

In-Database Embedded Analytics

A Major Qualifying Project report to be submitted to the faculty of

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the Degree of Bachelor of Science

Submitted By:

Kepei Lei

Elene Kavtaradze

Advisor(s):

Mohamed Eltabakh

 03/23/2021

1

Table of Figures... 3

Abstract .. 4

Introduction ... 5

Integrating Analytics with Relational Databases ... 5

PostgreSQL ... 8

MADlib .. 9

Methodology .. 10

K-Means .. 10

Loop ... 12

MADlib .. 13

Naive Bayes ... 13

Postgres .. 14

MADlib .. 15

Logistic Regression ... 15

Postgres .. 16

MADlib .. 18

Random Forest .. 19

Postgres .. 19

MADlib .. 20

Analysis and Results ... 22

Installation, Usage, and Syntax .. 22

Postgres .. 22

MADlib .. 22

K-Means .. 23

Naïve Bayes ... 25

Logistic Regression ... 25

2

Random Forest .. 26

Conclusions .. 28

Acknowledgments ... 29

Works Cited ... 30

Appendices ... 32

Appendix A .. 32

Appendix B .. 33

Appendix C .. 35

Appendix D.. 37

Appendix E .. 41

3

Table of Figures

Figure 1: Different ways to implement analytical tools with the database. Adapted from

(Raasveldt) .. 7

Figure 2: Squared Euclidean Distance function.. 11

Figure 3: Beginning of Recursive CTE for K-Means ... 12

Figure 4: The function call of K-Means in MADlib ... 13

Figure 5: Part of the Classifier function for Naïve Bayes ... 15

Figure 6: The function call of Naïve Bayes in MADlib ... 15

Figure 7: The function of logistic regression prediction we implemented in PL/pgSQL. 17

Figure 8: The function of logistic regression we implemented in PL/pgSQL. 18

Figure 9: The function call of logistic regression training from MADlib 18

Figure 10: Part of the split function we implemented in PL/pgSQL. ... 19

Figure 11: Part of the prediction function we implemented in PL/pgSQL. 20

Figure 12: The function call of random forest from MADlib. .. 20

Figure 13: Runtimes of K-Means implementations in PostgreSQL ... 23

Figure 14: Runtimes of K-Means implementations in PostgreSQL and MADlib 24

Figure 15: Implementations of Naïve Bayes in MADlib and PostgreSQL 25

Figure 16: The time it took to run the training on the given data size for logistic regression. 26

Figure 17: The time it took to run the training on the given data size for the random forest. 27

4

Abstract

This paper recognizes the disconnect between database systems and data analytics tools.

To eliminate the need to export data from the database systems into analytical tools, we explore

implementing analytics modules inside databases. We implemented K-Means, Naïve Bayes,

Logistic Regression, and Random Forest algorithms in PostgreSQL and MADlib. We found that

MADlib has a slight advantage over PostgreSQL implementations.

5

Introduction

Our world revolves around data. From individuals to large corporations, many entities

handle large amounts of data. There is a demand for storing more data more efficiently, and there

is a demand for analyzing the data faster and cheaper (Panoho). There is much work being done

on databases and analytics tools. The database system developers have focused on minimizing

redundancy and optimizing the database system's read and writing performances. Analytics tools

are getting better and more efficient. However, there is currently a disconnect between these two

systems (Raasveldt 1). Database systems and analytics tools are being built and optimized as

standalone entities.

A database system is the go-to storage solution for many entities, but not for analytics. As

data scientists have few tools to utilize database systems' analytics capabilities, they use external

analytics tools. This process requires saving the data from the database to input into the analytics

tools. As a result, the data scientists end up performing I/O action on the same data twice. It is

not as efficient as working directly in the database system, eliminating the need to store and

upload data.

Object-oriented databases allow developers to implement complex functions with less

redundant efforts. Since the database system compiles, optimizes, and runs the code, a function

built into the database is supposed to have the best performance: it fetches the least data needed

and takes advantage of the I/O optimization developers already did for database systems. The

goal of our project is to implement commonly used machine learning analytics models in

database languages. We will be implementing algorithms in Postgres and comparing their

performance to the already available tool MADlib.

Integrating Analytics with Relational Databases

Integrating Analytics with Relational Databases by Mark Raasveldt discusses the

importance and challenges of integrating data-intensive analytical tools with RDBMS.

