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Abstract
 Invasive noxious weeds pose a significant economic and

environmental threat to Victoria, Australia. This is especially
the case in Hume City, where environmental and agricultural

productivity is important. Our project aided Hume City
Council in developing an artificial intelligence (AI) and drone-

based protocol to automatically detect and map weeds to
help monitor the spread of weeds over time. The data

gathered from the analyses completed as a part of this study
will allow Hume to enforce and adapt their weed control

strategies, helping them combat noxious weeds throughout
the municipality. Through social context assessment, analysis

of existing solutions, and comprehensive experimentation
with weed mapping conditions, we developed a protocol and
a base set of AI tools to form the backbone of the Council’s

weed monitoring program.
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Executive 
Summary

    Invasive species of weeds are a
serious threat to landscapes in
Victoria, Australia. These noxious
weeds are disruptive to the
environment and animals that
inhabit it. With their ability to
spread with ease, they increase the
risk of bushfires, can harbor pests
and disease, and interrupt the
natural processes of native flora
and injure wildlife that grazes on
these weeds. The municipality of
Hume, which begins just 15 km
outside of downtown Melbourne,
has been particularly vulnerable to
noxious weeds due to the large
area of green space encapsulated
within the city. The presence and
spread of these noxious weeds,
specifically Serrated Tussock and
Artichoke Thistle, is one of the
biggest challenges that Hume’s
rural community faces.
     

    To address this problem, Hume
City Council (HCC) wants to
encourage and enforce the
treatment of these noxious
weeds. However, they require a
reliable and efficient method of
identifying and mapping weed
hotspots to begin with. Our
project aimed to test methods
for an artificial intelligence (AI)
based weed mapping protocol
that Hume City Council can
employ to map invasive weeds,
which will allow the council to
measure the effectiveness of
their weed control measures
over time and help enforce
treatment of weeds on private
lands. Working with HCC’s
sustainability team, we pursued
four key objectives that helped
us to accomplish our goal.

Figure ES-1. Hume City Council’s map of artichoke
thistle (red) in the rural areas of Hume.
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Figure ES-1. Hume City Council’s map of artichoke
thistle (red) in the rural areas of Hume.
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 Assessing the Social Context of
Weeds    
     Our first objective was to assess
the social context involved in the
weed compliance program, through
the use of causal research, focus
groups, and archival research. During
an informal discussion with a HCC
Rural Officer we discovered that
neglected weeds can spread to
neighboring properties, sparking
disputes among neighbors due to the
substantial expenses associated with
treating and managing the weeds.
The focus group we conducted led to
an understanding that HCC has not
begun enforcement in the weed
compliance program and is focused
on the goal of being able to detect
the noxious weeds on properties.
Lastly, from exploring the different
documents in the HCC shared
Microsoft folder, an understanding
of the drone laws was built with the
laws of drones cannot exceed over
120 meters, has to fly 30 meters over
humans, and 5.5 kilometers away
from airports (“no flight zones”).

Exploring Effective AI-based Methods of
Weed Detection
      Our second objective was to explore
effective AI-based methods conducted by
neighboring organizations through
archival research and personal
communication lines. During the research
process, we found that the technology is
relatively new to Australia yet three
distinct types of organizations are
utilizing it. Firstly, there are private firms
such as SingleShot, which have developed
and patented AI-driven weed mapping
technology. These firms offer services for
land surveying and weed detection,
capable of pinpointing weeds as small as
a cork and plotting their GPS coordinates
for treatment. The company does have
the resources to treat the weeds the same
day through sprayer attachments on the
drone or the drone sends the coordinates
to a tractor that will drive sound the land
spraying the weeds. The second category
comprises academic institutions, notably
Central Queensland University and the
University of Queensland, Australia.

Figure ES-2. Weed seeds from an unmaintained
property blown onto a maintained property

Figure ES-3. Image of software program used by
SingleShot to map their drone



Figure ES-1. Hume City Council’s map of artichoke
thistle (red) in the rural areas of Hume.
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Figure ES-2. Weed seeds from an unmaintained
property blown onto a maintained property

Collecting and Processing Field Imagery to
Train Different AI Models
     Our third objective involved collecting
and processing field imagery to serve as
training data for the different AI models
offered by GIS. To accomplish this
objective, we conducted geographic
sampling through the use of drones that
collected aerial imagery of various
landscapes throughout Hume. During data
collection, we documented multiple
environmental factors influencing the
imagery, such as time of day, light
conditions (including sun and cloud cover),
wind speed, terrain characteristics (such
as hills or flat terrain), and the vegetation
composition, including weed-to-native
flora ratios and specific weed species
present. Another important aspect of our
data collection was leveraging the
automatic flight planning system available
on HCC’s DJI Air 2S drone. This program
enabled us to highlight geographic areas
and customize image parameters,
including camera height, gimbal angle, and
image overlap percentage. With this
information, the DJI drone’s software was
able to calculate a flight path that would
take images at predetermined intervals.
This drone program provided us with the
necessary field imagery to train our AI
models effectively.

    These universities have
gathered a group of professors
with backgrounds in computer
science related fields and have
developed two-year programs
for software development, data
training, along with field studies.
The universities are extremely
protective over this information
because they have not
produced any published reports
at this time. Lastly, local
governments constitute the last
category, although their noxious
weed problems are
comparatively less intense.
Although they lack the
specialized technology, our
group conducted an interview
with a member of Whittlesea
Council where our group was
pointed in the direction of third
party software that can allow us
to stitch our images more
accurately and quickly.

Figure ES-4. Flight path generated by DJI
Air 2S software that includes image
intervals Figure ES-5. Flight path generated by DJI Air 2S software to

demonstrates the full flight path



Figure ES-1. Hume City Council’s map of artichoke
thistle (red) in the rural areas of Hume.

viii

Figure ES-2. Weed seeds from an unmaintained
property blown onto a maintained property

Figure ES-4. Flight path generated by DJI
Air 2S software that includes image
intervals Figure ES-5. Flight path generated by DJI Air 2S software to

demonstrates the full flight path

Testing DIfferent AI Models to
Determine the Highest Performing
Model 
     Our fourth objective entailed
training our own custom machine
learning models using ArcGIS, and
evaluating our trained models to
measure their effectiveness at weed
detection. This objective was
achieved by generating an
orthomosaic image—a composite
image stitched together from drone-
captured images—to establish a
training dataset using the imagery
obtained in objective three. 

