


Abstract

Homomorphic encryption has progressed rapidly in both efficiency and versatility

since its emergence in 2009. Meanwhile, a multitude of pressing privacy needs —

ranging from cloud computing to healthcare management to the handling of shared

databases such as those containing genomics data — call for immediate solutions

that apply fully homomorpic encryption (FHE) and somewhat homomorphic en-

cryption (SHE) technologies. Recent rapid progress in fully homomorphic encryp-

tion has catalyzed renewed efforts to develop efficient privacy preserving protocols.

Several works have already appeared in the literature that provide solutions to these

problems by employing leveled or somewhat homomorphic encryption techniques.

Here, we propose efficient ways of adapting the most fundamental programming

problems; boolean algebra, arithmetic in binary and higher radix representation,

sorting, and search to the fully homomorphic encryption domain by focusing on

the multiplicative depth of the circuits alongside the more traditional metrics. The

reduced depth allows much reduced noise growth and thereby makes it possible

to select smaller parameter sizes in leveled FHE instantiations resulting in greater

efficiency savings. We begin by exploring already existing solutions to these pro-

gramming problems, and analyze them in terms of homomorphic evaluation and

memory costs. Most of these algorithms appear to be not the best candidates for

FHE solutions, hence we propose new methods and improvements over the existing

algorithms to optimize performance.
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Chapter 1

Introduction

In algebra and group theory, a homomorphism is a structure-preserving mapping

between two algebraic structures. This means a map f : X → Y between two

sets X, Y equipped with the same structure such that, if ∗ is an operation of the

structure (such as two groups, two rings, or two vector spaces), then

f(a ∗ b) = f(a) ∗ f(b)

for every pair a, b of elements of X. In cryptography, a Homomorphic Encryption

(HE) method is a cryptographically secure and invertible map from the plaintext

domain to the ciphertext domain with at least one operation that provides homomor-

phism in these two algebraic structures while protecting the privacy of the plaintexts.

In particular, HE methods that have only one homomorphic operation are partially

Homomorphic Cryptosystems, and those that have both addition and multiplication

homomorphism are called fully Homomorphic Encryption (FHE) schemes.1

The question of having a secure and practical FHE scheme was first introduced

1There is more to what makes a real FHE scheme, but that will be described in more detail
later.
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by Rivest et al. [1] in 1978. The authors concluded this work by asking two open

questions: “1. Does privacy homomorphism have enough utility to make it worth-

while in practice? 2. For what algebraic systems, does a useful privacy homomor-

phism exist?” Since then, the general consensus in the cryptography community

has been that the killer applications of FHE — ranging from private search queries

to financial analysis on the cloud to machine learning over shared databases con-

taining sensitive information such as genome data — are in the two-party setting.

Specifically, it seems to be an essential tool for outsourcing computation along with

storage of sensitive data to an untrusted party. However, the practicality of using

FHE in real world applications remained unexplored until after 2009, when Gentry

proposed a solution [2] to the second question of Rivest et al. Homomorphic en-

cryption has progressed rapidly in both efficiency and versatility since its emergence

in 2009. In this work, we tackle the challenges of applying the most fundamental

programming problems to Fully Homomorphic Encryption framework to establish

that the solutions to real world privacy problems can indeed be made practical by

utilizing efficient FHE constructions.

1.1 A History of Fully Homomorphic Encryption

Although several partially HE methods were proposed following the work of Rivest

et al. the existence of a Fully Homomorphic Encryption stayed an open question

until Gentry proposed the first plausibly secure FHE in 2009 [2]. For example, very

widely used public key cryptosystem RSA (1978) [3] has multiplicative homomor-

phism, while Goldwasser-Micali (1982) [4], ElGamal (1985) [5] and Paillier (1999)

[6] cryptosystems have additive homomorphism, therefore they are all known as

partially HE methods.
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Gentry’s first FHE solution was based on homomorphism in ideal lattices. In his

pivotal work, he proves that if we start with a somewhat Homomorphic Encryption

(SHE or SWHE) scheme that is capable of evaluating circuits of up to depth d+ 1,

and if we can implement the scheme’s own decryption circuit in d homomorphic

evaluation levels, then this scheme is boostrappable. Bootstrapping, i.e., evaluation

of the decryption circuit with only homomorphic operations by using an encryption

of the secret key is the crucial innovation that made the first FHE construction

possible. This technique however was extremely costly and inefficient. In 2010,

Gentry and Halevi [7] presented the first actual FHE implementation along with

a wide array of optimizations to tackle the infamous efficiency bottleneck of FHE

schemes.

We have witnessed an amazing wealth of improvements in SHE and FHE schemes

over the last decade. Several newer SHE and FHE schemes appeared in the literature

in the following years. In 2011, Brakerski and Vaikuntanathan presented an FHE

scheme that is based on the standard learning with errors (LWE) problem [8]. The

security of their scheme depends on the worst-case hardness of the short vector

problem in arbitrary lattices, varying from Gentry’s first construction that relies on

the worst-case hardness of problems on ideal lattices. In this work, they introduce a

technique called re-linearization to obtain a somewhat homomorphic scheme using

symbolic encryptions of the secret key, namely evaluation keys and another useful

technique modulus reduction to turn their somewhat homomorphic construction to

a fully homomorphic one.

Later, Brakerski, Gentry and Vaikuntanathan proposed a new FHE scheme

(BGV) based on again learning with errors (LWE) problem and its ring variant

(RLWE) [9]. In this work, they deviate from Gentry’s blueprint, namely costly boot-

strapping operation and reliance on ideal lattices and rather use the new techniques
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from [8] to achieve an efficient leveled FHE scheme that is capable of evaluating

L-level arithmetic circuits with computation complexity that is quasi-linear in the

security parameter. They also provide a bootstrapping method as an optimiziation

to their RLWE based new scheme. Further optimizations for FHE which also ap-

ply to somewhat homomorphic encryption schemes followed including batching and

SIMD optimizations; see, e.g., [10, 11, 12].

In 2012, a new notion of scale invariance was introduced by Brakerski in [13].

Instead of using modulus reduction/switching that is used in the previous leveled

FHE schemes, one can use a scale-invariant scheme and do not need to reduce/switch

the modulus during homomorphic evaluations. In a subsequent work, Fan and

Vercauteren applied this new method to BGV scheme and proposed a scale-invariant

leveled FHE scheme based on the RLWE problem in [14].

In [12] Gentry, Halevi and Smart proposed the first homomorphic evaluation of

a complex circuit: a full AES block. Their implementation is highly optimized for

efficient AES evaluation using key and modulus switching techniques [9], batching

and SIMD optimizations [10]. Their byte-sliced AES implementation takes about

5 minutes to homomorphically evaluate an AES block encryption. In 2012, Halevi

(and later Shoup) published the HElib [15], a C++ library for FHE that is based on

BGV scheme from [9]. In early 2015, Gentry, Smart, Halevi (GHS) [16] published

significantly improved AES performance results with 2 seconds amortized per-block

runtime.

In 2012, López-Alt et al. [17] proposed a leveled FHE scheme (LTV) based on

the Stehlé and Steinfeld variant of the NTRU scheme [18]; LTV supports inputs from

multiple public keys. Later in 2013, Bos et al. [19] introduced a scale-invariant of the

LTV scheme (YASHE) along with an implementation. The authors modify LTV by

adopting the tensor product, i.e., scale-invariance, technique introduced earlier by
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Brakerski [13] thereby providing a security reduction to that of standard lattice-

based problems. Later, Doröz et al. proposed another variant of the LTV in [20]

(DHS), putting forward a batched, bit-sliced implementation that features the mod-

ulus switching technique from [9] alongside a modified relinearization that reduces

the size of the evaluation keys. Later in 2016, Albrecht, Bai and Ducas showed that

the narrow key distribution used in LTV and its variants enables subfield attacks for

poorly chosen parameters [21].

In [22] Gentry, Sahai and Waters (GSW) proposed quite a different approach

based on the Learning with Errors (LWE) problem where they choose the secret

key as an approximate eigenvector v and encode every plaintext λ as a matrix Aλ

with Aλv ≈ λv. One very attractive feature of this system is an operation called

flattening which controls the noise growth by transforming ciphertexts into a set of

binary structures, i.e., bit decomposing the ciphertexts. This noise control technique

eliminates the need for relinearization and costly evaluation keys. In 2015, Ducas

and Micciancio [23] presented the FHEW scheme that achieves bootstrapping for

GSW in half a second.

Later in 2016, Doröz and Sunar adapted the flattening technique for NTRU ci-

phertexts, proposing F-NTRU in [24]. While eliminating the need for relinearization

and evaluation keys, F-NTRU benefits from sampling its keys from a wide distribu-

tion, therefore being immune to the subfield attack against NTRU-based schemes

[21]. Due to its small parameter sizes, F-NTRU achieves fast homomorphic multi-

plication, for instance a depth 30 multiplication circuit can be executed in ≈ 17 ms.

Around the same time in 2016, Chillotti et al. introduced TFHE that is a variant

of LWE and GSW over a torus representation and implemented a highly optimized

bootstrapping method for this scheme [25, 26, 27]. They report a 13 milliseconds

per gate which is a 50 times speed up over the bootstrapping in FHEW [23].
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In 2017, Cheon et al. introduced CKKS, a homomorphic encryption scheme

for approximate arithmetic [28], and in [29] the authors describe a bootstrapping

method for the same scheme. Later, an improvement by two orders of magnitude in

amortized bootstrapping method of CKKS is reported in [30]. In early 2018, cuFHE

– a CUDA-accelerated implementation of TFHE is released [31]. cuFHE achieves

0.5 msec per gate performance – a 26 times speed up over TFHE when run on an

NVIDIA Titan Xp GPU.

1.2 Why Do We Need Fully Homomorphic En-

cryption?

When the notion of privacy homomorphism was first introduced in [1], a small loan

company with storage and computation needs was given as a sample application.

In this example, a loan company uses a commercial time-sharing service to store

its data. The company’s database contains sensitive financial information, there-

fore they decide to protect their data by encrypting all of it and sharing only this

encrypted database with the storage service. Basic principle is that the data can

never be decrypted by the storage computer, but only by the home office of the loan

company, i.e. the data owner. There is one problem with this setup however, the

time-sharing service provides storage utilities to the loan company, but in order to

use the computational utilities they have to compromise from the privacy of their

stored data. Unfortunately, when the loan company needs information such as; the

size of the average loan outstanding, or the total incoming loan payments in the

next cycle, or the number of loans over $1, 000, 000; these questions require some

sort of arithmetic computation to be answered. Of course, the most trivial solution

to this problem is for the home office to download the whole encrypted database,
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decrypt it and perform the computations over their cleartext data.

When Gentry proposed the first FHE construction [2], he presented another

example: a private search engine that enables the user to submit an encrypted query

and computes an encrypted result without ever knowing any information about the

query itself or the result. Similarly, it can also provide encrypted file storage on

a remote server, e.g. Dropbox, Google Docs, and allow the user to search over

encrypted files such that the server can retrieve the files that satisfy some boolean

test without ever decrypting the files.

Another significant application of FHE is in human genome privacy studies. The

growth of genome data and computational requirements overwhelm the capacity of

servers. Many institutions that handle big genome data and the National Institute

of Health (NIH) are considering using cloud computing services to reduce their

storage and computation costs in their genome research. Privacy and security are

major concerns when deploying cloud-based data analysis tools. FHE comes as

a natural solution to protect sensitive genome data while providing computation

utilities on remote servers. To this end, Department of Biomedical Informatics at

UCSD, and School of Informatics and Computing at Indiana University co-organize

iDASH an annual competition to demonstrate the state of the art privacy preserving

technologies that can be used to solve biomedical challenges involving confidential

big genome data.2 Their fully homomorphic encryption competition track over

the years included tasks such as building a machine learning model (i.e., logistic

regression) over encrypted genotype/phenotype data to predict the disease, Genome

Wide Association Studies (GWAS) based on linear or binary logistic regression to

compute the p-values of different encrypted SNPs, secure genotype imputation etc.

