
Faculty Code: EAR
Project Number: 2102

Exploring Positive Unlabeled
Machine Learning

A Major Qualifying Project Report
Submitted to the faculty of the

WORCESTER POLYTECHNIC INSTITUTE
In partial fulfillment of the requirements for the

Degree of Bachelor of Science

Submitted by:
Jesse Abeyta

Nicholas Cheng
Bryan Gass

Calvin Kocienda
Vinay Nair

Date: March 28th, 2021

Approved by:
Professor Elke A. Rundensteiner

With Guidance From:
Walter Gerych And Luke Buquicchio



Acknowledgements

We would like to thank our advisor, Professor Elke Rundensteiner, for her
support and guidance throughout this project. Professor Rundensteiner met
with us on a weekly basis over the past six months, helping us to under-
stand academic expectations and keeping us focused on our ultimate goal.
We would also like to thank WPI PhD students Walter Gerych and Luke
Buquicchio for their invaluable support in this project. Walter and Luke
were truly generous with their time, sometimes answering questions for us in
the middle of the night and on weekends. We are grateful for their patient
mentoring and critical guidance, without which this project would not have
been possible. Finally, we would like to thank WPI PhD student ML Tlachac
who graciously gave us access to the Twitter depression dataset.

1



Abstract

Positive and unlabeled learning involves positive examples and unlabeled
data. The unlabeled data can contain both positive and negative examples.
PU learning has gained prevalence recently due to its newfound application
in social media and medicine. The current state of the art approaches to PU
algorithms face a multitude of issues. Therefore the team implemented and
conducted experiments on existing algorithms such as SAR-EM and NNPU.
These algorithms were modified to create a novel PU algorithm.

Executive Summary

Positive and unlabeled learning is a new field in machine learning that uses
data where all positive examples are labeled and there is unlabeled data that
is comprised of positive and negative examples (Bekker Davis 2020). PU
learning is a semi-supervised binary classification method that recovers the
labels from the unlabeled section of the data.

Due to the nature of PU learning and its gaining popularity over the
recent years, there has been advancement in researching different types of
PU algorithms. Since PU data arises in a multitude of scenarios, having a
strong PU learning algorithm could solve many of the daily issues faced by
medical administrators or social media developers. In social media, the user
has no option to dislike an image and therefore PU data arises in order to
understand why the user did not like the content being showed. Through
robust and advanced PU learning algorithms, these issues would be easily
solvable, however, due to the inherently complex nature of PU data, PU
algorithms in this day and age are not good enough to solve these issues
without introducing other factors such as biases.

The two main biases explored were the selected completely at random
(SCAR) and the selected at random assumption (SAR). The team mainly
focused on working with the SCAR assumption, as it greatly simplifies algo-
rithms, and has been used widely in PU research. The team first implemented
various PU algorithms in order to understand how PU learning works and
what the current pitfalls are that the state of the art algorithms are unable to
avoid. Initially the team implemented various 2-step PU learning algorithms
which combine two different algorithms in order to tackle PU data. These
following 2-step algorithms were implemented: One-Step Naive Bayes (NB),
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One-Step Support Vector Machines, Two-Step NB-SVM, and Two Step Ex-
pectation Maximization-NB. Once these algorithms were implemented the
team was able to develop a better understanding of the true challenges of
PU learning. The team then tried to implement a logic-based algorithm
known as PULSE with a specific regard to using the algorithm to analyze
the twitter dataset concerning the identification of depressed users. PULSE
is a natural language processing algorithm that showed great promise but
was too complex.

Another avenue of exploration was the use of TweetBERT to analyze a
twitter based dataset in order to identify depression within twitter users.
TweetBERT is a state of the art NLP algorithm that is used to featurize
tweets such that it can be fed into a classification algorithm. The dataset
collected had the associated PHQ-9 score of each twitter user which is a
medical diagnosis form that shows how depressed a patient is. TweetBERT
was used to featurize the twitter depression dataset and the team intended to
run our novel algorithm, more information can be found in the future works
section.

The next set of PU learning algorithms we analyzed were SAR-EM and
TIcE. SAR-EM is an algorithm that uses an estimated propensity score of
each example in order to label the example positive or negative. It uses an
EM algorithm to generate a classifier and the appropriate propensity model
that will assign the estimated propensity scores from the data. Furthermore,
the application of the propensity weighted risk estimator also helped increase
the accuracy of the simple neural network classification algorithm that was
used.

Often it is useful to be able to estimate how prevalent the positive class
is in a sample. This is straight forward in the fully labeled setting, but
specialized algorithms are required in the unlabeled setting. We implemented
and directly tested the TIcE algorithm, which is widely considered to be the
gold standard for class prior estimation in the PU setting. We tested the
algorithm both under ideal and challenging conditions.

While reviewing existing PU algorithms, we found that commonly used
methods assume there is no bias in the labeling process. We developed a
novel PU learning algorithm that can cope with bias in the labeling process
through the combination and adaptation of several existing PU algorithms,
including TIcE. Our novel algorithm, known as the Subclass Prior Propensity
Weighted Risk Estimator, extends existing research and provides a method
of classification that makes fewer assumptions about the field.

3



Contents

1 Introduction 8
1.1 Overview of PU Learning . . . . . . . . . . . . . . . . . . . . . 8

1.1.1 What is PU Learning . . . . . . . . . . . . . . . . . . . 8
1.1.2 State of the Art Approaches . . . . . . . . . . . . . . . 9

1.2 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Background 12
2.1 Machine Learning Techniques . . . . . . . . . . . . . . . . . . 12

2.1.1 Dataset Cleaning . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Training and Testing . . . . . . . . . . . . . . . . . . . 12
2.1.3 Loss Function . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.4 Learning Rate . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.5 Gradient Descent . . . . . . . . . . . . . . . . . . . . . 14

2.2 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Confusion Matrices . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Receiver Operating Characteristic (ROC) and Area Un-

der the Curve (AUC) . . . . . . . . . . . . . . . . . . . 17
2.2.4 Precision and Recall . . . . . . . . . . . . . . . . . . . 18
2.2.5 F1 Score . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Machine Learning Tools . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 PyTorch . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Scikit-Learn . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.3 NumPy . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.4 Pandas . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Data Visualization Tools . . . . . . . . . . . . . . . . . . . . . 21
2.4.1 Tableau . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.2 Matplotlib . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Classification Algorithms . . . . . . . . . . . . . . . . . . . . . 22
2.5.1 Linear Regression . . . . . . . . . . . . . . . . . . . . . 23
2.5.2 Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.3 Support Vector Machines . . . . . . . . . . . . . . . . . 24
2.5.4 Expectation Maximization . . . . . . . . . . . . . . . . 25

2.6 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6.1 Activation Functions . . . . . . . . . . . . . . . . . . . 29
2.6.2 Backpropagation . . . . . . . . . . . . . . . . . . . . . 30

4



2.7 PU Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.7.1 PU Assumptions . . . . . . . . . . . . . . . . . . . . . 32
2.7.2 Single Training Set Scenario Vs Case Control Scenario 33
2.7.3 PU Algorithms . . . . . . . . . . . . . . . . . . . . . . 34
2.7.4 PULSE . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.7.5 TIcE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.7.6 Propensity Weighted Loss and the SAR EM model . . 37
2.7.7 Subclass Prior Estimation . . . . . . . . . . . . . . . . 39
2.7.8 Propensity Weighted Loss with Subclass Prior Estima-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Related Works 42

4 Methodology 44
4.1 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.1 BERT and TweetBERT . . . . . . . . . . . . . . . . . 44
4.1.2 Performance Baselines And Data Pipeline . . . . . . . 45
4.1.3 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.1 One-Step NB . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.2 One-Step SVM . . . . . . . . . . . . . . . . . . . . . . 49
4.2.3 Two-Step NB-SVM . . . . . . . . . . . . . . . . . . . . 49
4.2.4 Two-Step EM-NB . . . . . . . . . . . . . . . . . . . . . 50
4.2.5 Non-Negative PU Loss . . . . . . . . . . . . . . . . . . 51
4.2.6 TweetBERT . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.7 TIcE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.8 Propensity Weighted Loss . . . . . . . . . . . . . . . . 53
4.2.9 Subclass Prior Estimation . . . . . . . . . . . . . . . . 54
4.2.10 Novel Algorithm: Cluster-Bias Adjusted Clustering C-

BAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Experimental Analysis 56
5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1.1 Online Shopping Dataset . . . . . . . . . . . . . . . . . 56
5.1.2 Twitter Datasets . . . . . . . . . . . . . . . . . . . . . 57
5.1.3 Banknote Authentication Dataset . . . . . . . . . . . . 58
5.1.4 HTRU2 Dataset . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . 59

5



5.2.1 Method Modification PU Learning Algorithms . . . . . 59
5.2.2 TweetBERT . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.3 TIcE and Subclass Prior Estimation . . . . . . . . . . 60
5.2.4 Propensity Weighted Loss . . . . . . . . . . . . . . . . 60
5.2.5 Cluster-Bias Adjustment Classification C-BAC . . . . . 60

5.3 Experiment Descriptions . . . . . . . . . . . . . . . . . . . . . 60
5.3.1 Method Modification PU Learning Algorithms . . . . . 60
5.3.2 TweetBERT Classifier . . . . . . . . . . . . . . . . . . 63
5.3.3 TIcE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.4 Propensity Weighted Loss . . . . . . . . . . . . . . . . 64
5.3.5 Subclass Prior Estimation . . . . . . . . . . . . . . . . 68
5.3.6 Cluster-Bias Adjustment Classification (C-BAC) with

generated data . . . . . . . . . . . . . . . . . . . . . . 72
5.3.7 C-BAC Classifier Accuracy . . . . . . . . . . . . . . . . 76
5.3.8 C-BAC and HTRU Experimentation . . . . . . . . . . 81
5.3.9 C-BAC and Banknote Authentication Experimentation 82

6 Discussion 84
6.1 Method Modification PU Learning Algorithms . . . . . . . . . 84
6.2 TweetBERT Model . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3 TIcE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.4 Subclass Prior Estimation . . . . . . . . . . . . . . . . . . . . 85
6.5 Propensity Weighted Loss . . . . . . . . . . . . . . . . . . . . 86
6.6 C-BAC Algorithm Experiments . . . . . . . . . . . . . . . . . 87

7 Conclusion 88
7.1 Table of Accomplishments . . . . . . . . . . . . . . . . . . . . 88

7.1.1 B Term . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.1.2 C Term . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.1.3 D Term . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.2 Future Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8 Appendix 100
8.1 Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.2 Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.3 Appendix C . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.4 Appendix D . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
8.5 Appendix E . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6



9 Authorship Table 119

7



1 Introduction

1.1 Overview of PU Learning

1.1.1 What is PU Learning

In Machine Learning (ML), special algorithms are used to find statistical pat-
terns in datasets. These algorithms can make use of these patterns to make
predictions about incomplete or hypothetical observations, or individual data
points. The two main types of ML algorithms are regression and classifica-
tion. Regression algorithms attempt to predict an observation’s continuous
feature, while classification algorithms attempt to predict which discrete class
an observation belongs to.

Classification algorithms could be used to identify unknown fruits as ap-
ples, bananas, or clementines based on their size, weight, and color. In this
example each fruit is an observation, and its size, color, weight, and species
are its features. The objective of the classification algorithm would be to
find a function that correctly identifies unknown fruits given only their size,
color, and weight. The function that this algorithm generates is known as the
model. In order to generate a model, the classification algorithm will analyze
a dataset that lists characteristics of fruits and their species. This dataset,
known as the training set, should ideally have information as to what species
(class) each fruit (observation) belongs to. Once a model has been trained,
you can use it to predict the species of unknown fruits if you know their size,
weight, and color.

In order to generate an optimal model, many ML algorithms require the
datasets they train on to be fully labeled (Ratner, A). If you were to try
to train these algorithms on incomplete datasets, you would likely find that
they performed poorly. However, it is not always practical to have perfectly
complete data. Sometimes the only source of data is unreliable. Sometimes
it is impractical or prohibitively expensive to collect complete data.

In medicine, a patient’s record only lists the diseases that they were diag-
nosed with. If a patient contracted a disease and never visits a doctor to have
it treated, it will not be listed in their record. In other words, if a patient
has been diagnosed with a disease they likely have it; if they haven’t been
diagnosed, they may still have contracted the disease at some point. If med-
ical researchers were trying to predict which patients had a disease based on
their symptoms, they would be trying to solve a Positively Unlabeled (PU)
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problem.
A PU problem is a binary classification problem where only some observa-

tions from the positive class are labeled (Bekker Davis, 2020). Observations
not labeled may belong to the positive class or the negative class. In our
medical example, a patient (observation) would belong to the positive class
if they had a particular disease. If they didn’t have this disease they would
belong to the negative class. If a patient had a diagnosis, they would be con-
sidered “labeled”. If a patient didn’t have a diagnosis, regardless of whether
or not they had the disease, they would be considered “unlabeled”.

Other common PU problems include predicting social media preferences,
evaluating advertising effectiveness, and determining if an object is present in
a picture. Social media sites allow users to like posts, but not dislike them.
An ad on a website can go unclicked because the user isn’t interested, or
because they didn’t notice it. A picture not tagged as containing an object
may not contain it, or the tagging may be incomplete.

Traditional ML algorithms struggle with PU datasets, as they interpret
unlabeled positive observations as belonging to the negative class (Bekker
Davis, 2020). This leads to the algorithm learning to distinguish between
what is labeled and what is unlabeled, rather than what is positive and what
is negative. In order to avoid this issue, it is necessary to use algorithms that
don’t assume that unlabeled observations necessarily belong to the negative
class. These are known as PU learning algorithms.

1.1.2 State of the Art Approaches

The majority of current PU learning algorithms can be sorted into three
different types: two-step techniques, biased learning, and class prior incor-
poration. Each of these has various issues that we aim to resolve with the
creation of a novel algorithm .

Two-step techniques work based on the assumption that labeled examples
are similarly distributed to positive examples, and that negative examples are
notably different from the labeled examples (Bekker Davis, 2020). Using this
assumption, this technique breaks down the process of PU learning into two
separate steps. The first step involves identifying reliable negatives, reliable
positives, and “unreliable” points that don’t fit into either category. In other
words, the classifier in this step will attempt to find points in the dataset
that share many features of the positive class (hence, “reliable” positive),
and classifies points with features vastly different as part of the negative

9



class. Points that go in the unreliable category are those that are classified as
positive, even though they were part of the negative class before classification.
The second step involves using any type of semi-supervised learning on the
previously found reliable positives, reliable negatives, and optionally, the
unreliable points. The goal of this step is to generate the best model possible
to classify unlabeled points.

Biased learning methods treat all unlabeled points as if they were negative
(Bekker Davis, 2020). Each of these unlabeled points is given a certain
amount of noise, which is a constant value indicating the uncertainty of their
negative classification. Because the level of noise is constant, the SCAR
assumption can be used. Unlabeled data points that display features close to
the positive class are given a greater amount of noise than those that display
features different than those in the positive class. This noise can be used
to penalize misclassified positive samples, or tune hyperparameters using a
variety of equations. Biased learning methods are often applied in support
vector machines (SVM), clustering, and matrix completion.

Class prior incorporation methods take advantage of the SCAR assump-
tion to utilize the class prior in three main methods: post-processing, pre-
processing, and method modification (Bekker Davis, 2020). In post-processing,
a probabilistic classifier considers all unlabeled data as negative and changes
the predicted probability based on the classifier’s certainty that the point be-
longs to the positive class. If the classifier is highly certain that the data point
belongs to the positive class, it will be labeled as positive. Pre-processing
changes the dataset based on the class prior in order to create a new dataset
that can be incorporated into classification methods that expect fully super-
vised data. This process shapes the PU dataset into a different dataset that
traditional classification methods can use. Alternatively, method modifica-
tion involves taking traditional classifiers, such as Naive Bayes, and tuning
them such that they work with PU datasets.

Although these three approaches are all able to classify PU datasets with
relative success, most of these methods require several assumptions to work
properly (Bekker Davis, 2020). These assumptions tend to oversimplify
complexity that shows up in real-world datasets, such as bias, or distribution
overlap between the positive and negative classes.
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1.2 Our Approach

Our goal this project was to find a PU learning method that has similar
performance to the state of the art methods, while eliminating as many of
the previously mentioned downsides as possible.

During the initial phase of the project, we surveyed existing PU learning
algorithms. We first familiarized ourselves with various common assumptions
used in PU learning, then studied state of the art PU algorithms. In order
to build a thorough understanding of these algorithms, we implemented each
one using several research papers as a reference. These algorithms helped us
develop some insight into the field of PU learning, and allowed us to identify
some existing problems that current algorithms face.

Next, we used this background knowledge to begin development on our
novel algorithm. After reading a promising paper, we decided to work on im-
plementing PULSE, a sentence-context classification algorithm that utilizes
logic programming. At this point, our team broke up into two sub-groups:
Jesse, Nick, and Bryan worked on implementing PULSE and all of its com-
ponents. Unfortunately, PULSE proved to be a dead end, due to its lack of
documentation and scope of our project. The team switched to implementing
the TIcE and SAR-EM algorithms, as well as an algorithm found in an AAAI
paper, which from here on out, we will refer to as the ”Subclass Prior Esti-
mation” algorithm. They developed a novel algorithm that built off of these
algorithms. We will provide a detailed description of this algorithm in section
2.8.10. Experiments run on these algorithms show that their performance is
comparable, if not better, than the state-of-the-art algorithms.

Calvin and Vinay worked to implement other supplementary features,
such as developing a loss function, and implementing TweetBERT, a branch
of Google’s state-of-the-art natural language processing (NLP) algorithm to
tokenize the tweets used in our team’s novel algorithm. The group did not
get to utilize the tokenized tweets in our novel algorithm, but this task is
something our group can explore after this project.
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2 Background

In the following section we will provide an overview of the concepts necessary
to understand the basics of machine learning, and how these fundamentals
are applied in state of the art ML algorithms, including ones used in PU
learning. These include the general components of machine learning opti-
mization, such as dataset preparation, loss functions, training and testing,
and scoring metrics. We will then review types of models, such as standard
classification algorithms and neural networks. Finally, we will tie these con-
cepts to analyzing the architecture behind current PU learning techniques.

2.1 Machine Learning Techniques

All experiments we conduct in this paper use the parameters and methods
described below.

2.1.1 Dataset Cleaning

Before any machine learning takes place, the dataset the model will use must
be cleaned. ”Cleaning” a dataset refers to the process of optimizing the
dataset for usage in a specific experiment (Russel, S. and Norvig, P). This
usually involves removing several values, such as duplicate values, values
with incomplete information, or entire columns that will not contribute any
meaningful information to the algorithm. For example, an experiment de-
signer creating a model that attempts to predict whether a fruit is an apple
or an orange might drop the ”date bought” column, as the date the fruit was
bought has no relevance to its classification.

There are other reasons for dataset cleaning. When cleaning the Tweet-
BERT dataset, our group noticed that not all of our tweets were in English
- some were in Spanish, Arabic, and other languages. However, the Tweet-
BERT algorithm was only trained on English tweets, so many of the tweets
in the dataset could not be used. There were two options: either drop the
non-English tweets, or translate them into English. The easier option was to
drop the non-English tweets.

2.1.2 Training and Testing

After the dataset cleaning has finished, we can start training our model on
the dataset. This is often broken down into two phases, known as ”training”
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and ”testing” (Russel, S. and Norvig, P). The dataset is partitioned into two
different parts, called the training set, and the testing set. The training set
is usually significantly larger than the testing set, with common splits being
a 70-30 split, or an 80-20 split. The aim is to use the training set as a way to
tune the model parameters, and use the test set to verify that the parameters
have been tuned correctly. This process also helps prevent overfitting, which
is when the model has been tuned to only recognize the dataset it has been
trained on.

