# Genome Studies of Gene Expression and alternative splicing during iPSC Skeletal Muscle Induction and Differentiation

by

Yibo Wu

A Thesis

Submitted to the Faculty

of the

## WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

**Bioinformatics and Computational Biology** 

May 2019

**APPROVED:** 

Zhengh/n

Dr. Zheyang Wu, Advisor

Dr. Dimitry Korkin, Head of Department

#### Abstract

Facioscapulohumeral muscular dystrophy(FSHD) is a disorder characterized by muscle weakness and wasting (atrophy). This disease is typically inherited as autosomal dominant and has a complex genetic and epigenetic etiology. Our collaborator had differentiated healthy human pluripotent stem cells(iPSC) into skeletal muscles and exploited ISO-Seq to explore cell gene expression and transcript alternative splicing usage profile during 8 differentiation stages. Later, stage specific gene differential expression, transcript alternative splicing, gene ontology and novel gene/transcript were analysed to characterize the feature of each stage during the differentiation. In terms of expressed genes with more than or equal to 5 transcripts, each stage had shown their own stage specific features. About transcripts, iPS, S1, ADM.D0, ADM.D4 have about 30% to 40% more total transcripts than the rest 4 stages. 4 kinds of alternative splicing events are generally distributed and S2 stage has the least alternative splicing events potentially due to technical reasons. As for gene differential expressions, ADM.D4 has considerable amount of differential expressed genes with 5 other stages and it has minor difference with ISM.D4 and S3 stages(they are all myotubes cells). The gene ontology analvsis is performed according to the results of previous step, stage specific GO terms are revealed.

#### Acknowledgements

Here I would like to thank everyone that has ever helped me in the past two years, especially my instructors and classmates. During the time working on this project my instructor, Dr. Zheyang Wu provided lots of valuable suggestions on how to do a scientific research and gave me many chances to learn practical techniques, I would like to express my appreciation to him. My team members Siqin Li and Ruosi Zhang has share much useful advice with me, in the mean time we became good friends, the friendship will sure continue.

This project is a collaboration work between WPI and Wellstone Muscular Dystrophy Program at University of Massachusetts Medical School. I would like to thank Dr. Charlies Emerson for providing such a nice platform to me to learn and grow, and also thank Dr. Oliver King's advice on Iso-Seq analyzing strategies, Dr. Dongsheng Guo's sharing on FSHD and iPSCs.

Finally, I would like to give my gratitude to all faculty of WPI BCB program. Thank everyone for the days we spent together in WPI and thank everyone for making BCB a better program.

# Contents

| 1        | Intr  | oducti                         | ion                                                   | 1  |  |  |  |
|----------|-------|--------------------------------|-------------------------------------------------------|----|--|--|--|
|          | 1.1   | Induced pluripotent Stem Cells |                                                       |    |  |  |  |
|          | 1.2   | Iso-Se                         | q analysis of RNA expression                          | 1  |  |  |  |
| <b>2</b> | ISO   | -Seq a                         | analysis of gene expression during iPSC induction and |    |  |  |  |
|          | diffe | erentia                        | tion                                                  | 4  |  |  |  |
|          | 2.1   | Pipeli                         | ne                                                    | 4  |  |  |  |
|          | 2.2   | Gene a                         | annotation and transcript analysis                    | 5  |  |  |  |
|          |       | 2.2.1                          | Transcript counts distribution                        | 6  |  |  |  |
|          |       | 2.2.2                          | Alternative splicing distribution                     | 7  |  |  |  |
|          |       | 2.2.3                          | Gene counts distribution                              | 8  |  |  |  |
|          | 2.3   | Differe                        | ential expression analysis                            | 15 |  |  |  |
|          |       | 2.3.1                          | iPS                                                   | 16 |  |  |  |
|          |       | 2.3.2                          | S1                                                    | 17 |  |  |  |
|          |       | 2.3.3                          | S2                                                    | 17 |  |  |  |
|          |       | 2.3.4                          | S3                                                    | 18 |  |  |  |
|          |       | 2.3.5                          | ISM.D0                                                | 18 |  |  |  |
|          |       | 2.3.6                          | ISM.D4                                                | 19 |  |  |  |
|          |       | 2.3.7                          | ADM.D0                                                | 19 |  |  |  |
|          |       | 2.3.8                          | ADM.D4                                                | 20 |  |  |  |
|          | 2.4   | Functi                         | ional analysis                                        | 21 |  |  |  |
|          |       | 2.4.1                          | Molecular function                                    | 22 |  |  |  |
|          |       | 2.4.2                          | Cellular Component                                    | 24 |  |  |  |
|          |       | 2.4.3                          | Biological Process                                    | 26 |  |  |  |
|          |       | 2.4.4                          | KEGG analysis                                         | 28 |  |  |  |

|   |                                      | 2.4.5   | Molecular function (over 5 transcripts) $\ldots \ldots \ldots \ldots$ | 30  |  |  |  |
|---|--------------------------------------|---------|-----------------------------------------------------------------------|-----|--|--|--|
|   |                                      | 2.4.6   | Cellular Component(over 5 transcripts)                                | 32  |  |  |  |
|   |                                      | 2.4.7   | Biological Process(over 5 transcripts)                                | 34  |  |  |  |
|   |                                      | 2.4.8   | KEGG analysis(over 5 transcripts)                                     | 36  |  |  |  |
|   | 2.4.9 Stage wise functional analysis |         |                                                                       |     |  |  |  |
|   | 2.5                                  | Possib  | le Novel genes and transcripts                                        | 39  |  |  |  |
| 9 | ъ.                                   | •       |                                                                       | 4.7 |  |  |  |
| 3 | Dise                                 | cussion | 1                                                                     | 41  |  |  |  |
|   | 3.1                                  | Conclu  | usions                                                                | 41  |  |  |  |
|   | 3.2                                  | Future  | e work                                                                | 42  |  |  |  |