2www.humangenomeprivacy.org
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1.2.1 A History of FHE Applications

With the improved primitives as a springboard, homomorphic encryption schemes

have been used to build a variety of higher level security applications. For example,

Lagendijk et al. give a summary of homomorphic encryption and MPC techniques

to realize key signal processing operations such as evaluating linear operations, inner

products, distance calculation, dimension reduction, and thresholding in [32].

Meanwhile SHE tools, developed mainly to achieve FHE, have also been explored

for use in applications in their own right. In [33] for instance, Lauter et al. consider

the problems of evaluating averages, standard deviations, and logistic regression

which provide basic tools for a number of real-world applications in the medical,

financial, and advertising domains. Later, Lauter et al. show in [34] that it is

possible to implement genomic data computation algorithms where the patients’

data are encrypted to preserve patient privacy. The authors used a leveled SHE

scheme which is a modified version of LTV where they omit the costly relinearization

operation.

In [35], Bos et al. show how to privately perform predictive analysis tasks on en-

crypted medical data. The authors use the SHE implementation of [19] to provide

timing results. in [36], Graepel et al. demonstrate that it is possible to homo-

morphically evaluate machine learning algorithms in a service while protecting the

confidentiality of the training and test data. They also provide benchmarks for a

small scale data set to show that their scheme is practical. In [37], Cheon et al. pre-

sented a method along with implementation results to compute encrypted dynamic

programming algorithms such as Hamming distance, edit distance, and the Smith-

Waterman algorithm on genomic data encrypted using a somewhat homomorphic

encryption algorithm.
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1.3 Challenges of Homomorphic Evaluations

Bootstrapping [38], relinearization [8], modulus reduction [9], scale-invariance [13]

and flattening [22] remain as indispensable tools for FHE schemes. Having additive

(+) and multiplicative homomorphism (×) along with bootstrapping allows us to

perform any polynomial function (f+,×(x1, x2, · · · , xk)) over arbitrary number – k

– of input ciphertexts – xi –. In theory, the privacy applications are made possible

with FHE, however in practice it is not always trivial to apply FHE schemes directly

on existing solutions. Most homomorphic encryption schemes provide, as basic func-

tionality, addition and multiplication of ciphertexts which encrypt elements in some

ring, with the caveat that multiplication gates are considerably “more expensive”

than addition gates. At face value, this equips us with the ability to evaluate multi-

variate polynomials on inputs with a strong preference for low degree polynomials.

1. Depending on the application, FHE plaintexts may need to store messages

in many different forms, e.g., a Personal Identification number, a credit card

number or an account balance can all be large integers, whereas a patient’s

immunization record or genome data can be long strings. One of the challenges

of building FHE applications is to find the most efficient way of representing

the sensitive data before encryption. NTRU and RLWE based leveled FHE

schemes use a polynomial ringRp = Zp[x]/f(x) as their plaintext space, where

p, – the plaintext modulus – is a small integer. On the other hand, efficient

bootstrapping methods are highly optimized for LWE-based bit encryptions,

i.e., p = 2, but do not handle messages from a higher radix, i.e., p = 2k or a

polynomial domain which is a limiting factor.

2. The encryption mapping is from a small plaintext modulus to a really large

ciphertext modulus with q >> p with high dimension n. This affects both
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computation and communication complexity dramatically. In most schemes,

a single bit is encrypted into a high degree polynomial with fat coefficients,

which requires costly ring operations such as polynomial multiplication and

reduction, to be able to compute a single logic gate. In addition to that, the

size of the ciphertexts in the orders of qn bits can be quite large in comparison

to a single bit. This means, encoding or batching of input messages is essential

in applications where bandwidth is limited.

3. Ciphertext multiplications corrupt the encryption mask and increases the noise

which is why it is usually followed by a combination of key and noise man-

agement techniques, e.g. relinearization followed by modulus switching or

bootstrapping. A ciphertext multiplication is already an expensive algebraic

operation in FHE rings, and the following operations can be even more costly

computationally. This requires for custom optimizations to reduce the number

of multiplications and the multiplicative depth of the circuit. High level soft-

ware algorithms solving fundamental programming problems are designed to

optimize the complexity with respect to the most expensive block of the com-

putation and some operations such as logical gates or division with constants

are considered trivial in these programs. In the contrary, in homomorphic

circuit evaluations even the simplest algorithm step can be quite challenging

to implement efficiently. Therefore, we need new ways of optimizing these

fundamental algorithms to reduce the complexity and analyze the cost of the

overall circuit evaluation not just by the cost of the gates in the circuit, but

also the cost of the method following the ciphertext multiplication.

4. Finally, sometimes there may be a trade-off in choosing the most efficient

plaintext encoding and the ciphertext key/noise management technique. If, for
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instance, a circuit is too deep to utilize with a leveled FHE scheme and we need

to apply bootstrapping and considering the most efficient implementations of

bootstrapped methods are specifically designed for bit encryptions, this might

prevent us from using a special polynomial encoding to represent our input

messages. Depending on the applications, design decisions regarding plaintext

representation and ciphertext evaluations should be made jointly.

1.4 Our Contributions

Most homomorphic encryption schemes provide, as basic functionality, addition and

multiplication of ciphertexts which encrypt elements in some ring, with the caveat

that multiplication gates are considerably “more expensive” than addition gates. At

face value, this equips us with the ability to evaluate multivariate polynomials on

inputs with a strong preference for low degree polynomials.

In applications such as machine learning, other fundamental operations become

essential: division, zero test, thresholding and comparison. Bit-level encryp-

tion excels at functions with Boolean output but incurs prohibitive cost when re-

quired to perform arithmetic even in moderate-sized message domains. Approaching

this from the other end, we seek out algebraically efficient algorithms for the oper-

ations in the above list for schemes with large message domains.

Further progress towards real world FHE applications requires new ideas for

the efficient implementation of algebraic operations on word-based (as opposed to

bit-wise) encrypted data. Whereas handling data encrypted at the bit level leads

to prohibitively slow algorithms for the arithmetic operations that are essential for

cloud computing, the word-based approach hits its bottleneck when operations such

as integer comparison are needed. In Chapter 5, we tackle this challenge by propos-
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ing solutions to problems — including comparison and division — in word-based

encryption. We present concrete performance figures for all proposed primitives

via F-NTRU scheme. We present an array of solutions to improve the versatility of

higher characteristic SHE/FHE schemes along with new abilities, specifically:

� We compare three approaches to field inversion, each with its advantages; these

naturally lead to algorithms for division, zero test and equality checking. The

first method is exact but slower; the others produce rational approximations,

which we scale to integers. Our approach based on Newton-Raphson iterations

also gives us an algorithm for square roots. Our convergence-based approach

performs better when the characteristic is large due to its amenability to a

specially chosen plaintext space and encoding technique. Particularly valuable

by-products include comparison circuits and threshold functions.

� We summarize with an overall comparison of word-wise homomorphic alge-

braic operations vis a vis their bit-wise counterparts for a 32-bit integer do-

main.

� We implement the proposed methods using an F-NTRU based homomorphic

encryption library and provide execution times for these implementations.

In Chapter 6, we focus a fundamental programming task, sorting, and analyze

different sorting algorithms and compare their performances for sorting encrypted

data. As of writing the first part of this chapter, other homomorphic sorting results

we are aware of are Chatterjee et al. [39] and Emmadi et al. ’s [40]. In [39], the

authors introduce a hybrid technique, i.e. Lazy Sort. This method first uses Bubble

Sort to nearly sort the input elements. Then, the list is sorted again by using

Insertion Sort. The authors claim that this method has better complexity than the

worst case scenario, which is disputed in both our work and [40]. Emmadi et al.
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implement and compare Bubble Sort, Insertion Sort, Bitonic Sort and Odd-Even

Merge Sort in [40] and their observations are consistent with the analysis provided

in our work. More recently, Narumanchi et al. compared bitwise and integer-wise

encryption techniques for homomorphic comparison and sorting operation in [41].

Their analysis shows that it is more efficient to use bitwise encryption in terms of

performance. As all algorithms proposed in the previous works still perform poorly

when sorting a large data set, the largest N used is around 64 in the experiments.

� Our survey includes well-known algorithms such as Bubble Sort, Merge Sort

and two sorting networks: Bitonic Sort and Odd-Even Merge Sort [42]. Due

to the high depths of the known algorithms, we proposed two new depth-

optimized methods: Greedy Sort and Direct Sort in our first work. Both of

these algorithms require a circuit of depth O (log(N) + log(`)) where N is the

number of elements and ` is the bit-length of each element. Both algorithms

improve in the circuit depth metric over classical algorithms by at least 1-3

orders of magnitude.

� The main contribution in our follow-up work is proposing an alternative way

of sorting numbers by computing the Hamming weight of N bits with only N

homomorphic multiplications in the Direct Sorting method. In comparison to

our proposed method with O(N) multiplications, Direct Sort and Greedy Sort

require O(N logN) and O(2N) multiplications, respectively. Our algorithm

implements the Direct Sort method with minimum number of operations. We

also observe that our proposed method is a compact implementation of Greedy

Sort. Therefore, it both minimizes the circuit depth and the number of homo-

morphic evaluations. Furthermore, our method for efficient evaluation of the

Hamming weight computation can be used in many other homomorphic appli-
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cations. In addition to performance improvements, the proposed algorithm is

easier to analyze and implement in comparison to the previous methods. Even

when batching is not applicable, the highly parallelizable nature of the algo-

rithm makes it an efficient candidate for a GPU implementation. Our sorting

method is generic and can be implemented with existing software libraries,

e.g. HElib [15].

� Our next contribution is adapting Single-Instruction Multiple-Data (SIMD)

idea from [10] and permutation technique from [11] to evaluate homomorphic

comparisons in parallel to sort the elements of a single set. In previous works,

batching is used to sort separate number sets simultaneously; therefore batch-

ing cannot be applied when there is only one set to be sorted. We propose

placing the set elements into message slots of a single plaintext and using ho-

momorphic rotation method from [11] when cross-slot computation is required.

Gentry et al. used this technique to evaluate an AES circuit homomorphically

in [16]. This method requires key switching after every rotation. However we

are able to reduce the number of comparisons from N2 to N provided that the

number of slots is greater than or equal to N .

� For our first performance results, we instantiate a DHS leveled scheme based

on NTRU, and present an implementation of the proposed sorting algorithms:

Greedy and Direct Sort. Our results confirm our theoretical analysis, i.e.

that the performance of the proposed sorting algorithm scales favorably as

N increases. In the second part, we give an implementation of our newly

proposed method Polynomial Ranks Sort and an updated implementation of

Direct Sort using BGV based HElib software.

For our final application, we focused on Gentry’s first example; a private search
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engine. More specifically, we designed a completely blind web search engine. Consid-

ering the computational and bandwidth requirements of early FHE schemes, along

with the fact that web search is a real-time application, the lack of practical pro-

posals prior to ours is not surprising. There are however more recent works in the

literature that tackle encrypted search problem. This topic can be categorized into

three different groups:

1. In the first category, both the keyword and the database are encrypted. For

example, a user looking for an information sensitive word in their private

files outsourced to a remote server, e.g., Microsoft OneDrive, Google Docs,

Dropbox. In this scenario, the files have to be encrypted by the owner before

being uploaded to the server. The search keyword needs to be kept private,

hence the owner has to encrypt it before sending the query. Lookup of the

secret keyword is performed over the already encrypted files on the server

side and the result is returned to the user in hidden form. For instance,

[43, 44] demonstrate solutions to this type of encrypted search over patients’

outsourced genomic data, and in [45, 46], Akavia et al. propose more generic

solutions.