Training works by splitting up the contents of the training set into equal
”batches”, which are run through the model (Russel, S. and Norvig, P).
Given the parameters, the model will attempt to classify each datapoint in
a batch into a certain class. Afterwards, the model uses a loss function to
determine how accurate its prediction was. We will discuss loss functions
in greater detail in the next section. This continues until all batches have
run through the model once; this cycle is known as an epoch. The model
designer can train their model for any number of epochs, and generally, the
more epochs the model trains for, the more accurate the model will be.
However, some epochs take a long time to run, and after a certain number
of epochs, the model stops drastically improving. Therefore, designers need
to strike a balance between the time and resources spent training the model,
and the improvements in accuracy in the model.

After training is complete, the model will move to the testing phase (Rus-
sel, S. and Norvig, P). This testing phase works the same way as the training
phase, but the model uses the test dataset instead of the training dataset.
Running the model on a different dataset will help to ensure that the model is
able to classify any similar dataset, and is not overfit on the training dataset.
The testing accuracy is a common metric used to evaluate the performance
of a model.

A problem introduced when training or testing on a PU model is that the
model is not always able to check its guesses against the true labels, since
some labels are missing (Bekker Davis 2020). A common way to fix this
problem is to modify the dataset to abide by certain PU assumptions, such
as SCAR. We will discuss these assumptions later in the paper.

2.1.3 Loss Function

When a ML algorithm makes a prediction in either the training or testing
phase, it must evaluate the accuracy of its predictions for a given batch.
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Loss functions are a common way for a model to evaluate its performance
progressively as it moves through the dataset (Russel, S. and Norvig, P). A
loss function scores how closely a prediction matches its target. This score
is known as the loss. The model will use the loss to tune its parameters.
By taking the derivative of the loss function, the model can step backwards
through the loss function to identify the parameters that contributed the
most to the current loss score. The specific value of the loss differs depending
on the loss function used, but generally, a low loss means that the model
classified many points in a batch well. Therefore, the ultimate goal of a loss
function is to help the model tune its parameters to minimize the loss.

A problem with many loss functions is that they require knowing the
true label in order to work properly. In PU datasets, the true label is often
unknown. Therefore, traditional loss functions are not usable in PU models.
The solution is to either use some sort of PU assumption when training the
model, or use a loss function specifically built for PU learning, such as the
non-negative PU loss function described later in the paper.

2.1.4 Learning Rate

Once a model determines the loss of a sample, it must adjust its parameters.
Techniques such as Gradient Descent (see section 3.1.5) determines the kind
of change to make to the parameters, while the learning rate controls the
magnitude of the adjustment (Russel, S. and Norvig, P). Picking a good value
for the learning rate is important. If it’s set too small, the ML algorithm could
take prohibitively long to find a solution. If it’s set too high, the algorithm
might overshoot the optimal model . For these reasons it is important to
reduce the learning rate as gradient of the loss function flattens. This allows
for us to metaphorically slow down as we get closer to a locally optimal
solution. Gradient descent describes how the learning rate is used in practice
to optimize a model.

2.1.5 Gradient Descent

Gradient descent is used to find the minima of a loss function (Russel, S. and
Norvig, P). Given a point on the surface of the loss function (representing the
performance of a model) you compute the gradient, or direction of steepest
descent. This indicates which changes to your parameters should improve
your model the most.
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Since the loss decreases as model performance improves, the loss func-
tion corresponds to the best-performing model (Russel, S. and Norvig, P).
Therefore, in order to find the best possible model, we must search for the
smallest loss. Below is a rendition of a loss function for a model with two
parameters. The peaks correspond to lower performing models, while the
valleys correspond to higher performing models.

Figure 1: A depiction of gradient descent in a 3D plane. Created by Ahmed
Fawzy Gad. From Paperspace.

The equation below provides an example of gradient descent (Russel, S.
and Norvig, P). This exact equation may vary depending on the type of
gradient descent, but these algorithms will repeat until the model converges
on the local minima.

θj := θj − α
δ

δθj
J(θ0, θ1) (1)

Gradient descent is not guaranteed to find the global minimum, only a
local one. It is common for local minima to still have high loss values, and
simple gradient descent has no way of escaping them. In order to deal with
this issue, several variations of gradient descent were developed. Stochas-
tic gradient descent uses random ”batches” of data to introduce a chance
of leaving local minima. Additionally, k-fold cross validation involves per-
forming gradient descent multiple times with different initial conditions, then
choosing the best result (Russel, S. and Norvig, P).
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2.2 Performance Evaluation

2.2.1 Accuracy

Accuracy is the simplest way of scoring a machine learning model (Google
Developers, 2020). It is the ratio of correct predictions versus the total
number of predictions. The major drawback of scoring models using accuracy
is that it doesn’t account for imbalanced data. For example, if a model
predicts the positive class 100% of the time, but 90% of the dataset’s points
belong to the positive class, the model will be scored as 90% accurate. This is
a gross overestimation of the model’s true classifying capabilities. Accuracy
is useful to get a overall view the model’s performance, but should not be
used as a definitive indicator of a model’s performance.

2.2.2 Confusion Matrices

Confusion matrices can provide a more detailed insight into a model’s perfor-
mance (Mathworks, 2020). The confusion matrix is drawn as a chart, where
each class is listed out along the x and y axis. One axis indicates the pre-
dicted classes, and the other axis indicates for the true classes. Since both
axes mirror each other, it does not matter which axis corresponds to which
set of classes. The two axes form intersecting cells, as shown below. These
intersecting cells represent the quantity of a predicted class versus the true
class. In the figure below, assuming that the x-axis represents the actual
classes and the y-axis represents the predicted classes, it is easy to see that
most examples were predicted correctly. For example, the model correctly
classified a point as belonging to class H 36 different times. The model also
incorrectly predicted a point belonging to class J as class H, twice.

During binary classification, only four cells are formed in a confusion
matrix (Google Developers, 2020). Samples in these confusion matrices that
were predicted as the positive class that were truly positive are called true
positives. Those that were classified as negative and were truly negative
are called true negatives. This logic continues for false positives and false
negatives, as well.
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Figure 2: Example of a confusion matrix heat map. Created by Simon Zack.
From Stack Overflow.

2.2.3 Receiver Operating Characteristic (ROC) and Area Under
the Curve (AUC)

The Receiver Operating Characteristic (ROC) is a plot that indicates the
performance of a binary classifier at different threshold settings (Google De-
velopers, 2020). The y-axis is labeled as the true positive rate (TPR) while
the x-axis is labeled as the false positive rate (FPR). The TPR measures the
ratio of total positives that were predicted as positive. The FPR measures
the ratio of total negatives that were predicted as positive.

TPR =
TP

ActualPositive
=

TP

TP + FN
(2)

FPR =
FP

ActualNegative
=

FP

TN + FP
(3)

The ROC plots the relation between the FPR and the TPR based on a
threshold (Google Developers, 2020) . The threshold determines the sepa-
ration between class boundaries in cases where the binary classifier outputs
continuous values. For example, suppose that a classifier outputs real values
between 0 and 1, where 1 is positive and 0 is negative. A neutral threshold
could be that predictions greater or equal to 0.5 are labeled as positive and
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all other predictions are labeled as negative. However, a threshold of 0.5
could potentially be too lax in some real-world scenarios, such as in med-
ical diagnostics, where positive predictions carry heavy ramifications. The
threshold for a prediction to be considered positive could then be raised to
a higher value, such as 0.8 The TPR and FPR at the various thresholds can
be graphed.

Figure 3: Example of different ROC curves, with the ideal AUC of 1 indicated
in blue. Created by S. Makarov, M. Horner, et al. From NCBI.

The Area Under the Curve (AUC) is the area underneath the ROC graph
(Google Developers, 2020). Higher AUC values are associated with better
classifiers. An AUC value of 1 means we have a perfect classifier, while an
AUC value of 0 means we have a perfectly bad (opposite) classifier. An AUC
around 0.5 is the equivalent of random guesses.

2.2.4 Precision and Recall

Precision is the ratio between the true positives and the total amount of pre-
dicted positives (Machine Learning Crash Course, 2020). It is a metric that
indicates how reliable a positive prediction is when predicted by the classifier
as there is the possibility that the predicted positive is a false positive. In
probability terms, precision is the probability that x is a true positive, given
that x is predicted as a positive. Pr(x = true positive — x = predicted as
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positive). A classifier with a higher precision is less likely to predict a false
positive.

Precision =
TruePositive(TP )

TruePositive(TP ) + FalsePositive(FP )
(4)

Recall measures the accuracy of the classifier in predicting true positives
based on the amount of true positives and false negatives (Machine Learn-
ing Crash Course, 2020). In other words, this metric indicates how well it
predicts true positives. Recall is the probability that x is predicted as a
positive given that x is a true positive. Pr(x = predicted as positive — x =
true positive). A classifier with a higher recall is less likely to predict a false
negative.

Recall =
TruePositive(TP )

TruePositive(TP ) + FalseNegative(FN)
(5)

2.2.5 F1 Score

The F1 score of a classifier is the harmonic mean of the precision and recall of
the classifier (Wood, T). The weight of the recall can be optionally weighted
in the F1 score, denoted as beta. The beta functions as a multiplier on the
importance of recall over precision.

Fβ = (1 + β2) · precision · recall
(β2 · precision) + recall

(6)

When precision and recall are substituted, this becomes:

Fβ =
(1 + β2) · truepositive

(1 + β2) · truepositive+ β2 · falsenegative+ falsepositive
(7)

The F1 score is a more useful metric than accuracy when false positives
or false negatives can greatly influence the model, as standard accuracy is
much more heavily influenced by true positives and true negatives (Wood,
T). As such, F1 scores are more useful on imbalanced datasets. Since most
real-world datasets contain biased data, F1 scores are usually considered a
better scoring metric than standard accuracy. Our group used F1 scores to
grade our non-neural net PU classifiers, as the customer dataset we ran our
classifiers on contained approximately 80% positive samples.
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2.3 Machine Learning Tools

2.3.1 PyTorch

Pytorch describes itself as “An open source machine learning framework that
accelerates the path from research prototyping to production deployment”
(Pytorch Tutorials, 2020). It is one of the most popular tools for experiment-
ing with machine learning. Pytorch features many popular machine learning
models and functions such as support for customizable neural networks, loss
functions, and activation functions. Pytorch is centered upon the usage of
“Tensors” which are multidimensional arrays. Pytorch has the ability to pro-
cess tensors on the GPU, giving a massive performance improvement over
the CPU.

2.3.2 Scikit-Learn

Scikit-Learn bundles various tools for data analysis and machine learning
(Scikit-Learn, 2020). It provides out-of-the-box functionality for data pro-
cessing, pipelines, machine learning models, and other useful tools.

2.3.3 NumPy

Numpy is a python library for high performance numerical computations
(NumPy, 2020). It is primarily focused on array operations and is a necessity
for working with large datasets.

2.3.4 Pandas

Pandas is a library that is useful for manipulating data, especially tables and
time series, for the use of data processing and analysis (Pandas, 2020). It
is well known for its DataFrame objects. Data frames are two dimensional
objects that represent a table. The rows contain values for each column and
the columns are labeled. It allows the user complete control in manipulat-
ing rows, columns, and cells within the table. One easy way to create a
DataFrame object is by loading a spreadsheet (csv file). This makes it very
easy to read and write data to files.
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2.4 Data Visualization Tools

2.4.1 Tableau

Tableau is a data visualization tool that’s aimed at improving the flow and
accessibility of data analysis (Tableau, 2020). Its ease of functionality stems
from the drag-and-drop actions to create data queries using Tableau’s fea-
tures, known as “VizQL.” Tableau has a wide range of use cases in machine
learning, statistics, natural language and smart data preparation more use-
ful to aid in human creativity in data analysis. This software has been used
around the world, and will help our group identify trends when comparing
different classification methods.

Figure 4: An example of the Tableau dashboard, alongside a visualization
shows how easy and user friendly the programming interface is. An entire
dashboard can be created to show various key statistics and trends that can
be extracted from the dataset in question. Created by B. Staniar and T.
Ngo. From Tableau.

2.4.2 Matplotlib

Matplotlib is alternative to Tableau, used by our team to generate quick
visualizations while programming to better understand our datasets, and
our model performance (Matplotlib, 2020). Matplotlib is a comprehensive
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library for creating static, animated or interactive visualizations in python. It
allows the user to create publication quality plots using minimal amounts of
code. The programmer can take full control over the font and axes properties
as well as line style and one can export and embed to various file formats
and interactive environments. It extends it usability by providing 3rd party
packages that allow for further visualizations.

Figure 5: An example of a graph generated by matplotlib. From mat-
plotlib.org.

2.5 Classification Algorithms

The section below details a few common classification algorithms used in
machine learning. Our group attempted to implement a PU-tailored version
of many of these networks onto a PU dataset. This introduced us to some
of the problems faced with PU learning, such as the inability to determine
a sample’s true class. Implementing the PU versions of each algorithm also
gave us insight into modern-day attempts at solving these PU-learning prob-
lems. To understand our theory behind modifying these classifiers, refer to
section 2.1.2. Our group uses components of some of these classifiers, such
as expectation-maximization, in later experiments.
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2.5.1 Linear Regression

Linear regression is one of the simplest and widely used supervised machine
learning algorithms. Linear regression attempts to model the relationship
between an independent and a dependent variable by fitting a linear equation
to the observed data (Dharani, J 2020). The linear equation that models the
data is know as the line of best fit and this is the optimal linear relationship
between the two variables. If there is more than one independent variable
then the best fit could take multiple forms such as a plane in three dimensions
or a hyperplane in higher dimensions. There are multiple ways of generating
the line of best fit and one of the most common and popular methods is to
use Least Squares. It takes the sum of all the distances between the line and
the actual observation and finds minimum sum of the least squares.

A simple equation that approximates the linear relationship be-
tween a dependent Y and independent X variable is:

Yi = β0 + β1Xi (8)

Beta 0 and Beta 1 are unknown constants where Beta 0 represents the
intercept and Beta 1 represents the slope of the linear model (Dharani, J
2020). In order to calculate the loss of the linear regression model the residual
sum of squares is used where the difference between the predicted data point
and the actual data point is squared and added to calculate the loss of the
model.

Residual Sum of Squares

RSS =
∑

(y − ŷ)2 (9)

2.5.2 Naive Bayes

Naive Bayes classifiers are a family of classifiers that follow the assump-
tion that each feature is equal and independent when calculating the output
(Hastie, T). Although this assumption allows for simple and effective clas-
sification methods, it is considered naive due to the unlikeliness of such an
assumption arising in a real world scenario. Naive Bayes algorithms are based
on Bayes’ Theorem, which finds the probability of an event occurring given
the probability of another event that has already occurred. Bayes’ theorem
is stated mathematically as:
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Naive Bayes:

P (A|B) =
P (B|A)P (A)

P (B)
(10)

where A is the hypothesis and B is the evidence, and the probability of B
is not equal to 0 (Hastie, T). This equation finds the probability of A given
that B is true. P(A) is the a priori of A, which is the prior probability of A
occurring before any evidence is seen. P(A—B) is the posteriori probability
of B, which is the probability of an event after evidence is seen. because of
the assumption of independence amongst features as that isn’t always the
case given real world scenarios.

There are multiple different types of naive Bayes classifiers, such as Multi-
nomial Naive Bayes, Bernoulli Naive Bayes and Gaussian Naive Bayes (Hastie,
T). Multinomial Naive Bayes are used on multinomially distributed data, and
the Bernoulli Naive Bayes is similar to the multinomial naive bayes but the
predictors are boolean variables. The parameters used to predict the class
variable only take up values of yes and no. Gaussian Naive Bayes classifiers
are when predictors take up continuous values and aren’t discrete, therefore
it is assumed that these continuous predictors follow a gaussian distribution.

2.5.3 Support Vector Machines

A Support Vector Machine (SVM) is a type of classifier that builds a hyper-
plane, which is a decision boundary that separates data in an N-dimensional
space, where N is the number of features an observation contains (Mallick,
S). The hyperplane is built between two classes, and divides the data such
that the distance between the hyperplane and the nearest observation in each
class is maximized. The observations in each class used to define the hyper-
plane are called support vectors. These points are determined through the
following optimization equation:

Support Vector Machine:

γ =
N

min
i=1

(11)

yi
wTxi + b

||w||
(12)

where xi is a training sample, yi is the value of binary classification of the
class (1 or -1), w and b refer to the slope and intercept of the hyperplane,
respectively.
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Figure 6: Image of an Support Vector Machine (SVM). Created by Lukasz
Gebel. From Towards Data Science.

2.5.4 Expectation Maximization

The expectation maximization algorithm (EM) functions help to tune a
model’s parameters until they best fit the observed data, in cases where
the model’s equations cannot be directly solved (Bekker Davis, 2020). This
approach works by cycling between two steps, the expectation step, and the
maximization step.

The expectation step attempts to estimate the value of the missing or la-
tent variable (Bekker Davis, 2020). Every cycle, it generates a new expected
value of the log likelihood with respect to the current conditional distribution
Z given X, and the current estimates of the parameters θ(t).

Q(θ|θ(t)) = EZ|X,θ(t) [logL(θ;X,Z)] (13)

Next, the maximization step tries to optimize the parameters of the model
(Bekker Davis, 2020). This is found by determining the value that maximizes
the parameters found in the expectation step.

Q(t+1) = argθmaxQ(θ|θ(t)) (14)
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The EM algorithm has a wide variety of use cases in machine learning,
such as unsupervised learning problems, like clustering and density estima-
tion (Bekker Davis, 2020).

2.6 Neural Networks

Neural networks are a common model structure used in machine learning,
and make up a majority of our models used in our experiments. We used
PyTorch to create our neural networks, because PyTorch allowed us to create
easy, highly customizable, and powerful models for experiments. This section
describes how neural networks function.

Artificial Neural Networks (often referred to as Neural Networks) are
computational constructs that simulate the behavior of groups of neurons
(Yiu, 2019). Much like the brain activates various neurons to control the
body, neural networks use neurons to form classifiers. These networks are
comprised of layers of neurons, often referred to as ”hidden layers”. Depend-
ing on the input to the network, some neurons in the hidden layers will fire,
sending information to the neurons in next sequential hidden layer. Eventu-
ally, the final layer will contain one node, whose result will be the output of
the network.

To better visualize how a neural network functions, imagine a network
made to analyze a hand-drawn picture of any number from 0 to 9, and
determine its value. For simplicity’s sake, this network contains only two
hidden layers, with three neurons in each layer. Let’s say that the network
receives this picture as input:

Figure 7: Hand-drawn image of the number 9. From MNIST Dataset.

One feature that a neuron might track is the amount of curvature in
the middle of the picture. Some numbers, such as 9 or 8, may have this

26



curvature pattern, similar to this drawing, while other numbers, such as 1,
2, or 7 definitely do not have the same curvature in the middle. Since there
is a strong indicator that there is curvature in the middle of the image, this
neuron will fire a signal into the next hidden layer. Inside the neighboring
layer, there may be a neuron that tracks a vertical line on the right side of the
image. Some numbers, like 2 or 5, do not have a vertical line on the right side
of the image, but the number 9, and particularly this drawing of the number
9, does. After reaching the end of both hidden layers, the output neuron
will receive the connections from the previous hidden layer and determine
which number is represented in the picture. The network determines that
the neuron for curvature in the middle and the neuron for a vertical line on
the right both fired, suggesting that the number shown in the image could
be the number 9.