# List of Figures

| 1  | Read length Distribution.                                            | 3  |
|----|----------------------------------------------------------------------|----|
| 2  | Pipeline of the analysis                                             | 4  |
| 3  | transcript numbers distribution                                      | 6  |
| 4  | Alternative Splicing events distribution                             | 7  |
| 5  | Number of genes distribution during different stages                 | 8  |
| 6  | Gene Ontology analysis in terms of molecular function in each stage. | 22 |
| 7  | Gene Ontology analysis in terms of molecular function in each stage. | 23 |
| 8  | Gene Ontology analysis in terms of cellular component in each stage. | 24 |
| 9  | Gene Ontology analysis in terms of cellular component in each stage. | 25 |
| 10 | Gene Ontology analysis in terms of biological process in each stage. | 26 |
| 11 | Gene Ontology analysis in terms of biological process in each stage. | 27 |
| 12 | Gene Ontology analysis in terms of KEGG pathway in each stage        | 28 |
| 13 | Gene Ontology analysis in terms of KEGG pathway in each stage        | 29 |
| 14 | Gene Ontology analysis in terms of molecular function in each stage. | 30 |

| 15 | Gene Ontology analysis in terms of molecular function in each stage. | 31 |
|----|----------------------------------------------------------------------|----|
| 16 | Gene Ontology analysis in terms of cellular component in each stage. | 32 |
| 17 | Gene Ontology analysis in terms of cellular component in each stage. | 33 |
| 18 | Gene Ontology analysis in terms of biological process in each stage. | 34 |
| 19 | Gene Ontology analysis in terms of biological process in each stage. | 35 |
| 20 | Gene Ontology analysis in terms of KEGG pathway in each stage        | 36 |
| 21 | Gene Ontology analysis in terms of KEGG pathway in each stage        | 37 |
| 22 | unmatched genes and transcripts                                      | 39 |
| 23 | visualization of one novel gene region                               | 40 |

# List of Tables

| 1  | Read numbers during each step $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ | 5              |
|----|----------------------------------------------------------------------------------------------------------------|----------------|
| 2  | Intersection of expressed genes across different stages (absolute value)                                       | 9              |
| 3  | Intersection of expressed genes across different stages<br>(proportion) $\ .$ .                                | 10             |
| 4  | Intersection of expressed genes(>1 transcript) across different stages(prop                                    | portion) 10    |
| 5  | Intersection of expressed genes ( $\geq =5$ transcripts) across different stages (p                            | proportion) 11 |
| 6  | List of top ranked genes in iPS stage                                                                          | 12             |
| 7  | List of top ranked genes in S1 stage                                                                           | 12             |
| 8  | List of top ranked genes in S2 stage                                                                           | 13             |
| 9  | List of top ranked genes in S3 stage                                                                           | 13             |
| 10 | List of top ranked genes in ISM.D0 stage                                                                       | 13             |
| 11 | List of top ranked genes in ISM.D4 stage                                                                       | 14             |
| 12 | List of top ranked genes in ADM.D0 stage                                                                       | 14             |
| 13 | List of top ranked genes in ADM.D4 stage                                                                       | 14             |
| 14 | differential expressed genes for iPS stage over other stages $\ . \ . \ .$ .                                   | 16             |
| 15 | differential expressed genes for S1 stage over other stages $\ . \ . \ . \ .$                                  | 17             |
| 16 | differential expressed genes for S2 stage over other stages $\ldots \ldots$                                    | 17             |
| 17 | differential expressed genes for S3 stage over other stages $\ldots \ldots$                                    | 18             |
| 18 | differential expressed genes for ISM.<br>D0 stage over other stages $\ . \ . \ .$                              | 18             |
| 19 | differential expressed genes for ISM.D4 stage over other stages $\ . \ . \ .$                                  | 19             |
| 20 | differential expressed genes for ADM.<br>D0 stage over other stages $\ . \ .$ .                                | 19             |
| 21 | differential expressed genes for ADM.D4 stage over other stages $\ . \ .$ .                                    | 20             |
| 22 | Biological Process for ADM.D4 over iPS                                                                         | 38             |
| 23 | Cellular Component for ADM.D4 over iPS                                                                         | 38             |
| 24 | Molecular Function for ADM.D4 over iPS                                                                         | 38             |

| 25 | KEGG pathway | y for ADM.D4 ove | riPS . |  |  |  |  |  |  |  |  |  |  | 39 |
|----|--------------|------------------|--------|--|--|--|--|--|--|--|--|--|--|----|
|----|--------------|------------------|--------|--|--|--|--|--|--|--|--|--|--|----|

# 1 Introduction

## 1.1 Induced pluripotent Stem Cells

Under certain conditions, adult cells can be genetically reprogrammed into induced pluripotent stem cells(iPSCs). Due to their remarkably similarity to embryonic stem cells in many key aspects, iPSCs have the potential to become effective tools to understand and model diseases and deliver cell-replacement therapy to support regenerative medicine [1].

Facioscapulohumeral muscular dystrophy is typically inherited as autosomal dominant and has a complex genetic and epigenetic etiology [2], characterized by muscle weakness and wasting [3]. In our study, human iPS cells were differentiates into muscle cells, 8 samples from 3 cell lines are collected. In the first cell line, iPS cells were obtained at day 0. After 5 days in S1 medium, iPS cells were developped into skeletal muscle progenitor cells(stage S1), then 4 days in S2 medium, skeletal muscle myoblasts(S2 stage) were induced. At day 7, S2 stage cells differentiated as myotubes(S3 stage). Additionally, iPS derived secondary myoblasts(ISM.D0) were differentiated into myotubes(ISM.D4) 4 days later. There is also another parental adult line, adult myoblasts(ADM.D0) differentiated into adult myotubes(ADM.D4) at day 4. Generally speaking we have 3 cell lines: iPS to S1 to S2 to S3; ISM.D0 to ISM.D4 and ADM.D0 to ADM.D4

# 1.2 Iso-Seq analysis of RNA expression

The Pacific Biosciences(PacBio) transcript Sequencing(ISO-Seq) method employs long read to sequence transcript transcripts from the 5' end to their poly-A tails [4]. This new technique can reduce the effort and error during reconstructing and inferencing short reads. In preivious researches, ISO-Seq has been used to analyze full-length splice transcripts in human organs and embryonic stem cells, indicating that even in highly characterized transcriptome like human, the identification of genes and splice transcripts is far from complete [5]. Here, ISO-Seq was performed to characterize the stage specific RNA expression profile. The sequencing work was conducted by Umass Medical Sequencing Core. They had also classified and clustered the circular consensus (CCS) reads following the PacBio ISO-Seq analysis application work flow [6] and produced high quality transcript sequence files. Except for iPS stage, the sequencing data of each stage consists of 2 parts: 1-3kb, over 3kb. The over 3kb part data of S2 stage was dropped because of containing lots of mitochondrial sequences and caused much trouble during the ISO-Seq analyze step(Figure 1). Sequence data of iPS stage is mainly distributed in 1-3kb part, this could be resulted by Iso-Seq technique or sample preparation reasons. During our analysis, the 1-3kb and over 3kb data were first combined into one file, then I aligned the transcripts to reference genome using GMAP/GSNAP(Genomic Mapping and Alignment Program for mRNA and EST Sequences, and Genomic Short-read Nucleotide Alignment Program) [7]. According to the sam file alignment, transcript sequences were collapsed into final set of unique, full-length, high-quality transcripts following ToFU(transcript transcripts: Full-length and Unassembled) [8] pipeline. After that, basic statistical summary of the data was made by Python, alternative splicing events distribution was counted by SpliceGrapher [9]. Gene differential expression analysis performed by R package edgeR [10] revealed some relations between stages, gene ontology analysis of differential expressed genes were performed by R package clusterProfiler [11]. Finally novel genes and novel transcripts were obtained by comparing with reference genome using IGV [12].