6

According to the paper, these tools manually manage their data through flat-file storage

(structured text or binary files). Maintaining this type of data requires much manual force,

especially if it is large and lacks a rigid schema. It is also hard to share data with multiple users.

Modifying this data is prone to corruption because ACID properties cannot be upheld. Because

of this disconnect, instead of using an RDBMS for operations, scientists have implemented

common database operations inside libraries such as dplyr or Pandas. These libraries, however,

are not efficient and lead to memory overloads and poor performance. MADlib, an Apache

incubation project, aims to integrate machine learning modules into a database system

(Hellerstein, Ré and Schoppmann). While the library calls the functions in SQL language and

runs on the same environment as the database, it still creates a standalone program process that

fetches data like a database client. Moreover, the data fetching process affects the overall

performance of the machine learning modules. The paper discusses three approaches to connect

analytical tools with database management systems (Figure 1).

One approach is to embed the database inside the client program (Figure 1.c). The most

popular embedded database is SQLite. It is a row-major database designed for transactional

workloads, which contributes to poor performance when dealing with large and comprehensive

data. As a solution, the authors created MonetDBLite, an open-source embedded database based

on column-major MonetDB. MonetDBLite/MonetDB performs significantly better when

executing analytical queries compared to SQLite. The column-major architecture and zero-copy

semantics of MonetDB ensure that the data sharing between the client and the server has a

constant low cost.

7

Figure 1: Different ways to implement analytical tools with the database. Adapted from (Raasveldt)

Client-Server Connection is the standard way of combining a program with relational

database management systems. The analytical tools (the client) run on different machines or the

same machines as a separate process. The client can issue queries to the database (the

server). The server will compute the answer to the query and transfer the results to the client.

The type of database is primarily irrelevant for this approach. It can easily integrate and use

Standard ODBC and JDBC connectors. Existing pipelines for loading flat files are also easy to

replace with channels for database loading. This approach is the significant bottleneck we get

when serializing a large amount of data. According to the surveys conducted for this paper, most

RDBMS are not optimized for high-volume data export due to OLTP optimized client protocols.

Introducing a new client protocol achieves some efficiency. However, the transfer of data still

requires a significant amount of time.

In-Database Processing completes the analysis inside the database server, which avoids

the cost of exporting data. The current popular approach of writing user-defined functions or

user-defined aggregates in procedural languages is inefficient since it requires significant

8

rewrites of existential analytical pipelines. Writing user-defined functions in these languages

requires in-depth knowledge of database internals, as well. This paper introduces

MonetDB/Python User Defined Functions (UDF) inside MonetDB (open-source, column-major

DBMS) to perform in-database analytics easier. They are written in Python and utilize vectorized

Processing.

PostgreSQL

PostgreSQL, also known as Postgres, is an open-source, object-oriented database

management system. It extends the SQL language with many features capable of handling the

most complicated workloads. It has millions of users, people, and organizations alike due to a

proven reputation for reliability, extensibility, data integrity, and development (About

PostgreSQL).

Sponsored by Advanced Research Projects Agency (DARPA), the Army Research Office

(ARO), the National Science Foundation (NSF), and ESL, Inc, the POSTGRES project started at

the University of California Berkley in 1986. In 1994, a new team re-released the POSTGRES

package as Postgres95, with many significant changes. Postgres95 focused on identifying and

understanding the existing problems in the POSTGRES code. The original code was cut down by

a fourth. The query language PostQuel was changed out with SQL. A new interactive SQL query

program, psql, was introduced. In 1996, with a new name of PostgreSQL, a new version focusing

on changing system capabilities and features were released. The work continues in all areas, as

Postgres has been in active development for over thirty years. Postgres is an accepted alias for

PostgreSQL, and we will be using these two names interchangeably throughout this paper (A

Brief History of PostgreSQL).

 PostgreSQL is a free and open-source database system that runs on all major operating

systems, including macOS, Windows, BSD, Solaris, and Linux. It is the go-to approach to

process and store large amounts of data and hand complex queries. Postgres is an object-

relational database management system that can handle both object-oriented and relational

database functionality. It is ACID-compliant and very SQL-rich. It conforms to SQL standard

9

whenever possible. Version 13, released in 2020, supports 170 out of 179 mandatory SQL

standard features.

