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Abstract 

This paper recognizes the disconnect between database systems and data analytics tools. 

To eliminate the need to export data from the database systems into analytical tools, we explore 

implementing analytics modules inside databases. We implemented K-Means, Naïve Bayes, 

Logistic Regression, and Random Forest algorithms in PostgreSQL and MADlib. We found that 

MADlib has a slight advantage over PostgreSQL implementations.  
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Introduction 

Our world revolves around data. From individuals to large corporations, many entities 

handle large amounts of data. There is a demand for storing more data more efficiently, and there 

is a demand for analyzing the data faster and cheaper (Panoho). There is much work being done 

on databases and analytics tools. The database system developers have focused on minimizing 

redundancy and optimizing the database system's read and writing performances. Analytics tools 

are getting better and more efficient. However, there is currently a disconnect between these two 

systems (Raasveldt 1). Database systems and analytics tools are being built and optimized as 

standalone entities.  

A database system is the go-to storage solution for many entities, but not for analytics. As 

data scientists have few tools to utilize database systems' analytics capabilities, they use external 

analytics tools. This process requires saving the data from the database to input into the analytics 

tools. As a result, the data scientists end up performing I/O action on the same data twice. It is 

not as efficient as working directly in the database system, eliminating the need to store and 

upload data.  

Object-oriented databases allow developers to implement complex functions with less 

redundant efforts. Since the database system compiles, optimizes, and runs the code, a function 

built into the database is supposed to have the best performance: it fetches the least data needed 

and takes advantage of the I/O optimization developers already did for database systems. The 

goal of our project is to implement commonly used machine learning analytics models in 

database languages. We will be implementing algorithms in Postgres and comparing their 

performance to the already available tool MADlib. 

 

Integrating Analytics with Relational Databases 

Integrating Analytics with Relational Databases by Mark Raasveldt discusses the 

importance and challenges of integrating data-intensive analytical tools with RDBMS. 
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According to the paper, these tools manually manage their data through flat-file storage 

(structured text or binary files). Maintaining this type of data requires much manual force, 

especially if it is large and lacks a rigid schema. It is also hard to share data with multiple users. 

Modifying this data is prone to corruption because ACID properties cannot be upheld. Because 

of this disconnect, instead of using an RDBMS for operations, scientists have implemented 

common database operations inside libraries such as dplyr or Pandas. These libraries, however, 

are not efficient and lead to memory overloads and poor performance. MADlib, an Apache 

incubation project, aims to integrate machine learning modules into a database system 

(Hellerstein, Ré and Schoppmann). While the library calls the functions in SQL language and 

runs on the same environment as the database, it still creates a standalone program process that 

fetches data like a database client. Moreover, the data fetching process affects the overall 

performance of the machine learning modules. The paper discusses three approaches to connect 

analytical tools with database management systems (Figure 1).  

One approach is to embed the database inside the client program (Figure 1.c). The most 

popular embedded database is SQLite. It is a row-major database designed for transactional 

workloads, which contributes to poor performance when dealing with large and comprehensive 

data. As a solution, the authors created MonetDBLite, an open-source embedded database based 

on column-major MonetDB.  MonetDBLite/MonetDB performs significantly better when 

executing analytical queries compared to SQLite. The column-major architecture and zero-copy 

semantics of MonetDB ensure that the data sharing between the client and the server has a 

constant low cost. 
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Figure 1: Different ways to implement analytical tools with the database. Adapted from (Raasveldt) 

Client-Server Connection is the standard way of combining a program with relational 

database management systems. The analytical tools (the client) run on different machines or the 

same machines as a separate process. The client can issue queries to the database (the 

server).  The server will compute the answer to the query and transfer the results to the client. 

The type of database is primarily irrelevant for this approach. It can easily integrate and use 

Standard ODBC and JDBC connectors. Existing pipelines for loading flat files are also easy to 

replace with channels for database loading. This approach is the significant bottleneck we get 

when serializing a large amount of data. According to the surveys conducted for this paper, most 

RDBMS are not optimized for high-volume data export due to OLTP optimized client protocols. 

Introducing a new client protocol achieves some efficiency. However, the transfer of data still 

requires a significant amount of time.  