Now that we know how neural networks work on a large scale, we can
dissect how these networks perform their calculations (Yiu, 2019). As men-
tioned above, a neuron represents a feature, and fires based on whether the
feature is strongly enough represented in the input. Given the neuron in
Figure 8, this equation represents whether the neuron will fire:

z = a(w1x1 + w2x2 + w3x3 + b) (15)

where xi is the input to the neuron, and wi is the weight of the neuron
that determines how useful the connection is, and a is equal to g(z), where g
is the activation function of the neuron. If g(z) crosses a certain threshold,
the neuron will be fired.
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Figure 8: Image of a neuron in a neural network. Created by Stacy Ronaghan.
From Medium.

A neural network of a specified architecture is similar to a function that
uses a collection of weights and biases as its parameters (Russel S. and Norvig
P). Neural networks effectively compute a series of linear combinations on
their activation functions, with the weights acting as scaling factors and the
biases acting as shifts for each connection. Linear combinations of linear
activation functions always produce linear functions, so if a neural network
is to approximate a nonlinear function, it must contain nonlinear activation
functions.

Figure 9: Image of an Artificial Neural Network (ANN) with two hidden
layers. Created by Lukasz Gebel. From Towards Data Science.
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2.6.1 Activation Functions

Listed below are common activation functions used in neural networks. These
functions control whether a certain neuron will fire by checking if the output
of the function is greater than a predefined threshold.

Sigmoid Function The sigmoid function gives an output between 0 and
1 (Ronaghan, 2018). It is therefore commonly used in binary classification, as
it is able to easily identify whether a point belongs to the positive or negative
class, given a certain threshold. It is also effective at predicting probabilities.

Sigmoid Activation Function:

hθ(x) =
1

1 + e−θTx
(16)

−10 −5 5 10

0.2

0.4

0.6

0.8

1

x

y

29



ReLU Function The Rectified Linear Unit (ReLU) function returns a
value between 0 and infinity (Ronaghan, 2018). It is one of the most popular
activation functions, and is used for a variety of purposes.

Relu(x)& = max(0, x) (17)
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Softmax Function The softmax function outputs a continuous value
between 0 and 1 (Ronaghan, 2018). Softmax is similar to the sigmoid func-
tion, but in a more general form to support models that classify more than
two classes.

softmaxi(a) =
exp ai∑
exp ai

(18)

2.6.2 Backpropagation

The training process of neural networks involves two steps. The first step is
forward propogation, where the network calculates an output based on the
input. This is the process previously described in the neural network exam-
ple(Yiu, T). Next, the network performs backpropogation, which calculates
the difference in error between the expected value and the actual value, and
adjusts the weights of the network accordingly. This adjustment will help
the network determine the value of a node firing has in predicting a certain
output (Nguyen, G). Going back to the number predictor example, let’s say
that a neuron identified whether the handwritten number had been drawn
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over two pixels near the middle of the picture. This neuron would likely fire
often, but because many numbers would likely cover those two pixels in the
middle of the picture, the neuron is not good at narrowing down what the
number could be, so the weight of this neuron will be small. Similarly, there
could be a neuron that tracks for an exact match between the input and the
picture of the number 9 above. That neuron wouldn’t fire often, but when it
did fire, the network is certain that the picture contains the number 9. As a
result, the network will likely weigh this neuron highly.

Figure 10: Image of a sample neural network during backpropogation. Cre-
ated by Giang Nguyen.

Backpropogation follows these formulas, written when backpropogating
E w.r.t y:

δE

δzj
=
dyj
dzj

δE

δyj
= yj(1− yj)

δE

δyj
(19)

δE

δyi
=

∑
j

wij
δE

δzj
(20)

δE

δwij
=

δzj
δwij

δE

δzj
= yi

δE

δzj
(21)

These equations show that the output of any node in the previous layer
is equal to the weight of the connection times the derivative of the input
value with respect to all total inputs the first node received (Nguyen, G).
By applying this to every neuron that fired, the network can determine the
specific neurons that were responsible for the greatest amount of error, and
adjust their weights accordingly.
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Backpropogation is necessary because professional grade neural networks
can contain millions of connections, and calculating the root cause of the error
using traditional gradient descent methods are often inefficient (Nguyen, G).
Working backwards allows the network to not only prune neurons that did
not fire in the forward pass, but also calculate the error per layer, rather than
the error per neuron.

2.7 PU Algorithms

PU algorithms attempt to perform binary classification on a dataset that
contains unlabeled samples, known as a PU dataset (Bekker Davis, 2020). In
binary classification, the goal is to find a function f that maps an observation
x to a class y, which is either positive (y = 1) or negative (y = 0). In PU
learning each x has a label feature s which indicates whether or not x is
positively labeled. If s = 1, y = 1. If s = 0, y = 0 OR y = 1. This forms the
basis upon which all PU classification algorithms are built.{

s = 1 y = 1
s = 0 y = 0||y = 1

In the section below, we will provide a detailed explanation of several as-
sumptions that are often made when writing a PU learning algorithm. Next,
we will introduce our research over the whole project into a novel PU algo-
rithm, providing a background on how each algorithm works, and why we
decided to pursue each algorithm in our research.

2.7.1 PU Assumptions

When training a PU algorithm, one has to evaluate the reasons why an
sample could be unlabeled. The assumptions listed below are common as-
sumptions that are made during PU training. We apply these assumptions
because without them, it becomes nearly impossible to construct a PU learn-
ing model that will be effective on any possible dataset. Each algorithm will
apply a different set of assumptions.

Selected Completely at Random (SCAR) Under the SCAR assump-
tion, every positive sample has an equal likelihood of being labeled (Bekker
Davis, 2020). The set of labeled samples can be assumed to be an indepen-
dent and identically distributed sample of the positive distribution. This is
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an extremely simplifying assumption that does not allow for the possibility
of labeling bias.

Selected at Random (SAR) Rather than an sample’s propensity score
being constant (as under SCAR), it is a function of that sample’s attributes
(Bekker Davis, 2020). This is a more realistic assumption than SCAR, as the
characteristics of data points are often used to inform the labeling process.
For example, people that are visibly sick are more likely to be diagnosed
with a disease than those that are asymptomatic. Traditionally, the true
propensity score of each example must be known for algorithms employing
the SAR assumption to work.

Separable Classes The distributions of the positive and negative classes
do not overlap (Bekker Davis, 2020). This implies that the unlabeled and
labeled positive observations follow the same distribution.

Anchor Set There exists a subset of feature space that is wholly com-
posed of positive observations . This subset, known as the Anchor Set, is
defined by holding certain features in the observation constant. Positive and
negative observations may be intermixed outside of the Anchor Set (Bekker
Davis, 2020).

Separability There exists a function that defines a subdomain in the
instance space where all observations are positive (Bekker Davis, 2020).

Irreducibility The negative distribution does not contain the positive
distribution (Bekker Davis, 2020).

2.7.2 Single Training Set Scenario Vs Case Control Scenario

Examples of PU data within a dataset can arise from two different circum-
stances. The first case is the single training set in which all the positive
and unlabeled examples come from a single set of examples (Bekker Davis,
2020). The case control set comes from two independently drawn data sets,
one of the data sets contains the unlabeled examples and the other contains
all of the positive examples.

The data samples in single training set scenario assumes that the positive
and unlabeled samples is a independent and identically distributed sample
from a real distribution. Only a fraction of the samples within the set are
selected to be labeled and is denoted as c. This is done following their
individual propensity scores denoted by e(x) and thus the data set has a
fraction of c of labeled samples.

An example of this scenario can be seen in personalized advertising in
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which users click on a specific subset of all advertisements of interest. There-
fore, the positive samples would be the ads that were clicked upon by the
user from the whole population of ads shown to the user.

The case control scenario assumes that the positive and unlabeled samples
originate in two independent data sets where only the unlabeled data set is
an independent and identically distributed sample from the real distribution.

An example of the case control scenario can be observed in a setting
where 2 data sets are used and one of the data sets only contains positive
examples. In the world of healthcare, when trying to predict a patients
socioeconomic states from a health record, positive examples could stem
from various health centers distributed amongst upper-class areas. Therefore,
guaranteeing positive examples only. The unlabeled set could stem from a
random selection of health centers, therefore, containing health centers in
both upper-class neighborhoods and lower class neighborhoods.

A key similarity between the two is that the observed positive examples
are generated from the same distribution in the single training set and case
control scenario. Both scenarios enable a set of examples that are drawn
from a positive distribution through the labeling mechanism defined by the
propensity score. Therefore, most PU learning methods are equipped to han-
dle both scenarios, however, it is important to note the distinction between
the two. It is imperative to consider each scenario when interpreting results
and using software.

The single training set scenario is more popular than the case control sce-
nario and has received greater attention in literally. It is possible to convert
between the case control scenario to the single training set scenario.

2.7.3 PU Algorithms

This section details the PU algorithms that our group researched during the
project, in chronological order.

2.7.4 PULSE

The PULSE algorithm, defined in (Blockeel, 2017) is a Relational Grounded
Language Learning algorithm designed to learn the meaning of English words
in natural language sentences. For the purposes of this algorithm, the mean-
ing of a word is defined as the context (world circumstances) in which the
word can be used. PULSE emerged from the field of Inductive Logic Pro-
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gramming (ILP), and accordingly represents contexts as statements in formal
logic. Consider for instance the sentence “Sally wears a red dress and plays
on the lawn.” Assume for a moment that this sentence is describing a scene
depicted in a photograph. This sentence asserts factual statements about
the scene (That Sally is wearing a dress, and that that dress is red), but it
does not necessarily rule out facts by not mentioning them. Put more con-
cretely, the scene in question could very well include a lawn gnome, but we
have no way of knowing from one sentence. What PULSE aims to do is to
learn in what contexts a word can be used, knowing that the use of a word
in a sentence is evidence it can be used and that the absence of a word is
not evidence against its suitability. The parallels to PU learning are read-
ily apparent. The positive class corresponds to the contexts where a word
can be used. Labeled instances are sentences where a word is used, and the
unlabeled instances are the sentences where the word is not used.

Statements in first order logic are derived from each sentence (either
through natural language processing techniques or human labor). These
logical statements, following the example given, might look like “Sally, wear,
dress” or “Sally, play, lawn”. From this point we can use first order logic to
determine if the logical statement is true or not. This allows for the sentence
to be generalized using least general generalization (LGG) to boil down the
meaning of the context to the main point of what we wish to describe in
the sentence, in the form of a clause. This process utilizes inductive logical
programming to derive a logical foundation to sentences. Through the use of
this foundation we are able to infer meaning in the most general way possible
given a sentence. To understand this better consider the example “I work
only on Saturdays” and “I work only on Sundays”. Because both of these
statements show that the person would be only willing to work on Saturdays
or Sundays we can then derive the least general generalization that still keeps
meaning to this person’s statements. This least general generalization could
be “I work only on weekends”. From this point we now can understand the
use of the word that might be able to be used in a sentence as a sub-cluster,
or sub-clause. This sub-cluster will inhabit the overall cluster, or clause, as
a logical statement that is “positive” or meets the truth we wish to meet
given the context. PULSE is an algorithm that will properly find all the sub
clauses that make up a clause given a context by picking different words at
random and then testing.

PULSE was an area of interest for the team due in part to the limited
applicability of the algorithm outside of ILP. Most notably was the efficiency
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of PULOR; the limitation imposed by the previous authors to remain in a
discrete paradigm versus exploring a continuous one, and any kind of formal
inductive logical programming library. This allowed room for the Team to
expand on the state of the art work, given the time constraints in place.

Understanding of the algorithm was unquestionably sound throughout the
team as well as implementation of the PULSE algorithm. Problems did rise
however through the immense amount of work that came with implementing
an inductive logic programming library. This was the prerequisite project to
having Least General Generalization work, which is needed within PULSE.
This proved to be more work than the scope of the project allowed, so we
eventually scrapped PULSE in favor of TIcE.

2.7.5 TIcE

The most recent and widely used class prior estimation algorithm is Tree In-
duction for c Estimation (TIcE) (Bekker and Davis, 2018). TIcE performed
with roughly the same level of accuracy as ALPHAMAX, while executing
significantly faster. This increase in execution time, coupled with an algo-
rithm that is easier to implement, has made TIcE the go-to algorithm for
class prior estimation.

In the broadest terms, TIcE functions by using decision trees to identify
subsets of data with a high number of positively labeled observations. These
subsets are expected to have a proportionally large number of positive obser-
vations. From the number of positively labeled observations in these subsets,
the algorithm is able to perform a series of statistical and probabilistic cor-
rections that result in an accurate estimation of the class prior.

In greater detail, TIcE operates under the SCAR assumption and uses the
stochastic nature of the labeling process to find highly positive sub domains,
or regions of the data where a high proportion of observations are positively
labeled. In order to find these sub domains, decision trees are utilized. In
short, decision trees identify sub regions of the data set by progressively
partitioning it based off characteristics of the observation. The algorithm
and proof provided in the TIcE paper assumes observations have discrete
attributes, and thus uses partial attribute assignment. This was explicitly
done for ease of derivation, and conceptually there is no reason TIcE wouldn’t
work equally well in a continuous problem space. Indeed, experiments by
(Ivanov 2019) indicate similar levels of accuracy in a continuous domain.

Because the label frequency and class prior is estimated from the sub
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domain specifically chosen to have a high number of positively labeled exam-
ples, there is an obvious risk of overestimation due to over-fitting. In order
to address this, the data set is randomly split into parts, one that is used
for sub domain discovery, and one that is used for parameter estimation.
In other words, interesting regions are computed from one dataset and then
those regions are used for analysis on another. From here, a series of bounds
adjusting operations are performed to arrive at a range of possible class prior
values. Although the lower bound is the most mathematically rigorous value
to report, experimental results show the upper bound tends to be closer.

2.7.6 Propensity Weighted Loss and the SAR EM model

The propensity score is the probability that a positive instance is labeled
positive. The crucial difference between the propensity score from causal
inference and the one used in this method is that the propensity score is
being conditioned on the class being positive (Bekker Davis, 2020). The
method defines the propensity score as the following:

e(x) = Pr(s = 1|y = 1, x) (22)

The paper represents a single set training scenario where the data can be
viewed as a set of x,y,s where x is the vector of attributes (Bekker Davis,
2020). If the example is positive then it is labeled and therefore has a value
of s=1 where the variable s represents whether an example is labeled. This
would correlate in y=1 which means that the example is positively labeled.
Therefore, anytime s=1 then y=1. However, when s=0 then it is not possible
to immediately identify the value of y.

Casual inference uses inverse-propensity-scoring as a standard method
where the examples are weighted with the inverse of their propensity score.
This cannot be applied when working with PU data as then there is a 0
probability for labeling the negative examples (Bekker Davis, 2020). The
insight is that for each labeled example (xi, s = 1) that has a propensity score
ei , there are expected to be 1

ei
positive examples, of which 1

ei
− 1 did not

get selected to be labeled. This insight can be used in algorithms that use
counts, to estimate the correct count from the observed positives and their
respective propensity scores. In general, this can be formulated as learning
with negative weights: every labeled example gets a weight 1 and for every
labeled example a ei negative example is added to the dataset that gets a
negative weight 1− 1

ei
.
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There are 2 scenarios that can arise with the propensity scores, the first
is where the true propensity scores are known and the second is where the
propensity scores need to be estimated based on the data. In general the
propensity score can be estimated from the data however it has a bias (Bekker
Davis, 2020). The estimate of the propensity score is denoted by e and from
the bias the propensity score only needs to be accurate for positive examples.
The propensity score is used as the labeling mechanism for the model to
label whether a data point is likely to be negative or positive based on its
propensity score. Through considering case 1 where the true propensity
scores are known then it can directly be implemented into the algorithm and
therefore avoid some of the pitfalls that occurs when the propensity score
is estimated. If the propensity score is underestimated then the resulting
model tends to have a higher bias. A lower propensity score would result in
the model estimating the positive class to be more prevalent than it is. An
incorrect propensity score has larger impact when predicted class has more
extreme values (towards 0 or 1).

The SAR-EM method for PU learning utilizes the following definition to
calculate the cost of the model using a propensity weighted risk estimator
that takes into account the estimated propensity scores (Bekker Davis, 2020).

R̂(ŷ|e, s) =
1

n

n∑
i=1

si(
1

ei
δ1(ŷi) + (1− 1

ei
)δ0(ŷi)) + (1− si)δ0(ŷi) (23)

This equation enables the model to calculate the cost of any incorrect
predictions while taking into account the propensity score. This helps to
generate higher accuracy as it optimizes the model by utilizing the propensity
scores (Bekker Davis, 2020).

The SAR-EM model finds a propensity function through the use of an
expectation maximization algorithm. First an assumption is made that true
propensity score is not known and therefore the propensity function only
depends on a subset of all attributes called the propensity attributes. Then
an expectation-maximization (EM) function is run that will search for both
a classifier and a lower dimensional propensity function that best explains
the data (Bekker Davis, 2020). The aim of the maximization part is to
maximize the expected log likelihood of both models, thus it is imperative
to optimize the log loss of a weighted data set. The classification model f
receivers each example i twice once as positive, weighted by the expected
probability of it being positive ŷi and once as negative, weighted by the
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expected probability of it being negative (1 - ŷi). The propensity score
model e receives each example once, positive if the observed label is positive
and negative otherwise, weighted by the expected probability of it being
positive ŷi. Due to the SAR-EM model generating the classification model
and propensity function to estimate the propensity scores of the data set,
it works better than traditional models that fail to factor in the propensity
scores.

2.7.7 Subclass Prior Estimation

Most methods of PU learning in common use rely on the SCAR assumption.
This assumption effectively means that each observation from the positive
class has an equal probability of being labeled. This greatly simplifies the
math behind many PU algorithms, but seriously at odds with real world
complexity. It is common for the attributes of an observation to determine
whether that observation is labeled. One can more closely model the real
world by instead using the SAR assumption and propensity scores, but such
a move rules out many of the existing PU algorithms.

In “Class Prior Estimation with Biased Positives and Unlabeled Exam-
ples”, the authors propose a method for considering a data set as consisting
of multiple positive sub-classes, each with a different label probability. This
effectively models biases in sampling, where the under or over labeling of a
group of observations is determined by their sub-class membership. Consid-
ered individually, each sub class satisfies the SCAR assumption, even though
the total data set does not. This allows us to apply algorithms that rely on
the SCAR assumption to individual sub-classes.

A brief description of their algorithm is as follows: first, one is to perform
the K-means clustering algorithm at several different values of K on the
labeled positive data. Each time this is done, the silhouette score (a measure
of how well a K means model fits the data) is computed. The model with
the best silhouette score is used as the final one. This determines how many
sub classes are present in the data set. Then, for each positive sub class, a
class prior estimator, such as TIcE, is used. The result of this estimator is
returned for each discovered sub-class. Below is a more rigorous examination
of the algorithm and the math behind it.

Let f1 and f0 represent the distributions for the positive and negative
classes respectively. f represents a mixture in which unlabeled data is sam-
pled from f1 and f0. α represents the class prior for the positive class of the

39



mixture f .

f(x) = αf1(x) + (1− α)f0(x) (24)

Figure 11: The top picture shows the positive f1 distribution and a negative
f0 distribution. The lower image shows the mixture f drawing from both the
positive and negatives. f ′1 is the positive labeled distribution. Image from
Class Prior Estimation for Biased Positives and Unlabeled Examples (Jain,
S et al 2020).