Postgres is highly customizable and extensible. It allows the creation of user-defined

functions in different procedural languages, besides SQL and C. SQL can call on the functions

created in these procedural languages. PL/Tcl, PL/Perl, PL/Python, and PL/pgSQL are all

procedural languages included in the standard PostgreSQL distributions. Many other procedural

languages are available via third parties. Our project utilizes SQL and PL/pgSQL. The latter

allows users to perform more complex operations with more procedural control than SQL. It

enables users to use control structures such as loops. PostgreSQL has excellent performance with

a sophisticated optimizer and advanced indexing. It has many multi-versions concurrency control

(MVCC) features, as it enables other users to read and write information to a database

simultaneously. Postgres supports parallel queries and has declarative partitioning. (About

PostgreSQL).

MADlib

 MADlib is an analytics API designed to work with PostgreSQL and Greenplum Database

by Apache Software Foundation. It "operates on the data locally in-database, instead of moving

data between multiple runtime environments unnecessarily" (Apache, MADlib). It offers

compiled binaries that support Ubuntu 18.04 with PostgreSQL 11 and 12 and CentOS with

Greenplum. At the same time, it also shares the source codes for the public to compile their own

binaries or make changes they desired.

After examining the source code (Apache, Github - apache/madlib), we noticed that

MADlib is still a module mainly composed of C++ and C, instead of native languages supported

by PostgreSQL. Unlike what MADlib has stated, this API still copies the data needed to a new

process from the select statements. As a result, MADlib did not distinguish much from other

analytics tools such as Scikit Learn.

10

Methodology

 Our project explores four algorithms: K-Means, Naive Bayes, Logistic Regression, and

Random Forest. This section discusses the various ways we implemented each algorithm. For

PostgreSQL implementations, our project utilizes PostgreSQL 12 with pgAdmin platform. We

wrote all inputs in SQL and PL/pgSQL. To compare the performances between existing machine

learning solutions, we have also installed MADlib with PostgreSQL. MADlib is the best-known

solution to integrating analytics into databases. We have not found any other similar solutions.

Before the comparison, we also tested the PostgreSQL implementation's correctness by

comparing the output data to the MADlib counterpart given the same inputs. If not further

mentioned, the Postgres implementation generates the same results as the MADlib counterpart.

We will test each implementation with three data sizes: one-hundred thousand, five-hundred

thousand, and one million data points.

K-Means

 K-Means is a standard and straightforward iterative algorithm. It is part of unsupervised

machine learning, meaning it works on uncategorized and ungrouped data. The algorithm works

by finding a certain number of homogeneous groups(clusters) inside the data. The K-Means

classifier has applications in insurance fraud detections, document classifications, rideshare

analytics, and much more. The inputs for the algorithm are the dataset and the number of

clusters(K) needed. It has two outputs: the centroids of each cluster and new labels for the data

(Trevino).

K-Means algorithm has four main steps

1. Initialize the K clusters.

2. Calculate the distance between data points and cluster centroids.

3. Assign each data point to the closest cluster.

4. Update centroids.

Repeat steps 2-4 until the algorithm converges.

11

Centroids are the defining factor of clusters. For the first step, initial centroids of K

clusters are either selected from the input data or randomly generated. Then, the algorithm

calculates the distance between each data point and centroid. The distance is the squared

Euclidean distance formula.

𝑑2(𝑝, 𝑞) = (𝑝1 − 𝑞1)
2 + (𝑝2 − 𝑞2)

2 +⋯+ (𝑝𝑛 − 𝑞𝑛)
2

For the third step, K-Means assigns each data point to the closest cluster. In the last step,

every cluster's centroid is re-calculated by averaging the distance between the centroid data

points. The data assignment to centroid update (steps 2-4) makes one iteration of the K-Means

algorithm. The algorithm iterates until convergence. K-Means converges when it reaches the pre-

defined number of iterations, or no data points change clusters. The results of K-Means are local

optimums. The algorithm needs to be run more than once with different, or randomized, initial

centroids to get more accurate outcomes.

Our project looked at two implementations of the K-Means algorithm. We explored both

recursive queries and Postgres loop functionality to implement the K-Means algorithm. Common

Table Expression (CTE) is a temporary result set, which another SQL statement can reference. It

is a convenient way of managing complicated queries. CTEs can be recursive, as they do not

have the limitations of SELECT statements.

Recursion

Multidimensional Clustering Using K-Means in PostgreSQL is a recursive

implementation of the K-Means algorithm. We implemented this algorithm on our machines. We

modified some functions have for better clarity.

This approach chooses cluster centroids values from the data. It creates a function to

calculate the Euclidean distance between different data points.