In-Database Processing completes the analysis inside the database server, which avoids 

the cost of exporting data. The current popular approach of writing user-defined functions or 

user-defined aggregates in procedural languages is inefficient since it requires significant 
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rewrites of existential analytical pipelines. Writing user-defined functions in these languages 

requires in-depth knowledge of database internals, as well. This paper introduces 

MonetDB/Python User Defined Functions (UDF) inside MonetDB (open-source, column-major 

DBMS) to perform in-database analytics easier. They are written in Python and utilize vectorized 

Processing.  

PostgreSQL 

PostgreSQL, also known as Postgres, is an open-source, object-oriented database 

management system. It extends the SQL language with many features capable of handling the 

most complicated workloads. It has millions of users, people, and organizations alike due to a 

proven reputation for reliability, extensibility, data integrity, and development (About 

PostgreSQL). 

Sponsored by Advanced Research Projects Agency (DARPA), the Army Research Office 

(ARO), the National Science Foundation (NSF), and ESL, Inc, the POSTGRES project started at 

the University of California Berkley in 1986. In 1994, a new team re-released the POSTGRES 

package as Postgres95, with many significant changes. Postgres95 focused on identifying and 

understanding the existing problems in the POSTGRES code. The original code was cut down by 

a fourth. The query language PostQuel was changed out with SQL. A new interactive SQL query 

program, psql, was introduced. In 1996, with a new name of PostgreSQL, a new version focusing 

on changing system capabilities and features were released. The work continues in all areas, as 

Postgres has been in active development for over thirty years. Postgres is an accepted alias for 

PostgreSQL, and we will be using these two names interchangeably throughout this paper (A 

Brief History of PostgreSQL). 

 PostgreSQL is a free and open-source database system that runs on all major operating 

systems, including macOS, Windows, BSD, Solaris, and Linux. It is the go-to approach to 

process and store large amounts of data and hand complex queries. Postgres is an object-

relational database management system that can handle both object-oriented and relational 

database functionality. It is ACID-compliant and very SQL-rich. It conforms to SQL standard 
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whenever possible. Version 13, released in 2020, supports 170 out of 179 mandatory SQL 

standard features. 

Postgres is highly customizable and extensible. It allows the creation of user-defined 

functions in different procedural languages, besides SQL and C. SQL can call on the functions 

created in these procedural languages. PL/Tcl, PL/Perl, PL/Python, and PL/pgSQL are all 

procedural languages included in the standard PostgreSQL distributions. Many other procedural 

languages are available via third parties. Our project utilizes SQL and PL/pgSQL. The latter 

allows users to perform more complex operations with more procedural control than SQL. It 

enables users to use control structures such as loops. PostgreSQL has excellent performance with 

a sophisticated optimizer and advanced indexing. It has many multi-versions concurrency control 

(MVCC) features, as it enables other users to read and write information to a database 

simultaneously. Postgres supports parallel queries and has declarative partitioning. (About 

PostgreSQL).  

MADlib 

 MADlib is an analytics API designed to work with PostgreSQL and Greenplum Database 

by Apache Software Foundation. It "operates on the data locally in-database, instead of moving 

data between multiple runtime environments unnecessarily" (Apache, MADlib). It offers 

compiled binaries that support Ubuntu 18.04 with PostgreSQL 11 and 12 and CentOS with 

Greenplum. At the same time, it also shares the source codes for the public to compile their own 

binaries or make changes they desired. 

After examining the source code (Apache, Github - apache/madlib), we noticed that 

MADlib is still a module mainly composed of C++ and C, instead of native languages supported 

by PostgreSQL. Unlike what MADlib has stated, this API still copies the data needed to a new 

process from the select statements. As a result, MADlib did not distinguish much from other 

analytics tools such as Scikit Learn. 
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Methodology 

 Our project explores four algorithms: K-Means, Naive Bayes, Logistic Regression, and 

Random Forest. This section discusses the various ways we implemented each algorithm. For 

PostgreSQL implementations, our project utilizes PostgreSQL 12 with pgAdmin platform. We 

wrote all inputs in SQL and PL/pgSQL. To compare the performances between existing machine 

learning solutions, we have also installed MADlib with PostgreSQL. MADlib is the best-known 

solution to integrating analytics into databases. We have not found any other similar solutions. 