2. In the second category, we consider the case when only the database is en-

crypted. A user might have private files stored in the cloud and they might

want to do a search with a not-so-sensitive keyword. Although technically this

is possible, it may come with other security problems. Once the server per-

forms a query with an open keyword, it will learn from that search and may

classify the private user data with respect to queried words by using them

as labels. If that does not leak any sensitive information –for example if the

search keyword is a generic time-stamp and the user needs access to certain
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messages from a particular date and time and the user is aware of the honest-

but-curious server model– the user may choose to send the query in an open

form. However in this case, there is no reason to encrypt that information in

the first place. Therefore, this scenario is highly unlikely to be useful in secure

applications.

3. In the last group, we have only the keyword encrypted which is the most

applicable scenario to our web-search model. Since the owner of the web-

index tables is the server itself (e.g. Google or Microsoft) and the content on

the web is publicly available, they are not required or motivated to keep them

in an encrypted form. Additionally, we have a finite number of keywords

in our look-up table. Since the search engine already has the index tables

set, the user can encrypt the index of the keyword instead of the keyword

itself, i.e. Private Information Retrieval (PIR) [47, 48, 49]. There are more

recent PIR works that use FHE [8, 50, 51]. We adapt the method from [49]

and propose a hybrid homomorphic solution in this work. We also consider

the multi-keyword search in this work. Since the search index tables do not

take into account of any possible combination of different words, we need to

be able to search for single keywords separately and find the intersection of

the encrypted results. This is known as the Private Set Intersection (PSI)

problem. In [52], a homomorphic PSI algorithm is described. Their method

has two parties communicating where one party sends an encrypted set of

values and the other party compares those with their own set. The second

party returns a zero-flag placed on the index of each intersected value. This

does not apply to our scenario, because sending one bit flag is not sufficient

for returning the URL results back to the user.
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In Chapter 7;

� We present the first end-to-end study of blind web search using homomophic

encryption where the client submits encrypted keywords and the server per-

forms a blinded lookup and returns the results again in encrypted form. We

separate our problem into two parts; Comparison and Aggregation.

� We cast Comparison into a private information retrieval (PIR) problem and

compare various PIR algorithms, i.e. variants of Kushilevitz-Ostrovsky PIR,

for suitability in our setting.

� We present a thorough analysis of the depth and bandwidth trade-offs, as well

as the number of multiplications for each proposed solution.

� We present our Aggregation step first in the single keyword scenario and then

extend our construction to consider the queries with multiple keywords. To

this end, we perform a homomorphic intersection by encoding URLs as zeros

of polynomials. We compare our approach against other with regard to the

problem of returning false positives.

� With all the pieces in place, we provide a noise analysis of the proposed meth-

ods with respect to F-NTRU parameters and finally give the implementation

results of the proposed schemes using a GPU implementation of the scheme.

The results show that the bandwidth overhead is in the MBytes while the

query requires micro to milliseconds for processing per row to support sin-

gle and multiple keyword lookups with intersection, i.e. AND operations on

keywords.

The works in Chapter 5 are collaborations with Yarkın Doroz, Berk Sunar and

William J. Martin, and published in ArcticCrypt 2016. An earlier version of this
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work is published in IACR Cryptology ePrint Archive. Chapter 6 consists of pub-

lications with Yarkın Doroz, Berk Sunar, and Erkay Savas. Our first results are

published in LatinCrypt 2015, with a follow-up work in LatinCrypt 2017. Our fi-

nal work, with the batched implementation is under reviewing process with IEEE

Transactions on Emerging Topics in Computing. The works in Chapter 7 are collab-

orations with Wei Dai, Yarkın Doröz, Berk Sunar, and William J. Martin. Our first

results are published on IACR Cryptology ePrint Archive in 2016, and our follow-up

work is currently under revision for submission.
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Chapter 2

Background

A typical fully homomorphic encryption scheme has five primitive operations: Param-

Gen, KeyGen, Encrypt, Decrypt, and Eval and a typical two-party communication can

be seen in Figure 2.1. In general, in a two-party FHE application, the data owner

is responsible of the first four operations, and the server has two tasks storage of

the encrypted data and perform the homomorphic evaluations over this encrypted

database.

 

• ParamGen 

• KeyGen 

• Encrypt 

• Decrypt 

Cloud 

Server 

Data 

Owner 

• Eval 

• Add 

• Mult 

ĉ = Eval(f, c) 

c = Encrypt(pk, m) 

Figure 2.1: A typical two-party FHE Application.

We define these primitive operations for ring-based, fully homomorphic public-
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key encryption schemes as follows:

1. ParamGen: takes the plaintext modulus p and a security parameter λ as inputs,

and generates a set of parameters: an error distribution χerr, a key distribution

χkey, ring dimension, and coefficient modulus.

2. KeyGen: takes the parameter set generated by ParamGen as inputs, and creates

a random public and secret key pair (pk, sk).

3. Encrypt: maps a message m from the plaintext space to a ciphertext C. This

ciphertext consists of three essential parts; a function of the message m, an

encryption mask, i.e., a randomized function of the public key pk and a noise

mask, i.e., a function of a uniformly sampled error e from χerr. A ciphertext

typically has the following form:

C = f1(m) + f2(pk) + f3(e)

with specially chosen functions f1, f2, f3.

4. Decrypt: is the inverse of Encrypt, therefore maps a ciphertext C to a plaintext

m by first removing the encryption mask and secondly removing the noise

mask. A decryption error occurs when there is an overflow caused by the

noise.

5. Eval: takes a list of ciphertexts C1, · · · , Ck and a circuit C that implements

the polynomial function f+,×(x1, · · · , xk) and computes C = C(C1, · · · , Ck).

The decryption of the output ciphertext gives us the output of the function

f over the respective plaintexts, i.e., Decrypt(C) = f+,×(m1, · · · ,mk) where

Ci = Encrypt(mi) for i = 1, · · · , k.
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Table 2.1: Comparison of the existing ciphertext noise/key management techniques.

Technique Performance Purpose Motivation
bootstrapping slow recrypts the message unlimited operations
relinearization moderate corrects the encryption mask required when there is no bootstrapping

modulus switching fast cuts a portion of the noise efficient when depth is low

From the five primitives Eval is the one where actual homomorphic evaluations

are computed. Here, we define two homomorphic operations: Add and Mult. Let

C1, C2 = Encrypt(m1),Encrypt(m2) and we have homomorphic properties which let

us perform additions and multiplications over ciphertexts:

Decrypt(Add(C1, C2)) = m1 +m2 (2.1)

Decrypt (Mult(C1, C2)) = m1 ×m2 (2.2)

Among these two operations, Mult corrupts the encryption mask, and causes a

significant noise growth. In order to fix these problems, FHE schemes make use

of different techniques. A summary of these methods are described in Table 2.1.

We provide a table of existing libraries for comparison in Table 2.2. For more

details on secure parameter selection for different security levels and known attacks

against FHE schemes, we refer users to the Homomorphic Encryption Standard

document [53].

In the following sections, we give more details on selected FHE schemes that we

used in our implementations.
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Table 2.2: Comparison of the existing FHE libraries.

FHE Library FHE Scheme Dependencies Bootstrapping Batching
HElib[15] BGV[9], CKKS[28] NTL[54], GMP Yes Yes

DHS DHS[20] NTL[54], GMP No Yes
SEAL[55] FV[14], CKKS[28] No No Yes
cuHE[56] FNTRU[24] CUDA No No

cuFHE[31] TFHE[25] CUDA Yes No

2.1 LTV Based DHS Scheme

This is a summary of the multi-key LTV-FHE scheme and a brief explanation on

the primitive functions that are proposed by López-Alt et al. Later in this section,

we give details of the DHS scheme based on a single key customized LTV.

In 2012 López-Alt et al. proposed a leveled multi-key FHE scheme (LTV) [17].

The scheme based on a variant of NTRU encryption scheme proposed by Stehlé and

Steinfeld [18]. The introduced scheme uses relinearization [8] technique to correct the

encryption mask and modulus switching [9] for noise control. Doröz et al. proposed

a single key version of LTV (DHS) in [20] with reduced key size technique. The

operations are performed in Rq = Zq[x]/〈xn + 1〉 where n is the polynomial degree

and q is the prime modulus. The scheme also defines an error distribution χ, which

is a truncated discrete Gaussian distribution, for sampling random polynomials that

are B-bounded. The term B-bounded means that the coefficients of the polynomial

are selected in range [−B,B] with χ distribution. The scheme consists of four

primitive functions, namely KeyGen, Encrypt, Decrypt and Eval. A brief detail of the

primitives is as follows:

KeyGen. Choose sequence of primes q0 > q1 > · · · > qd to use a different qi in each

level. A public and secret key pair is computed for each level: h(i) = 2g(i)(f (i))−1

and f (i) = 2u(i) + 1, where {g(i), u(i)} ∈ χ. Create evaluation keys for each level:
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ζ
(i)
τ (x) = h(i)s

(i)
τ + 2e

(i)
τ + 2τ (f (i−1))2, where {s(i)τ , e(i)τ } ∈ χ and τ = [0, blog qic].

Encrypt. To encrypt a bit b for the ith level we compute: c(i) = h(i)s + 2e + b,

where {s, e} ∈ χ.

Decrypt. In order to compute the decryption of a value for specific level i we

compute: m = c(i)f (i) (mod 2).

Eval. The gate level logic operations XOR and AND are done by computing the

addition and multiplication of the ciphertexts. In case of c
(i)
1 = Encrypt(b1) and

c
(i)
2 = Encrypt(b2); XOR is equal to c

(i)
1 + c

(i)
2 = Encrypt(b1 + b2) and, AND is equal

to c
(i)
1 · c

(i)
2 = Encrypt(b1 · b2). The multiplication creates a significant noise in

the ciphertext and to cope with that we apply Relinearization and modulus switch.

The Relinearization computes c̃(i)(x) from c̃(i−1)(x) extending c̃(i−1)(x) as a linear

combination of 1-bounded polynomials c̃(i−1)(x) =
∑

τ 2τ c̃
(i−1)
τ (x). Then, using the

evaluation keys it computes c̃(i)(x) =
∑

τ ζ
(i)
τ (x)c̃

(i−1)
τ (x) as the new ciphertext. The

formula is actually the evaluation of homomorphic product of c(i)(x) and (f (i))2.

Later, the modulus switch c̃(i)(x) = b qi
qi−1

c̃(i)(x)e2 decreases the noise by log (qi/qi−1)

bits by dividing and multiplying the new ciphertext with the previous and current

moduli, respectively. The operation b·e2 refers to rounding and matching the parity

bits.

2.1.1 DHS Customizations

We use a customized version of the LTV scheme that is previously proposed in [20]

by Doröz, Hu and Sunar (DHS). The code is written in C++ using NTL package

that is compiled with GMP library. The library contains some special customiza-

tions that improve the efficiency in running time and memory requirements. The

customizations of the DHS implementation are as follows:
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� We select a special mth cyclotomic polynomial Ψm(x) as our polynomial modu-

lus. The degree of the polynomial n is equal to the euler totient function of m,

i.e. ϕ(m). In each level the arithmetic is performed over Rqi = Zqi [x]/〈Ψm(x)〉,

where modulus qi is equal to pk−i. The value p is a prime number that cuts

(logp)-bits of noise and the value k is equal to the depth plus 1.

� Due to the special structure of the moduli pk−i, the evaluation keys in one

level can also be promoted to the next level via modular reduction. For any

level we can evaluate the evaluation key as ζ
(i)
τ (x) = ζ

(0)
τ (x) (mod qi). This

technique reduces the memory requirement significantly and makes it possible

to evaluate higher depth circuits.

� The specially selected cyclotomic polynomial Ψm(x) is used to batch multiple

message bits into the same polynomial for parallel evaluations as proposed by

Smart and Vercauteren [10, 57]. The polynomial Ψm(x) is factorized over F2

into equal degree polynomials Fi(x) which define the message slots in which

message bits are embedded using the Chinese Remainder Theorem. We can

batch ` = n/t number of messages, where t is the smallest integer that satisfies

m|(2t − 1).

