

1

Wearable Health Monitoring Device

A Major Qualifying Project Report

submitted to the faculty of
WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the

Degree of Bachelor of Science

Submitted by:
Avery Wallis

Elizabeth Correa
Hussein Karim

Submitted on:
March 16, 2021

Project Advisors:
Xinming Huang

Edward A. Clancy

This report represents the work of WPI undergraduate students submitted to the faculty as evidence of
completion of a degree requirement. WPI routinely publishes these reports on its website without

editorial or peer review. For more information about the projects program at WPI, please see
http://www.wpi.edu/academics/ugradstudies/project-learning.html

2

Abstract

Our Major Qualifying Project produced a prototype that can discreetly assess and monitor the

health of elderly users. We conducted research on common health issues, existing sensors, and

selected a pulse oximeter, accelerometer, electro-dermal activity sensor, microphone, and

electrocardiogram for our device. Using the TI CC2652R1 as our microcontroller, we integrated

these sensors into a battery-powered embedded system that wirelessly transmits data to a base

station. Sensor data were analyzed using MATLAB to demonstrate the functions of the device.

3

Acknowledgments

The success of our project was made possible by our advisors Professor Edward A. Clancy and

Professor Xinming Huang. They were an invaluable asset to us and to the completion of this

project in providing support, advice, and pushes in the right direction throughout our three terms.

Their guidance and direction ensured that with every new iteration we remained on track towards

our goal and truly understood the depth of our project. We would also like to thank Jianan Li and

He Wang, two WPI graduate students, for their help with the Bluetooth and MATLAB interfaces

for this project. Lastly, we would like to thank Worcester Polytechnic Institute and the entire

Electrical and Computer Engineering Department or helping us grow as innovators, and for

making this project possible.

4

Executive Summary

In recent years there has been an influx of health-monitoring devices created to give users a

better understanding of their overall health in a more convenient way. When dealing with illness,

especially in populations 65 and older, these devices can be crucial in detecting early signs of

problems that may be arising. They can be used in monitoring the user for a specific ailment,

after treatments while in recovery, or just for an overall gauge of their health. These devices are

now more relevant than ever as elderly populations are projected to be the highest they have been

in history. Furthermore, as we have just been hit with the COVID-19 pandemic, these devices

offer a quick and convenient assessment of health that can be used in the safety and comfort of

one’s home.

Our project team was tasked with creating one of these health monitoring devices with four main

goals in mind: our device must be compact; have a wide range of sensors that we could

implement ourselves (meaning we could not buy a health monitoring module with all of the

sensors implemented already); and it must discreetly acquire data followed by wireless

transmission to another computer for data analysis. Furthermore, we needed to understand and

explore the risks and illnesses that were associated with our intended market (population aged 65

years and older). We also explored existing health monitoring devices that monitor these

illnesses. In doing so, we found that we wanted to target heart rate irregularities such as atrial

fibrillation; tachycardia and bradycardia; blood oxygen illnesses such as hypoxemia; stress

induced illness; and falling.

To meet our design requirements, our project team designed a system consisting of an

electrocardiogram (ECG), pulse oximeter, electro-dermal activity sensor (EDA), microphone,

accelerometer, and MCU board. More specifically, our system consists of the AD8232 ECG

module, MAX30101 Pulse Oximeter and MAX32644 Biometric Sensor Hub, MIKROE-2860

electro-dermal monitor, Electret Microphone, ADXL345 accelerometer module, and TI

CC2652R1 microcontroller module. Each piece in our system was chosen through a value

analysis, when compared with other sensors of its type in categories such as cost, ease of

implementation, power consumption, accuracy, size, and other specifications related to our target

5

applications. The AD8232 was chosen for its 170 μA supply current, small size, and filter

integration to get cleaner signals at a low cost. The MAX30101 and MAX32644 were chosen for

their low power consumption, complete pulse oximeter package, and wearable heart rate

monitoring algorithm output. The MIKROE-2860, unlike the others, was more heavily chosen

based upon its cost and availability on the market. Other EDA sensors on the market were too

expensive or were an implemented health module which would deviate from one of our major

requirements of this project. Thus realistically, the MIKROE-2860 was one of the only devices

that fit all of our needs. The Electret Microphone was chosen for its ease of use, its maximum

110 dB sound pressure level, and its low cost. It can be placed anywhere on top of the device and

has a high enough sound pressure level limit to collect noise data around the user. The

ADXL345 was chosen for its sensitivity range, ±2 g to ±16 g, and for the plethora of registers

and interrupts built into the sensor that would aid in fall detection.

The TI CC2652R1 was chosen as our MCU because of its Bluetooth Low Energy (BLE), low

power capabilities, and because it offered us a greater challenge academically. It also supports

the wide range of interfaces we needed for this project (such as SPI and I2C) as well as the

quantity that we needed to be able to communicate with all of our sensors. Many MCU’s, like

Arduino, have libraries and functions that provide high-level interaction with the MCU. Using

the CC2652R1 requires a deeper understanding of the lower-level components and processes.

This meant that we were challenged in designing appropriate code for our system and got to

further our computer engineering and software knowledge. These sensors also allowed us to

work with three different types of interfaces: I2C, SPI, and analog. The pulse oximeter and

accelerometer were implemented via I2C, the EDA sensor via SPI, and the ECG and microphone

via analog.

Once the software integration of our sensors were completed, we had to integrate them together

in a Real-Time Operating System (RTOS) environment. This enables multi-threading and thread

prioritization. Sensor readings with a higher frequency, and shorter deadlines, are able to

preempt sensors with a lower frequency, allowing for sensor readings to not be missed. Within

our integration, each sensor runs at different sampling rates. The pulse oximeter samples at 10

Hz, accelerometer at 100 Hz, EDA at 1 Hz, and the microphone and ECG run at 200 Hz. A table

6

of this information is provided in Section 6.1.1 in Table 9. We then had to add this

implementation into a BLE environment so that we could transmit the sensor data to be

processed externally. We used custom BLE profile characteristics to share sensor data through

separate packets to be received by an externally connected device.

We designed a set of MATLAB interfaces to log and parse the sensor data transmitted via

Bluetooth. We created a MATLAB application with a GUI that allows the user to connect a

second CC2652R1 LaunchPad to the peripheral device, configure what BLE data packets to

enable, and log that data to a specified file. We also created a MATLAB program that extracts

the sensor data from the logged BLE packets and displays the data visually.

Lastly we had to create a PCB board and 3D printed housing for our device. The PCB brings all

the sensor breakout boards together into a smaller footprint, allowing the device to be wearable.

It also made the 3D printed housing design simpler. The housing for the device was created over

two iterations, with the first being created to give us a more general idea of where everything

should be located, along with any changes that needed to be made. SolidWorks was used to make

the 3D model, and was created in a three tier system consisting of the bottom, middle, and top

piece. These tiers all plug into each other for easy installation and removal. Our finished

prototype can be seen in Figure 1.

Figure 1: Finished Prototype

7

In summary, we successfully designed a compact, multi-function, real-time health monitoring

device as an integrated embedded system. Hardware design was focused on sensor interface and

software design implemented multi-threading using RTOS. The system prototype is completed

and fully functional.

8

Authorship

Primary
Author(s)

Abstract……………………………………………………………..……………………………EC
Acknowledgements……………………………………………………………..………………..EC
Executive Summary……………………………………………………………..……………….EC
1 Introduction……………………………………………………………..……………………...EC
2 Background……………………………………………………………..……………...….…...EC

2.1 Health Issues………………………………………………………………......AW, EC, HK
2.1.1 Heart Rate Irregularities……………………………………...…..…..HK, AW
2.1.2 Blood Oxygen Issues.………………………………………...….……...AW
2.1.3 Stress Induced Illness………………………………………...…..….......EC
2.1.4 Hearing Loss…………………………………………………...…....…...HK
2.1.5 Risks of Falling………………………………………..…...…..………...EC

2.2 Existing Health Monitoring Devices…………………………………...….………...EC
2.2.1 Health and Fitness Trackers…………………………………….…..AW, EC, HK
2.2.2 Other Compact Devices………………………………………….....AW, EC, HK
2.2.2 Smartwatches…………………………………………………..…...AW, EC, HK

3 Sensor Description……………………………………………………………..………......AW, EC, HK
3.1 Pulse Oximeter………………………………………………………………....…....AW
3.2 Accelerometer……………………………………………………………...…...…....EC
3.3 Electrodermal Activity Sensor (EDA)………………………………...….....……….EC
3.4 Microphone…………………………………………………………...…...……........HK
3.5 Electrocardiogram (ECG)…………………………………………...…...…………..HK

4 Design Options……………………………………………………………..……..………..AW, EC, HK
4.1 Sensor Selection………………………………………………………...…...……....AW

4.1.1 Pulse Oximeter……………………………………………...…...…….....AW
4.1.2 Accelerometer……………………………………………...…...…….…..EC
4.1.3 Electrodermal Activity Sensor (EDA)………………………...…...……..EC
4.1.4 Microphone………………………………………........…...…..................HK
4.1.5 Electrocardiogram (ECG)…………………………………...…...……….HK
4.1.6 Microcontroller…………………………………………...…...………….AW
4.1.7 Power………………………………………..............…...….....................AW
4.1.8 Peripheral Bluetooth Device…………………………………...…..……..AW

4.2 Primary Design Layout………………………………………………...….…….…...AW
5 Sensor Communication……………………………………………………..………….…...AW, EC, HK

5.1 I2C Interface……………………………………………………………...….…........AW
5.1.1 Pulse Oximeter………………………………………………..…...…......AW
5.1.2 Accelerometer………………………………………………...……..........EC

5.2. SPI Interface……………………………………………………………...….............EC
5.2.1 EDA Sensor………………………………………………..…...…...........EC

5.3 Analog Input……………………………………………………………...……….....HK
5.3.1 ADC Interface for ECG………………………………….……...……......HK
5.3.2 ADC Interface for Microphone……………………...…………….…......HK

6 Sensor Integration……………………………………………………………..………..….AW, EC, HK
6.1. RTOS Environment……………………………………………………...….........AW, EC

9

6.1.1 Task Scheduling in RTOS………………………………..……...…........AW
6.2 BLE Environment…………………………………………………………...…........EC

6.2.1 BLE Implementation on CC2652 Board………...…………….…...........AW
7 Data Analysis……………………………………………………………..……………...….......EC

7.1 MATLAB Interface………………………………………………...………...…......AW
7.1.1 MATLAB App……...………………………………………..…….........AW
7.1.2 MATLAB Data Parsing……...…………………………………..….......AW

7.2 Pulse Oximeter………………………………………………………………..….....AW
7.3 Accelerometer………………………………………………………………….........EC
7.4 EDA Sensor……………………………………………………………..…………...EC
7.5 Microphone………………………………………………………………..…..........HK
7.6 ECG…………………………………………………………………………..….….HK

8 Mechanical Design of Prototype …………………………...…………………..…...……....AW, EC
8.1 PCB Board Design…...……………………………………………...…………......AW
8.2 3D Printed Housing…………………………………………………….………......EC

9 Conclusion……………………………………………………………..…………….…...…....EC
Appendix 1: Temperature Sensor Research,

Description, Design Options, and Communication……………………………...…….AW
Appendix 2: Maximum Current Draw Table……………………………………………....……AW
Appendix 3: SPI Modes and Definitions……………………………………………….…..……EC

10

Table of Contents

Abstract 2
Acknowledgments 3

Executive Summary 4
Authorship 8

Table of Contents 10
Table of Figures 12

Table of Tables 15
1. Introduction 16

2. Background 19
2.1 Health Issues 19

2.1.1 Heart Rate Irregularities 19
2.1.2 Blood Oxygen Issues 20
2.1.3 Stress Induced Illness 20
2.1.4 Hearing Loss 21
2.1.5 Risks of Falling 21

2.2 Existing Health Monitoring Devices 22
2.2.1 Health and Fitness Trackers 22

Shimmer Sensing 22
Fitbit 23

2.2.2 Other Compact Devices 25
KardiaMobile 25

2.2.3 Smartwatches 25
Apple Watch Series 6 25
Samsung Galaxy Watch 3 27
Letsfit Smart Watch ID215G 28

3. Sensor Description 29
3.1 Pulse Oximeter 29
3.2 Accelerometer 31
3.3 Electrodermal Activity Sensor 33
3.4 Microphone 35
3.5 Electrocardiogram 36

4. Design Options 38
4.1 Sensor Selection 38

4.1.1 Pulse Oximeter 38
4.1.2 Accelerometer 44
4.1.3 Electrodermal Activity Sensor 48
4.1.4 Microphone 50
4.1.5 ECG 53
4.1.6 Microcontroller 54
4.1.7 Power Supply 56
4.1.8 External Bluetooth Device 57

11

4.2 Primary Design Layout 58
5. Sensor Communication 61

5.1 I2C Interface 61
5.1.1 Pulse Oximeter 63
5.1.2 Accelerometer 74

5.2 SPI Interface 83
5.2.1 EDA Sensor 85

5.3 Analog Input 89
5.3.1 ADC Interface for ECG 89
5.3.2 ADC Interface for Microphone 91

6. Sensor Integration 93
6.1 RTOS Environment 93

6.1.1 Task Scheduling in RTOS 95
6.2 BLE Environment 100

6.2.1 BLE Implementation on CC2652 Board 103
7. Data Analysis 105

7.1 MATLAB Interface 105
7.1.1 MATLAB App 105
7.1.2 MATLAB Data Parsing 109

7.2 Pulse Oximeter 114
7.3 Accelerometer 116
7.4 EDA Sensor 120
7.5 Microphone 122
7.6 ECG 124

8. Mechanical Design of Prototype 130
8.1 PCB Board Design 130
8.2 3D Printed Housing 135

9. Conclusion 139

References 141
Appendix 1: Temperature Sensor Research, Description, Design Options, and Communication 153

Appendix 2: Maximum Current Draw Table 163

Appendix 3: SPI Modes and Definitions 164

12

Table of Figures

Figure 1: Finished Prototype
Figure 2: Shimmer Sensing
Figure 3: Fitbit Sense
Figure 4: KardiaMobile being used to get heart rate
Figure 5: Apple Watch Series 6
Figure 6: Samsung Galaxy Watch 3
Figure 7: Letsfit ID215G smartwatch
Figure 8: Red (R) and infrared (IR) scaled alternating current (AC) signals at arterial

oxygen saturation (SaO2) of 0%, 85% and 100%.
Figure 9: Common pulsatile signals on a pulse oximeter.
Figure 10: Example of EDA signal with exemplary skin conductance responses
Figure 11: Example of EDA signal slowly climbing, with no significant skin conductance

responses
Figure 12: SparkFun Pulse Oximeter and Heart Rate Sensor - MAX30101 & MAX32664

Top View
Figure 13: SparkFun Pulse Oximeter and Heart Rate Sensor - MAX30101 & MAX32664

Bottom View
Figure 14: ADXL345 Sparkfun Breakout Board
Figure 15: Electro-dermal Activity sensor: MIKROE-2860
Figure 16: Circuit for EDA sensor
Figure 17: Sparkfun Electret Microphone w/Breakout
Figure 18: Figure of AD8232
Figure 19: Image of CC2625R1
Figure 20: Basic Block Diagram of the Wearable System
Figure 21: Detailed Functional Block Diagram
Figure 22: Schematic of Final Design
Figure 23: Complete I2C Transaction
Figure 24: Typical CC2652R1 I2C Driver Setup/Configuration in C
Figure 25: MAX30101 & MAX32664 I2C Write/Read data transfer from host microcontroller
Figure 26: SparkFun Example 1 Config BPM Mode 1 Code Flow
Figure 27: Example of Pulse Oximeter Sensor Output in Algorithm Mode 1
Figure 28: Example of Pulse Oximeter Sensor Hub
Figure 29: ADXL345 Read/Write I2C Transaction Protocols (Device Addressing)
Figure 30: ADXL345 Register Map
Figure 31: ADXL345 Power_CTL Register
Figure 32: Setting the ADXL345 into measurement mode
Figure 33: Receiving the ADXL345 data for register x0
Figure 34: Formatting the x-axis data to read out in g
Figure 35: ADXL345 results with z axis normal to gravity (x = 0g, y = 0g, z = 1g)
Figure 36: ADXL345 results with z axis parallel to gravity (x = 0g, y = 0g, z = -1g)
Figure 37: ADXL345 results with y axis parallel to gravity (x = 0g, y = -1g, z = 0g)
Figure 38: ADXL345 results with x axis parallel to gravity (x = -1g, y = 0g, z = 0g)
Figure 39: CC2652R1 SPI Setup/Configuration
Figure 40: Communication with MCP3201 changing from MSB first to LSB first
Figure 41: SPI communication with MCP3201 using SPI mode 0

13

Figure 42: Setting the SPI parameters for the MCP3201
Figure 43: MCP3201 SPI Transaction
Figure 44: Processing the received SPI data
Figure 45: Regular vs Dampened Hand EDA results (from left to right)
Figure 46: Oscilloscope of ECG Signal
Figure 47: Measured ECG Reading in Code Composer Studio
Figure 48: Silent microphone data
Figure 49: Noise input into the microphone
Figure 50: Threads within the TI-RTOS
Figure 51: Example Task Execution in our System
Figure 52: RTOS Sensor Sampling Waveforms
Figure 53: Format of a Link Layer Packet
Figure 54: Transmission with 1M PHY
Figure 55: Transmission with 2M PHY
Figure 56: MATLAB App Interface
Figure 57: Example MATLAB App Output
Figure 58: Example Accelerometer Notification Packet Received by BTool
Figure 59: ECG Voltage over Time
Figure 60: Microphone Voltage over Time
Figure 61: EDA Voltage over Time
Figure 62: Accelerometer Voltage over Time
Figure 63: Measured Heart Rate Before and After Exercise
Figure 64: Measured Heart Rate Confidence Before and After Exercise
Figure 65: Blood Oxygen Saturation Before and After Exercise
Figure 66: Acceleration change curves during falling
Figure 67: ADXL345 INT_SOURCE (0x30) Register
Figure 68: Test of Fall Algorithm
Figure 69: Code implementation of baseline for EDA
Figure 70: Baseline output for EDA
Figure 71: Stress reading of EDA sensor
Figure 72: Hand Resistance and ADC Voltage Output of EDA Reading
Figure 73: Graph of no loud noise
Figure 74: Graph of loud noise
Figure 75: MATLAB Mic Data Analysis Code
Figure 76: Group member ECG analysis (Pt. 1)
Figure 77: Group member ECG analysis (Pt. 2)
Figure 78: Data from Physionet that has Atrial Fibrillation
Figure 79: Group member’s Heart Rate Graph (BPM)
Figure 80: PCB Schematic Rev 1.0
Figure 81: Top view of unpopulated PCB V1.0
Figure 82: Bottom view of unpopulated PCB V1.0
Figure 83: Top view of populated PCB V1.0
Figure 84: Bottom view of populated PCB V1.0
Figure 85: Top view of PCB populated with sensors
Figure 86: Angled view of PCB populated with sensor
Figure 87: PCB Revision 1.1 Top View

14

Figure 88: PCB Revision 1.1 Bottom View
Figure 89: SolidWorks Schematic for bottom layer of Housing
Figure 90: SolidWorks Schematic for middle layer of Housing
Figure 91: SolidWorks Schematic for top layer of Housing
Figure 92: Angled View of Assembled System
Figure 93: Top View of System without Lid
Figure 94: Angled View of System without Lid
Figure 95: Thermistor Resistance over Temperature
Figure 96: Thermistor Power Dissipation, maximum highlighted in red
Figure 97: Temperature Sensor Reading Output During Configuration
Figure 98: Current Temperature Sensor Output After Being Breathed On

15

Table of Tables

Table 1: Pulse Oximeter Sensor Specifics
Table 2: Accelerometer Specifications
Table 3: Microphone Sensor description
Table 4: Read Status Byte Value
Table 5: Algorithm States
Table 6: Extended Algorithm Status
Table 7: Initialization of ADXL345 Registers
Table 8: Example Task Execution Event Description
Table 9: Designed Sampling Rate vs Measured Sampling Rate for Individual Sensor
Table 10: Sensor BLE Packet Sizes
Table 11: Maximum Current Draw of Development Board ICs

16

1. Introduction

In the United States there is a growing concern for the management and monitoring of one’s

overall health, as well as how health-monitoring devices and new technologies can help catch

potential illnesses before they happen. These new devices become even more important and

impactful when dealing with users aged 65 years and older that are deemed more susceptible to

developing health problems. The current growth for elderly population (aged 65 and older) is

unprecedented in U.S. history and is projected to almost double from 52 million in 2018 to about

95 million by 2060 [1]. This could potentially fuel a corresponding influx of people who would

now potentially require nursing home care and/or constant health monitoring. This means that in

the years to come, there is a growing market for these new devices to better manage and assess

potential health issues for this older population of people. While the aforementioned applications

are mainly for prevention, recovery is another important aspect of health monitoring. Doctors

and nurses would like to know more about the activities of a patient after surgery or during a

treatment process, so they can have a better assessment of the patient's evolving condition.

The use of these devices often involves constant monitoring of key aspects of body activity (such

as heart rate, temperature, motion, etc.) that requires the user to wear the device for most of the

day. This monitoring allows the user and/or potential caretakers to be notified of any potential

health concerns or issues that may need further assessment. These devices could potentially be

used by patients who already have health problems or are under constant care and monitoring

(such as in an assisted living facility or nursing home). Alternatively, these devices could also be

used by consumers who receive little to no outside care but feel the want or need to keep a better

day-to-day assessment of their health. This echoes the economic impact of the senior’s

healthcare. As the elder population grows, the availability and cost of nursing home services can

be an important issue. Alternative at-home care might be a more economical solution. In this

case, constant health monitoring becomes essential.

The goal of this project was to create a device that would be able to discreetly assess and monitor

some physiological aspects relating to the health of the user, as well as process the received data

afterwards. To do so, we considered the following design constraints:

17

1. The device must be a compact, single device that is small and light enough to be worn

most of the day.

2. The device must have a range of sensors able to monitor the overall health of the user.

3. The device must be able to collect data discreetly with minimal need for user

intervention.

4. The device must be able to wirelessly transfer sensor data to be analyzed by an external

device.

5. The device must be battery operated and limit power consumption to increase battery life.

To meet these constraints this device would explore the risks and illnesses that are able to be

monitored through wearable devices, and assess how these risks and illnesses impact older

populations, resulting in a device called Wearable Health Monitoring Device (WHMD). WHMD

used multiple sensors compacted together that would be light and small enough to be worn in

order to monitor the overall health of the user. These sensors include:

1. A pulse oximeter measures the blood oxygen saturation and pulse rate.

2. An accelerometer to measure the motion of the device to determine if the user has fallen.

3. A microphone to measure the amplitude of external sounds to alert for the potential of

hearing damage.

4. An electro-dermal activity sensor (EDA) to measure skin conductance for stress

assessment.

5. An electrocardiogram (ECG) to measure the heart’s electrical signals to look for

irregularities in the user’s heart rate.

A temperature sensor was initially considered and implemented in our design, but was not

included in our final prototype due to our confidence in the accuracy of skin temperature.

Information on its background, design option, and implementation can be seen in Appendix A.

The data collected from these sensors were then processed using a microcontroller and

transmitted via Bluetooth to an external device operated by the user. From this external device,

18

the user can monitor data from these sensors and be alerted of any potential health problems that

specific sensors detect.

19

2. Background

In order to design a device that monitors the health of the user, we needed to understand what

health issues exist and what commercially available devices do to address these issues. By

exploring these aspects, we gained a better understanding of common health illnesses, ways to

monitor them, and health issues that existing technology can monitor.

2.1 Health Issues

For specific health issues, we looked into heart rate irregularities, low blood oxygen levels, stress

induced illness, hearing loss, and risks of falling. We thought that these issues were necessary to

address to give an overall assessment of health.

2.1.1 Heart Rate Irregularities

Atrial Fibrillation

Atrial fibrillation is an irregular and rapid heart rate, and is one of the most common heart

problems in elderly people. Poor blood flow can cause blood clots to form in the atria. These

clots can become dislodged and can cause strokes (if circulated to the brain) or a myocardial

infarction (i.e. heart attack). Signs of atrial fibrillation are hard to notice because irregular heart

rhythm can occur for a few minutes to a couple of hours, and then return to a normal rhythm

without being detected [2]. Signs include “a fluttering heartbeat, heart palpitations, light-

headedness, feeling winded even while at rest, chest pain, and fainting” [3]. While the chances of

getting atrial fibrillation increase with age, there are measures that people can take to decrease

their chances of being affected. These include a decrease in alcohol consumption and smoking.

Detection of atrial fibrillation is difficult because people do not always have access to a device

that measures their heart rate. Even with proper equipment, detection can still be challenging

because the heart may not be in the irregular state that depicts atrial fibrillation during testing. If

atrial fibrillation is detected, the goal of treatment is to attempt to reset the rhythm of the heart.

This can either be done by giving the patient antiarrhythmic medication to help restore normal

heart rhythm or by directly treating the patient by giving them an electrical shock to the heart [4].

20

Bradycardia & Tachycardia

Bradycardia and tachycardia are abnormally slow and fast heart rates respectively. The average

adult heart beats between 60 and 100 times per minute at rest. Heart rates consistently outside

this range can be of concern. Bradycardia occurs when heart rate is consistently below 60 bpm

[5][6]. The causes vary person-to-person, sometimes appearing after a heart attack or heart

surgery. Symptoms may include dizziness, chest pain, weakness, and confusion [6]. Tachycardia

occurs when the heart rate goes above 100 bpm [5]. It can be caused by a range of issues,

including exercise, stress, and certain medications. Symptoms may include chest pain, dizziness,

shortness of breath, and lightheadedness. Extreme cases can cause cardiac arrest or

unconsciousness [7]. Diagnosis often involves the use of an ECG to monitor heart rate.

2.1.2 Blood Oxygen Issues

Hypoxemia is a low level of oxygen in the blood. It is often confused with hypoxia, which is a

low amount of oxygen in the body or a specific part of the body. Hypoxemia refers to oxygen in

the blood while hypoxia refers to oxygen in tissue. Hypoxemia can sometimes lead to hypoxia,

but is not the sole cause of hypoxia. Hypoxemia can be caused by issues relating to breathing,

where not enough air enters the lungs or not enough oxygen is transferred to the blood. This can

be caused by heart and lung conditions, sleep apnea, and high altitudes where oxygen is in a

lower concentration. Symptoms may include headaches, wheezing, shortness of breath, fast

heartbeat, and confusion. In extreme cases hypoxemia can interfere with the function of the heart

and brain. [8]

2.1.3 Stress Induced Illness

Although stress itself is not an illness, high amounts of stress can cause pre-existing health issues

to worsen, or can increase the risk of specific health conditions. Affected health conditions

include: heart disease, asthma, obesity, diabetes, headaches, depression, gastrointestinal

problems, alzheimer’s disease, accelerated aging, and premature death. Sudden emotional stress

can be a trigger for serious cardiac problems, including heart attacks. In addition, “...research has

shown that a particular region of the chromosomes showed the effects of accelerated aging.