We iterated on several model
architectures, but eventually trained
two YOLOv3 object detection models
(one for Serrated Tussock, and one for
Artichoke Thistle). We tested these
models against various different
properties with various levels of weed
infestation, and explored each
model’s strengths and weaknesses by
analyzing the weeds the models
predicted correctly, the weeds they
did not detect, and the weeds that
were detected but misclassified. One
such property we analyzed is shown in
figures ES-6 and ES-7. Ultimately, we
determined that while our initial
machine learning models produce
errors (as all AI models do), they
display a high accuracy given the
small size of our training dataset. We
determined that an AI-based weed
monitoring approach can be viable at
scale, and we provided further
methods and recommendations to
improve on our work.Figure ES-6.  Property with artichoke thistle

and serrated tussock

Figure ES-7a & ES-7b. The model’s predicted artichoke thistle outputs (light green), and
serrated tussock outputs (pink). Missed weeds are outlined in red boxes, and vegetation
that was mistaken as Tussock is dark red.



Figure ES-1. Hume City Council’s map of artichoke
thistle (red) in the rural areas of Hume.
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Figure ES-2. Weed seeds from an unmaintained
property blown onto a maintained property

     Upon completion of our project, we had multiple recommendations for
Hume City Council to continue building on the team’s work. It is
important to understand the social context regarding such a program,
which is why we recommend conducting interviews with landowners to
further comprehend their thoughts and apprehensions on using AI, and
to strengthen lines of communication between Council officers and the
general public. Additionally, questions regarding landowner data privacy
may arise regarding who will have access to their data, and what will be
done with it. Regarding the technical aspects of this project, there will
likely always be errors that arise with the use of AI for weed detection. As
a result, we recommend HCC to continually improve on our base models
by training on a wider variety of training data under different weather
conditions and different stages in the weeds' lifecycles. We further
recommend human supervision to catch errors throughout deployment
of models, and to provide methods of communication for landowners to
HCC in case of errors. We finally recommend using supplementary
hardware and software to increase model accuracy and cut down on
processing time. For example, through use of multispectral imagery to
improve model accuracy or exploring additional computing resources,
the AI-based protocol we developed will be easier to scale for use across
the entire municipality. 

     It is evident that the increasing presence of noxious weeds in Hume is
harmful to the environment, and poses an economic burden on those
who are tasked with managing them. Making use of AI technology with
aerial imagery to map weeds can help HCC enforce and adapt their weed
management strategies as needed to effectively combat noxious weeds
throughout the municipality.

Figure ES-8. Photograph of land in Hume with a scattered presence of noxious weeds.
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                    Introduction

      Invasive weed species have been taking over the landscape in Victoria,
Australia. These weed species (which we will refer to as “noxious weeds”) are
known to be disruptive to the environment, and are easily spreadable. They harm
native flora by consuming space, light, water, soil nutrients and pollinators.
Noxious weeds also endanger the public, as they interfere with fire protection,
harbors pests and diseases, and spoils crops (Hume City Council, n.d.). As a result
of…, Australian grain growers have lost ~$3.5 billion (AUD) within one year
(Australian Broadcasting Corporation, 2017)

      Noxious weeds have been rapidly spreading particularly in Hume city, a
municipality in the northern Melbourne metropolitan region which is largely
covered in agricultural lands, both private and publicly-owned. Recently, the
Hume City Council (HCC) has instituted a new local law known as the Weed
Compliance Program that requires landowners to manage noxious weeds on their
private property to avoid being fined. While the new program provides a basis for
managing weeds, HCC currently lacks the ability to monitor the spread of these
weeds.

      Previously, the council has mapped the locations of noxious weeds in a
laborious fashion, which involved officers manually mapping weeds by foot on the
ground or by manually viewing airplane imagery. HCC desired to automate this
process, namely by using drones to capture images of land from above and
artificial intelligence (AI) to detect and label weeds. AI use in agricultural settings
(particularly in weed detection) is still an emerging field - while drone imagery in
combination with AI-based classification is increasingly used in large commercial
farming applications, it is still an emerging technology for municipal governments.
Much of the commercial work is proprietary, meaning details on existing
successful implementations may be rare. However, the potential time and
accuracy gains achievable through an automated process made this a desirable
approach to pursue.
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     Our project goal was to test methods for an AI-based weed mapping protocol
which Hume City Council can employ to map different species of weeds, which
will allow the council to measure the effectiveness of their weed control program
over time. As a group, we have worked closely with the Council’s sustainability
team, building on their ongoing efforts to construct a weed monitoring method by
using AI. We have achieved our goal by following four objectives: (1) assess the
social context surrounding the noxious weeds in Hume; (2) explore the state of AI
mapping technologies in the surrounding area (particularly around Hume) which
the HCC can reasonably replicate; (3) collect and process training data for the
artificial intelligence weed detection models; and (4) test several models on
unseen imagery, and identify the most viable high performing models. This
process has allowed us to test different weed detection and mapping systems for
HCC. To improve the efficiency of the previous approach, we have determined
standardized AI-based procedures to map and monitor weed locations. This
procedure has allowed us to establish an approach which will allow HCC to map
weeds at regular time intervals and compare the data to determine the
effectiveness of their weed control methods.

Figure 1. Noxious Weeds on Agricultural Property
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                     Background

Noxious Weed Overview

     Australian landscapes have been geographically isolated from the evolution of
plants on other continents since the split of Pangea about 200 million years ago.
As a result, Australian landscapes are left vulnerable to invasion by species from
elsewhere (Cullen et al., 2023). There are various ways for seeds to travel to and
throughout Australia. For instance, both aquatic and land weeds can travel on the
bottom of boats that travel to Australia from surrounding areas. As a result, these
weeds may arrive on shore, where their seeds are dispersed by human movement.
Many weeds are also able to spread their seeds through the wind and by human
travel or animal travel. It has been noted by a HCC officer that Hume has a greater
volume of weeds compared to neighboring municipalities. The HCC officer has
also noted that a large portion of the rural areas of Hume are infested with either
Serrated Tussock, Artichoke Thistle or both (J. Thompson, 2024).