Figure 1: Read length Distribution.

2 ISO-Seq analysis of gene expression during iPSC induction and differentiation

# 2.1 Pipeline



Figure 2: Pipeline of the analysis

The high quality transcript sequence data was obtained from Umass Medical Sequencing Core, I aligned the fasta file to reference genome using GMAP(parameter setting:  $-f \ samse \ -n \ 0 \ -t \ 16 \ -cross \ -species \ -max \ -intronlength \$ ends 200000  $-z \ sense\_force$ ). Cupcake Tofu collapsed all redundant reads into unique transcripts and annotated all transcripts according to reference genome. Unmatched isforms are considered as possible novel transcripts, matched transcripts are used to perform gene expression analysis and functional analysis.

Our data was provided by researchers from Umass medical. They classified and clustered the raw data from Iso-Seq platform and generated high quality transcript sequence data. In the high quality data, each sequence is assumed to be full-length, supported by 2 or more full length reads and have a predicted accuracy over 99% by default. Because of the natural 5' degradation in rranscripts and clustering algorithm trade off between sensitivity and specificity, it is possible that some identical or redundant transcripts still exist [8]. I used Cupcake ToFU to collapse redundant transcripts to obtain unique transcripts. With errors and redundant eliminated, read numbers in our data also dropped(Table1).

Then every unique transcript was annotated using Genecode v19 human Genome data. Annotated transcripts are used to explore differential expressed genes between stages using R package edgeR. Functional analysis conducted by R package clusterProfiler also revealed the functions and pathways related to these differential expressed genes. transcripts that can not be annotated are considered as possible novel gene or transcripts, part of them were validated by IGV visualization.

| step                  | iPS   | S1    | S2    | S3    | ISM.D0 | ISM.D4 | ADM.D0 | ADM.D4 |
|-----------------------|-------|-------|-------|-------|--------|--------|--------|--------|
| high quality data     | 28282 | 34282 | 17654 | 19942 | 17174  | 17847  | 42037  | 31022  |
| unique transcripts    | 23199 | 27497 | 14580 | 16564 | 14360  | 14895  | 27528  | 25422  |
| matched transcripts   | 22450 | 26866 | 14292 | 16387 | 14197  | 14670  | 26677  | 24667  |
| unmatched transcripts | 749   | 631   | 288   | 177   | 163    | 225    | 851    | 755    |

Table 1: Read numbers during each step

The high quality data still contains some redundant transcript. After collapsing, redundant is eliminated, unique transcripts are obtained, which means every read is a unique transcript.

# 2.2 Gene annotation and transcript analysis

High quality transcripts were aligned to Gencode v19 human genome using GMAP [7]. Since Clustering algorithm would balance its sensitivity and specificity, it is possible that some high quality sequences represent identical or redundant transcripts, Cupcake ToFU pipeline [8] was used to collapse identical transcripts and obtain final set of unique, full-length, high quality transcripts, after this step multiple reads could be collapsed into one transcript. The annotation files were produced by Cupcake Annotation comparing against Genecode v19 gene model.

### 2.2.1 Transcript counts distribution

R was used for the statistical analysis and plotting.From the bar plot, ISM.D0 stages has the lowest number of transcripts 14197, which is similar to ISM.D4, S2 and S3 stage, but much lower than that of other stages. S1 stages has the highest number of transcripts, 26866. There is no significant a distinct gap between number of transcripts during ISM differentiation, and adult myoblast differentiation. Although over 3kb part is missing in S2 stage, significant decreasing can be observed during mononucleated myocytes differentiation(S1 to S3).



Figure 3: transcript numbers distribution

### 2.2.2 Alternative splicing distribution



Figure 4: Alternative Splicing events distribution

4 kinds of alternative splicing events are counted in our study: Alt3, 3' alternative splicing; Alt5, 5' alternative splicing; ES, exon skipping; IR, intron retention

With alternative splicing(AS), a gene can be transcripted into different transcripts, with SpliceGrapher, 4 types of AS events are counted in our data: Alt5: 5' alternative splicing; Alt3: 3' alternative splicing; ES: exon skipping; IR: intron retention. From the figure above, the distribution of AS events are pretty average across different stages(S2 stage contains less AS events might be resulted from its missing data). 2 ISM stages are extremely similar to each other. For each stages, their genes with most AS events are also genes with most transcripts, detail information could be found in table 4 to table 11. However, the alternative splicing event numbers are significantly smaller than transcript numbers(Figure 1), since I didn't compare our data against alternative splicing reference data, much alternative splicing information can not be obtained by comparing against reference genome, the result is reasonable.

#### 2.2.3 Gene counts distribution

Since Cupcake Annotation already mapped every transcript to a reference transcript and reference gene, the gene counts distribution can be obtained directly(Figure 5). Comparing to total transcript counts distribution(Figure 3), over 80% of transcripts are generated by about 50% genes, these genes are potentially to play an important role in stage-wise biological functions. S1 and ADM.D0 stage has the largest expressed gene numbers. Significant differences can be observed between secondary myoblasts differentiation and adult myoblasts differentiation processes(ISM.D0 to ISM.D4 and ADM.D0 to ADM.D4), while both secondary myoblasts differentiation and adult myoblasts differentiation didn't show much gene number differences within the process. In total, 1966 genes are expressed in all 8 stages.



Figure 5: Number of genes distribution during different stages.

(a)genes with 1 transcript. (b) genes with more than 1 transcript. Most transcripts are expressed by a small number of genes.

After the collapse step in Cupcake ToFU, multiple reads could be collapsed into one transcript, here we didn't consider about the read number for every gene, simply regard every observed gene as expressed, and counted shared gene numbers between stages. From the 2 tables below(Table 2 and Table 3), the absolute number of share genes in all 8 stages data are quite similar with each other. The proportion of shared genes among every 2 stage group is about 50% (proportion of shared genes = Intersect(genes in stage A, genes in stage B)/Union(genes in stage A, genes in stage B)). Theoretically, the gene number and transcript numbers may be strongly influenced by the total number of reads sequenced even we have obtained the unique transcript data, which means the gene numbers expressed in samples may be differ due to experiment technical reasons .