Stress seemed to accelerate aging about 9 to 17 additional years [over a lifetime].” [9].

Considering that the market we are catering to are already 65 and older, the consequences of

21

stress may be more severe, as their bodies may not be able to fight off these issues as easily.

Although stress is rarely considered when monitoring health, managing stress can effectively

improve one’s susceptibility to illness.

2.1.4 Hearing Loss

About one in three people between ages 65 and 74 have hearing loss, and roughly half of people

above the age of 75 have trouble hearing [10]. This can be very detrimental to the lives of elderly

people, as they need their hearing for effective communication with their loved ones and

caretakers. While the ability to hear decreases naturally with age, there are other reasons that can

cause hearing loss. One of the major reasons for hearing loss is exposure to loud noise. Research

shows that people constantly exposed to loud noise are more likely to have difficulty hearing the

older they get [10]. According to the CDC, sound pressure levels greater than 70 dB over a long

period of time can cause hearing damage, and levels greater than 120 dB can cause immediate

damage [11].

2.1.5 Risks of Falling

Falls, although not a disease or illness, are still a major problem for the population of adults 65

and older. The CDC states that one in five falls causes broken bones or head injuries, which can

be more severe for older people. Each year “3 million older people are treated in emergency

departments for fall injuries” [12]. Older people are more likely to fall due to poor eyesight,

hearing, medications, and a decline in overall physical fitness. Older people are also more likely

to break bones when they fall, as their bones tend to be more porous and fragile (mainly caused

by osteoporosis). “Every year at least 300,000 people are hospitalized for hip fractures, and more

than 95% of these hip fractures are caused by falling (usually from falling sideways)” [12].

Additionally, falls are the most common cause of traumatic brain injuries in older people, and

these effects can be more severe if the person is taking certain medicines, such as blood thinners.

The results of falling, even if not physically harmful, can be mentally harmful, resulting in the

person becoming scared of falling and consequently reducing their physical activities. When an

older person lives alone, these factors can pose a greater threat. If they get hurt they may not be

able to call for help, and if they become fearful of falling they may not be getting the physical

22

activity they need. This lack of physical activity would result in an even weaker body that is

more susceptible to falls. Each of these factors impact an older person’s quality of life in a

debilitating way.

2.2 Existing Health Monitoring Devices

In order to understand how we can monitor certain aspects of health, we researched existing

wearable devices that monitor and display a variety of health data. For devices centered around

monitoring consumer’s overall wellness, we looked into the Shimmer sensor, the Fitbit, and the

KardiaMobile. In addition to these health and fitness trackers, we explored existing smartwatches

that incorporate health tracking features into their design. Specifically we looked at the Apple

Watch Series 6, the Samsung Galaxy Watch 3, and the Letsfit Smart Watch ID215G. These

devices are intended to be used by the general population as an everyday wearable device and act

similar to a smartphone. They are a useful reference for exploring how consumer devices have

expanded their functionality to include health monitoring.

2.2.1 Health and Fitness Trackers

Shimmer Sensing

Shimmer Sensing is a FDA approved product that contains many sensors to monitor the health of

individuals. An image of the Shimmer is shown in Figure 2.

Figure 2: Shimmer Sensing [13]

23

These sensors include a wide range accelerometer, a low noise accelerometer, a digital

magnetometer, a gyroscope, and a pressure/temperature sensor [13]. The Shimmer uses all of

these sensors in combination to measure different aspects about an individual. The two

accelerometers, gyroscope, and magnetometer are used to calculate the orientation and speed of

the device. The Shimmer uses the temperature sensor to measure the user’s skin temperature. It

uses a RN42 Bluetooth radio for reliable communication between mobile devices and PCs. The

circuit is designed to not affect the reading from the magnetometer. Finally, the Shimmer uses a

450 mAh lithium battery and a MSP430 for its microcontroller. The Shimmer has multiple

different modules that can attach to the base unit, such as the ECG/EKG module that measures

the user’s heart rate.

Fitbit

Fitbit is a company that produces both trackers and smartwatches to track one’s overall fitness

progress and health. Each product, from the new smartwatch Fitbit Sense to trackers like the

Fitbit Charge 4, are all compatible with the Fitbit app that will give the user an overall snapshot

of their day. This snapshot includes features such as [14] :

● all-day activity

○ steps and distance, floors climbed, calories burned, active minutes

● exercise statistics

○ average heart rate, calories burned during exercise, duration of exercise

● 24/7 heart rate tracking

○ heart rate zones during workouts, resting heart rate trends, cardio fitness score

● sleep tracking

○ tracks deep, light and REM sleep, duration of sleep, gives a sleep score

● log nutrition

○ macros, calories in vs calories out

● water intake

● workouts and challenges within the community tab

24

Fitbit has expanded its product line to include tracker devices with smartwatch capabilities. The

newest in this line is the Fitbit Sense, which tries to blur the line between smartwatches and

fitness trackers. An image of the product can be seen in Figure 3.

Figure 3: Fitbit Sense [14]

The device uses a biosensor core, found on the back of the watch face, to take measurements

such as skin temperature and heart rate. The device uses a lithium polymer battery that boasts a

40 minute charge time with up to six days of life. For sensors, there is a multipath optical heart

rate sensor, multipurpose electrical sensors (compatible with its ECG and EDA app), a

gyroscope, altimeter, 3-axis accelerometer, skin temperature sensor, speaker (75 dB SPL @10

cm), microphone, Bluetooth 5.0 transceiver, built in Wi-Fi (802.11b/g/n 2.4 GHz), and built in

GPS [14]. Fitbit notes that the device saves seven days of detailed motion (minute by minute),

daily totals for the past 30 days, and heart rate data at one second intervals during exercise

tracking and at five second intervals all other times. All of these sensors allow the device to take

important metrics like ECG readings, EDA scans, heart rate, and blood oxygen saturation levels.

This then allows the user to be notified of any potential health issues, such as atrial fibrillation,

low and high heart rate, hypoxemia, high levels of stress, abnormal skin temperature and

breathing, or other signs of illness.

25

2.2.2 Other Compact Devices

KardiaMobile

The KardiaMobile by AliveCor is a FDA approved single-lead EKG sensor. AliveCor's

technology takes readings from the user’s fingertips to acquire their EKG. This product is shown

in Figure 4.

Figure 4: KardiaMobile being used to get heart rate [15]

The device can measure EKG in thirty seconds to five minutes, and all of the data gets sent to the

Kardia mobile app. Data is taken from fingers placed on the device. Those who can benefit from

KardiaMobile are people with a known or suspected heart condition. The device can detect atrial

fibrillation, which is one of the most common types of heart illnesses. It runs on very low power,

requiring the battery to be changed once a year. Other than that, the device does not connect

wires to your body physically and is portable. [15]

2.2.3 Smartwatches

Apple Watch Series 6

The Apple Watch Series 6 is a wearable smart device designed for everyday users that puts a lot

of smartphone features onto the wrist. The device uses a display as the main interactive feature.

Connectivity is simple, with built-in cellular communication in select models, 2.4 GHz and 5

GHz WiFi, and Bluetooth 5.0. The S6 SiP 64-bit dual-core processor runs the watchOS,

26

which is paired with 32 GB of storage. All previous Apple Watch features have carried over to

this new version, such as phone calls, messaging, Apple Pay, Siri, Maps, etc. [16][17]. This

product can be seen in Figure 5.

Figure 5: Apple Watch Series 6 [16]

This iteration expands on the health features present in previous versions. A third-generation

optical heart sensor is now paired with the new Blood Oxygen App, allowing users to actively

monitor their blood oxygen levels. This sensor uses four clusters of red, green, and infrared

LEDs to shine light into the wrist when worn. Four photodiodes measure the amount of light that

is reflected back and the returning information is processed to display blood oxygen saturation

[17][18]. The Series 6 has a built-in ECG which is used in parallel with the ECG App. An ECG

waveform can be generated in 30 seconds while wearing the watch and holding a finger from the

opposite hand to the Digital Crown. The ECG App detects and notifies the user if results are

consistent with sinus rhythm, atrial fibrillation, and a low or high heart rate. Apple claims sinus

rhythm and atrial fibrillation detection accuracies of 99.6% and 98.3% respectfully, when

compared to a standard 12-lead ECG in a clinical trial of approximately 600 individuals [19]. An

accelerometer, gyroscope, and an always-on altimeter allow for fall detection. When paired with

Emergency SOS, the device can automatically call emergency services if it detects a bad fall. A

built-in microphone allows for noise detection, which alerts the user if an environment is loud

enough to potentially cause hearing damage [16]. A new Sleep app allows the user to track their

sleep trends. Previously mentioned sensors, plus a built-in GPS and compass, allow for easy

fitness and wellness tracking.

27

Samsung Galaxy Watch 3
The Samsung Galaxy Watch 3 is the first Samsung smartwatch that tries to blend health into its

original interface, and can be seen in Figure 6.

Figure 6: Samsung Galaxy Watch 3 [20]

To generate fitness readings, the watch is equipped with an accelerometer, barometer, gyro

sensor, ECG, optical heart rate sensor (HRM — implemented by 8 photodiodes), light sensor,

Bluetooth and Wi-Fi capabilities. Users, by recording their ECG with the watch for 30 seconds,

can check for signs of atrial fibrillation and share the report with their healthcare provider using

the Samsung Health Monitor app. It can also take and monitor the user’s blood oxygen levels on-

demand while giving real-time feedback on “VO2 max” — the maximum amount of oxygen

consumption. This can help the user evaluate their endurance during training [20]. The watch

also comes with a feature for fall detection, where users can notify an emergency contact and

share your location if they fall during a workout or every day use. It is important to note that this

feature comes with a disclaimer that fall detection only recognizes falls during dynamic motion.

The watch also comes with an automatic sleep tracker (no app required) to help monitor the

user’s sleep cycles (REM, deep and light sleep). Lastly, it monitors the user’s heart rate and

stress levels while offering breathing guides to help them recenter if high stress levels are

detected. All of these features allow for a consumer to manage their fitness in an easy and

concise way, while also allowing them to access the other features of a normal smartwatch.

28

Letsfit Smart Watch ID215G
The Letsfit Smart Watch ID215G is a smartwatch that incorporates specific aspects of a health

monitoring device. An image of this device can be seen in Figure 7.

Figure 7: Letsfit ID215G smartwatch [21]

Designed to operate in tandem with a smartphone app, the device has limited capabilities when

not connected. The main interface of the device is a 1.1” touch screen. Swiping up/down shows

the notifications and status bar, while swiping left/right changes between the function interfaces

and data bar. Function interfaces include seven sports modes, the current weather, a heart rate

monitor, and current blood oxygen levels. The sport modes include indoor/outdoor

running/walking, hiking, outdoor cycling, and pool swimming. A built-in GPS allows for

location tracking during outdoor sport modes. Both the heart rate and the blood oxygen level are

monitored using the pulse oximeter on the bottom of the watch. Notifications and phone calls

will display on the watch only if it is connected to the app on a smartphone. Users can also see

the smartwatch data through the app. [22][23]

29

3. Sensor Description

From our initial device and health research, we selected different sensors to use in our system. In

order to properly implement these sensors, we had to have a detailed understanding of how they

work. This section goes into greater detail about how the sensors function and what information

can be learned from the measured data.

3.1 Pulse Oximeter

A pulse oximeter is a medical device that is used to monitor the blood oxygen level in a person’s

blood. It works on the principle that there are different levels of light absorption between

oxyhemoglobin (oxygenated blood, O2Hb) and reduced hemoglobin (deoxygenated blood,

Hb). Red and infrared (IR) light, with wavelengths of ~660 nm and ~940 nm respectfully, are

absorbed in different amounts by the blood. O2Hb absorbs less red light than Hb, while Hb

absorbs less IR light than O2Hb [24]. An example of the difference between the red and IR light

absorption under different oxygenation levels can be seen in Figure 8.

Figure 8: Red (R) and infrared (IR) scaled alternating current (AC) signals at arterial oxygen

saturation (SaO2) of 0%, 85% and 100%. The numeric value of the red-to-infrared (R/IR) ratio
can be easily converted to SaO2 [24]

30

By comparing the different amounts of red and IR light that were not absorbed by the blood, the

arterial saturation (SaO2) can be estimated. The oxygen saturation level estimate that is calculated

by a pulse oximeter is known as SpO2. A healthy level of SpO2 is typically between ~95% and

100%, but some people manage daily levels between 90% and 95% without complications.

Algorithms take this difference between red and IR light and attempt to calculate a blood oxygen

level and heart rate over time. The accuracy of pulse oximeter devices can vary due to different

algorithms used in this analysis [24]. Error can also be introduced through motion artifacts,

which occur when the device or user moves while a reading is being taken. Noise artifacts can

cause incorrect readings and should also be avoided when possible. Ambient light that is picked

up by the light detectors can also create incorrect readings. Examples of output signals, with and

without artifacts, can be seen in Figure 9.

Figure 9: Common pulsatile signals on a pulse oximeter. (Top panel) Normal signal showing the
sharp waveform with a clear dicrotic notch. (Second panel) Pulsatile signal during low perfusion

showing a typical sine wave. (Third panel) Pulsatile signal with superimposed noise artifact
giving a jagged appearance. (Lowest panel) Pulsatile signal during motion artifact showing an

erratic waveform. [25]

31

There are two main methods of implementing a pulse oximeter: transmissive and reflective pulse

oximetry. Transmissive pulse oximetry involves shining light through an area of the body and

measuring the light that penetrates to the other side. This method requires a part of the body that

is thin enough for light to pass through, which typically means it is used on the finger or lower

part of an earlobe. In reflective pulse oximetry, the light source and light detector are on the

same side of the location that is being monitored. Some of the light that is sent into the body is

reflected back and measured by the light detector. Because reflective pulse oximetry does not

require a thin area of the body, it can be used in a range of locations, including the wrist, finger,

and forehead.

3.2 Accelerometer

An accelerometer is an electronic sensor used to measure the acceleration forces acting upon an

object to determine its position in space and monitor its movement. These forces could be the

gravity acting on the object, or can be more dynamic, caused by moving or vibrating the sensor.

By measuring the amount of static acceleration due to gravity, the angle at which the device is

tilted with respect to the Earth can be determined. By sensing the amount of dynamic

acceleration, the direction the device is moving can be analyzed. There are two electrical

characteristics that can be used to measure acceleration: the piezoelectric effect and capacitance.

[26]

The most common accelerometer design utilizes the characteristics of piezoelectric materials.

Piezoelectric materials exhibit electro-elastic coupling, which means that they convert

mechanical energy (when under strain) to an electric signal. “This electrical signal is

proportional to the mechanical strain of the piezo and therefore, is proportional to the vibration

or shock event of the system” [27]. Thus, when the device is subjected to movement or vibration,

a force is created that acts on these piezoelectric materials and a voltage output proportional to

the applied force is created. The accelerometer interprets this voltage to determine both

acceleration and orientation. [27]

32

The capacitive accelerometer consists of a diaphragm that acts as a mass that undergoes flexure

when in the presence of acceleration. This diaphragm is then placed between fixed two plates,

creating two capacitors — one on each side of the diaphragm. When a force is subjected onto the

accelerometer, the flexure of the diaphragm results in a capacitive shift by altering the distance

between the two plates. The electrical output of this relationship is then measured and interpreted

to determine acceleration and orientation. [28]

Accelerometers come with a multitude of variables to be considered when selecting a specific

sensor such as: number of axes, peripheral interface, maximum swing/sensitivity, and bandwidth.

The number of axes in an accelerometer directly correlates to the amount of axes the

accelerometer is able to detect motion or vibration on. For example, a single-axis accelerometer

would only be able to measure motion on one axis (either x, y, or z). In this case, it would not be

able to determine the device’s orientation, direction, or forces relative to an absolute point.

Similarly, a two axis accelerometer is able to measure the forces acting on an object in two

directions, allowing for things like tilt and impact detection. Lastly, a three axis accelerometer

measures the forces acting on an object in all directions, allowing for 3D positioning of the

device and a greater understanding of its dynamic motion. [29]

Peripheral interfaces for accelerometers come in two forms: analog or digital. The biggest

difference between analog and digital interfaces for accelerometers is where the measurement

(conversion to digital) is done. For a digital accelerometer this conversion is done within the

device itself, whereas for the analog accelerometer this conversion is done with an external

ADC. Data taken from analog accelerometers are susceptible to noise as it traverses longer

wires/traces, and that noise can then be sampled and included within its measurements. This

noise is greatly reduced within digital interfaces, as more induced voltage is required to corrupt a

digital signal compared to an analog signal. In a digital interface, the maximum resolution of the

internal ADC is fixed. If a different resolution is necessary, another accelerometer would be

needed. In an analog interface, the resolution is set by the external ADC. [29]

The maximum swing and sensitivity of an accelerometer relates how much the output changes as

the acceleration changes. The maximum swing and sensitivity of an accelerometer have an equal

but opposite relationship [26]. This means that as the sensitivity goes up, the maximum swing

33

(range) of the accelerometer goes down, so long as the voltage range remains fixed. For

applications that need high sensitivity, an accelerometer with a maximum swing of ±2 g would

be used as opposed to an accelerometer with a maximum swing of ±8 g.

Lastly, the bandwidth of an accelerometer represents how fast the accelerometer outputs data

and/or how many times a second the accelerometer takes a reliable reading. Slow moving

applications will require a much smaller bandwidth than fast-moving applications. A smaller

bandwidth would result in an interpolation of what has occurred between two data points, which

is not ideal for fast-moving applications where the measurements change more frequently. [26]

3.3 Electrodermal Activity Sensor

Electro-dermal activity (EDA) refers to changes in sweat gland activity that are reflective of the

intensity of a person’s emotional state. When there is emotional stimuli, this change increases the

eccrine sweat gland activity, which produces a change in skin conductance. Skin conductance is

modulated by the sympathetic activity that drives aspects of human behavior, including cognitive

and emotional states [30]. In simpler terms: the more sweat produced, the lower the resistance to

the flow of electricity. This gives direct insight into one’s emotional regulation and measures

their psychological/emotional arousal. It's important to note that an increase in skin conductance

can be caused by both positive and negative stimuli.

The amount of sweat glands varies across the human body, but is highest in the hand and foot

regions, making these places the most common areas to measure skin conductivity. The EDA

sensors work by detecting changes in skin conductance using electrodes attached to the skin. A

fixed voltage is applied across the skin using the electrodes, which enables the skin to act as a

variable resistor. These electrodes must be sensitive enough to measure and transfer the small

changes in sweat gland production to the sensor. Modern EDA electrodes have an Ag/AgCl

(silver-chloride) contact with the skin, and are used because they are cheap, robust, safe for

human use/contact, and do not affect the readings. Data are usually acquired with sampling rates

between 1 – 10 Hz and are measured in microSiemens (µS).

34

The time course of this signal can be interpreted as the result of two processing signals: a slow

fluctuating tonic base level driver (fluctuating in seconds to minutes) and a faster varying phasic

component (fluctuating within seconds). These signals can also be thought of as the “smooth

underlying slowly changing levels” (tonic part of the signal), and the “rapidly changing peaks”

(phasic part of the signal) [31]. Examples of these signal readings can be seen below in Figures

10 and 11.

Figure 10: Example of EDA signal with exemplary skin conductance responses [31]

Figure 11: Example of EDA signal slowly climbing, with no significant skin conductance

responses [31]

In both figures time is on the x-axis given in the format hh:mm:ss, and skin conductance is

represented on the y-axis in µS. In Figure 10, the circled portions of the signal are representative

of the phasic activations, whereas the tonic value is approximated by the blue straight line. In

Figure 11, there are no phasic activations and therefore, we can predict that no heavy emotional

stimuli has occurred. The phasic component of these signals is focused on for evaluating these

spikes in emotional arousal. The tonic component of these signals are used to create a relative

baseline for the user. This is because changes in the phasic activity can be measured in the

continuous data stream as these bursts have distinctive inclines to steep peaks and a slow decline

35

relative to the baseline level. This allows us to distinguish these peaks effectively as emotional

arousal. When there are significant changes in EDA activity in response to stimulus, it is known

as an Event-Related Skin Conductance Response (ER-SCR). When there are peaks in EDA

activity unrelated to any stimuli, it is known as Non-Stimulus-Locked Skin Conductance

Response (NS-SCR) [31]. By evaluating the amplitude and duration of the peaks presented by

these sensors, we can evaluate the intensity of the emotional response the user is having.

3.4 Microphone

There are two main types of capacitive microphones: electret microphones and MEMS

microphones. Their diaphragms are structurally different and each of them have their pros and

cons. First, the electret microphone works by having a space between its diaphragm, which is a

plate with constant charge, and a conductive plate to form a capacitor [32]. Sound pressure

moves the plates, constantly changing the capacitance of the device. The capacitor uses a

transistor to amplify the sound read from the diaphragm. The voltage equation shown below, is

used to represent the relationship between the change in capacitance and the change in voltage,

where V is voltage, Q is the charge, and C is the capacitance of the capacitor.

𝚫V	 = 	 𝑄

𝚫C (1)

The change in voltage amplitude is a direct representation of the sound amplitude picked up by

the microphone. Since the capacitance is constantly changing due to the surrounding sounds, the

microphone is able to amplify the different voltages to produce an electrical signal. The electrical

signal produced from the microphone is sent to an ADC to be converted to a digital signal and

analyzed by an external device.

The MEMS microphone can come in either analog and/or digital output and is similar to the

electret microphone in how it reads data. It reads sound data using its own diaphragm the same

way as the electret microphone. Unlike the electret microphone, it uses a semiconductor as a pre

audio amplifier. The diagram of the MEMS microphone is made on top of the semiconductor

acting as a capacitor that is moved by sound waves. If users of the microphone would want to

collect analog data, they can extract it from the pre audio amplifier directly, or if the user would

36

prefer digital data, some MEMS microphones come with a built in ADC. For data collection,

some MEMS microphones have an option to output data in an integrated inter-IC sound bus

(I2S). This means that data can be collected and processed by the microphone itself, removing

the use of an external ADC.

When deciding between the elecret and MEMS microphone there are some considerable factors

that need to be accounted for. Since the purpose of the microphone is to detect loud noise, the

maximum input of the microphone is important. The electret microphone can have a maximum

110 dB sound pressure level, whereas the MEMS microphone can have a maximum 120 dB

sound pressure level. Both microphones operate at a level to be able to detect noises that can

potentially cause hearing loss (70+ dB) [33][34]. Ease of implementation is another factor to

consider because the microphone could potentially restrict the placement of another sensor

within the device. Since the MEMS microphone can only function when noise travels directly

through it, the best possible placement of the microphone would be near the top or the bottom of

the device. This is a disadvantage of the MEMS microphone because there is no guarantee that

the MEMS microphone can be placed in its optimal spot. Instead, the electret microphone is

more flexible in its placement in the device, seamlessly fitting anywhere with no design

restriction.

3.5 Electrocardiogram

An electrocardiogram (ECG) is used to measure the real time electrical signals produced by heart

muscle depolarization, which propagate towards the skin [35]. Typically, this electrical signal is

not very large, usually in microvolts. ECGs are equipped with amplifiers that have gains of

roughly 100-1000 to amplify the electrical signal obtained from the heart. ECGs are used to

measure the electrical signal of the user’s heart by making three points of contact using

electrodes on the skin. This often includes the left arm, right arm, and the right leg of the user

[36]. To extract the data from the ECG so it can be used for interpretation, the ECG needs to be

connected to an external ADC. The data can then be digitally analyzed from an external device.

ECGs are a reliable sensor to show the heart rate of the user, however, most commercially

available ECG sensors are not designed for medical purposes. Instead, they are supposed to be

37

used to get an idea of their heart rate. One of the purposes for an ECG is to look at heart rate

variability. Looking at heart rate variability is important to detect drastic changes in the heart’s

behavior. Since they are not for medical use, at-home ECG sensors are used to get an idea if the

user is having heart problems, but cannot fully verify if the user is in need of medical attention.

Typically, ECGs are good to have in a device because they are very simple to use. To read and

analyze data obtained from the ECG, three points of contact are made with the user, and attach

the ECG to an external ADC. ECG’s typically run on low current, roughly 150-200 μA, and

typically have a high pass filter to get rid of noise produced by the internal functionality of the

ECG. The high pass filter cuts off anything below 0.5 Hz in practical settings (non-clinical).

ECGs are helpful to give a general idea of the user’s heart rate, and show the user’s potential

heart rate variability.

38

4. Design Options

Based on our background research, the team explored potential design options for our system.

Our current design is centered around a microcontroller that configures and reads data from

sensors, and sends these data to an external device via Bluetooth for processing. We researched

the following existing modules that filled our design requirements.

4.1 Sensor Selection

We explored existing modules to determine the best sensors for our system. These sensors

needed to be common, off the shelf components that would enable us to directly configure them.

We wanted to combine individual sensors into a single device and did not want to use a device

that was already a complete health product. Specific types of sensors were selected based on

background research and existing health problems. Development or breakout boards were used

because they directly communicate with the sensors without the need to design custom boards.

We combined all these development boards onto a single printed circuit board (PCB), detailed in

Section 8.1: Creation of PCB Board. We selected five specific sensors based on the research in

Section 3. These specific sensors were chosen primarily for their low power consumption, ease

of implementation, accuracy, and ability to operate at the voltage levels of the selected

microcontroller. Some design components, such as the microcontroller, were already selected for

us, while others required more investigation.

4.1.1 Pulse Oximeter

In order to measure blood oxygen levels and pulse rate, our device needed a pulse oximeter. This

pulse oximeter should use reflective pulse oximetry so it could be used in a range of locations on

the body. Ideally, it should have internal LEDs, an internal photodiode, low current draw, an

internal ADC, a digital interface to limit signal noise, have existing development

boards/documentation to allow for easier implementation, and be in a small package to limit size.

We investigated existing pulse oximeter sensors and created a table of their specifications in

Table 1.