Figure 2: Squared Euclidean Distance function

12

Then, it implements the recursive CTE. It follows all the steps outlined in the section

above. Instead of calculating the distance between data points and cluster centroids, assigning

each data point to the closest cluster, and then updating centroids, these steps are nested within

each other. However, the order is the same. Figure 3. shows the start of the recursive CTE. On

line 3, a new iteration starts. Lines 6-10 calculate the distances between the points and the

centroids, assigning them to the closest cluster. Line 5 extracts the x and y dimensions of each

data point inside the first cluster. Line 4 calls for the recalculation of the x dimension of the first

cluster centroid.

Figure 3: Beginning of Recursive CTE for K-Means

Loop

 To implement another version of the K-Means algorithm, we explored Programming the

K-means Clustering Algorithm in SQL by Carlos Ordonez. Our project followed the steps

described in this document to get a while loop-based K-Means implementation. This paper

outlines a simple six-step framework:

1. Setup.

2. Initialization.

3. Computing Euclidean distances.

4. Assign centroids.

13

5. Update clustering results.

6. Track Progress.

Repeat steps 3-6 until K-Means converges.

We implemented the steps outlined in this paper in PostgreSQL. Steps 3-5 are inside the

while loop. The full code can be seen in Appendix D.

MADlib

 MADlib offers a simple SQL call to initiate the learning model (Figure 4). It asks the user

to specify the input table and the corresponding columns and the number of centroids to

calculate. Optional arguments include the name of the function to use to calculate the distance,

the name of the function used to determine centroids, the maximum number of iterations, and the

minimum fraction of centroids.

Figure 4: The function call of K-Means in MADlib

 MADlib's implementation of K-Means utilized the algorithm in a loop form and was

implemented in C++. The source code is available at MADlib's git repository (Apache, Github -

apache/madlib).

Naive Bayes

 Naive Bayes is a supervised machine learning algorithm, a classification technique based

on Baye's Theorem, a probabilistic inference algorithm. Naive Bayes has a multitude of

applications. These include text classification, specifically spam filtering, controlling

14

autonomous vehicles, medical diagnosis, and product recommendations (Wickramasinghe and

Kalutarage).

Baye's Theorem uses the training dataset to find the posterior probability for each

condition. Then it calculates the likelihood of a new event given its conditions. The formula for

Baye's Theorem is as follows

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴) ∗ 𝑃(𝐴)

𝑃(𝐵)

It calculates the probability of event A, given that B is True. The underlying assumption of Naive

Bayes is that the predictors are fully independent. Thus, P(A) and P(B) are independent

probabilities of A and B. Naive Bayes is an easily scalable fast algorithm because it does not

handle multidimensional dependencies.

Naïve Bayes algorithm has three simple steps:

1. Create the frequency table from the dataset.

2. Create the probability table of each category.

3. Calculate the posterior probability of each class by applying Baye's Theorem.

Postgres

 We implemented Naive Bayes in Postgres. Our training dataset is for text classification.

Building the model starts with calculating the independent probability of each category. In our

example, the likelihood that a word is part of a scam email would be that probability. We build

the model based on the data available, following the steps outlined in the section above. Our

approach combines the first two steps and makes one table with each word's frequencies and

probabilities (Appendix E).

 The classifier is a different function. Our classifier takes either a word or text. It returns

the probability of the input based on the model we build before. The table returned will have the

text, its possible classification categories, and the likelihood of that classification

P(category|word).

15

Figure 5: Part of the Classifier function for Naïve Bayes

MADlib

MADlib implementation of Naïve Bayes has similar algorithms to the module we

implemented. It is, according to the documentation, functional but "still in early-stage

development" (Apache, MADlib: Naive Bayes Classification). The function call is shown in

Figure 6.

Figure 6: The function call of Naïve Bayes in MADlib

The first three variables determine what the training dataset would be. The fourth one determines

the trainingAttrColumn attributes-array that corresponds to numeric attributes. The last two

variables determine the output tables, respectively.

Logistic Regression

Logistic regression models the probabilities for classification problems with two possible

outcomes (Interpretable Machine Learning). It is one of the most straightforward supervised

analytic methods for classification problems.