But when I narrow the range of genes, things changed a little bit. When I only compare genes with over 1 transcript, the proportion of share genes dropped significantly(Table 3), when genes with over or equal to 5 transcripts were compared, the 8 stages showed their stage features(Table 4). The proportion of shared genes in genes with over of equal to 5 transcripts is relatively small, which suggest that most of the genes are related to stage wise functions.

| stage  | iPS  | S1   | S2   | S3   | ISM.D0 | ISM.D4 | ADM.D0 |
|--------|------|------|------|------|--------|--------|--------|
| S1     | 6009 |      |      |      |        |        |        |
| S2     | 4834 | 5086 |      |      |        |        |        |
| S3     | 4845 | 5143 | 4633 |      |        |        |        |
| ISM.D0 | 4544 | 4820 | 4551 | 4504 |        |        |        |
| ISM.D4 | 4635 | 4823 | 4587 | 4819 | 4504   |        |        |
| ADM.D0 | 5232 | 5790 | 4687 | 4971 | 4549   | 4695   |        |
| ADM.D4 | 5031 | 5511 | 4548 | 4912 | 4415   | 4708   | 5897   |

Table 2: Intersection of expressed genes across different stages (absolute value)

| stage  | iPS    | S1     | S2     | S3     | ISM.D0 | ISM.D4 | ADM.D0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| S1     | 54.41% |        |        |        |        |        |        |
| S2     | 46.58% | 51.15% |        |        |        |        |        |
| S3     | 46.33% | 50.92% | 48.62% |        |        |        |        |
| ISM.D0 | 44.86% | 49.31% | 50.53% | 49.03% |        |        |        |
| ISM.D4 | 44.56% | 48.43% | 49.13% | 51.49% | 50.23% |        |        |
| ADM.D0 | 46.19% | 51.18% | 45.55% | 49.66% | 45.32% | 48.09% |        |
| ADM.D4 | 45.55% | 52.03% | 45.88% | 48.25% | 45.54% | 46.43% | 54.88% |

Table 3: Intersection of expressed genes across different stages(proportion)

| stage  | iPS    | S1     | S2     | S3     | ISM.D0 | ISM.D4 | ADM.D0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| S1     | 46.99% |        |        |        |        |        |        |
| S2     | 34.58% | 38.56% |        |        |        |        |        |
| S3     | 33.40% | 38.62% | 35.90% |        |        |        |        |
| ISM.D0 | 33.36% | 36.74% | 38.39% | 37.64% |        |        |        |
| ISM.D4 | 31.98% | 35.21% | 37.07% | 41.72% | 39.74% |        |        |
| ADM.D0 | 37.11% | 45.31% | 33.28% | 37.94% | 34.80% | 34.42% |        |
| ADM.D4 | 35.50% | 42.57% | 33.39% | 40.12% | 34.15% | 38.05% | 49.66% |

Table 4: Intersection of expressed genes(>1 transcript) across different stages(proportion)

| stage  | iPS    | S1     | S2     | S3     | ISM.D0 | ISM.D4 | ADM.D0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| S1     | 32.36% |        |        |        |        |        |        |
| S2     | 20.98% | 19.80% |        |        |        |        |        |
| S3     | 18.01% | 21.02% | 24.67% |        |        |        |        |
| ISM.D0 | 19.75% | 22.12% | 30.92% | 29.73% |        |        |        |
| ISM.D4 | 17.78% | 18.27% | 26.47% | 35.23% | 30.56% |        |        |
| ADM.D0 | 20.49% | 28.76% | 15.47% | 22.37% | 19.86% | 17.62% |        |
| ADM.D4 | 20.60% | 26.19% | 15.93% | 25.60% | 19.63% | 23.04% | 36.96% |

Table 5: Intersection of expressed genes(>=5 transcripts) across different stages(proportion)

The transcript numbers could vary between different genes. In the same stage, some genes might contains hundreds of transcripts, while some only contain 1(Figure 5)Genes with extremely large transcript numbers must be closely related to stagewise functions even though gene numbers could be influenced by other factors. Top 10 genes ranked by transcript numbers of each stage are listed below. In generally, some genes are highly expressed in many cell stages like collagen genes, heterogeneous nuclear ribonucleoprotein K gene, myosin genes, insulin-like growth factor gene, pyruvate kinase gene and titin genes, etc. Some genes are only observed highly expressed in certain stages, like TERF1(iPS), CSDE1(S1), TUBB(S2), SPARC(S3), ANXA2(ISM.D0), MEG3(ISM.D4), SULF1(ADM.D0), they obviously have distinct stage feature.

| gene     | transcripts | Description                                                  |
|----------|-------------|--------------------------------------------------------------|
| TERF1    | 29          | telomeric repeat binding factor 1                            |
| JARID2   | 27          | jumonji, AT rich interactive domain $2$                      |
| NAP1L1   | 25          | nucleosome assembly protein 1-like 1                         |
| KPNB1    | 24          | karyopherin (importin) beta 1                                |
| SNHG14   | 24          | small nucleolar RNA host gene 14                             |
| PABPC1   | 23          | poly(A) binding protein, cytoplasmic 1                       |
| HNRNPK   | 22          | heterogeneous nuclear ribonucleoprotein K                    |
| HSP90AA1 | 21          | heat shock protein 90kDa alpha (cytosolic), class A member 1 |
| HNRNPC   | 20          | heterogeneous nuclear ribonucleoprotein C $({\rm C1/C2})$    |
| BPTF     | 20          | bromodomain PHD finger transcription factor                  |

Table 6: List of top ranked genes in iPS stage

| gene    | ${\rm transcripts}$ | Description                                  |
|---------|---------------------|----------------------------------------------|
| COL11A1 | 40                  | collagen, type XI, alpha 1                   |
| COL1A2  | 36                  | collagen, type I, alpha 2                    |
| CSDE1   | 32                  | cold shock domain containing E1, RNA-binding |
| HMGA2   | 30                  | high mobility group AT-hook 2                |
| HNRNPK  | 30                  | heterogeneous nuclear ribonucleoprotein K    |
| KPNB1   | 29                  | karyopherin (importin) beta 1                |
| MYH9    | 28                  | myosin, heavy chain 9, non-muscle            |
| PABPC1  | 28                  | poly(A) binding protein, cytoplasmic 1       |
| SEC31A  | 25                  | SEC31 homolog A (S. cerevisiae)              |
| SEPT11  | 24                  | septin 11                                    |

Table 7: List of top ranked genes in S1 stage  $% \left( {{{\mathbf{T}}_{{\mathbf{T}}}}_{{\mathbf{T}}}} \right)$ 

| gene      | transcripts | Description                                                  |
|-----------|-------------|--------------------------------------------------------------|
| ACTG1     | 17          | actin, gamma 1                                               |
| MAP1B     | 16          | microtubule-associated protein 1B                            |
| TUBB      | 14          | tubulin, beta class I                                        |
| HSP90AA1  | 14          | heat shock protein 90kDa alpha (cytosolic), class A member 1 |
| IGF2      | 14          | insulin-like growth factor 2                                 |
| HSPD1     | 14          | heat shock 60kDa protein 1                                   |
| HNRNPK    | 13          | heterogeneous nuclear ribonucleoprotein K                    |
| PKM       | 13          | pyruvate kinase, muscle                                      |
| HNRNPA2B1 | 13          | heterogeneous nuclear ribonucleoprotein A2/B1                |
| MEG3      | 13          | maternally expressed $3$ (non-protein coding)                |