39

Table 1: Pulse Oximeter Sensor Specifications [37][38][39][40]
Tech Specs/Sensors MAX30101 MAX30102 SFH7050 MAX86140/MAX86141

Power Supply (Volts) 1.8 1.8 N/A 1.8

LED Supply (Volts) 5 3.3 LED specific 5
Max VDD Supply Current
Under General Operation

(Amps)
0.0011 0.0012 N/A 0.0017

Max VLED Supply Current
Under General Operation

(Amps)
N/A N/A N/A 0.00248

Reflective/Transmissive Reflective Reflective Reflective Both

Internal LEDs Red/Green/IR Red/IR Red/Green/IR No

Programmable LED Current
(mA) 0-50 (0.2 steps) 0-50 (0.2 steps) No 31, 62, 93, 124

Programmable LED Pulse
Width (us)

68.95, 117.78,
215.44, 410.75

68.95, 117.78,
215.44, 410.75 No 14.8, 29.4, 58.7, 117.3

Internal Photodiode Yes Yes Yes No

Internal ADC, Max Resolution
(bits) 18 18 No 19

ADC Samples per Second
50, 100, 200, 400,
800, 1000, 1600,

3200

50, 100, 200, 400,
800, 1000, 1600,

3200
N/A 8-4096

Ambient light cancellation Yes Yes No Yes

Analog Output No No Yes No

Digital Output I2C I2C No SPI

Internal Temperature Sensor
(℃)

Yes, 0.0625
resolution, ±1

accuracy

Yes, 0.0625
resolution, ±1

accuracy
No 12-bit

Internal FIFO (samples) 32 deep 32 deep No 128 word

Designed for Wearable Use Yes Yes Yes Yes

Size (mm) 5.6 x 3.3 x 1.5 5.6 x 3.3 x 1.5 4.7 x 2.5 x 0.9 2.048 x 1.848 x 0.28

Number of Pins 14 14 8 20

Price (from Digikey) $8.75 $9.51 $2.40 $6.69

Existing Development Board(s) Yes Yes Yes Yes

40

The MAX30101/MAX30102 are complete pulse oximeter packages from Maxim Integrated,

containing internal LEDs, a photodiode, ambient light cancellation, an I2C interface, and an

ADC. The main difference between the MAX30101 and MAX30102 is that the 30101 has red,

green, and IR LEDs, while the 30102 only has red and IR LEDs. The power supply for these

LEDs is different, where the MAX30101 uses 5 V while the MAX30102 uses 3.3 V. They have

the ability to control the LED current and pulse width to reduce current consumption. It’s

advertised for use in wearable devices because of its small size, low current consumption and

reflective pulse oximetry.

The SFH7050 is a reflective pulse oximeter from OSRAM Opto Semiconductors. It contains red,

green, and IR LEDs with a single photodetector. The eight pin package is simple, providing just

an anode and cathode for each LED and photodetector. There are no analog filters, digital

conversion, or ambient light rejection. It is up to the user to implement appropriate supporting

hardware to power and measure light data.

The MAX86140/MAX86141 is another pulse oximeter package from Maxim Integrated. It has

similar and sometimes superior specifications to the MAX30101/MAX30102, but with some key

differences. The MAX86140/MAX86141 both have internal LED drivers and internal optical

subsystems, but require external LEDs and photo detectors. This allows the pulse oximeter to be

implemented as either a reflective or transmissive pulse oximeter. It is also optimized for

wearable use. The main difference between the MAX86140 and the MAX86141 is that the prior

has optical subsystems to support a single photodiode while the latter has two optical subsystems

that can operate simultaneously.

Based on this initial pulse oximeter research, we decided to use the MAX30101. The complete

package feature of the module allows us to focus on implementing the sensor into our device

instead of determining the supporting hardware required to operate a pulse oximeter. The

reflective pulse oximetry lends itself to a wearable device, allowing for varied placement. The

programmable LED current, pulse-width, and ADC sampling rate allows for additional control

over the power consumption of the sensor. This is important for a wearable device, as we want to

extend battery life. The internal FIFO and I2C interface allow for consistent communication to

41

an external host over a shared bus without requiring continuous data streaming. The internal

temperature sensor allows for external SpO2 calculation correction. The size and price seem

appropriate for use in a wearable device.

The MAX30101 is a “High-Sensitivity Pulse Oximeter and Heart-Rate Sensor for Wearable

Health” which contains a complete reflective pulse oximeter in a 5.6 mm x 3.3 mm x 1.5 mm,

14-pin OESIP package. The module consists of internal LED drivers, red/green/IR LEDs,

photodetectors, ambient light rejection, an ADC, a data FIFO, and an I2C interface for data

transfer. The MAX30101 requires a single 1.8 V power supply and a separate 5.0 V supply for

the LEDs. The typical supply current during operation is 600 μA, with a maximum current of

1100 μA. Each LED can be programmed to use a current between 0 mA and 50 mA, at 0.2 mA

intervals. The ability to control the LED current helps with power consumption, as the LEDs

consume the majority of the power this module uses. The LED pulse-width, the amount of time

the LEDs are turned on for each sample, can be varied to 69 μs, 118 μs, 215 μs, or 411 μs. The

ability to control the LED pulse width allows for the device to be configured in a specific manner

that will produce data optimal for SpO2 and heart rate (HR) algorithm analysis. In SpO2 mode, the

red and IR LEDs are used, while HR mode only uses the red LED. Multi-LED mode uses any

combination of the LEDs. If the LEDs are turned on for longer periods of time with a higher

current, they can start to warm the IC, which will affect the wavelength of the red and IR LEDs.

A table for the effect of red LED current and duty cycle on temperature can be seen in the

datasheet, in a table titled “RED LED Current Settings vs. LED Temperature Rise.” To

compensate for this effect, an internal temperature sensor is used to measure the die temperature.

These temperature data are available with the light data over I2C. To measure the returning light,

an internal continuous time oversampling sigma-delta ADC is used, with a sampling rate of

10.24 MHz. The output data rate of the ADC can be programmed from 50 samples per second

(sps) to 3200 sps. The selected LED pulse-width determines the ADC resolution, which varies

between 15-bits and 18-bits. The pulse-width also limits the possible samples per second. Only a

certain combination of pulse widths and samples per second are allowed, and these combinations

vary based on the mode. The allowed combinations for SPO2 mode and HR mode can be seen in

the datasheet in tables labeled “SpO2 Mode (Allowed Settings)” and “HR Mode (Allowed

Settings)” respectively. Before the photodiode signal gets to the ADC, there is an internal

42

ambient light cancellation Track/Hold circuit that helps remove the ambient light measured by

the photodiode. The digital output data from the ADC can be stored in the internal 32 deep FIFO.

This allows the module to be connected via I2C (a shared bus) to the microcontroller and not

transmit data continuously. [37]

There are many breakout and development boards available for the MAX30101 pulse oximeter

sensor module. The one we selected has additional features that will make data processing easier.

The “Pulse Oximeter and Heart Rate Sensor - MAX30101 & MAX32664” is a pulse oximeter

board from SparkFun that costs $39.95 [41]. An image of the top of the SparkFun product can be

seen in Figure 12, where the MAX30101 is the large IC in the center of the board. A bottom

facing view of the board can be seen in Figure 13, where the small black square to the right of

the marked data pins is the MAX32664 IC.

Figure 12: SparkFun Pulse Oximeter and Heart Rate Sensor - MAX30101 & MAX32664 Top

View [41]

Figure 13: SparkFun Pulse Oximeter and Heart Rate Sensor - MAX30101 & MAX32664 Bottom

View [41]

43

The addition of the MAX32664 made this particular pulse oximeter board stand out. The

MAX32664 is an “Ultra-Low Power Biometric Sensor Hub” from Maximum Integrated that

processes biometric sensor data using preloaded algorithms to provide calculated or raw data to

external devices. There are four versions of the MAX32664, which are the same ARM Cortex-

M4 microcontroller designed to be used with a specific pulse oximeter in a specific location on

the body to calculate specific reading(s) with specific algorithms. Version A, which is the one

used on the SparkFun board, is designed to be used with the MAX30101/MAX30102 pulse

oximeter in finger-based heart rate and SpO2 monitoring applications. Version B is used with the

MAX86140/MAX86141 pulse oximeter in wrist-based heart rate monitoring applications.

Version C is designed to be used with the MAX86141 in wrist-based or ear-based heart rate and

SpO2 monitoring. Version D is used with the MAX30101/MAX30102 to calculate finger-based

heart rate, SpO2, and an estimated blood pressure. The algorithm in version A uses

pressure/position compensation, digital filtering, and advanced R-wave detection to determine a

pulse rate in beats per minute. SPO2 values are available as the percent of hemoglobin that is

saturated with oxygen. Data are available as raw or calculated data, allowing for user flexibility.

This module can be supplied with 1.71 V to 3.63 V, ideal for any 3.3 V or 1.8 V external host.

There is a dedicated I2C interface for communicating with the pulse oximeter and a second

dedicated I2C bus for communicating with an external host. An accelerometer can be connected

to the sensor I2C interface to allow the algorithm to detect and compensate for motion artifacts.

The I2C interfaces can communicate at a “fast mode” of 400 kbps and have an internal filter for

rejecting noise spikes. There is an internal receiver FIFO and an internal transmitter FIFO, both

with a depth of eight bytes. [42][43]

By combining the MAX30101 and the MAX32664, the SparkFun board allows the user to

retrieve sensor results without needing to do any signal processing. By using the SparkFun

library, the user has access to results including blood oxygen saturation, heart rate, heart rate

confidence, and finger detection [44]. Our project is focused on monitoring certain aspects of the

user’s biometric readings and this board allows us to focus on interpreting the results.

Unfortunately this board only works on a finger, which requires user interaction to retrieve

sensor readings. We felt like this was a necessary change as it allows us to focus on

implementation and results processing. While we explored other pulse oximeter development

44

boards, we did not find any that fit our design requirements that also had enough supporting

documentation to enable proper implementation. The open-source aspects of SparkFun gave us

access to existing resources for using and integrating this device into our design.

4.1.2 Accelerometer

To measure the device’s motion, the user’s activity, and detect user falls, our device needed an

accelerometer. We wanted our accelerometer to have 3-axis measurements as we are trying to

measure a person’s 3D movements. We also determined that we wanted a digital I2C and/or SPI

interface for more functionality, to reduce any noise we may have gotten with an analog

accelerometer and allow for easier integration with microcontrollers. We investigated existing

accelerometer sensors and created a table of their specifications in Table 2.

45

Table 2: Accelerometer Specifications [45][46][47][48][49][50]

Tech
Specs/Sensors ADXL345 MMA8452Q ADXL362 MPU6050 ADXL377 ADXL335

Supply Voltage
(V) 2.0 - 3.6 1.95 - 3.6 1.6 - 3.5 2.375 - 3.46 1.8 - 3.6 1.8 - 3.6

Output
Resolution 10 bits 12 bit and 8 bit 12 bit 16 bit N/A N/A

Price $18.95 $9.95 $15.95 $29.95 $25.95 $14.95

Communication
Interface

digital SPI or
I2C digital I2C digital SPI digital I2C and

SPI Analog Analog

Maximum Swing
(g)

±2, ±4, ±8,
±16 ±2, ±4, ±8 ±2, ±4, ±8 ±2, ±4, ±8, ±16 ±200 ±3

Output Format 16 bit two's
comp 8 bit serial 8 bit data

rotation matrix,
quaternion,

Euler Angle, or
raw data format

coordinates
(xout, yout,

zout)

coordinates
(xout, yout,

zout)

Current
Consumption

(μA)
0.1 - 40 6 - 165 0.27 - 13 10 - 3900 300 320

Bandwidth Range
(Hz) 6.25 - 3200 1.56 - 800 12.5 - 400 4 - 1000 0.5 - 500 0.5 - 550

Size (mm) 3 × 5 × 1 3 x 3 x 1 3 × 3.25 ×
1.06

25.5 x 15.2 x
2.48 3 × 3 × 1.45 4 × 4 × 1.45

3 axis? Yes Yes Yes Yes Yes Yes

Low Power
Mode? Yes No Yes Yes No No

Additional
Features

Activity and
Inactivity
Sensing,

tap/double tap
feature, free-
fall sensing

Freefall
Sensing, Pulse

Detection,
Transient
Detection

On-chip temp
sensor, sleep
and wake-up

operation, low
noise and ultra

low noise
options

Additional
gyroscope and

temperature
sensor, digital

motion
processing
engine, tap
detection

Bandwidth
adjustment

with a single
capacitor per

axis

BW adjustment
with a single
capacitor per

axis,
temperature

stability

Despite the initial parameters set, we still wanted to explore a wide range of available

accelerometer options. This led us to sensors such as the ADXL377 and ADXL335. These are

both analog sensors with a unique pin for each of the three axes, whose analog outputs are

proportional to the acceleration (g) felt by the device in each direction. They also consume more

46

than twice the amount of current than the other devices evaluated. Lastly, the ADXL377 has a

much lower sensitivity than the other devices, sensing at ±200 g. This means that this device

would only be able to measure more extreme changes in the device’s shock, motion or vibration.

Although these parameters were not what we were looking for, it was valuable to evaluate these

options as it ensured that we were not getting rid of possibilities that could be more beneficial to

us than we initially thought.

The other two accelerometers we evaluated but ruled out were the MMA8452Q and the

ADXL362. They are both digital accelerometers with a sensitivity range (maximum swing) of

±2, ±4, and ±8 g, and have an output resolution of 12-bits. The output resolution of these digital

devices is representative of the analog to digital converters incorporated in the breakout board. It

is typically specified as bits which can then be used to specify the resolution in acceleration

units. For these devices, this means that if we use the maximum swing option ±8 g, we can

evaluate #$
%!"

 to get its acceleration resolution of 0.0039 g. This is the smallest measurable

acceleration level that the device can sense in this setting. The MMA8452Q has a current

consumption of about 6 μA to 165 μA, whereas the ADXL362 has a current consumption of

about 0.27 μA to 13μA. These sensors also come with additional features that could be useful in

some applications, such as freefall sensing, pulse detection, transient response, low noise and

ultra-low noise options, and sleep and wake-up operation. Although some of these features could

be useful in our design, we decided on the MPU-6050 and the ADXL345 to be the main two

sensor components we considered. This is because they had lower power consumption, a greater

maximum swing range, more features like free-fall and inactivity/activity registers, and a digital

motion processing engine. These sensors and their specifications are described in the paragraphs

that follow.

The MPU-6050 is a gyroscope and 3-axis accelerometer in one IC. This gives us a 6-axis IMU

(devices used to detect the acceleration and angular velocity of objects), allowing us to get much

more accurate readings of a person’s overall motion. The breakout board also contains a digital

motion processor (DMP) that is capable of processing complex 9-axis “MotionFusion”

algorithms, while also simultaneously getting rid of cross-axis alignment problems. This will

reduce the noise and alignment issues that are common in more discrete parts and sensors. The

47

sensor also has an I2C Digital Output, but you can choose the format the data output will take

(i.e. rotation matrix, quaternion, Euler Angle, or raw data format). This sensor has a maximum

swing range of ±2 g to ±16 g. The gyroscope has a sensitivity up to 131 LSBs/dps (degrees per

second) and a full-scale range of ±250, ±500, ±1000, and ±2000 dps [46]. Within this device

there are embedded algorithms for run-time bias and compass calibration without the need for

external intervention.

After researching different accelerometers on the market based upon their price, size, power

consumption, range, accuracy, and ease of use and implementation, we chose to use the

ADXL345 from Analog Devices. Specifically, we chose to use the breakout board from

SparkFun shown in Figure 14.

Figure 14: ADXL345 Sparkfun Breakout Board [45]

The accelerometer complete with the breakout board is smaller than a quarter, at about 2 cm long

and 1 ½ cm wide. It also is extremely low current, using 40 µA in measurement mode and 0.1

µA in standby mode. The digital output data are formatted in 16-bit two's complement and is

accessible through the SPI or I2C interface. It has a maximum swing ranging from ±2g to ±16g.

A high resolution of 4 mg/LSB enables measurement of inclination changes of less than 1.0

degree. This is necessary to allow us to measure and depict when someone has fallen with the

least amount of error. This accelerometer was also chosen for its specific activity and inactivity

48

sensing, tap sensing, and free fall sensing features. The activity and inactivity is useful to our

design as we can set the axes accelerations to a threshold. If this threshold is exceeded, we can

program our device to do a specific action. This can be utilized when we try to sense an abrupt

motion such as falling. The free falling feature can also be used in this manner. If we modify

these features, we can use the accelerometer to detect whether or not the user has fallen.

There were pros and cons to each sensor that were assessed. By choosing the ADXL345, we got

a breakout board that was just an accelerometer, but came with some features that were more

helpful in fall detection. On the other hand, the MPU-6050 would have given us a wider range of

motion detection. Ultimately we decided on the ADXL345 for the scope of this project, as we

were more concerned with just fall detection, rather than distinguishing other movements such as

walking or running.

4.1.3 Electrodermal Activity Sensor

In order to meet our goal of measuring user stress levels, we needed an electrodermal activity

sensor (EDA). As we were looking into different EDA devices on the market, many of our

options were limited by price alone, as spending hundreds of dollars on a single sensor is not

realistic for our device. Another constraint is that many EDA devices contained other sensors

within its breakout board that would defeat the purpose of this project (such as ECGs, pulse

oximeters, etc. all in one device). This was one aspect of our project where price had to be

heavily considered, and other factors, such as ease of use, became less important. After looking

at devices on the market we settled on a device called the MIKROE-2860 pictured in Figure 15.

49

Figure 15: Electro-Dermal Activity Sensor: MIKROE-2860 [51]

As opposed to the high prices of some of the other sensors we looked at, this one costs $24.95,

and requires a supply voltage of both 3.3 and 5.0 V. The working principle of this chip and other

EDA sensors is based upon a voltage divider where one resistor is fixed (in this case at 100 kΩ),

and the second resistor is the resistance of the skin (acting as a variable resistor). The result of

this voltage divider is input to an op-amp and the output is fed into an ADC. A detailed

schematic of the circuit described can be seen in Figure 16.

Figure 16: Circuit for EDA sensor [52]

50

The op-amps used in the MIKROE-2680 are the MCP607, a dual CMOS low-noise op-amp

made by Microchip [51]. It has a supply voltage of 2.5 – 6.0 V and low input offset voltage of

250 μV (max). It draws a maximum low quiescent current of 25 μA, but is typically in the 18.7

μA range [53].The MIKROE-2860 also contains a MCP3201, a 12-bit SAR type ADC, that has a

supply voltage of 2.7 – 5.5 V. It draws a standby current of about 500 nA – 2 μA, and a

maximum operating current of 400 μA when being powered by 5 V [54]. The outputs of this

sensor are available as a buffered analog output or a digital SPI reading from the ADC. The

MIKROE-2860 gives us the versatility we need to be able to understand and process output data

to potentially monitor stress, as well as maintain the budget of our project.

4.1.4 Microphone

There are two microphones that we researched to potentially include in the WHMD: the electret

microphone and the MEMS microphone. Extremely efficient, the electret microphone is made

out of aluminum-magnesium alloy, runs on a maximum current of 0.5 mA, and is permanently

polarized [55]. The microphone’s diaphragm acts like one plate of a capacitor, and vibrations

that the device feels change the distance between the diaphragm and the back plate. The voltage

variation due to this change in distance is fed to a JFET, which amplifies the signal for external

use [56].

We want to use a microphone to detect loud noises from the surrounding area to help prevent

hearing loss. By detecting loud noises, we can alert the user that there could be possible hearing

damage to allow the user to take appropriate action. Specifications of the microphones that we

considered are shown in Table 3.

51

Table 3: Microphone Sensor Description [33][34][57]

Tech Specs/Sensors SparkFun Electret
Microphone Breakout

Adafruit MAX4466
Microphone Amplifier

SparkFun MEMS
Microphone Breakout

Supply Voltage (Volts) 1.5 - 5 2.4 - 5.5 1.5 - 3.3

Price $6.95 $6.95 $10.95

Communication
Interface Analog Analog Analog

Signal-to-Noise Ratio
(dB) 58 80 62

Maximum Input
S.P.L. (dB) 110 N/A 120

Operating Temperature
(℃) -20 - 60 N/A -40 - 85

Maximum Current
Consumption (μA) 500 (Mic) 500 (Mic) 250 (whole device)

Gain 60 25 - 125 67

Size (mm) 9.7 × 9.7 × 4.5 N/A 4.72 × 3.76 × 1.00

The first option we looked at was the Max4466. The Max4466 is an electret microphone with

amplifier that has an adjustable gain between 25 to 125. The gain can be adjusted using a

trimmer on the back of the microphone. It runs on a supply voltage of 2.4V to 5V, which

operates at a voltage our microcontroller can output. The lower the voltage powering the

microphone, the better the performance. Since we used a 3.3V power supply, the microphone

would perform optimally. [58]

Another option we found was the “SparkFun MEMS Microphone Breakout - INMP401

(ADMP401)” [59]. This microphone is a different type of microphone than the SparkFun electret

microphone, but it has the same analog output. The microphone has a small hole on the bottom

that goes through the PCB that collects sound data. The gain of the amplifier can also be very

useful to interpret sound data at different noise levels. It’s current consumption is 250 μA, half of

the SparkFun Electret Microphone not including the breakout board on the Sparkfun Electret

Microphone.

52

The “SparkFun Electret Microphone Breakout” board, shown in Figure 17 [60].

Figure 17: Sparkfun Electret Microphone with Breakout [60]

It is 9.7 mm long and 4.5 mm high, and weighs 0.7 g. The microphone can operate on a supply

range of 2.7 V to 5.5 V, which is perfect for a 3.3 V microcontroller. It can pick up to 110 dB

SPL of noise, and has a minimum sensitivity to noise ratio of 58 dB. The microphone itself

doesn’t consume a lot of current, with a maximum current rating of 0.5 mA [33]. The breakout

board has a microphone amplifier that amplifies the microphone signal to the analog output pin,

allowing the signal to be read by an external analog-to-digital converter. We monitored this

output for voltage levels that indicate potentially damaging sounds.

We ultimately chose the Sparkfun Electret Microphone over the MAX4466 microphone and the

MEMS microphone due to its ease of implementation and maximum sound level pressure. The

MAX4466 had no information about the maximum sound pressure level present in either of its

datasheets. Knowing the maximum volume that can be read from the device is important because

we couldn’t be sure that the microphone had a high enough maximum sound to read from to

cause hearing loss. This is a major flaw of the microphone for the purposes of our

implementation of a microphone. We chose the Sparkfun Electret Microphone over the MEMS

microphone because of the easier implementation of the electret microphone. We didn’t want to

restrict the placement of the microphone, which is an issue of the MEMS microphone, while we

planned the design of the WHMD.

53

4.1.5 ECG

We want to use an ECG to measure the heart rate of the user to determine any irregularities. An

ECG that we considered to implement into our device was the Olimex ECG sensor. This sensor

comes with a gain of 101, and operates on 3.3 V to 5 V. It comes with two or three electrode

configurations. Since the sensor is built for Arduino, there is open source code that is available

for use. This ECG is also an EMG, which means it can collect an electrical signal from muscle,

however this feature is not needed for our device. [61]

We ultimately used the Sparkfun Single Lead Heart Rate Monitor - AD8232, shown in Figure

18.

Figure 18: Figure of AD8232 [62]

The AD8232 has low current consumption, running on a maximum of 170 μA and has two or

three electrode configurations to allow for multiple points of contact across the body. The most

important feature of the sensor is that it has low pass filtering and high pass filtering. The low

pass filtering has a cutoff frequency of 37 Hz (too low for clinical purposes, acceptable for

generic applications) with adjustable gain, and the high pass filtering has a cutoff frequency of

0.3 Hz, enabling the sensor to filter the raw ECG signal. The sensor can amplify the electrical

signal obtained by the heart by an operational amplifier gain of 100. One advantage of the sensor

is that we can adjust the gain as we please. ECG signals are typically acquired with noise and

54

produce a 1-2 mV peak signal, so the amplification and filtering feature of this sensor is

extremely beneficial to our design and goals. [62]

The single lead on the ECG has options for both AC and DC signal processing. The AD8232

includes an operational amplifier, as well as an integrated right leg drive. The integrated right leg

drive is used to connect the third electrode in case the user wants to further regulate the common

mode voltage. It also has a low pass filter with adjustable gain and an internal radio frequency

interference filter, which filters out RF interference that is caused by the board or external

sources. Overall, the SparkFun ECG is very effective at obtaining a clean ECG signal from the

user.

We chose the AD8232 over the Olimex due to the ability to implement the sensor. The Olimex

has multiple layers to the sensor, where the AD232 has just one. Making the system bulkier due

to the Olimex was impractical in our application. Also, the Olimex has a low pass filter of 40 Hz,

which is a little bit higher than the AD8232. We chose the AD8232 ECG because it is a little

cheaper, at $19.95, compared to the Olimex ECG sensor, which is $23.90. We can also obtain

more accurate readings from the AD8232 because it filters out unwanted electrical signals

obtained from data collection by using a low pass and a high pass filter.

4.1.6 Microcontroller

Our design required a low-power microcontroller (MCU) that can transmit data over Bluetooth.

The “CC2652R SimpleLink Multiprotocol 2.4 GHz Wireless MCU” from Texas Instruments fits

those requirements. Available in a LaunchPad kit with a built-in debugger, this MCU operates at

a voltage range of 1.8 V to 3.8 V. During active mode, the MCU core will consume 3.39 mA

when running at a clock speed of 48 MHz. The Bluetooth radio will consume 6.9 mA of current

while it’s receiving data and will consume 9.6 mA of current while transmitting at +5 dBm

output power. The MCU has 352 KB of in-system programmable flash and 256 KB of ROM for

protocols and library functions. The bootloader, Bluetooth 5.1 Low Energy Controller, drivers,

and TI Real-Time Operating System are stored in this ROM, which optimizes application size.

The CC2652R1 has a wide range of peripherals. Any GPIO can be used as a digital peripheral,

allowing for up to 31 controllable pins. There is an eight channel, 12-bit ADC that can sample at

55

200 kSamples/s. An internal DAC is paired with two comparators, offering a continuous and an

ultra-low power option for voltage comparison. A programmable current source is available to

produce between 0.25 µA and 20 µA of current, at a resolution of 0.25 µA. There are two UART

interfaces, two synchronous serial interfaces (SPI, MICROWIRE, TI), an I2C and an I2S

interface. There are enough interfaces available to communicate with all of our selected sensors.

