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Abstract 

The purpose of this project was to modify the surface of Zeolite Y catalysts with 

organosilanes and investigate the diffusion rates and overall uptake of hexanol and 

cyclohexanol in the modified zeolites. Unmodified zeolite catalysts have a low tolerance to 

liquid water at high temperatures, but recent studies have shown that functionalizing the 

surface of zeolites with organosilanes increases the hydrophobic character and the 

hydrothermal stability of the zeolite. The modified hydrophobic zeolites have the potential 

to improve the efficiency of high temperature liquid phase reactions. Zeolite Y was coated 

with octadecyltrichlorosilane, hexyltrichlorosilane, and ethyltrichlorosilane to explore how 

different alkyl chain lengths affect diffusion through the zeolite. Extensive tests were 

performed to characterize the native and modified surfaces, including FTIR, Nitrogen 

Sorption, and contact angle measurements. Adsorption tests using hexanol and cyclohexanol 

as probe molecules were performed to measure the overall capacity of native and modified 

zeolites. Diffusion coefficients were calculated for each target molecule in the zeolites. 

Results showed that the chain length of the zeolite coatings did not greatly affect the rate of 

diffusion but did affect the overall uptake of the target compounds. 
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Chapter 1: Introduction 

In recent years, increasing attention has been given to the derivation of specialty chemicals 

and fuels from biomass. Solid acids used as heterogeneous catalysts, such as Zeolite Y, have 

become increasingly important in biomass upgrading reactions. Unlike liquid acids, solid 

acids have the special properties of varying Lewis and Bronsted acid site strength, selective 

pore sizes, and recoverability (Corma and Garcia, 1997). Theoretically, these properties can 

be tailored to produce higher reaction selectivities and yields. However, many of these liquid 

phase reactions occur at high temperatures to promote a reaction speed that is economically 

feasible. Zeolites are an important heterogeneous acid catalyst in industry. For example, the 

majority of the world’s gasoline is produced via catalytic cracking using zeolite catalysts 

(Cundy and Cox, 2003). Zeolites are an appealing choice to catalyze these reactions; however, 

the crystalline structure of many zeolites can be compromised in the presence of condensed 

water above 150o C.   

Recent experiments have discovered that functionalizing zeolites with organosilanes gives 

the zeolites hydrophobic properties without the loss of any Bronsted acid sites, which are 

vital for catalyst activity (Resasco, 2012). The study demonstrated that NaY zeolite 

functionalized with octadecyltrichlorosilane is hydrothermally stable up to 200oC. 

Organosilane functionalized zeolites may be better suited to high temperature reactions in 

water-rich solvents, but more research is needed on the effects of organic coatings on 

diffusivity, adsorption, and thermal stability.  

This study aimed to characterize three different organosilanes with varying chain lengths 

using methods such as TGA, FTIR, contact angle measurements, SEM, Nitrogen Sorption and 

biphasic emulsions. Using experimental data obtained through characterization and 

sorption experiments, parameters to study the diffusion of organic compounds in the 

zeolites were developed, which can be used to describe how the coating chain length will 

affect diffusivity. These parameters included analyzing the rate of diffusion and determining 

the diffusion coefficients for each modified zeolite. This allows for the discovery of the 
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optimal coating chain length for the surface modification of zeolites, leading to greater 

reaction selectivities, conversions, and efficiencies for any catalytic process for which the use 

of coated zeolites is desirable. 
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Chapter 2: Background 

This chapter provides information on some of the current uses of zeolites and the 

information necessary to understand these uses. Potential applications of zeolites in 

industry are also explored. To provide an understanding of the importance of modified 

zeolites as solid acid catalysts and their diffusive properties, this chapter describes the 

potential use of zeolites and its applications in industry. Recent studies on the effect of 

coating zeolites and what is currently known on the diffusive and sorptive properties of 

zeolites are discussed in this chapter. 

2.1 Biomass  

Biomass is renewable biological material, deriving from plants or animals.  Biofuels and 

biochemicals are important products that derive from biomass. Common examples of 

biomass feedstock include corn, manure, switch grass and wood. Biomass can be used to 

create eco-friendly and renewable alternatives to fossil fuels and fossil fuel derived 

chemicals. For example, the carbon dioxide released when biofuels are burned is recycled 

directly back into plant material instead of being stored in the atmosphere. However, for 

biomass-derived chemicals to be economically competitive with fossil fuels, the efficiencies 

of biomass conversion technologies must be improved. Unfortunately, this has become a 

challenging hurdle for scientists because bio-oils are generally not suitable for thermal 

fractionation after being condensed from pyrolysis vapors (Paula A Zapata, Huang, Gonzalez-

Borja, & Resasco, 2013). Therefore using a catalytic conversion in the liquid phase at 

moderate temperatures appears to be the best approach. Zeolites are a potentially useful 

catalyst for breaking down biomass feedstock and converting it into biochemicals.  

2.2 Components of Biomass 

Biomass is composed of the same building blocks regardless of what the feedstock is 

("Biofuels," 2013).  It consists of three main components; hemicellulose, cellulose and 

lignin.  These components are carbon-based materials and primarily consist of a mixture of 
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atoms including hydrogen, oxygen and nitrogen. Hemicellulose is composed of 

polysaccharides and makes up 20-40% of the biomass by weight.  Hemicellulose is a 

branched compound that is made from five and six carbon sugars. Cellulose is a linear 

polymer composed of repeating glucose units that makes up 40-60% of the biomass by 

weight.  Lignin is a complex, cross-linked polymer that consists of aromatic rings.  Lignin 

has high energy content and makes up 10-24% of the biomass by weight 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1: Biomass Components (U.S. Department of Energy, 2010) 

To convert biomass into usable fuels, hemicellulose, cellulose and lignin must first be broken 

down into five and six carbon chain sugars and other molecules via catalyzed hydrolysis 

reactions. These molecules can be subsequently converted into highly useful chemicals, such 

as ethanol via fermentation. The bio-ethanol can be used in combination with gasoline as a 

fuel, or dehydrated to produce ethylene. The process for converting raw biomass into bio-

ethanol can be seen in the process diagram Figure 2.1.2.     
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Figure 2.2: Biomass to Ethanol Process (Hahn-Hägerdal, Galbe, Gorwa-Grauslund, Lidén, & Zacchi, 
2006) 

Currently, ethanol is used to blend into gasoline for motor vehicle fuel, reducing the amount 

of oil required and improving emissions ("Biofuels," 2013).  

