 ==	
 ON_DURATION_STATE)	
 {	

	
 	
 	
 	
 if	
 (previous_millis	
 +	
 duration_millis	
 <=	
 millis())	
 off();	

	
 	
 }	

}	

	

void	
 Buzzer::on()	
 {	

	
 	
 state	
 =	
 ON_STATE;	

	
 	
 digitalWrite(pin,	
 HIGH);	

}	

	

void	
 Buzzer::off()	
 {	

	
 	
 state	
 =	
 OFF_STATE;	

	
 	
 digitalWrite(pin,	
 LOW);	

}	

7.4 buzzer.h
#ifndef	
 BUZZER_H	

#define	
 BUZZER_H	

	

#include	
 <inttypes.h>	

	

class	
 Buzzer	
 {	

	
 	
 public:	

	
 	
 	
 	
 Buzzer();	

	
 	
 	
 	
 void	
 attach(uint8_t	
 pin);	

	
 	
 	
 	
 void	
 onDuration(uint16_t	
 duration_millis);	

	
 	
 	
 	
 void	
 on();	

	
 	
 	
 	
 void	
 off();	

	
 	
 	
 	
 void	
 update();	

	

	
 protected:	

	
 	
 	
 	
 unsigned	
 long	
 previous_millis;	

Physical Games for Learning
 Page 50

	
 	
 	
 	
 uint16_t	
 duration_millis;	

	
 	
 	
 	
 uint8_t	
 state;	

	
 	
 	
 	
 uint8_t	
 pin;	

};	

	

#endif	

7.5 ledRGB.cpp
#include	
 "Arduino.h"	

#include	
 "ledRGB.h"	

	

#define	
 OFF_STATE	
 0	

#define	
 ON_STATE	
 1	

#define	
 ON_DURATION_STATE	
 2	

	

LedRGB::LedRGB()	

	
 	
 :	
 previous_millis(0)	

	
 	
 ,	
 duration_millis(1000)	

	
 	
 ,	
 state(0)	

	
 	
 ,	
 red_pin(0)	

	
 	
 ,	
 green_pin(0)	

	
 	
 ,	
 blue_pin(0)	

	
 	
 ,	
 red(60)	

	
 	
 ,	
 green(60)	

	
 	
 ,	
 blue(60)	

{}	

	

void	
 LedRGB::attach(uint8_t	
 red_pin,	
 uint8_t	
 green_pin,	
 uint8_t	
 blue_pin)	
 {	

	
 	
 this-­‐>red_pin	
 =	
 red_pin;	

	
 	
 this-­‐>green_pin	
 =	
 green_pin;	

	
 	
 this-­‐>blue_pin	
 =	
 blue_pin;	

	
 	
 state	
 =	
 OFF_STATE;	

	
 	
 previous_millis	
 =	
 millis();	

}	

	

void	
 LedRGB::setColor(uint8_t	
 red,	
 uint8_t	
 green,	
 uint8_t	
 blue)	
 {	

	
 	
 this-­‐>red	
 =	
 red;	

	
 	
 this-­‐>green	
 =	
 green;	

	
 	
 this-­‐>blue	
 =	
 blue;	

}	

	

void	
 LedRGB::setRedColor(uint8_t	
 red)	
 {	

	
 	
 this-­‐>red	
 =	
 red;	

}	

	

void	
 LedRGB::setGreenColor(uint8_t	
 green)	
 {	

	
 	
 this-­‐>green	
 =	
 green;	

}	

	

void	
 LedRGB::setBlueColor(uint8_t	
 blue)	
 {	

	
 	
 this-­‐>blue	
 =	
 blue;	

}	

	

void	
 LedRGB::onDuration(uint16_t	
 duration_millis)	
 {	

	
 	
 on();	

	
 	
 state	
 =	
 ON_DURATION_STATE;	

Physical Games for Learning
 Page 51

	
 	
 this-­‐>duration_millis	
 =	
 duration_millis;	

	
 	
 previous_millis	
 =	
 millis();	

}	

	

void	
 LedRGB::update()	
 {	

	
 	
 if(state	
 ==	
 ON_DURATION_STATE)	
 {	

	
 	
 	
 	
 if	
 (previous_millis	
 +	
 duration_millis	
 <=	
 millis())	
 off();	

	
 	
 }	

}	

	

void	
 LedRGB::on()	
 {	

	
 	
 state	
 =	
 ON_STATE;	

	
 	
 analogWrite(red_pin,	
 red);	

	
 	
 analogWrite(green_pin,	
 green);	

	
 	
 analogWrite(blue_pin,	
 blue);	

}	

	

void	
 LedRGB::off()	
 {	

	
 	
 state	
 =	
 OFF_STATE;	

	
 	
 analogWrite(red_pin,	
 0);	

	
 	
 analogWrite(green_pin,	
 0);	

	
 	
 analogWrite(blue_pin,	
 0);	

}	

7.6 ledRGB.h
#ifndef	
 LED_H	

#define	
 LED_H	

	

#include	
 <inttypes.h>	

	

class	
 LedRGB	
 {	

	
 	
 public:	

	
 	
 	
 	
 LedRGB();	

	
 	
 	
 	
 void	
 attach(uint8_t	
 red_pin,	
 uint8_t	
 green_pin,	
 uint8_t	
 blue_pin);	

	
 	
 	
 	
 void	
 setColor(uint8_t	
 red,	
 uint8_t	
 green,	
 uint8_t	
 blue);	

	
 	
 	
 	
 void	
 setRedColor(uint8_t	
 red);	

	
 	