The goal of this algorithm is to find the α that best describes f given
a biased positive sample and an unbiased unlabeled sample. Let f ′1 be the
positive labeled distribution. f ′1 and f1 are related under a ”mixing bias”
assumption. This means that f ′1 and f1 are assumed to be up by the same
components, but may be at different mixing proportions. The two are related
under a K-component mixture representation.

f ′1 =
K∑
i=1

riφi(x) (25)

f1 =
K∑
i=1

γiφi(x) (26)

φi(x) are density functions, ri, γi ∈ [0, 1],
∑K
i=1 ri = 1, and

∑K
i=1 γi = 1

Additionally, f0 cannot be expressed as containing the same components
φ as which f1 contains. This is the ”φ-irreducibly” assumption. Under these
assumptions, the approach of this algorithm is to divide the problem into
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multiple unbiased positive unlabeled sub-problems. A class prior estima-
tion algorithm is then used to find α for each sub-problem. The results are
combined via a weighted average to arrive at a final result.

2.7.8 Propensity Weighted Loss with Subclass Prior Estimation

The label probabilities of sub-classes determined using the Sub-class Prior
Estimator provide critical insight into the true distribution of positive ob-
servations in the data-set, but (Jain S. et al. 2020) provides no direct sug-
gestion as to how to use this information. While considering this algorithm,
we noticed the parallels between the propensity scores from the propensity
weighted estimator in SAR-EM (Bekker et al., 2019) and the label probabil-
ities of the sub-classes. A logical next step was for us to combine the two
algorithms. SAR-EM is employed, but instead of estimating the propensity
score from the data, the Sub-class Prior Estimator is used to assign obser-
vations to sub-classes and each observation is assigned it’s sub-class’s label
prior as its propensity score.
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3 Related Works

This section highlights a number of other papers that explore alternative
avenues of research into PU learning.

Due to their nature of building on existing algorithms, one common re-
search path involved transforming standard ML classifiers into PU classifiers.
Our group implemented a few of these, but there remain many alternative
PU transformations on several other types of ML classifiers. These methods
fall under three categories: two-step methods, biased learning methods, and
class prior estimation methods.

During our research, we found several two-step methods that share sim-
ilar methodologies to the two-step algorithms we implemented [Fung 2006,
Bekker 2020, Peng Zuo , Yu]. This gave us a firm understanding of how
two-step algorithms worked, and allowed us to reference these papers when
writing our own methods. An example is ”Positive examples and Negative
examples Labeling Heuristic”, or PNLH. Similar to the two-step methods we
explored, PNLH attempts to identify reliable positives and reliable negatives.
PNLH first extracts a set of reliable negatives using features that frequently
occur in positive data. Next, PLNH iteratively increases the set of reliable
positives and reliable negatives by classifying a data point based on its re-
lation to the current positive or negative clusters. For example, if a point
is close to the positive cluster and not close to any negative clusters, it will
be added to the positive cluster (Fung, G.P.C). K-means clustering uses a
similar method, but uses k-means to form the clusters, instead of using fea-
ture comparisons (Bekker, J.). Another two step technique that is used is a
combination of 1-DNF and iterative SVM. 1-DNF is a classification method
that finds recurring features within the labeled positive examples and classi-
fies these as ”strong” features. A reliable negative is one where none of the
strong features are present. Since there are many possible features that could
constitute a positive feature, to gather a set of reliable negative features is
difficult. Therefore 1-DNF avoids this complication by setting a minimum
threshold with a frequencies of all the features to select the strongest ones
(Peng, T, Zuo, W/81). Iterative-SVM uses an SVM classifier that is trained
on the positive examples and the reliable negatives and the unlabeled ex-
amples that are classified as negatives are added to the reliable negative set
and this is algorithm runs until there are no more points to be classified (Yu,
H/112).

A separate field that has piqued the interest of PU learning researchers
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is relational learning. This process involves filling in knowledge bases with
additional data, based on new relationships found inside the already exist-
ing data. Relational learning models consider all data inside the knowledge
base to be true, and all data yet to be added as unlabeled. The previously
mentioned PU algorithm PULSE (section 2.8.4) is an example of a relational
learning method. Most existing relational learning methods make the closed
world assumption, which considers every point not already in the dataset as
negative. This assumption helps facilitate the creation of new relations in the
data, by excluding the possibility of hypothetical data potentially changing
the nature of the relationship. However, some recent methods have started
to make the open world assumption, which accounts for data not inside the
knowledge base by identifying it as incomplete (Bekker, J.). Although re-
lational programming is largely a different field than machine learning, PU
researchers have been able to slightly modify relational models to work in
a PU setting. One such method, known as TIcER, is an open world that
builds off the TIcE algorithm mentioned in section 2.8.5. Assuming the
SCAR assumption holds, TIcER can estimate the class prior directly from
the PU data by creating a first order logic tree. This algorithm is explored
in the paper, ”Positive and Unlabeled Relational Classification through La-
bel Frequency Estimation”, by the same authors as the survey paper. As
with PULSE, TIcER could have been explored by our group if the scope of
our project was larger. Relational learning represents a potentially untapped
field for PU learning, and early experiments with algorithms such as TIcER
look promising.

A common assumption in PU learning is that both the labeled and un-
labeled positive instances come from the same distribution. However, in
the real world, this may not always be the case. Data entries may contain
attributes which bias them towards being labeled versus unlabeled. One pro-
posed solution involves developing a robust class prior estimation algorithm
using a clustered approach (Jain, S. et al). This algorithm serves as a basis
for our novel algorithm. This solution relies on another algorithm, TIcE,
which performs class prior estimation on a per-cluster basis.
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4 Methodology

This section provides an overview of the work our group accomplished. We
describe the setup for each experiment we run, and discuss our goals for
running each experiment.

4.1 Data Preprocessing

4.1.1 BERT and TweetBERT

Bidirectional Encoder Representations from Transformers, or BERT, is an
neural network developed and maintained by Google. It is used for natural
language processing (NLP) to help the Google Search algorithm improve its
precision in finding results. Its goal is to help machines understand conver-
sational subtleties of languages that aren’t obvious when reading a string
of words at face value (Nayak, P). The problem with using Recurrent Neu-
ral Networks (RNN), considered to be the traditional method of language
understanding tasks, is that such models operate sequentially, and read the
sentence left-to-right, or right-to-left. This approach can cause some prob-
lems, especially with sentences that require a word at the end of a sentence
in order to put the whole sentence into context (Uszkoreit, J). For example,
the word ”bark” in the sentence ”The bark over there was painfully...” has
a different meaning depending on the last word in the sentence. If the last
word is ”loud”, then bark would be referring to a dog bark, but if the last
word was ”rough”, bark would be referring to tree bark. When reading this
sentence from left-to-right, the sequential model must read every word in be-
tween ”bark” and ”loud” or ”rough” to determine the meaning of the whole
sentence. A study conducted in 2015 shows that generally, the more times a
network has to take several steps in order to make a decisions, such as in the
sentence described above, the harder it is to train that network (Hochreiter,
S., et al) . Additionally, sequential neural networks cannot make full use of
graphics cards for computation, as graphics cards excel at parallel computa-
tion, instead of sequential computation, leading to an even slower training
process (Uszkoreit, J).

BERT avoids this problem by utilizing transformers, or models that take
each word in the context of a sentence as a whole, instead of in the context
of words that come before or after (Uszkoreit, J). First, transformers run
a constant number of steps, and in each step, the transformer models the
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relationship between each word in a sentence, regardless of the word’s posi-
tion in the sentence. The model uses these steps to form an attention score
given to each two-word combination in the sentence. The attention score
indicates how important one word is at defining another word. For example,
the two-word combination ”The bark” would be given a lower score than the
combination ”bark loud”. This process is called ”self-attention”. From here,
the model can use these relation pairs to assist in its overall NLP goal, such
as optimizing the precision of the Google Search algorithm.

TweetBERT works similarly to BERT, but has instead been pre-trained
on tweets. Tweets differ from the average Google Search queries in content,
length, usage of slang, and usage of emojis, which makes a separate algorithm
necessary. Our implementation of TweetBERT was taken from the GitHub
repository: https://github.com/VinAIResearch/BERTweet.

Our group implemented TweetBERT to tokenize our tweets. This to-
kenizing process involves transforming the text of a tweet into a tensor of
numbers that a model can understand. This allows our group to train our
novel algorithm on any real-world dataset. We used this to tokenize a Twit-
ter dataset, referenced in section 5.1.2. After tokenizing our tweets using
TweetBERT, we fed them to a PyTorch neural network. The goal with cre-
ating a model was to figure out a model architecture that works well with the
tokenized tweets. This would not only have helped with the creation of our
novel algorithm, but it would also have served as a benchmark to compare our
novel algorithm’s performance. However, the scope of our project changed,
and we didn’t have the opportunity to implement the Twitter dataset with
the tokenized tweets on our novel algorithm. This is a task we will explore
in the future.

4.1.2 Performance Baselines And Data Pipeline

Determining the reliability and the quality of the results during the testing
process can be a daunting task. Often times, results referenced from state of
the art methods show qualities within their practices that are lacking to show
the bigger picture. This bigger picture will often show information that aids
in the understanding of the Team’s re-implementation which can uncover any
errors in our work or from authors. This process of developing baselines, to
the often specialized data, can be time consuming and difficult to do. This
can be especially difficult in the time consuming nature of re implantation
of state of the art techniques.
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In an aim to shorten this process the team has developed a series of
pipelines of several algorithms and data preprocessing techniques. These
series of pipelines will enable the team to handle more unique and specialized
data, develop baselines using standard statistical methods and more easily
work toward developing specific baselines within the algorithms we test and
implement in the future.

Often times, the team met resistance when figuring out the quality of the
data within a positive unlabeled learning environment. Techniques in the
past have been to create simulated positive unlabeled data in the past that
can confirm our findings within the work we have done. However, this process
can become tedious due in part from the nature of the specialized data. Our
hope is that our pipelines within our work within positive unlabeled learning
will allow for us to focus less on the fine tuning of the data and more so on
the implementation of future algorithms.

The challenges that the Team has met are making these pipelines as
robust as possible. Meeting every edge case is a statistical impossibility
but as work continues these pipelines will save the Team time toward more
menial tasks within the research development cycle. This of course calls for
continuous upkeep to account for new or unforeseen algorithms and data.

4.1.3 Pipeline

The classification and runtime performance of Machine Learning algorithms
are highly dependent on specific implementation details. In order to provide
background to our results and provide enough information to attempt an
accurate replication, we have provided a detailed overview of how we im-
plemented our pipeline and individual algorithms. All code was completed
in Python, primarily because of its wide selection of Machine Learning li-
braries. In order to make clear the difference between how we implemented
algorithms in Python and how we intend them to work in the abstract, we
will be defining our algorithms using pseudo code.

In order to evaluate the performance of various Machine Learning algo-
rithms on different datasets under different conditions, we must perform the
algorithm below.

1. Load Dataset into memory

2. Standardize Dataset
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3. Split Dataset into train and test sets

4. Apply transformations simulating PU assumptions (described in IN-
SERT SECTION HERE)

5. Apply Machine Learning algorithm to the training set

6. Report out the performance of algorithm on train and test set

This general algorithm and the steps that comprise it are what is known as
a Machine Learning pipeline. For every different combination of models and
assumptions we wish to test, we must construct a different pipeline. Rather
than write out small variations of the same algorithm dozens of times, we
elected to write a single function that generates pipeline functions as needed.
A function that takes other functions as arguments and/or returns functions
is known as a higher order function. Make pipeline is a higher order function
that creates a pipeline function for a particular dataset and Machine Learning
algorithm. Its pseudocode is listed below.

Psuedo code for make pipeline:

function make pipeline(preprocess function,model function, postprocess function)
return function pipeline(x):
x = preprocess function(x)
x = model function(x)
return postprocess function(x)

Each pipeline object is a function of one variable that is in turn composed
of three sub-functions of one variable. This has the satisfying effect of only
requiring one line of code to invoke the entire pipeline on a dataset. Steps
2-4 in the list above correspond to the preprocess functions parameter, while
steps 5 and 6 correspond to model function and postprocess function respec-
tively. If one wishes to apply multiple preprocessing functions, they can be
combined into a single function. The argument passed through each stage
of the pipeline is the dataset, so functions of multiple parameters need to
be converted into functions one parameter through one way or another. We
have made extensive use of wrapper and partial functions for this purpose.

Bugs are an inevitable part of the software development process, and
so we have adopted certain programming practices in an effort to manage
them. One of these practices is the use of the functional programming style.
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Functional programming emphasizes the use of higher order functions and
the avoidance of mutable state. This allows us to write our code in a manner
that is both more abstract and easier to reason about. Minimizing the use
of mutable state makes it easier to determine the origin of bugs.

Although there are many benefits to functional programming, for reasons
of pure practicality we have had to make a few compromises. We need to keep
track of what observations were selected for the train and test datasets in or-
der to evaluate the model’s performance. In order to achieve this, we elected
to pass objects into our pipeline functions that would be filled in at runtime
with records of which observations were unlabeled. Our current pipeline for
the Customer Intentions dataset consists of the following operations:

1. Apply a transform to the data so that the class indicator is in a known
position.

2. Encode every categorical variable as a integer

3. Split the dataset into a train and test set

4. Randomly unlabel X% of positive observations. This simulates the
SCAR assumption holding for the dataset.

5. Apply the PU algorithm to the train set

6. Evaluate the results of the the previous step

We created a pipeline to test each of our PU classifiers, which contains a
series of functions.

4.2 Model Selection

4.2.1 One-Step NB

Our implementation of the One-Step Naive Bayes classifier relied heavily on
scikit-learn’s implementation of Gaussian Naive Bayes. In accordance with
our inclinations towards functional programming, we have created a wrapper
function classify naive bayes that handles the training and application of a
Gaussian Naive Bayes classifier. This wrapper function creates a copy of the
dataset argument so that the function causes no side-effects. The pseudocode
for our implementation is below.

Psuedo code for classify naive bayes:
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function classify naive bayes(dataset)
dataset copy ← copy(dataset)
model← TrainGuassianNaiveBayes(dataset)
new labels← model(dataset copy)
dataset copy.labels← newlabels
return dataset copy

It should be noted that prior to applying this function preprocessing
functions as described in section 5.1.3 have been applied to our dataset.
Thus, the Gaussian Naive Bayes function is trained on a training set with
normalized data and various PU assumptions applied.

4.2.2 One-Step SVM

Implementation of the one-step support vector machine was tested to see the
effects of applying the SCAR dataset to a support vector machine to gauge
how well the F-score changes based off each iteration of SVM use. We found
that the one-step proved to be less than favorable and turned to the use of
one step Naive Bayes along with a support vector machine. This is expected
to show significant improvement comparatively to its one-step support vector
machine counterpart. Additional plans are to continue on with this pattern
of testing with two-step counterparts to naive bayes, support vector machines
and hybrids of the two.

4.2.3 Two-Step NB-SVM

Our two-step NB-SVM implementation builds upon the one-step NB from
Section 5.2.1 and adds an additional SVM classifier. The SVM used is im-
plemented through Scikit-learn’s implementation of a linear support vector
classifier. The pseudocode for the entire two-step NB-SVM algorithm lies
below.

Psuedo code for two step nb svm(dataset):
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function two step nb svm(dataset)
nb classified dataset← classify naive bayes(dataset)
for entry in nb classified dataset do

if entry is negative in dataset and nb classified dataset then
uncertain.append(entry)

if entry is positive in dataset then
positives.append(entry)

any negatives← True
while any negatives and uncertain do

train obs, train labels← reliablenegatives+ positives
train svm classifier(train obs, train labels)
predictions = fit svm classifier(uncertain.observations)
any negatives← False
for prediction in predictions do

if prediction is negative then
Remove prediction from uncertain
reliable negatives.append(prediction)
any negatives← True

4.2.4 Two-Step EM-NB

We implemented our two-step EM-NB classifier based on the method de-
scribed in the paper, “An Evaluation of Two-Step Techniques for Positive
Unlabeled Learning in Text Classification”. We built our two-step NB-SVM
classifier first, and built our EM-NB classifier on the framework of the NB-
SVM. The two classifiers contain many similar features, including the prepro-
cessing functions, and the first step in the two-step process. After running
the first step, the algorithm moves on to the Expectation Maximization step,
which iteratively runs a Naive Bayes classifier on the “positive” and “unla-
beled” datasets. With each iteration, the classifier produces new labels for
each element inside the “unlabeled” dataset. Iterations continue until the
dataset reaches a certain threshold.

50



function two step em nb(dataset)
nb classified dataset← classify naive bayes(dataset)
for entry in nb classified dataset do

if entry is classified negative by both the nb classified dataset and
dataset then

reliablenegatives.append(entry)

if entry is classified positive by nb classified dataset and is nega-
tive in dataset then

uncertain.append(entry)

if entry is positive in dataset then
positives.append(entry)

any negatives← True
while any negatives and uncertain do

train obs, train labels ← reliablenegatives + positives +
uncertain

train svm classifier(train obs, train labels)
Uncertain obs = uncertain
Predictions = fitgaussiannaivebayes(uncertainobs)
any negatives← False
for prediction in predictions do

if prediction is negative then
Remove prediction from uncertain
reliable negatives.append(prediction)
any negatives← True

for entry in uncertain: do
entry ← positive

Mergereliablenegative, positives, uncertainintonewdataset

!!!Source for nnPU

4.2.5 Non-Negative PU Loss

Our team implemented a non-negative loss function, which is a function
that outputs a value between 0 and 1 that measures the loss during training
(Kiryo et al., 2017). We purposefully ensured that our loss function was
non-negative, or unable to output a value less than zero, because negative
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loss can lead to overfitting. Next, we decomposed the loss function to work
on PU datasets. The four figures below depict the decomposition process.

Figure 12:

Figure 12 represents our starting equation. This formula shows that the
average negative loss of all points in a dataset is equal to the class prior,
π, multiplied by the average negative loss over all positive points plus the
inverse of the class prior multiplied average negative loss over all negative
points.

Figure 13:

Figure 13 converts the average negative loss into the inverse of the average
positive loss. This step will be important in Figure 15.

Figure 14:

Figure 14 proves that the left hand side is equal to the inverse class prior
multiplied by the average negative loss over all negative points. The left
hand side can be used to represent all unlabeled points in a dataset, as it
contains the set of all points in a dataset minus the positive points.

Figure 15:
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Figure 15’s top equation represents our initial loss function. Since we
don’t know the set of negative points in a PU dataset, we can replace this
portion of the equation with the equation we derived in Figure 14.

Our goal with implementing non-negative PU loss was to use this as
our loss function in our novel algorithm. However, we instead went with a
propensity weighted loss estimator, as it more closely related to our novel
algorithm’s goal of estimating an unknown propensity score.

4.2.6 TweetBERT

We implemented TweetBERT by using the code found at the TweetBERT
GitHub to tokenize the tweets, and using the tokenized tweets in a simple
PyTorch classifier. First, the model feeds all datapoints through the tok-
enizer, which converts the words in a tweet into a series of real numbers.
Next, the dataset is split into a training and test dataset with a 20% split,
and the tokenized tweets are fed into the PyTorch classifier. The classifier’s
architecture consists of four hidden linear layers, with 25% dropout between
each layer. The network uses Binary Cross Entropy as its loss function, and
uses AdamW as its optimization function. We trained our model for a max
of 300 epochs, but noted that the model’s training and testing accuracy rose
most sharply between 0 and 100 epochs.

4.2.7 TIcE

The implementation of TIcE was taken from a Github repository
(https://github.com/dimonenka/DEDPUL), which was an adaptation the
author’s GitHub. The original TIcE repository (https://github.com/ML-
KULeuven/SAR-PU) was created for Python 2, while our codebase was en-
tirely in Python 3. The adaptation was necessary to incorporate the code
into our existing infastructure.