� The DHS library can perform 5 main operations; KeyGen, Encryption,

Decryption, Modulus Switch and Relinearization. The most time

consuming operation is Relinearization, which is generally the bottleneck.

Therefore, the most critical operation for circuit evaluation is Relineariza-

tion. The other operations have negligible effect on the run time.
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2.1.2 Modified Relinearization

We modify previously implemented method of relinearization where it uses linear

combination of 1-bounded polynomials of the ciphertext c̃(i−1)(x) =
∑

τ 2τ c̃
(i−1)
τ (x)

. Previously, the number of evaluation key polynomials and the number of multipli-

cations in relinearization is dlog(q)e. For deep circuits with many levels the bitsize

dlog(q)e is two/three orders of magnitude which increase the memory requirements

and number of multiplications significantly. In order to achieve a speedup, we group

the bits of the ciphertext and use the linear combination of word (r-bits) sized

polynomials rather than binary polynomials. Setting the word size as w = 2r, we

implement the following changes:

� Compute the evaluation keys as: ζ
(i)
τ (x) = h(i)s

(i)
τ + 2e

(i)
τ + wτ (f (i−1))2, where

{s(i)τ , e(i)τ } ∈ χ and τ = [0, blog qi/rc].

� Divide the ciphertext into linear combinations of word sized polynomials:

c̃(i−1)(x) =
∑

τ w
τ c̃

(i−1)
τ (x).

� Compute the relinearization as: c̃(i)(x) =
∑

τ ζ
(i)
τ (x)c̃

(i−1)
τ (x)

The changes above decreases the memory requirement by r times. With this

change relinearization requires r times fewer multiplications. However this does not

yield r times speedup. This is due to the increase of the coefficient size of the

linear combination polynomials from 1 to r bits. Thus the cost of a multiplication

increases.

2.2 F-NTRU

In this section, we define the leveled FHE scheme F-NTRU that we employ in our

application. There are three main reasons behind why we choose F-NTRU in our
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implementations:

1. F-NTRU does not use evaluation or bootstrapping keys, and can achieve high

performance for low-depth circuits. Our construction has low-degree evalua-

tions; therefore we obviate the need for bootstrapping functionality.

2. This F-NTRU variant allows us to encode large integers directly, unlike fast

bootstrapped schemes which rely on encryptions at the bit level only.

3. Homomorphic evaluations in F-NTRU can be highly distributed across multiple

platforms, due to scheme’s core reliance on easily parallelizable matrix-vector

operations. In a scenario such as web search, a server can reasonably utilize a

distributed system large enough (using cheap GPUs, for example) to execute

each ciphertext multiplication at the computational cost of a single polynomial

multiplication.

F-NTRU Setup

A leveled FHE scheme [24] F-NTRU adopts the flattening technique proposed in

GSW to derive an NTRU based scheme that (akin to GSW) does not require eval-

uation keys or key switching. This scheme eliminates the decision small polynomial

ratio (DSPR) assumption but relies only on the standard R-LWE assumption. F-

NTRU uses wide key distributions, and hence is immune to the subfield lattice

attack [21]. The setup of F-NTRU is as follows:

� ParamGen: Contemporary parameters for the NTRU scheme are used in F-

NTRU with the exception that the “small prime” p is not required to be an

integer but rather the polynomial p = x− b where, here, b = 2. Given security

parameter λ, we choose an integer modulus q = q(λ) and a polynomial degree

n = n(λ) and perform our computations in the ring Zq [x] / (xn + 1). We also
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fix the Gaussian distributions χerr = χerr(λ) and χkey = χkey(λ) using the same

security parameter.

� KeyGen: We select g, f ′ ← χkey and compute the secret key f = pf ′+ 1 and

the public key h = pgf−1 .

� Encrypt: The encryption function from NTRU, Enc(m) = hs + pe + m

where the polynomial m =
∑

i αix
i ∈ Zb [x] / (xn + 1) encodes the integer

α =
∑n−1

i=0 αib
i, We must first define an operation called BitDecomp that splits

a ciphertext polynomial c(x), into ` b-ary polynomials and we show it as fol-

lows:

BitDecomp(c(x)) = 〈c̃`−1(x), · · · , c̃1(x), c̃0(x)〉

= ~̃c,

and given ` c̃i(x)s, computing c(x) is called the inverse bit decomposition,

BitDecomp−1.

BitDecomp−1(~̃c) =
`−1∑
i=0

2i · c̃i(x)

= c(x).

In this scheme we have a vector of NTRU encryptions, as our ciphertext of a

single encrypted message µ. The length of the ciphertext vector is ` = log q

and we start by placing an encryption of zero in every element of this vector.

~c = 〈Enc`−1(0),Enc`−2(0), . . . ,Enc0(0)〉

= 〈c`−1, c`−2, . . . , c0〉 ,
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where ci = Enci(0) = hsi + pei. By taking the transpose of ~c, we first place

each encryption of zero in a single row and then using bit decomposition over

each row, we build an `× ` matrix c = BitDecomp(~c>).

Finally, using this matrix, we encrypt the message µ by computing,

C = Flatten(I` · µ+ c)

where I` is the identity matrix of order `, Flatten is the special technique from

[22] which is an inverse bit decomposition, followed by a bit decomposition

operation:

Flatten(~̃c) = BitDecomp(BitDecomp−1)(~̃c).

� Decrypt: To decrypt a ciphertext, we take the first row of the matrix,

which is the vector ~̃c0, and apply BitDecomp−1 to form an NTRU ciphertext

BitDecomp−1(~̃c0) = c0. Once we compute the NTRU ciphertext, we apply the

decryption method from the NTRU scheme as bc0fe mod p and retrieve the

message µ.

� Eval: The homomorphic XOR and AND operations are matrix addition and

multiplication operations, followed by a Flatten operation as below.

C ′ = Flatten(C + C̃) , C ′ = Flatten(C · C̃).
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Chapter 3

Operations Related to Plaintext

Space

A proper representation of data is significant in homomorphic applications for both

communication and computation complexity. Throughout this work, we follow a

similar notation to previous works [10, 11, 12]. We define the messages with low-

ercase letters a ∈ Rp, batched or encoded plaintexts with Greek letters α ∈ Rp,

and the ciphertexts with uppercase letters A ∈ Rq where Rp = Zp[x]/Φm(x) and

Rq = Zq[x]/Φm(x). We use primes p and q (often referred as plaintext and ci-

phtertext moduli, respectively) in our schemes and Φm(x) is the mth cyclotomic

polynomial.

3.1 Binary Representation

When we have messages in the range
[
0, . . . , 2k−1 − 1

]
, we can use their k-bit binary

representation for encryption. In this case, we set plaintext modulus p = 2 and define

binary encryption as follows. Given a number a with BitDecomp(a) = 〈a0, . . . , ak−1〉,
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i.e., a =
∑k−1

i=0 2i · ai, we can encrypt each bit separately Ai = Encrypt(ai), and have

a vector of ciphertexts ~A = 〈A0, . . . , Ak−1〉.

Given two bits a1, a2 ∈ {0, 1} and their encryptions A1 and A2, two Eval primi-

tives are defined over modulus 2:

Decrypt(A1 + A2) ≡ a1 + a2 mod 2 (3.1)

Decrypt(A1 × A2) ≡ a1 × a2 mod 2 (3.2)

3.2 Word Representation

When we have messages in the range
[
0, · · · , 2k−1 − 1

]
, we can use a higher radix

plaintext modulus p ≥ 2k−1 and define word-wise encryption as follows. Given a

number a, we encrypt the whole word and have a single ciphertext A = Encrypt(a).

Given two numbers a1, a2 ∈ {0, · · · , p− 1} and their encryptions A1 and A2, two

Eval primitives are defined over modulus p:

Decrypt(A1 + A2) ≡ a1 + a2 mod p (3.3)

Decrypt(A1 × A2) ≡ a1 × a2 mod p (3.4)

3.3 Polynomial Encoding

Some schemes allow us to use the approach described in [34], where a small poly-

nomial is used as the plaintext modulus p. In this case, we choose the plaintext

modulus p = x − b with a small integer b. For instance, setting b = 2 we can
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represent a k-bit message a by using 2-based encoding as follows:

α(x) =
k−1∑
i=0

aix
i, where a =

k−1∑
i=0

ai2
i .

Upon decryption, message a can be retrieved by simply evaluating α(x) at x = 2,

i.e. α(2) = a.

Note that, provided the ring modulus exceeds L, this provides for carry-free

addition of L ciphertexts; i.e., if aj =
∑k−1

i=0 aj,i2
i is encoded as αj(x) =

∑k−1
i=0 aj,ix

i,

then the polynomial β(x) =
∑L

j=1 αj(x) satisfies β(2) =
∑

j aj.

Also note that, provided the ring dimension exceeds k · L+ L− 1, this provides

for products of L ciphertexts with no overflow; i.e., if aj =
∑k−1

i=0 aj,i2
i is encoded as

αj(x) =
∑k−1

i=0 aj,ix
i, then the polynomial β(x) =

∏L
j=1 αj(x) satisfies β(2) =

∏
j aj.

Finally, we should remark that in order to use b-based polynomial encoding, we

do not necessarily need to use a polynomial plaintext modulus. Instead, setting

p > L, we can compute addition of L ciphertexts without an overflow. Similarly,

setting p >
(
L
L/2

)
, we can compute a product of L ciphertexts. However, increasing

the magnitude of p has a significant negative effect on the noise growth, thus using

a small polynomial as our plaintext modulus gives us an advantage over choosing a

large modulus.

Example 1. For a1 = 6 and a2 = 5, we have the binary encodings α1(x) = x + x2

and α2(x) = 1 + x2, respectively. If we set p = (x− 2); then we recover the addition

β(x) = α1(x) + α2(x) = 1 + x+ 2x2

β(2) = 11

= 6 + 5
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naturally, as a part of the decryption. Otherwise, we need to set p > L = 2 in this

example with two ciphertexts, to prevent wrap-around over the plaintext coefficients.

Example 2. For the numbers a1 = 7 and a2 = 5, binary encodings α1(x) = 1+x+x2

and α2(x) = 1 + x2, respectively and p = (x− 2); we compute the multiplication as

β(x) = α1(x)× α2(x) = 1 + x+ 2x2 + x3 + x4

β(2) = 35

= 7× 5

naturally, as a part of the decryption. Otherwise, we need to set p >
(
L
L/2

)
= 2 in this

example with two ciphertexts, to prevent wrap-around over the plaintext coefficients.

3.4 Fixed Point Encoding

Given a rational number r = (a, b) where a is the integer part and b is the fractional

part both written base 2, and let t, k be the bit-length of integer and fractional

parts respectively. When we want to encrypt r, it is encoded into the following

polynomial:

ρ(x) =
k−1∑
i=0

bix
i +

k+t−1∑
i=k

aix
i

An ordered pair (C, k), where C = Encrypt(ρ) is viewed as an encryption of the

number r. The integer k specifies the location of the precision point. Adding or

subtracting two such ciphertexts requires us to align their precision points: for

(C1, k1) and (C2, k2) with k2 > k1, the sum is represented by (C1x
k2−k1 + C2, k2).

Likewise, multiplication of ciphertexts (C1, k1) and (C2, k2) yields (C1 ·C2, k1 + k2).
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Similarly, arithmetic between a ciphertext and a cleartext follow the same fixed

point rules.

For decoding the decrypted polynomial m(x) = Decrypt(C, k), we will compute

the output value as M = 2−km(2) which, by a slight abuse of notation, we identify

with Decrypt(C, k) below. By setting p = x−2 we directly evaluate m(2) at the end

of decryption, which includes reduction modulo x− 2. Therefore, the only required

operation after decryption is shifting the bits to the right with respect to the binary

precision point location.