2.3 Liquid Phase Reactions of Biomass Using Solid Acid Catalysts 

Due to the increasing interest in renewable biomass, many different conversion strategies 

have been studied (Corma, Iborra, & Velty, 2007).  Vegetable oil, lignin and sugars can be 

used as reactants and converted into useful biochemicals through different liquid phase 

reactions(Corma et al., 2007). These reactions include, but are not limited to, the 

fermentation of glucose, dehydrations of monosaccharides and ethanol, the transformation 

of sucrose using hydrolysis, esterification, or oxidation, and transesterification of oils for 

biodiesel production. There are also many different liquid phase reactions that can 

transform triglycerides, which are found in vegetable oils and animal fats. Triglycerides can 

be transformed into chemicals through liquid phase reactions of the carboxyl group or 

through reactions of the fatty chain. Similarly, terpenes can also be transformed through 

various liquid phase reactions, which include isomerization, epoxidation, and hydration of 

various parts of the terpene.  
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Bio-derived ethanol and other biomass-derived chemicals also have uses for things besides 

fuels. For example, the dehydration of ethanol yields ethylene, which is used as the raw 

material for manufacturing polymers such as; polyethylene, polyethylene terephthalate, 

polyvinyl chloride and polystyrene ("Ethylene Uses and Market Data," 2010). These 

polymers are used for a variety of different markets and industries such as transportation, 

construction, chemicals, and electronics. The dehydration of ethanol is shown in the reaction 

below: 

𝐶𝐶2𝐻𝐻5𝑂𝑂𝐻𝐻 →  𝐶𝐶2𝐻𝐻4 + 𝐻𝐻2𝑂𝑂 

Currently, ethylene is produced from fossil fuels. Bioethanol is a potential alternative source 

of ethylene. The reaction can be operated in the gas phase using a solid acid catalyst, or in 

the liquid phase at high temperatures. The latter is a more attractive option because it avoids 

the added energy cost needed for the latent heat of vaporization. However, solid acid 

catalysts may degrade under such process conditions.   

2.4 Solid Acid Catalysts 

Solid acid catalysts have recently been used for promoting hydrolysis and dehydration 

reactions of many biomass constituents and biorenewable molecules.  

Sorbitol is an example of one useful biomass-derived chemical, and dehydrating sorbitol can 

give isosorbide, which is a useful chemical for polymers and medicines (Ahmed et al., 2013). 

Mineral acids can be used as catalysts for this type of reaction; however the best catalysts 

will not be harmful to the environment or people’s safety and can be easily separated from 

the reaction mixture. The solid acid catalyst investigated in sorbitol dehydration was 

sulfated titania, where it was found that at 210°C 0.1 grams of the sulfated titania catalyst 

lead to 100% conversion of sorbitol, compared to only 20% conversion with no catalyst.  

For many liquid phase reactions, including hydrolysis, hydration and esterification, there are 

a limited number of solid acid catalysts that are successful (Okuhara, 2002). There are many 

solid acid catalysts that will lose their catalytic activity in aqueous solutions, due to strong 
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solubility and instability. However, catalytic reactions in aqueous systems are nontoxic, 

inflammable, safe, and often low in cost. HPAs have been found to be active in several 

aqueous phase organic reactions, as they were similarly found to be quite active for biodiesel 

production. HPAs are formed from the condensation of two or more different types of 

oxoanions (Corma & Garcia, 1997). Solid HPAs have strongly acidic sites due to the large size 

of the polyanion and low and delocalized surface charge density. The number of acidic sites 

on the surface can be relatively low if the HPA has a small surface area. They are also highly 

soluble in water. HPAs have been used for many different reactions, including the synthesis 

of diphenyl-methane, hydration reactions and esterification processes.  

2.5 Zeolites 

Zeolites are a type of solid acid catalyst that are used in oil refining, petrochemistry, and 

production of fine chemicals (Corma, 1997). Zeolites are silico-aluminates that have a 

crystalline structure with well-defined pores and cavities of molecular dimension, which 

greatly affects their reactive properties. Typical properties of zeolites include high surface 

areas, ability to control the number and strength of acidic sites, and a high adsorption 

capacity. One important characteristic of zeolites is the well-defined pore structure with 

characteristic dimensions similar to other molecule sizes. The acid strength of the zeolite 

depends on the density of acid sites and the Si to Al ratio. 

Different types of zeolites have varying surface areas, pore sizes, and Si to Al ratios.  These 

parameters have an effect on the catalytic activity in certain reactions (Sasidharan & Kumar, 

2004). One example of this was found in a study of the transesterification of different 

alcohols to make β-Keto esters, which are widely used in many different industrial processes 

for product synthesis. This liquid phase reaction can be efficiently carried out over different 

zeolite catalysts. Zeolite β, Zeolite Y, ZSM-5 and mordenite were investigated, and it was 

found that the larger-pore zeolites, such as Zeolite β and Zeolite Y, are the best for 

transesterification.  It was further discovered that when these large-pore zeolites were 
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dealuminated, their catalytic activity was higher due to increased acid strength and 

hydrophobicity. 

2.6 Modified Zeolites 

Zeolites are a nearly ideal candidate for catalyzing the biomass upgrading reactions 

mentioned in Section 2.3 because of their high surface area, acidic strength, and controlled 

pore structure. Unfortunately, under extreme conditions, including high temperatures in the 

liquid phase, the crystalline framework of zeolites breaks down. These conditions often 

occur in reactions important to upgrading of bio-oil in the liquid phase. 

2.6.1 Zeolite Coatings  

Zeolite coatings have been studied since the 1990s with the purpose of ion exchange 

between aqueous and organic solutions, as well as to improve zeolite incorporation in 

polyimide films (Singh et al, 1999). For use as a catalysts, applying a hydrophobic coating on 

the zeolite gives it greater resistance to hot liquid water and causes the mineral to float 

between the water/oil boundaries (Zapata et al, 2013). The main role of a hydrophobic 

coating is to provide a barrier to prevent contact between the zeolite and liquid water. This 

stabilizes the water/oil mixture while also increasing the mass transfer of both the reactants 

and the products. For example, bio-oils have a high concentration of water-soluble 

compounds compared to the low water solubility of the yielded products. Therefore using 

biphasic emulsions stabilized by catalytic zeolites is encouraging because the system 

amplifies the interfacial exchange area for simultaneous reaction and separation (Paula A. 

Zapata, Faria, Ruiz, Jentoft, & Resasco, 2012).  

Choosing the type of coating is essential in maintaining the integrity of the zeolite. Silylation 

of the zeolite has been studied as an effective coating method because it does not alter the 

acidity of the mineral (Paula A. Zapata, Faria, Ruiz, Jentoft, & Resasco, 2012). Trichlorosilane 

reagents with long carbon chains are generally used in practice because of their 

hydrothermal stability.  
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2.6.2 The Effect of Chain Length  

Previous work at the University of Oklahoma has examined several different silane coatings 

on Zeolite Y (Paula A. Zapata et al., 2012). These studies showed large difference in the 

degradation of the crystalline structure depending on the coatings. The research team ran 

reactions for 22 hours at 200oC and saw a great tolerance to the operating conditions from 

the silane-functionalized zeolites. The group found interesting results where there seemed 

to be a “give and take” between the carbon chain lengths of the coating agents. The 

organosilane coatings with longer carbon chain lengths increase the hydrophobic character 

of the tested zeolites. However the effect the carbon chain length of the coating has on the 

rate of diffusion and overall uptake of target molecules is poorly known. Therefore there is 

the need to find the optimal chain length in order to maximize the stability of the emulsion 

while maintaining high hydrophobicity. There is also a need to assess the effect of chain 

length on pore size, diffusivity, and adsorption. To find the ideal chain length for zeolite 

coatings, three agents will be tested:  

1. Octadecyltrichlorosilane 
2. Hexyltrichlorosilane 
3. Ethyltrichlorosilane  

Results from the study conducted at the University of Oklahoma showed the OTS 

functionalized zeolite to be the most hydrophobic. Their studies also showed that 

functionalizing a zeolite with OTS resulted in a slight loss of microporosity in the zeolite. The 

authors suggest that the loss in microporosity occurs due to pore blockage of the zeolite by 

the functional group. As the chain length increases it was seen that there was a higher loss 

of microporosity, therefore of the three organosilane coatings, OTS caused the lowest 

microporosity. However, the longer chain length of the OTS seems to best protect the zeolite 

from water keeping its catalytic activity throughout the whole reaction.  