4.2.8 Propensity Weighted Loss

The goal of the propensity weighted loss function is to re-weight the loss ac-
cording to the propensity score of each example. To calculate the unweighted
loss, we used binary cross entropy loss. We assumed two cases: one where
we know the true propensity score, and one where the propensity score was
unknown. In the case where the propensity score was unknown, we used an
Expectation Maximization algorithm to model the propensity function. Here
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are the steps we took to implement and properly use the propensity weighted
loss function: 1. Generate sample data. 2. Generate the propensity function.
3. Use the propensity function to generate a propensity score e for a given
sample. If we are using the EM algorithm, it is assumed that the propensity
function is unknown and must be estimated. If the sample is positive, unla-
bel it with the probability 1− e. Store the propensity scores such that they
can be used by the loss function. 4. Apply a simple Neural Network with
the propensity weighted loss function using the stored propensity scores.

Below is the pseudo-code of the propensity weighted loss function:

function propensity weighted loss(y, ŷ, e)
total risk ← 0
for yi, ŷi, ei, ..., y, ŷ, e do

a← positive log loss(yi) ∗ 1
ei

b← negative log loss(yi) ∗ (1− 1
ei

)
c← (y ∗ (a+ b)) + ((1− y) ∗ negative log loss(ŷ))
total risk ← total risk + c

return total risk

4.2.9 Subclass Prior Estimation

First, this algorithm seeks to establish the best possible way to group positive
labeled clusters of points based on the silhouette score, which is the mean
silhouette coefficient across all the clusters.
The silhouette coefficient is calculated by

(b− a)

max(a, b)

where a is the mean distance between points within the cluster and b is
the distance between the cluster to the nearest outside cluster. Points are
clustered using the k-means classifier resulting in the best silhouette score.
Next, unlabeled points are assigned to their respective cluster using this k-
means classifier. From there, a class prior estimation algorithm, such as
TIcE, can be applied to each cluster, now consisting of both positive and
unlabeled examples. Once α for each cluster is found, the average of all the
α, weighted by the size of the unlabeled portion of each cluster, is returned.
Shown below is the pseudocode.
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function k means silhouette(unlabeled, positives, max k)
for n = 2,...,max k + 1 do

km classifier ← KMeans(n clusters = n)
pred← km classifier.fit predict(positives)
score← silhouette score(positives)
if score is greater than best score then

best km classifier ← km classifier
best score← score

return best km classifier, pos assignments

function estimate alpha(unlabeled, positives, max k)
km classifier, pos assignments← k means silhouette(positives,max k)
unlabeled assignments← assign clusters(km classifier, unlabeled)
for i = 1,...,length(pos assignments) do

alphas[i]← TIcE(pos assignments[i], unlabeled assignments[i])

weights[i]← size(unlabeled assignments[i])
size(unlabeled)

α∗ ← dot product(alphas, weights) return α∗

4.2.10 Novel Algorithm: Cluster-Bias Adjusted Clustering C-BAC

nay The method for creating and implementing this algorithm is a combina-
tion of the Subclass Prior Estimation algorithm and the Propensity Weighted
Loss algorithm. The steps are similar to the Propensity Weighted Loss algo-
rithm implementation except the propensity scores are discovered by the Sub-
class Prior Estimation algorithm instead of the use of the SAR-EM model.
While the Subclass Prior Estimation algorithm determines the class prior for
a given cluster, it is simple to derive the propensity score from that. For
a given cluster, let α be the proportion of positive samples in an unlabeled
mixture, and p and u be the number of positive and unlabeled samples re-
spectively. The propensity score e of the entire cluster can be calculated as
shown below:

e =
p

p+ uα
(27)

This algorithmic workflow served as the basis of our novel algorithm as
the incorporation of the subclass prior estimation algorithm using the tree in-
duction using c estimation algorithm coupled with the propensity weighted
risk loss algorithm has never been implemented before. The team’s novel
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workflow was developed through the use of the combination of existing al-
gorithms with the hope that it would have greater accuracy and improved
classification as compared to the state of the art approaches.

5 Experimental Analysis

5.1 Datasets

5.1.1 Online Shopping Dataset

The dataset used in the experiments involving the Naive Bayes, SVM, and
EM-NB PU classifiers is titled “Online Shoppers Purchasing Intention Dataset”,
from the UCI Machine Learning Dataset Repository. This dataset recorded
the behaviour of customers while browsing a shopping website. It contained
12,330 data points, each representing a unique user within a 1-year period.
This helps the dataset avoid bias towards a particular person or time period.
The dataset consists of 10 numerical and 8 categorical attributes. The “Ad-
ministrative”, “Administrative Duration”, “Informational”, “Informational
Related”, “Product Related”, and “Product Related Duration” categories
are integer values that represent the number of different pages visited by a
user in a session, and the time spent on each page. These numbers were
based on the URL information of the pages a user visited. The “Bounce
Rate” refers to the percentage of users that enter the site and leave without
visiting any other page on the site. The “Exit Rate” displays, for any given
webpage, the percentage of users for which that webpage was their final page
visited before exiting their session. The “Page Value” attribute refers to
the average assigned value of a webpage that a user visited before finishing
an online transaction. The “Bounce Rate”, “Exit Rate”, and “Page Value”
attributes were calculated using the metrics found in Google Analytics for
each page on the site. The “Special Day” feature represents the closeness
in time between the access date and any special holiday, such as Christmas
or Valentine’s Day. The other features include the access “Month” (String),
the user’s “Operating System” (Integer), “Browser” (Integer), “Region” (In-
teger), “Traffic Type” (Integer), “Visitor Type” (String, such as new visitor
or returning visitor), “Weekend” (Boolean), and “Revenue” (Boolean).

We chose “Revenue” as our target variable, as it ultimately showed whether
the user purchased a product on the site, which was the goal of the study.
This feature was skewed towards the negative class, as out of the 12,330
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recorded shoppers, 10,422 people (84.5%) did not make any purchases, and
1,908 people (15.5%) did make a purchase. We believe that this feature
represents real world scenarios, and would be a good test for our algorithms.

5.1.2 Twitter Datasets

The Twitter dataset is split into two parts, an unlabeled dataset and a labeled
dataset. The labeled datasets are split into two different datasets, one which
contains a collection of tweets from a number of users, and another which
contains the PHQ9 test results from those same users.

The unlabeled Twitter dataset contains three main columns which are
an untitled column that contains the number of each row starting at 0, the
second column is the ID of the Twitter user and the third column is the
content of the tweet. The initial dataset that was presented to the team was
missing filled with blank rows that contained only the row number but no
ID and no content for the tweet and these blank rows significantly added
to the total amount of rows in the comma separated value (csv) document.
The total number of rows in the csv was 65,543 rows and the initial csv
also contained multiple repeated tweets by the same user ID which were not
retweets. Retweets are when user tweets the same tweet as another user,
this would result in a different tweet ID as it is a new user tweeting a tweet
with the same content as another user. It is also denoted in the content
column as RT before the tweet itself. Furthermore, the initial csv contained
multiple repeated tweets by the same user. This would cause a bias to be
introduced when working with an PU models as it would adversely effect the
model’s performance. Therefore, in order to negate this issue, the dataset
was cleaned using pandas.

Figure 16: A visual representation of the greatest number of repeated tweets
and null value tweets.

The twitter dataset has an accompanying PHQ9 dataset, which contains
the test results of the user’s PHQ9 score. The PHQ9 is a questionnaire which
has been designed to monitor the severity of depression within a patient, and
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is a tool used by primary health care services. It can be used tentatively
at times to help diagnose depression for at risk individuals within a certain
demographic of the population. Based on the results of the test, the user
will be assigned a score between 0 and 27. Any value within the range of 0-
4 represents no depression, 5-9 represents mild depression, 10-14 represents
moderate depression, 15-19 represents moderate to severe depression and
20-27 represents severe depression. The dataset contains the score of each
question from 0-3 for each user.

5.1.3 Banknote Authentication Dataset

This dataset was found from the UCI Machine Learning Dataset and was
used for experimentation regarding the Cluster-Bias Adjusted Classifier. The
dataset consists of data that was extracted from images taken from geniune
and forged bank-note samples. Then it was digitize using an industrial cam-
era for print inspection. The final images are 400 by 400 pixels and wavelet
transformation tools were used to extract features from the images of the
bank notes.

The dataset contains the following variables in which 4 variables are con-
tinuous and 1 variable is an integer. The variables are as follows:
1. variance of Wavelet Transformed image
2. skewness of Wavelet Transformed image
3. curtosis of Wavelet Transformed image
4. entropy of image (continuous)
5. class (integer)
The class integer is representative of forged bank notes denoted by the value
0 and real, genuine bank notes denoted by the value 1.

5.1.4 HTRU2 Dataset

The dataset used in the experiment involving the Cluster-Bias Adjusted Clas-
sifier algorithm is titled “High Time Resolution Universe Survey Dataset”,
from the UCI Machine Learning Dataset Repository. The HTRU2 dataset
describes a sample of pulsar candidates collected during a High Time Res-
olution Survey. Pulsars are rare types of neutron stars that produce radio
emission which are detectable from earth. As the pulsar neutron star rotates,
its release radio emission beams which sweep across the sky and produces
a detectable pattern for broadband radio emissions. Since pulsars rotate
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rapidly, this periodically repeating emission pattern is looked for through
the use of large radio telescopes. Identifying these periodic patterns are dif-
ficult and this is why ML algorithms are being used for rapid detection of
pulsars.

The dataset contains a split of 16,529 spurious or false examples of pulsars
are 1639 real pulsar examples with a total of 17,898 examples. Therefore, the
dataset is unbalanced as there are 16,529 negative examples that are consid-
ered as the aforementioned fake pulsars, and 1529 positive examples which
are the verified pulsars. Each pulsar datapoint is known as a candidate to
be a pulsar and is described by the dataset using 8 continuous variables and
1 single class variable. The variables are as follows:
1. Mean of the integrated profile
2. Standard deviation of the integrated profile
3. Excess kurtosis of the integrated profile.
4. Skewness of the integrated profile.
5. Mean of the DM-SNR curve.
6. Standard deviation of the DM-SNR curve.
7. Excess kurtosis of the DM-SNR curve.
8. Skewness of the DM-SNR curve.
9. Class

The first 4 variables are simple statistics obtained from the integrated
pulse profile, which is an array of continuous variables that help describe the
frequency and signal of the pulsar over average time. The class variable is an
indicator to whether the pulsar is fake represented by 0 or real represented
by 1.

5.2 Evaluation Metrics

This section describes the evaluation metrics we used to measure the perfor-
mance of the algorithms in our experiments.

5.2.1 Method Modification PU Learning Algorithms

Overall accuracy is a simple evaluation metric, however, it does not perform
well when working with class skew, or differing cost of false negatives and
false positives (Wood, T). Since our dataset had a negative skew, we decided
to evaluate our algorithms using the F-score, instead.
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As described in section 3.2.5, the F-score measures the harmonic mean
of the model’s precision and recall. This helps alleviate the issues with using
overall accuracy, as it is optimized for binary classification. It is sensitive
to the model’s performance with regard to the positive class, unlike overall
accuracy, which measured the model’s ability to classify as a whole.

5.2.2 TweetBERT

Unlike other experiments, TweetBERT is a pre-trained model, so we do not
need to measure its performance. Instead, we will use TweetBERT to train a
separate classifier on our depression datasets. Therefore, we chose to evaluate
only the validation loss and accuracy of our classifier.

5.2.3 TIcE and Subclass Prior Estimation

We reported the class prior of the unlabeled mixture alongside the expected
class priors. We also reported the MSE.

5.2.4 Propensity Weighted Loss

We used accuracy as the main metric. We also compared the accuracy of
the propensity weighted loss function against the accuracy from a standard
MSE loss function.

5.2.5 Cluster-Bias Adjustment Classification C-BAC

We used accuracy as the main metric. We also reported the computed
propensity scores for each cluster for more insight. Furthermore, we plot-
ted the final plot that shows how the classification algorithm performed in
terms of classifying each cluster. This was done to understand if the clusters
were being classified in an optimal fashion.

5.3 Experiment Descriptions

5.3.1 Method Modification PU Learning Algorithms

Our experiment involved taking the PU version of , and testing their per-
formance against each other. We hypothesized that the two-step classifiers
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would perform better than the one-step classifiers. To conduct our experi-
ment, we trained each one of our classifiers on our dataset. We started the
training procedure with 70% of the dataset and 0-90% label prior, using in-
crements of 10%. We applied the SCAR assumption in our preprocessing
functions in our pipeline, by converting certain increments of our positively
labeled data points into unlabeled points.

After training our model, we used the remaining 30% of our dataset to
test our model. Each test outputs four numbers: the label prior, the overall
accuracy, the unlabeled accuracy, and the F-score. Our group decided to
use the F-score as the measurement of the model’s accuracy. We tested each
model five times per label prior level, and recorded our results in the graphs
below.

Label Prior 1 Step NB 1 Step SVM 2 Step NB-SVM 2 Step EM-NB
0% 0% 0% 0% 0%
10% 17% 18% 39% 35%
20% 34% 32% 49% 46%
30% 48% 48% 55% 56%
40% 60% 57% 61% 60%
50% 67% 68% 65% 67%
60% 73% 77% 71% 68%
70% 83% 81% 74% 71%
80% 90% 89% 75% 75%
90% 95% 94% 77% 78%

Table 1: F-Score: Label Prior vs. Algorithm
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Figure 17: A chart displaying our F-scores for each type of classifier at in-
crements of 10% label prior.
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5.3.2 TweetBERT Classifier

We ran many experiments on our TweetBERT classifier in an attempt to
accurately classify the tokenized tweets. The result shown in Figure 23 rep-
resents our best result, when training and testing our classifier over 300
epochs. The average training accuracy from epochs 0-150 was 0.6285, and
the average training accuracy from epochs 151-300 was 0.6630.

Figure 18: A graph mapping the performance of the TweetBERT classifier
over 300 epochs. The blue lines and red dots represent the training accuracy,
the green lines and blue squares represent the testing accuracy, and the dotted
line represents the loss.

5.3.3 TIcE

The state of the art algorithm for class prior estimation under the SCAR
assumption is TIcE. We elected to test TIcE under both ideal and challenging
circumstances. Of particular interest to us was how TIcE performed when
the positive and negative distributions overlapped. For our experiments we
used Gaussian distributions for both the positive and negative classes.

Because the degree of overlap between two distributions is affected by the
distance between means, two different standard deviations, and the relative
size of the distributions, we have elected to only vary the true class prior and
standard deviation of the negative distribution. The distance between the
two distribution means was fixed at 4. We evaluated each setting at various
levels of α. While it is earlier stated that α is the proportion of positives in a
mixture, for our experiments, α represents the proportion of negative points
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in the mixture. The results for this experiment can be found in Appendix D
(8.4)

Figure 19: Imaging showing the performance of TIcE at various levels of
alpha. Each differently colored line corresponds to a different standard devi-
ation of the negative distribution

5.3.4 Propensity Weighted Loss

For our experiments, we generated a set of one-dimensional data to test how
the propensity weighted loss function performs under various conditions. The
training data and testing data is generated with identical parameters. Some
parameters of the data varied according to the experiment and some of the
parameters were fixed. the positive F+(x) and negative F−(x) distribution
both contain 5000 points. Respectively, F+(x) and F−(x) are as follows:

F+(x) ∼ Normal(µ = 2, σ = 1) (28)
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F−(x) ∼ Normal(µ, σ) (29)

Figure 20: Imaging showing the frequency distribution of the positive and
negative classes, along with a given propensity function, which determines
the label probability of a given positive sample

We tested the propensity weighted loss function under two scenarios. The
first scenario assumes that the propensity function is known. In our tests,
let these functions be represented below:

f1(x) = min(1,
0.25

x
) (30)

f2(x) = min(0.8,max(0.2,
0.5

x
)) (31)

f3(x) = U(0, 1) (32)

f4(x) = 0.5 (33)
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Propensity Function µ− σ− Accuracy MSE Loss Function Accuracy
f1 4 2 0.7665 0.5129
f1 4 1 0.8397 0.5246
f1 10 1 0.9954 0.5318
f1 8 2 0.9776 0.5316
f2 8 2 0.9762 0.5816
f3 8 2 0.9771 0.7322
f4 8 2 0.9704 0.7333

Table 2: Classification Accuracy with known Propensity Scores. A standard
MSE loss function, which disregards propensity scores, was evaluated as well
for comparison.

The second scenario assumes that we do not know the true propensity
function when apply the propensity weighted loss function. For this, we used
an Expectation Maximization algorithm to estimate the propensity function.

Propensity Function µ− σ− Accuracy1 Accuracy2
f1 8 2 0.9435 0.5
f2 8 2 0.9779 0.5
f4 8 2 0.9597 0.5

Table 3: Classification Accuracy with estimated Propensity Scores. The
standard MSE loss function accuracy was not included as those were evalu-
ated in the table above. Accuracy1 is the accuracy when adjusting for the
propensity bias in the estimated propensity function. Accuracy2 has no such
adjustment done.

It is important to note that the EM algorithm does not accurately model
the propensity function in many cases. The effect on accuracy depends on
the properties of the calculated propensity function. With the EM algorithm,
underestimating the propensity values can have severe consequences on the
classification accuracy. The error on the prediction of the propensity function
is known as the Propensity Weighted Estimator bias (Bekker et al., 2019).
To combat this bias, we bound the propensity function to an arbitrary value
of our choosing such that high accuracy scores were still obtained. In our
experiments we chose 0.1 as the minimum calculated propensity score. While
this method is quite rudimentary, it worked with our tests and was sufficient
in demonstrating the effects of propensity bias.
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Figure 21: Image showing the propensity function found by the EM algorithm
versus the true propensity function

Figure 22: Image showing the propensity function found by the EM algorithm
with bias correction versus the true propensity function.
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The bias can be calculated using the Propensity Weighted Estimator Bias
equation shown below.

Figure 23: Imaging showing the Propensity Weighted Estimator bias (Bekker
et al., 2019)

The bias function shows that underestimated propensity scores can have
an out-sized effect on bias. The EM-derived propensity functions estimated
extremely small propensity scores in some parts of the function, and it was
necessary to limit its effects. In our tests, severely underestimating the
propensity scores caused the Neural Network to predict each and every sam-
ple as positive. This is due to the fact that incorrect and very small propen-
sity scores will predict the positive class to be a lot more prevalent than it
really is. On the contrary, while overestimating propensity scores, in theory
shall still lead to bias, the error limit is bounded, thus the effects on the
overall accuracy are limited. In comparison, the error from underestimating
propensity scores is unbounded. This is because of ei

êi
which has a range of ei

to∞ depending on êi. In our experiments, despite the risks of overestimating
the true propensity score by limiting the estimated score to not go below 0.1,
the potential risks of not doing so is far greater.

5.3.5 Subclass Prior Estimation

Similarly to the data generated for the TIcE experiments, there are two main
components: one positive and one negative. The difference this time is that
there are multiple separate positive distributions. Because the subclass prior
estimation algorithm uses k-means to find sub-classes (see section 2.7.7 for
more details), the ideal data-set for testing this algorithm will have a cluster
for each positive subclass. For this experiment, we generated data points
points in two dimensions. Each positive cluster consists of both positive
labeled data and positive unlabeled data. This cluster is generated in two
steps. First a positive labeled distribution is generated. Next, positive unla-
beled and negative data is generated. We can call this an unlabeled mixture.
Refer to figure 11. How much of each depends on α. While it is earlier stated
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that α is the proportion of positives in a mixture, for our experiments, α rep-
resents the proportion of negative points in the mixture. This doesn’t change
anything and is essentially the same thing. The positive distribution of the
mixture is created with the same mean and standard deviation of the positive
labeled distribution while the negative distribution is centered elsewhere. For
all cluster generations, the negative distributions are created with the exact
same parameters since we only want one negative distribution in all.