3.5 Batching and SIMD Operations

Given two ciphertexts A,B that are encrypted under an FHE scheme, computing

A+B and A×B in Rq gives us encryptions of a+ b and a× b in Rp. We use [ · ]

to represent an encryption of a constant value.

From [10], we know that with specific parameters we can enable batching, a

technique that is used for concurrent evaluations in the message slots. For example,

when we choose the cyclotomic polynomial with m that divides pd−1 with smallest

such d, we have the factorization,

Φm(X) =
∏̀
i=1

Fi(X) mod p

where the Fi’s are ` = φ(m)/d irreducible polynomials of degree d. Then we employ

the isomorphism between the plaintext space and the ` copies of Fpd :

Rp
∼=

Fp [X]

F1

⊗ · · · ⊗ Fp [X]

F`

We define a vector with ` messages ~α = 〈α1, · · · , α`〉 with each αi belonging to the
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finite field Li = Fp[X]

Fi
. Applying inverse Chinese Remainder Theorem (CRT), we

obtain a single message in Rp. We write this as:

α = CRT−1(〈α1, · · · , α`〉)

with αi ∈ Li and α ∈ Rp. We say the plaintext has ` message slots and each message

is packed in a single slot. Additions and multiplications over CRT plaintexts will be

evaluated in each slot due to the natural isomorphism. For example given another

plaintext β = CRT−1(~β), we have

CRT(α + β) = 〈α1 + β1, · · · , α` + β`〉

CRT(α× β) = 〈α1 × β1, · · · , α` × β`〉

with αi ? βi ∈ Li and ? ∈ {+,×}. In some applications, we need to perform

computations across message slots, i.e., αi ? βj, where i 6= j. To this end, we

permute the message slots so that message αi and message βj align. Due to the

relation between the factors of the cyclotomic polynomial, the automorphism

κg : α(X) 7−→ α(xg) mod Φm(X)

for a g that is not a power of 2 in (Z/mZ)∗ with order ` affects just such a permu-

tation. To see why this works and for the underlying Galois field theory we refer

readers to [11].
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Chapter 4

Binary Arithmetic and Logic

Operations

Even though high-level computer programs deal with high-radix numbers, modern

computers are still based on the binary number system, i.e., 0–1 bits, boolean true–

false values or electronic on–off switches. One of the fundamental building blocks of

a central processing unit (CPU) in a computer is an arithmetic logic unit (ALU) that

is designed to perform arithmetic and bitwise logic operations on binary numbers.

Although an ALU can be designed to perform complex functions, the resulting higher

circuit complexity, cost, power consumption and larger size makes this impractical

in many cases. Consequently, ALUs are often limited to simple functions that can be

executed at very high speeds (i.e., very short propagation delays), and the external

processor circuitry is responsible for performing complex functions by orchestrating

a sequence of simpler ALU operations.

Many fully homomorphic encryption schemes define a plaintext space over mod-

ulo 2 by default. Especially efficient bootstrapping techniques require messages to

be single bits.
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4.1 Boolean Gates : AND, XOR, NOT

By setting plaintext modulus p = 2, we can compute boolean XOR and AND gates

naturally by evaluating homomorphic Add and Mult operations, respectively. The

truth tables for all boolean gates can be found in Appendix A.1.

Definition 1. Given binary representations a = 〈a0, . . . , ak−1〉 and b = 〈b0, . . . , bk−1〉,

and their encryptions with plaintext modulus p = 2 under an FHE scheme, A =

〈A0, . . . , Ak−1〉 and B = 〈B0, . . . , Bk−1〉, respectively; we define bitwise XOR “ ⊕ ”

as follows:

C = 〈A0 +B0, . . . , Ak−1 +Bk−1〉

Decrypt(C) = 〈a0 ⊕ b0, . . . , ak−1 ⊕ bk−1〉

The multiplicative depth of XOR evaluations is 0, because there is no ciphertext

multiplication, only ciphertext additions.

Definition 2. Given binary representations a = 〈a0, . . . , ak−1〉 and b = 〈b0, . . . , bk−1〉,

and their encryptions with plaintext modulus p = 2 under an FHE scheme, A =

〈A0, . . . , Ak−1〉 and B = 〈B0, . . . , Bk−1〉, respectively; we define bitwise AND “ ∧ ”

as follows:

C = 〈A0 ×B0, . . . , Ak−1 ×Bk−1〉

Decrypt(C) = 〈a0 ∧ b0, . . . , ak−1 ∧ bk−1〉

The multiplicative depth of bitwise AND evaluations is 1, because there is only

one level of multiplication for each ciphertext pair.

Definition 3. Given a bit list a = 〈a0, . . . , ak−1〉 and their encryptions with plaintext
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modulus p = 2 under an FHE scheme, A = 〈A0, . . . , Ak−1〉; we define a chain

AND product as follows:

C =
k−1∏
i=0

Ai

Decrypt(C) = 〈a0 ∧ . . . ∧ ak−1〉

The multiplicative depth of a chain of AND gates is log k, because we can

compute this product in a reverse binary tree structure, where each pair is multiplied

on the same level as can be seen in Figure 4.1.

 

A0 A1 

A0A1 

A2 A3 

A2A3 

A0A1A2A3 

Figure 4.1: Product of 4 ciphertexts in a reverse binary tree structure.

Another useful gate is NOT which flips a bit value. We define it as follows.

Definition 4. Given binary representation a ∈ {0, 1}, and its encryption A with

plaintext modulus p = 2 under an FHE scheme, we define the NOT gate as follows:

C = 1− A

Decrypt(C) = ¬a

The multiplicative depth of NOT evaluation is 0, because there is no ciphertext
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multiplication, only a scalar subtraction.

4.2 Binary Addition Circuit

Definition 5. Given binary representations a = 〈a0, . . . , ak−1〉 and b = 〈b0, . . . , bk−1〉,

and their encryptions with plaintext modulus p = 2 under an FHE scheme, A =

〈A0, . . . , Ak−1〉 and B = 〈B0, . . . , Bk−1〉, respectively; we define k-bit addition as

follows:

C = C+,k(A,B)

Decrypt(C) = 〈c0, . . . , ck〉

a+ b =
k∑
i=0

2ici

For our binary addition circuit we can use a carry-lookahead adder (CLA) such

as Kogge-Stone adder (KSA) that has a (1 + log k) depth.

4.3 Sideways Sum or Hamming Weight

Given k-bits A0, . . . , Ak−1, the integer sum
∑k−1

i=0 Ai is known as Hamming Weight.

Hamming Weight simply counts the number of ones in a bit stream. The base case

for Hamming Weight computation is the cases with 2 and 3 inputs, known as Half

Adder and Full Adder, respectively. These two circuits are shown in Figure 4.2 and

we give the definitions below.

Definition 6. Given two bits a0, a1 ∈ {0, 1}, and their encryptions with plaintext

modulus p = 2 under an FHE scheme, A0, A1; we define Half Adder circuit (HA) as
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A0 

A1 

A2 

F
A

 

S1 S0 

A0 

A1 

S1 S0 H
A

 

Figure 4.2: Half adder and full adder.

follows:

S1, S0 = CHA(A0, A1)

= A0 × A1, A0 + A1

Decrypt(S1, S0) = a0 ∧ a1, a0 ⊕ a1

Definition 7. Given three bits a0, a1, a2 ∈ {0, 1}, and their encryptions with plain-

text modulus p = 2 under an FHE scheme, A0, A1, A2; we define Full Adder circuit

(FA) as follows:

S1, S0 = CFA(A0, A1, A2)

= A0 × A1 + A0 × A2 + A1 × A2, A0 + A1 + A2

Decrypt(S1, S0) = (a0 ∧ a1)⊕ (a0 ∧ a2)⊕ (a1 ∧ a2) , a0 ⊕ a1 ⊕ a2

Both FA and HA have multiplicative depth one due to the same level ciphertext

multiplications. On the other hand, HA has one AND and one XOR gate in total and

FA has three AND and four XOR gates. Next, we define the Hamming Weight (HW)
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circuit for more than three inputs. In order to build this circuit for different sizes,

we make use of HA and FA blocks. An example for four input Hamming Weight

circuit can be seen in Figure 4.3.

 

A0 

A1 

A2 

A3 

S10 

A3 

S11 S1 S0 S21 

S11 

S20 S2 

FA 

HA HA 

Figure 4.3: Hamming weight computation with 4 inputs.

Definition 8. Given a bit list a = 〈a0, . . . , ak−1〉, and their encryptions with plain-

text modulus p = 2 under an FHE scheme, A = 〈A0, . . . , Ak−1〉; we define k-bit

sideways sum or Hamming weight as follows:

S = CHW,k(A)

Decrypt(S) = 〈s0, . . . , s`〉 , where ` = dlog (k + 1)e
k−1∑
i=0

ai =
∑̀
i=0

2isi

Note that, the rule of thumb is to reduce the cost by using the minimum amount

of adders, while maintaining the minimum depth. In Figure 4.3, every dotted line

represents the next level of computation in the circuit. As can be seen in the figure,

a HW circuit with 4 inputs has multiplicative depth three, due to serial FA and

HA evaluations. In general this circuit has log3/2 k multiplicative depth, since a

full adder reduces the number of inputs from 3 to 1, and a half adder reduces the
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number of inputs from 2 to 1 in each level.

4.4 Binary Multiplication Circuit

Definition 9. Given binary representations a = 〈a0, . . . , ak−1〉 and b = 〈b0, . . . , bk−1〉,

and their encryptions with plaintext modulus p = 2 under an FHE scheme, A =

〈A0, . . . , Ak−1〉 and B = 〈B0, . . . , Bk−1〉, respectively; we define k-bit multiplier as

follows:

C = C×,k(A,B)

Decrypt(C) = 〈c0, . . . , ck〉

a× b =
k∑
i=0

2ici

For multiplication we can build a Wallace tree multiplier [58] using full and half

adders and the circuit has at least
(
1 + log3/2 k/2

)
multiplicative depth.

4.5 Binary Equality Check

An equality check is a function that tests if two elements are equal to each other.

It takes two inputs a and b and returns a one bit output as in Equation 4.1. It is

a very fundamental block in ALU as it is very widely used in conditional branches,

e.g., beq – branch on equal MIPS instruction.

fEQ(a, b) =


1, if a = b;

0, otherwise.

(4.1)

Definition 10. Given binary representations a = 〈a0, . . . , ak−1〉 and b = 〈b0, . . . , bk−1〉,
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and their encryptions with plaintext modulus p = 2 under an FHE scheme, A =

〈A0, . . . , Ak−1〉 and B = 〈B0, . . . , Bk−1〉, respectively; we define k-bit equality check

circuit as follows:

C = CEQ,k(A,B) =
k−1∏
i=0

(Ai +Bi + 1)

Decrypt(C) = c =
k−1∏
i=0

¬(ai ⊕ bi)

The product, i.e. the chain of k AND gates may be evaluated in a binary tree

structure as in Figure 4.1 which creates a circuit with dlog ke multiplicative depth.

4.6 Binary Zero Test

Another useful function, zero test, checks if a given element is equal to zero. It takes

bit representation of input a and returns a one-bit output as in Equation 4.2. Note

that it is actually equivalent to evaluating the equality check function with inputs

a and 0, i.e., fEQ(a, 0).

fZT(a) =


1, if a = 0;

0, otherwise.

(4.2)

Definition 11. Given binary representation of a = 〈a0, . . . , ak−1〉, and its bit en-

cryptions with plaintext modulus p = 2 under an FHE scheme, A = 〈A0, . . . , Ak−1〉;
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we define k-bit zero test circuit as follows:

C = CZT,k(A)

=
k−1∏
i=0

(Ai + 1)

Decrypt(C) = c =
k−1∏
i=0

¬ai

The multiplicative depth of zero test circuit is dlog ke.