Table 8: List of top ranked genes in S2 stage

| gene   | transcripts | Description                                                         |
|--------|-------------|---------------------------------------------------------------------|
| COL3A1 | 70          | collagen, type III, alpha 1                                         |
| COL1A2 | 63          | collagen, type I, alpha 2                                           |
| COL1A1 | 43          | collagen, type I, alpha 1                                           |
| MYH3   | 33          | myosin, heavy chain 3, skeletal muscle, embryonic                   |
| H19    | 32          | H19, imprinted maternally expressed transcript (non-protein coding) |
| COL5A2 | 30          | collagen, type V, alpha 2                                           |
| SPARC  | 28          | secreted protein, acidic, cysteine-rich (osteonectin)               |
| COL4A2 | 28          | collagen, type VI, alpha 2                                          |
| COL4A1 | 27          | collagen, type VI, alpha 1                                          |
| IGF2   | 26          | insulin-like growth factor 2                                        |

Table 9: List of top ranked genes in S3 stage

| gene           | transcripts | Description                                                         |
|----------------|-------------|---------------------------------------------------------------------|
| ANXA2          | 58          | annexin A2                                                          |
| COL1A1         | 53          | collagen, type I, alpha 1                                           |
| H19            | 48          | H19, imprinted maternally expressed transcript (non-protein coding) |
| ACTG1          | 46          | actin, gamma 1                                                      |
| $\mathbf{PKM}$ | 46          | pyruvate kinase, muscle                                             |
| COL3A1         | 45          | collagen, type III, alpha 1                                         |
| IGF2           | 44          | insulin-like growth factor 2 (somatomedin A)                        |
| TPM1           | 44          | tropomyosin 1 (alpha)                                               |
| HNRNPK         | 42          | heterogeneous nuclear ribonucleoprotein K                           |
| ITGB1          | 42          | integrin, beta 1                                                    |

Table 10: List of top ranked genes in ISM.D0 stage

| gene   | transcripts | Description                                       |
|--------|-------------|---------------------------------------------------|
| TTN    | 38          | titin                                             |
| COL1A1 | 35          | collagen, type I, alpha 1                         |
| MYH3   | 33          | myosin, heavy chain 3, skeletal muscle, embryonic |
| COL3A1 | 32          | collagen, type III, alpha 1                       |
| IGF2   | 28          | insulin-like growth factor 2 (somatomedin A)      |
| COL1A2 | 26          | collagen, type I, alpha 2                         |
| MEG3   | 26          | maternally expressed 3 (non-protein coding)       |
| COL4A1 | 22          | collagen, type IV, alpha 1                        |
| FN1    | 21          | fibronectin 1                                     |
| PALLD  | 20          | palladin, cytoskeletal associated protein         |

Table 11: List of top ranked genes in ISM.D4 stage

| gene   | $\operatorname{transcripts}$ | Description                               |
|--------|------------------------------|-------------------------------------------|
| TTN    | 294                          | titin                                     |
| FN1    | 262                          | fibronectin 1                             |
| COL1A2 | 131                          | collagen, type I, alpha 2                 |
| PALLD  | 95                           | palladin, cytoskeletal associated protein |
| DST    | 92                           | dystonin                                  |
| COL1A1 | 85                           | collagen, type I, alpha 1                 |
| NEB    | 80                           | nebulin                                   |
| SULF1  | 76                           | sulfatase 1                               |
| COL3A1 | 75                           | collagen, type III, alpha 1               |
| MEF2C  | 75                           | myocyte enhancer factor $2C$              |

Table 12: List of top ranked genes in ADM.D0 stage

| gene   | transcripts | Description                                       |
|--------|-------------|---------------------------------------------------|
| TTN    | 259         | titin                                             |
| NEB    | 74          | nebulin                                           |
| COL1A2 | 69          | collagen, type I, alpha 2                         |
| FN1    | 67          | fibronectin 1                                     |
| MEF2C  | 61          | myocyte enhancer factor 2C                        |
| DST    | 56          | dystonin                                          |
| PALLD  | 54          | palladin, cytoskeletal associated protein         |
| MYH3   | 52          | myosin, heavy chain 3, skeletal muscle, embryonic |
| MYH8   | 44          | myosin, heavy chain 8, skeletal muscle, perinatal |
| COL1A1 | 43          | collagen, type I, alpha 1                         |

Table 13: List of top ranked genes in ADM.D4 stage

## 2.3 Differential expression analysis

In order to explore the insights of relations between different stages, R package EdgeR was used to comparing the expressing level of each gene in different stages.Here, 1 times fold change is used to characterize the expression level change, False Discovery Rate(FDR) is used to indicate the reliability of the results. By program default,  $|\log_2 fold| > 1$  and FDR < 0.05 was set as threshold. The  $|\log_2 fold|$  represent the gene differential expressed level between 2 stages, a positive or negative number means up regulating or down regulating. The default settings of the program would produce reliable differential expressed genes between stages [10]. Here I have listed all of the differential expressed genes when other stages are compared to one certain stage.

# 2.3.1 iPS

| stage  | genes                                                          |
|--------|----------------------------------------------------------------|
| S1     | /                                                              |
| S2     | /                                                              |
| S3     | COL3A1, COL1A2, COL1A1, MYH3, H19, COL5A2, IGF2, POSTN, COL5A1 |
| ISM.D0 | H19                                                            |
| ISM.D4 | MYH3, COL3A1, COL1A1, IGF2, TTN, JARID2, PALLD, TNNT2          |
|        | FN1, SULF1, RUNX1, COL3A1, PALLD, COL1A2, ADAMTSL1,            |
| ADM.D0 | COL1A1, COL6A3, ZEB1, ELN, ATP2B1,,ESRG, FBN1, ADAM9,          |
|        | CBS                                                            |
|        | TTN, NEB, MEF2C, MYH3, PALLD, MYH8, COL3A1, POSTN, FN1,        |
| ADM.D4 | COL1A2, ACTN2, DMD, RUNX1, NCAM1, COL1A1, SGCD,                |
|        | COL5A2, FBN1, SULF1, DST, ESRG, COL6A2, ARPP21, ZEB1           |

Table 14: differential expressed genes for iPS stage over other stages

### 2.3.2 S1

| stage  | genes                                                        |
|--------|--------------------------------------------------------------|
| iPS    | /                                                            |
| S2     | /                                                            |
| S3     | MYH3, H19, TTN, COL3A1, POSTN, IGF2                          |
| ISM.D0 | H19                                                          |
| ISM.D4 | TTN, MYH3, IGF2                                              |
| ADM.D0 | FN1, TTN, SULF1, RUNX1, ELN                                  |
|        | TTN, NEB, MYH3, MYH8, NCAM1, ACTN2, POSTN, SGCD, DLG2,       |
| ADM.D4 | MEF2C, F13A1, LDB3, DCLK1, BIN1, LMO7, SULF1, RUNX1, LIN28A, |
|        | CADM2, COL6A2, ARPP21, MYH10, SMC4, ITGA7, TNNT2, DST, FN1   |