Before the comparison, we also tested the PostgreSQL implementation's correctness by 

comparing the output data to the MADlib counterpart given the same inputs. If not further 

mentioned, the Postgres implementation generates the same results as the MADlib counterpart. 

We will test each implementation with three data sizes: one-hundred thousand, five-hundred 

thousand, and one million data points. 

K-Means 

 K-Means is a standard and straightforward iterative algorithm. It is part of unsupervised 

machine learning, meaning it works on uncategorized and ungrouped data. The algorithm works 

by finding a certain number of homogeneous groups(clusters) inside the data. The K-Means 

classifier has applications in insurance fraud detections, document classifications, rideshare 

analytics, and much more. The inputs for the algorithm are the dataset and the number of 

clusters(K) needed. It has two outputs: the centroids of each cluster and new labels for the data 

(Trevino). 

K-Means algorithm has four main steps 

1. Initialize the K clusters. 

2. Calculate the distance between data points and cluster centroids. 

3. Assign each data point to the closest cluster. 

4. Update centroids. 

Repeat steps 2-4 until the algorithm converges. 
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Centroids are the defining factor of clusters. For the first step, initial centroids of K 

clusters are either selected from the input data or randomly generated. Then, the algorithm 

calculates the distance between each data point and centroid. The distance is the squared 

Euclidean distance formula. 

𝑑2(𝑝, 𝑞) = (𝑝1 − 𝑞1)
2 + (𝑝2 − 𝑞2)

2 +⋯+ (𝑝𝑛 − 𝑞𝑛)
2 

For the third step, K-Means assigns each data point to the closest cluster.  In the last step, 

every cluster's centroid is re-calculated by averaging the distance between the centroid data 

points. The data assignment to centroid update (steps 2-4) makes one iteration of the K-Means 

algorithm. The algorithm iterates until convergence. K-Means converges when it reaches the pre-

defined number of iterations, or no data points change clusters. The results of K-Means are local 

optimums. The algorithm needs to be run more than once with different, or randomized, initial 

centroids to get more accurate outcomes.  

Our project looked at two implementations of the K-Means algorithm. We explored both 

recursive queries and Postgres loop functionality to implement the K-Means algorithm. Common 

Table Expression (CTE) is a temporary result set, which another SQL statement can reference. It 

is a convenient way of managing complicated queries. CTEs can be recursive, as they do not 

have the limitations of SELECT statements. 

Recursion 

Multidimensional Clustering Using K-Means in PostgreSQL is a recursive 

implementation of the K-Means algorithm. We implemented this algorithm on our machines. We 

modified some functions have for better clarity.  

This approach chooses cluster centroids values from the data. It creates a function to 

calculate the Euclidean distance between different data points. 

Figure 2: Squared Euclidean Distance function 
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Then, it implements the recursive CTE. It follows all the steps outlined in the section 

above. Instead of calculating the distance between data points and cluster centroids, assigning 

each data point to the closest cluster, and then updating centroids, these steps are nested within 

each other. However, the order is the same. Figure 3. shows the start of the recursive CTE. On 

line 3, a new iteration starts. Lines 6-10 calculate the distances between the points and the 

centroids, assigning them to the closest cluster. Line 5 extracts the x and y dimensions of each 

data point inside the first cluster. Line 4 calls for the recalculation of the x dimension of the first 

cluster centroid.  

 

Figure 3: Beginning of Recursive CTE for K-Means 

Loop 

 To implement another version of the K-Means algorithm, we explored Programming the 

K-means Clustering Algorithm in SQL by Carlos Ordonez. Our project followed the steps 

described in this document to get a while loop-based K-Means implementation. This paper 

outlines a simple six-step framework: 

1. Setup. 

2. Initialization. 

3. Computing Euclidean distances. 

4. Assign centroids. 
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5. Update clustering results. 

6. Track Progress. 

Repeat steps 3-6 until K-Means converges.  

We implemented the steps outlined in this paper in PostgreSQL. Steps 3-5 are inside the 

while loop. The full code can be seen in Appendix D. 

MADlib 

 MADlib offers a simple SQL call to initiate the learning model (Figure 4). It asks the user 

to specify the input table and the corresponding columns and the number of centroids to 

calculate. Optional arguments include the name of the function to use to calculate the distance, 

the name of the function used to determine centroids, the maximum number of iterations, and the 

minimum fraction of centroids. 