4.7 Binary Comparison

Similarly, binary comparison is a function which, given two elements, tests if given

two elements the first is smaller than the second. It takes two inputs a and b and

returns a one-bit output as in Equation 4.3. It is another fundamental ALU block

as it is also used in conditional branches, e.g., the slt – set on less than MIPS

instruction.

fLT(a, b) =


1, if a < b;

0, otherwise.

(4.3)

Definition 12. Given binary representations a = 〈a0, . . . , ak−1〉 and b = 〈b0, . . . , bk−1〉,

and their encryptions with plaintext modulus p = 2 under an FHE scheme, A =

〈A0, . . . , Ak−1〉 and B = 〈B0, . . . , Bk−1〉, respectively; we define k-bit less than cir-
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cuit as follows:

C = CLT,k(A,B)

=
k−1∑
i=0

(Ai + 1)×Bi ×
k−1∏
j=i+1

(Aj +Bj + 1)

Decrypt(C) = c =
k−1∏
i=0

¬ai ∧ bi ∧
k−1∏
j=i+1

¬(ai ⊕ bi)

The multiplicative depth of comparison circuit is dlog(k+1)e because the longest

multiplication chain, i.e., when i = 0 and the product is from j = 1, . . . , k − 1, has

k+1 terms and it can be evaluated in a binary tree structure as in Figure 4.1. Truth

tables for comparison and equality check can be found in Appendix A.2.

4.8 Multiplexer or Branching

Multiplexer is another block that is useful for conditional branching. Given a selec-

tion bit s and two statements a and b, it makes the decision based on the value of

s and assigns the output as in Equation (4.4).

fMUX(s, a, b) =


a, if s = 0

b, otherwise.

(4.4)

Definition 13. Given a select bit s ∈ {0, 1} and any representation of two numbers

a and b and their encryptions with plaintext modulus p = 2 under an FHE scheme,
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S, A and B, respectively; we define the multiplexer circuit as follows:

C = CMUX(S,A,B)

= (1− S)× A+ S ×B

Decrypt(C) = ¬s ∧ a⊕ s ∧ b

For instance, we can optimize this multiplexer circuit, by computing

C = (1− S)× A+ S ×B

= A+ (B − A)× S

Decrypt(C) = a⊕ [(b⊕ ¬a) ∧ s] .

With this optimization, we reduce the number of multiplications from two to one.
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Chapter 5

Word Arithmetic and Numerical

Approximations

With word size message domains we gain the ability to homomorphically multiply

and add integers via simple ciphertext multiplications and additions, respectively.

This significant gain comes at a severe price. We can no longer homomorphically

compute a zero test via direct evaluation of a standard boolean comparator circuit,

since the input bits are no longer accessible via our homomorphic evaluation opera-

tions. The same applies to more complex operations such as comparison evaluations,

thresholding and division. Division, in particular, requires heavy computations and

is challenging to evaluate in either bit or higher characteristic encryption. There-

fore, it is commonly avoided by selecting division free algorithms or by postponing

the computation to the client side after decryption whenever possible.

The focus of this chapter is finding low degree polynomials for functional rep-

resentations of key primitives using numerical methods. Most of these are approx-

imation algorithms where the precision and number of iterations determine the

propagation error. Due to the fact that our message space is limited with respect
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to the chosen FHE parameters, especially plaintext modulus, we will use the poly-

nomial encoding technique from Section 3.3 that will provide us a larger plaintext

space and allow us to achieve homomorphic fixed-point arithmetic. The key to this

approach is the underlying representation, and to this end we use the fixed-point

number representation from Section 3.4.

5.1 Multiplicative Inverse and Division

One of the most difficult, and currently open, questions is how to implement ho-

momorphic division efficiently. With bit-level encryption, one could implement a

parallel division circuit by unrolling the shift and subtract operations. However the

depth of this division circuit would be very high; the best we can do is to use a

costly carry-lookahead subtraction circuit and emulate a serial shift division algo-

rithm with depth complexity O(n log(n)). In the case of higher characteristic, we

run into the aforementioned comparison and sign-detection problems.

Our goal is to find a low degree polynomial say P (x) for the multiplicative inverse

function f(x) = x−1. If we have such a P (x), we also have a division polynomial

D(x, y) = xP (y) to compute the ratio x/y. We can construct such a polynomial

using three different methods: The first one gives the exact algebraic solution in the

ring Zp, the next two use numerical methods, therefore they output approximated

results depending on a fixed precision and preinitialized number of iterations.

5.1.1 Fermat’s Little Theorem

Our fist solution is to use Fermat’s Little Theorem to compute the multiplicative

inverse M−1 of a number M , in Zp. We have Mα ≡ Mβ mod p when α ≡ β

mod ϕ(p), and M and p are coprime. If we pick p a prime, then ϕ(p) = p − 1
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and we can have M−1 mod p = Mp−2 mod p for any nonzero1 M ∈ Zp. Thus, we

define our first polynomials as:

P (x) = xp−2 in Zp (5.1)

D(x, y) = xyp−2 in Zp (5.2)

Lemma 1 (Homomorphic evaluation of division using Fermat’s Little Theorem).

Let c1 = Encrypt(M1), c2 = Encrypt(M2) be two ciphertexts, where M1,M2 ∈ Zp

with p prime. If we evaluate c = D(c1, c2) = c1c
p−2
2 , we will have M = Decrypt(c)

where M = M1/M2 mod p.

As we have a polynomial of degree p− 1, this method is not very efficient due to

the fact that we have to compute a homomorphic exponentiation of multiplicative

depth O(log(p)). Unless p is small, without further customization, this approach

will not be very practical. Additionally note that this method does not provide a

multiplicative inverse over real numbers but rather in modular arithmetic. On the

bright side, the output is an exact arithmetic solution, i.e., there is no approximation,

no fractions or levels if precision to estimate. In the next approach we will find the

reciprocal, not simply modulo p, but as a real number using a root finding algorithm.

5.1.2 Newton’s Root Finding Method

For this approach, we are going to convert our problem into a root-finding problem

and use the Newton-Rhapson method to solve it. We define the function g(z) =

1/z − x that has a zero at z = 1/x. Thus, we need to find the zero of g(z) to

compute the multiplicative inverse function f(x). Newton-Rhapson iterations start

1Note that, in case M = 0, we will have P (0) = 0p−2 = 0 mod p.
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with an initial guess z0 and apply the following update rule:

zi+1 = zi −
g(zi)

g′(zi)
= 2zi − xz2i .

In Newton’s method, the choice of the initial value z0 is important for the success

rate of the algorithm. Unfortunately, in case of homomorphic evaluations where

the input is encrypted, we are forced to use a constant as the initial guess. The

iterations usually stop when an error criteria is met. However, during homomorphic

evaluations the iteration results will still be encrypted. Computing the error and

comparing it with the tolerance would require further homomorphic evaluations.

Thus, we fix the number of iterations in the initialization step according to the

input range and the desired precision. When the input range is [0, 2k] we set the

initial value to the mid-point, z0 = 21−k. The approximated values can be seen in

Figure 5.1 with a constant number of iterations η = 5. The resulting polynomials

for the same fixed parameters can be seen in Equation 5.3 and Equation 5.4.

P (x) = −6.84× 10−49x31 + 7.01× 10−46x30 + · · · − 0.48x+ 1 (5.3)

D(x, y) = −6.84× 10−49xy31 + 7.01× 10−46xy30 + · · · − 0.48xy + x (5.4)

Since this approximation technique uses rational numbers, we need to apply the

encoding technique from Section 3.3 to the polynomial coefficients. The arithmetic

is performed following the fixed-point rules.

Lemma 2 (Homomorphic evaluation of division using Newton-Rhapson root finding

algorithm). Let (c1, 0) = Encrypt(m1) and (c2, 0) = Encrypt(m2) be two ciphertexts

with m1,m2 binary encodings of two integers M1,M2 in the range [0, 2k]. Given

the polynomial D(x, y) of degree 2η−1 constructed from Newton-Rhapson iterations
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where η is the number of iterations, we have Decrypt(D((c1, 0), (c2, 0))) = M1/M2 .

The depth of this approximation depends on the number of iterations η, i.e., it

is independent of plaintext modulus p. Consider the equation zi+1 = 2zi − z2i x, the

depth of the circuit for P (x) comes from the product z2i x. Initially z0 is a constant,

hence the exponent of x in z1 becomes 1. In the next iterations, the exponent

of x will be 3, 7, . . .. Thus, after η iterations, the exponent will be 2η − 1 and the

circuit depth is η. This gives a great advantage over the approach based on Fermat’s

Little Theorem, when the inputs come from a small subset of the plaintext space

(assuming η < log(p)). Note that the algorithm is flexible in the sense that we can

keep iterating to increase the precision, or terminate early if less precision suffices for

the application. Once the iterations have been completed, the precision has changed

where the most significant log(k2
η
) bits of the result represent the desired reciprocal.

This means that any further computation requires other operands that will interact

with the reciprocal need to be shifted to align with the segment representing the

fractional part.

5.1.3 Goldschmidt’s Convergence Method

We briefly and informally describe how to find the inverse by convergence as fol-

lows: Assume we want to compute the reciprocal 1/M . The algorithm works by

multiplying both the numerator and denominator by a series of values R1, R2, . . . so

as to make the denominator converge to 1. Thus, at the end of the computation the

numerator yields the desired division result:

1

M
=

1

M
· R1

R1

· R2

R2

· · · Rη

Rη

, MR1 · · ·Rη → 1 .
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The simplified binomial approach starts by scaling M to a fraction in the unit

interval; i.e., to M/2k ∈ (1
2
, 1]. Let M̄ = M/2k. Then we choose z = 1− M̄ and set

Ri = 1 + z2
i−1

. This will yield the desired result.

1

M̄
=

1

M̄
· R1

R1

· R2

R2

· · · Rη

Rη

=
1

1− z
· R1

1 + z
· R2

1 + z2
· · · Rη

1 + z2η−1

=
R1 · · ·Rη

1− z2η ≈ 1

≈ R1 · · ·Rη

=

η∏
i=1

(
1 + z2

i
)

=
2η∑
i=1

zi−1 =
2η∑
i=1

(
1− M̄

)i−1
1

M
=

1

2k

2η∑
i=1

(
1− M̄

)i−1
Then this convergence method gives us the inverse polynomial in Equation (5.5)

and division polynomial in Equation (5.6):

P (x) = 2−k
2η−1∑
i=0

(1− x)i (5.5)

D(x, y) = 2−kx
2η−1∑
i=0

(1− y)i (5.6)

We can show that M · R1 ∈ [1 − 2−2, 1], M · R1R2 ∈ [1 − 2−4, 1], M · R1R2R3 ∈

[1− 2−8, 1], etc., with products M ·R1 · · ·Rη converging to one. The approximated

inverse values for a chosen η can be seen in Figure 5.1. The resulting polynomial

for the same parameters is given in Equation (5.7).

P (x) = 0.49x31 − 7.75x30 + · · · − 7.75x+ 0.5 (5.7)
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We can mimic the inversion by convergence algorithm to effect a homomorphic di-

Figure 5.1: Computing inverse function by using: Newton-Rhapson root finding
algorithm, with inputs M ∈ [0, 26], initial guess z0 = 2−5, number of iterations
η = 5 and Goldschmidt convergence method with inputs M ∈ [0, 26] and number of
factors η = 5.

vision operation. Our variable precision encoding associates the ordered pair (M,k)

to scaled value M̄ = M/2k.

Lemma 3 (Homomorphic evaluation of division using Goldschmidt’s convergence

method). Let (c1, 0) = Encrypt(m1) and (c2, k) = Encrypt(m2) be two ciphertexts

with m1,m2 binary encodings of two integers M1 ∈ [0, 2k],M2 ∈ [2k−1, 2k]. Given

the polynomial D constructed using Goldschmidt’s convergence method, D(x, y) of

degree 2η − 1 in y where η is the number of factors, we have

Decrypt(D((c1, 0), (c2, k))) = M1/M2 .