The HTS modified zeolite also tested to be highly hydrophobic being slightly less than the 

OTS sample. Again the microporosity of the zeolite decreased with the addition of the 

coating, however slightly lower than the OTS. The modified zeolites retained most of its 
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crystallinity after being exposed to a biphasic structure at extreme conditions. HTS was 

shown to be highly stable in the emulsion, allowing the zeolite to remain highly catalytic 

throughout the whole reaction.  

ETS provided an interesting study by varying the coating concentration and studying the 

differing results. At lower concentrations the zeolite remained hydrophilic and quickly broke 

down when in emulsion. However, when the concentration was increased the modified 

zeolite became as hydrophobic as the two longer chained samples. The coating with a higher 

concentration of ETS proved to be comparable to the longer chained organosilane in 

retaining the crystallinity of the zeolite. The short alkyl-chains allow greater coverage of the 

zeolite, reaching small pockets within the zeolite that the longer chains cannot. However, the 

shorter chain is less stable when put into the biphasic water/oil emulsion.  

2.7 Diffusivity and Adsorption  

Diffusion parameters must be measured for different coating lengths so that a mathematical 

model may be developed that accounts for adsorbent characteristics and determines the 

optimum coating length. The diffusion of organic molecules within the void volume of 

zeolites has been a research topic for more than seven decades (Keipert & Baerns, 1998). 

Knowledge of diffusivities in zeolites is essential for catalytic processing and sorption 

separations. Past studies have shown the ability to successfully model the diffusion of 

organic molecules through zeolites by obtaining model parameters from experiments using 

direct and indirect analytical methods. Indirect methods include measuring the 

concentration of the diffusing species in the solvent with transient techniques such as 

gravimetry, volumetry, or chromatography. Direct methods use spectroscopic techniques 

such as polarimetry, IR, NMR, and DEXAFS, and determine the mean square displacement of 

the diffusing molecules. Pulse response experiments have also been used to model the 

diffusivity and adsorption of gaseous molecules in microporous materials. By modeling pulse 

responses it is possible to simultaneously determine the diffusion parameters, equilibrium 
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adsorption constant, and absolute rate constants for adsorption and desorption (Delgado, 

Nijhuis, Kapteijn, & Moulijn, 2004). 

Less work has been done to model the diffusivity and sorption of molecules through zeolite 

coatings. Tatlier used the effective medium theory (EMT) to determine the effective diffusion 

coefficient of water in inhomogeneous open zeolite 4A coatings prepared by the substrate 

heating method (Tatlıer & Erdem-Şenatalar, 2004). This study confirmed that estimated 

diffusivities increased with the void fraction of coatings. They also determined that lowering 

the ambient pressure in the EMT equation resulted in increased diffusion coefficients above 

a void fraction of 1/3 and that an increase in temperature increased the diffusion coefficients 

independent from the void fraction.  

A study done by Chao et al. aimed to study the sorption of different organic molecules on 

octadecyltrichlorosilane modified NaY zeolites (Chao, Peng, Lee, & Han, 2012). They found 

that the modified zeolite behaved like an amphiphilic adsorbent. Organic molecules with 

high water solubility were able to adsorb onto the inner surfaces of the zeolite while 

molecules with low water solubility were able to partition to the OTS monolayer on the outer 

zeolite surface. The sorption capacities of molecules with low water solubility were much 

higher for OTS modified NaY zeolite than the unmodified NaY zeolite.  

The purpose of our experiment was to further develop an understanding of the diffusivity of 

organic molecules of different sizes and polarities through organosilane zeolite coatings of 

different chain lengths.  
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Chapter 3: Methods 

Untreated zeolites have shown a low tolerance to hot liquid water.  However, functionalizing 

the zeolite surface with organosilanes creates a hydrophobic surface, greatly improving their 

stability in water.  This chapter will describe the experimental methods used to develop a 

greater understanding of the diffusivity of two select target molecules through coated and 

uncoated Zeolite Y.  The project focuses on three hydrophobic zeolite coatings; OTS, HTS and 

ETS, and measures the diffusion of Cyclohexanol and hexanol through the coatings and 

zeolite.  The surface of zeolite samples was coated with three different organosilanes; ETS, 

HTS, and OTS.  The resulting zeolites were characterized using oil/water emulsions, contact 

angle measurements, FTIR, TGA, Nitrogen Sorption, and SEM. Next, Uptake experiments 

were conducted to measure and evaluate how varying the alkyl chain length of the 

organosilanes affects the character of Zeolite Y. 

3.1 Coating Procedure 

The zeolite used in this study was Zeolite Y (Zeolyst International) with a Si/Al ratio of 60.  

The modification of the zeolite’s surface using ETS, HTS and OTS was done following 

methods from a recent study (Zapata, 2012).  First, 10 grams of the zeolite were placed in 

crucibles and put in the oven for 24 hours at 500 °C for calcination.  This was done to remove 

impurities in the zeolite. In a flask, 5 g of zeolite and 100 mL of toluene were mixed.  To break 

up agglomerated zeolite particles and to create a suspension of the zeolite and toluene, a 

VC750 sonicator was used.  The mixture was sonicated for 15 minutes at 26% amplitude, 

stirred then sonicated for another 15 minutes, in order to ensure zeolite was fully suspended 

in the liquid.  Next, the organosilane molecule was added to the suspension in a ratio of 0.50 

mmol per gram zeolite. Three coating molecules were used: ETS, HTS, and OTS. The volume 

of organosilane injected into the suspension is shown in Table 3.1.1. 
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Table 3.1: Volume of Organosilane Added to Suspension for 5 gram Zeolite Sample 
Organosilane Molecular Weight 

(g/mol) 
Density (g/mL) Volume (mL) 

ETS 163.51 1.238 0.330 
HTS 219.61 1.107 0.495 
OTS 387.94 0.984 0.985 

In addition to the three samples made with the organosilane coatings, one sample was 

preserved without surface modification as a control.  Silane-zeolite solutions were placed on 

a stirring plate and stirred using a Teflon-coated stir bar coupled to a magnetic stirrer at 500 

rpm for 24 hours.  The zeolites were separated from the toluene by filtration (0.45 µm) and 

rinsed with methanol.  The methanol rinse was repeated two to four times until the majority 

of the zeolite sample was recovered from the solution.  The recovered zeolite was placed in 

the oven dried for 24 hours at 100°C. 