An image of the CC2652R1 LaunchPad can be seen in Figure 19. [63][64]

Figure 19: Image of CC2625R1 LaunchPad [64]

56

4.1.7 Power Supply

Being a wearable device, our design needs to be powered for a long period of time without

requiring a recharge. This required an external battery pack that is small enough to be worn

comfortably but also needed to have a large enough capacity to keep the device charged for an

appropriate amount of time. We currently use a small lithium polymer battery (LiPo) as the main

power source, designed to let the device run for at least 12 hours. If all the sensors and the MCU

draw a maximum constant current of 310 mA, the battery would need to have a capacity of at

least 3750 mAh. This 310 mA current draw is based on maximum current drawn from each IC

on the development boards, which is a larger current than we expect to have in our final design.

The calculations for this maximum current drawn can be seen in Table 11 in Appendix 2.

For ease of implementation, our group used a wired power bank/portable charger. The ease of

use of the battery allowed us to focus on other aspects of the project, while the power bank does

its job of powering the peripheral Launchpad.

In our final design, we used the EnergyTrace tool available in Code Composer Studio and the

supporting hardware on the LaunchPad to directly measure the current consumption of our

system when supplied with 5 V via the USB port. With an externally connected BLE host and all

sensor notifications enabled, we measured a mean current consumption of 17.5735 mA and a

maximum current consumption of 121.8356 mA. These measured currents are smaller than the

total estimated current consumption because the estimated values assume constant maximum

current draw. The pulse oximeter, the major contributor to the system’s current consumption,

turns on its LEDs for a fraction of its operation time, which greatly reduces its mean current

consumption. To enable our device to operate for 12 hours under the mean current consumption,

we would need a minimum battery capacity of 210 mAh. If our device were to be operating

continuously under the maximum current consumption, we would need a minimum battery

capacity of 1462 mAh.

57

4.1.8 External Bluetooth Device

To limit the power consumption of the wearable device, sensor signal processing and

interpretation occur on a separate device. This device is another CC2652R1 LaunchPad

connected to a laptop via USB. Data is sent via Bluetooth to this “base station”, which sends the

data to the laptop via USB. The laptop is used to log, process, and display the received data. This

process is used to verify that the sensor data are correct using a graphical display of the data.

58

4.2 Primary Design Layout

Our final design includes all of the primary modules described in the Sensor Options section.

The battery powers the microcontroller and the microcontroller is used to power, configure and

read data from the sensors when needed. The sensor data are transferred via Bluetooth to an

external MCU, which sends the data to a laptop to perform signal analysis and graphical display.

This design method offloads a lot of the calculations and processing to the external device, which

improves the battery life of the wearable unit. See Figure 20 for a basic functional block diagram

of the system.

Figure 20: Basic Block Diagram of the Wearable System

Using the available interfaces of the sensors selected above, we developed a slightly more

detailed function block diagram of our system. This includes information regarding the

communication protocols (I2C, SPI, analog, GPIO, etc.) that each sensor uses. This detailed

functional block diagram can be seen in Figure 21.

59

Figure 21: Detailed Functional Block Diagram

Based on this detailed functional block diagram, we also designed a schematic containing all the

primary components. This schematic can be seen in Figure 22.

60

Figure 22: Schematic of Final Design

61

5. Sensor Communication

In this section of the paper, we discuss how each of our five sensors were implemented, what

interface each sensor uses, and how data are retrieved from those sensors. Each sensor was

developed individually in C code using Code Composer Studio and then implemented together.

5.1 I2C Interface

The pulse oximeter and accelerometer sensors communicate via the Inter-Integrated Circuit

(I2C) digital protocol. I2C is a shared data bus, allowing for multiple hosts and multiple

peripherals to share the same lines. Only two signal lines are needed: a serial data line (SDA) and

a serial clock line (SCL). Both lines are bidirectional, and are pulled high to the positive voltage

supply via pull-up resistors. Each device on the bus is addressed uniquely, allowing each device

to be distinguished from the others. A complete I2C transaction consists of start condition,

peripheral address, read/write bit, peripheral acknowledgement (ACK) or not acknowledgement

(NACK), any number of single data bytes followed by an ACK or NACK from the peripheral,

and ending in a stop condition. An image of a complete transaction is shown in Figure 23.

Figure 23: Complete I2C Transaction [65]

In a single host system, the SCL is driven by the host. The start condition (S) is generated by the

host pulling the SDA line low while the SCL line remains high. The address and read/write bit

are generated by the host once a start condition has been issued. A “0” in the read/write bit

indicates a write transaction, while a “1” indicates a read transaction. An ACK or NACK is

generated by the peripheral, indicating if the data sent are received. An ACK is generated by the

62

peripheral by pulling the SDA low after the host has released the SDA line once data have been

transferred. A NACK is generated when SDA remains high during the ninth clock pulse. A stop

condition (P) is generated by the host when SDA goes from low to high while SCL is high. Data

can be transferred at rates of up to 100 kbit/s in Standard-mode, up to 400 kbit/s in Fast-mode, up

to 1 Mbit/s in Fast-mode Plus, and up to 3.4 Mbit/s in High-speed mode. [65]

The TI CC2652R1 MCU supports a single I2C interface. The SimpleLink CC13x2/CC26X2

SDK has drivers that allow configuration and utilization of the CC2652R1 hardware I2C. The

SDK I2C driver uses LaunchPad pin DIO5 as SDA and DIO4 as SCL by default. It is designed

to operate as the single host on an I2C bus. Prior to an I2C transaction, the I2C driver must be

initialized by using the I2C_init() C function. Optional I2C bus parameters can be configured by

creating an I2C_Params object. These parameters include configuring bit rate, transfer mode, and

a transfer callback function. Finally, the I2C bus must be opened using the I2C_open() function,

passing the selected I2C hardware variable (pins to be used on the board) and the I2C parameters

object. If no I2C parameters object is used, then the I2C parameters are configured to their

default settings. Once the I2C bus is opened, an I2C transaction can be called by using the

I2C_transfer() function, which requires the I2C Handle object returned by the I2C_open()

function and the address of an I2C_Transaction object. An I2C Transaction object consists of the

peripheral I2C address, a pointer to the buffer that is being sent to the peripheral, a count of the

number of write bytes in this buffer, a pointer to the buffer that will receive any read data, a

count of the number of bytes that is read from the peripheral, and a status variable for the

transaction status. A graphical representation of this process is shown in Figure 24. [66]

63

Figure 24: Typical CC2652R1 I2C Driver Setup/Configuration in C [66]

5.1.1 Pulse Oximeter

To first verify the functionality of the SparkFun Pulse Oximeter and Heart Rate Sensor

(MAX30101 & MAX32664 SparkFun Pulse Oximeter), we tested it using the existing SparkFun

library, an Adafruit Feather M0, and the Arduino IDE. We were able to run the example code

provided by the library and get sensor readings that were appropriate. If the sensor is outputting

algorithm data, we needed to verify that the heart rate and SPO2 readings were expected for the

person running the test. We expect heart rate values between 60 bpm and 120 bpm and SPO2

levels between 90% and 100%. Knowing that the sensor itself worked, we next had to

incorporate it into our hardware.

64

The SparkFun Pulse Oximeter communicates mainly via I2C, with two additional GPIO pins

used for device reset and multi purpose I/O. In the following descriptions, the MAX32664

Biometric Sensor Hub MCU on the SparkFun Pulse Oximeter board is the peripheral and the TI

CC2652R1 MCU on the LaunchPad is the host. The schematic for connections between the host

and peripheral is shown Figure 22.

A single complete I2C transaction with the MAX32664 consists of a write and read transaction,

regardless of the intended final effect. The write transaction portion consists of the host issuing a

start command and sending the 7-bit peripheral address, with an additional “0” bit to indicate a

write transaction. The peripheral indicates successful reception of the address with an ACK. The

host then starts transferring bytes to the peripheral, with a single peripheral ACK/NACK

between writes. Once all bytes have been transferred, the host issues a stop command. A delay is

implemented to allow the MAX32664 to process the received bytes and allow data to be

available in the output FIFO. The host then issues a start command and sends the 7-bit peripheral

address followed by a “1” bit to indicate a read transaction. Again, the peripheral indicates

successful reception of the address with an ACK. The peripheral then sends bytes to the host,

with the host acknowledging each byte. After the last byte is sent from the peripheral, the host

issues a not acknowledged signal and a stop transaction signal to indicate that the transaction is

complete. The number of bytes that are sent/received by the host depends on the intended overall

transaction. For a visual representation of the transaction sequence, refer to Figure 25. [43]

65

Figure 25: MAX30101 & MAX32664 I2C Write/Read data transfer from host microcontroller

[43]

In a typical overall write transaction, a minimum of three bytes are sent by the host during the

write portion of the transaction. The first two bytes are known as the Family and Index Bytes.

These two bytes are used to indicate to the MAX32664 which settings are trying to be accessed.

The third byte required for a write transaction is the Write Byte 0, which is the actual

data/settings written to the MAX32664. Multiple additional Write Bytes can be sent after the

Write Byte 0, typically noted as Write Byte N, depending on the desired configuration. Once the

write portion of the transaction has successfully completed, a delay is implemented before the

read portion of the transaction is started. The length of the delay is dependent on the amount of

write bytes sent and the settings being changed. It needs to be long enough that the MAX32664

has time to process the write command and prepare a response. Typically, this delay is around 2

ms. After the delay, a single byte is read from the MAX32664 during the read portion of the

write transaction. This byte is known as the Read Status Byte, which indicates if the write

66

portion of the transaction was successful with the MAX32664. Table 4 summarizes the possible

values of the Read Status Byte.

Table 4: Read Status Byte Value [43]

Status Byte
Value

Description

0x00 SUCCESS. The write transaction was successful.

0x01 ERR_UNAVAIL_CMD. Illegal Family Byte and/or Command Byte was used.

0x02 ERR_UNAVAIL_FUNC. This function is not implemented.

0x03 ERR_DATA_FORMAT. Incorrect number of bytes sent for the requested Family Bytes.

0x04 ERR_INPUT_VALUE. Illegal configuration value was attempted to be set.

0x05 ERR_INVALID_MODE. Incorrect mode specified (Application mode).
ERR_BTLDR_TRY_AGAIN. Device is busy, try again (Bootloader mode).

0x80 ERR_BTLDR_GENERAL. General error while receiving/flashing a page during the
bootloader sequence.

0x81 ERR_BTLDR_CHECKSUM. Checksum error while decrypting/checking page data.

0x82 ERR_BTLDR_AUTH. Authorization error.

0x83 ERR_BTLDR_INVALID_APP. Application not valid.

0xFE ERR_TRY_AGAIN. Device is busy, try again (Application mode).

0xFF ERR_UNKOWN. Unknown Error.

In a typical overall read transaction, a minimum of two bytes are sent by the host during the

write portion of the transaction. These two bytes are the Family and Index bytes, which indicate

to the MAX32664 what information is trying to be accessed. Some overall read transactions

require an additional Write Byte during the write portion of the transaction, known as the Write

Byte 0. When the write portion of the transaction has successfully completed, a delay is

implemented to allow the MAX32664 to make the requested data available in the output FIFO.

This delay has a minimum of 2 ms but can vary depending on the amount of data that needs to be

accessed. Once that delay is over, at least two bytes are read from the MAX32664. The first byte

is the Read Status Byte, which indicates the status of the previous write portion of the

transaction. A table of the possible values of the Read Status Byte is shown in Table 4. The

67

second byte is the Read Byte 0, which is the data requested by the host. If additional data were

requested, they will appear after the Read Byte 0, and will continue up to Read Byte N.

To configure the MAX32664 and read sensor data, we had to understand what commands

needed to be sent. The MAX32664 User Guide has a massive table explaining possible Family,

Index, Write Bytes, and their description, specifically Table 6: MAX32664 I2C Message

Protocol Definitions in the MAX32664 User Guide. By exploring these options, we were able to

determine what commands we needed to send to configure the sensor. [43]

In order to directly send these commands, we created a library where we call individual functions

to properly configure the sensor and take readings. In creating this library, we referred heavily to

the SparkFun Bio Sensor Hub Library [67], which is SparkFun’s library designed to configure

and read data from the SparkFun board. This library is open source, which allowed us to

reference it for function design and structure. The primary example program we based our sensor

configuration around was the “Example1_config_BMP_Mode1” example, which configures the

SparkFun Pulse Oximeter and Heart Rate Monitor to output heart rate and blood oxygen level

data. A flowchart of that example can be found in Figure 26.

68

Figure 26: SparkFun Example 1 Config BPM Mode 1 Code Flow [67]

In this figure, the AGC Algorithm refers to the automatic gain control algorithm that controls the

current and pulse-width of the LEDs on the MAX30101 to maximize usable ADC readings. The

WHRM Algorithm refers to Maxim’s wearable heart rate monitoring algorithm that calculates

the heart rate, heart rate confidence, and blood oxygen saturation from the raw MAX30101 ADC

readings.

Using this library as a guide, we created a library of our own that is specific to the TI CC2652R1

LaunchPad hardware and the provided I2C drivers from TI. The library is structured in a similar

manner to the SparkFun library, involving many functions with similar names. Our library does

not have all of the customization/features of the SparkFun library, as we created only the features

69

needed for our system. We made additional functions to add features not yet developed in the

SparkFun library. We did reuse almost all of the SparkFun constants and macros, to simplify our

integration. It also allows us to easily reference the SparkFun library when our written software

does not work as expected.

The library we built is centered around a set of core functions. All of these core functions are

used by other functions in the library to configure the MAX32664 to the desired settings, using

the appropriate Family, Index, and Data Bytes.

70

Core Pulse Oximeter Library Functions
● I2CReadByte();

○ Reads and returns single byte from MAX32664
○ Passed Family and Index Bytes, and pointer to Read Status Byte

● I2CReadBytewithWriteByte();
○ Similar to I2CReadByte(), but with single Write Byte

● I2CReadFillArray();
○ Read array of data/settings from MAX32664
○ Passed Family, Index, Write Byte, and pointer to Read Status Byte
○ Typically used to read sensor data

● I2CReadInt();
○ Read and return a 16-bit value from MAX32664
○ Passed Family, Index Byte, and pointer to Read Status Byte
○ Has to re-order the Little-Endian data

● I2CRead32BitValue();
○ Similar to I2CReadInt(), but a 32-bit value

● I2CReadMulte32BitValues();
○ Reads in multiple 32-bit values into an array
○ Passed Family, Index Byte, number of values to read, and pointer to array

where read values are stored
○ Returns the Read Status Byte

● I2CWriteByte();
○ Writes single byte to MAX32664
○ Passed Family, Index, Write Byte
○ Returns Read Status Byte

● I2CWriteTwoBytes();
○ Writes two bytes to the MAX32664
○ Passed Family, Index Bytes, and two Write bytes
○ Returns Read Status Byte

● I2CenableWriteByte();
○ Similar to I2CWriteByte(), but with longer delay between write and read
○ Longer delay needed to allow settings to be processed
○ Passed Family, Index, and Write Byte
○ Returns Read Status Byte

Our pulse oximeter code that configures and reads the pulse oximeter sensor is very similar to

the SparkFun Example 1. An I2C interface is opened on Board_I2C0, which uses DIO5 as I2C

SDA and DIO4 as I2C SCL. Two GPIO pins are initially set as output pins, with DIO0

connected to the MFIO pin and DIO1 connected to the pulse oximeter reset pin. The MFIO pin

on the CC2652R1 is set as an input with a pulldown resistor after the MAX32664 has been reset.

The beginI2C() function gives the library an I2C Handle object to use and reads the current

device mode. If the device reset performed during startup has executed properly, the MAX32664

71

should be in application operating mode. Once confirmed, the MAX32664 is configured by the

configBPM() function. In this function, the data output format is set to raw and algorithm data

using the setOutputMode() function. The algorithm data format is set using the

maximFastAlgoControl() function. The sensor hub interrupt threshold for the FIFO is set using

setFifoThreshold(), which tells the MAX32664 to use the MFIO pin as an output interrupt and to

go high every time sensor data are available. The automatic gain control (AGC) algorithm is

enabled by the agcAlgoControl() function. This algorithm is used to automatically adjust the

MAX30101 Pulse Oximeter LED pulse width and ADC sampling rate to maximize usable

reading. It also allows for reduced LED power consumption when an object is not detected above

the sensor. The MAX30101 sensor is enabled by the max30101Control() function. The wearable

heart rate monitor (WHRM) algorithm is enabled by the maximFastAlgoControl() function. This

algorithm is designed for the pulse oximeter to be used as a wearable device and is ideally used

with an external accelerometer to compensate for motion artifacts. Unfortunately, this board is

not connected to an external accelerometer so we can’t take advantage of this feature. That

accelerometer would need to be connected to the MAX32664’s sensor I2C line, which is

currently only connected to the MAX30101. The MAX32664 is sampling from the MAX30101

sensor at 100 Hz and puts results in the output FIFO at 100Hz. The WHRM algorithm configures

the MAX30101 internal ADC sample rate to 100 Hz during object detection and 50 Hz when no

object is detected. Once the WHRM algorithm is enabled, the number of samples averaged by

the AGC algorithm is read by the readAlgoSamples() function, finalizing the MAX32664

configuration.

With configuration complete, a few seconds delay is required to allow the MAX32664 output

FIFO to fill with data. The readSensorData() function reads the sensor data through a sequence

of commands. First, the status of the sensor hub is read using readSensorHubStatus(). It provides

information about sensor communication status, current FIFO threshold, FIFO input/output

overflow, and host accelerometer underflow. This is used to verify that the MAX32664 is

operating as expected. Once operation is verified, the current number of samples available in the

output FIFO is read using the numSamplesOutFifo() function. Based on the current output data

format, the FIFO data are then read using the I2CReadFillArray() function. The format of these

data depends on the data output mode and the WHRM algorithm mode. Typically, the heart rate,

72

heart rate confidence, SpO2 level, and algorithm state are extracted from the FIFO data and stored

in an array. An example of the sensor readings can be seen in Figure 27.

Figure 27: Example of Pulse Oximeter Sensor Output in Algorithm Mode 1

From this example output, the output data format has been set to algorithm data only, in

algorithm mode 1. We can see the output of the sensor changing over time. In the first sensor

reading, the algorithm had not determined a heart rate, heart rate confidence, or SPO2 value, but

had detected an object in front of the pulse oximeter (Algorithm state = 1). Table 5 explains all

possible algorithm states. In the second reading, the algorithm had calculated a heart rate and

heart rate confidence, but had not calculated an SPO2 reading. It did decide that the object in front

of the pulse oximeter was a finger (Algorithm state = 3). In the third reading, the algorithm had

calculated a heart rate, heart rate confidence, an SPO2 level, and continued to believe that a finger

was present. An example of sampled data in raw and algorithm output format while in algorithm

mode 2 can be seen in Figure 28. Table 6 explains the possible extended algorithm statuses.

73

Figure 28: Example of Pulse Oximeter Sensor Hub

Table 5: Algorithm State [68]
Algorithm State Description

0 No object is detected

1 Something is on the sensor

2 Another object is detected

3 Finger is detected

Table 6: Extended Algorithm Status [68]

Algorithm Status Description

0 Success

1 Not ready

-1 Something is on sensor

-2 Device excessive motion

-3 No object

-4 Pressing too hard

-5 Object instead of finger

-6 Finger excessive motion

74

5.1.2 Accelerometer

The ADXL345 [45] communicates via I2C or SPI (a communication protocol that is explored

and explained later). In the following descriptions and explanations of the processes between the

CC2652R1 MCU and the ADXL345, the CC2652R1 acts as the host and the ADXL345 is the

peripheral.

To ensure proper communication between host and peripheral, both a read and write must occur

regardless of the intended result of the communication. This means regardless of if the user only

wants to write to the peripheral, or receive data from the peripheral, both a read and write

transaction must occur. The ADXL345 supports both single and multiple byte read/write

processes that can be implemented. The main difference between the single and multiple byte

protocols is that an additional acknowledgment must be sent between bytes of data in a multiple-

byte read/write instead of the usual not acknowledgment and stop command sent after the

transferring of the single byte of data. [45]

The write transaction of data consists of the host issuing the start command, sending the

hexadecimal peripheral address, and writing to that address. The peripheral then acknowledges

this transaction was received, and the host can specify the register that needs to be written to (the

peripheral acknowledges this transaction), as well as the data that needs to be transferred. Once

these bytes have all been transferred, the host then issues a stop command to end the I2C

transaction.

The read transaction of data starts the same as the write transaction, with the host issuing a start

command, sending the hexadecimal peripheral address, and writing to that address. The

peripheral acknowledges this transaction was received, and the host specifies the register that

needs to be written to. Once the transaction is acknowledged, the host stops the transaction, and

starts a new one (issuing a restart). The host will again send the peripheral address, followed by

the read bit, and the data from the peripheral is received by the host. After these data are sent, the

host will issue a stop command to end the I2C transaction. A visual representation for both read

and write transaction protocols for the ADXL345 can be seen in Figure 29.

75

Figure 29: ADXL345 Read/Write I2C Transaction Protocols (Device Addressing) [45]

To correctly use these processes, we must understand what addresses and registers we need to

write to in order to get our intended result. In the above process, the peripheral address is

dependent on whether the ALT ADDRESS pin (pin 12) on the ADXL345 is connected to VDD

I/O or GND. If it is connected to VDD I/O, then the peripheral address is 0x1D, and if it is

connected to GND, the peripheral address is 0x53. In our case, the ALT ADDRESS pin is

connected to ground, and thus the peripheral address we use is 0x53. For registers, we referenced

the register map given in the ADXL345 datasheet shown in Figure 30. [45]

76

Figure 30: ADXL345 Register Map [45]

From our design, we know that we want to read the X, Y, and Z axis data that are being

measured by the accelerometer, as well as specify the range of acceleration we want to be

measuring. This information is located in the POWER_CTL register (0x2D), DATA_FORMAT

register (0x31), and the DATA registers (0x32 – 0x37). We write to the first two registers

specified, and only read from the data registers.

For implementation of our sensor, we needed to ensure that our reading and writing protocols as

well as the values we were getting from the accelerometer were correct. Using this knowledge,

we initialize the following registers to the values outlined in Table 7.

77

Table 7: Initialization of ADXL345 Registers

Register Value (in hex) Description

0x24 (THRESH_ACT) 0x08 Establishes the ADXL345 to have a 0.5 g activity threshold

0x25 (THRESH_INACT) 0x03 Establishes the inactivity threshold to be 0.1875 g

0x26 (TIME_INACT) 0x02 Establishes the inactivity time to be 2 seconds.

0x27 (ACT_INACT_CTL) 0xFF Enables the activity and inactivity of the X, Y, and Z axes,

wherein inactivity and activity detections are in ac-coupled

mode. This means that a reference value is used for comparison

and is updated whenever the device exceeds each threshold.

0x28 (THRESH_FF) 0x0C Establishes the free-fall threshold as 0.75 g

0x29 (TIME_FF) 0x06 Sets free-fall threshold time as

30 ms

0x2C (BW_RATE) 0x0A Keeps the default output data rate as 100 Hz

0x2E (INT_ENABLE) 0x1C Enables the activity, inactivity, and free-fall interrupt

0x31 (DATA_FORMAT) 0x0B Sets our range as ±16 g, has high level interrupt trigger (a bit of

1 signifies an event), and establishes that we will have an I2C

interface

These registers become more important as we implement the ADXL345 for fall detection,

detailed in Section 7.3: Accelerometer. As a brief synopsis, we want the time registers to be long

enough to signify that someone has fallen. For example, people will not be falling from very low

distances, so we want the free-fall time to be at least longer than 30ms. In the same notion, if

someone is hurt after they have fallen, they will most likely be on the floor for at least 2 seconds,

which allows us to determine the legitimacy of the fall determination. For the purposes of this

section, these registers will not be used until later and we will continue with the sensor in its

default range of ±2g.

78

When we investigated the POWER_CTL register, we found that each bit represents something

different, with bit 5 representing the link between the activity and inactivity functions of the

accelerometer. When this bit is set to 0, the activity and inactivity functions are concurrent,

whereas a 1 in the link bit (with both the activity and inactivity functions enabled) delays the

start of the activity function until inactivity is detected. Bit 4 controls the Auto Sleep function of

the accelerometer. A setting of 1 in this bit means that the ADXL345 automatically switches to

sleep mode if the inactivity function is enabled and inactivity is detected. Bit 3 controls the

measure function of the accelerometer, and a setting of 0 will set the accelerometer into standby

mode, whereas a 1 will place the sensor into measurement mode. Bit 2 controls the Sleep

function, and a setting of 0 in the sleep bit puts the sensor into the normal mode of operation, and

a setting of 1 places the sensor into sleep mode. Lastly bits 1 and 0 control the frequency

readings in sleep mode (from 1 – 8 Hz). A more concise visual representation of the register and

what its bits represent can be seen in Figure 31. [45]

Figure 31: ADXL345 Power_CTL Register [45]

For the purpose of our testing process, we only need to have bit 3 be a 1, as we want this

accelerometer in measurement mode and are not concerned with the interactions of the various

inactivity/activity and sleep modes. Thus we will need to write binary 0b00001000 = 0x08 into

register 0x2D. This initialization process can be seen in the code snippet in Figure 32. The same

code implementation occurs for all the other registers that need to be initialized prior to this, with

the exception that the I2C_transfer line is not within an if statement, and instead stands alone.

79

Figure 32: Setting the ADXL345 into measurement mode

In this code snippet, we populate the write buffer variable txbuffer with both the register we

write to (PCR earlier in the code is defined as 0x2D), along with the data we want to write to the

register (0x08). We specify the peripheral address with the I2C functions defined in our header

files, specifying the write buffer, along with the write count. Because we are trying to write both

the register and the data, the write count is 2. For this transaction, a read buffer is unnecessary as

we will not be reading any data from this register, and the read count is 0 as well. We then call

the I2C transaction function that is also outlined in the I2C.h file, by using the I2C_transfer(i2c,

&i2cTransaction). This function takes in the previous variables (write, read, count, peripheral

address, etc), that we defined and sends the I2C transaction. We put this function call within the

if statement as we only want the process of reading the accelerometer data to happen if we put

the sensor into measurement mode properly. If this transaction fails, we will receive an error

message that there was an I2C bus fault.

If this transaction is successful we know that the accelerometer is now in measurement mode,

and we can receive data from our axes. We can now proceed with our read I2C process from our

various axes registers. The data from our accelerometer are stored in six different registers,

DATAX0, DATAX1, DATAY0, DATAY1, DATAZ0, and DATAZ1. The output is in two's

complement, with DATAk0 as the least significant byte and DATAk1 as the most significant

byte, where k represents X, Y, or Z. For the purpose of description, we will focus on just the x

axis transfers, as the process is the same for the other two axes. To iterate through all of the axes,

a for loop was created with the variable i = 2. When i = 2, the process of receiving the data for x0

was implemented, and can be seen in Figure 33.