Table 15: differential expressed genes for S1 stage over other stages

# 2.3.3 S2

| stage  | genes                                                    |
|--------|----------------------------------------------------------|
| iPS    | /                                                        |
| S1     | /                                                        |
| S3     | COL3A1, MYH3, COL1A1, TTN                                |
| ISM.D0 | /                                                        |
| ISM.D4 | TTN, MYH3                                                |
| ADM.D0 | FN1                                                      |
| ADM.D4 | TTN, NEB, MEF2C, MYH8, POSTN, MYH3, NCAM1, PALLD, DCLK1, |
|        | ACTN2, FN1, SGCD, DLG2, SULF1, LIMCH1, F13A1, LDB3       |

Table 16: differential expressed genes for S2 stage over other stages

### 2.3.4 S3

| stage  | genes                                                          |
|--------|----------------------------------------------------------------|
| iPS    | COL3A1, COL1A2, COL1A1, MYH3, H19, COL5A2, IGF2, POSTN, COL5A1 |
| S1     | MYH3, H19, TTN, COL3A1, POSTN, IGF2                            |
| S2     | COL3A1, MYH3, COL1A1, TTN                                      |
| ISM.D0 | MYH3                                                           |
| ISM.D4 | /                                                              |
| ADM.D0 | MYH3, POSTN                                                    |
| ADM.D4 | TTN                                                            |

Table 17: differential expressed genes for S3 stage over other stages  $% \left( {{{\rm{S}}} \right)^{2}} \right)$ 

# 2.3.5 ISM.D0

| stage  | genes                                             |
|--------|---------------------------------------------------|
| iPS    | H19                                               |
| S1     | H19                                               |
| S2     | /                                                 |
| S3     | MYH3                                              |
| ISM.D4 | TTN, MYH3                                         |
| ADM.D0 | /                                                 |
| ADM.D4 | TTN, NEB, MEF2C, MYH3, NCAM1, MYH8, DCLK1, ACTN2, |
|        | POSTN, DMD, DLG2                                  |

Table 18: differential expressed genes for ISM.D0 stage over other stages  $% \left( \frac{1}{2} \right) = 0$ 

# 2.3.6 ISM.D4

| stage  | genes                                                 |
|--------|-------------------------------------------------------|
| iPS    | MYH3, COL3A1, COL1A1, IGF2, TTN, JARID2, PALLD, TNNT2 |
| S1     | TTN, MYH3, IGF2                                       |
| S2     | TTN, MYH3                                             |
| S3     | /                                                     |
| ISM.D0 | TTN, MYH3                                             |
| ADM.D0 | MYH3                                                  |
| ADM.D4 | /                                                     |

Table 19: differential expressed genes for ISM.D4 stage over other stages  $% \mathcal{A}$ 

# 2.3.7 ADM.D0

| stage  | genes                                                 |  |
|--------|-------------------------------------------------------|--|
|        | FN1, SULF1, RUNX1, COL3A1, PALLD, COL1A2, ADAMTSL1,   |  |
| iPS    | COL1A1, COL6A3, ZEB1, ELN, ATP2B1,,ESRG, FBN1, ADAM9, |  |
|        | CBS                                                   |  |
| S1     | FN1, TTN, SULF1, RUNX1, ELN                           |  |
| S2     | FN1                                                   |  |
| S3     | MYH3, POSTN                                           |  |
| ISM.D0 | /                                                     |  |
| ISM.D4 | MYH3                                                  |  |
| ADM.D4 | TTN, MYH3, POSTN, NEB, MYH8                           |  |

Table 20: differential expressed genes for ADM.D0 stage over other stages

#### 2.3.8 ADM.D4

| stage  | genes                                                        |  |
|--------|--------------------------------------------------------------|--|
| iPS    | TTN, NEB, MEF2C, MYH3, PALLD, MYH8, COL3A1, POSTN, FN1,      |  |
|        | COL1A2, ACTN2, DMD, RUNX1, NCAM1, COL1A1, SGCD,              |  |
|        | COL5A2, FBN1, SULF1, DST, ESRG, COL6A2, ARPP21, ZEB1         |  |
| S1     | TTN, NEB, MYH3, MYH8, NCAM1, ACTN2, POSTN, SGCD, DLG2,       |  |
|        | MEF2C, F13A1, LDB3, DCLK1, BIN1, LMO7, SULF1, RUNX1, LIN28A, |  |
|        | CADM2, COL6A2, ARPP21, MYH10, SMC4, ITGA7, TNNT2, DST, FN1   |  |
| S2     | TTN, NEB, MEF2C, MYH8, POSTN, MYH3, NCAM1, PALLD, DCLK1,     |  |
|        | ACTN2, FN1, SGCD, DLG2, SULF1, LIMCH1,F13A1, LDB3            |  |
| S3     | TTN                                                          |  |
| ISM.D0 | TTN, NEB, MEF2C, MYH3, NCAM1, MYH8, DCLK1, ACTN2,            |  |
|        | POSTN, DMD, DLG2                                             |  |
| ISM.D4 | /                                                            |  |
| ADM.D0 | TTN, MYH3, POSTN, NEB, MYH8                                  |  |

Table 21: differential expressed genes for ADM.D4 stage over other stages

From the results, several interesting place can be noticed. iPS, S1, S2 and ISM.D0 have little differential expressed genes. Since ISM.D0 and S2 are all myoblasts, S2 is developed from S1 and iPS, the result might indicate that HG19 gene distinguishes ISM cell line from iPS cell line; in iPS and S stages, cells are very similar to ISM cell line.

iPS cells have significantly more differential expressed genes with later stage cells then with early stage cells. During the process of differentiation, genes with stage specific functions will be turned on, thus the differential expressed genes between iPS stages are potentially connected to certain differentiation function. S3, ISM.D4 and ADM.D4 stage have little differential expressed genes. Being myotubes could explain their little differences. Also S2, ISM.D0, ADM.D0 have little differential expressed genes could be explained by the same reason. Generally, a huge difference can be observed between ADM cell line and other cell lines, these genes are very likely to be related with adult cell differentiation.

The number of differential expressed genes is much smaller than total gene numbers in our data, by exploring into the results, I noticed that, most differential expressed genes are eliminated because of high FDR value. Since the 8 datasets in our data are all unique ones, lacking of replica might be the reason that the result has a high FDR value. In further analysis we plan to change the threshold of FDR value so that we could obtain more gene symbols.