    This chapter provides an in-depth background on the noxious weeds spreading
across Victoria, particularly in the city of Hume. These invasive weeds have the
ability to negatively affect crop growth, livestock, and the health of humans in the
area. We examine the ways the seeds of these invasive species are spread, how
they affect the landscape and landowners, and some of the most promising
methods of monitoring these weeds. This chapter will also cover tools that are
used in automated weed monitoring, including AI models, software to visualize
weed locations on a map, and machine learning.
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     Serrated Tussock (Nassella Trichotoma),
Figure 2, is a weed of interest for Hume City
Council, as it is widespread due to its ability to
spread several kilometers in the wind, and even
farther when attaching to humans (Department
of Jobs, 2023). Serrated tussock is a perennial
tussock-forming grass that grows in dense
clumps. Due to its diffused and fibrous roots,
serrated tussock has a long lifespan. Dense
infestations of this weed can pose a serious fire
hazard with a recorded burn intensity of up to 7
times greater than native grasslands. Serrated
tussock is so problematic because its seed
production is abundant; a hectare of dense
tussock growth can produce more than 2 tons
of seed annually. Larger weeds can produce
100,000 seeds a year, which can remain
dominant in the soil for over 15 years
(Department of Jobs, 2023).

     Artichoke Thistle (Cynara Cardunculus),
as seen in Figure 3, is the second weed of
interest for the HCC. This weed can extend
its roots up to 8 feet underground, which
allows it to keep water for itself long after it
rains (Los Angeles Times, 1998). The plant’s
twisty branches also prevent sunlight from
reaching other plant species that are native
to the area. This weed also tends to grow
long thorns on its stem which will pierce
whatever may come across it. Its seeds
easily travel in the wind, where they can
move up to 20 meters from the original
plant. Livestock, birds, and human clothing
all also have the ability to transport the
seeds to other landscapes, which further
increases the surface area they cover
(Department of Jobs, 2023). 

Figure 2. Serrated Tussock

Figure 3. Artichoke Thistle
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Weed Monitoring and Mapping Tools

     For weed detection, HCC’s goal is to use artificial intelligence to automatically
classify a plot of land as either: containing one of the targeted noxious weed
species, or not containing any noxious weeds. One subclass of AI models, Machine
Learning (ML), was found to be useful by other organizations utilizing AI in our
research . Machine Learning models strive to learn some pattern or behavior from
various examples given during a “training” phase (MIT, 2021). For example, if one
were to create a model to identify any weeds present in a given image of some
agricultural land, training a model would entail feeding it hundreds of images
(potentially more) along with the corresponding ground truth labels, which dictate
whether or not a particular image contains a targeted weed species. Over a
model’s training cycle, it consumes an image, makes a prediction, compares this
prediction with the image’s corresponding ground truth label, and adjusts its
parameters (“learns”) as necessary. After training, ML models are typically tested
on data that was not used during training to evaluate their accuracy and potential
faults (MIT, 2021).

     Machine Learning models have proven to be effective in agricultural
applications. In addition to aerially captured imagery, ML is already being used for
several different agricultural purposes, including detection of diseases in food and
monitoring of plant water levels, among other things (US Dept. of Agriculture).
Specifically, researchers have been attempting to apply this technology to weed
detection, aided by computer vision and machine learning techniques. Bullock et
al. (n.d.) mounted a camera on a drone, and trained a Convolutional Neural
Network (CNN) - a type of ML model - based on training data taken from the drone
at different altitudes. They trained models with three different data processing
methods, and the model with the highest accuracy correctly detected the
presence of weeds in 97.1% of the training images (Bullock et al., 2019).
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    Automatic weed detection is still relatively new in Australia's technology scene,
however some programs are developed and possibly outperform Bullock et al.’s
model when put in the field. When using an image-capturing drone, ML models
(both existing and self-trained) can be used to process thousands of images,
identifying which of them have weeds. Based on the location of the image taken,
this information can be used to build a complete geographic profile of weed
locations. It is important to note that there are other approaches for AI-based
image classification, but ML approaches seem feasible due to our time and
resource limitations.

    HCC had already used Esri’s ArcGIS software to visualize geographic weed
hotspots. ArcGIS gives users powerful computational capabilities, which include
both image processing and map visualization. The software’s map visualization
features have allowed HCC officers to manually construct a map of Artichoke
Thistle weeds around Hume city using data collected from their manual inspection
approaches, which can be seen in Figure 4. In this figure, the red zones depict lands
that contain noxious weeds. ArcGIS also provides AI models, which can be used in
conjunction with its mapping capabilities to develop an efficient and automated
approach to detect weeds on land properties. 

Figure 4. Hume City
Council’s map of
artichoke thistle
(red) in the rural
areas of Hume.
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Relevent Examples of AI-based Weed Detection

    Other government organizations across the world have implemented AI based
weed detection and mapping softwares into their own weed monitoring programs.
As weed monitoring programs have been recently being developed, these
initiatives are included within emerging research where science is always
advancing and efforts are starting to be applied in land management programs. 
 
    Regarding automatic weed detection, the Australian government had funded
the Centre For Invasive Species Solutions for the development of the WeedScan
app. “WeedScan is powered by a CSIRO AI identification model trained on more
than 120,000 weed images and tested across Australia by scientists, farmers,
community groups, agronomists, rangers, weeds and natural resource
management officers'' (CISS, 2023). Central Queensland University has also
implemented a two year plan where research teams will use light-weight drones to
capture ultra-high-resolution images of weeds that will be processed to create
GPS locations (CQU, 2023).     

    The Oregon Department of Agriculture
draws data from even more sources,
resulting in a comprehensive map of
noxious weed locations. The government
uses an ArcGIS-based tool called
WeedMapper (Figure 5), which plots the
locations of noxious weeds across the
state. It displays data drawn from
individual reports of weed locations, and
from the online tracking tool iMapInvasives
(ODA, 2020). Though this data is mainly
collected through manual crowdsourcing
approaches, this application presents a
way to use spatial data on multiple
different noxious weed species, which has
been useful while constructing HCC’s
monitoring program.

Figure 5. The WeedMapper tool, showing locations of
noxious weeds (Oregon Dept. of Agriculture)
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                   Methodology

Assess the social context surrounding the
noxious weeds monitoring program

1.

2. Explore AI-based methods of automatic
weed detection used by other organizations

3. Construct a data sampling protocol, and
collect training data for the AI weed detection

models

4. Train and test AI models on collected data,
and identify strengths, weaknesses, and next

steps

    The goal of this project was to test different weed detection and mapping
strategies, which will allow the council to measure the effectiveness of their weed
control enforcement strategies over time. To allow for continued development
and implementation of the Weed Compliance Program we have compiled our
findings to a document which HCC will use to advance their weed monitoring
systems. To construct our weed mapping approach, we determined appropriate
AI-based weed detection tool(s) that align with HCC’s current resources to be used
in conjunction with GIS’ mapping capabilities to build a mapping protocol that may
be repeated over regular time intervals in the future. We completed four main
objectives to achieve this goal:
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Objective One: Understanding the social context and
the needs and interests of relevant stakeholders
regarding the noxious weed monitoring program

HCC’s weed
monitoring program

Landowner’s
Perspective Drone Regulations

    Our group’s first objective was to understand important aspects of the social
context for introducing an AI and drone-based approach to weed monitoring. This
objective involved learning about HCC’s weed monitoring program, drone
regulations, privacy laws, and the view of landowners about noxious weeds. 