80

Figure 33: Receiving the ADXL345 data for register x0

The first lines of code before the sleep() function take care of the first part of the read protocol.

In these lines, we write to the DATAX0 register (0x32), and do not read or write any data to or

from the register, then end the I2C transaction. After the sleep() function, we start the I2C

transaction again, but do not need to write to the register. This time we only need to read from

the register. We store the received data, and for our purposes of following our variables, we had

our program output the value of the received data. This process is repeated for the other least

significant byte data registers (x0, y0, z0 [0x32, 0x34, 0x36]). The data transferring process is

similar with the most significant byte registers (0x33, 0x35, 0x37), but this byte cannot be stored

the way it is received. It must be shifted to the left by 8 bits and then stored in a 16-bit integer, so

that we can piece together both the least significant byte and most significant byte of the axes

later on. The data received in each register are stored in their corresponding variables x0, x1, y0,

y1, z0, and z1.

81

After all of our data are received, we can then compose a proper acceleration reading in g by

composing both the parts of the X, Y, and Z axis registers, and dividing by the resolution of the

sensitivity range we have chosen. As we are currently using the accelerometer in its default

settings (for testing purposes, this is subject to change with testing and implementation), the

current range is ±2 g with a resolution of 256 LSB/g (or 4 mg/LSB). This process can be seen

below in Figure 34 for the x-axis of the accelerometer.

Figure 34: Formatting the x-axis data to read out in g

To verify our accelerometer results, we positioned the accelerometer in varying different ways

along the different axes parallel or opposing gravity and ensured we got the ±1 g we expected.

The accelerometer orientations and their corresponding results can be seen in Figures 35 – 38. In

Figure 35, the Z-axis is normal to gravity, so we should expect to see a value of about 1g (zero

on the X and Y axes). In Figure 36, where the accelerometer is held upside down, the z axis is

pointing in the same direction as gravity, so we would expect a value of about -1 g. Both of these

values were successfully obtained. In Figures 37 and 38, the X- and Y-axes are both pointing in

the same direction as gravity, so for both of these orientations we expect a value of -1 g in their

corresponding axes. In each of these result figures, the other two axes besides the one equal to 1

g, should be relatively close to 0 g. With our accelerometer, we got clear and accurate readings,

with an error of about 8.7% for the X-axis, 9.2% for the Y-axis, and 2.6% for the Z-axis. These

error values could also be decreased by calibrating each axis further with their corresponding

offset registers 0x1E, 0x1F, and 0x20. For now, because the purpose of this accelerometer is to

check for the more jarring movement of falling, these amounts of errors are not concerning and

we may now begin the testing phase. With initial testing and data transfer protocol completed,

we moved forward with our free-falling algorithm described in section 7.3.

82

Figure 35: ADXL345 results with z axis normal to gravity (x = 0 g, y = 0 g, z = 1 g)

Figure 36: ADXL345 results with z axis parallel to gravity (x = 0 g, y = 0 g, z = -1 g)

Figure 37: ADXL345 results with y axis parallel to gravity (x = 0 g, y = -1 g, z = 0 g)

Figure 38: ADXL345 results with x axis parallel to gravity (x = -1 g, y = 0 g, z = 0 g)

83

5.2 SPI Interface

The electro-dermal activity sensor communicates with the CC2652R1 MCU via serial-peripheral

interface (SPI). SPI is a synchronous, full duplex master-slave-based interface that is commonly

used between microcontroller and peripheral ICs such as sensors, ADCs, DACs, shift registers,

SRAM, and others. The data from the host or the peripheral is synchronized on the rising or

falling clock edge and both the host and peripheral can transmit data at the same time [69]. SPI

can be controlled using either a 3-wire or 4-wire implementation, but for our purposes we used

the 4-wire implementation. Four-wire SPI interfaces have four signals: clock (known as SPI

CLK or SCLK), Chip Select (known as CS or SS), master-out slave-in (MOSI), and master-in

slave-out (MISO). In this process, the device that generates the clock signal is the master, and the

chip-select from the host selects the slave. The chip select is normally an active low signal, and

is only pulled high to disconnect the peripheral from the SPI bus. During SPI communication,

the data are simultaneously transmitted (shifted out serially onto the MOSI/SDO bus) and

received (the data on the bus [MISO/SDI] is sampled or read in). The main difference between 3-

wire and 4-wire implementation is that in 3-wire SPI, the MOSI and MISO have a shared data

line instead of two separate lines. [69]

Another important characteristic to mention is that in SPI the host can select the clock polarity

and clock phase. The clock polarity bit (CPOL) sets the polarity of the clock signal during the

idle state. The idle state is defined as the period when CS is high and transitioning to low at the

start of the transmission and when CS is low and transitioning to high at the end of the

transmission. Depending on the clock phase bit (CPHA), the rising or falling clock edge is used

to sample and/or shift the data. The host must select the clock polarity and clock phase, as per the

requirement of the slave [69]. A table with the different SPI modes and definitions along with

their visual depictions can be seen in Appendix 3.

The TI CC2652R1 MCU supports the SPI interface, and supports both host and peripheral up to

4 MHz, and the SDK has drivers that allow configuration and utilization of the CC2652R1 4-

wire hardware SPI. The SDK SPI driver uses LaunchPad pin DIO10 as SPI CLK, DIO20 as CS,

DIO9 as MOSI, and DIO8 as MISO. Before the SPI transaction can occur between the host and

peripheral, the SPI driver must first be initialized with a SPI_init() function call. Similar to the

84

I2C protocol, optional SPI bus parameters can be configured by creating a SPI_Params object.

These options include bit rate, frame format (the SPI mode), whether the MCU is acting as a

peripheral or host (denoted as mode), data size, and a transfer mode option as blocking or

callback. Once these parameters are specified (if they are not, the SPI interface will use its

default values), the SPI bus needs to be opened using the SPI_open() function. The selected SPI

hardware variable along with the SPI parameters object are passed into this function (in code,

this function would be spi = SPI_open(CONFIG_SPI_MASTER, &spiParams)). Once both the

initialization and open functions have been called, a SPI transaction can now occur by calling the

SPI_transfer() function. The SPI_transfer() function requires the SPI handle object created by the

SPI_open() function (in our example this is what we set the SPI_open() function equal to), and a

SPI_transaction object. An SPI transaction object consists of a transmit buffer, receive buffer,

count (number of frames of the transaction), and an optional argument to be passed if the

callback function is used. Lastly, once the SPI transactions have finished, the bus needs to be

closed using the SPI_close() function, passing in the SPI handle object as a parameter. This

protocol is outlined within the flowchart seen in Figure 39.

Figure 39: CC2652R1 SPI Setup/Configuration

85

5.2.1 EDA Sensor

The MIKROE-2860 [70] can communicate via SPI or analog interface, and to ensure we

explored multiple different interfaces, SPI was chosen for this sensor. In the following

descriptions and explanations of the processes between the CC2652R1 MCU and the MIKROE-

2860, the CC2652R1 acts as the host and the MIKROE-2860 is the peripheral.

As previously mentioned in the Design Options section of the paper, the MIKROE-2860 is based

upon a voltage divider where one resistor is fixed (in this case at 100 kΩ), and the second

resistor is the resistance of your skin (acting as a variable resistor). The result of this voltage

divider is then input to the MCP607 dual CMOS op-amp and the output is fed into the MCP3201

ADC. We are only interested in the ADC output, and thus all of our SPI interactions between the

MIKROE-2860 and CC2652R1 is based upon the MCP3201 instead of the MIKROE-2860 as a

whole.

The MCP3201 begins to sample the analog input on the first rising edge after CS goes low. The

sample period will end in the falling edge of the second clock, at which time the device will

output a low null bit. The next 12 clocks will output the result of the conversion with MSB first,

and the data are always output from the device on the falling edge of the clock. If all 12 data bits

have been transmitted and the device continues to receive clocks while the CS is held low, the

device will output the conversion result LSB first. A visual representation of this process can be

seen in Figures 40 and 41. [70]

Figure 40: Communication with MCP3201 changing from MSB first to LSB first [70]

86

Figure 41: SPI communication with MCP3201 using SPI mode 0 [70]

Because the MCP3201 outputs its data in 12-bit format, but does not start its data transfer until

the falling edge of the third clock, we set up the CC2652R1 to clock out 16 bits. This way, we

can ensure that the entire data signal is transmitted. Since the MCP3201 always clocks data out

on the falling edge of the clock, the MCU SPI port must also be configured to match this

operation. This would be the SPI mode 0 seen in Appendix 3. With this information, we were

able to specify our SPI parameters, and pass them through the SPI_open() function seen in

Figure 42.

Figure 42: Setting the SPI parameters for the MCP3201

The commented out portions of the spiParams initialization are the default settings in the object,

and thus these do not need to be directly specified. We then specify and set the CC2652R1 to be

ready for SPI transaction within the GPIO. After this process, we can now begin the transaction

process between the MCP3201 and CC2652R1. First we initialize both the transmit buffer and

receiver buffer (txBuffer and rxBuffer) as unsigned 16-bit integer pointers of size 1. Then we set

87

these equal to their corresponding transaction parameters, call the SPI_transfer function, and

store the value we receive from the rxBuffer. To ensure this transaction process went through

smoothly, we set the transaction equal to a Boolean variable called transferOK, and if the SPI

transaction fails, an error message is returned. The corresponding code for this process can be

seen in Figure 43.

Figure 43: MCP3201 SPI Transaction

To get the value from the ADC we want, we then need to get rid of the unnecessary bits from the

16 bits we received. This means that we must get rid of the first 3 null bits that are received, as

well as the additional LSB bit we receive after our data transmission. We achieve this by first

shifting our received data one bit to the right, and then masking the first 4 bits of the 2 bytes.

Once this is achieved, we multiply this value by &'()
%!"

, giving us an expression of

𝐴𝐷𝐶	𝑉𝑜𝑙𝑡𝑎𝑔𝑒	 = 	 (𝐴𝐷𝐶	𝑉𝑎𝑙𝑢𝑒) ∗ (&'()
%!"

). This process can be seen in the code snippet in Figure

44.

Figure 44: Processing the received SPI data

To verify our results, we took data with our hands both as a constant (as it is), and with our hands

slightly dampened (to represent the sweat that would be produced if the user underwent stress).

As our hand in the EDA circuit is the first resistor in the voltage divider circuit (as described in

Figure 16 in the Sensor Description section), we can understand that as this resistance goes down

in comparison to the second constant resistor, the output voltage is greater than before and vice

88

versa. This relationship is given by the equation 𝑉*+, 	= 	
&-.	∗	1%
(1#	3	1%)

. Using this relationship, we can

know that having our hands slightly dampened would have a higher voltage result, as our hands

would have less resistance, and become more conductive to electricity. To be sure that our

assumptions are correct, we can work backwards to find the resistance of our hands in each case

seen in Figure 45. In the first case, we get an output voltage of 2.0540 V. Solving the equation

for R1, we get the equation: 𝑅1	 = 	 &-.	∗	1%
&#$%

− 𝑅2. Using this equation given above, and knowing

our Vin is 3.3 V and R2 is 100 kΩ, we get an initial resistance of about 61kΩ. We can repeat this

process for our second result when our hand is dampened. In this case, we would replace our

Vout variable with 2.8818 V, and keep Vin and R2 the same, and we get a resistance of about

14.5 kΩ. The results of our initial tests can be seen below in Figure 45. In this figure, the output

voltage is given within the square brackets. The values in hexadecimal given before each square

bracket are representative of the values transferred when we took the initial reading, and the

values that resulted after the bit masking process. Outputting these values is not necessary, but is

useful for debugging purposes to ensure that each process was being carried out correctly. After

verifying the results, we were now able to set varying thresholds to measure whether or not the

user is undergoing high amounts of stress which can be seen in Section 7.5: EDA Sensor Data

Analysis.

Figure 45: Regular vs Dampened Hand EDA results (from left to right)

89

5.3 Analog Input

The last protocol that we used to communicate with the sensors is analog data communication.

The two sensors that used analog communication were the ECG and the microphone. The

sensors’ data collection are modeled after an SDK example (adc_single_channel.c) [60] available

for the CC2652R1 Launchpad to configure the ADC on the Launchpad, collect data from the

sensor, and convert the ADC values to microvolts for use. For the ECG and microphone sensors,

the implementation is different compared to the implementation in the example file. These

sensors collect data simultaneously on two different channels on the ADC, and are run on a 200

Hz timer collecting samples one after the other. The ECG and microphone sensor data is sent to

MATLAB for further data analysis.

5.3.1 ADC Interface for ECG

Before implementing the ECG through the CC2652R1 Launchpad, we did some testing on the

ECG module itself to make sure that it works. This was done by going into a lab and hooking up

the ECG module to a breadboard and powering it up. Then, we hooked up the electrodes onto the

right arm, left arm, and right leg (Lead 1) of one of our group members to collect data. The right

leg electrode was the reference connection. Finally, we set up an oscilloscope in parallel with

the ECG module analog output to get the following readings in Figure 46.

Figure 46: Oscilloscope of ECG Signal

90

 After gathering sample data with the oscilloscope, the implementation of the ECG with

the LaunchPad needed to be completed. Since the ECG outputs an analog signal, to collect and

display data obtained we needed to configure the ADC of the LaunchPad. Thankfully, the SDK

[71] that comes with the launchpad has example code that configures the ADC. Here the SDK

file configures the ADC and converts data obtained from the two sensors to ADC values that

range from 0 - 4095, which is the resolution of the ADC. To collect and convert data using the

convert function from the SDK, a timer was used at a sampling rate of 200 Hz. The timer

implements a callback function that triggers every 5 ms and collects one sample from the ECG

and one sample from the microphone. The data are then converted to microvolts to be stored in

two separate unsigned 32-bit integer arrays of length 1024. Once 1024 samples are collected, the

program overwrites the data that was previously stored within the arrays. However, this doesn’t

affect data collection because all of the data are displayed via serial communication using a

Display_printf statement, so no data are actually lost. After the data gets sent to a serial port,

Putty, an application that supports serial data logging, stores the ECG and microphone data on a

local computer. The data are then ready to be sent to MATLAB for data analysis. For the

purposes of the data collection for the ECG, the data was collected while the CC2652R1

Launchpad was directly connected to a PC. In Figure 47, sample data taken with the ECG from

one of our group members is shown.

Figure 47: Measured ECG Reading in Code Composer Studio

91

As seen in Figure 47, the general ECG is displayed. For simple data analysis, by just looking at

the data, a simple beats per minute calculation can be done. First, we need the sampling

frequency of the timer, which we know is 200 Hz, and the other information we need is the

samples between the R waves in the ECG data. The R waves are simply the peaks within the

data, and RR intervals are the amount of samples between R waves. For this particular user, the

samples between two R waves is 135. We can then use the information in the equation below to

find the user’s heart rate in beats per minute [72]. Here it is 89 bpm. This is only a rough

estimate of the user’s heart rate and isn’t meant to evaluate for medical conditions.

	𝐵𝑃𝑀	 = 60/(𝑆𝑎𝑚𝑝𝑙𝑒𝑠	𝑏𝑒𝑡𝑤𝑒𝑒𝑛	𝑅	𝑤𝑎𝑣𝑒𝑠/(𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔	𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦))	 	 (3)

5.3.2 ADC Interface for Microphone

The microphone runs simultaneously with the ECG and its data gets sent to a separate 32-bit

unsigned array. Similar to the ECG, the microphone collects data at 200 Hz or 1 sample every 5

ms. Figure 48 shows a sample of microphone data with no input sound.

Figure 48: Silent microphone data

 As seen, the data are constant throughout the duration of 200 samples because no input

noise is given to the microphone. If there is noise input into the microphone, the data will display

something similar to Figure 49. Here one group member talked at different intervals within the

sample.

92

Figure 49: Noise input into the microphone

The microphone data are also sent to serial communication and logged via Putty. The

post data analysis of the microphone is different from the ECG data. For the microphone, we

compare the data to a reference dB sound to determine if loud noise is contained within the data.

Similar to how the microphone and ECG data run simultaneously, the next task is to get all of the

sensors to run simultaneously in a RTOS environment.

93

6. Sensor Integration

In this section of the paper, we discuss how these five sensors were integrated in both an RTOS

and BLE environment.

6.1 RTOS Environment

A real-time operating system (RTOS) is an operating system intended to serve real time

application process data as it is received, typically without buffering delays. RTOS environments

are usually chosen for their small latency, determinism (predictability), structured software,

scalability, and offload development. It is also valued for how quickly and predictably it

responds to a desired workload when compared to other environments [73]. In our system, we

use the RTOS from Texas Instruments (TI) as it integrates easily on their hardware.

A major part of the operating system, called the scheduler, is responsible for managing execution

threads within the system. It decides which threads to run when and switches between threads

based upon its configuration. The scheduler in RTOS is designed to provide a predictable

execution pattern and has two forms of creation. Preemptive scheduling is the most common,

where a running thread continues until it either finishes, a higher priority thread becomes ready

(preemption), or it becomes blocked (i.e., the thread waits on a semaphore that’s not available or

calls a sleep function). The second form of scheduling is time-slice scheduling, where each

thread is given a time slot in which to execute, which is generally not conducive to real-time

applications. We are using a preemptive scheduling RTOS to allow faster sampling sensors to

pre-empt other sensors. [73]

There are four types of threads managed by the TI-RTOS scheduler: Hardware Interrupt (Hwi),

Software Interrupt (Swi), Task, and Idle. A flow-chart depicting all the levels of threads within

an RTOS is shown in Figure 50.

94

Figure 50: Threads within the TI-RTOS [74]

Hwis are the highest priority thread and are only triggered by hardware events, such as a

hardware timer reaching zero. They will run to completion unless they are preempted by a higher

priority Hwi. They should be designed to be as short as possible and can’t call any blocking

APIs, like pending on a semaphore. They are often also referred to as Interrupt Service Routines

(ISRs). Swis are just below Hwis in priority within the scheduler but are generated by software

instead of hardware. Similar to Hwis, Swis should be kept short and may not call any blocking

APIs. [74] [75]

Next in a decreasing order of priority are Tasks. These are threads that can block while waiting

for a particular event to occur. Each task has its own stack, which allows each one to run

continuously and block when necessary. The number of tasks is limited by the amount of

available system memory and can have up to 32 priorities. Tasks have four different possible

states: ready, running, blocked, and terminated. A ready task is one that is not blocked but has

been preempted by a higher priority thread. A running task is actively executing its code and will

continue to run until preempted or blocked by an object. A blocked task is waiting on some event

or object, like a semaphore, to become available before continuing execution. A terminated task

has executed its entire code and has been deleted. Tasks typically contain a main loop that pends

on some form of event, such as a semaphore. If that semaphore is not available, the RTOS will

95

suspend the task (becomes blocked) until the semaphore is posted elsewhere. When a task

becomes blocked, the scheduler determines what task to run instead. [74] [75]

Lastly, Idle is the lowest priority thread and is a special type of Task. It only runs when no other

thread is ready to execute. It can be used to perform background tasks, like system stack

checking and CPU load determinations. Idle runs as an infinite loop and multiple functions can

be assigned to this thread. Only functions without hard deadlines should be called in the idle

loop. [74] [75]

Threads are able to communicate between each other using a couple different methods. One of

the most common methods is a semaphore, often used for thread synchronization and mutual

exclusion of shared data. Semaphores can be configured as counting or binary semaphores.

Counting semaphores track the number of times the semaphore has been posted while binary

semaphores are either available or unavailable. Threads that are allowed to block can pend on

semaphores for a certain amount of time, including waiting forever. When a semaphore is posted

and would cause a task to unblock, the scheduler runs to determine if the current task should be

changed. [76]

Periodic events can be configured using a TI-RTOS Clock module. The clock module uses a

hardware timer to help control services that require timing, such as sleeping a task for a certain

amount of time. This clock generates a system tick every set period of time. By default, our

hardware generates a system tick (clock tick) every 10 μs. Clock object instances can be created

to call a function when a certain number of clock ticks have occurred. These functions are called

within the context of a Swi, so they need to follow the same rules. The priority of the Swi used

by the clock can be configured to a certain value. [77]

6.1.1 Task Scheduling in RTOS

For our system, we created individual tasks for each sensor. Sensors that sample more frequently

need to have a higher priority so that they can preempt other sensors/tasks. Without priority, if

the total execution time of taking a single pulse oximeter sample is longer than the sampling

period of the ADC, we would miss an ADC reading. If the ADC has a higher priority, it is able

96

to preempt the pulse oximeter and take a sample on time. Because we sample both the ECG and

microphone at the same sample rate, we combined them into one task. Each task has a very

similar layout, which starts with configuring any hardware needed by that sensor. With

configuration complete, the task enters a permanent while loop that takes sensor readings. The

while loop pends on a semaphore that’s used to indicate that a sample should be taken. This

semaphore is posted by a clock object instance callback function, which has been configured to

be called at the desired sample rate for that sensor. By using a clock object to post a semaphore

that will unblock a sensor’s task, we are able to call blocking functions and APIs needed to take

sensor readings, like performing an I2C transaction. The task will perform a sensor reading and

pend on the semaphore until another sample is needed. Counting the current number of clock

cycles just before a sample is taken allows us to associate a particular sample with a particular

time. An example of how a sequence of samples may occur can be seen in Figure 51.

Figure 51: Example Task Execution in our System

97

In this figure, the sequence of events are numbered to label particular events. The execution

presented in this figure is not a perfect representation of the actual RTOS execution but

demonstrates a potential execution sequence. Time between tasks being unblocked is not

representative of actual code execution. At the beginning of BIOS_start(), all tasks are ready to

be executed and all hardware has been properly configured. Table 8 explains the sequence of

events.

98

Table 8: Example Task Execution Event Description

Event Number Description

Event 0 BIOS_start() is called and the scheduler runs. Scheduler determines that Task0 runs
next.

Event 1 ECG and mic task has finished taking a sample and pends on semaphore. Scheduler
decides that Task1 runs next.

Event 2 The Accelerometer task has finished taking a sample and pends on semaphore.
Scheduler decides that Task2 runs next

Event 3 Pulse oximeter calls usleep(20), which causes the task to sleep (block) for 20 μs.
Scheduler decides that Task3 runs next

Event 4 EDA executes until Task2 unblocks from sleep expiring, which causes Task2 to
preempt Task3

Event 5 Task2 executes until the clock posts the semaphore that Task0 is pending on.
Scheduler causes Task0 to preempt Task2

Event 6 Task0 finishes taking a sample and pends on semaphore. Scheduler returns
execution to Task2

Event 7 Task2 finishes taking a sample and pends on semaphore. Scheduler returns
execution to Task3

Event 8 Task3 finishes taking a sample and pends on semaphore. Scheduler decides that Idle
task runs

Event 9 Clock instance posts semaphore that Task0 is pending on. Scheduler causes Task0
to preempt Idle task

Event 10 Clock instance posts semaphore that Task1 is pending on. Task1 becomes ready, but
scheduler continues Task0 execution

Event 11 Task0 takes a sample and pends on semaphore. Scheduler makes Task1 to execute

Event 12 Task1 finishes taking a sample and pends on semaphore. Scheduler returns
execution to the Idle task

An example of an actual task execution can be seen in Figure 52. These transactions were

captured using the Waveforms software available for the Analog Discovery 2 from Digilent.

Because both the accelerometer and the pulse oximeter share the I2C bus, we wanted a way to

visually differentiate between their respective transactions. The MFIO pin of the MAX32664 is

pulled low when data are available in the output FIFO and is pulled high when data are read from

the output FIFO. This allows us to identify when a pulse oximeter I2C transaction occurs. To

99

identify an accelerometer I2C transaction, the red LED has been configured to be toggled just

before and after an accelerometer reading. The green LED has been configured to be toggled just

before and after the ADC readings. This allows us to visualize when an accelerometer and ADC

readings occur. Because there is only one device on the SPI bus, the EDA transaction can be

easily identified. An example of task preemption can also be seen in this figure, where the higher

priority ADC task preempts the pulse oximeter task to take a reading.

Figure 52: RTOS Sensor Sampling Waveforms

The software used to collect this waveform can also provide measurement information. By

looking at the frequency of the MFIO, red and green LEDs, we are able to verify that each sensor

is sampling at the intended frequency. By comparing the time between SPI transactions, we are

also able to verify the sampling rate of the EDA sensor. Results from the software measurement

can be seen in Table 9.

Table 9: Designed Sampling Rate vs Measured Sampling Rate for Individual Sensor

Sensor Microphone/ECG EDA Pulse Oximeter Accelerometer

Designed
Sampling Rate

(Hz)

200 1 10 100

Measured
Sampling Rate

(Hz)

200.04 1.00 10.037 100.02

100

6.2 BLE Environment

Bluetooth Low Energy (BLE) allows for data to be wirelessly transmitted while also being

energy efficient. Its low energy consumption comes from its structure of transmitting smaller

amounts of data and connecting for shorter periods of time than standard Bluetooth.

There are different types of connections available for the BLE device. A BLE connected item

may have up to four different functions. A Broadcaster’s role is to constantly advertise data to its

surroundings, without ever receiving any data back. The Observer does the opposite of the

broadcaster, and only processes the data from the advertisements it receives. The Peripheral sits

at the core of BLE technology, and constantly advertises data until a connection request is

received. A Central device is often surrounded by peripherals, and decides which peripheral to

connect to. In a central and peripheral relationship, the central acts as the master and the

peripheral acts as the slave. [78]

To best understand how to optimize and work further with BLE, we must first gain an

understanding of how the BLE stack and packet structure works. The Generic Access Protocol

(GAP) defines how to discover and connect services to a Bluetooth device and is necessary for

devices to connect to each other. The Generic Attribute Protocol (GATT) enables data

communication between connected devices, where the connected devices take the role of GATT

Client or GATT Server. The GATT Server contains the characteristic database that is accessed

by the GATT Client. The Attribute Protocol (ATT) handles smaller packets, and works with the

GATT to manage the data sizes between devices. This allows for only certain pieces of data to be

exposed to the other device connected at a time, which aids in keeping the Bluetooth module low

energy. The Security Manager (SM) allows other layers within the stack to connect and

exchange data securely with other devices. The Logical Link and Adaptation (L2CAP) allows for

logical end-to-end communication of data, passing data to the Host Interface Controller or

directly to the Link Manager. The Host Interface Controller (HCI) interfaces with the stack, and

provides a link between the host and controller through API, UART, SPI or USB. [79]

BLE uses 40 different RF channels, where 37 of them are used for data communication and the

other three are used for advertisements. Advertisement packets allow Bluetooth devices to either

101

broadcast their data or enable other devices to connect to them. Advertising Intervals,

Advertising Types, and Advertising Channels are all parameters that can be configured based on

user preference. The Advertising Interval represents the time between two advertising events and

can range from 20 ms to 10.24 s. The Advertising Type can be configured to eight different

advertising Protocol Data Unit (PDU) that can be chosen/sent based upon the intended result.