As a conclusion, the gene expression differences in cells from similar tissues (both myoblasts or myotubes) are less then cells from same cell lines. For example the differential expressed genes between ADM.D4 vs ISM.D4 group is more then ADM.D4 vs ADM.D0 group or ISM.D4 vs ISM.D0 group. As the start point of the differentiation process, iPS stage mostly express basic household genes while later stages would have more stage specific genes expressed. But further analysis also should be performed, a small number of genes might not tell much about stage wise functions.

## 2.4 Functional analysis

R package clusterProfiler was used to perform the Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway analysis. Information for Molecular Function(the specific activity that gene products play a role in), Cellular Component(the specific place in a cell where a gene product is located), Biological Process(biological activity which a group of genes or gene products participate in) is obtained using default parameter. Detailed GO information is available in supplementary information. Here terms with high gene counts are presented in dot charts. Top 21 process ranked by gene ratio(number of target gene in term/number of target gene) are shown in the dot chart. the p value indicated the significance of enrichment analysis, usually the enrichment is significant when p < 0.05.



#### 2.4.1 Molecular function

Figure 6: Gene Ontology analysis in terms of molecular function in each stage.



Figure 7: Gene Ontology analysis in terms of molecular function in each stage.

# 2.4.2 Cellular Component



Figure 8: Gene Ontology analysis in terms of cellular component in each stage.



Figure 9: Gene Ontology analysis in terms of cellular component in each stage.

# 2.4.3 Biological Process



Figure 10: Gene Ontology analysis in terms of biological process in each stage.



Figure 11: Gene Ontology analysis in terms of biological process in each stage.

#### 2.4.4 KEGG analysis



Figure 12: Gene Ontology analysis in terms of KEGG pathway in each stage.



Figure 13: Gene Ontology analysis in terms of KEGG pathway in each stage.

The ontology analysis of all genes had included too many functional terms, since the analysis only concerns about the gene symbol. From previous results I noticed that for genes with more than 5 transcripts, every stage has expressed their own features, so I decided to perform a functional analysis in genes with over or equal to 5 transcripts. The result is listed below.



# 2.4.5 Molecular function(over 5 transcripts)

Figure 14: Gene Ontology analysis in terms of molecular function in each stage.



Figure 15: Gene Ontology analysis in terms of molecular function in each stage.



2.4.6 Cellular Component(over 5 transcripts)

Figure 16: Gene Ontology analysis in terms of cellular component in each stage.



Figure 17: Gene Ontology analysis in terms of cellular component in each stage.

## 2.4.7 Biological Process(over 5 transcripts)



Figure 18: Gene Ontology analysis in terms of biological process in each stage.



Figure 19: Gene Ontology analysis in terms of biological process in each stage.



## 2.4.8 KEGG analysis(over 5 transcripts)

Figure 20: Gene Ontology analysis in terms of KEGG pathway in each stage.



Figure 21: Gene Ontology analysis in terms of KEGG pathway in each stage.

#### 2.4.9 Stage wise funcitonal analysis

Simply listing all of the results is pretty hard for us to find out the relations under different stages, according to the differential expressed gene analysis from 2.2, I have compared gene ontology terms between iPS stage and ADM.D4 stage. Only 3 gene symbols are listed in the table for each term, detailed information can be found in supplementary information. The terms listed below could be connected to development of adult myotubes, much differential expressed genes between iPS and ADM.D4 from 2.2 are also related to these terms.

| ID         | Term                                     | Gene symbol          |
|------------|------------------------------------------|----------------------|
| GO:0048193 | Golgi vesicle transport                  | TAPBP/VPS52/CUX1     |
| GO:0006914 | autophagy                                | SEC22B/MTM1/MTOR     |
| GO:0061919 | process utilizing autophagic mechanism   | SEC22B/MTM1/MTOR     |
| GO:0034976 | response to endoplasmic reticulum stress | HSPA1A/FLOT1/UBE2G2  |
| GO:0042176 | regulation of protein catabolic process  | HSPA1A/FLNA/SEC22B   |
| GO:0010256 | endomembrane system organization         | FLOT1/PDE4DIP/TARDBP |
| GO:0009896 | positive regulation of catabolic process | HSPA1A/SEC22B/DVL1   |
| GO:0016236 | macroautophagy                           | SEC22B/MTM1/MTOR     |
| GO:0016570 | histone modification                     | NELFE/RING1/BAZ1B    |

Table 22: Biological Process for ADM.D4 over iPS

| ID         | Term                     | Gene Symbol         |
|------------|--------------------------|---------------------|
| GO:0015629 | actin cytoskeleton       | FLOT1/FLNA/ESPN     |
| GO:0044440 | endosomal part           | HLA-A/HLA-E/HLA-B   |
| GO:0005635 | nuclear envelope         | ABCF1/TUBB/TRIM27   |
| GO:0010008 | endosome membrane        | HLA-A/HLA-E/HLA-B   |
| GO:0005774 | vacuolar membrane        | FLOT1/GNB1/MTOR     |
| GO:0000151 | ubiquitin ligase complex | HSPA1A/RING1/UBE2J2 |
| GO:0043292 | contractile fiber        | SMN2/FLNA/PDE4DIP   |
| GO:0030016 | myofibril                | SMN2/FLNA/PDE4DIP   |
| GO:0044449 | contractile fiber part   | SMN2/FLNA/MTM1      |
| GO:0030017 | sarcomere                | SMN2/FLNA/MTM1      |
| GO:0042470 | melanosome               | FLOT1/SEC22B/SLC2A1 |
| GO:0048770 | pigment granule          | FLOT1/SEC22B/SLC2A1 |

Table 23: Cellular Component for ADM.D4 over iPS

| ID         | Term                                         | Gene Symbol         |
|------------|----------------------------------------------|---------------------|
| GO:0003779 | actin binding                                | FLNA/ESPN/KLHL21    |
| GO:0060589 | nucleoside-triphosphatase regulator activity | DNAJC7/GDI1/SRGAP2B |
| GO:0051015 | actin filament binding                       | FLNA/ESPN/CAPZB     |
| GO:0019902 | phosphatase binding                          | PPP1R11/RCAN3/RPA2  |
| GO:0035257 | nuclear hormone receptor binding             | CDK7/ZNHIT3/PADI2   |
| GO:0008135 | translation factor activity, RNA binding     | ABCF1/EIF2D/EIF4G3  |
| GO:0032182 | ubiquitin-like protein binding               | DDI2/FAF1/SPRTN     |
| GO:0003743 | translation initiation factor activity       | EIF2D/EIF4G3/EIF3I  |