 	
 	
 void	
 setGreenColor(uint8_t	
 green);	

	
 	
 	
 	
 void	
 setBlueColor(uint8_t	
 blue);	

	
 	
 	
 	
 void	
 onDuration(uint16_t	
 duration_millis);	

	
 	
 	
 	
 void	
 on();	

	
 	
 	
 	
 void	
 off();	

	
 	
 	
 	
 void	
 update();	

	

	
 protected:	

	
 	
 	
 	
 unsigned	
 long	
 previous_millis;	

	
 	
 	
 	
 uint16_t	
 duration_millis;	

	
 	
 	
 	
 uint8_t	
 state;	

	
 	
 	
 	
 uint8_t	
 red_pin;	

	
 	
 	
 	
 uint8_t	
 green_pin;	

	
 	
 	
 	
 uint8_t	
 blue_pin;	

	
 	
 	
 	
 uint8_t	
 red;	

	
 	
 	
 	
 uint8_t	
 green;	

	
 	
 	
 	
 uint8_t	
 blue;	

};	

	

#endif	

Physical Games for Learning
 Page 52

7.7 IQPCode.ino
#include <SoftwareSerial.h>
#include <U8glib.h>
#include <WiFlyHQ.h>
#include <ArduinoJson.h>
#include "bounce.h"
#include "ledRGB.h"
#include "buzzer.h"

#define BLUE_LED_PIN (uint8_t)9
#define RED_LED_PIN (uint8_t)10
#define GREEN_LED_PIN (uint8_t)11

#define BUZZER_PIN (uint8_t)8

#define BUTTON1_PIN A3
#define BUTTON2_PIN A1
#define BUTTON3_PIN A2
#define BUTTON4_PIN A0
//
//#define WIFI_SSID "SR"
//#define WIFI_PASSWORD "00000000"
//#define URL_HEAD "192.168.1.2"

//SoftwareSerial wifiSerial(13, 12);

//WiFly wifly;

Bounce debounce1 = Bounce();
Bounce debounce2 = Bounce();
Bounce debounce3 = Bounce();
Bounce debounce4 = Bounce();

LedRGB led = LedRGB();
Buzzer buzzer = Buzzer();

U8GLIB_NHD31OLED_2X_GR u8g(6, 5, 2, 4, 3);
//
boolean refresh = true;
//boolean messageAvailable = false;
//
char inBuf[128];
char outBuf[128];
uint8_t outBufInd = 0;

Physical Games for Learning
 Page 53

StaticJsonBuffer<200> jsonBuffer;
//char json[] = "input";

void setup() {
 pinMode(RED_LED_PIN, OUTPUT);
 pinMode(GREEN_LED_PIN, OUTPUT);
 pinMode(BLUE_LED_PIN, OUTPUT);

 pinMode(BUZZER_PIN, OUTPUT);

 pinMode(BUTTON1_PIN, INPUT_PULLUP);
 pinMode(BUTTON2_PIN, INPUT_PULLUP);
 pinMode(BUTTON3_PIN, INPUT_PULLUP);
 pinMode(BUTTON4_PIN, INPUT_PULLUP);

 debounce1.attach(BUTTON1_PIN);
 debounce2.attach(BUTTON2_PIN);
 debounce3.attach(BUTTON3_PIN);
 debounce4.attach(BUTTON4_PIN);
 led.attach(BLUE_LED_PIN, GREEN_LED_PIN, RED_LED_PIN);
 buzzer.attach(BUZZER_PIN);

// wifiSerial.begin(9600);
// wifly.begin(&wifiSerial, &Serial);
//
// if(!wifly.isAssociated()) {
// /* Setup the WiFly to connect to a wifi network */
// wifly.join(WIFI_SSID, WIFI_PASSWORD, true);
// wifly.save();
// }
//
// if (wifly.isConnected()) wifly.close();
//
// connected = wifly.open(URL_HEAD, 80);
}

void draw() {
 u8g.setFont(u8g_font_5x7);
 u8g_prepare();
 u8g.setColorIndex(1);
 u8g.drawStr(0, 0, "Worcester Polytechnic Institute");
 u8g.drawStr(196, 0, "Wifi:");
 u8g.drawStr(226, 0, "None");

Physical Games for Learning
 Page 54

 u8g.drawHLine(0, 9, 255);
 u8g.setFont(u8g_font_6x10);
 u8g_prepare();
 u8g.setColorIndex(2);
 u8g.drawStr(0, 12, "Button1:");
 u8g.drawStr(54, 12, debounce1.read() ? "true" : "false");
 u8g.drawStr(128, 12, "Button2:");
 u8g.drawStr(182, 12, debounce2.read() ? "true" : "false");
 u8g.drawStr(0, 24, "Button3:");
 u8g.drawStr(54, 24, debounce3.read() ? "true" : "false");
 u8g.drawStr(128, 24, "Button4:");
 u8g.drawStr(182, 24, debounce4.read() ? "true" : "false");
// u8g.drawStr(0, 36, "Fetched message:");
// u8g.drawStr(0, 48, buf);
}

void loop() {
 refresh |= debounce1.update();
 refresh |= debounce2.update();
 refresh |= debounce3.update();
 refresh |= debounce4.update();
 led.update();
 buzzer.update();

 if(refresh) {
 u8g.firstPage();
 do {
 draw();
 } while(u8g.nextPage());
 refresh = false;
 }
}

void u8g_prepare(void) {
 u8g.setFontRefHeightExtendedText();
 u8g.setDefaultForegroundColor();
 u8g.setFontPosTop();
}