Sustainability Team

    To start off our social context research, we
had to understand HCC’s current weed
monitoring program and what they hoped for
us to accomplish. With the use of a focus
group, we met with HCC officers to learn
about the Weed Compliance program. Focus
group questions, found in Appendix A, helped
us gain an idea on what weed monitoring
methods have been tried and what has or has
not worked so far. Throughout the whole
duration of this project, our team was
accompanied with HCC sustainability team
members including the weed compliance
manager who contributed to numerous
helpful conversions regarding our research.
By discussing HCC’s past monitoring
methods, we were also able to grasp a better
understanding of HCC’s resources for
monitoring noxious weeds.

Rural Officers

Weed Program Officers

09



    To continue our research with the social context of this project, we had to
understand the effect of the noxious weeds on a social and environmental level.
By casually chatting with a HCC officer, we were able to learn about the extent to
which noxious weeds have affected Australia's lands. The knowledge learned from
casual conversations all term, allowed us to understand the motivations behind
the Weed Compliance Program and the impact of these noxious weeds on
Australian landowners. The combination of the focus group and the chatting
allowed us to recognize the effect of the noxious weeds on a social and
environmental level and how these insights could inform the implementation of
an AI and drone-based approach. 
 
     To finish our social context research we had to understand the legal abilities of
intaking drone footage. We conducted research on privacy laws and drone
regulations to ensure that our work would not be a breach of privacy. The HCC
officers have been able to clearly define any problems that would have occurred
regarding privacy breaches due to data collection and accessibility. Reliable
resources have been provided to us which describe the drone regulations of our
data collection and privacy laws that keep landowners safe from privacy aspects.
This research allowed us to gain more consideration of ethical and legal
dimensions in implementing an AI and drone-based weed monitoring system.
Understanding privacy laws and drone regulations was pivotal in ensuring that
our approach aligns with legal frameworks, and safeguarding the rights and
privacy of individuals. The insights gathered from the HCC officers provided
clarity on potential issues related to data collection and accessibility. This
comprehensive understanding of the legal aspects surrounding our project did
not only ensure ethical practices but also established a framework that creates a
sense of confidence in our AI and drone-based weed monitoring framework.
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Objective Two: Explore AI-based methods of automatic
weed detection used by other Organizations

    Our second objective was to explore effective methods of weed detection or
related technology used by other organizations which the HCC could explore and
replicate in their own monitoring program. Other councils around Hume were
given special consideration, since their agriculture landscape is likely to be similar
to that of Hume, and connections between the HCC officers and surrounding
governments had been helpful in obtaining tools and information. We particularly
focused on Agencies that use AI-based methods in their monitoring programs.
 
    To meet this objective, we performed detailed case study research on
surrounding governments’ such as Whittlesea Council AI-based methods, along
with the current two year program in place at Central Queensland University. We
specifically explored drone camera specifications (e.g. what drone model they use,
which spectral bands are used, etc.), image sampling protocols for training and
testing, the software and algorithms used for training models and weed
classification, and how effective their models are. Our team had tried reaching out
to these programs and had gotten in touch with some of the representatives
briefly, but was unable to set up a zoom meeting. We also obtained administrative
details regarding any legal barriers, staff and expertise needed to manage the
program, and the overall purpose of their specific program.
 
    Our group analyzed the different methods used by these programs and assessed
which methods were the most promising and practical to test, given the
regulations and resources determined from objective one. If it was realistically
available, we tested off-the-shelf applications that have been utilized by other
organizations or solo practitioners. To better understand the methodologies along
with their steps of implementation, we interviewed a member of Whittlesea
Council in an informal manner resulting in better conversation flow and more time
to explore third party softwares which allowed us to gain specialized information
to help implement them in Hume.

Private Firms Academic Institutions Local Governments
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Objective Three: Construct a data sampling protocol, and
collect training data for the AI weed detection models

    Our third objective was to collect and process field imagery to be used as input
data for the ML models we trained. To complete this objective, we performed
geographic sampling, which involved capturing field imagery across various
locations around Hume along with any needed metadata (e.g. location) using drone
images from the DJI Air 2S drone provided by Hume City Council. Along with our
sampling, we documented different environmental conditions of our field days. 

     Before we did this, it was important to first develop a sampling protocol to
eliminate data bias and abide by the law. Our sampling locations were decided with
respect to variety in weed density (e.g. no weeds present vs. low presence of weeds
vs. high presence of weeds), the mechanism used to capture this data (e.g. drone
camera, satellite imagery, etc.), the terrain the data collection occurred on, and the
time of day and weather conditions under which to capture images
(NIST/SEMATECH, 2012). Once enough imagery was collected, we cleaned, labeled,
and separated it as necessary to construct a training, validation, and test dataset
for the models we evaluated.

    While working in agricultural fields, it
is essential to prioritize personal
protective equipment (PPE) as the
presence of noxious weeds can pose
various health risks. The lands we have
explored contain potentially hazardous
nature factors such as invasive plant
species that pose health risks through
contact or inhalation (Department of
Health). Our specific PPE included
wearing sturdy work boots, long socks
and thick pants. An image of the group’s
PPE can be viewed in Figure 6. The
combination of this set of PPE kept us
safe from any sharp plants as well as
any harmful wildlife, such as a
venomous snake. By prioritizing the use
of PPE, individuals can safeguard their
health and well-being while navigating
through the Australian environments.

Figure 6. Group Members Kimberly Huang(left) and
Mia Gilmore(right) wearing proper PPE
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Date of Field Day

    A typical day out in the field would consist of HCC representatives flying the
drone with the guidance of WPI team member Vivek Voleti. WPI team member,
Jake Bowen, was in charge of keeping track of the parameters of the testing day
in an excel sheet. WPI team members Kimberly Huang and Mia Gilmore were in
charge of documenting environmental conditions and surveying the land by
foot. The documented environmental conditions led to a set list of parameters
such as light conditions, terrain type, weed sparsity, and more

Time of day

Light Level

Wind Speed

Image collecting height

Sample Type

Figure 7. Agricultural lands 
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Objective Four: Train and test AI models on
collected data, and identify strengths,

weaknesses, and next steps

     Our last objective was to test all trained models on imagery not used to train
the model, and evaluate the models to find which performs the best. To
accomplish this, we established a testing dataset, by separating a portion of the
collected imagery from objective three to use specifically for testing. The selected
models were then tested in a controlled field experiment. The controlables we
dictated while collecting data include selecting the terrain type, the density of the
weeds in the area, the time period of data collection, and the height at which the
drone was flown, while the wind speed, and level of sunlight were conditions that
were considered as well.