The Advertising Channels can be configured to be set on channels 37 (2402 MHz), 38 (2426

MHz), or 39 (2480 MHz), depending on configuration need. [78]

The Link Layer (LL) is what we will focus on the packet structure of next, as it is how our data

will transmit during our BLE connection. As mentioned, the LL stack contains packets that

consist of PDU and the Cyclic Redundancy Check (CRC). The advertising channel PDUs are

used before an LL connection is created, with a 16-bit header. The data channel PDUs are used

after an LL connection is created, and consists of LL data PDUs and LL control PDUs. The LL

control PDUs are used to manage the connection, and are used to update the channel map at the

peer device. The LL data PDUs are used to carry the upper-level data (such as the L2CAP data).

Figure 53 shows the format of an LL Packet.

Figure 53: Format of a Link Layer Packet [80]

Using default parameters, in order to transmit a maximally sized LL Packet, the server will send

27 bytes of data in a 41 byte payload, which will take about 328 μs to transmit. The client will

receive the packet and wait 150 μs, and will acknowledge the packet is received in about 80 μs.

Then the server will wait another 150 μs to send more data. During this time, the 27 bytes of data

will actually be transmitted in 216 μs. In newer versions of the BLE standard (from 4.2 onward),

there has been the addition of a data length extension (DLE). This optional feature allows for the

device to extend the length of the data transmission in the Link Layer to 251 bytes. This means

102

that instead of sending 27 bytes in a 41 byte payload, 251 bytes of data can now be sent in a 265

byte payload. It also allows us to send more data with fewer delays between each packet sent.

[81]

Data transmission with acknowledgements between server and client implements the indication

protocol method of sending data. Another way of sending data is through notifications that do

not need this acknowledgement step from the client back to the server to send more data. Hence

this method allows for quicker data transmission and greater throughput. For example,

notification protocol allows the Peripheral to send data as soon as it is ready without needing the

Central to request data itself before-hand. As mentioned, the Peripheral also does not need the

Central’s acknowledgement of the data before it sends another transmission. While indication is

a more reliable form of data because of its acknowledgement form, notifications allow for the

quick transmission that some applications require.

Below the Link Layer is the PHY layer, which configures the physical parameters of the

transmission/reception, and determines how a bit and its value are represented. In the version of

BLE that we are using (BLE 5), there are three types of PHY options: LE 1M PHY, LE 2M

PHY, and LE Coded PHY. The default PHY layer is LE 1M PHY and the latter two were

introduced in BLE 5.0. Each name refers to the bit rate that that PHY is capable of, with

exception of LE Coded PHY. LE Coded PHY has the same rate of 1 Megabit, but is used to

increase the maximum range without increasing the transmission power. Coded PHY provides

enhanced bit error detection and correction, but is achieved at a cost to data rate, as it increases

the number of symbols per bit to 2 (data rate = 500 kbps) or 8 (data rate = 125 kbps). Using 2M

PHY allows the user to double the number of bits sent during a given period or reduce the energy

consumption by halving the transmission time. The main difference between 1M PHY and 2M

PHY is the increased frequency change that combats the increase in time delay between packets

caused by the symbol rate. This can be seen in Figures 54 and 55. Within these figures, we can

see that in the same amount of total time 2M PHY does three transmissions while 1M PHY only

does two, despite the delay between packets being the same. As mentioned above, this is because

of the halved transmission time that 2M PHY offers. [79]

103

Figure 54: Transmission with 1M PHY [82]

Figure 55: Transmission with 2M PHY [82]

6.2.1 BLE Implementation on CC2652 Board

For our system, we created a custom BLE profile that has a GATT primary service which

contains custom GATT characteristics to hold sensor samples. The TI SimpleLink Academy has

a tutorial for the CC13x2/CC26x2 SDK [83] that provides a sample service generator, which

enabled us to easily create our own custom service. We called this service “sensorService” and

gave it a GATT characteristic for each task. Sending each sensor sample would take too long, so

some characteristic values were made large enough to contain multiple samples. An

accelerometer sample contains 16 bytes/sample. It consists of four bytes for the current clock

count and a single-precision float value (four bytes) for acceleration in each X, Y, and Z axis.

Each EDA sample contains eight bytes/sample. It has four bytes for the current clock count and a

single-precision float value for the measured voltage. The combined microphone and ECG

sample pair has a total size of 12 bytes/sample. It contains a four byte current clock count and a

104

32-bit (four byte) value for each sensor’s voltage in microvolts. A single pulse oximeter sensor

sample consists of 24 bytes/sample. This consists of a four byte current clock count and a 21 byte

bioData struct, which contains the sensor data retrieved from the sensor hub. This information is

summarized and expanded upon in Table 10.

Table 10: Sensor BLE Packet Sizes

Sensor Sample Size
(Bytes) Samples/packet Bytes/packet Packet Period

(ms)

Accelerometer 16 10 160 100

ECG and Mic 12 20 240 100

EDA 8 1 8 1000

Pulse Oximeter 24 10 240 1000

All of these characteristic values can be read by a Central Bluetooth device. This external device

can also enable notifications for specific characteristics. This allows the peripheral device to send

out sensor data without the Central device actively requesting it.

To add our sensors to a BLE environment, we modified an existing example project from the

CC13x6/CC26x2 SDK, simple_peripheral [84]. We added the custom profile and characteristics

previously described, registering them as a new GATT service. By registering tasks with the

Indirect Call Framework (ICall), our sensor readings can interface with BLE stack services [85].

This allows us to set specific characteristic values to our measured sensor samples. When a

characteristic value is set/changed, the GATT server checks the Client Characteristic

Configuration Descriptor (CCCD) for that characteric to see if the client has enabled

notifications. If the client has done so (CCCD = 0x0001), then a notification is sent out. If

notifications are not enabled, then no message is sent [84].

105

7. Data Analysis

In this section, we discuss how each sensor’s data were analyzed. A MATLAB application

designed to record the BLE packets that contain sensor data. A separate MATLAB program

parsed the packets to extract the sensor data, which are graphed and analyzed. The pulse

oximeter was used to monitor the blood oxygen saturation and pulse rate, and did so by

comparing readings from before and after exercise. The accelerometer monitored and detected

falls, thus a falling algorithm was used and each event in our process was tested. The microphone

was used to detect and notify of loud noises that could lead to hearing loss, so the accuracy and

alert system were tested with a known sound level. The EDA sensor was used to monitor stress,

and so a baseline was set for one of our teammates, and they underwent a stress test. With the

ECG, we wanted to be able to detect atrial fibrillation, but as we did not have someone that has

atrial fibrillation to test, we instead monitored the results of those found on Physionet.

7.1 MATLAB Interface

Within this section we discuss our MATLAB interface, in regards to how we parse the BLE

packets and created an app that provides a GUI to display data as it is received. Part of this work

is based around the work of Jianan Li and He Wang, two WPI grad students who developed a

similar system that uses two CC2640 MCU LaunchPads to measure and transmit

electromyography signals (Jianan Li, He Wang).

7.1.1 MATLAB App

In order to be able to parse BLE packets, an external Bluetooth device had to be configured to

connect to the sensor board, enable notifications for the particular sensor characteristics, and

send the received packets to a computer where they could be logged for post processing. The

host_test example BLE project written in C available from the TI CC23x6/CC26x2 SDK [86]

does most of this. It is designed to interface with an external microcontroller or PC,

communicate using the Host Controller Interface (HCI) protocol, while also supporting a subset

of BLE HCI commands. Software included in the CC13x6/CC26x2 SDK known as BTool

provides a graphical user interface (GUI) to manage these HCI commands and see details of

106

received BLE packets. By using BTool, we were able to determine the exact contents of the

commands the host BLE device needs to receive to properly interface with the peripheral BLE

device.

This host device needs to be issued a sequence of commands that configure connection

parameters, connect to the peripheral BLE device, and enable notifications for the specific sensor

characteristics. The sequence of commands and their descriptions can be seen below in a bulleted

list:

● HCIExt_ResetSystemCmd

○ Resets host device

● GAP_DeviceInit

○ Initializes GAP application

● Retrieve current PHY parameters

○ Includes info about connection interval/latency

● GapInit_connect

○ Attempt to connect to peripheral BLE device

● Update specific packet type maximum sizes to 251 bytes to maximize data packet size

○ ATT MTU request/response

○ GATT MTU

● Update PHY to LE 2M PHY to maximize speed

● Update GAP connection parameters to maximize throughput

○ Maximum/minimum connection intervals: 100 ms

○ Slave latency: 0 ms

○ Supervision timeout: 2 s

● Set maximum payload length to 251 bytes with maximum transmit time of 2120 μs

● Enable specific notifications

○ Write 0x0001 to specific handle for the CCCD

● GATT_DiscAllPrimaryServices

○ Discover all GATT services

○ Followed by GATT_DiscAllCharDescs

107

All of these commands are written via serial connection to a central CC2652R1 running the

host_test project. The board returns responses to commands directed at the host_test MCU, as

well as received packets sent to the host_test MCU by the peripheral Bluetooth device. This

means that notification packets are written out via serial connection, which allows them to be

logged to a file. Too many notification packets are received per second to write each packet to a

file, so each packet is saved to a buffer. That buffer is written to a file when enough data has

been received. When we’re ready to stop recording data, notifications are disabled for the

appropriate characteristics and the remainder of the buffer is appended to the file.

To bring all of this functionality together, we created a MATLAB app that provides a GUI for

easier configuration, which can be seen in Figure 56. The layout of this interface is based on the

work described earlier by Jianan Li and He Wang (Jianan Li, He Wang).

Figure 56: MATLAB App Interface

108

The user can configure where the notification packets are saved by modifying the “Path” and

“File Name” fields. The specific COM port for the CC2652R1 LaunchPad running the host_test

can be entered into the “COM” field. The BLE address of the peripheral can be entered into the

“Peripheral Address 1” fields. The “Initiate” button resets and configures the host_test

CC2652R1 before attempting to connect to a BLE device at the address provided in the

peripheral address field. If the connection is approved, the initiate button turns green. If it fails, it

turns red. Once a connection has been attempted, the “Establish” button is made available. When

clicked, it makes a new connection attempt to the peripheral before setting the PHY to 2M. It

then sends commands to modify the max ATT exchange MTU response/request packet size, the

max GATT exchange MTU packet size, the GAP link parameters, and the HCI data length

previously described. All of these commands are separated by half a second to allow the

peripheral to process and respond to them. Finally, the host discovers all the primary GATT

services and characteristics. It then waits for 10 seconds, as the discovery takes a while. Once

this process is complete, the establish button is removed and the “Start” button is made available.

The start button is used to enable all the notifications selected by the user with the “Notif” check

boxes. Once notifications have been enabled, the start button is disabled and the “Stop” button is

enabled. If the user wishes to record the received data to a file, the “Record” switch should be

turned to the “On” position. If the user wishes to see the physical notification packets that are

received, the “Print Notifs” switch should be on. When the user wants to stop receiving

notifications, the stop button should be pressed. Pressing the “Disconnect” button causes the

host_test LaunchPad to disconnect from the BLE connection with the peripheral Bluetooth

device. Pressing the “Close Serial” button closes the serial port that the host_test is

communicating on with the computer. “Initiate” will need to be called again to interact with the

host_test device after serial communication has been closed. An example of the application

during operation can be seen in Figure 57. In this figure, we connected to the peripheral,

configured parameters, and enabled notifications for the accelerometer and EDA that were

recorded to a file before being disabled. The hex bytes between text messages are response

packets to commands issued to the host. The large packet after the notifications have been

enabled is the first notification packet received by the host. How these packets are parsed is

explained in the next section.

109

Figure 57: Example MATLAB App Output

7.1.2 MATLAB Data Parsing

In order for the sensor data to be analyzed, the logged BLE packets need to be parsed. To

understand the format of the packets, we once again used BTool to enable notifications and

examine the received notification packets. An example of an accelerometer notification packet

can be seen in Figure 58.

110

Figure 58: Example Accelerometer Notification Packet Received by BTool

The packet contains header information and a data packet. From the message, we can learn the

type of packet (Event), the particular EventCode (HCI_LE_ExtEvent), and how long the rest of

the packet is (168 bytes). We also can learn what event generated this packet

(ATT_HandleValueNotification), the status of that event (SUCCESS), and what connection

handle this packet came from (useful if multiple Bluetooth devices are connected to the central

device). Because this is a notification packet, we also learn how long the PDU is and what

specific characteristic handle generated the notification. Finally, there is the actual characteristic

value that is being sent in the notification. By understanding the format of the notification packet

and the format of the value within the packet, we can fully parse/process each BLE packet.

All the notification packets that were saved to a file are read using MATLAB. Because some

parts of the packet are only a byte long, the data are read byte by byte. BLE packets are

111

transmitted in Big-Endian format, so we ro-order parts that are more than a single byte long. We

assume that the first byte in the file is the Type byte, which is used as the head, or starting spot.

From the notification packet format, the second byte is the EventCode, which should always be

0xFF. The third byte is the length of the rest of the packet, which is useful for finding the start of

the next packet in the file. The fifth and fourth byte are combined to create the Event, which

should always be 0x051B for a notification. If those bytes in the packet are not a notification,

then this packet is ignored and we move to the next one. The Status, ConnHandle, and PduLen

bytes can be used for verifying the packet type, but are mostly ignored. The 11th and 10th bytes

represent the Handle and are used to associate the Value with a specific characteristic. The rest

of the packet, which contains the Value, is appended to a matrix which contains only samples for

that specific Handle. With each sensor’s packet data saved, each of the matrices are parsed based

on the specific sensor sample format.

As previously discussed, an accelerometer sample contains four bytes for the current clock time,

and 12 bytes total for the X, Y, and Z acceleration encoded in single-precision floats. We take

the first four bytes from the accelerometer sample matrix and reorder them from Big Endian to

Little Endian. This value is then appended to a matrix of sample times. The same process is used

on the second, third, and fourth set of four bytes, and which are cast as single-precision floats.

This casting is necessary as MATLAB tries to interpret them as double-precision floats, which

our hardware does not support. Each of these floats are saved to their own respective matrices.

Because the sensor data matrix repeats this clock-acceleration pattern every 16 bytes, the entire

matrix is parsed in just a few lines of MATLAB code. This parsing creates a matrix for the

sample times and axis accelerations. These matrices can be used to create graphs of the sampled

data, like those seen in Figures 59 – 62. The other sensor samples follow a similar process of

parsing the repeating data, depending on how each sample is formatted.

112

Figure 59: ECG ADC Voltage over Time

Figure 60: Microphone ADC Voltage over Time

113

Figure 61: EDA Voltage over Time

Figure 62: Accelerometer Acceleration over Time

114

7.2 Pulse Oximeter

The goal of using the pulse oximeter in our system is to monitor the blood oxygen saturation and

pulse rate of the user. As mentioned before, the ratio between the measured red and IR LED

signals can be used to estimate blood oxygen saturation and heart rate. Due to sensor

communication limitations, we are not able to sample the raw pulse oximeter signal from the

MAX32664 at 100 Hz. This means we are not able to interpret any of the raw pulse oximeter

readings to estimate the blood oxygen saturation and pulse rate. Fortunately the MAX32664 has

built in algorithms for detecting these desired readings.

Without access to a reference pulse oximeter or a pulse oximeter simulator that would usually be

used to test the accuracy of a pulse oximeter, there were limited methods to verify the accuracy

of the MAXIM algorithms. Communication with MAXIM about these algorithms revealed that

the results available from the MAX32664 should be accurate for our stationary use case. The

lack of accelerometer information available for the MAX32664 does not greatly affect its

accuracy when the sensor is stationary.

To test the accuracy of the heart rate algorithm output from the MAX32664, we acquired a

baseline sitting heart rate and observed how the output changed after a user underwent a short

period of exercise designed to raise their heart rate. We expect to see an initial increase in

calculated heart rate, followed by a gradual decrease, eventually returning to the resting rate.

Graphs of the measured data can be seen in Figure 63-65. In these figures, the period of exercise

occurred between 20 and 30 elapsed seconds.

115

Figure 63: Measured Heart Rate Before and After Exercise

Figure 64: Measured Heart Rate Confidence Before and After Exercise

116

Figure 65: Blood Oxygen Saturation Before and After Exercise

From these graphs, we saw the expected spike in heart rate after the user has exercised, followed

by a gradual decrease. The mixed data result before the decline in the heart rate can be explained

by excess motion of the finger on the sensor. The heart rate confidence graph follows the heart

rate graph as expected. Overall, it appears that the sensor outputs heart rate values when it is

relatively confident in those values.

7.3 Accelerometer

The goal of using the accelerometer in our device was to help detect whether or not a person has

fallen. In order to do so, we first need to look at the way a person falls, in order to categorize it

into steps that we can aim to assess with our ADXL345. More specifically, we need to take into

consideration how an older person falls. The overall movements of elderly people are

comparatively slower to someone who is much younger, therefore we will not see very many

pronounced spikes in body acceleration as they live their day to day lives. This allowed us to

better assess spikes in movement as an elderly person falling.

117

Using research done by Ning Jia on fall detection using 3-axis accelerometers [87], we were able

to implement a fall detection alert system. Typically, there are four ways to categorize a fall: the

start of the fall, the impact, the aftermath, and the difference in orientation from the beginning of

the fall to after (a graph of this can be seen in Figure 66). Within this figure, initially the x-axis

remains at about 0 g throughout the process. The y-axis initially is at -1 g, spikes during the fall

and then ends up at 0 g. The z-axis starts close to 0 g, increases during the fall, and then also

ends up at 0 g. These are all things that we can analyze using the ADXL345’s free-fall,

activity/inactivity, and axes reading registers.

Figure 66: Acceleration change curves during falling [87]

When a person initially falls, they first experience a small portion of free-fall, with the duration

of it depending on the height of the fall. Due to the duration and height of the fall being

substantially low, the acceleration during is less than 1 g (the normal acceleration of free-fall).

Therefore, we could begin our fall detection by using the ADXL345’s free-fall interrupt, and set

it to be triggered at about 0.75 g vector-sum [87]. The threshold for the free-fall event also

needed to be considered, and initialized. As mentioned, we are evaluating normal house-hold

falls which usually happen very quickly, resulting in the free-fall duration threshold being set to

30ms.

After experiencing this free-fall, the person impacts the ground or other objects. This is seen as

the big spike in the vector-sum seen at number 2 in Figure 66. This shock is detected by the

118

activity interrupt of the ADXL345. Therefore, the next step for determining a fall would be the

triggering of an activity interrupt right after the free-fall interrupt, set to have a threshold of 0.5 g

vector-sum [87]. This threshold was chosen as it is substantially greater than the inactivity

interrupt set later, allowing us to differentiate between the two.

Usually elderly people, after falling severely and hitting the ground, cannot rise immediately and

remain relatively motionless for a short period of time (or longer as a sign of possible

unconsciousness). This is seen as the flat line seen at number 3 in Figure 66. Therefore, the third

step in determining a fall is the triggering of the inactivity interrupt after the activity interrupt,

and we can set this threshold to be at a 0.1875 g vector sum [87]. We did not want this value to

be set at 0 g because there may be very subtle tiny movements that the person might make (or

noise in the sensor), but we still want the inactivity interrupt to be activated. Similar to the free-

fall threshold, we also need to set a duration threshold for the inactivity event. We set this value

to be greater than 2 seconds, which allows us to evaluate that the person has fallen and possibly

needs assistance or has fallen hard enough to receive notification.

Lastly, after a fall the individual’s body is in a different orientation than before, so the static

acceleration (orientation) in three axes is different from the initial accelerations read (seen as

number 4 in Figure 66). The combination of these parameters form the entire fall-detection

algorithm, which is used to notify that a fall has occurred. Refer to Table 7 in the Sensor

Communications section for the initialization value and description of these registers.

For our purposes, assessing the values of the free-fall, activity, and inactivity interrupts can be

implemented by checking the INT_SOURCE register (0x30) within the ADXL345. A concise

representation of the register can be seen in Figure 67.

Figure 67: ADXL345 INT_SOURCE (0x30) Register [45]

119

Within this register, a bit set to 1 represents that their respective functions have triggered an

event, whereas a value of 0 means that a corresponding event has not occurred. This means that

we can check for a value of 1 throughout the various steps outlined earlier in determining if a fall

has occurred. In our code, this corresponds to four nested if-statements where the value of the

0x30 register is read and then bitwise masked with each corresponding bit to assess if each step

in the process has occurred.

The I2C transaction that occurs when reading from this register is the same process as reading

the values from the axes seen earlier in Figure 33 in Section 5.1.2. The corresponding output can

be seen below in Figure 68. In this figure, the first initial axes readings correspond to the

orientation of the device before the fall. The next axes readings correspond to the accelerations

being felt by each axis during the fall, and denotes each event that has occurred as they are read

by the 0x30 register. We then compare current orientation with the orientation before the fall.

Because this orientation is different than before and the free-fall, activity, and inactivity events

have been triggered, we determine that a fall has occurred.

Figure 68: Test of Fall Algorithm

120

7.4 EDA Sensor

The goal of using the EDA sensor was to allow insight into the mental wellbeing of the user. As

previously mentioned in the sensor description section, the phasic activation signals have to be

measured and assessed.

To begin we need a threshold to assess the user’s normal skin conductance, i.e. their baseline.

This is done by taking about 500 samples of the ADC readings and finding the average of those

readings. This does require the user to be in a calm state with them breathing normally, i.e. the

same protocol one would use to take blood pressure. This process can be seen in Figure 69 and

70.

Figure 69: Code implementation of baseline for EDA

Figure 70: Baseline output for EDA

121

Within figure 70, because the reading is given as an ADC voltage, this value is turned back into

resistance to understand what is happening, and again use𝑉*+, 	= 	
&-.	∗	1%
(1#	3	1%)

. In this case, the

output voltage is 2.8167 V. Solving the equation for R1, we get the equation:

𝑅1	 = 	 &-.	∗	1%
&#$%

− 𝑅2. Using this equation, and knowing the Vin is 3.3 V and R4 is 100 kΩ, the

baseline resistance is 17.16 kΩ. After the baseline is set, new readings of the user are taken and

compared against the baseline voltage. If the sensor value read is above the baseline, it can be

inferred that the user is having some stimulus to their sympathetic nervous system, and can alert

the user accordingly. To test this module, one of our team members underwent a controlled stress

system by watching a horror video and taking their readings. Within the interface, we were able

to see when they began to become more stressed, and their sympathetic nervous system was

triggered when compared to their baseline seen earlier in Figure 70. The spike in EDA reading

can be seen in Figures 71 and 72 below. In Figure 71, the EDA readings are presented in the

square brackets and the numbers/letters seen before them are the raw hex values that were

displayed to ensure we were getting data transmissions. When stress was detected the “Stress

detected!” statement was displayed, seen in Figure 71. In Figure 72, the first graph is

representative of the ADC voltage (V) given by our EDA sensor and the second is representative

of our hand resistance (kΩ). Due to the relationship with the voltage divider, as the user becomes

stressed, the ADC voltage will increase and the hand resistance will decrease when compared to

the baseline (2.8167 V or 17.16 kΩ).

122

Figure 71: Stress reading of EDA sensor

Figure 72: Hand Resistance and ADC Voltage Output of EDA Reading

7.5 Microphone

The purpose of the microphone is to determine whether or not noise coming into the microphone

is harmful to the user of the device. According to the CDC, constantly listening to 105 dB SPL of

sound for 5 minutes can lead to hearing loss [11]. To get a 105 dB SPL sound reference, our

group used a dB meter application on a smartphone that displayed dB as volume was input to the

phone’s microphone. Both the phone and the sensor microphone were put side by side to find a

reference voltage that corresponds to the 105 dB SPL sound. This voltage was found to be

123

3200000 μV or 3.2 V. In the next step, we looped through the data obtained from the microphone

sensor and checked when the data were above the threshold voltage. The data are then saved in

an array, as well as a flag that says whether or not loud noise was detected within the data. In

Figure 73, the data captured has no loud noise and Figure 74 shows the output of the data in

Matlab.

Figure 73: Graph of No Loud Noise

According to the data in Figure 73, there is no noise that can potentially harm the user of the

device. Unlike Figure 73, Figure 74 shows data that can harm the user of the device.

Figure 74: Graph of Loud Noise

124

The code in Figure 75 shows that we were able to correctly identify loud noise in the

surrounding area of the device. Although this is post data processing, the user of the device can

look forward to not being in range of the loud noises that the program has determined worthy of

hearing loss.

Figure 75: MATLAB Mic Data Analysis Code

7.6 ECG

The reason why we have included an ECG sensor in our final implementation is to estimate a

raw ECG from users of the device that is sent to an external device for post analysis to

potentially detect for underlying heart conditions. As a disclaimer, the ECG that we are using is

not meant for health purposes, but to get a general idea of a user’s heart rate over time. The data

collected are sent to MATLAB to be analyzed by algorithms that transform the data in multiple

125

ways. The algorithms used are fully developed by Pan and Tompkins. They are experts at

analyzing ECG waveforms and their algorithm has been developed and modified over the past

few years, and was last edited by Hooman Sedgehamiz, February 2018 [88]. The program takes

in an ECG signal and a sampling frequency. First, the program checks whether the ECG data are

in a valid format so the program can interpret it. This format is a X*1 double array with ECG

values in it, where X is the amount of samples within the ECG data. These data are then

sequentially sent through a low pass filter (fc = 12 Hz), a high pass filter (fc = 5 Hz), a derivative

filter, squared, and pink circles that indicate the R-wave peaks are in the first figure the program

produced. Generally, the data from the low pass filter is more spread out than the data from the

high pass filter. The derivative filter checks to see if the sampling frequency is 200 Hz, and if it

is, the program convolves a derivative kernel mask of [1 2 0 -2 -1] with the data to find the

derivative of the ECG signal [89]. If the data are not sampled at 200 Hz, the program decreases

the sampling frequency and then convolutes the data with the same derivative kernel mask. The

squared data graph is just the data squared, this step is important for other data analysis in the

second figure the program produces. Primarily, it is used to highlight the R-wave peaks of the

ECG data making all the R-wave peaks positive and separating the peaks from the rest of the

data. Finally, the program highlights each R wave that it was able to detect. To do this, the

program knows that a minimum of 200 ms is needed between each R-wave because R-waves

cannot physically occur within 200 ms of each other [89]. It then calculates the distance between

R-waves and filters any noise that is detected within the data. The second figure produces three

graphs, where the last one is the most important because it shows the detected R-waves of the

ECG signal. Here is where we can see the regularity of the user’s RR intervals to detect if there

are underlying heart conditions. Figure 76 is an example of the first figure produced by the

program when ECG data by one of our group members was input into the program.