3.2 Characterization of Modified Zeolites 

Once the coating procedure was completed, it was necessary to run experiments confirming 

the success of the surface modifications.  The experiments included surface contact angle 

measurement, IR absorbance, thermogravimetric analysis, and surface area, pore size and 

volume analysis.  The experiments performed to achieve these measurements were: 

• Oil and water emulsions 
• Contact angle measurement 
• Fourier Transform Infrared spectroscopy 
• Thermogravimetric Analysis 
• Scanning Electron Microscopy 
• Nitrogen Sorption 

3.2.1 Oil-Water Emulsions 

The first test done was to observe how the organosilane coated zeolites interacted with a 

biphasic solution consisting of equal volumes of a hydrophobic (toluene) and hydrophilic 

(water) component.  Toluene-water suspensions were created by adding 100 mg of the 

treated zeolite samples to 20 mL of toluene and 20 mL of water.  Each mixture was sonicated 
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for 15 minutes using a VC750 sonicator at 26% amplitude and then left to settle for 24 hours.  

Hydrophobic zeolites were not wetted by water but instead become suspended in the 

toluene, while hydrophilic zeolites partition to the water phase.  

3.2.2 Contact Angle   

Contact angle measurements were performed to complement the qualitative 

hydrophobic/hydrophilic characterization provided by emulsion formation observations. 

First, the zeolite samples were crushed into a thin powder using mortar and pestle. Then, the 

zeolite samples were made into thin pellets using the CrushIR Digital Hydraulic Press. Using 

the small end of a spatula, two scoops of the sample were loaded onto the bottom anvil in the 

evacuable pellet press. The second anvil was placed on top of the sample and the piston 

inserted above that. The rubber O-ring was placed on the top of the piston to seal the column.  

Once loaded up, the evacuable pellet press was secured in the hydraulic press with the 

vacuum hose on the base and the screw on the piston. The pressure was manually increased 

to 8.0 tons of force, making sure not to operate too close to the maximum of 10.0 tons of 

force. The pressure was held for one to two minutes and then released using the pressure 

release knob. The center column of the pellet press was removed, and the pellet was carefully 

extracted from in between the two anvils. The pellets were extremely delicate and had rough 

surfaces because no organic binder was used.   

To test the wettability of the different silylated zeolites a 0.1 microliter water droplet was 

placed on the pellet using a rame-hart dispenser. The contact angle was then measured using 

a NRL C.A. Goniometer and DROPimage Standard software. The contact angles of the three 

coated samples and uncoated sample were compared to determine the relative 

hydrophobicity of each sample. This procedure was also repeated for modified, uncalcined 

zeolite samples to compare the effect of precalcination on the hydrophobicity of modified 

samples. 

14 

 



3.2.3 Fourier Transform Infrared Spectroscopy  

The Fourier transform infrared spectroscopy (FT-IR) was performed to generate an infrared 

spectrum of absorbance of the samples. The goal of FT-IR was to compare the spectra 

unmodified Zeolite Y with those coated with ETS, HTS, and OTS. The machinery used was a 

Burker Vertex 70 instrument on the attenuated total reflectance (ATR) setting. For FT-IR 

ATR, there was no pretreatment of the samples required. First, the crystal area was cleaned 

with acetone and Kim-wipes in preparation for the 15 minute background scan.  This 

background was taken to set the baseline for the sample scan. Enough of the zeolite sample 

was loaded on the platform to completely cover the crystal. The anvil was tightened on top 

of the zeolite forcing the sample into the diamond surface. The sample was then scanned for 

1200 scans (approximately 15 minutes). This method was performed for all four treated 

samples of zeolite. Similar to the protocol in the contact angle measurement, the IR spectra 

of the calcined and uncalcined samples were compared to one another.  This was done to 

observe the effect calcination has on zeolite modification. The spectra were viewed using 

OPUS software.   

3.2.4 Thermogravimetric Analysis 

Thermogravimetric analysis (TGA) was used to determine the thermal stability of our four 

modified Zeolite Y samples. A TA Instruments 2950 was used to determine the mass loss of 

organics within the zeolite and on its surface over a temperature range of 20 to 600 °C with 

a heating ramp of 10 °C per minute. A platinum pan was heated with a blow torch for several 

seconds to remove residual organic material on the surface. A small amount of zeolite sample 

ranging from 6 to 20 micrograms was placed in the pan for analysis. Data obtained from TGA 

was analyzed using TA Universal Analysis. TGA was performed to observe mass loss due to 

bound water vapor, water formation due to the decomposition of S-O-H bonds, residual 

solvent, and surface organics in the samples of coated and uncoated zeolite. 
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3.2.5 SEM 

Scanning Electron Microscopy (SEM) images were taken of the ETS-modified, HTS-modified, 

OTS-modified and uncoated zeolite samples at 2500, 5000, 10000, and 25000 times 

magnification using a JEOL JSM-7000F Field Emission SEM. This was performed to observe 

the surface and particle size of the modified and unmodified Zeolite Y samples. A Sputter 

Coater using gold platinum alloy was used because of a lack of conductivity of the samples. 

3.2.6 Nitrogen Sorption 

Nitrogen sorption experiments were run to determine the pore sizes of the three modified 

zeolite samples along with two uncoated zeolite samples using Micromeritics ASAP 2020. 

The first uncoated sample was run through the same coating procedures as the modified 

zeolites with no organosilane added. The second uncoated zeolite was used straight from the 

manufacturer without any alterations aside from being calcined. 

3.3 Diffusion Experiments 

The final experiments conducted were used to measure adsorption of two target molecules 

in the modified and unmodified zeolite samples.  The goal of the diffusion experiments was 

to measure the diffusion coefficients which can be used for future research when using these 

modified zeolites as catalysts. These adsorption experiments helped to understand how the 

alkyl chain lengths of the organosilane coatings affect diffusivity. More specifically these 

experiments were used to determine the adsorption rates of the different modified zeolites. 

3.3.1 Sorption Experiments 

The target molecules used to study the sorption through the zeolite samples were hexanol 

and cyclohexanol. These two molecules were chosen based on their different shapes and 

water solubilites. Both molecules allowed to study the difference in diffusion between a 

straight chain and cyclic chain. Also, the water solubility of hexanol is 5.9 g/L water, while 

the water solubility of cyclohexanol is much lower, at 0.36 g/L water.  With these differing 
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characteristics, the interactions between the zeolite coatings and the different shapes and 

solubilities can be observed. For these experiments, 20 microliters of the target molecule 

were dissolved in 20 mL of isopropanol. This gave a starting concentration of 1mL of target 

molecule per L of isopropanol. To begin the sorption, 0.50 grams of each zeolite sample was 

added to the target molecule and Isopropyl alcohol solution. Each mixture was shaken for a 

5 hour period with samples taken every 5 minutes for the first half an hour, then every half 

hour for the first two hours and then every hour for the last three hours.  Samples were taken 

using disposable sterile syringes equipped and nylon 0.2 microliter in-line filters, which 

ensured that there was no zeolite in the collected sample.  