     Our models were employed against various plots of land not included in the
training set, and we analyzed each model’s strengths, weaknesses, and ways to
improve. This process allowed us to compare the results of our trained ML models
and determine whether or not an AI-based approach was an effective approach
for weed detection. If so, Hume City Council would be able to improve on our base
models and eventually use them to extract locations of detected weeds. We
planned for this standardized procedure to form the basis of the AI-based weed
monitoring program
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                           Findings

    We have obtained data through various sources, including drone imagery and
input from Hume City Council employees. Our findings have consistently
reinforced the notion that noxious weeds have a detrimental impact on the
ecosystem and stakeholders.

Social context in relation to the noxious weeds in
Hume

    In our investigation into the social context surrounding noxious weeds in Hume,
we explored two key areas. Firstly, we explored HCC’s previous approaches
concerning weed detection. Secondly, we navigated the complexities of local laws
and drone regulations to better understand the impacts they had on our research.

Hume City Council’s resources and goals
     Part of our methodology to achieve our goal was to conduct a focus group to
understand HCC’s status with monitoring the noxious weeds. Prior to the on-site
research term, we were aware of the existence of the Weed Compliance program
but was unsure if it had reached its enforcement stage. WPI team members
conducted this focus group on a virtual call with several HCC officers from
different departments ranging from conservation reserves to rural roadside
departments. From this focus group, we determined that HCC essentially does not
have an actionable weed monitoring process - the previous monitoring process
included field officers going out by land and recording by hand the presence of
weeds. The officers claimed that the process has been extremely “time consuming
and laborious, especially with some properties being 100 hectares.” The officers
made it known that at this point they are simply looking for an efficient method for
detecting weeds on a property and that the next step will be to establish a method
to determine the percentage of noxious weeds to native fauna on a property.
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Effects of weeds on
landowners
    Objective one started to understand
the reason why we were conducting this
project in the first place and to see how
landowners are affected by these weeds.
Throughout the term we had casual
conversations with one of our main
sponsors in which we were able to learn
more about the presence of noxious
weeds through his many connections
through landowners and other councils.
We learned that lands that are not
maintained are burdens to their
neighboring lands. With the winds and
movement from animals, weeds scatter
across land fences and end up on the
maintained lands. Figure 8 shows weeds
that had blown from one property to
another. When weeds are not kept up
with, they become a financial burden for
those landowners who treat their weeds.
The noxious weed problem is also
affecting landowners mentally leaving
them to feel like they should give up on
their situation. Essentially, the Weed
Compliance Program is not only helping
the native Australian flora but is also
helping to lower weed costs for
landowners.

Figure 8a&b. Weeds blown to a maintained farm
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Laws and regulations for intaking drone footage
     
     As part of the first objective, one of the first tasks that the group had to conduct
was to understand local laws and regulations for intaking drone footage. This was
an important research aspect of our project as everything we were doing in the
fields had to follow privacy laws. On the first day of working, the team was
provided access to Hume City Council’s team drive which included legal
specifications for field officers as well as drone flight regulations. 
 
    The Local Government Act 1989 gives council officers the authority to enter land
or buildings to enforce relevant laws. This act essentially outlines the procedures
and responsibilities of authorized officers from the council. This act explains
officers’ enforcement of Acts, regulations and local laws. Essentially, the Act
specifically details the requirements for identity cards, powers of authorized
officers, penalties for non-compliance and provisions allowing police officers to
enforce specific local law upon notification by the Council. Relating to the Weed
Compliance Program, this Act establishes the framework for the appointment and
responsibilities of authorized officers by local councils. This act grants authorized
officers the authority to enter land or buildings within the municipal district to
enforce relevant laws. Also regarding the Weed Compliance Program, this act
highlights the fact that local councils may use drones as a tool for monitoring and
identifying weed infestations on private properties. Essentially, authorized officers
may employ drones for aerial surveillance to detect weeds and ensure compliance
with local regulations regarding weed control. This act does not go into depth
about the drone regulations that would need to be followed to ensure that the use
of the drone aligns with legal requirements and respects the rights and privacy of
property owners. To gather information about drone regulations, we spoke to the
HCC officer who currently has a drone license and is authorized to fly drones over
private property.
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    The Civil Aviation Safety Authority (CASA) establishes
guidelines for piloting drones in Australia with the intention
to keep the users and surroundings safe on the ground and
in the air. The main law regarding our drone footage that we
had to consider was that the drone could not exceed 120
meters from the ground and could not be flown 30 meters
within people. This led to our group flying the drone at
heights from 20 to 40 meters in the air, and at least 30
meters within the flight team. With the fact that Hume is
located around an airport, we had to keep in mind the “no
flight” zones. The law regarding airports is that the drone
must stay at least 5.5 kilometers away from these airports.
To re-enforce this law, we checked out property locations
with websites that show the no flight zones, OpenSky and
ok2fly. Our HCC drone officer also operated the drone with
a CASA approved app which showed the areas where we
were not allowed to fly the drone due to aviation
legislation. Another main law that our group followed was
that only personnel with a CASA drone permit were
authorized to operate the drone. With the cooperation and
availability of HCC’s resources, we had a licensed drone
operator working at HCC fly the drone for our footage.

The State of Automated Weed Monitoring in Australia

    AI based weed mapping technology has arrived on the Australian environment
conservation scene. The technology of AI based weed mapping systems is still
relatively new to the area. However, we explored various released technologies and
programs from private organizations and universities that developed (or are
developing) AI weed mapping systems
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    From the time we had begun
preparatory work for this project to the
time we arrived in Australia, there have
been multiple private firms that have
released technology to both map the
weeds and even spray the weeds using AI.
One of the most accurate o f these
systems was released by SingleShot. They
are a contract-based service that goes to
various properties with high end industrial
drones equipped with ~$15,000 thermal
imaging cameras. They then fly over the
property in a grid-like fashion (similar to
figure 10). During the flight, the AI can
identify and map the locations of weeds.
Subsequently, the drone, equipped with a
weed sprayer, autonomously flies to the
locations where weeds were detected and
sprays them (“spot spraying”), or it sends
the data to a tractor. Since SingleShot and
similar companies are private, their
methods are proprietary, making it
difficult for municipalities to learn the
details of their innovations. Furthermore,
their services can be extremely costly,
especially for the amount of land Hume
City Council wants to survey.