16

The logistic function is defined as:

To fit the data into a logistic model as close as possible, we used the following formula:

bn(t+1) = bn(t) + learning_rate * (y(t) - yhat(t)) * yhat(t) * (1 – yhat(t)). In this formula, bn(t+1)

is the coefficient for the corresponding attributes. The learning rate determines how fast the

model should fit. y(t) is the expected value, and the yhat(t) is the predicted value according to the

current model. After several iterations determined by the user, the model will generate an array

of coefficients, with each index corresponding to the attributes.

Postgres

We implemented logistic regression in PostgreSQL with PL/pgSQL language. The

implementation includes two functions. The first one is to perform the prediction. It takes in the

inputs and coefficients and performs the corresponding prediction according to the formula

(Figure 7). The code is available in Appendix B.

The second one is to perform the training. It takes in the table to be trained with, the

number of iterations, and learning rate. The number of attributes in the training dataset is as most

sixteen, with the last column being the independent variable. The training function sets all the

starting coefficients as zero. It runs the algorithm described above for the designated number of

iterations and puts the coefficients results into a new table (Figure 8).

17

Figure 7: The function of logistic regression prediction we implemented in PL/pgSQL.

18

Figure 8: The function of logistic regression we implemented in PL/pgSQL.

MADlib

The MADlib implementation of logistic regression utilizes similar algorithms. It has the function

call described in Figure 9.

Figure 9: The function call of logistic regression training from MADlib

19

The source_table, depenedent_varname, grouping_cols, and independent_varname variables

determine the training dataset. The out_table variable determines where to output the results. The

max_iter variable specifies the maximum iteration. The tolerance variable determines what error

the training can tolerate and thus stop the training.

Random Forest

Random forest, or random decision forest, is an ensemble supervised learning method for

classification, regression, and other tasks (Ho). It is designed to correct for traditional decision

trees' habit of overfitting to the training dataset. It utilizes the general technique of feature

bagging to build multiple models from samples of the training dataset.

The random forest can be broken down into two steps:

1. Determine the most cost-effective way to split the dataset and generate the trees,

respectively.

2. Use the tree created to create a set of predictions and return the set.

Postgres

We constructed two functions to implement random forest. The first function is used to

predict the value according to the trained random forest models. It takes in the dataset to be

trained and the number of features desired and generates the tress that would have the lowest cost

according to the Gini index in the form of a new table (See Figure 10 for part of the code). The

full functions are available in Appendix C.

Figure 10: Part of the split function we implemented in PL/pgSQL.

20

The second function takes in the divided table and predicts the results based on the table

values. Since the array within PL/pgSQL is fixed-sized, the functions are limited to 6 features.

Figure 11: Part of the prediction function we implemented in PL/pgSQL.

MADlib

We did not examine what algorithm MADlib used to implement. The function call is available in

Figure 12.

Figure 12: The function call of random forest from MADlib.

The training_table_name, id_col_name, depenedet_variable variables decide the training dataset.

The num_trees and num_random_features determine the maximum number of trees the function

21

can generate and the number of features to randomly select at each split. There are other optional

variables available, such as importance, num_permutations, etc.

22

Analysis and Results

Installation, Usage, and Syntax

Postgres

 For our project, we decided to work with PostgreSQL 12. The newest version is

PostgreSQL 13, which was released in September of 2020, a month after the start of our project.

Most Linux platforms have PostgreSQL included in the package management. We also had to

install it on Windows 10. Installation of PostgreSQL was effortless and straightforward.

Packages and Installers and source code are available on the PostgreSQL website

(https://www.postgresql.org/download/windows/). We utilized the ready-to-go installer for

Windows. After downloading the installer and running it, we simply had to follow the on-screen

directions. The installer included a PostgreSQL server, pgAdmin (a graphical administration and

development tool), and StackBuilder (a package manager for installing additional tools and

drivers) (PostgreSQL 12.6 Documentation). PgAdmin made it very convenient to create

databases and run queries. We used this tool to run all queries, functions, and procedures for our

project.

MADlib

MADlib requires a careful procedure to install correctly. It requires either Ubuntu 18.04,

CentOS, or MacOS prior with Intel processors (Apache, MADlib). Furthermore, each version

listed on the website needs a specific PostgreSQL version to match. For example, MADlib 1.17

supports Postgres 11 and 12, while MADlib 1.16 only supports Postgres 10 and 11. Since we

chose to work with PostgreSQL 12, MADlib 1.17 became our obvious choice. After the

installation, the user needs to input certain command line prompts to link MADlib with the

PostgreSQL installation. See appendix A for the command line prompts.