3.3.2 Gas Chromatography 

To be able to determine the amount of these molecules sorbed into the zeolite, gas 

chromatography (GC) and respective calibration curves for the molecules were used. A Gas 

Chromatograph GC-2010 Plus by Shimadzu was used. The GC was originally set at 30˚C for 

the first 10 minutes, then increased 10˚C per minute until it reached 140˚C after 21 minutes. 

The GC continued to run for a total of 20 minutes. To make the calibration curves, known 

concentrations of the molecules in isopropanol were analyzed in the GC. A linear correlation 

between the response of the molecules on the GC and the concentrations of the molecules 

were found. Graphs of this correlation were created and used to relate the peak response of 

the molecules shown on the GC to their respective concentrations for the rest of the sorption 

experiments. 

To measure how much of the target molecule sorbed into the zeolite samples, the samples 

taken over the 5 hour period were analyzed in the GC. The area of the peak was taken for 

each sample to measure the response of the target molecule left in the sample. Using the 

calibration curves, the concentration of the target molecules left in the sample were 

determined. This amount is what was not sorbed into the zeolite, therefore the amount of 

the target molecule sorbed into the zeolite was determined using the starting concentration 

of 1mL/L. These results were analyzed over time for each treated zeolite sample for both 

target molecules.  
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Chapter 4: Results and Analysis 

The objective of this study was to characterize each of the modified and unmodified zeolite 

samples using different methods. Once it was determined coating was on the surface of the 

zeolite sorption test were run to explain how the alkyl chain length of the organosilanes 

effected the diffusion of alcohols and cyclo-alcohols. The data was analyzed to create 

recommendations on choosing an appropriate organosilane coating for the zeolites.  

4.1 Characterization of Modified Zeolite Samples 

Each sample was characterized using methods earlier described to ensure zeolites were 

coated with the different organosilane agents.  

4.1.1 Oil/Water Emulsions 

The OTS, HTS, ETS-modified and uncoated zeolite samples were put in a toluene-water 

suspension to determine hydrophobicity.  Figure 4.1 shows the zeolites in the toluene-water 

suspensions.  The left two vials show the zeolite samples settling in the water on the bottom 

half of the vial, where the right side of the figure shows the zeolite is in the toluene in the 

upper half of the vial.  These emulsions were a qualitative way to determine if the 

organosilane coatings were sticking to the surface of the zeolite. The concentration of 

organosilane to zeolite was 0.5 mmol/g zeolite.  
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Figure 4.1: Water/Toluene Zeolite Y Suspensions 

These results were expected as the hydrophobicity of the modified zeolites should increase 

with the length of the alkyl chain length of the organosilane. As shown in study in the Journal 

of Catalysis done by Zapata et al, the ETS does not create a thick enough barrier at this 

concentration to prevent water from penetrating the zeolite (Zapata e al., 2013). However, 

increasing the concentration of the ETS covering the zeolite will enhance the hydrophobic 

effects of the coating. The HTS and OTS results confirm our initial beliefs as the alkyl chain 

lengths are long enough to create a suitable barrier against water. 

4.1.2 Contact Angle Measurements 

Figure 4.2 shows the contact angle results of both calcined and uncalcined zeolite samples. 

The unmodified and the ETS modified calcined zeolites were so hydrophilic that the water 

droplet absorbed into the pellet instantly; therefore no image was captured resulting in a 

contact angle of 0°.  The contact angle for the calcined zeolite with HTS and OTS surface 

modifications was 80° and 100° respectively.  As shown in the figure, the OTS modified 

calcined zeolite better repels the water droplet than the HTS; however both are hydrophobic. 

The uncoated uncalcined and the ETS coated uncalcined zeolites are both hydrophilic with 

small contact angles that were unmeasurable using the DROP Image Standard Software. The 
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HTS and OTS modified uncalcined zeolites were extremely hydrophobic with contact angles 

of 123° and 127° respectively.   

 

Figure 4.2: Contact Angle Measurements 

As shown in the figure, uncalcined zeolites have higher contact angles than calcined zeolite.  

During calcination, where the zeolite was put in an oven at 500 °C for 24 hours, the impurities 

and trace organics in the zeolite were burned out.  These results show that burning out the 

trace organics actually decreases the hydrophobicity of the catalyst.  Therefore, these 

measurements show that not calcining the zeolite samples will lead to a higher 

hydrophobicity, as well as confirming that the longer alkyl chain length coatings are more 

hydrophobic. 

4.1.3 Fourier Transform Infrared Spectroscopy  

Fourier Transformation Infrared Spectroscopy (FTIR) was used to confirm that the zeolite 

sample surfaces were coated with the organosilanes. Figure 4.3 shows the general spectra of 

Zeolite Y before modification. The 2700-3100 cm-1 range shows the effects of the coatings 

and the 3700 cm-1 range shows the effects of calcining the samples. 
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Figure 4.3: Complete FTIR Spectra of Zeolite Y 

Figure 4.4 shows the C-H stretching region in the spectra from 2700 cm-1 to 3200 cm-1 

(Zapata et al., 2012). The spectra represents the C-H bonds of the organosilane on the zeolite 

surface. The intensity of each peak varies with the chain length of the organosilane. For the 

ETS-modified zeolite, there is a signal at around 2880 cm-1 and 2890 cm-1. The size of this 

band shows frequencies that would be expected by the dominant methyl groups in the short 

chain of ETS. Of the three functionalized zeolite samples, the ETS signals are the least intense. 

The HTS-modified zeolite has signals that are much more intense than the ETS-modified 

zeolite, and the OTS-modified zeolite has similar signals that are the most intense. Here, the 

bands are at about 2860 cm-1 and 2920 cm-1. These more intense bands show the C-H 

stretching of methylene groups, which are more dominant in longer chains. The uncoated 

sample of the zeolite does not have any intense peaks in this region, showing that its surface 

does not contain an alkyl group that are present in the modified zeolites. Comparing these 
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four spectra confirms that the each sample of zeolite had a successfully modified surface by 

the organosilanes.  

 

Figure 4.4: FTIR Spectra of coated zeolite samples comparing C-H stretching 

Because we noticed the difference in hydrophobicity between the calcined zeolite samples 

and the uncalcined zeolite samples when measuring the contact angles, we also used FTIR to 

characterize the zeolite samples that had not been previously calcined. This spectra is shown 

in Figure 4.5. Comparing the spectra over the same range of 2700 cm-1 to 3200 cm-1 shows 

the same intense peaks for the modified zeolite samples, and the lack of intense peaks for the 

uncoated samples. This means that calcining the samples affected the zeolite to make it less 

hydrophobic, rather than an inconsistent coating procedure. 
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Figure 4.5: FTIR Spectra of uncalcined zeolite samples comparing C-H stretching 

Figure 4.6 shows the spectra at 3700 cm-1 which shows O-H bonds on the surface. This 

spectra compared the uncoated calcined zeolite sample to the uncoated uncalcined zeolite. 