    The academic sector is currently
witnessing numerous breakthroughs in
the realm of drone AI weed mapping,
with several institutions making
notable strides. Two of these
institutions that have similar programs
are the University of Queensland (UQ)
and Central Queensland University
(CQU). Both universities have teams of
professors and students, mostly with a
background in computer science
related fields. Since their projects are
still in development, we were not able
to obtain many specifics regarding their
methodology. However, from released
information, we found that their drones
are equipped with thermal imaging
cameras, which may make weed
detection easier for AI models. 

Figure 9. Example SingleShot Drone
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Data sampling protocol and captured imagery

    During the group’s time in Australia, a company named 2pi Software gave a
demo to HCC employees about a weed mapping software named WeedRemeed.
This software presented an AI-based solution for weed detection at scale that
requires no training data. By uploading a set of images and providing a color
profile of the targeted weed, WeedRemeed runs clustering algorithms across
the provided images and selects groups of pixels corresponding to the given
color profile. Since clustering is an unsupervised machine learning algorithm, no
training data is needed (Xu et al., 2015). The demo presented scalability as
another advantage of WeedRemeed; since processing would be performed on
cloud servers, the processing time and resources for HCC would meaningfully
decrease. However, their clustering approach would only match groups of pixels
that matched a certain color, meaning it would likely miss weeds with colors
similar to the native vegetation. We ultimately determined that their software
would be ideal in situations where a weed significantly pops out of its
environment, but was likely to fall short if weeds were to blend into their
environment (e.g. Serrated Tussock).

    City councils serve as the foremost avenue for disseminating information in
the locality, constituting the primary means of information sharing within the
area. Often, if one city council is facing a problem that another council has
either faced or is familiar with, there will be collaboration between both
councils to arrive at a solution. Our contact at the HCC sustainability team put
us into contact with a member of Whittlesea Council - a neighboring council to
Hume. During the meeting, we discussed the capabilities of the drone model
Hume has, advantages and disadvantages regarding the capabilities of ArcGIS
and QGIS, and additional softwares such as One3d and Pix4d which may
perform image preprocessing more efficiently than in ArcGIS. We discuss these
softwares in more detail in section 5.2.

    While collecting data via drone imagery, we made note of various
environmental conditions that may have affected our data collection process.
The conditions we observed included the time of day, brightness, wind speeds,
terrain type, and an approximate ratio of local to noxious flora in the sample. It
was important to try to vary these parameters to provide different data samples
for the AI model to learn from, and to identify the model’s weaknesses.
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    We went out into the field for data
collection a total of three times after
all practical considerations were
taken into account (e.g. temperatures
in the range of 90°F to 100°F increase
risk of fires in the field, which
prevented data collection on hot
days). Across all of our data collection
days, we varied parameters (aside
from the natural weather changes) to
get a variety of data (Table 1). We
collected imagery of land that
contained pure vegetation with a low
quantity of weeds present, land that
had a mix of both Artichoke Thistle
and Serrated Tussock, and we varied
the terrain type (flatland vs hills) as
well (Table 2).

    We found that the most effective
method of imagery collection on
HCC’s available drone (DJI Air 2S) was
to use the built-in flight planning
capability. This tool allowed for us to
highlight a geographic area, enter
height, camera gimbal angle, and
image overlap percentage
parameters, and the DJI software
calculated the exact drone’s flight
path to collect images with the
requested conditions (Figure 10). This
setup allowed for the drone to take
images at regularly programmed
intervals, which increased the
effectiveness of orthomosaic
generation in ArcGIS (more in section
4.4) as compared to when drone flight
and image collection was done
manually by the drone operator.

Figure 10. An example flight path (partially cut off to eliminate location identifying information)
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Figure 11. 
No Weeds Present

Figure 12. 
Thistle and Tussock

Figure 13. Slope surface
with Thistle

Figure 15. Native and
Noxious Tussock

Figure 14. 
Serrated Tussock
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Table 1. Table of environmental conditions observed each field day.

Table 2. Table of descriptions and flight parameters for each area sampled
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Data processing, model training, and evaluation

Orthomosaic Generation
     
     The first important stage in our workflow was to create an “orthomosaic” of all
the images taken - one large image composed of all the drone imagery “stitched”
together overlaid onto a map. We used the ArcGIS OrthoMapping software in an
attempt to keep the entire image processing workflow within the same software for
ease of use for HCC. While functional, however, we found that the ArcGIS
orthomosaic generation was slow and processor intensive. It took approximately
35-40 minutes to stitch together a series of 230 images on a laptop with an Intel
Core i7 11th generation processor. The 230 images only covered a small portion of
the property, meaning it may take longer to create the orthomosaic if HCC was to
survey a larger plot of land in the future.

Figure 16. An orthomosaic created using ArcGIS (yellow = image centers; orange = drone flight path)
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Dataset Creation
     Regardless of the time taken, creating an orthomosaic allowed us to visualize the
drone imagery as one contiguous unit overlayed on a map. Using ArcGIS’ dataset
creation wizard, we then could create several labeled datasets of both Artichoke
Thistle and Serrated Tussock. It is important to note that these datasets were several
iterations of (approximately) the same data, since different ML model architectures
offered by ArcGIS required different metadata formats. The final dataset created was
composed of 200 training “chips” (a subimage of the map selected by the user to be a
training example for a model) of each Artichoke Thistle and Serrated Tussock taken
from property b) (Table 2 and figure 11-15).
     Separating the data into distinct training and testing sets was crucial for accurately
evaluating model accuracy. If we were to use the same set of images to test the model
as we did to train it, model accuracy would falsely appear higher than reality since it
was trained on this data. By reserving some images exclusively for testing, we ensured
that we could measure model accuracy on imagery it has never seen before, thereby
testing the model’s ability to generalize learned patterns as opposed to its ability to
“memorize” its training set.