 

Figure 4: The function call of K-Means in MADlib 

 MADlib's implementation of K-Means utilized the algorithm in a loop form and was 

implemented in C++. The source code is available at MADlib's git repository (Apache, Github - 

apache/madlib). 

Naive Bayes 

 Naive Bayes is a supervised machine learning algorithm, a classification technique based 

on Baye's Theorem, a probabilistic inference algorithm. Naive Bayes has a multitude of 

applications. These include text classification, specifically spam filtering, controlling 
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autonomous vehicles, medical diagnosis, and product recommendations (Wickramasinghe and 

Kalutarage).  

Baye's Theorem uses the training dataset to find the posterior probability for each 

condition. Then it calculates the likelihood of a new event given its conditions. The formula for 

Baye's Theorem is as follows 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴) ∗ 𝑃(𝐴)

𝑃(𝐵)
 

It calculates the probability of event A, given that B is True. The underlying assumption of Naive 

Bayes is that the predictors are fully independent. Thus, P(A) and P(B) are independent 

probabilities of A and B. Naive Bayes is an easily scalable fast algorithm because it does not 

handle multidimensional dependencies. 

Naïve Bayes algorithm has three simple steps: 

1. Create the frequency table from the dataset. 

2. Create the probability table of each category. 

3. Calculate the posterior probability of each class by applying Baye's Theorem. 

Postgres 

 We implemented Naive Bayes in Postgres. Our training dataset is for text classification. 

Building the model starts with calculating the independent probability of each category. In our 

example, the likelihood that a word is part of a scam email would be that probability. We build 

the model based on the data available, following the steps outlined in the section above. Our 

approach combines the first two steps and makes one table with each word's frequencies and 

probabilities (Appendix E).  

 The classifier is a different function. Our classifier takes either a word or text. It returns 

the probability of the input based on the model we build before. The table returned will have the 

text, its possible classification categories, and the likelihood of that classification 

P(category|word).   
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Figure 5: Part of the Classifier function for Naïve Bayes 

MADlib 

MADlib implementation of Naïve Bayes has similar algorithms to the module we 

implemented. It is, according to the documentation, functional but "still in early-stage 

development" (Apache, MADlib: Naive Bayes Classification). The function call is shown in 

Figure 6. 

 

Figure 6: The function call of Naïve Bayes in MADlib 

The first three variables determine what the training dataset would be. The fourth one determines 

the trainingAttrColumn attributes-array that corresponds to numeric attributes. The last two 

variables determine the output tables, respectively. 

Logistic Regression 

Logistic regression models the probabilities for classification problems with two possible 

outcomes (Interpretable Machine Learning). It is one of the most straightforward supervised 

analytic methods for classification problems. 
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The logistic function is defined as: 

 

To fit the data into a logistic model as close as possible, we used the following formula: 

bn(t+1) = bn(t) + learning_rate * (y(t) - yhat(t)) * yhat(t) * (1 – yhat(t)). In this formula, bn(t+1) 

is the coefficient for the corresponding attributes. The learning rate determines how fast the 

model should fit. y(t) is the expected value, and the yhat(t) is the predicted value according to the 

current model. After several iterations determined by the user, the model will generate an array 

of coefficients, with each index corresponding to the attributes. 

Postgres 

We implemented logistic regression in PostgreSQL with PL/pgSQL language. The 

implementation includes two functions. The first one is to perform the prediction. It takes in the 

inputs and coefficients and performs the corresponding prediction according to the formula 

(Figure 7). The code is available in Appendix B. 

The second one is to perform the training. It takes in the table to be trained with, the 

number of iterations, and learning rate. The number of attributes in the training dataset is as most 

sixteen, with the last column being the independent variable. The training function sets all the 

starting coefficients as zero. It runs the algorithm described above for the designated number of 

iterations and puts the coefficients results into a new table (Figure 8). 
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Figure 7: The function of logistic regression prediction we implemented in PL/pgSQL. 
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Figure 8: The function of logistic regression we implemented in PL/pgSQL. 

MADlib 

The MADlib implementation of logistic regression utilizes similar algorithms. It has the function 

call described in Figure 9. 