Figure 24: Imaging showing roughly how the positive clusters of size 2,3, and
4 are structured with the negative distributions in the centers.

There are many parameters in the generated data that can be changed.
In our first experiment, the parameters we chose to vary were: average alpha
of each positive cluster, number of positive distributions, and the standard
deviation of the negative distribution. The positive and negative distribu-
tions are each Gaussian distributions. There are other parameters that may
have significant impact on our results, but in order to keep the amount of ex-
perimental data manageable, these parameters were fixed. Parameters such
as the standard deviation of the positive distributions, the positioning of the
positive distributions relative to each other and to the negative distribution,
and positive distribution sizes were fixed in this experiment. We set the size
of each of the positive distributions as a random variable following a normal
distribution with a mean of 3000 and a standard deviation of 500. This size
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refers to the number of positively labeled points to be generated for the pos-
itive cluster. The standard deviation of the positive distributions were set to
0.1. The alphas for each cluster follow a normal distribution with a mean of
the target alpha, and with a standard deviation of min(0.05α, 1 − α). The
size of negative distribution varies with the number of cluster and the alphas
of the positive distribution, but it has a maximum size of 10000. The means
of all the positive distributions are located 16 points away from the mean of
the negative distribution. Additionally, each iteration of the experiment was
run 10 times and averaged to produce a more precise value. The results for
this experiment can be found in Appendix A (8.1).

Figure 25: Algorithm performance with 2 positive clusters around the nega-
tive distribution. It shows the performance at various levels of alpha. Each
differently colored line corresponds to a different standard deviation of the
negative distribution.

In the second experiment, instead of varying the negative standard devi-
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ation, we varied the mean positive cluster size. The positive cluster size is
the number of positively labeled points in a positive cluster. The standard
deviation for the negative distribution was fixed at 0.5. The rest of the fixed
experimental parameters remained the same as the first experiment. The
results for this experiment can be found in Appendix B (8.2).

Figure 26: Algorithm performance with 2 positive clusters around the nega-
tive distribution. It shows the performance at various levels of alpha. Each
differently colored line corresponds to a different mean size that is used for the
positive clusters. The same mean is applied to each of the positive clusters.

In the third experiment, we varied the mean positive cluster standard
deviation. The same as the second experiment, the negative distribution
standard deviation was fixed to 0.5 as well. The rest of the fixed experimental
parameters remained the same as the first experiment. The results for this
experiment can be found in Appendix C (8.3).
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Figure 27: Algorithm performance with 2 positive clusters around the nega-
tive distribution. It shows the performance at various levels of alpha. Each
differently colored line corresponds to a different mean standard deviation of
the positive distributions. The same mean is applied to each of the positive
clusters.

5.3.6 Cluster-Bias Adjustment Classification (C-BAC) with gen-
erated data

??
For these experiments, we generated two-dimensional data to evaluate

how the propensity weighted loss function performs with propensity scores
determined by the subclass prior estimation algorithm. The data generated
was similar to the data generated for the experiments involving just the
subclass prior estimation algorithm. The training data and testing data
was generated with identical parameters. The negative data F−(x, y) was
generated as one cluster.
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F−(x, y) ∼ Normal(µx, σx), Normal(µy, σy) (34)

The positive data was formed in clusters. We ran tests for the two-cluster
and three-cluster scenario. For the two-cluster scenario, the positive clusters
were each spaced 8 units away from the center of the negative cluster on the
left and right sides. The three-cluster scenario is the same except an extra
positive cluster is added 8 units away on top from the center of the negative
cluster.

Each cluster F i
+(x, y) is represented as:

F i
+(x, y) ∼ Normal(µx, σx), Normal(µy, σy) (35)

All positive clusters across all tests have the same standard deviation.

Figure 28: 2-cluster generated data with two different propensity scores
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Figure 29: 3-cluster generated data with three different propensity scores

Each positive cluster contained 5000 points while the negative cluster
contained the number of samples denoted as 5000 multiplied by the number
of positive clusters. This ensures that there are equal amounts of positive and
negative samples. Once the positive and negative samples were generated, the
positive data for each cluster was unlabeled according to a chosen propensity
score. This chosen propensity score varied depending on the experiment.
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e1 e2 σ− Accuracy ê1 ê2
0.25 0.25 1 0.99825 0.30187 0.31828
0.25 0.25 2 0.97240 0.31788 0.30772
0.25 0.25 4 0.94870 0.26784 0.24031
0.40 0.40 1 0.99755 0.54912 0.54041
0.40 0.40 2 0.98870 0.43588 0.51603
0.40 0.40 4 0.94840 0.37563 0.41687
0.60 0.60 1 0.97450 0.65727 0.72416
0.60 0.60 2 0.99455 0.63037 0.62365
0.60 0.60 4 0.93820 0.58805 0.56953
0.75 0.75 1 0.99975 0.76425 0.76921
0.75 0.75 2 0.99375 0.75369 0.74953
0.75 0.75 4 0.95300 0.72678 0.75945
0.40 0.60 1 0.99615 0.64734 0.50815
0.40 0.60 2 0.98875 0.62933 0.43918
0.40 0.60 4 0.93405 0.42117 0.56637
0.25 0.75 1 0.74215 0.76010 0.42275
0.25 0.75 2 0.87540 0.28965 0.74831
0.25 0.75 4 0.68130 0.76351 0.30947

Table 4: 2-cluster results. e is the input propensity score while ê is the
estimated propensity score for each cluster. e and ê also do not match up on
the table.
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e1 e2 e3 σ− Accuracy ê1 ê2 ê3
0.25 0.25 0.25 1 0.98710 0.31686 0.30942 0.30702
0.25 0.25 0.25 2 0.98867 0.29606 0.34415 0.31783
0.25 0.25 0.25 4 0.92203 0.27343 0.26786 0.25448
0.40 0.40 0.40 1 0.98677 0.49068 0.48662 0.46416
0.40 0.40 0.40 2 0.99180 0.42213 0.45664 0.49808
0.40 0.40 0.40 4 0.93057 0.41976 0.42899 0.38033
0.60 0.60 0.60 1 0.99927 0.63256 0.64308 0.71597
0.60 0.60 0.60 2 0.99217 0.63978 0.76430 0.66543
0.60 0.60 0.60 4 0.93530 0.59145 0.58011 0.62728
0.75 0.75 0.75 1 0.99940 0.77005 0.76822 0.82787
0.75 0.75 0.75 2 0.98993 0.79120 0.75878 0.77188
0.75 0.75 0.75 4 0.92823 0.73828 0.70122 0.74237
0.40 0.60 0.80 1 0.99300 0.62747 0.83086 0.43264
0.40 0.60 0.80 2 0.98823 0.79924 0.69115 0.49645
0.40 0.60 0.80 4 0.90140 0.37640 0.78180 0.62162
0.15 0.50 0.85 1 0.75333 0.59244 0.86038 0.23210
0.15 0.50 0.85 2 0.79303 0.83868 0.59731 0.21060
0.15 0.50 0.85 4 0.55140 0.82486 0.50368 0.17982

Table 5: 3-cluster results. e is the input propensity score while ê is the
estimated propensity score for each cluster. e and ê also do not match up on
the table.

One of the key takeaways from this experiment was understanding the
weakness within the classification algorithm as with more positive clusters
around the negative cluster with varying propensity scores, the classification
algorithm was unable to accurately classify the clusters. This in turn led to a
test accuracy of 0.82 as an upper limit. Thus this led to another experiment
to understand where the classification algorithm was being capped in terms
of performance.

5.3.7 C-BAC Classifier Accuracy

For these experiments we used the same generated data that’s aforementioned
in the previous section. The purpose of this experiment was to understand the
bounds of the classification algorithm in terms of how it could classify each
of the positive clusters depending on their positions. Multiple experiments
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were performed to understand the limit of the classification algorithm with
respect to cluster position.

The set of experiments can be broken down into the number of positive
clusters and their relative position as compared to the negative cluster. The
first experiment involved two positive clusters that had a propensity score of
0.85 and 0.15 with varied positioning around the negative cluster. The first
position tested was having one cluster to the left of the negative distribution
and another just above the negative distribution. The next was to test 2
positive clusters to the right and the left of the negative clusters. The final
outcome of the classification algorithm is shown below in a plot.

Figure 30: 2-cluster generated with one to the right and one on top of the
negative distribution, figure shows the classification end result from the C-
BAC algorithm
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Figure 31: 2-cluster generated with one to the right and one to the left of
the negative distribution, shows the classification end result from the C-BAC
algorithm

The next set of experiments involved using 3 positive clusters in a trian-
gular shape around the negative cluster. The values of the propensity scores
were maintained to be more accurate to real world data and therefore 2 clus-
ters on each side of the negative cluster had a propensity score of 0.15 and
one cluster on top of the negative cluster had a propensity score 0.85.
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Figure 32: 3-cluster generated in triangular formation around the negative
distribution, figure shows the classification end result from the C-BAC algo-
rithm

As can be seen in figure 32, that shows the experiment above the classi-
fication algorithm is unable to accurately classify the clusters with the lower
propensity scores. It was able to reach an average propensity score of 0.76
over the 5 runs of the experiment and one of the plots generated is shown
as the figure above. The classification algorithm struggled to identify the
clustering configuration that would be optimal. Furthermore, one more ex-
periment was run using 4 positive clusters around the negative distribution
with 2 clusters to the left and right having 0.15 propensity scores and the
top and bottom clusters having 0.85.
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Figure 33: 4-cluster generated in a diamond formation around the nega-
tive distribution, figure shows the classification end result from the C-BAC
algorithm

As with the experiment involving the 3 cluster set up in the triangular
formation, a similar result can be seen in the 4 cluster diamond formation.
The classifier is unable to accurately classify the clusters to the right and the
left of the negative distribution accurately.

Each experiment was run for 50 epochs and the main outcome was to
see how the classification algorithm classified each cluster. Furthermore, one
idea that the team had to improve the classification was to cap the torch.loss
at 0 therefore preventing any potential overfitting, but through the course
of these experiments it proved to have no difference in terms of the testing
accuracy and the classification of the clustering.

In order to address the issue that arose during this experimentation, the
team worked on the code and refactored the code to ensure that they were
no bugs in the code that prevented the classification algorithm from per-
forming well. Once the code was refactored and re-written to become more
understandable and neater, the classification algorithm performed with opti-
mal accuracy and was able to classify the clusters correctly and as expected.
With the new and improved code the team was ready to try and implement
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the C-BAC algorithm on real world datasets to test its performance.

5.3.8 C-BAC and HTRU Experimentation

After running various experiments on the C-BAC dataset using generated
clustered data, the team decided to implement the algorithm on real world
datasets. Therefore, the C-BAC algorithm was run on HTRU dataset to
test the novel algorithm’s applicability. In order to run the experiment, two
clusters were set alpha values which represent their true propensity scores
and these were kept constant to 0.5 and 0.75. Then the C-BAC algorithm
was run that uses k-means to identify the clusters and the TiCE algorithm
to estimate the alpha values. Each experiment was run for 15 epochs as
after that the accuracy wouldn’t increase significantly and started to reach
its upper limit.

Experiment Trial Est. α (0.5) Est. α (0.75) Test Accuracy
1 0.016 0.811 0.959
2 0.021 0.778 0.974
3 0.070 0.796 0.976
4 0.801 0.065 0.980
5 0.031 0.817 0.972
6 0.810 0.014 0.941
7 0.808 0.137 0.982
8 0.785 0.084 0.973
9 0.788 0.085 0.974
10 0.822 0.017 0.956

Table 6: Shows the estimated alphas values and test accuracy for the 10
experimental runs done using C-BAC on the HTRU dataset

For the 10 experimental trials that were done the mean accuracy is 0.968 with
a standard deviation within the accuracy of 0.012. The C-BAC algorithm is
able to achieve a high accuracy, however, since the data isn’t in the optimal
clustering configuration the estimated alpha values for 0.50 and 0.75 aren’t as
accurate or have a low standard deviation like the test accuracy. The mean of
the estimated alpha for 0.5 over the 10 experimental trials was 0.495 and the
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standard deviation was 0.377. The mean value is close to the 0.5 true values
of the 10 experiments, however, the standard deviation is high and therefore
shows that none of the individual values throughout the experiments were
accurate. The mean of the estimated alpha for 0.75 over the 10 experimental
trials was 0.360 and the standard deviation was 0.361. Therefore, as it can
be seen through the average and standard deviations of the estimated alphas
for 0.75, the dataset doesn’t configure well as the C-BAC algorithm isn’t able
to find optimal clustering in order to make accurate estimations.

5.3.9 C-BAC and Banknote Authentication Experimentation

Another real world dataset was used to run another experiment with the novel
C-BAC algorithm which was the banknote authentication dataset. Again
a similar experimental set up was used as aforementioned in the previous
subsection. The alphas were set to 0.50 and 0.75 and the estimated alphas
and test accuracy scores were generated over the use of 30 epochs as that’s
where test accuracy reached its upper limit.

Experiment Trial Est. α (0.5) Est α (0.75) Test Accuracy
1 0.311 0.236 0.961
2 0.263 0.232 0.957
3 0.255 0.133 0.958
4 0.114 0.500 0.941
5 0.296 0.033 0.939
6 0.195 0.044 0.921
7 0.258 0.326 0.958
8 0.244 0.442 0.963
9 0.184 0.161 0.961
10 0.093 0.321 0.943

Table 7: Shows the estimated alphas values and test accuracy for the 10 ex-
perimental runs done using C-BAC on the Banknote Authentication dataset

As it can be seen from table 7, the C-BAC algorithm has a high accuracy
score for the 10 experimental runs and has a mean accuracy of 0.949 with
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a standard deviation of 0.013. This shows the accuracy of the C-BAC algo-
rithm is effective as it also has a low standard deviation and a high mean
accuracy. However, for the estimated alphas for estimating the 0.5 alpha
value, the mean was 0.221 and the standard deviation was 0.069. The mean
and standard deviation for estimating the alpha value of 0.75 are 0.245 and
0.188 respectively. Again, the dataset doesn’t provide the optimal clustering
configurational setup for the C-BAC algorithm and therefore the estimated
alpha means are inaccurate and have greater standard deviations then what
would be expected.
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6 Discussion

This section describes the implications of each of our experiments we per-
formed throughout the project. We learned from this analysis to create better
experiments in the future.

6.1 Method Modification PU Learning Algorithms

Our first experiments were the ones we ran on the PU versions of naive
bayes, SVM, EM-NB, and EM-SVM. A key takeaway from these experiments
was the inappropriate the use of accuracy as a performance metric. We
used binary classifiers on a skewed dataset, and as such, each of our models
accuracies were similar. Since most of our labels were negative (84.5%),
our model effectively could classify each unlabeled point as negative, and be
correct 84% of the time.

After these initial experiments, we switched to using F-score, which is
the preferred metric for binary classifiers. The resulting F-scores showed
that all of the algorithms performed poorly when the label prior was low.
As the label prior increased, the F-score of every algorithm also increased.
Between 0% and 15% label prior, the F1-score of the two-step algorithms
increased at a rate faster than the F1-score of the one-step algorithms. After
this point the F1-score of the two-step algorithms began increasing at a rate
lower than those of the one-step algorithms. Between 40% and 50% label
prior, the F1-scores of the one-step and two-step algorithms is approximately
equal. At label prior percentages greater than 50%, one-step algorithms start
outperforming the two-step algorithms. We believe this is because using two-
step algorithms introduces a cost to overall classification ability. This cost is
offset by increased performance on lesser label priors. At higher label priors,
however, the gains are eclipsed by worse classification performance.

6.2 TweetBERT Model

Our PyTorch classifier did not yield impressive results. Although the aver-
age training accuracy of the classifier increased steadily in the first hundred
epochs, its average training accuracy soon leveled out in later epochs. This
poor performance could be attributed to a number of factors. Firstly, the
classifier was only trained on one dataset, so the possibility of dataset bias
is present. However, a much more likely reason is that many of the tweets in
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out Twitter dataset were in a language other than English, and TweetBERT
was only trained on English tweets. This difference in language effectively
leaves many of the points in the dataset unclassifiable, and causes a large
amount of noise. To solve this issue, our team would either need to train our
classifier on a new dataset, purge all non-English tweets from our current
dataset, or find some way to translate the tweets into English. Solving this
issue will be a problem our team explores in the future.

6.3 TIcE

Subsequent experiments delved further into exploring other PU algorithms
that could form the basis of our novel algorithm. The implementation of the
AAAI TIcE paper allowed the team to understand the effects of clustering
the data for classification in a PU domain. This research led to our team im-
plementing the propensity risk weighted estimator from the paper, ”Beyond
the Selected Completely at Random Assumption for Learning from Positive
and Unlabeled Data”. We used that loss function from this paper to train a
simple classifier, and compared it against the MSE loss function. Both loss
functions were used to train a classifier, and the accuracy score showed great
improvement with the propensity weighted risk estimator. After forming our
novel algorithm, we tested its performance in a similar manner.

Figure 19 shows that TIcE performs well at intermediary class prior levels,
but one the class prior becomes too high or too low the results become
unreliable. This is likely due to an over-correction in the bounds setting
portion of the algorithm. Likewise we find that the algorithm consistently
tracks worse with progressively higher standard deviations. This is to be
expected, as having a higher degree of overlap would intuitively make it
harder to reason about the positive distribution.

6.4 Subclass Prior Estimation

This experiment involved varying the standard deviation of the negative dis-
tribution, and the results showed good performance with our fixed parameter
settings. When fixing the standard deviation of the positive cluster distri-
butions, tight distributions were needed in order to achieve a good level of
estimation. That is why the fixed standard deviation values for the positive
clusters seem relatively small. In our results, one thing that stands out is
that lower values of α, which for our purposes, is defined as the proportion
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of negatives in an unlabeled mixture, yields worse estimation results. In
general, lower standard deviations of the negative distribution influenced the
outcome to be more accurate, but this is more pronounced at lower levels
of α. In the second experiment, there was somewhat of an improvement
in estimation precision with larger positively labeled clusters. As with the
previous experiment, high levels of expected α lead to better estimations.
In the third experiment, as we varied the standard deviation of the positive
cluster, smaller standard deviation values lead to better estimation precision.
This is expected since tighter positive distributions means it is more easily
distinguishable from the negative. Overall, across all our experiments, there
is no significant difference in results between the two-cluster, three-cluster,
and four-cluster experimental setups.

6.5 Propensity Weighted Loss

The results demonstrate that the propensity weighted loss function works
very well in achieving high accuracy for PU data. On the other hand, a
standard MSE loss function does not achieve high accuracy. This is because
the MSE loss function assumes all labeled points as positives and unlabeled
points as negative, which is wrong. These experiments prove that the true
classes of unlabeled examples can be used in training when we account for
the label probability, or propensity score, of a given sample. In the case that
we assume that the true propensity scores are unknown to the propensity
weighted loss function, the expectation maximization algorithm somewhat
models the propensity function. While it is able to discover the general
trend, the exact propensity scores can be off by quite a bit. Despite this,
we saw that the demonstrated accuracy values from our experiments were
still quite high. This could be due to the simplicity of the data - the data is
only one dimensional. This could also be due to the fact that the propensity
weighted loss function can function rather well when predicted propensity
scores are off. For very small estimate propensity values, limiting the esti-
mated propensity scores to 0.1 as a simple adjustment for bias works well,
even if this means propensity scores below 0.1 are adjusted to be more inac-
curate in some case. This is because the benefits out-weight the costs. The
total amount of biased reduced is vastly greater than the total amount of
new bias introduced.
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6.6 C-BAC Algorithm Experiments

Just like the prior experiments involving the propensity weighted loss func-
tion, the accuracy is generally good for most cases. Additionally, the propen-
sity score estimation derived from the subclass prior estimation algorithm is
generally accurate. In general, larger standard deviation values for the nega-
tive distribution lead to lower accuracy results. This is expected because the
positive and negative data sit closer together with looser distributions. The
accuracy values are also similar across the board for most varying propensity
scores when all clusters carry the same propensity scores. However, when
the cluster specific propensity scores differ greatly, the accuracy drops quite
substantially. The reason is unknown and could be further investigated in
the future to improve the algorithm. The same general conclusion can be
reached when analyzing the results for both two-cluster scenario and the
three-cluster scenario.