The polynomial P (x) has degree 2η− 1 in x requiring a circuit of depth η. As in

the previous approximation method, this is also independent of the plaintext mod-
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ulus p. Both algorithms suffer from the growth in the fractions; that is, if we do not

use an encoding technique, p should be chosen large enough to cover the magnitude

of the end result in order to avoid overflows. Even with small precision, after a few

iteration steps we end up with a large fraction. This is a generic problem in any

approximation-based algorithm where we have to use real numbers. This signifies

the importance of using the encoding technique in our approximation methods.2

5.2 Zero Test and Equality Check

We can now obtain a polynomial function that permits homomorphic evaluation

of a zero test. The test returns a zero or one depending on whether or not the

ciphertext is (or rounds to) an encryption of zero. Let this polynomial be Z(x).

Then we want to have Z(a) = 0 if a is equal to zero, Z(a) = 1 otherwise. We

can retrieve this functionality using Fermat’s Little Theorem by computing xp−1

mod p. This can be interpreted as multiplying the input x with its inverse xp−2

mod p or dividing a number by itself. In standard arithmetic division by zero is

undefined. However, in our approximation methods, multiplicative inverse of zero

is defined and to be precise it is 1 or 1/2 depending on the algorithm. Therefore,

we can create a zero test polynomial by using the division polynomial as follows:

Z(x) = D(x, x) = xP (x). The output is 0 or 1 with some error towards the ends of

the range, depending on the chosen inverse finding method. An approximation to

zero test is given in Figure 5.2.

The zero test may be used trivially to homomorphically perform an equality

check on two messages M1, M2 by computing Z(M1 −M2). So we can define an

equality check polynomial as E(x, y) = Z(x− y). Note that this is a much simpler

2We could use RNS method for algorithms that require large p, but that would time and space
complexity of the algorithm.

53



Figure 5.2: Checking if a value is zero by using the division polynomial with:
Newton-Rhapson root finding algorithm, with inputs M ∈ [0, 26], initial guess
z0 = 2−5, number of iterations η = 5 and Goldschmidt convergence method with
inputs M ∈ [0, 26] and number of factors η = 5.

operation than magnitude comparison which we will address later in Section 5.3.

Lemma 4 (Zero Test and Equality Check). Let (c, 0) = Encrypt(m) be a cipher-

text with m as the binary encoding of an integer M ∈ [0, 2k]. Then computing

Decrypt(Z((c, 0))) will gives us ≈ 1 if m 6= 0 and 0 otherwise.

The degree of Z(x) is equal to the degree of division polynomial D(x, y). Thus,

the complexity of a zero test depends on the chosen inverse polynomial.

5.3 Comparison and Thresholding

Since a truly homomorphic computation of a function f(x1, . . . , xn) can reveal no

information about the operands x1, . . . , xn, we cannot expect fast implementations

of any sort of branching in our computation: all computational paths must be
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indistinguishable to the party carrying out the computation. Yet, we must find

efficiencies wherever we can.

Using the zero test we can compute thresholding operations easily albeit ineffi-

ciently. Assume we want to homomorphically evaluate the check b ≤ t for some data

b and threshold t ∈ Zp. As earlier we are given the encryption of b while t is pre-

sumed available as cleartext and again we are seeking a polynomial to represent this

operation. Let it be T (x, t), then we want T (a, t) = 0 when a < t whereas T (a, t) = 1

otherwise. We can devise this algorithm by testing the equality over the range of

integers i = 0, . . . , t− 1 and aggregate3 the result as T (x, t) =
∑

i∈[t] (ω − Z(x− i))

where Z(x) is a zero test polynomial as described in the previous section. Clearly,

we can instead compute the complement if t is closer to p than to 0.

If we compute it using Fermat’s Little Theorem, although it is not efficient,

this presents a viable and exact technique for evaluating thresholds. A significant

positive aspect of the formulation is that the multiplicative depth of the threshold

computation is independent of the threshold constant t and is the same as the

depth of an equality check: O(log(p)). On the other hand, the summation becomes

computationally expensive – with complexity O(t log(p)) – as p and the range of

t grow. Lookup tables and selection of special moduli can be used to increase the

efficiency.

We return to the instantiation with an integer modulus p for a moment. Unless

p is small without further customization this approach will not be very practical. To

gain some economy over the prime p case, we may chose p to be highly composite

p =
∏

i∈[k] pi in such a way that the zero test simply becomes cϕ(p) = c
∏
ϕ(pi).

Then the multiplicative depth complexity of a zero test (or comparison) becomes∑
i∈[k] log(pi − 1).

3Since the zero tests are exclusive, we may aggregate the result using a standard homomorphic
addition operation instead of a boolean OR.
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Approximation Methods

In order to retrieve a threshold polynomial T (x), we will make use of the Unit Step

Function, i.e H(x) = 0 when x < 0 and H(x) = 1 when x > 0, then we can just

compute T (x) = H(x − t) where t is a fixed cleartext threshold. Furthermore, the

same polynomial can be used to compare two encrypted values a, b by computing

H(a− b). We propose two different methods to create such a step function.

For the first approach we will make use of logistic function and the equation

is given as follows, H(x) = lim
k 7→∞

1
1+e−2kx u (ex)2k

(
1 + (ex)2k

)−1
. By limiting k to

a small constant, we can get a smooth approximation and we can in turn use a

Taylor Series approximation for the exponential function ex u
∑∞

i=1
xi

i!
. We can

also use one of the inverse functions P that we found in Section 5.1 to handle the

denominator so that H(x) becomes: H(x) u
(∑∞

i=1
xi

i!

)2κ
P

(
1 +

(∑∞
i=1

xi

i!

)2κ)
.

Even though we have obtained a threshold polynomial using this approach, it is

computationally expensive considering the input to the inverse function has al-

ready a large exponent. Therefore, we use another approach: approximating a

square wave using sine waves. The standard square wave function S(x) can be

approximated as S(x) u
∑∞

i=1
sin((2i−1)x)

(2i−1) For sinus values we can use the approx-

imation sin(x) u
∑∞

j=1
(−1)j−1x2j−1

(2j−1)! . Embedding this in the previous equation we

have S(x) u
∑∞

j=1

∑∞
i=1

(−1)j−1(2i−1)2j−2

(2j−1)! x2j−1 .

The output of the square wave function is in the range of [−0.8, 0.8] in a period,

thus we compute H(x) as: S(x)+0.8
1.6

. The degree of H(x) depends on the upper limit

for j. If we define i ∈ [1, α] and j ∈ [1, β], then the largest exponent of input x (i.e.,

the degree of H) becomes 2β − 1. Consequently, the depth of the approximation

algorithm becomes dlog (2β − 1)e = dlog βe+ 1. For different values of α and β the

unit step approximation can be seen in Figure 5.3.

To make use of this approximation algorithm, we also need to associate message
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Figure 5.3: Unit step function H(x) for various approximation degrees.

space elements to discrete samples of the input range [−1, 1] of H(x). Assume we

handle elements of precision ` bits and we want to find H(b− t), where b, t ∈ [0, 2`).

Then we have an input x = b− t ∈
(
−2`, 2`

)
and we have to normalize it by a factor

of ω = 2` so that the normalized value lies in the input range: i.e. x/ω ∈ (−1, 1). As

in the previous approximation methods, we need to represent ` fractional bits with

a binary point placed right after leaving a single bit for the integer part. During

evaluation we need to keep track of the precision point which moves to the left

with each multiplication by x. Once the evaluation is completed, the approximation

result resides in the most significant precision bit(s) ready to be used for subsequent

evaluation and the maximum number of fraction bits can be found in the term with

the highest exponent, ω2β−1.

5.4 Square Root

We can find an approximation to the square root of a number by using a root finding

algorithm. As before, we seek a polynomial, R(x) say, such that R(b) =
√
b. The
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function f(y) = y2−b has a root at y =
√
b, hence if we can approximate the root of

f(y), we obtain an estimate for the square root of b. If we use Newton’s Root Finding

method as in Section 5.1, we can iterate through the values yi+1 = yi − f(yi)
f ′(yi)

=

1
2

(
yi + b

yi

)
with an initial guess of y0. For the inverse computation b

yi
, we can use

the inverse approximation polynomial that we retrieved before, now writing yi+1 =

1
2

(yi + bP (yi)). In order to handle fractions, again we need to consider a hypothetical

precision point. The depth of the algorithm depends on the number of iterations,

κ say; then total depth will be κ times the depth of the inverse computation P (x).

Thus this is a much more costly operation relative to inversion.

5.5 Comparison with Binary Artihmetic

In this section, we review of all the methods proposed above, with comparison to

their binary equivalents. These operations include addition (+), multiplication (∗),

division (/), equality check (=) and comparison (<).

For binary addition we can use a parallel prefix adder such as Kogge-Stone that

has a (1 + log k) depth where k is the bit size of the inputs. For multiplication we can

build a Wallace tree multiplier using full and half adders and the circuit has at least(
1 + log3/2 k/2

)
multiplicative depth. Both addition and multiplication are trivial

operations in the word domain. Ciphertext addition does not increase the noise

significantly, thus it does not have an effect on the circuit depth. Multiplication

increases the circuit depth by adding only one level. Division is by far the most

costly of the four arithmetical operations on binary domains. In order to divide a

2k bit number by a k bit divisor, we can build a binary division circuit that involves

k cycles of conditional k-bit subtractions. For subtraction, we can use the parallel

prefix adders with a delay of 1 + log k. The condition statement adds one level in
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each step, thus resulting in an overall circuit depth of k (2 + log k). For the last two

operations we use simple boolean circuits from Chapter 4, where the equality check

has dlog(k)e and the less than check has dlog(k + 1)e depth.

For 32-bit integer inputs, the parameters that are used in F-NTRU setup can be

seen in Table 5.1.

Binary Wordwise
Parameters + ∗ = < / + ∗ = < /

p 2 2 2 2 2 x− 2 x− 2 x− 2 x− 2 x− 2
d 6 10 5 6 96 − 1 6 5 5
log q 23 24 23 23 28 190 190 190 190 190
n 8190 8190 8190 8190 131070 4096 4096 4096 4096 4096

Table 5.1: F-NTRU parameters for bit-wise and word-wise encryption. Key to
parameters: p: plaintext modulus; d: multiplicative depth of the circuit; log q: bit
size of the coefficient modulus; n: degree of the polynomial ring; δ: Hermite factor
with respect to q and n.

5.6 Implementation Results

We implemented the proposed division, zero test, thresholding and comparison al-

gorithms using the F-NTRU scheme using Shoup’s NTL library version 9.6.3 [54]

compiled with the GMP 6.1 package. Our simulations are performed on an Intel(R)

Xeon(R) server with CPU E5-2637 v2 @ 3.50GHz running Fedora release 21 with

4 cores and 8 threads. Note that the proposed homomorphic algebraic operations

in this chapter are generic, i.e., they can be implemented using any FHE scheme

that supports word size encryption. For parameter selection, we followed the secu-

rity analysis from [24] and utilized 80-bit security. We used modulus polynomial

Φ(x) = xn + 1 with n = 4192 and our coefficient modulus size is ` = log q = 190.

For the details of noise and security analysis and parameter selection, we refer the

reader to [24].
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For the first test, we evaluated word-wise addition and multiplications. A single

32-bit addition takes 0.25 milliseconds and a single 32-bit multiplication runs around

33 milliseconds. Note that when we evaluate multiplication, we take advantage of the

one-sided multiplication of the F-NTRU scheme. Secondly, we evaluated the division

circuits for the two proposed methods. For Newton’s method with η = 5 and inputs

in the range [0, 64], we used the polynomial from Equation (5.4). In this test, we

have a total execution time of 1.05 seconds. Next, we evaluated Goldschmidt’s

division by convergence algorithm for η = 5 and inputs in the range [0, 64], we

used the polynomial from Equation (5.6). In this test, we have a similar total

execution time of 1.03 seconds, but the error rate for Newton’s method is smaller.