 

Figure 9: The function call of logistic regression training from MADlib 
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The source_table, depenedent_varname, grouping_cols, and independent_varname variables 

determine the training dataset. The out_table variable determines where to output the results. The 

max_iter variable specifies the maximum iteration. The tolerance variable determines what error 

the training can tolerate and thus stop the training. 

Random Forest 

Random forest, or random decision forest, is an ensemble supervised learning method for 

classification, regression, and other tasks (Ho). It is designed to correct for traditional decision 

trees' habit of overfitting to the training dataset. It utilizes the general technique of feature 

bagging to build multiple models from samples of the training dataset.  

The random forest can be broken down into two steps: 

1. Determine the most cost-effective way to split the dataset and generate the trees, 

respectively. 

2. Use the tree created to create a set of predictions and return the set. 

Postgres 

We constructed two functions to implement random forest. The first function is used to 

predict the value according to the trained random forest models. It takes in the dataset to be 

trained and the number of features desired and generates the tress that would have the lowest cost 

according to the Gini index in the form of a new table (See Figure 10 for part of the code). The 

full functions are available in Appendix C. 

 

Figure 10: Part of the split function we implemented in PL/pgSQL. 
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The second function takes in the divided table and predicts the results based on the table 

values. Since the array within PL/pgSQL is fixed-sized, the functions are limited to 6 features.  

 

Figure 11: Part of the prediction function we implemented in PL/pgSQL. 

MADlib 

We did not examine what algorithm MADlib used to implement. The function call is available in 

Figure 12. 

 

Figure 12: The function call of random forest from MADlib. 

The training_table_name, id_col_name, depenedet_variable variables decide the training dataset. 

The num_trees and num_random_features determine the maximum number of trees the function 
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can generate and the number of features to randomly select at each split. There are other optional 

variables available, such as importance, num_permutations, etc. 
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Analysis and Results 

Installation, Usage, and Syntax 

Postgres 

 For our project, we decided to work with PostgreSQL 12. The newest version is 

PostgreSQL 13, which was released in September of 2020, a month after the start of our project. 

Most Linux platforms have PostgreSQL included in the package management. We also had to 

install it on Windows 10. Installation of PostgreSQL was effortless and straightforward. 

Packages and Installers and source code are available on the PostgreSQL website 

(https://www.postgresql.org/download/windows/). We utilized the ready-to-go installer for 

Windows. After downloading the installer and running it, we simply had to follow the on-screen 

directions. The installer included a PostgreSQL server, pgAdmin (a graphical administration and 

development tool), and StackBuilder (a package manager for installing additional tools and 

drivers) (PostgreSQL 12.6 Documentation). PgAdmin made it very convenient to create 

databases and run queries. We used this tool to run all queries, functions, and procedures for our 

project. 

MADlib 

MADlib requires a careful procedure to install correctly. It requires either Ubuntu 18.04, 

CentOS, or MacOS prior with Intel processors (Apache, MADlib). Furthermore, each version 

listed on the website needs a specific PostgreSQL version to match. For example, MADlib 1.17 

supports Postgres 11 and 12, while MADlib 1.16 only supports Postgres 10 and 11. Since we 

chose to work with PostgreSQL 12, MADlib 1.17 became our obvious choice. After the 

installation, the user needs to input certain command line prompts to link MADlib with the 

PostgreSQL installation. See appendix A for the command line prompts. 
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K-Means 

The recursive implementation of the K-Means algorithm is not scalable. This example 

works very well with two clusters and only two dimensions. Increasing the number of clusters or 

dimensions is possible but requires substantial manual changes. The problem of scalability is 

within the recursion: the data assignment and centroid recalculation. Data assignment is 

comparing the Euclidean distance between each point to each centroid. For two clusters with two 

dimensions, data assignment is one comparison per dimension of the centroid (Appendix 13), 

four comparisons overall. It is four comparisons per dimension of the centroid, twenty-four 

comparisons overall for three clusters with two dimensions. Changing the way initial centroids 

are selected also had no significant difference.  

 

Figure 13: Runtimes of K-Means implementations in PostgreSQL 

While loop implementation of the K-Means is scalable, compared to the recursive 

implementation. Modifying the number of clusters requires a one-line code change. All the 
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functions can handle a more considerable number of clusters. However, the recursion is faster. 