Trained Models and Results
     Using the labeled data, we trained several models in ArcGIS. We initially
experimented with using the RetinaNet object detection model (Lin et al., 2017).
Training took about 9 hours on an Intel Core i7 11th gen processor (no GPU
acceleration), with a dataset of 140 examples of each weed type. Running inferencing
on the original training imagery took about 1.5 hours, Although achieving decent
accuracy, some weed instances were still missed, suggesting the need for more
training data and fine-tuning for improvement. 
     We eventually transitioned to using the YOLOv3 model (Redmon et al., 2016), since
it generally has faster training and inference speed while maintaining good accuracy.
Using this architecture, we trained two separate models (one for Artichoke Thistle, and
one for Serrated Tussock) to streamline model fine-tuning in the future. After training
one YOLOv3 model on 200 examples of Artichoke Thistle and the other on 200
examples of Serrated Tussock, training time was reduced to 1-1.5 hours per model.
YOLOv3 offered faster training and inference with generally good accuracy. However,
it can benefit from additional data and fine tuning to address missed weeds and
misclassified non-weed vegetation as weeds.
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    While the team did not have
sufficient time to rigorously ground
truth the images and measure
accuracy metrics for each model,
figures 17-24 qualitatively detail the
models’ strengths and weaknesses
across four properties, and give insight
about each models’ potential in a
larger scale weed detection setting.
These properties are labeled as
“Property 1” through “Property 4”,
anonymized for landowner privacy.
Figures 17-19 show each model’s
results on Property 1, which has a mix
of Artichoke Thistle and Serrated
Tussock. Figure 20 shows Property 2,
which contains Artichoke Thistle on a
sloped surface, which our initial
models did not identify. Figures 21-22
show the model’s predictions on
Property 3, which has no observable
weeds present. Finally, figures 23-24
show a Serrated Tussock infested
Property 4, along with the model’s
outputs, It is important to note that
any model errors labeled in the
following images may not be
comprehensive - they are only the
errors that can be confidently
identified as such.    

     Despite the errors present, our
initial models generally perform well,
especially considering the nature of
their training data. Due to time
constraints, all data in the training
datasets were captured from one
orthomosaic image. This likely resulted
in both models being somewhat
overfit to a particular appearance of
their respective weed. For example,
many of the Artichoke Thistle weeds in
the dataset have a similar appearance
given that they were on the same
property experiencing the same
weather and sunlight conditions. This
is likely one of the main reasons why
the models may misclassify weeds,
miss them entirely, or hallucinate
nonexistent weeds. We hypothesize
that the likeliest solution would be to
collect a wider variety of training data,
with varying lighting conditions and
weeds at different stages in their
lifecycle.
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Figure 17. Property 1, which has a mixed amount of Artichoke Thistle and Serrated
Tussock

Figure 18. Property 1 with the model’s predicted Artichoke Thistle outputs (light
green) and missed weeds (red outlines)

Figure 19. Property 1 with the model’s predicted Serrated Tussock outputs, (pink) with
missed weeds (outlined in red boxes) and vegetation that was mistaken as Tussock
(dark red)
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Figure 20. Sloped surface on Property 2 with Artichoke Thistle (light green spots). The
model did not identify any Thistle with these lighting conditions.

Figure 21. Property 3 (no weeds present) with the model’s incorrect Artichoke Thistle
predictions outlined

Figure 22. Property 3 (no weeds present) with the model’s incorrect Serrated Tussock
predictions outlined
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Figure 23. Property 4 infested with significant amounts of overlapping Serrated
Tussock. Any black spots surrounded by beige vegetation are likely patches of Tussock.

Figure 24. Property 4 with the predicted Serrated Tussock locations.
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      Nevertheless, from a qualitative standpoint, our initial models clearly capture the
general trend of weed infestation across the various properties. Property 3, which
contained no weeds, yielded only a few model inferences for both Artichoke Thistle
and Serrated Tussock. Property 1 contained a moderate presence of both weeds, and
the amount of identified weeds from each model also indicates this when compared
to Property 3. On Property 4, which was characterized by a significant Tussock
infestation, the Serrated Tussock model’s predicted outputs covered a large portion
of the image. The model did miss some overlapping patches of Tussock, but the
model very clearly conveyed that this patch of vegetation contained large amounts
of Tussock. In general, even the initial models show a rough correlation between the
quantity of weeds in a set of images and the model's ability to infer weed quantity.
With further fine-tuning of our models with additional data, we hypothesize that AI-
based tools can be effective for weed detection at scale.
     Aside from model performance itself, we found that the biggest other limiting
factor is processing time and compute space. All model training and inferencing was
done on an Intel Core i7 11th generation processor. The training time with the final
YOLOv3 models was not excessive with a small to moderately sized dataset of 200
images per dataset (1-1.5 hours per model), but inferencing took significantly longer.
For example, inferencing on the entirety of Property 2 (approximately 70,000 square
meters) took ~8 hours. Scaling this to large properties may not be feasible without
parallelization of processing across separate computers, or potentially even
dedicated server compute space with Graphics Processing Units (GPUs), which
machine learning models generally benefit from.
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              Recommendations

Non-Technical

     Based upon our experience with completing this project, we recommend that
landowners are interviewed during this process. A landowner interview would be
beneficial to gain an understanding of the social context regarding the situation of
noxious weeds. These invasive plants impose an economic burden on landowners
while also wreaking havoc on local flora and fauna. We hypothesize that
landowners may be apprehensive about capturing aerial imagery using drones,
with uncertainties regarding the privacy or public accessibility of these images.
We recommend interviewing landowners (Appendix B) to examine how well
understood the Weed Compliance Program is, and landowners thoughts on data
privacy.
     Additionally, there may be growing concern regarding landowner compliance
following the implementation of AI. Previously, Hume City Council’s engagement
with landowners regarding weeds, which could be followed by enforcement if
there is no compliance, may encourage landowners to resist compliance. We
therefore recommend that the council takes an educational approach when
communicating with landowners. HCC officers can encourage landowners to
control their noxious weeds by educating them on the impacts of weeds on other
crops on their land, animals that may graze on the weeds, and the economic
burden that their unmaintained weeds put on themselves and their neighbors.
     Machine learning is difficult, and even the most advanced models have errors.
For this reason, it is important to follow up on sparse weeds detected on
properties. While AI decreases the need for human supervision, we recommend
that human supervision is used when the weeds detected on properties are scant,
due to the possibility of error. If AI is to be deployed to enforce the Weed
Compliance Program, we further recommend that AI use is communicated with
landowners, and to provide a method to contact HCC in case of error. This will
help illustrate the models’ weaknesses, and possibly provide training data to
improve performance.