Through the experimentation done to identify how the C-BAC algorithm
was clustering the various clusters in the generated dataset it became clear
that with the greater differing propensity scores and different cluster con-
figurations that the algorithm was unable to perform well. Through the
refactoring of the code this issue was able to be overcome and solved in order
to allow for experimentation with real world datasets.

The experimentation involving the HTRU and banknote authentication
showed that the C-BAC algorithm is able to handle real world datasets as
both experiments had a high test accuracy of around 0.94 to 0.98. However,
it should be noted that the datasets didn’t present the optimal cluster con-
figuration that would be best suited for the C-BAC algorithm. Therefore,
either better datasets that would be ideal for an experimental set up could be
used or the clustering algorithm could be improved instead of using K-means
clustering
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7 Conclusion

PU datasets cause problems for many classification algorithms, which are not
accurately able to classify samples when a significant portion of the dataset
is unlabeled. PU problems are common in the real world, such as in disease
diagnosis. Our project’s goal, then, was to create an algorithm that can
accurately classify PU datasets. Such an algorithm could be applied to a
number of real world applications.

In an effort to create our novel algorithm, we researched current PU learn-
ing methods (Bekker Davis, 2020), and chose to focus on the subclass prior
estimation algorithm (du Plessis et al., 2019) and the propensity weighted
loss function (Bekker et al., 2020). These algorithms have different purposes;
one is a loss function(MSE Loss), and the other finds class priors of unla-
beled data(Bekker Davis, 2020). Since they both showed promising results,
we combined the two to form a comprehensive classification algorithm. This
novel algorithm relies on the same assumptions as the subclass prior algo-
rithm (see section 2.7.7 for more details). This is important because it allows
for more complex assumptions about data. In the real world, datasets are
complex, and assumptions like the SCAR assumption (Bekker Davis, 2020)
are unable to take into account this complexity. Our algorithm addresses this
challenge by finding these biases and sorting the data into clusters. Within
each cluster, we assume that the SCAR assumption holds. This is important
because many PU algorithms do not explore the relationships between data
within a dataset(Jain et al., 2020).

Based on our experimental results, the Cluster-Bias Adjusted Clustering
algorithm is able to estimate the propensity score within a promising margin
of error (see section ?? for more details). We believe that our algorithm has
potential, and merits further investigation.

7.1 Table of Accomplishments

Calvin Kocienda

• Served as team co-leader for meetings, organized team tasks and progress

• Implemented logistic regression classifier in Pytorch to run tests on
datasets
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• Helped implement two-step EM-NB and two-step NB-SVM classifiers
to use in experiment

• Helped research ideas for a novel algorithm

• Implemented the nnPU loss function on a simple model

• Ran TweetBERT on our labeled Twitter dataset

• Served as team leader for meetings, organized team tasks and progress.

• Finalized the TweetBERT implemenation on a PyTorch classifier.

Jesse Abeyta

• Created pipeline to streamline running tests on our datasets

• Implemented automated preprocessing functions

• Implemented automated scoring metrics, with output in a .csv file

• Helped implement one-step NB classifiers to use in experiment

• Served as team co-leader, organized tasks for each group to accomplish

• Continued to update data pipeline

• Worked on developing the PULSE algorithm, before switching to im-
plement the TIcE algorithm

• Designed experiments and aided in implementation of SAR-PU and
SAR-PU + EM algorithms

• Conceptualized and designed novel algorithm, designed experiments for
it

.
Vinay Nair

• Set up Tableau profile for use in future experiments

• Served as team scribe, recorded meeting minutes

• Implemented an ANN for usage in an earlier version of our experiment
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• Helped research ideas for a novel algorithm

• Organized and cleaned our Twitter dataset for future use

• Researched and implemented the TwitterBERT algorithm

Nick Cheng

• Helped implement two-step EM-NB and two-step NB-SVM classifiers
to use in experiment

• Served as team scribe, recorded meeting minutes

• Worked on the PULSE algorithm, which was discontinued

• Implemented the subclass prior algorithm (class prior estimation with
biased positive and unlabeled examples).

• Created sample data and ran experiments for TiCE and the Subclass
Prior Estimation algorithm

• Worked on SAR-PU and SAR-PU + EM algorithms and ran experi-
ments on them

• Worked on novel algorithm and ran experiments on it

Bryan Gass

• Helped with research and understanding for potential novel algorithms

• Implemented one-step SVM classifier to use in experiment

• Worked on the creation of statistical learning algorithms to show base-
line metrics to compare and reference in future endeavours.

• Helped with research and understanding for potential novel algorithms

• Aided with the understanding and implementation of PULSE and as
well as supporting algorithms.

• Assisted in understanding of TIcE algorithms.

• Continued development on baselines to compare novel algorithms to

• Further worked on data preprocessing strategies for related data

• Edited and aided in novel algorithm understanding and baseline mate-
rial
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7.1.1 B Term

Calvin Kocienda

• Helped research ideas for a novel algorithm

• Implemented the nnPU loss function on a simple model

• Ran TweetBERT on our labeled Twitter dataset

Jesse Abeyta

• Served as team leader, organized tasks for each group to accomplish

• Continued to update data pipeline

• Worked on developing the PULSE algorithm, before switching to im-
plement the TIcE algorithm

Vinay Nair

• Helped research ideas for a novel algorithm

• Organized and cleaned our Twitter dataset for future use

• Researched and implemented the TwitterBERT algorithm

Nick Cheng

• Served as team scribe, recorded meeting minutes

• Worked on the PULSE algorithm, which was discontinued

• Implemented the AIII algorithm (class prior estimation with biased
positive and unlabeled examples).

• Created sample data and ran experiments for TIcE and the AIII algo-
rithm

Bryan Gass

• Worked on the creation of statistical learning algorithms to show base-
line metrics to compare and reference in future endeavours.

• Helped with research and understanding for potential novel algorithms
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• Aided with the understanding and implementation of PULSE and as
well as supporting algorithms.

• Assisted in understanding of alphamax and TIcE algorithms.

Team Bryan, Jesse, and Nick

• Researched and developed the PULSE algorithm, alongside several nec-
essary supporting methods.

• Researched and implemented the TiCE algorithm.

Team Calvin and Vinay

• Researched and developed the non-negative PU loss function.

• Acquired and cleaned a dataset from our sister MQP group.

• Used this dataset in our implementation of TweetBERT.

7.1.2 C Term

Calvin Kocienda

• Served as team leader for meetings, organized team tasks and progress.

• Finalized the TweetBERT implemenation on a PyTorch classifier.

Nick Cheng

• Implemented and ran experiments with SAR-PU and SAR-PU + EM
algorithms

• Implemented and ran experiments with novel algorithm

Jesse Abeyta

• Designed experiments and aided in implementation of SAR-PU and
SAR-PU + EM algorithms

• Conceptualized and designed novel algorithm, designed experiments for
it

92



Bryan Gass

• Continued development on baselines to compare novel algorithms to

• Further worked on data preprocessing strategies for related data

• Edited and aided in novel algorithm understanding and baseline mate-
rial

Vinay

• Implemented and aided for running experiments with SAR-EM model.

• Analyzed twitter data for TweetBERT using Tableau.

7.1.3 D Term

Vinay

• Worked on identifying the bug in the C-BAC code base

• Conducted experimentation to better understand the issue with the
classification part of the C-BAC algorithm

• Worked on experimentation of the C-BAC algorithm involving real
world datasets.

• Authored subsections:
5.1.3 (Banknote Authentication)
5.1.4 (HTRU Dataset)
5.3.7 (C-BAC Classifier Accuracy)
5.3.8 (C-BAC and HTRU Experimentation)
5.3.9 (C-BAC and Banknote Authentication Experiment)

• Edited (revisions and adding new paragraphs) the following subsec-
tions:
4.2.10 (Novel Algorithm - Cluster-Bias Adjustment Classification)
5.2.5 (Cluster Bias Adjustment Classification)
5.3.6 (C-BAC generated data)
6.6 (C-BAC Experimentation)
7 (Conclusion)
7.1 (Fixed the ”Table of Accomplishments”)
7.2 (Future Works)
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7.2 Future Steps

Our group plans to implement our novel algorithms on the Twitter dataset.
As of now, all of our experiments were run on synthetic data, and not real-
world data. Testing our algorithms on a real-world dataset will allow us to
determine our model’s applicability to real-world scenarios. Additionally, the
novel algorithm does not perform as well when the propensity scores of the
various clusters vastly differ. We plan to investigate this and find a resolution
for this issue.

One of the potential future works based on the experimentation that
has been conducted using the C-BAC algorithm is to try using different
classification algorithms instead of k-means clustering to improve on the C-
BAC algorithm in terms of applicability. This would enable the C-BAC
algorithm to handle a more diverse set of datasets and tackle more real world
issues. Another potential future works is to try out more real world datasets
to see where the algorithm can perform optimally and deliver quality results.

Another part of the work that will be carrying on into the future is writing
a conference paper publication about the C-BAC algorithm and making the
aforementioned changes to ensure the success of the conference paper. Thus
far Vinay has worked on a draft of the introduction section of the conference
paper and plans to work with the advisors, professor and Jesse to create
and submit a full publication and hopefully succeed well at a top ML/AI
conference.
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8 Appendix

8.1 Appendix A

num clusters standard dev alpha alpha average est alpha
2 0.25 0.01 0.01024 0.11128
2 0.25 0.05 0.04900 0.11173
2 0.25 0.10 0.10024 0.14150
2 0.25 0.20 0.20313 0.25238
2 0.25 0.30 0.30164 0.31918
2 0.25 0.40 0.40541 0.45931
2 0.25 0.50 0.50034 0.50591
2 0.25 0.60 0.59511 0.60863
2 0.25 0.70 0.70265 0.71175
2 0.25 0.80 0.79445 0.79893
2 0.25 0.85 0.83961 0.83941
2 0.25 0.90 0.90091 0.89905
2 0.25 0.95 0.92965 0.92307
2 0.25 0.99 0.99128 0.98548
2 0.50 0.01 0.01016 0.05955
2 0.50 0.05 0.05091 0.09082
2 0.50 0.10 0.10020 0.13000
2 0.50 0.20 0.20197 0.20441
2 0.50 0.30 0.29879 0.29988
2 0.50 0.40 0.40423 0.41817
2 0.50 0.50 0.50354 0.51452
2 0.50 0.60 0.60329 0.60673
2 0.50 0.70 0.70444 0.70859
2 0.50 0.80 0.81203 0.81014
2 0.50 0.85 0.84019 0.83912
2 0.50 0.90 0.89682 0.89436
2 0.50 0.95 0.95812 0.93648
2 0.50 0.99 0.98894 0.98435
2 0.75 0.01 0.01006 0.04706
2 0.75 0.05 0.05000 0.06211
2 0.75 0.10 0.09835 0.09459
2 0.75 0.20 0.20544 0.21623
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2 0.75 0.30 0.29775 0.29565
2 0.75 0.40 0.40178 0.39877
2 0.75 0.50 0.49846 0.50313
2 0.75 0.60 0.59701 0.59367
2 0.75 0.70 0.70646 0.70197
2 0.75 0.80 0.79789 0.79201
2 0.75 0.85 0.85581 0.85036
2 0.75 0.90 0.88441 0.87779
2 0.75 0.95 0.95144 0.93739
2 0.75 0.99 0.99271 0.98634
2 1.00 0.01 0.01003 0.04163
2 1.00 0.05 0.04994 0.03766
2 1.00 0.10 0.09923 0.10640
2 1.00 0.20 0.20109 0.20243
2 1.00 0.30 0.30047 0.29465
2 1.00 0.40 0.40231 0.40170
2 1.00 0.50 0.49982 0.49500
2 1.00 0.60 0.60769 0.60202
2 1.00 0.70 0.70139 0.70049
2 1.00 0.80 0.79566 0.78725
2 1.00 0.85 0.85795 0.85044
2 1.00 0.90 0.90491 0.90266
2 1.00 0.95 0.96242 0.93597
2 1.00 0.99 0.98997 0.98335
2 2.00 0.01 0.00995 0.01575
2 2.00 0.05 0.04944 0.05292
2 2.00 0.10 0.10050 0.10231
2 2.00 0.20 0.19756 0.17288
2 2.00 0.30 0.30223 0.29853
2 2.00 0.40 0.40804 0.39334
2 2.00 0.50 0.49657 0.48715
2 2.00 0.60 0.59139 0.57913
2 2.00 0.70 0.69967 0.68920
2 2.00 0.80 0.78400 0.77640
2 2.00 0.85 0.84224 0.83638
2 2.00 0.90 0.91253 0.90000
2 2.00 0.95 0.95189 0.94028
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2 2.00 0.99 0.98841 0.98312
2 4.00 0.01 0.00999 0.00021
2 4.00 0.05 0.05105 0.02019
2 4.00 0.10 0.09949 0.07162
2 4.00 0.20 0.19867 0.16983
2 4.00 0.30 0.29817 0.26935
2 4.00 0.40 0.39749 0.37271
2 4.00 0.50 0.50582 0.48366
2 4.00 0.60 0.60225 0.58260
2 4.00 0.70 0.68323 0.66799
2 4.00 0.80 0.80353 0.79046
2 4.00 0.85 0.83954 0.82754
2 4.00 0.90 0.91130 0.89502
2 4.00 0.95 0.93207 0.91989
2 4.00 0.99 0.98915 0.98234
2 8.00 0.01 0.00991 0.00192
2 8.00 0.05 0.04943 0.01432
2 8.00 0.10 0.10102 0.07501
2 8.00 0.20 0.20234 0.17073
2 8.00 0.30 0.29888 0.26961
2 8.00 0.40 0.40030 0.37295
2 8.00 0.50 0.49065 0.46659
2 8.00 0.60 0.59912 0.57870
2 8.00 0.70 0.69070 0.67086
2 8.00 0.80 0.79731 0.78137
2 8.00 0.85 0.84715 0.83355
2 8.00 0.90 0.90244 0.88471
2 8.00 0.95 0.93482 0.92128
2 8.00 0.99 0.98813 0.97970
2 10.00 0.01 0.01000 0.00037
2 10.00 0.05 0.05042 0.01376
2 10.00 0.10 0.09764 0.06923
2 10.00 0.20 0.20182 0.16919
2 10.00 0.30 0.29890 0.27059
2 10.00 0.40 0.40218 0.37515
2 10.00 0.50 0.50633 0.48195
2 10.00 0.60 0.58846 0.56608