For million data points with two-dimensional data and two clusters, the recursive implementation 

does ten iterations in hundred seconds, while the loop implementation takes two hundred and 

thirty seconds on average (Figure 13). This implementation is slower than the recursive approach 

because it creates more data and tables to handle any number of clusters or dimensions. Loop 

version seems to be the best Postgres implementation since it is scalable and is more robust with 

the type of data it can handle. 

 

Figure 14: Runtimes of K-Means implementations in PostgreSQL and MADlib 

 Comparing K-Means Postgres implementations with MADlib results showed interesting 

results. MADlib had the same order of growth as the PostgreSQL algorithms. MADlib barely 

outperformed the Loop version of the algorithm and matched the recursive implementation.  
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Naïve Bayes 

 Comparing the PostgreSQL and MADlib implementations of Naïve Bayes, Figure 15 

shows the running times of each with different Data Sizes. MADlib substantially outperforms 

Postgres. MADlib also has a slower time growth rate compared to Postgres.  

 

Figure 15: Implementations of Naïve Bayes in MADlib and PostgreSQL 

Logistic Regression 

Since the columns' size cannot be read in PL/pgSQL, the PostgreSQL implementation has 

a limitation on scalability. The version we implemented supports up to 15 dependent variables. 

Before the user can utilize the function, they need to put the dataset into a table where the 

dependent variables are in columns named x1, x2... x15, and the independent variable in the 

column named y. Furthermore, since PL/pgSQL cannot cast one row of the data into an array, we 

had to hard code the casting process as a substitution. 

We tested the methods with the Framingham data. Framingham dataset has 3656 valid entries. 

We took 1000 of them and made copies of the 1000 rows to generate the datasets with a size of 

100 thousand, 1000 thousand, and 1 million. The test results between Postgres and MADlib are 

shown in Figure 16. 
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Figure 16: The time it took to run the training on the given data size for logistic regression. 

The Postgres version has the same order of growth as the MADlib version. However, it is 

proportionally slower than the MADlib version. On average, the MADlib version of logistic 

regression only spent 1/10 of the time the Postgres counterpart did. This data shows that the 

implementation is efficient in terms of the macro algorithm. However, due to the repeated 

selection statements in the code, and the hard code process of transferring data from table to 

array, the PL/pgSQL version suffers in performance constantly. 

Random Forest 

Like the situation of Logistic Regression, we had to limit the number of features 

supported in the Postgres version. We chose to limit the number of features available to 6 

features. The number chosen here is arbitrary for the simplicity of implementation. To compare 

the performance, we took the sonar dataset and picked the first 200 rows. Then, we copied the 
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first 200 rows so that we had a dataset of 100 thousand, 500 thousand, and 1 million. The 

performance results are shown in Figure 17. 

 

Figure 17: The time it took to run the training on the given data size for the random forest. 

According to our test, Postgres has a minor performance penalty compared to that of 

MADlib. When we implemented the functions, we tried to limit the selection statements in for 

loop. The results came back as an improvement compared to that of logistic regression. Even if 

the current version still has scalability issues, it has a similar performance to the MADlib version 

when the data dimensions are the same.
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Conclusions 

The disconnect between analytics tools and database systems causes redundancy of 

performed actions. Thus, our project implemented different data analytics methods inside the 

database systems. We compared four algorithm runtimes as MADlib and PostgreSQL 

applications.  

Through our project, we confirmed that many popular analytics methods could be 

implemented in PostgreSQL. However, the scalability and the resulting performance penalty 

became noticeable in two of the methods we chose to implement. We guessed that the penalty 

was caused by the frequent selection statement used in the code, along with the translation from 

PL/pgSQL to binaries. For future research opportunities, we recommend testing the scale of the 

selection statement penalty and explore possible methods to optimize the penalty. We also 

recommend exploring the feasibility of other popular analytical methods.
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Appendices 

Appendix A 

Command Prompt to Install MADlib on Ubuntu 18.04 
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Appendix B 

Code for logistic regression 
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Appendix C 

Code for random forest 
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Appendix D 

Implementation for K-Means Loop 
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Appendix E 

Code for Naïve Bayes Model 

 

 

 