    This section concludes our findings by outlining various recommendations and
next steps for Hume City Council to implement this protocol. We provide both
non-technical and technical recommendations to consider.
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Technical

 Due to time constraints, the team was not able to fully explore all hardware and
software possibilities outside of ArcGIS. In this section, we detail some supplemental
hardware and software to replace the hardware and software used in this project.
HCC may substitute some of the team’s workflow as they see fit, but the high level
process of: (1) collect imagery; (2) create orthomosaic; (3) label training data; (4) train
model; and (5) evaluate model can stay roughly the same.
    Regarding capturing imagery, the team only had access to drones with an RGB
camera, which did not capture complete spectral information. Considering that our
initial models showed promise with only three spectral bands (red, green, and blue),
we hypothesize that multispectral multispectral cameras may significantly increase
model accuracy. While expensive, multispectral cameras capture spectral bands
invisible to the human eye (e.g. infrared and ultraviolet), which will add more features
for the models to learn from. 
     Alternatively, HCC may also find multispectral satellite imagery useful. Rasmussen
et al. (2021) show that Sentinel-2 satellite imagery was not a reliable detector of
Cirsium Arvense (Creeping Thistle, similar in appearance to Artichoke Thistle), and
they thus determined that image resolution is a crucial factor for automatic weed
detection. At its finest resolution, Sentinel-2 only achieves a coarse 10x10 meter
spatial resolution, but additional satellites exist to capture much finer imagery.
Though these are paid services, we recommend that HCC explores commercial
satellite imagery to significantly cut down on time spent collecting data. While many
options exist, the most important factors are to have a very high resolution
(preferably 0.5 meters or less) and spectral bands beyond what the human eye can
capture (a good starting point for satellites that meet these criteria is Maxar’s
WorldView series).
    With ArcGIS orthomosaic capabilities being somewhat volatile and very slow, we
recommend exploring supplemental software to create orthomosaic images. Three
potential options include Pix4D, One3D, and 3DF Zephyr. These softwares will not
change the procedure of training a machine learning model, but would serve as an
expedited way to generate an orthomosaic image. If training and running inferences
with machine learning models become too resource heavy, QGIS is another potential
software to explore. Being an open-source alternative to ArcGIS, QGIS may be a more
cost efficient and lightweight tool for image analysis. However, HCC may incur extra
overhead if switching to QGIS, as much of the functionality does not come out-of-
the-box as it does with ArcGIS, and the council may need to search for custom
plugins from the QGIS community, or write them from scratch. Table 3 summarizes
the various softwares discussed and their approximate prices
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      Variation in data collection is important to help machine learning models
generalize. Collecting data in different types of weather (sunny, cloudy, rainy, etc.)
will provide different views of each weed that will allow the machine learning model
to more accurately identify weeds across various settings. Additionally, with weeds
having different appearances during different stages of their life cycle, it is important
to capture data across weed lifespan so that machine learning models can more
easily generalize that particular weed’s appearance.
        In addition to varying the data itself, it may also be useful to further explore
manipulating drone parameters - specifically drone height and camera gimbal angles.
At different drone heights, weeds may differ in size and clarity, which may result in
the model not identifying them. Exploring the models’ limits at various heights may
be informative regarding model limits. While the team did not have sufficient time to
explore height, we did begin exploring altering the camera gimbal angle. Serrated
Tussock is specifically hard to detect from a top down angle, so we hypothesize that
the model can more easily identify the weed with an angled camera. Figure 25-27
shows Tussock from a straight down camera view, a 10° tilt off-nadir, and
(approximately) a 45° tilt off-nadir. With the higher off-nadir angles, a side profile of
the Tussock becomes more visible, which may give the model more spatial
information about the weed. Note: the 45° image was not explicitly captured by
angling the drone camera. This sub image was taken from the edge of a larger image
captured by the drone with the camera facing straight down. Given the field of view
of the DJI Air 2S camera, we estimate that the drone captured these patches of
Tussock at approximately 45°.

    

Table 3. Summary of supplemental software to explore
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    The final set of recommendations aim to cut down on time spent processing to
help scale our AI-based protocol to larger areas of Hume. When processing images,
we recommend splitting processes across different computers where possible. For
example, if multiple computers are each running analyses on separate properties,
this has the potential to significantly cut down on the time spent training and running
models. HCC may also explore cloud computing options; while it is difficult to obtain
a price estimate, running machine learning processes on an external server with
specialized hardware - namely GPUs - will also cut down on processing time.
Purchasing any of the proposed orthomosaic creation softwares (One3d, Pix4d,
WebODM, etc.) effectively does this for the orthomosaic generation, which is a part
of the price for these softwares.
    

Figure 25. Serrated Tussock viewed
from a straight down angle

Figure 26.  a 10° tilt off-nadir 

Figure 27.  a ~45° tilt off-nadir 
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                     Conclusion

    The presence of noxious weeds in Hume municipality is progressively increasing
and becoming more problematic. After conducting focus groups with employees
of Hume City Council, and multiple field days to gather data regarding the
prevalence of noxious weeds, we have concluded that these invasive species are
detrimental to the health of both the local flora and fauna, as well as the
economy. Motivated by this knowledge, we started development of AI technology
to identify and flag noxious weeds using drone footage we collected. Given our
initial results and recommendations to continue our work, our protocol can enable
Hume City Council to detect and map noxious weeds on a large scale. Ultimately,
we hope this work allows the council to enforce their weed control strategies and
adapt them as needed aiding in their efforts to combat noxious weeds, and we
hope that our AI-based protocol may be of use to municipalities across Victoria
for both agricultural and (potentially) non-agricultural purposes.

 Figure 28. Group Photo, taken by drone
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Appendix A: Focus Group Questions for HCC
Members Prior to Implementation of our

Methodology

What is the current state of HCC’s Weed
Compliance Program?

1.

What current methods are being used for
data collection?

2.

Would you consider those methods to be
either efficient or effective?

3.

Is there data available from this program?4.
What results would you like to see out of a
new weed management program?

5.

Is there anything in the current program
that you believe is important we
implement into this new program?

6.

What methods have you tried that didn't
work?

7.



Appendix B: Questions for Landowners

Are you aware of Hume City Council’s
noxious weed monitoring program and if
so what do you know about it?

1.

Are you aware of Hume City Council’s
right to monitor your property if there is
suspicion of a noxious weed problem?

2.

What are your current or future plans for
your land? Ex: farming, livestock,
renovations, real estate, etc.

3.

Do you have any concerns involving
privacy with the HCC weed management
program?

4.

What other concerns do you have about
images of your land being collected?

5.

Do you know if other landowners would
have apprehension of land data being
collected? If so, why might they be
apprehensive?

6.

Do you believe a fine for noncompliance is
justifiable?

7.