Figure 4.6 shows a reduction in surface O-H groups between the calcined and uncalcined 

zeolites. The intensity of the peaks of the uncalcined samples are more intense than the peaks 

of the calcined samples. Therefore, these results show that the calcination burned off some 

of the O-H groups that were on the zeolites, which explains the difference in the 

characteristics between the calcined and uncalcined zeolites.  
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Figure 4.6: FTIR Comparing Uncalcined and Calcined Zeolites 

4.1.4 Thermogravimetric Analysis  

The thermal loss of the modified zeolite samples was measured using a TA Instruments 2950 

thermogravimetric analyzer. In the 20°C - 200°C range, all samples experience moderate 

weight loss of 1-2%. This can be attributed to the loss of absorbed water molecules and other 

surface adsorbed species. Over the temperature range from 250°C to 600°C the modified 

zeolites experience further weight loss ranging from about 2% mass of the ETS-modified 

zeolite to about 7% weight loss for OTS-modified zeolite, shown in Figure 4.7. This weight 

loss consistent with vaporization of the organic coatings. At the higher temperatures, the 

difference in weight loss can be attributed to the difference in mass of the three organic 

coatings, as the ETS-modified zeolite loses less than the HTS-modified zeolite, which loses 

less than the OTS-modified zeolite. Only the ETS-modified zeolite follows the same weight 

loss pattern as the uncoated zeolite sample from the 20°C to 250°C temperature range. The 

HTS-modified sample experienced a lower weight loss during this lower temperature range 

whereas the OTS-modified sample experienced a larger weight loss. This may be due to 

different room and atmospheric humidity during the times when the modified zeolites were 
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created, stored, and analyzed. Further measurements are needed to determine if this is an 

effect of the coating or simply an anomaly in the data.  

 

Figure 4.7: Thermogravimetric Analysis of Zeolite Y samples from 100°C-600°C 

4.1.5 Nitrogen Sorption 

Figure 4.8 shows the amount of nitrogen absorbed by each zeolite sample over the pressure 

range of 0mmHg to 700 mmHg. The graph shows a significant higher amount of nitrogen 

absorbed by the uncoated zeolite sample. As the alkyl chain length of the coating increases, 

the amount of nitrogen absorbed by the sample decreases. This is because the pore sizes 

become smaller with increasing alkyl chain length of the coating. These results coincided 

with previous studies performed by Zapata et al in the Journal of Catalysis, showing an 

increase in pore blockage with an increase in chain length of the modified zeolite (Zapata et 

al., 2013). Pores may become blocked by the larger coatings due to thickness of coating. 

Specifically, the longer alkyl may wrap back into adjacent pores, blocking access.  
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Figure 4.8: Nitrogen Sorption data of zeolite samples from 0 -700 mmHg 

Table 4.1 shows the calculated pore size, BET surface and total pore volume from the 

nitrogen sorption. 
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Table 4.1: Nitrogen Sorption Analysis 
Sample Pore Size 

(nm) 
BET Surface 

(m²/g) 
Total Pore 

Volume (cm³/g) 
Uncoated Treated 2.97 688 0.510 
ETS 2.99 555 0.414 
HTS 3.00 527 0.395 
OTS 3.13 522 0.408 

 

4.1.6 Scanning Electron Microscopy  

Figure 4.9 shows the zeolite samples magnified 10000 times, other images can be found in 

the Appendix. The images obtained from SEM alone are inconclusive in terms of 

differentiation. However using the J Image program we were able to estimate the average 

particle size. Coated and uncoated zeolite produced particles of a nearly identical average 

particle size of around 500 nm. These results were expected because the coating should only 

affect the zeolite on a molecular level.  
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Figure 4.9: SEM images of zeolite samples magnified 10,000 times 
 

4.2 Diffusion  

After coating samples of the zeolite and characterizing these coatings, the uptake of two 

molecules through these samples was studied. Two alcohols, hexanol and cyclohexanol, were 

used as the target compounds, which were mixed with isopropanol as a solvent. The total 

amount of the target compounds used was 1 mL. Samples were taken over a period of five 

hours and analyzed with gas chromatography to determine the amount of the target 

compound absorbed by the zeolite sample. 
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Figure 4.10: Amount of hexanol adsorbed over time 

 

Figure 4.11: Amount of cyclohexanol adsorbed over time 
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Figures 4.10 and 4.11 show the amount of hexanol and cyclohexanol adsorbed over the five 

hour period. Looking at these figures within the first 15 minutes shows the relative rate of 

diffusion. In Figure 4.11, the amount of cyclohexanol adsorbed is shown, revealing that the 

rates of diffusion for the four samples are very similar. The main difference in this graph is 

the total amount adsorbed at equilibrium, which happens for most samples at about 30 

minutes. A similar trend is shown in Figure 4.10 with the amount of hexanol adsorbed. The 

uptake rates of the uncoated, ETS and HTS coated samples all have a very similar dynamics 

in the first 15 minutes. However, there is a noticeable difference in the OTS coated sample, 

where both the rate of diffusion and the amount adsorbed at equilibrium is different from 

the other samples. The graph shows a slightly slower uptake rate in the first 15 minutes for 

the OTS coated zeolite sample. 

Figure 4.10 shows that the OTS coated zeolite sample adsorbed the least amount of hexanol, 

adsorbing only 0.5mL at equilibrium. This is what would be expected due to the longer chain 

length of the OTS and the smaller pore volume of this sample. The uncoated zeolite sample 

adsorbed the most amount of hexanol, which also agrees with the idea of the negative 

correlation with the length of the carbon chain on the zeolite surface with the amount of the 

compound adsorbed. The uncoated zeolite sample adsorbed about 0.7 mL at equilibrium. 

However, the amounts adsorbed by the HTS coated sample and the ETS coated sample do 

not agree with this correlation, as can be seen in Figure 4.10, where the HTS coated zeolite 

sample adsorbed a similar amount of hexanol as the uncoated zeolite sample. 

The data in Figure 4.11, which shows the amount of cyclohexanol adsorbed over time, is 

somewhat different than the results with hexanol. Instead, the OTS coated sample adsorbed 

the greatest amount of hexanol over the five hours, absorbing about 0.95 mL at equilibrium. 

Meanwhile, the zeolite with the shortest carbon chain length, ETS, and the uncoated zeolite 

adsorbed the least amounts of cyclohexanol, about 0.7 mL and 0.8mL of cyclohexanol 

respectively. The results of cyclohexanol diffusion were the opposite of what was expected, 

as zeolites with longer carbon chain lengths on their surface adsorbed more over time. 
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To better analyze the amount of target compounds adsorbed by each zeolite sample, the 

percent of available pore space that was occupied by the target compounds was calculated 

using the above values in Figures 4.10 and 4.11, along with the pore volumes shown in Table 

4.1. 

 

Figure 4.12: Percent of available pore volume occupied by hexanol 
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Figure 4.13: Percent of available pore volume occupied by cyclohexanol 

Figures 4.12 and 4.13 offer a better example of how much of the target compounds were 

adsorbed into the available pore space of the zeolite samples. Figure 4.12 shows that while 

the OTS coated sample adsorbed the least amount of hexanol, it adsorbed a similar amount 

in the pore space as the uncoated and ETS coated sample. However, there was a noticeably 

higher amount of hexanol adsorbed into the HTS coated zeolite, where about 3.5% of the 

available pore space was filled with hexanol, compared to the closer range of 2.3% - 2.8% of 

the other three samples. Therefore, this figure shows that there is not a strong relationship 

between the length of the carbon chain on the surface of the zeolite sample and the amount 

of hexanol adsorbed. 