Table 24: Molecular Function for ADM.D4 over iPS

| ID       | Term                           |
|----------|--------------------------------|
| hsa05205 | Proteoglycans in cancer        |
| hsa04140 | Autophagy - animal             |
| hsa04910 | Insulin signaling pathway      |
| hsa04142 | Lysosome                       |
| hsa04152 | AMPK signaling pathway         |
| hsa04722 | Neurotrophin signaling pathway |
| hsa04211 | Longevity regulating pathway   |
| hsa04520 | Adherens junction              |
| hsa05212 | Pancreatic cancer              |
| hsa05220 | Chronic myeloid leukemia       |
| hsa05211 | Renal cell carcinoma           |
|          |                                |

Table 25: KEGG pathway for ADM.D4 over iPS

# 2.5 Possible Novel genes and transcripts



Figure 22: unmatched genes and transcripts

According to the description of ToFU pipeline, for each input sequence, NA will be produced if reference can not be found in reference gene model during the annotation step [8]. Natural we could assume these sequences that can not be matched to be novel transcripts. The potential novel transcript numbers are produced by: total transcript numbers – matched transcript numbers, the potential novel gene numbers are produced by: total gene numbers – matched gene numbers. IGV sequence visualization was used to check the authenticity of the novel transcripts preliminary, several transcripts were visualized and proved to be not overlapping with any reference genemodel area.



Figure 23: visualization of one novel gene region

Figure 13 is a visualization of 2 reads from iPS stage, c22873/f1p0/596 | GL000220.1 :132118 - 132868(-) and c22883/f1p1/742 | GL000220.1 : 132118 - 132868(-). After the previous error correction and collapse step, all redundant reads are collapsed into one unique transcript. Here, 2 reads are 2 transcripts, they are not overlapped with any transcript or gene with Genecode v19 reference gene model, they are likely novel transcripts and from a novel gene.

# 3 Discussion

# 3.1 Conclusions

In this study, we characterized the transcriptome information for human skeletal muscle cell in different stages. The transcripts and alternative splicing events distribution are investigated across stages. Based on a comprehensive analysis of differentiated cells, the expression and functional information obtained in this study revealed the process of human skeletal muscle cell differentiation. The data will provide a genomic reference for further skeletal muscle cell differentiation or FSHD research using iPS cells.

There are also some limitations of our work. The 8 datasets in our data are all unique ones, which means the features shown in our data could possibly be coincidences. No replica also brought lots of trouble when I was performing the gene differential expression analysis, because high FDR value, lots of results were eliminated.

Also our data are simply collected from healthy people, with no data from patient we can only explore the gene expression features during skeletal muscle cell differentiation, while the genes and pathways information related to FSHD can not be obtained.

And the largest challenge in this study is lacking resource for Iso-Seq analysis. Iso-Seq is a relatively new technique, it is kind of advanced than other RNA-Seq techniques in many aspects, which also means we are not able to find many publications related to Iso-Seq anlysis. Before I was running the analysis following Cupcake ToFU pipeline, 4 different kinds pipeline had been tried and abandoned, two of them requires short read sequences(IDP and SpliceGrapher). Pipeline SQANTI can not even work on their own tutorial data, and pipeline TAPIS contains lots of coding error in their python scripts and spent me lots of time fixing the script bugs (the fixed scripts is available in splimentary information and TAPIS website). When TAPIS was finally managed to work, I noticed that it would alter the strand information of the sequence for some unknown reason. These situations all tell that this is a field that few people are working on.

## 3.2 Future work

Lacking experimental group is the major limitation of this study. Our sequencing data are all from healthy people. Without an experimental group, we can only acquire cell differentiation related information, by comparing healthy data with patient data we could easily locate genes or pathways underlying FSHD.

More replica could also be used in further study. Since read numbers and gene numbers can vary from sample to sample due to technique reasons, it is important to set several replicas to reduce the bias. In our data set, the over 3k part data of S2 stage is dropped because of containing much mitochondrial sequence, this brought more uncontrolled bias to our analysis. Solutions for such circumstances should be discussed to ensure to correctness of the analysis.

At last, The analysis revealed the gene expression and gene ontology differences between stages and cell lines, hypothesis were made based on these results. However, more biological experiments should be performed to validate the basic results and hypothesis.

# References

- [1] Charles A. Goldthwaite. The promise of induced pluripotent stem cells (ipscs). https://stemcells.nih.gov/info/Regenerative\_Medicine/2006chapter10.htm.
- [2] DeSimone AM, Pakula A, Lek A, and Emerson CP Jr. Facioscapulohumeral muscular dystrophy. *Compr Physiol.*, pages 1229–1279, sep 2017.
- [3] National Institute of Health. Facioscapulohumeral muscular dystrophy. https://ghr.nlm.nih.gov/condition/facioscapulohumeral-musculardystrophy#.
- [4] Michelle N. Vierra, Sarah B. Kingan, Elizabeth Tseng, Ting Hon, William J. Rowell, Jacquelyn Mountcastle, Olivier Fedrigo, Erich D. Jarvis, and Jonas Korlach. From rna to full-length transcripts: The pacbio iso-seq method for transcriptome analysis and genome annotation. https://www.pacb.com/wp-content/uploads/Vierra-G10K-2017-From-RNA-to-Full-Length-Transcripts-1.pdf.
- [5] Salah E. Abdel-Ghany, Michael Hamilton2, Jennifer L. Jacobi, Peter Ngam, Nicholas Devitt, Faye Schilkey, Asa Ben-Hur, and Anireddy S.N. Reddy. A survey of the sorghum transcriptome using single-molecule long reads. *nature communication*, jun 2016.
- [6] Pacific Biosciences. Iso-seq analysis(isoform sequencing). https://www.pacb.com/videos/tutorial-iso-seq-analysis-application/.
- [7] Thomas D. Wu and Colin K. Watanabe. Gmap: a genomic mapping and alignment program for mrna and est sequences. *Bioinformatics*, 2005.
- [8] Gordon SP, Tseng E, Salamov A, Zhang J, Meng X, Zhao Z, and et al. Widespread polycistronic transcripts in fungi revealed by single-molecule mrna sequencing. *PLoS One*, jul 2015.
- [9] M. F. Rogers, J. Thomas, A. S. N. Reddy, and A. Ben-Hur. Splicegrapher: Detecting patterns of alternative splicing from rna-seq data in the context of gene models and est data. *Genome Biology*, 2012.
- [10] Robinson MD, McCarthy DJ, and Smyth GK. edger: a bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics*, 2010.
- [11] Guangchuang Yu, Li-Gen Wang, Yanyan Han, and Qing-Yu He. clusterprofiler: an r package for comparing biological themes among gene clusters. OMICS: A Journal of Integrative Biology, 2016.

[12] James T. Robinson, Helga Thorvaldsdttir, Wendy Winckler, Mitchell Guttman, Eric S. Lander, Gad Getz, and Jill P. Mesirov. Integrative genomics viewer. *Nature Biotechnology*, may 2011.