23

K-Means

The recursive implementation of the K-Means algorithm is not scalable. This example

works very well with two clusters and only two dimensions. Increasing the number of clusters or

dimensions is possible but requires substantial manual changes. The problem of scalability is

within the recursion: the data assignment and centroid recalculation. Data assignment is

comparing the Euclidean distance between each point to each centroid. For two clusters with two

dimensions, data assignment is one comparison per dimension of the centroid (Appendix 13),

four comparisons overall. It is four comparisons per dimension of the centroid, twenty-four

comparisons overall for three clusters with two dimensions. Changing the way initial centroids

are selected also had no significant difference.

Figure 13: Runtimes of K-Means implementations in PostgreSQL

While loop implementation of the K-Means is scalable, compared to the recursive

implementation. Modifying the number of clusters requires a one-line code change. All the

0

50

100

150

200

250

100,000 500,000 1,000,000

T
im

e
(S

ec
o

n
d

s)

Data size

K-Means Postgres

 2 Clusters, 10 Iterations, 2 Dimensions - Recursion

 2 Clusters, 10 Iterations, 2 Dimensions - Loop

 2 Clusters, 5 Iterations, 2 Dimensions - Recursion

 2 Clusters, 5 Iterations, 2 Dimensions - Loop

24

functions can handle a more considerable number of clusters. However, the recursion is faster.

For million data points with two-dimensional data and two clusters, the recursive implementation

does ten iterations in hundred seconds, while the loop implementation takes two hundred and

thirty seconds on average (Figure 13). This implementation is slower than the recursive approach

because it creates more data and tables to handle any number of clusters or dimensions. Loop

version seems to be the best Postgres implementation since it is scalable and is more robust with

the type of data it can handle.

Figure 14: Runtimes of K-Means implementations in PostgreSQL and MADlib

 Comparing K-Means Postgres implementations with MADlib results showed interesting

results. MADlib had the same order of growth as the PostgreSQL algorithms. MADlib barely

outperformed the Loop version of the algorithm and matched the recursive implementation.

0

100

200

300

400

500

600

1 0 0 , 0 0 0 5 0 0 , 0 0 0 1 , 0 0 0 , 0 0 0

T
IM

E
 (

SE
C

O
N

D
S)

DATA SIZE

K-MEANS

5 Clusters, 5 Iterations, 10
Dimensions - MADlib

5 Clusters, 5 Iterations, 10
Dimensions - PostgreSQL Loop

2 Clusters, 10 Iterations, 2
Dimensions - MADlib

2 Clusters, 10 Iterations, 2
Dimensions - PostgreSQL
Recursion

25

Naïve Bayes

 Comparing the PostgreSQL and MADlib implementations of Naïve Bayes, Figure 15

shows the running times of each with different Data Sizes. MADlib substantially outperforms

Postgres. MADlib also has a slower time growth rate compared to Postgres.

Figure 15: Implementations of Naïve Bayes in MADlib and PostgreSQL

Logistic Regression

Since the columns' size cannot be read in PL/pgSQL, the PostgreSQL implementation has

a limitation on scalability. The version we implemented supports up to 15 dependent variables.

Before the user can utilize the function, they need to put the dataset into a table where the

dependent variables are in columns named x1, x2... x15, and the independent variable in the

column named y. Furthermore, since PL/pgSQL cannot cast one row of the data into an array, we

had to hard code the casting process as a substitution.

We tested the methods with the Framingham data. Framingham dataset has 3656 valid entries.

We took 1000 of them and made copies of the 1000 rows to generate the datasets with a size of

100 thousand, 1000 thousand, and 1 million. The test results between Postgres and MADlib are

shown in Figure 16.

0

50,000

100,000

150,000

200,000

250,000

1 0 0 , 0 0 0 5 0 0 , 0 0 0 1 , 0 0 0 , 0 0 0

T
IM

E
 (

SE
C

O
N

D
S)

DATA SIZE

NAIVE BAYES

Madlib Postgres

26

Figure 16: The time it took to run the training on the given data size for logistic regression.

The Postgres version has the same order of growth as the MADlib version. However, it is

proportionally slower than the MADlib version. On average, the MADlib version of logistic

regression only spent 1/10 of the time the Postgres counterpart did. This data shows that the

implementation is efficient in terms of the macro algorithm. However, due to the repeated

selection statements in the code, and the hard code process of transferring data from table to

array, the PL/pgSQL version suffers in performance constantly.