126

Figure 76: Group member ECG analysis (Pt. 1)

As shown, the program is able to detect the peaks of the R waves in the bottom right graph in

Figure 76. What is more interesting is the data shown in Figure 77, where the bottom graph

shows the R-waves of the user.

127

Figure 77: Group member ECG analysis (Pt. 2)

In the last graph, it shows the RR wave separation (distance between R waves). These data show

that the R waves are consistently separated with slight modulations due to breathing. This means

that there are no irregularities in the user’s heart rate. Unfortunately, due to certain

circumstances, our group was not able to collect data from a person that has atrial fibrillation.

Luckily, there is ECG data online from physionet that is taken from people that have atrial

fibrillation. The data is from the MIT-BIH Atrial Fibrillation Database, where the samples were

collected over a period of 10 hours across multiple patients with atrial fibrillation [90]. The

reason we are comparing data from Physionet to our data is to show that data collected from our

ECG with signs of atrial fibrillation can be detected using the program from Pan and Tomkins. In

Figure 78, the R-wave graph shows irregularities in the person’s heart rate.

128

Figure 78: Data from Physionet that has Atrial Fibrillation

To use the program to detect atrial fibrillation, one is to analyze the QRS signal of the ECG data.

According to Nuzhat, “The main characteristic of AF disorder is the irregular rhythm of the

heartbeat or more specifically when a varying period is observed in ECG signal between R–R

peaks.” [91]. Looking specifically at the RR waves in the 12000 samples of data, there is a lack

of consistency between RR waves across the whole sample, suggesting that the person has

underlying heart problems, which in this case is atrial fibrillation.

There are other heart problems that can be detected using the raw signal of the ECG waveform,

such as bradycardia and tachycardia. In bradycardia, a person has on average a lower than 60

bpm heart rate, and in tachycardia a person has a higher than 100 bpm heart rate. The equation

below is used to calculate bpm.

	𝐵𝑃𝑀	 = 60/(𝑆𝑎𝑚𝑝𝑙𝑒𝑠	𝑏𝑒𝑡𝑤𝑒𝑒𝑛	𝑅	𝑤𝑎𝑣𝑒𝑠/(𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔	𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦))	 (4)

Substituting in the RR intervals calculated within the Pan and Tomkins program, there are two

different heart rates produced. First, is the heart rate on the last RR interval, and the second heart

rate is the mean of the last 8 RR intervals. We included both to check for outlier RR intervals

because with the mean of the last 8 RR intervals, it is less likely that there are 8 outliers in a row.

Using equation 4, the heart rate of the user’s last RR interval is 66.67, and the mean RR interval

is 67.84. This rate is normal (shows no signs of bradycardia or tachycardia).

Finally, a time-series graph of heart rate along the recording, using one RR interval per estimate,

is shown in Figure 79.

129

Figure 79: Group Member’s Heart Rate Graph (BPM)

130

8. Mechanical Design of Prototype

In this section, we discuss the physical integration of our health monitoring device. This section

includes the creation of the PCB and 3D printed housing, as well as the design choices and

corresponding changes that each piece underwent. The PCB board was designed using KiCad

and the housing was designed in SolidWorks.

8.1 PCB Board Design

In order to create a more compact system design, we created a basic PCB to bring all the sensor

modules together. The schematic is very similar to the one in Figure 22, with the addition of

some LEDs, I2C pull-up resistors, and breakout/connector pins. A 3.3 V regulator was added for

an external 3.3 V power source for analog devices that could be affected by a fluctuating

LaunchPad 3.3 V rail. Jumper pads were used to allow for selectability between power sources

for each sensor. The schematic for PCB Revision 1.0 can be seen in Figure 84. The PCB was

designed to work as a TI BoosterPack, where it could be placed directly on top of the main pin

headers for the CC2652R1 LaunchPad. The dimensions of the PCB were the same as the

LaunchPad, with a shortened lower end to minimize interference with the trace antenna on the

Launchpad. Sensor locations on the PCB were determined by their size and necessary

connections. Photographs of the physical version of the PCB Revision 1.0, with and without

sensors/components, is shown in Figures 80-86.

131

Figure 80: PCB Schematic Rev 1.0

132

Figure 81: Figure 82:

Top view of unpopulated PCB V1.0 Bottom view of unpopulated PCB V1.0

Figure 83: Figure 84:

Top view of populated PCB V1.0 Bottom view of populated PCB V1.0

133

Figure 85: Figure 86:

Top view of PCB populated with sensors Angled view of PCB populated with sensor

In Figure 85 and 86, the red SparkFun ECG development board is in the top left, the green EDA

sensor development board is in the top right, the red SparkFun microphone development board is

in the center, and the red SparkFun accelerometer board is just below the microphone. The four

wire leads connect to the SparkFun pulse oximeter.

Revision 1.0 of the PCB had a few design errors that were all fixable via jumper wires and trace

cutting. The footprint for the EDA sensor had an incorrect number of pins, causing the break-out

board to extend beyond the PCB. The footprint was still usable with the extra pins, as one side of

the footprint only had two connections, which could be fixed by a simple jumper wire. The pins

in the microphone footprint were also incorrect in Revision 1.0 and would have caused issues if

directly used. These errors were fixed in the design for Revision 1.1, whose renders can be seen

in Figure 87 and 88.

134

Figure 87: Figure 88:

PCB Revision 1.1 Top View PCB Revision 1.1 Bottom View

135

8.2 3D Printed Housing

The housing device’s first initial concept was to have three tiers with different compartments for

each of the sensors in our device to sit without moving. The tiers would have holes in between

them to allow for wiring back to the MCU as well as allow for the electrodes to plug into both

the ECG and EDA sensors.

With the creation of the PCB board, this allowed us to minimize this concept and do away with

the various compartments that were in our design. This left us with our three-tiered circuit board

design, consisting of a bottom, middle and top piece. The MCU, PCB, and the sensors (with

exception of the pulse oximeter) sit in the bottom layer, with corresponding holes for the ECG

and EDA’s electrode wires. The middle layer has a hole above where the microphone sits in the

bottom layer for better noise quality for the sensor. The pulse oximeter also sits within this layer

and has hidden holes to allow for cleaner wiring to the sensor. Lastly the top layer has a square

notch above the pulse oximeter to allow the user to put their finger directly on the sensor’s

infrared light, along with the extension of the hole for the microphone that was created in the

middle layer. These tiers all plug into each other for easy installation and removal, via the pins

that can be seen in the corners of each layer, but could be replaced by screws in later iterations.

The design drawings were created using the software SolidWorks, and were printed in two

iterations, the latter having major and minor changes that needed to be refined from the first

print. The final CAD drawings are in Figures 89-91, and photographs of the combined PCB,

sensors, and 3D printed housing are in Figures 92-94.

136

Figure 89: SolidWorks Schematic for bottom layer of Housing

Figure 90: SolidWorks Schematic for middle layer of Housing

137

.

Figure 91: SolidWorks Schematic for top layer of Housing

138

Figure 92: Figure 93:

Angled View of Assembled System Top View of System without Lid

Figure 94: Angled View of System without Lid

139

9. Conclusion

Our project team researched, designed, and developed a compact health monitoring device that

was able to meet our design requirements. The constraints we considered for our system included

size, the evaluation of multiple health aspects, and the ability to discreetly obtain and wirelessly

transmit data. Our final design was required to have multiple separate sensors that we could

combine into one compact health module.

In order to produce a successful health monitor, we had to assess and address these design

requirements. Taking this into consideration, we wanted to target heart rate irregularities such as

atrial fibrillation, tachycardia and bradycardia, blood oxygen illnesses such as hypoxemia, stress

induced illness, and falling. This led us to choosing a pulse oximeter, accelerometer, ECG, EDA,

and microphone, as the main foci of our project.

Our system consists of the AD8232 (ECG), MAX30101 and MAX32644 (pulse oximeter),

MIKROE-2860 (EDA), MEMS Microphone, ADXL345 (accelerometer), and TI CC2652R1

(MCU). Each piece in our system was chosen through a value analysis, and was compared with

other sensors of its type in cost, ease of implementation, power consumption, accuracy, size, and

overall use, along with additional specifications that could be useful in our application. We then

separated the sensors into their respective communication protocols, Inter-Integrated Circuit

(I2C), Serial Peripheral Interface (SPI), or analog, and began implementing each sensor

individually in C code. This process allowed us to explore implementations with different

interfaces, without having to deal with synchronizing everything together yet. This also allowed

us to verify the functionality of each sensor individually, which made data analysis and testing

easier by allowing us to limit potential causes of error. For example, if we were integrating two

sensors together, but each worked on their own before-hand, the problem must lie in how the two

were integrated. Lastly, it gave each team member the opportunity to get an in-depth

understanding of at least one sensor and its interface with the microcontroller.

With each sensor working individually, we then integrated them together into one system in an

RTOS and BLE environment. By creating a task for each sensor and assigning its priority based

on the sampling frequency, we were able to design a system that samples each sensor at the

140

desired frequency. We used semaphores and clock object instances to synchronize sample times.

Once the RTOS environment was operational, we added the sensor functionality into a BLE

environment. We created a profile with custom characteristics that contain sensor samples, which

could be read by an external BLE device. We used MATLAB to configure this external device,

enabling notifications for the sensor samples, and logging the received packets to a file. We then

parsed and displayed these data readings in a MATLAB environment.

The PCB and 3D printing for the housing of our device marked the last aspects of our project.

The PCB brought all the sensor modules together into a single unit to minimize the footprint of

the sensor connections. The 3D model was created in SolidWorks and was designed as a three-

tier system consisting of the bottom, middle, and top piece. The piece also was made with

consideration to the needs of specific sensors like the ECG, EDA, pulse oximeter, and

microphone that had special wiring needs, or needed holes to give the user better access to the

electrodes or infrared lights.

Due to the time constraints of our project, there are some parts that could be refined if this

project were to be continued further. In future work, it may be beneficial to compare our device

and sensor data with reference to other existing health devices on the market. Further data

analysis and testing for our sensors could be implemented. For example, testing someone with

atrial fibrillation should be done to see if the ECG sensor can detect the irregularities in a user's

heart rate. Real time analysis of microphone and accelerometer data could be implemented.

Break-out boards could be replaced by their actual components, and lastly, we could make

further iterations and optimizations to both the PCB board and housing. This would allow the

PCB to consist of the various ICs and components we used from separate boards, and therefore

we would end up with a much smaller prototype device. As with most projects and devices, with

more time or resources our design could be refined, but in the end we were able to create and

achieve our goal of creating a smart health monitoring device.

141

References

1. Population Reference Bureau, “Fact Sheet: Aging in the United States”, prb.org, July 15,

2019, [Online]. Available:
https://www.prb.org/aging-unitedstates-fact-sheet/

2. Mayo Clinic Staff, “Atrial Fibriliation – Symptoms & Causes”, mayoclinic.org, June 20,
2019, Available:
https://www.mayoclinic.org/diseases-conditions/atrial-fibrillation/symptoms-causes/syc-
20350624

3. National Council on Aging, “Staying heart healthy after 65: What you need to know
about atrial fibrillation”, ncoa.org, n.d., [Online]. Available:
https://www.ncoa.org/article/staying-heart-healthy-after-65-what-you-need-to-know-
about-atrial-fibrillation

4. Mayo Clinic Staff, “Atrial Fibriliation – Diagnosis & Treatment”, mayoclinic.org, June
20, 2019, Available:
https://www.mayoclinic.org/diseases-conditions/atrial-fibrillation/diagnosis-
treatment/drc-20350630

5. Goldberger, Z. Goldberger, A. Shvilkin, “Chapter 19 - Bradycardias and Tachycardias:
Review and Differential Diagnosis”, Goldbergers Clinical Electrocardiography, 9th ed.,
pp. 194-210, 2018 [Accessed: Mar. 26, 2021]

6. S. Sidhu, J. Marine, “Evaluating and managing bradycardia”, Trends in Cardiovascular
Medicine, vol. 30, no. 5, pp. 265-272, Jul. 2020. [Accessed: Mar. 26, 2021]

7. Web M.D., “Tachycardia: Causes, Types, and Symptoms”, webmd.com, n.d., [Online].

Available: https://www.webmd.com/heart-disease/atrial-fibrillation/what-are-the-types-
of-tachycardia [Accessed: Oct. 8, 2020]

8. Cleveland Clinic, “Hypoxemia”, my.clevelandclinic.org, n.d., [Online]. Available:
https://my.clevelandclinic.org/health/diseases/17727-hypoxemia [Accessed: Oct., 8,
2020]

142

9. Web M.D, “10 health problems related to stress that you can fix”, webmd.com, n.d.,
[Online]. Available:
https://www.webmd.com/balance/stress-management/features/10-fixable-stress-related-
health-problems#1

10. National Institute on Deafness and Other Communication Disorders, “Hearing loss and
Older Adults”, nidcd.nih.gov/, March 2016 [Updated July 17, 2018], [Online]. Available:
https://www.nidcd.nih.gov/health/hearing-loss-older-adults

11. Centers for Disease Control and Prevention, “What Noises Cause Hearing Loss”,
cdc.gov, October 7, 2019, [Online]. Available:
https://www.cdc.gov/nceh/hearing_loss/what_noises_cause_hearing_loss.html#:~:text=S
ound%20is%20measured%20in%20decibels,immediate%20harm%20to%20your%20ears

12. Centers for Disease Control and Prevention, “Important facts about falls”, cdc.gov,
February 10, 2017, [Online]. Available:
https://www.cdc.gov/homeandrecreationalsafety/falls/adultfalls.html

13. Shimmer Sensing, “Shimmer3 Wireless Sensor Platform”, Simmer3 IMU datasheet, n.d.,
[Online]. Available:
http://www.shimmersensing.com/images/uploads/docs/Shimmer3_Spec_Sheet_V1.8.pdf

14. Fitbit Inc., “Fitbit Sense Specifications and Features”, fitbit.com, n.d., [Online],
Available: https://www.fitbit.com/global/us/products/smartwatches/sense

15. AliveCor., “Kardia Mobile”, AliveCor Product Page, n.d., [Online]. Available:
https://store.alivecor.com/products/kardiamobile

16. Apple Inc., “Apple Watch Series 6”, apple.com, n.d., [Online]. Available:
https://www.apple.com/apple-watch-series-6/ [Accessed: Sept. 16, 2020]

17. Apple Inc., “Which Apple Watch is right for you?”, apple.com, n.d., [Online]. Available:
https://www.apple.com/watch/compare/ [Accessed: Sept. 16, 2020]

143

18. Apple Inc., “Measuring your blood oxygen levels with the Blood Oxygen app on Apple
Watch Series 6”, apple.com, Sept. 16, 2020 [Online]. Available:
https://support.apple.com/en-us/HT211027 [Accessed: Sept. 16, 2020]

19. Apple Inc., “Taking an ECG app on Apple Watch Series 4 or later”, apple.com, July 15,
2020, [Online]. Available:
https://support.apple.com/en-us/HT208955 [Accessed: Sept. 16, 2020]

20. Samsung Electronics Co., “Samsung Galaxy Watch 3 Specifications”, samsung.com, n.d.,
[Online]. Available:
https://www.samsung.com/global/galaxy/galaxy-watch3/specs/

21. Letsfit, “Letsfit Smart Watch with Oxygen Saturation Monitor and Heart Rate Monitor,
Step Counter, Sleep & Swim Tracking, 5ATM Waterproof GPS Smartwatch Compatible
with iPhone and Android”, amazon.com, n.d., [Online]. Available:
https://www.amazon.com/Letsfit-Saturation-Waterproof-Smartwatch-
Compatible/dp/B0831K28CD [Accessed: Oct. 7, 2020]

22. Letsfit, “Letsfit ID215G”, letsfit.com, n.d., [Online]. Available:
https://www.letsfit.com/product/US/Letsfit_ID215G [Accessed: Sept. 16, 2020]

23. Letsfit, “Smart Watch User Manual ID215G”, letsfit.com, n.d., [Online]. Available:
https://drive.google.com/file/d/1NorGkMjc7Ki1FXJXjJcCzprOHD19hOFE/view
[Accessed: Sept. 16, 2020]

24. Amal Jubran, “Pulse oximetry”, Critical Care, vol. 3, no. R11, May 18, 1999, [Online].
Available:
https://ccforum.biomedcentral.com/articles/10.1186/cc341 [Accessed: Sept. 20, 2020]

25. Amal Jubran, “Pulse oximetry”, Critical Care, vol. 19, no. 272, Jul. 16, 2015, [Online].
Available:
https://ccforum.biomedcentral.com/articles/10.1186/s13054-015-0984-8 [Accessed: Sept.
20, 2020]

26. Dimension Engineering, “A beginner’s guide to accelerometers”, n.d., [Online].
Available:
https://www.dimensionengineering.com/info/accelerometers

144

27. Hanly, Steve, “Piezoelectric Accelerometers: Mysteries On How They Work...
Revealed!”, Endaq Blog, n.d., [Online]. Available:
https://blog.endaq.com/piezoelectric-accelerometers-how-they-work-and-where-to-buy

28. Sensorland, “The Capacitive Accelerometer”, n.d., [Online], Available:
https://www.sensorland.com/HowPage011.html#:~:text=Capacitive%20accelerometers%
20(vibration%20sensors)%20sense,acting%20in%20a%20differential%20mode

29. Sparkfun, “Accelerometer Basics”, learn.sparkfun.com., n.d., [Online], Available:
https://learn.sparkfun.com/tutorials/accelerometer-basics/all

30. Farnsworth, Bryn, “What is GSR and how does it work”, iMotions, Jul 17, 2018,
[Online]. Available:
https://imotions.com/blog/gsr/m

31. Empatica Support, “What should I know to use EDA data in my experiment?”, Empatica,

Jan 24, 2020, [Online], Available:
https://support.empatica.com/hc/en-us/articles/203621955-What-should-I-know-to-use-
EDA-data-in-my-experiment-

32. Rose, Bruce, “Comparing MEMS and Electret Condenser (ECM) Microphones, CUI
Devices, n.d., [Online], Available:
https://www.cuidevices.com/blog/comparing-mems-and-electret-condenser-microphones

33. Challenge Electronics, “Omni-Directional Foil Electret Condenser Microphone”,
Challenge Electronics Data Sheet, n.d., [Online], Available:
http://cdn.sparkfun.com/datasheets/Sensors/Sound/CEM-C9745JAD462P2.54R.pdf

34. InvenSense, “OmniDirectional Microphone with Bottom Port and Analog Output”,
InvenSense Data Sheet, n.d., [Online], Available:
https://cdn.sparkfun.com/assets/2/3/5/d/f/DS-9868.pdf

35. Farnsworth, Bryn, “What is ECG and how does it work?”, iMotions, Jan 15, 2019,
[Online], Available:
https://imotions.com/blog/what-is-ecg/

145

36. Johns Hopkins Medicine, “Electrocardiogram”, hopkinsmedicine.org, n.d., [Online],
Available:
https://www.hopkinsmedicine.org/health/treatment-tests-and-
therapies/electrocardiogram#:~:text=The%20electrodes%20are%20connected%20to,flow
ing%20the%20way%20it%20should

37. Maxim Integrated, “High-Sensitivity Pulse Oximeter and Heart-Rate Sensor for Wearable
Health”, MAX30101 datasheet, datasheets.maximintegrated.com, Mar. 16, [Revision 3,
June, 2020] [Online]. Available:
https://datasheets.maximintegrated.com/en/ds/MAX30101.pdf [Accessed: Sept. 6, 2020]

38. Maxim Integrated, “High-Sensitivity Pulse Oximeter and Heart-Rate Sensor for Wearable
Health”, MAX30102 datasheet, datasheets.maximintegrated.com, Oct. 2018, [Online],
Available: https://datasheets.maximintegrated.com/en/ds/MAX30102.pdf

39. OSRAM Opto Semiconductors, “BioMon Sensor Datasheet”, SFH7050 datasheet,
osram.com, n.d., [Online], Available:
https://www.osram.com/ecat/BIOFY%C2%AE%20SFH%207050/com/en/class_pim_we
b_catalog_103489/prd_pim_device_2220012/#c5a3118e7198c84bef4adb003cf9e842

40. Maxim Integrated, “Best-in-Class Optical Pulse Oximeter and Heart Rate Sensor for
Wearable Health”, MAX86140/MAX86141 datasheet, datasheets.maximintegrated.com,
Jan 2021, [Online], Available:
https://datasheets.maximintegrated.com/en/ds/MAX86140-MAX86141.pdf

41. SparkFun, “SparkFun Pulse Oximeter and Heart Rate Sensor - MAX30101 &
MAX32664 (Qwiic)”, sparkfun.com, n.d., [Online]. Available:
https://www.sparkfun.com/products/15219 [Accessed: Sept. 3, 2020]

42. Maxim Integrated, “Ultra-Low Power Biometric Sensor Hub”, MAX32664 datasheet,
datasheets.maximintegrated.com, Apr., 2018, [Revision 3 revised Mar., 2020] [Online].
Available:
https://datasheets.maximintegrated.com/en/ds/MAX32664.pdf [Accessed: Sept. 20, 2020]

43. Maxim Integrated, “MAX32664 User Guide”, pdfserv.maximintegrated.com, Jan., 2019,
[Revision 3 revised Aug., 2020] [Online]. Available:
https://pdfserv.maximintegrated.com/en/an/ug6806.pdf [Accessed: Oct. 14, 2020]

146

44. SparkFun, “SparkFun Pulse Oximeter and Heart Rate Monitor Hookup Guide”,
learn.sparkfun.com, n.d., [Online]. Available:
https://learn.sparkfun.com/tutorials/sparkfun-pulse-oximeter-and-heart-rate-monitor-
hookup-guide [Accessed: Sept. 4, 2020]

45. Analog Devices, “3-Axis, ±2g/±4g/±8g/±16g Digital Accelerometer”, ADXL345

Datasheet, Jun., 2009 [Revised Jun., 2015] [Online]. Available:
https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL345.pdf
[Accessed: Dec. 6, 2020]

46. InvenSense, “MPU-6000 and MPU-6050 Product Specification”, invensense.tdk.com,
n.d., [Online], Available:
https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf

47. NXP Semiconductors, “MMA8452Q, 3-axis, 12-bit/8-bit digital accelerometer”,
MMA8452Q datasheet, nxp.com, n.d., [Online], Available:
https://www.nxp.com/docs/en/data-sheet/MMA8452Q.pdf

48. Analog Devices, “Micropower, 3-Axis, ±2 g/±4 g/±8 g Digital Output MEMS
Accelerometer”, ADXL362 datasheet, analog.com, n.d., [Online], Available:
https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL362.pdf

49. Analog Devices, “Small, Low Power, 3-Axis ±200 g Accelerometer”, ADXL377
datasheet, analog.com, n.d., [Online], Available:
https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL377.pdf

50. Analog Devices, “Small, Low Power, 3-Axis ±3 g Accelerometer”, ADXL335 datasheet,
analog.com, n.d., [Online], Available:
https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL335.pdf

51. MikroElektronika, “GSR-Click”, mikroe.com, n.d., [Online]. Available:
https://www.mikroe.com/gsr-click

52. MikroElektronika, “GSR-Click Schematic”, download.mikroe.com, n.d., [Online],
Available:
https://download.mikroe.com/documents/add-on-boards/click/gsr/gsr-click-schematic-
v100.pdf

147

53. Microchip, “2.5V to 6.0V Micropower CMOS Op Amp”, MCP606/7/8/9 datasheet, n.d.,
[Online], Available:
https://download.mikroe.com/documents/datasheets/mcp607.pdf

54. Microchip, “2.7V 12-Bit A/D Converter with SPI Serial Interface”, MCP3201 datasheet,
n.d., [Online], Available:
https://download.mikroe.com/documents/datasheets/mcp3201.pdf

55. My New Microphone, “What kinds of microphones are used in cellphones”,
mynewmicrophone.com, n.d., [Online]. Available:
https://mynewmicrophone.com/what-kind-of-microphones-are-used-in-cell-
phones/#:~:text=What%20kind%20of%20microphones%20are%20used%20in%20cellph
ones%3F,circuitry%20of%20the%20typical%20cellphone

56. CUI devices, “Product Spotlight: Electret Condenser Microphones”, cuidevices.com, n.d.
[Online]. Available: https://www.cuidevices.com/product-spotlight/electret-condenser-
microphones#:~:text=The%20working%20principle%20of%20an,diaphragm%20and%2
0the%20back%20plate.&text=This%20change%20in%20voltage%20is,after%20a%20dc
%2Dblocking%20capacitor

57. CUI Inc, “Electret Condenser Microphone”, MAX4466 datasheet, cdn-
shop.adafruit.com, n.d., [Online], Available:
https://cdn-shop.adafruit.com/datasheets/CMA-4544PF-W.pdf

58. Adafruit, “Electret Microphone Amplifier – MAX4466 with Adjustable Gain”,
MAX4466 Product Page, adafruit.com, n.d., [Online], Available:
https://www.adafruit.com/product/1063

59. SparkFun, “SparkFun MEMS Microphone Breakout - INMP401 (ADMP401)”,
sparkfun.com, n.d., [Online]. Available:
https://www.sparkfun.com/products/9868 [Accessed: Oct. 9, 2020]

60. SparkFun, “SparkFun Electret Microphone Breakout”, sparkfun.com, n.d., [Online].
Available: https://www.sparkfun.com/products/12758 [Accessed: Oct. 9, 2020]

148

61. Olimex, “Shield-EKG-EMG bio-feedback shield User’s Manual”, olimex.com, n.d.,
[Online], Available:
https://www.olimex.com/Products/Duino/Shields/SHIELD-EKG-
EMG/resources/SHIELD-EKG-EMG.pdf

62. Sparkfun, AD8232 Data Sheet, cdn.sparkfun.com., n.d. [Online].
Available: https://cdn.sparkfun.com/datasheets/Sensors/Biometric/AD8232.pdf

63. Texas Instruments, “CC2652R SimpleLink Multiprotocol 2.4 GHz Wireless MCU”, TI
CC2652R Datasheet, [Revision F Apr., 2020] [Online]. Available:
https://www.ti.com/lit/ds/swrs207g/swrs207g.pdf?ts=1603243064709&ref_url=https%25
3A%252F%252Fwww.ti.com%252Ftool%252FLAUNCHXL-CC26X2R1 [Accessed:
Sept. 20, 2020]

64. Texas Instruments, “LaunchXL-CC26x2R1”, TI Product Page, n.d., [Online]. Available:

https://www.ti.com/tool/LAUNCHXL-CC26X2R1

65. NXP Semiconductors, “UM10204 I2C-bus specification and user manual”, nxp.com,
1982, [Revised Apr. 4, 2014] [Online]. Available:
https://www.nxp.com/docs/en/user-guide/UM10204.pdf [Accessed: Dec. 6, 2020]

66. Texas Instruments, “I2C.h File Reference”, SimpleLink CC13x2 26x2 SDK (4.30.00.54)
Examples, n.d., [Online], Available:
https://dev.ti.com/tirex/explore/content/simplelink_cc13x2_26x2_sdk_4_40_04_04/docs/
drivers/doxygen/html/_i2_c_8h.html

67. SparkFun Electronics, “SparkFun Pulse Oximeter and Heart Rate Sensor Library”,
github.com, n.d., [Online]. Available:
https://github.com/sparkfun/SparkFun_Bio_Sensor_Hub_Library [Accessed: Dec. 6,
2020]

68. Maxim Integrated, “Measuring Heart Rate and SpO2 Using the MAX32664A - A Quick
Start Guide”, maximintegrated.com, Aug., 2019 [Revised: Feb., 2020] [Online].
Available: https://pdfserv.maximintegrated.com/en/an/ug7087-max32664a-quick-start-
guide-rev-1-p1.pdf [Accessed: Dec. 6, 2020]

149

69. Dhaker, Piyu, “Introduction to SPI Interface”, Analog Dialogue, vol. 52, Sep., 2018
[Online]. Available:
https://www.analog.com/en/analog-dialogue/articles/introduction-to-spi-interface.html
[Accessed: Dec. 6, 2020]

70. Microchip Technology Inc., “2.7V 12-Bit A/D Converter with SPI Serial Interface”,

MCP3201 datasheet, Sep. 1998, [Revised Aug., 2011] [Online]. Available:
http://ww1.microchip.com/downloads/en/DeviceDoc/21290F.pdf [Accessed: Dec. 6,
2020]

71. Texas Instruments, “adcbufcontinuous”, SimpleLink CC13x2 26x2 SDK (4.30.00.54)
Examples, n.d., [Online]. Available:
https://dev.ti.com/tirex/explore/node?node=ABuXMFjCVcE6z0fQedi.wQ__pTTHBmu_
_LATEST [Accessed: Dec. 6, 2020]

72. Loyola University Medical Education History, “Heart rate calculations”, Loyola
Medicine, n.d., [Online]. Available:
http://www.meddean.luc.edu/lumen/meded/medicine/skills/ekg/les1prnt.htm#:~:text=Cou
nt%20the%20number%20of%20RR,when%20the%20rhythm%20is%20irregular.