102



2 10.00 0.70 0.68824 0.66894
2 10.00 0.80 0.80389 0.78689
2 10.00 0.85 0.85693 0.84335
2 10.00 0.90 0.90490 0.89351
2 10.00 0.95 0.95315 0.93330
2 10.00 0.99 0.98854 0.97789
3 0.25 0.01 0.00995 0.08142
3 0.25 0.05 0.05014 0.14961
3 0.25 0.10 0.10092 0.19595
3 0.25 0.20 0.19975 0.27367
3 0.25 0.30 0.29963 0.36583
3 0.25 0.40 0.39295 0.43177
3 0.25 0.50 0.49751 0.53900
3 0.25 0.60 0.59041 0.61624
3 0.25 0.70 0.69782 0.71140
3 0.25 0.80 0.80219 0.81083
3 0.25 0.85 0.84643 0.85077
3 0.25 0.90 0.90623 0.90554
3 0.25 0.95 0.95296 0.94477
3 0.25 0.99 0.99115 0.98416
3 0.50 0.01 0.01000 0.10255
3 0.50 0.05 0.04990 0.08325
3 0.50 0.10 0.09932 0.14228
3 0.50 0.20 0.19998 0.22483
3 0.50 0.30 0.29964 0.32445
3 0.50 0.40 0.40786 0.43630
3 0.50 0.50 0.50241 0.51358
3 0.50 0.60 0.59445 0.60369
3 0.50 0.70 0.71056 0.70936
3 0.50 0.80 0.79317 0.79376
3 0.50 0.85 0.83796 0.83692
3 0.50 0.90 0.90554 0.90193
3 0.50 0.95 0.93249 0.92669
3 0.50 0.99 0.98881 0.98348
3 0.75 0.01 0.00994 0.06027
3 0.75 0.05 0.04933 0.06664
3 0.75 0.10 0.10069 0.12096
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3 0.75 0.20 0.19882 0.19282
3 0.75 0.30 0.30546 0.32088
3 0.75 0.40 0.39799 0.40177
3 0.75 0.50 0.50164 0.51347
3 0.75 0.60 0.60113 0.60191
3 0.75 0.70 0.69887 0.69839
3 0.75 0.80 0.79157 0.78808
3 0.75 0.85 0.84312 0.83788
3 0.75 0.90 0.90717 0.89733
3 0.75 0.95 0.93888 0.92740
3 0.75 0.99 0.99095 0.98601
3 1.00 0.01 0.01006 0.03718
3 1.00 0.05 0.05032 0.06694
3 1.00 0.10 0.09821 0.09923
3 1.00 0.20 0.20051 0.19821
3 1.00 0.30 0.29353 0.28801
3 1.00 0.40 0.40338 0.39416
3 1.00 0.50 0.49901 0.49400
3 1.00 0.60 0.60095 0.61051
3 1.00 0.70 0.70586 0.70677
3 1.00 0.80 0.80843 0.80255
3 1.00 0.85 0.86328 0.85766
3 1.00 0.90 0.90663 0.90360
3 1.00 0.95 0.95009 0.93600
3 1.00 0.99 0.98831 0.98325
3 2.00 0.01 0.00998 0.02418
3 2.00 0.05 0.04984 0.03576
3 2.00 0.10 0.10154 0.12094
3 2.00 0.20 0.20115 0.18984
3 2.00 0.30 0.30240 0.29152
3 2.00 0.40 0.39882 0.38837
3 2.00 0.50 0.50012 0.49352
3 2.00 0.60 0.59318 0.59116
3 2.00 0.70 0.70325 0.69272
3 2.00 0.80 0.79936 0.79213
3 2.00 0.85 0.85176 0.84532
3 2.00 0.90 0.89641 0.89008
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3 2.00 0.95 0.95016 0.93847
3 2.00 0.99 0.98667 0.98190
3 4.00 0.01 0.00999 0.01027
3 4.00 0.05 0.04959 0.02454
3 4.00 0.10 0.09973 0.07232
3 4.00 0.20 0.19955 0.17419
3 4.00 0.30 0.29959 0.27048
3 4.00 0.40 0.40064 0.38239
3 4.00 0.50 0.49879 0.47681
3 4.00 0.60 0.60395 0.58522
3 4.00 0.70 0.69540 0.68010
3 4.00 0.80 0.80566 0.79168
3 4.00 0.85 0.85149 0.83955
3 4.00 0.90 0.90428 0.89552
3 4.00 0.95 0.92590 0.91579
3 4.00 0.99 0.99116 0.98320
3 8.00 0.01 0.00996 0.00598
3 8.00 0.05 0.05071 0.01591
3 8.00 0.10 0.09858 0.06815
3 8.00 0.20 0.19803 0.16551
3 8.00 0.30 0.29506 0.26398
3 8.00 0.40 0.39958 0.37212
3 8.00 0.50 0.49827 0.47401
3 8.00 0.60 0.60269 0.57955
3 8.00 0.70 0.70062 0.68026
3 8.00 0.80 0.79957 0.78430
3 8.00 0.85 0.84521 0.83037
3 8.00 0.90 0.89246 0.87453
3 8.00 0.95 0.95134 0.92842
3 8.00 0.99 0.99061 0.97672
3 10.00 0.01 0.01001 0.00135
3 10.00 0.05 0.05051 0.01887
3 10.00 0.10 0.09999 0.06581
3 10.00 0.20 0.19921 0.16584
3 10.00 0.30 0.29989 0.26892
3 10.00 0.40 0.40029 0.37352
3 10.00 0.50 0.51124 0.48633
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3 10.00 0.60 0.60251 0.57910
3 10.00 0.70 0.70224 0.68375
3 10.00 0.80 0.80723 0.79014
3 10.00 0.85 0.85742 0.84307
3 10.00 0.90 0.90943 0.89458
3 10.00 0.95 0.94314 0.91606
3 10.00 0.99 0.98953 0.97841
4 0.25 0.01 0.00993 0.11905
4 0.25 0.05 0.05041 0.15162
4 0.25 0.10 0.09954 0.17842
4 0.25 0.20 0.19928 0.28038
4 0.25 0.30 0.29849 0.35632
4 0.25 0.40 0.40067 0.45838
4 0.25 0.50 0.50341 0.54371
4 0.25 0.60 0.59582 0.62190
4 0.25 0.70 0.69626 0.70659
4 0.25 0.80 0.80939 0.81742
4 0.25 0.85 0.84670 0.85068
4 0.25 0.90 0.90625 0.90441
4 0.25 0.95 0.96367 0.95102
4 0.25 0.99 0.99021 0.98513
4 0.50 0.01 0.00993 0.08727
4 0.50 0.05 0.04956 0.09890
4 0.50 0.10 0.09983 0.15602
4 0.50 0.20 0.19986 0.24856
4 0.50 0.30 0.30139 0.33185
4 0.50 0.40 0.39842 0.42993
4 0.50 0.50 0.50837 0.53073
4 0.50 0.60 0.60764 0.61058
4 0.50 0.70 0.69413 0.69579
4 0.50 0.80 0.79263 0.79175
4 0.50 0.85 0.85998 0.85880
4 0.50 0.90 0.89631 0.89481
4 0.50 0.95 0.95003 0.93808
4 0.50 0.99 0.99144 0.98336
4 0.75 0.01 0.01015 0.05923
4 0.75 0.05 0.04914 0.07284
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4 0.75 0.10 0.10103 0.11362
4 0.75 0.20 0.19852 0.22530
4 0.75 0.30 0.29587 0.31074
4 0.75 0.40 0.40155 0.41093
4 0.75 0.50 0.50113 0.51759
4 0.75 0.60 0.60487 0.60047
4 0.75 0.70 0.69634 0.69331
4 0.75 0.80 0.79283 0.78904
4 0.75 0.85 0.84310 0.84214
4 0.75 0.90 0.89209 0.88698
4 0.75 0.95 0.95358 0.93636
4 0.75 0.99 0.99060 0.98443
4 1.00 0.01 0.01006 0.05860
4 1.00 0.05 0.04979 0.05836
4 1.00 0.10 0.09974 0.11454
4 1.00 0.20 0.20192 0.20385
4 1.00 0.30 0.29978 0.31214
4 1.00 0.40 0.40133 0.41178
4 1.00 0.50 0.49775 0.49634
4 1.00 0.60 0.60080 0.60035
4 1.00 0.70 0.70078 0.69913
4 1.00 0.80 0.79968 0.79422
4 1.00 0.85 0.85085 0.84704
4 1.00 0.90 0.89410 0.88952
4 1.00 0.95 0.95315 0.93224
4 1.00 0.99 0.98901 0.98341
4 2.00 0.01 0.00991 0.02244
4 2.00 0.05 0.05018 0.04233
4 2.00 0.10 0.09950 0.08364
4 2.00 0.20 0.20234 0.19114
4 2.00 0.30 0.29989 0.28475
4 2.00 0.40 0.40472 0.39749
4 2.00 0.50 0.50448 0.49603
4 2.00 0.60 0.59480 0.58503
4 2.00 0.70 0.69882 0.69274
4 2.00 0.80 0.80734 0.79805
4 2.00 0.85 0.83751 0.83192
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4 2.00 0.90 0.89357 0.88759
4 2.00 0.95 0.95682 0.94033
4 2.00 0.99 0.99052 0.98407
4 4.00 0.01 0.01008 0.01598
4 4.00 0.05 0.05025 0.02332
4 4.00 0.10 0.09939 0.07277
4 4.00 0.20 0.20121 0.17470
4 4.00 0.30 0.29706 0.26901
4 4.00 0.40 0.40468 0.38036
4 4.00 0.50 0.50539 0.48162
4 4.00 0.60 0.59721 0.57632
4 4.00 0.70 0.70285 0.68656
4 4.00 0.80 0.79700 0.78441
4 4.00 0.85 0.84880 0.83642
4 4.00 0.90 0.88908 0.87694
4 4.00 0.95 0.95274 0.93010
4 4.00 0.99 0.99044 0.98173
4 8.00 0.01 0.00996 0.00288
4 8.00 0.05 0.05000 0.02190
4 8.00 0.10 0.10068 0.06728
4 8.00 0.20 0.20256 0.16768
4 8.00 0.30 0.29794 0.26841
4 8.00 0.40 0.40204 0.37389
4 8.00 0.50 0.50156 0.47590
4 8.00 0.60 0.59494 0.57184
4 8.00 0.70 0.69766 0.67796
4 8.00 0.80 0.80247 0.78616
4 8.00 0.85 0.84786 0.83148
4 8.00 0.90 0.90059 0.88627
4 8.00 0.95 0.94603 0.92123
4 8.00 0.99 0.99091 0.97767
4 10.00 0.01 0.01000 0.00012
4 10.00 0.05 0.05028 0.01864
4 10.00 0.10 0.09994 0.06472
4 10.00 0.20 0.20151 0.16827
4 10.00 0.30 0.30318 0.27287
4 10.00 0.40 0.39740 0.36916
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4 10.00 0.50 0.49969 0.47314
4 10.00 0.60 0.59338 0.56961
4 10.00 0.70 0.70185 0.68034
4 10.00 0.80 0.80594 0.78688
4 10.00 0.85 0.85003 0.83378
4 10.00 0.90 0.89234 0.87761
4 10.00 0.95 0.96378 0.93252
4 10.00 0.99 0.98969 0.97662

Table 8: Vary negative cluster standard deviation. The
MSE metric was calculated after running each setup with
10 iterations.
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8.2 Appendix B

num clusters mean pos size alpha alpha average est alpha MSE
2 2000 0.3 0.30602 0.42167 0.01847
2 2000 0.4 0.40023 0.48002 0.00811
2 2000 0.5 0.48873 0.54611 0.00565
2 2000 0.6 0.59010 0.61480 0.00115
2 2000 0.7 0.69188 0.70976 0.00062
2 4000 0.3 0.30380 0.37532 0.00572
2 4000 0.4 0.39968 0.42906 0.00154
2 4000 0.5 0.50229 0.54464 0.00271
2 4000 0.6 0.59098 0.65519 0.00496
2 4000 0.7 0.70808 0.72894 0.00080
2 6000 0.3 0.29712 0.35572 0.00569
2 6000 0.4 0.39305 0.45369 0.00626
2 6000 0.5 0.51011 0.53607 0.00086
2 6000 0.6 0.60172 0.63179 0.00134
2 6000 0.7 0.70623 0.72582 0.00052
2 8000 0.3 0.30052 0.37215 0.00709
2 8000 0.4 0.39363 0.42070 0.00107
2 8000 0.5 0.50178 0.52617 0.00105
2 8000 0.6 0.60142 0.63363 0.00194
2 8000 0.7 0.69819 0.72153 0.00067
3 2000 0.3 0.29614 0.43301 0.02193
3 2000 0.4 0.39991 0.48295 0.00763
3 2000 0.5 0.50181 0.57509 0.00641
3 2000 0.6 0.59614 0.64164 0.00358
3 2000 0.7 0.70478 0.73604 0.00132
3 4000 0.3 0.29576 0.37044 0.00667
3 4000 0.4 0.39898 0.49499 0.01018
3 4000 0.5 0.50521 0.55672 0.00329
3 4000 0.6 0.60529 0.64247 0.00164
3 4000 0.7 0.69712 0.72960 0.00133
3 6000 0.3 0.29807 0.36706 0.00619
3 6000 0.4 0.40082 0.45278 0.00339
3 6000 0.5 0.49963 0.57359 0.00697
3 6000 0.6 0.60406 0.63795 0.00152
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3 6000 0.7 0.70915 0.72549 0.00036
3 8000 0.3 0.29603 0.36591 0.00585
3 8000 0.4 0.39750 0.45963 0.00434
3 8000 0.5 0.50345 0.54318 0.00216
3 8000 0.6 0.59427 0.63207 0.00200
3 8000 0.7 0.71679 0.73421 0.00034
4 2000 0.3 0.29899 0.43508 0.01987
4 2000 0.4 0.39741 0.50344 0.01162
4 2000 0.5 0.50405 0.57700 0.00688
4 2000 0.6 0.60594 0.66598 0.00390
4 2000 0.7 0.69007 0.72953 0.00200
4 4000 0.3 0.30113 0.40784 0.01247
4 4000 0.4 0.40068 0.47783 0.00628
4 4000 0.5 0.49592 0.56537 0.00597
4 4000 0.6 0.60863 0.65368 0.00222
4 4000 0.7 0.70485 0.73163 0.00090
4 6000 0.3 0.30184 0.39145 0.00870
4 6000 0.4 0.40245 0.47871 0.00697
4 6000 0.5 0.49803 0.56412 0.00494
4 6000 0.6 0.59836 0.63921 0.00192
4 6000 0.7 0.68996 0.71655 0.00076
4 8000 0.3 0.29708 0.36369 0.00502
4 8000 0.4 0.39905 0.47198 0.00587
4 8000 0.5 0.50479 0.54552 0.00200
4 8000 0.6 0.60685 0.65384 0.00252
4 8000 0.7 0.70103 0.72715 0.00100

Table 9: Results when varying the mean positive cluster
size. The MSE metric was calculated after running each
setup with 10 iterations.
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8.3 Appendix C

num clusters pos standard dev alpha alpha average est alpha MSE
2 0.15 0.3 0.29911 0.33988 0.00312
2 0.15 0.4 0.39860 0.41023 0.00052
2 0.15 0.5 0.49995 0.52372 0.00106
2 0.15 0.6 0.62470 0.64165 0.00082
2 0.15 0.7 0.71724 0.72678 0.00032
2 0.20 0.3 0.29411 0.34091 0.00362
2 0.20 0.4 0.40212 0.48153 0.00791
2 0.20 0.5 0.50307 0.56074 0.00459
2 0.20 0.6 0.60148 0.62102 0.00075
2 0.20 0.7 0.69314 0.72054 0.00148
2 0.50 0.3 0.30413 0.47565 0.03204
2 0.50 0.4 0.40362 0.55431 0.02361
2 0.50 0.5 0.50929 0.60385 0.01008
2 0.50 0.6 0.59920 0.68458 0.00854
2 0.50 0.7 0.69559 0.76536 0.00542
2 1.00 0.3 0.30626 0.49090 0.03495
2 1.00 0.4 0.38990 0.55346 0.02753
2 1.00 0.5 0.49926 0.63760 0.02115
2 1.00 0.6 0.59895 0.71233 0.01365
2 1.00 0.7 0.70424 0.77629 0.00603
3 0.15 0.3 0.30613 0.34625 0.00215
3 0.15 0.4 0.39730 0.43906 0.00202
3 0.15 0.5 0.50078 0.52899 0.00184
3 0.15 0.6 0.60582 0.63253 0.00097
3 0.15 0.7 0.69862 0.70982 0.00026
3 0.20 0.3 0.29967 0.39710 0.01158
3 0.20 0.4 0.39379 0.45193 0.00384
3 0.20 0.5 0.49675 0.54638 0.00305
3 0.20 0.6 0.58386 0.61289 0.00128
3 0.20 0.7 0.69733 0.72342 0.00086
3 0.50 0.3 0.29403 0.48825 0.03795
3 0.50 0.4 0.40093 0.54727 0.02279
3 0.50 0.5 0.49727 0.61330 0.01410
3 0.50 0.6 0.60508 0.68009 0.00654
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3 0.50 0.7 0.70973 0.77368 0.00478
3 1.00 0.3 0.30351 0.50298 0.04191
3 1.00 0.4 0.39559 0.55942 0.02821
3 1.00 0.5 0.50089 0.64332 0.02127
3 1.00 0.6 0.59049 0.70232 0.01314
3 1.00 0.7 0.69188 0.77367 0.00694
4 0.15 0.3 0.29681 0.35625 0.00399
4 0.15 0.4 0.39592 0.43652 0.00229
4 0.15 0.5 0.49546 0.53052 0.00177
4 0.15 0.6 0.59968 0.62201 0.00055
4 0.15 0.7 0.68873 0.70611 0.00046
4 0.20 0.3 0.30052 0.39287 0.00976
4 0.20 0.4 0.40301 0.47179 0.00515
4 0.20 0.5 0.50271 0.55106 0.00300
4 0.20 0.6 0.61052 0.65369 0.00218
4 0.20 0.7 0.70118 0.73161 0.00112
4 0.50 0.3 0.30185 0.45721 0.02517
4 0.50 0.4 0.39975 0.53038 0.01741
4 0.50 0.5 0.49905 0.63099 0.01807
4 0.50 0.6 0.60728 0.69302 0.00822
4 0.50 0.7 0.70028 0.76138 0.00391
4 1.00 0.3 0.30079 0.48719 0.03530
4 1.00 0.4 0.40230 0.55985 0.02559
4 1.00 0.5 0.49531 0.61931 0.01583
4 1.00 0.6 0.59911 0.71447 0.01396
4 1.00 0.7 0.70124 0.77410 0.00559

Table 10: Results after varying the positive cluster stan-
dard deviation. The MSE metric was calculated after
running each setup with 10 iterations.
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8.4 Appendix D

standard dev target alpha est alpha MSE
0.25 0.01 0.02367 0.00114
0.25 0.05 0.08419 0.00443
0.25 0.10 0.10779 0.00292
0.25 0.20 0.20920 0.00069
0.25 0.30 0.31303 0.00221
0.25 0.40 0.40760 0.00197
0.25 0.50 0.54013 0.00668
0.25 0.60 0.60044 0.00062
0.25 0.70 0.70449 0.00021
0.25 0.80 0.80134 0.00032
0.25 0.85 0.84755 0.00013
0.25 0.90 0.89414 0.00006
0.25 0.95 0.94492 0.00007
0.25 0.99 0.98296 0.00005
0.50 0.01 0.02857 0.00155
0.50 0.05 0.08491 0.00834
0.50 0.10 0.07040 0.00151
0.50 0.20 0.22692 0.00959
0.50 0.30 0.28795 0.00067
0.50 0.40 0.40646 0.00166
0.50 0.50 0.49742 0.00068
0.50 0.60 0.59898 0.00078
0.50 0.70 0.69779 0.00023
0.50 0.80 0.79027 0.00017
0.50 0.85 0.84597 0.00009
0.50 0.90 0.89402 0.00007
0.50 0.95 0.94770 0.00006
0.50 0.99 0.98426 0.00003
0.75 0.01 0.06373 0.01229
0.75 0.05 0.03882 0.00194
0.75 0.10 0.11533 0.00263
0.75 0.20 0.20403 0.00115
0.75 0.30 0.29647 0.00100
0.75 0.40 0.37793 0.00137
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0.75 0.50 0.49823 0.00052
0.75 0.60 0.60017 0.00059
0.75 0.70 0.69745 0.00026
0.75 0.80 0.79256 0.00011
0.75 0.85 0.84348 0.00007
0.75 0.90 0.89662 0.00004
0.75 0.95 0.94652 0.00003
0.75 0.99 0.98379 0.00004
1.00 0.01 0.02477 0.00157
1.00 0.05 0.05341 0.00255
1.00 0.10 0.07953 0.00125
1.00 0.20 0.21616 0.00371
1.00 0.30 0.31414 0.00227
1.00 0.40 0.40307 0.00074
1.00 0.50 0.50459 0.00113
1.00 0.60 0.58903 0.00028
1.00 0.70 0.68827 0.00031
1.00 0.80 0.79999 0.00015
1.00 0.85 0.84073 0.00012
1.00 0.90 0.88923 0.00016
1.00 0.95 0.94329 0.00006
1.00 0.99 0.98327 0.00005
2.00 0.01 0.03920 0.00474
2.00 0.05 0.01107 0.00171
2.00 0.10 0.07276 0.00359
2.00 0.20 0.15457 0.00297
2.00 0.30 0.27445 0.00196
2.00 0.40 0.37086 0.00337
2.00 0.50 0.45452 0.00236
2.00 0.60 0.54660 0.00306
2.00 0.70 0.64254 0.00332
2.00 0.80 0.75397 0.00270
2.00 0.85 0.80057 0.00256
2.00 0.90 0.85365 0.00226
2.00 0.95 0.89990 0.00254
2.00 0.99 0.94135 0.00241
4.00 0.01 0.05570 0.01011
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4.00 0.05 0.01094 0.00158
4.00 0.10 0.03865 0.00464
4.00 0.20 0.12197 0.00633
4.00 0.30 0.20601 0.00904
4.00 0.40 0.29161 0.01208
4.00 0.50 0.38574 0.01330
4.00 0.60 0.46602 0.01814
4.00 0.70 0.55164 0.02208
4.00 0.80 0.65223 0.02204
4.00 0.85 0.69332 0.02462
4.00 0.90 0.73504 0.02732
4.00 0.95 0.78706 0.02672
4.00 0.99 0.81644 0.03021
8.00 0.01 0.00034 0.00009
8.00 0.05 0.00514 0.00208
8.00 0.10 0.03938 0.00387
8.00 0.20 0.12594 0.00564
8.00 0.30 0.21440 0.00751
8.00 0.40 0.31229 0.00787
8.00 0.50 0.40387 0.00936
8.00 0.60 0.49046 0.01218
8.00 0.70 0.58185 0.01409
8.00 0.80 0.66561 0.01821
8.00 0.85 0.71853 0.01745
8.00 0.90 0.76737 0.01766
8.00 0.95 0.81612 0.01802
8.00 0.99 0.84700 0.02063
10.00 0.01 0.00758 0.00052
10.00 0.05 0.00100 0.00240
10.00 0.10 0.04217 0.00355
10.00 0.20 0.13313 0.00461
10.00 0.30 0.22987 0.00519
10.00 0.40 0.30844 0.00848
10.00 0.50 0.40707 0.00876
10.00 0.60 0.50078 0.01007
10.00 0.70 0.59415 0.01138
10.00 0.80 0.68660 0.01306
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10.00 0.85 0.72438 0.01598
10.00 0.90 0.76745 0.01790
10.00 0.95 0.82347 0.01609
10.00 0.99 0.85196 0.01933

Table 11: TIcE results. The MSE metric was calculated
after running each setup with 10 iterations.
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