Random Forest

Like the situation of Logistic Regression, we had to limit the number of features

supported in the Postgres version. We chose to limit the number of features available to 6

features. The number chosen here is arbitrary for the simplicity of implementation. To compare

the performance, we took the sonar dataset and picked the first 200 rows. Then, we copied the

27

first 200 rows so that we had a dataset of 100 thousand, 500 thousand, and 1 million. The

performance results are shown in Figure 17.

Figure 17: The time it took to run the training on the given data size for the random forest.

According to our test, Postgres has a minor performance penalty compared to that of

MADlib. When we implemented the functions, we tried to limit the selection statements in for

loop. The results came back as an improvement compared to that of logistic regression. Even if

the current version still has scalability issues, it has a similar performance to the MADlib version

when the data dimensions are the same.

28

Conclusions

The disconnect between analytics tools and database systems causes redundancy of

performed actions. Thus, our project implemented different data analytics methods inside the

database systems. We compared four algorithm runtimes as MADlib and PostgreSQL

applications.

Through our project, we confirmed that many popular analytics methods could be

implemented in PostgreSQL. However, the scalability and the resulting performance penalty

became noticeable in two of the methods we chose to implement. We guessed that the penalty

was caused by the frequent selection statement used in the code, along with the translation from

PL/pgSQL to binaries. For future research opportunities, we recommend testing the scale of the

selection statement penalty and explore possible methods to optimize the penalty. We also

recommend exploring the feasibility of other popular analytical methods.

29

Acknowledgments

We would like to thank our project advisor, Mohamed Eltabakh, for his support and guidance.

30

Works Cited

A Brief History of PostgreSQL. n.d. https://www.postgresql.org/docs/12/history.html. 03 March

2021.

About PostgreSQL. n.d. https://www.postgresql.org/about/. 05 03 2021.

Apache. Github - apache/madlib. 2021. 18 March 2021. <https://github.com/apache/madlib>.

—. MADlib. 2021. Website. 18 March 2021. <http://madlib.apache.org/product.html>.

—. MADlib: Naive Bayes Classification. 2021. 18 March 2021.

<http://madlib.apache.org/docs/latest/group__grp__bayes.html>.

Columbus, Louis. Global State Of Enterprise Analytics, 2018. 06 August 2018.

<https://www.forbes.com/sites/louiscolumbus/2018/08/08/global-state-of-enterprise-

analytics-2018/?sh=7b3dcab36361>.

Hellerstein, Joseph M, et al. "The MADlib Analytics Libraryor MAD Skills, the SQL."

Technical Report. 2012. Document.

Ho, Tin Kam. "Random Decision Forests." Proceedings of 3rd International Conference on

Document Analysis and Recognition (1995): 278-282.

Ordonez, Carlos. "Programming the K-means clustering algorithm in SQL." KDD '04:

Proceedings of the tenth ACM SIGKDD international conference on Knowledge

discovery and data mining (2004): 823-828. Web.

Panoho, Kale. The Age Of Analytics And The Importance Of Data Quality. 01 October 2019.

https://www.forbes.com/sites/forbesagencycouncil/2019/10/01/the-age-of-analytics-and-

the-importance-of-data-quality/?sh=15bae94e5c3c. 02 03 2021.

PostgreSQL 12.6 Documentation. n.d. https://www.postgresql.org/docs/12/index.html. 28

September 2020.

Raasveldt, Mark. "Integrating Analytics with Relational Databases." PhD@VLDB 2018. n.d.

31

Sisense Data Team. Multidimensional Clustering Using K-Means in Postgres SQL. 17 December

2015. https://www.sisense.com/blog/multi-dimensional-clustering-using-k-means-

postgres/. 23 October 2020.

Trevino, Andrea. Introduction to K-means Clustering. 06 December 2016.

https://blogs.oracle.com/datascience/introduction-to-k-means-clustering. 26 October

2020.

Wickramasinghe, Indika and Harsha Kalutarage. "Naive Bayes: applications, variations and

vulnerabilities: a review of literature with code snippets for implementation." Soft

Computing (2021): 25, 2277-2293. Document.

32

Appendices

Appendix A

Command Prompt to Install MADlib on Ubuntu 18.04

33

Appendix B

Code for logistic regression

34

35

Appendix C

Code for random forest

36

37

Appendix D

Implementation for K-Means Loop

38

39

40

41

Appendix E

Code for Naïve Bayes Model