73. Texas Instruments, “General RTOS Concepts”, TI Resource Explorer, n.d., [Online].
Available:
https://dev.ti.com/tirex/explore/content/simplelink_academy_cc13x2_26x2sdk_4_40_00_
00/modules/rtos/rtos_concepts/rtos_concepts.html

74. Texas Instruments, “Threading Modules”, TI Resource Explorer, n.d., [Online].
Available:
https://dev.ti.com/tirex/explore/content/simplelink_cc13x2_26x2_sdk_4_40_04_04/docs/
ti154stack/html/tirtos/hwis_swis_idle.html

75. Texas Instruments “TI-RTOS Basics”, TI Resource Explorer, n.d., [Online]. Available:
https://dev.ti.com/tirex/content/simplelink_academy_cc32xxsdk_4_40_00_00/modules/rt
os/tirtos_basics/tirtos_basics.html

76. Texas Instruments, “TI-RTOS Kernel (SYS/BIOS)”, TI User’s Guide, n.d., [Online].
Available:
https://www.ti.com/lit/ug/spruex3v/spruex3v.pdf?ts=1615776764083

150

77. Texas Instruments, “Overview: Clocks”, TI Resource Explorer, n.d., [Online]. Available:
https://dev.ti.com/tirex/explore/content/simplelink_cc13x2_26x2_sdk_4_40_04_04/docs/
ti154stack/html/tirtos/clocks.html

78. Texas Instruments, “Bluetooth Low Energy Scanning and Advertising”, TI Resource
Explorer, n.d., [Online], Available:
https://dev.ti.com/tirex/content/simplelink_academy_cc2640r2sdk_4_40_00_32/modules/
blestack/ble_scan_adv_basic/ble_scan_adv_basic.html

79. Texas Instruments, “Bluetooth Low Energy 5 PHY, 1M, 2M and Coded”, TI Resource
Explorer, n.d., [Online]. Available:
https://dev.ti.com/tirex/content/simplelink_academy_cc13x2_26x2sdk_4_40_00_00/mod
ules/ble5stack/ble_phy/ble_phy.html

80. Coleman, Chris, “A Practical Guide to BLE Throughput”, Interrupt, Sep 24, 2019,
[Online]. Available:
https://interrupt.memfault.com/blog/ble-throughput-primer

81. Texas Instruments, “Link Layer (LL)”, TI Resource Explorer, n.d., [Online], Available:
https://software-
dl.ti.com/simplelink/esd/simplelink_cc2640r2_sdk/3.30.00.20/exports/docs/blestack/ble_
user_guide/html/ble-stack-common/link-layer-cc2640.html

82. Anfang, Henry, “Bluetooth PHY - How it Works and How to Leverage It”,
PunchThrough, Dec 31, 2019, [Online]. Available:
https://punchthrough.com/crash-course-in-2m-bluetooth-low-energy-
phy/#:~:text=PHY%20is%20short%20for%20Physical,and%20Medical%20(ISM)%20ba
nd.

83. Texas Instruments, “Bluetooth Low Energy Custom Profile”, TI Resource Explorer, n.d.,
[Online]. Available: http://software-
dl.ti.com/lprf/simplelink_academy/modules/ble_01_custom_profile/ble_01_custom_profi
le.html

84. Texas Instruments, “Simple_peripheral”, SimpleLink CC13x2 26x2 SDK (4.30.00.54)
Examples, n.d., [Online]. Available:
https://dev.ti.com/tirex/explore/node?node=ADBiDjSefY.LCJ9ZeyjnlQ__pTTHBmu__L
ATEST

151

85. Texas Instruments, “The application”, SimpleLink™ CC26x2 SDK BLE5-Stack User's

Guide, n.d., [Online]. Available:
https://software-
dl.ti.com/lprf/simplelink_cc26x2_latest/docs/ble5stack/ble_user_guide/html/ble-stack-
5.x/the-application.html

86. Texas Instruments, “host_test”, SimpleLink CC13x2 26x2 SDK (4.30.00.54) Examples,
n.d., [Online]. Available:
https://dev.ti.com/tirex/explore/node?node=AABc.DyqTiE3F4dl32lXcA__pTTHBmu__
LATEST

87. Jia, Ning, “Detecting Human Falls with a 3-Axis Digital Accelerometer”,
AnalogDialogue, Jul 2009, [Online], Available:
https://www.analog.com/en/analog-dialogue/articles/detecting-falls-3-axis-digital-
accelerometer.html

88. Sedghamiz, Hooman, “Complete Pan Tompkins Implementation ECG QRS detector”,
MathWorks, Apr 8 2018, [Online], Available:
https://www.mathworks.com/matlabcentral/fileexchange/45840-complete-pan-tompkins-
implementation-ecg-qrs-detector

89. Spring, K., Russ, J., “Derivative Filters”, Olympus, n.d., [Online]. Available:
https://www.olympus-lifescience.com/en/microscope-
resource/primer/java/digitalimaging/processing/derivativefilters/

90. Moody, G., Mark, R., “MIT-BIH Atrial Fibrillation Database”, PhysioNet, Nov 4 2000,
[Online], Available:
https://physionet.org/content/afdb/1.0.0/#files-panel

91. Ahmed, N., Zhu, Y., “Early Detection of Atrial Fibrillation Based on ECG Signals”,
National Center for Biotechnology Information, Feb 13, 2020, [Online], Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148541/

92. Cleveland Clinic, “Body Temperature: What Is (and Isn’t) Normal?”,
health.clevelandclinic.org, Mar. 31, 2020, [Online]. Available:
https://health.clevelandclinic.org/body-temperature-what-is-and-isnt-normal/ [Accessed:
Oct. 8, 2020]

152

93. Dale, Vishay, “How to Select an NTC Thermistor”, Vishay, n.d., [Online]. Available:

https://www.vishay.com/docs/33001/seltherm.pdf

94. Analog Device, “Low Voltage Temperature Sensors”, TMP35/TMP36/TMP37 datasheet,
Revision 0 Mar., 1996 [Revision H May, 2015] [Online]. Available:
https://www.analog.com/media/en/technical-documentation/data-
sheets/TMP35_36_37.pdf [Accessed: Oct. 7, 2020]

95. Analog Devices, “TMP36”, analog.com, n.d., [Online]. Available:
https://www.analog.com/en/products/tmp36.html [Accessed: Oct. 7, 2020]

96. Jason Gums, “Types of Temperature Sensors”, digikey.com, Jan. 26, 2018, [Online].
Available:
https://www.digikey.com/en/blog/types-of-temperature-sensors [Accessed: Sept. 17,
2020]

97. Vishay, “NTC Thermistors, Radial Lead, Standard Precision”, NTCLE100E3 datasheet,
n.d., [Revised Mar 25, 2021], [Online], Available:
https://www.vishay.com/docs/29049/ntcle100.pdf

98. Ametherm, “NTC Thermistors Steinhart and Hart Equation”, ametherm.com, n.d.,
[Online]. Available:
https://www.ametherm.com/thermistor/ntc-thermistors-steinhart-and-hart-equation
[Accessed: Sept. 17, 2020]

99. Vishay, “My Vishay NTC Curve”, Vishay.com, n.d., [Online], Available:
https://www.vishay.com/thermistors/ntc-curve-list/

153

Appendix 1: Temperature Sensor Research, Description, Design Options, and

Communication

This appendix contains the background research, sensor description, design options, and

communication for the temperature sensor. We did research, design, and sensor testing before

deciding to not continue development due to lack of applicability of the particular sensor we

choose. We felt it was not appropriate to include this work in the main body of the paper but did

not want to remove this content from the project entirely, as a decent amount of work was done.

Temperature Research:

Body temperature is often associated with someone being unwell. A high body temperature can

be caused by an infection or potential heat stroke and a low body temperature may be caused by

certain medical conditions or medications. Additionally, while everyone’s normal body

temperature is different, most people have been told that the “normal” body temperature is 98.6

℉ (37 ℃). While this can be a safe baseline, body temperature can range between 97 ℉ and 99

℉, depending on the person. Your body temperature will also vary over the course of the day,

and as you age, your body temperature will decrease [92]. Where the temperature is taken will

also affect the reading, with the core temperature being the best indicator of body temperature.

The most accurate reading for core temperature is rectally, while under the tongue also works

well. External measurements like under your armpit or on your forehead will typically be lower

than your internal temperature. By tracking the trends in body temperature, outlying values may

indicate potential issues such as the common cold and the flu.

Temperature Sensor Description:

A common type of temperature sensor used is a thermistor, which is a temperature varying

resistor. There are two types of thermistors: negative temperature coefficient (NTC) and positive

temperature coefficient (PTC) thermistors. For an NTC thermistor, as temperature increases the

resistance decreases and vice versa. For a PTC thermistor, the resistance increases as temperature

increases. NTC thermistors are the most commonly used thermistors. A thermistor is often used

in a voltage divider with a fixed resistor, where the voltage output can be converted to a

temperature. Calculating a temperature from this reading requires some additional math, as a

154

thermistor’s resistance is not linear. This requires use of the Steinhart-Hart equation, which takes

the voltage reading and known characteristics about the thermistor, to calculate a temperature

reading [93].

Self-heating is also an issue, as current flowing through the voltage divider can cause the

resistance to change. Thermistors often have a dissipation factor δ, which indicates how much

power is needed to raise the temperature of the thermistor by one degree. This dissipation factor

can be used to calculate the maximum power that can be dissipated while keeping the desired

accuracy. This equation involves the dissipation factor, desired temperature accuracy, and

desired self-heating factor (how much you want the self-heating to affect the accuracy). This

equation can be seen below.

Maximum power dissipation =

dissipation factor * desired temperature accuracy * desired self heating factor (2)

As long as the maximum power dissipation generated by the thermistor is less than this

calculated maximum power dissipation, self-heating won’t affect the output voltage of the

system. This issue can be further mitigated by limiting the amount of time that the voltage

divider is active, which limits the ability of the current to affect the thermistor resistance [93].

The accuracy of a voltage reading from this voltage divider is dependent on the tolerance of the

thermistor. The rating that is commonly used to describe a thermistor is the resistance at 25 ℃,

known as the R25 value, which can range from single digit Ωs to 100s of kΩ. This R25 value also

has a tolerance, which indicates the range of potential resistances at 25 ℃. These tolerances can

range from ±0.1% to as much as ±10%. This, combined with the accuracy of an ADC used to

read the voltage, can determine the accuracy of the voltage reading.

To select an appropriate thermistor for an application, you need to know your desired

temperature accuracy, expected operating range, and size requirements. In order to keep the

desired temperature accuracy over the expected operating range, you need to calculate the

maximum acceptable R25 tolerance. First, select a series of thermistors that have an appropriate

R25 resistance range for your use. From the datasheet of this series, find the temperature

coefficient of resistance (TCR, expressed in %/K or %/C) value at the minimum and maximum

155

expected operating temperatures. TCR is the sensitivity of the resistance at a given temperature.

Because a thermistor is non-linear, the TCR is different at different temperatures. Multiply these

values by the desired temperature accuracy of your system to get an resistive tolerance, known as
51
1

. The material properties of the thermistor, known as a B-value constant unique to the

materials of the thermistor, also need to be incorporated. Subtract the resistive tolerance due to

the B-value (found in thermistor datasheet) from the resistive tolerance to produce a relative R25

tolerance, 51"&
1"&

. Doing this for the maximum and minimum expected operating temperatures

gives the two extremes of R25 tolerances needed to keep your desired temperature accuracy.

From these two tolerances, take the smaller value, which gives you the maximum R25 tolerance

required to keep your desired temperature accuracy over the entire expected operating range.

Using this maximum R25 tolerance, select an appropriate thermistor that has an equal or smaller

R25 tolerance. [93]

Temperature Sensor Design Options

Based on our initial background research, we determined that we wanted a temperature sensor to

monitor the ambient skin temperature of the user. The sensor needed to be small, low power, and

easy to use. Combined with our sensor research, we selected two main types of potential

temperature sensors: thermistors and semiconductor temperature ICs. Both offer a small size,

decent accuracy, low power consumption, and easy implementation.

Of the thermistor and semiconductor temperature sensor options, we will primarily be using a

semiconductor temperature sensor. Specifically, we use a TMP36GT9Z sensor from Analog

Devices, available in a TO-92 package. The TMP36 is a low voltage analog temperature sensor

that can be powered by a supply between +2.7 V and +5.5 V, allowing for easy integration with

+3.3 V and +5 V MCUs. The analog output is 750 mV at +25 ℃, and has a scale factor of 10

mV/℃, allowing it to be read by an external ADC and converted into a temperature. An ADC

with at least 9-bits of resolution would be needed to measure a ±1.0 ℃ temperature change if

supplied with +3.3 V. The TMP36 offers a typical accuracy of ±1.0 ℃ at +25 ℃ and a typical

accuracy of ±2.0 ℃ over the full operating temperature range of -40 ℃ to +125 ℃. Given our

intended use of the temperature sensor to view trends of a user's readings, extreme accuracy is

156

not critical. This sensor will draw a maximum supply current of 50 µA and a maximum output

load current of 50 µA, making it ideal for low power situations. This low supply current causes a

low self-heating affect, typically less than 0.1 ℃ in still air. It’s accuracy, small size, and easy

implementation makes it appropriate for a wearable device [94][95].

If the TMP36 does not work as intended, our design may use an NTC thermistor as a temperature

sensor, specifically the NTCLE100E3103HT1 10 kΩ 3% NTC thermistor from Vishay

Intertechnology, Inc [96]. To select this thermistor, we calculated the R25 tolerance required to

keep a temperature accuracy of ±1.0 ℃ over the extreme operating range of 0 ℃ to 50 ℃. The

detailed calculations can be seen in Thermistor Tolerance Calculations. It was also chosen

because the self-heating of this thermistor will have a less than 50% affect on our desired ±1.0

℃ accuracy when in series with a 10 kΩ resistor and supplied with +3.3 V. Detailed calculations

and graphs proving the specific thermistor we selected will not affect the desired accuracy can be

seen in Thermistor Power Dissipation Calculations.

Thermistor Tolerance Calculations

Expected operating range of temperature sensor (extreme case): 0 ℃ to 50 ℃

Desired accuracy: ±1.0 ℃

Desired R25 value: 10 kΩ, common value and limit power dissipation

Desired response time: <10 s

Thermistor series selected based on these parameters: NTCLE100E3 from Vishay

From datasheet [97]:

𝑇𝐶𝑅	𝑎𝑡	0℃:	 − 5.09
%
𝐾

𝑇𝐶𝑅	𝑎𝑡	50℃:	 − 3.80
%
𝐾

𝛥𝑅
𝑅 	𝑑𝑢𝑒	𝑡𝑜	𝐵,*6('7.8(𝑎𝑡	0℃: 0.92%	

𝛥𝑅
𝑅 	𝑑𝑢𝑒	𝑡𝑜	𝐵,*6('7.8(𝑎𝑡	50℃: 0.77%	

157

𝛥𝑅
𝑅 = 𝑇𝐶𝑅	 ∗ 	𝑑𝑒𝑠𝑖𝑟𝑒𝑑	𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦

𝛥𝑅
𝑅 	𝑎𝑡	0℃ = 𝑇𝐶𝑅	𝑎𝑡	0℃	 ∗ 	𝑑𝑒𝑠𝑖𝑟𝑒𝑑	𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = 	−5.09

%
𝐾 ∗	±1.0℃ = 	5.09%

𝛥𝑅
𝑅 	𝑎𝑡	50℃ = 𝑇𝐶𝑅	𝑎𝑡	50℃	 ∗ 	𝑑𝑒𝑠𝑖𝑟𝑒𝑑	𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = 	−3.80

%
𝐾 ∗	±1.0℃ = 	3.80%

𝛥𝑅%9
𝑅%9

=		
𝛥𝑅
𝑅 		−			

𝛥𝑅
𝑅 	𝑑𝑢𝑒	𝑡𝑜	𝐵,*6('7.8(

𝛥𝑅%9
𝑅%9

	𝑎𝑡	0℃ =		
𝛥𝑅
𝑅 	𝑎𝑡	0℃			 − 			

𝛥𝑅
𝑅 	𝑑𝑢𝑒	𝑡𝑜	𝐵,*6('7.8(𝑎𝑡	0℃	 = 	5.09%	 − 	0.92% = 	4.17%

𝛥𝑅%9
𝑅%9

	𝑎𝑡	50℃ =		
𝛥𝑅
𝑅 	𝑎𝑡	50℃			 − 			

𝛥𝑅
𝑅 	𝑑𝑢𝑒	𝑡𝑜	𝐵,*6('7.8(𝑎𝑡	50℃	 = 	3.80%	 − 	0.77%

= 	3.03%

The minimum of these two is 3.03%, so we require a maximum R25 tolerance of 3% to keep an

accuracy of ±1.0 ℃ [98].

Thermistor Power Dissipation Calculations

Resistance values at specific temperatures found using the “My Vishay NTC Curve” spreadsheet

from Vishay [99]. Graphs in Figures 95 and 96 are displayed using these values.

Voltage divider supply voltage: 3.3 V

Voltage divider series resistor: 10 kΩ

Voltage divider thermistor: NTCLE100E3103HT1

158

Figure 95: Thermistor Resistance over Temperature

159

From these resistance values, we calculated the current flowing through the thermistor and the

subsequent power dissipation.

𝑇ℎ𝑒𝑟𝑚𝑖𝑠𝑡𝑜𝑟	𝑐𝑢𝑟𝑟𝑒𝑛𝑡	 = 	 𝐼,:(';-<,*' =	
𝑉<+==6>

𝑅,:(';-<,*' +	𝑅<('-(<

𝑇ℎ𝑒𝑟𝑚𝑖𝑠𝑡𝑜𝑟	𝑝𝑜𝑤𝑒𝑟	𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛	 = 𝐼,:(';-<,*'% ∗ 𝑅,:(';-<,*'

𝑇ℎ𝑒𝑟𝑚𝑖𝑠𝑡𝑜𝑟	𝑐𝑢𝑟𝑟𝑒𝑛𝑡	𝑎𝑡	25℃ =	
3.3𝑉

10𝑘𝛺	 + 	10𝑘𝛺 = 0.000165𝐴 = 0.165𝑚𝐴

𝑇ℎ𝑒𝑟𝑚𝑖𝑠𝑡𝑜𝑟	𝑝𝑜𝑤𝑒𝑟	𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛	𝑎𝑡	25℃	 = 	 (0.165𝑚𝐴)% ∗ 10𝑘𝛺 = 0.27225𝑚𝑊

Figure 96: Thermistor Power Dissipation, maximum highlighted in red

Maximum calculated thermistor power dissipation: 0.27225mW at 25℃

Thermistor dissipation factor: 7 mW/℃

Desired temperature accuracy: ±1.0 ℃

Maximum self-heating factor: 50%

160

𝑀𝑎𝑥𝑖𝑚𝑢𝑚	𝑝𝑜𝑤𝑒𝑟	𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛	

= 	𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛	𝑓𝑎𝑐𝑡𝑜𝑟	 ∗ 	𝑑𝑒𝑠𝑖𝑟𝑒𝑑	𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒	𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦	

∗ 	𝑑𝑒𝑠𝑖𝑟𝑒𝑑	𝑠𝑒𝑙𝑓	ℎ𝑒𝑎𝑡𝑖𝑛𝑔	𝑓𝑎𝑐𝑡𝑜𝑟

𝑀𝑎𝑥	𝑝𝑜𝑤𝑒𝑟	𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛	 = 	
7𝑚𝑊
℃ ∗	±1.0℃ ∗ 50% = 3.5𝑚𝑊

Because the maximum calculated thermistor power dissipation is less that the maximum power

dissipation, the self-heating effect of the thermistor reading will not exceed our desired accuracy.

Temperature Sensor Communication

The particular temperature sensor we are using, the TMP36GT9Z, is an analog output sensor. It

simply requires to be supplied with power, ground, and the output pin connected to an analog pin

on the CC2652R1 MCU. In the ADC drivers, written in C, the ADC is initialized by the

ADC_Params_init() function, which is passed an ADC_Params object. By default, this will use

the isProtected condition, which means the ADC will use a semaphore to guarantee thread safety,

which is useful for real time operating systems (RTOS). Once initialized, the ADC can be

opened by using the ADC_open() function, which is passed the specific board ADC pin you wish

to use and the ADC Parameter object. This function returns an ADC_Handle on a success, or

NULL on an error. An example of the output from our current temperature sensor configuration

can be seen in Figure 97.

Figure 97: Temperature Sensor Reading Output During Configuration

With the ADC open, the ADC_convert() function can be used to take an ADC reading. This

function takes an ADC Handle and variable in which to store the ADC reading. It returns a value

indicating a successful or unsuccessful ADC reading. The ADC reading can be converted into a

161

voltage using the ADC_convertRawToMicroVolts() function. This function takes an ADC

Handle and ADC reading and returns the converted microvolts reading.

To take a temperature reading, the ADC is configured using the functions above. Ten ADC

samples are taken and averaged to a single ADC value. This value is then converted to

microvolts using the ADC_convertRawToMicroVolts() function. From this voltage, we can

calculate a temperature reading. At 25 ℃, the TMP36 has an output of 750 mV and resolution

of 10mV/℃. Temperature in ℃ can be calculated by the equation:

𝑇𝑒𝑚𝑝	𝐶	 = 	 (𝑣𝑜𝑙𝑡𝑎𝑔𝑒	𝑟𝑒𝑎𝑑𝑖𝑛𝑔	 − 	500𝑚𝑉) ∗ 100 (5)

 To convert the temperature to ℉, use the equation:

 𝑇𝑒𝑚𝑝	𝐹	 = 	 (𝑇𝑒𝑚𝑝	𝐶	 ∗ 	 ?
9
) 	+ 	32 (6)

 An example of the output from the temperature sensor and measured by the CC2652R1 can

be seen in Figure 98.

162

Figure 98: Current Temperature Sensor Output After Being Breathed On

The temperature sensor does not need to be sampled at any particular rate, as we do not expect

the temperature to change rapidly. It should be configured to be the same sampling rate as the

ECG, as that has a required sampling rate to be able to read the signal. Currently, the temperature

sensor ADC is configured in a one-shot mode to test the sensor functionality. This is changed

when the ECG and temperature sensor are implemented together.

163

Appendix 2: Maximum Current Draw Table

Table 11: Maximum Current Draw of Development Board ICs

 Main IC

Main IC
Max

Current
Draw
(mA)

Secondary
IC

Secondary
IC Max
Current
Draw
(mA)

Tertiary IC

Tertiary
IC Max
Current
Draw
(mA)

DC-DC
Converter

DC-DC
Transient
Current
Draw
(mA)

Total
Sensor

Current
(mA)

SparkFun
Pulse

Oximeter and
Heart Rate

Sensor

MAX30101 1.1 Red/IR/
Green LED 150 MAX32664 100 PAM4801 0.15 251.25

SparkFun
ADXL345

Accelerometer
ADXL345 0.14 0.14

SparkFun
Electret

Microphone

Electret
Condenser

Microphone
0.5 OPA344

Op-amp 25 25.5

ECG/EKG AD8232 0.23 Red LED 20 20.23

EDA Sensor MCP607 0.025 MCP3201 0.55 MCP1541 0.12 0.695

MCU CC2652R1 3.4 Bluetooth
Radio 9.6 13

Total Current
Draw (mA): 310.815

The MAX32664 current draw is based on the absolutely maximum rated Vss current draw, as no

estimated current draw is provided with the data sheet.

164

Appendix 3: SPI Modes and Definitions

165