On the contrary, Figure 4.13 supports the relationship between the chain length of the 

coating and the amount of cyclohexanol adsorbed. This graph shows that the sample 

modified with a longer carbon chain length, OTS, adsorbs more cyclohexanol than all other 

samples, showing that about 4.7% of the available pore space was occupied by cyclohexanol. 
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Meanwhile, the uncoated zeolite sample adsorbed the least amount, shown in the graph that 

only 3.2% of the available pore volume was occupied by cyclohexanol. Although this is not 

what would be expected, these data suggests a positive relationship between the carbon 

chain length of the coating on the zeolite and the amount of cyclohexanol absorbed. 

Comparison of Figures 4.12 and 4.13 shows that more cyclohexanol was adsorbed overall by 

the zeolite samples than hexanol. This is not what would be expected since cyclohexanol is 

slightly bulkier than hexanol. An idea that may explain this behavior is that the interactions 

between the O-H group and the zeolite may be stronger with the smaller butanol, hexanol, 

than the larger cyclobutanol, cyclohexanol. However, this idea is undefined and only a 

postulation, but may be worth studying in the future. 

Using the uptake rates within the first 15 minutes as shown in Figures 4.10 and 4.11, the 

diffusion coefficients were found using the following equation: 
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This equation solves for the Fickian diffusion in a sphere, which was assumed to be a good 

representation of the zeolite samples (Crank, 1975). As the time approaches 0, the ierfc 

function also approaches 0. Therefore at this short time, the simplified equation shown 

below is proportional to the uptake rates and can be used to find the diffusion coefficients. 

𝑀𝑀𝑡𝑡

𝑀𝑀∞
= �

𝐷𝐷𝐷𝐷
𝑎𝑎2
�
1/2

 

Where Mt is the amount absorbed at time t, M∞ is the amount absorbed at equilibrium, D is 

the diffusion coefficient, t is time, and a is the particle size. Mt/M∞ was analyzed over time to 

get relative slopes for the diffusion coefficients. 
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Figure 4.14: Amount adsorbed at time t over amount adsorbed at equilibrium to determine 
diffusion coefficients for Fickian diffusion 
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Table 4.2: Diffusion Coefficients for all Zeolite Samples 
Zeolite Sample + Target Compound D/Dhexanol 1011 D (cm2/s) 

Uncoated + Hexanol 1 1.95 
ETS + Hexanol 1.027 2.0027 
HTS + Hexanol 1.017 1.9832 
OTS + Hexanol 0.871 1.6985 
Uncoated + Cyclohexanol 1.0303 2.0091 
ETS + Cyclohexanol 0.992 1.9344 
HTS + Cyclohexanol 1.025 1.9988 
OTS + Cyclohexanol 1.0302 2.0089 

The diffusion coefficient for the uncoated Zeolite Y and hexanol is known to be 1.95×10-11 

cm2/s, which is shown in Figure 4.14 with a bold pink line (Choudhary, 1992). Using the 

slopes of all the lines of the samples shown in Figure 4.14, a ratio of the diffusion coefficients 

to the known could be found, therefore giving approximate diffusion coefficients as shown 

in Table 4.2. As seen in the table, the majority of the samples with the target compounds have 

very similar diffusion coefficients. The ratio of the diffusion coefficients to the known 

diffusion coefficient of the uncoated sample and hexanol mostly range from 0.99 to 1.03. The 

only sample that appears to have a significantly different diffusion coefficient is the OTS 

coated zeolite and hexanol. As shown in the previous figures, the rate of diffusion with this 

sample was slower than the other rates, and this lead to a smaller diffusion coefficient of 

about 1.69×10-11 cm2/s.  

4.2: Uncertainty in Uptake Measurements 

The uncertainty measurement of the adsorption experiments was determined using the 

following equations: 

𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑥𝑥1 + 𝑥𝑥2 + ⋯+ 𝑥𝑥𝑛𝑛

𝑁𝑁
 

∆𝑥𝑥 =
𝑥𝑥𝑚𝑚𝑎𝑎𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑛𝑛

2
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The diffusion experiments were repeated for the uncoated zeolites to determine the 

reproducibility of the data. From this simple statistical analysis, the percent error was found 

and is reported in Table 4.3. 

Table 4.3: Uncertainty of the uptake experiments 
Time Percent error 

hexanol 
Percent error 
cyclohexanol 

0 0 0 
15 42.9 0.537 
30 12.6 0.286 
60 0.244 0.412 
120 0.967 0.367 
180 0 0.157 
240 0.237 0.590 
300 0.331 0.0835 

For the cyclohexanol trials, the percent error is well under 1%, meaning that the trials had 

little variation between them.  Therefore, the results from the uptake of cyclohexanol with 

the zeolite samples should be reproducible. However, the percent error for the hexanol trials 

is much more sporadic.  The error at times 15 and 30 minutes is 42.9% and 12.6% 

respectively. This shows such a wide variation between the trials.  These uncertain 

measurements were during the initial uptake of the hexanol, therefore the initial rate of 

uptake for hexanol was not easily reproducible in this study. However, after 30 minutes, the 

error stays under 1% for the hexanol experiment, meaning these values were much more 

consistent.   

There are many possible sources of error associated with the diffusion experiments. 

Specifically for hexanol, the initial uptake was not accurate. It is possible that there was some 

human error when taking the initial sample during the sorption experiments. It is also 

possible that there was some cross-contamination in one of the trials with the syringe and 

filter used for the sorption experiments. 
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Chapter 5: Conclusions and Recommendations 

After a thorough analysis of the results, the following conclusions and recommendations 

were developed.  First, after characterization the surface modification of Zeolite Y with OTS, 

HTS and ETS was shown to be successful. FTIR spectra showed increased signal intensity at 

the wavelength region of 2800-3000 cm-1 correlating to the increasing chain length of each 

sample. The uncoated sample showed no peaks in the stretch while the intensity grew with 

each of the three coatings. This proved that the methodology for coating the zeolites was 

successful. The contact angle measurement and oil-water emulsion experiments showed 

that the hydrophobicity was increased with modification and more specifically with longer 

alkyl chain length.  The nitrogen sorption results showed that the pore volumes were largest 

for the uncoated zeolite and decreased with increasing alkyl chain length. The continued 

testing of organosilane coatings with longer chain lengths to see if there is a point where the 

coating blocks the pores and inhibits diffusion may provide an interesting study.  

Although the literature claimed to have used calcined zeolites, uncalcined zeolites were 

found to have a higher hydrophobicity. This is shown from the contact angle measurements 

where the uncalcined samples had much higher contact angles. This may be a result of 

calcination where the organic matter and impurities are burned out of the zeolite. Creating 

a zeolite with less sites for the organosilane coatings to adhere to, thus making the calcined 

samples more hydrophilic. To better understand this phenomenon, more research and 

experimentation should be done on the effects of calcination on zeolite properties. In the 

future, sorption experiments should be run on the modified uncalcined samples to compare 

with modified calcined samples.   

With respect to the diffusion experiments, the different coatings did not greatly affect the 

rate of diffusion of the target molecules in the zeolite. However, the equilibrium amount of 

hexanol or cyclohexanol absorbed did vary depending on the coating. In all experimental 

runs, there was more cyclohexanol absorbed than hexanol, which contradicts the hypothesis 

that a more bulky and cyclic compound would not diffuse as easily as an alcohol chain.  
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Sorption of the target molecules occurred rapidly within the first minutes of immersion in 

the zeolite-isopropanol solution and reached equilibrium around ten minutes. The 

methodology used called for samples every 5 minutes for the first half hour of shaking. This 

meant that only the first two samples in the first ten minutes were used to determine the 

rate of diffusion. Because of this limitation, the resolution on the initial rate of diffusion curve 

was poor. In order to get a better understanding of the sorption period, it is recommended 

that these diffusion experiments be repeated using a greater time resolution so that many 

data points may be gathered for this initial period to produce an accurate and clear sorption 

curve. As previously mentioned, a greater amount of cyclohexanol was adsorbed by the 

zeolite samples than the hexanol. Researching possible explanations for this behavior would 

be beneficial to understand the diffusive behaviors of the organosilane coatings. 

Due to time restraints, two target molecules, hexanol and cyclohexanol, were sorbed into the 

different zeolite samples. Additional molecules should be tested to gain a better 

understanding of the interaction of the modified zeolites with different molecular species. 

Testing a wide variety of molecules including alkanes, acids, and molecules of larger and 

smaller sizes is recommended for future experimentation.  
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Appendix A: Additional Data 

 

Figure A.1: FTIR spectra of uncoated Zeolite Y 

 

Figure A.2: FTIR spectra of ETS coated Zeolite Y 
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Figure A.3: FTIR spectra of HTS coated Zeolite Y 

 

Figure A.4: FTIR spectra of OTS coated Zeolite Y 
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Figure A.5: SEM images of Zeolite Y samples magnified 2500 times. (A is Uncoated, B is ETS-
modified, C is HTS modified, D is OTS modified.) 
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Figure A.6: SEM images of Zeolite Y samples magnified 5000 times. (A is Uncoated, B is ETS-
modified, C is HTS modified, D is OTS modified.) 
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Figure A.7: SEM images of Zeolite Y samples magnified 25000 times. (A is Uncoated, B is ETS-
modified, C is HTS modified, D is OTS modified.) 
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Figure A.8: Gas Chromatography calibration curve for hexanol 

 

 

Figure A.9: Gas Chromatography calibration curve for cyclohexanol 
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Table A.2: Gas Chromatography data for uncoated Zeolite Y and Hexanol 
Time 

(minutes) 
GC Peak 

Area 
Amount Left 
in Solution 

(mL) 

Amount 
Adsorbed 

(mL) 
0 0 1 0 
15 6699906 0.3274 0.6726 
30 6898982 0.3329 0.6671 
60 6277713 0.3156 0.6844 
120 6939475 0.334 0.666 
180 5968681 0.307 0.693 
240 6086289 0.307 0.693 
300 5921876 0.3103 0.6897 

 
Table A.2: Gas Chromatography data for uncoated Zeolite Y and Cyclohexanol 

Time 
(minutes) 

GC Peak 
Area 

Amount Left 
in Solution 

(mL) 

Amount 
Adsorbed 

(mL) 
0 0 1 0 
15 17605643 0.1853 0.8047 
30 18765650 0.1984 0.8016 
60 18357558 0.1938 0.8062 
120 19526887 0.2069 0.7931 
180 18357023 0.1938 0.8062 
240 19333391 0.2048 0.7952 
300 19846374 0.2105 0.7895 

 
Table A.3: Gas Chromatography data for ETS coated Zeolite Y and Hexanol 

Time 
(minutes) 

GC Peak 
Area 

Amount Left 
in Solution 

(mL) 

Amount 
Adsorbed 

(mL) 
0 0 1 0 
15 10203573 0.4249 0.5751 
30 10598752 0.4359 0.5641 
60 10094728 0.4218 0.5782 
90 10895693 0.4441 0.5559 
120 12617048 0.492 0.508 
180 11733854 0.4674 0.5326 
240 11019953 0.4476 0.5524 
300 11315474 0.4558 0.5442 
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Table A.4: Gas Chromatography data for ETS coated Zeolite Y and Cyclohexanol 
Time 

(minutes) 
GC Peak 

Area 
Amount Left 
in Solution 

(mL) 

Amount 
Adsorbed 

(mL) 
0 0 1 0 
15 26339135 0.2837 0.7163 
30 23786923 0.255 0.745 
60 26225479 0.2824 0.7176 
120 25070253 0.2694 0.7306 
180 26607957 0.2868 0.7132 
240 26246188 0.2827 0.7173 
300 26607762 0.2868 0.7132 

 
Table A.5: Gas Chromatography data for HTS coated Zeolite Y and Hexanol 

Time 
(minutes) 

GC Peak 
Area 

Amount Left 
in Solution 

(mL) 

Amount 
Adsorbed 

(mL) 
0 0 1 0 
15 6598005 0.3245 0.6755 
30 6241925 0.3146 0.6854 
60 6846065 0.3314 0.6686 
90 6604839 0.3247 0.6753 
120 7279064 0.3435 0.6565 
180 6564389 0.3236 0.6764 
240 6706790 0.3276 0.6724 
300 7170779 0.3405 0.6595 

 
Table A.6: Gas Chromatography data for HTS coated Zeolite Y and Cyclohexanol 

Time 
(minutes) 

GC Peak 
Area 

Amount Left 
in Solution 

(mL) 

Amount 
Adsorbed 

(mL) 
0 0 1 0 
15 11670713 0.1184 0.8816 
30 11421986 0.1156 0.8844 
60 11587044 0.1175 0.8825 
90 11812357 0.12 0.88 
120 11099755 0.112 0.888 
180 11473816 0.1162 0.8838 
240 11348497 0.1148 0.8852 
300 11452932 0.1159 0.8841 
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Table A.7: Gas Chromatography data for OTS coated Zeolite Y and Hexanol 
Time 

(minutes) 
GC Peak 

Area 
Amount 
Left in 

Solution 
(mL) 

Amount 
Adsorbed 

(mL) 

0 0 1 0 
15 15558708 0.5739 0.4261 
30 13077645 0.5048 0.4952 
60 13802408 0.525 0.475 
120 13397904 0.5138 0.4862 
180 12728365 0.4951 0.5049 
240 13298709 0.511 0.489 
300 13060618 0.5044 0.4956 

 
Table A.8: Gas Chromatography data for OTS coated Zeolite Y and Cyclohexanol 

Time 
(minutes) 

GC Peak 
Area 

Amount 
Left in 

Solution 
(mL) 

Amount 
Adsorbed 

(mL) 

0 0 1 0 
15 6874310 0.0643 0.9357 
30 7372474 0.0699 0.9301 
60 6944271 0.0651 0.9349 
120 7140086 0.0673 0.9327 
180 7002864 0.0658 0.9342 
240 6706865 0.0624 0.9376 
300 7373358 0.07 0.93 
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