We also evaluated the equality checks (and/or zero check) using both Fermat’s Little

Theorem and division by Newton’s root finding method. For Fermat’s method, we

set plaintext modulus to two different values p = 17 and p = 257. For Newton’s

method, we used the same division polynomial. For the last test, we computed a

comparison with inputs in the range [0, 32] and α = 5, β = 16. Total execution

times can be seen in Table 5.2.

Operation Algorithm (d, log(q), n) Total Time

Addition - (0, 190, 4096) 0.25 ms

Multiplication - (1, 190, 4096) 33 ms

Division
Newton-Rhapson (5, 190, 4096) 1.05 sec

Goldschmidt (5, 190, 4096) 1.03 sec

Equality Check
Newton-Rhapson (5, 190, 4096) 1.13 sec

Goldschmidt (5, 190, 4096) 1.11 sec

Table 5.2: Parameters and timings for: Division first using Newton-Rhapson root
finding, then Goldschmidt convergence algorithm for encoded data using p = x− 2;
Equality Check using Fermat’s Little Theorem with a single message no encoding
with p = 17 and p = 257; then using Newton-Rhapson root finding and Goldschmidt
convergence algorithm for encoded data using p = x−2; Comparison using Square
Wave approximation for encoded data using p = x− 2.
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Chapter 6

Sorting

Sorting is one of the most natural and crucial tasks in computing. Numerous sort-

ing algorithms have been proposed in the literature [42]. These algorithms have

been heavily investigated and characterized according to their time and space re-

quirements, as well as to the degree of their suitability for parallelization. As far as

homomorphic evaluation is concerned we have another requirement. Since most of

the FHE and SWHE schemes are designed to evaluate circuits, and do not scale well

when the multiplicative depth of the circuit is high, we need to add another metric

— namely multiplicative circuit depth — in our selection of a homomorphic sorting

scheme. For this we need to first convert the serial sorting algorithm into a circuit

by unrolling loops and eliminating conditional assignments by arithmetization. In

this chapter, the term “circuit depth” is used in lieu of multiplicative depth of the

circuit and it should not be confused with “comparison depth”, i.e. depth of the

circuit measured in terms of comparative levels, which is used in the analysis of

classical sorting algorithms in the literature.

A sorting network is a circuit which consists of comparators and swapping op-

erations. The difference between classical comparison-based sorting algorithms and
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sorting networks is that all operations are set in advance, which means that there

is no data dependency in the flow of the algorithm steps in sorting networks. Since

we are trying to sort encrypted inputs, we are, in a way, blind in each step of

the algorithm. As a result, even though data dependent algorithms may be faster

and more efficient over raw data, being independent from the input makes sorting

networks the only candidates for FHE sorting. While there are some algorithms

specifically designed as a sorting network, some classical sorting algorithms can also

be represented as a network as FHE properties require. Hence we will go over some

well known algorithms and give the depth complexity of the corresponding sorting

networks.

Homomorphic sorting is an operation that blindly sorts a given set of encrypted

numbers without decrypting them (thus, there is no need for the secret key). In

this chapter, we propose two new algorithms specifically designed for the homomor-

phic sorting operation, and explain how they evolve from classical sorting networks:

direct and greedy sort algorithms. Later, we define another efficient, and scalable

method for homomorphic sorting of numbers: the polynomial rank sort algorithm.

To put the new algorithms in a comparative perspective, we provide an extensive

survey of classical sorting algorithms and networks that are not directly suitable

for homomorphic computations. We also include, in our discussions, that the new

algorithm is superior in terms of multiplicative depth and the number of multiplica-

tions, when compared with all other algorithms. When batched implementation is

used, the number of comparisons is reduced from O(N2) to a constant multiple of N

provided that the number of slots is larger than or equal to the number of elements

in the set. Our software implementation results confirm that the new algorithm is

several orders of magnitude faster than many methods in the literature. Also, the

polynomial sort algorithm scales better than the fastest algorithm in the literature
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to the best our knowledge although for small sets the execution times are compara-

ble. The proposed algorithm is amenable to parallel implementation as most time

consuming operations in the algorithm can naturally be performed concurrently.

6.1 Problem Definition

Homomorphic Sorting Problem: Given an unordered set of encrypted elements

{A0, A1, · · · , AN−1}, where Ai is an encryption of plaintext ai for each i, we want

to find an ordered set of encrypted elements

{B0, B1 · · · , BN−1}, provided that the decrypted list {b0, · · · , bN−1} is a permutation

of {a0, · · · , aN−1} with nondecreasing order, i.e. b0 ≤ b1 ≤ · · · ≤ bN−1.

Here we define a crucial building block that is used in most sorting methods;

Compare and Swap (CAS). Given a pair (a, b), a CAS block compares the values

and reorders them so that the smaller element in the pair always comes first as in

Equation 6.1.

fCAS (a, b) =


(a, b) , if a < b

(b, a) , otherwise.

(6.1)

We can define a homomorphic evaluation circuit for CAS by using a less than com-

parator and sending its output to a multiplexer as the selection bit. This would

give us the maximum of the two in the pair. If we use the same select bit, but with

swapped elements this would give us the minimum of the two in the pair. Therefore,

we define CCAS as follows:

Definition 14. Given binary representation of two numbers a and b and their en-

cryptions with plaintext modulus p = 2 under an FHE scheme, A and B, respectively;
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we define the compare and swap circuit as follows:

(C1, C2) = CCAS(A,B)

= (CMUX(S,B,A), CMUX(S,A,B)) , where S = CLT(A,B)

(Decrypt(C1),Decrypt(C2)) = (¬s ∧ b)⊕ (s ∧ a) , (¬s ∧ a)⊕ (s ∧ b) , where s = (a < b),

and ¬s = (a ≥ b)

For the rest of this chapter, we use the symbol l to represent encrypted less than

circuit, and � to represent homomorphic equality check circuit for better readability,

i.e. AlB = CLT(A,B) and A � B = CEQ(A,B).

6.2 Known Sorting Algorithms

6.2.1 Bubble Sort

The Bubble Sort algorithm is one of the simplest sorting techniques that permits

a rather straightforward implementation using only primitive comparison and swap

operations. Chatterjee et al. [39] design homomorphic conditional swap circuits to

facilitate homomorphic evaluation of the Bubble Sort algorithm. Very briefly, the

sorting algorithm works by making passes over the array of numbers. In each pass

the elements are pairwise compared and swapped to move the smaller element to the

left (in case of a horizontal array). The average and worst case performance for an

array of N elements are the same: O(N2). Since we have no way of knowing when

the array is sorted for a possible early termination during homomorphic evaluation,

we need to make N − 1 passes over the array always arriving at the worst case

complexity. Since one more element in the rightmost part of the array is sorted in

every pass, the number of elements to be compared decreases by one in the next
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pass. Thus, overall we will have [(N−1)+(N−2)+. . .+1] = (N2−N)/2 CAS blocks

and the depth of the Bubble Sort circuit will be [(N2−N)/2]dCAS. Considering `-bit

wide array elements, we have dBS = O(N2 log(`)) for the depth of the homomorphic

Bubble Sort algorithm. We can gain some economy by not waiting to start the next

pass until a pass is finished. We can overlap the passes which creates a network

version of Bubble Sort, known as Odd Even Sort, detailed in the next section. 1

6.2.2 Odd-Even Sort

A trellis shaped circuit arrangement of Bubble Sort is known as Odd-Even Sort.

The circuit admits N inputs and computes the N sorted output values after N

passes. In the first pass, a zero-indexed array being adopted, every even indexed

element is compared and swapped with its right neighbor. In the second pass, every

odd indexed element is compared and swapped with its right neighbor. Considering

these two steps as a round, the identical operations are applied in each round. The

total number of comparisons is N−1 in each round, there are N passes which means

N/2 rounds and so overall, there are N(N − 1)/2 comparators. And the depth of

the circuit is NdCAS. Therefore dOES = O(N log(`)). For more details about this

sorting network, we refer readers to [42].

6.2.3 Insertion Sort

Insertion sort is a simple algorithm that iteratively builds a sorted array from an

unsorted one. The sorted array initially holds only the first element of the unsorted

array. Then the remaining elements of the unsorted array are added one by one to

the sorted array by comparing the element from right to left with the elements in

1Note that in their implementation Chatterjee et al. [39] perform the comparison using a carry
propagate adder based subtraction circuit, resulting in a circuit depth of (N2−N)(`+1)/2. While
the computational complexity of the scheme is low, the O(N2) circuit depth is prohibitive.
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the sorted array until an element smaller is encountered. The new element is then

inserted into the sorted array next to the first smaller element. The average case

and the worst case complexity of the algorithm is O(N2) while the best case is only

O(N). When considered as a circuit for homomorphic evaluation we need to run

the algorithm with the worst case complexity, with no possible early termination as

in the case of Bubble Sort. As we build up the sorted array one by one, the number

of comparisons and swap operations increment by one for the next element. We

obtain a circuit depth of [1 + 2 + . . .+N − 1]dCAS = (N2 −N)/(2)dCAS. Therefore,

we have dINS = O(N2 log(`)). This circuit can be used in a more efficient way by

overlapping some comparisons, similar to Bubble Sort. Consequently we can see

that, Insertion Sort and Bubble Sort end up with the same construction, when they

are formulated as sorting networks.

In [39], Chatterjee et al. rely on the fact that after the imperfect application

of Bubble Sort the array is nearly sorted. Thus Insertion Sort performs nearly in

linear time. But even if the array is nearly sorted, the algorithm should run as in

the worst case, since we do not have any knowledge of the misplaced elements.

6.2.4 Merge Sort

Merge Sort is an asymptotically faster algorithm and allows early termination in

normal execution, which reduces its complexity. The algorithm is recursively applied

by partitioning arrays into smaller ones. In the innermost recursion, arrays of two

elements are sorted, where only one comparison is needed in one sub-array. In the

merging step, which combines two individually sorted arrays into a single sorted

array, at most three comparisons are applied in each partition. This eventually

leads to O(N log(N)) comparisons in the worst case. But in our case, the merging

step requires many more comparisons, due to algorithm’s input dependent nature
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and our lack of input knowledge. For instance, in the classic Merge Sort, to merge

two sub-arrays each of size two, we follow one of the paths until all the elements are

placed in the sorted sub-array of size four. Let our output array be B in a merge

step. Then, if the Boolean expression (A0 l A1) returns 1; we can conclude that

B0 = A0, otherwise B0 = A1. But in homomorphic sorting, we cannot follow any

specific path as the output of each AilAj block is also encrypted. Hence, we need

to consider every single possible outcome of all comparison operations, i.e. every

single path, which eventually necessitates comparing every possible pair.

In summary, we need to perform (N2−N)/2 comparisons to sort an array of N

elements. On the other hand, since there is no swapping, i.e. no data dependency,

during the execution of a single merge step, we can compute all of the comparisons in

parallel at the beginning of each merge step. Consequently, applying all comparison

operations before every merge step simply alters the algorithm and we end up with

a totally different scheme from the classical Merge Sort algorithm. Inspired from

the analysis of Merge Sort, we introduced two new sorting circuits, with the same

number of comparators O(N2) and the total comparison depth of O(1).

6.3 Proposed Sorting Algorithms

Given the inadequacies of existing sorting algorithms in permitting shallow circuit

evaluation, we develop three new sorting algorithms, Greedy Sort, Direct Sort and

Polynomial Rank Sort, optimized for this purpose.

6.3.1 Greedy Sort

We propose the Greedy Sort algorithm as an alternative method to classical sorting

algorithms, due to its low circuit depth. However, due to the algorithm’s exhaus-

67



tive nature in terms of number of comparisons, the method is not efficient when

implemented without optimizations.

Greedy Sort works by performing every possible pairwise comparison operations

at once for a given input set of elements. In order to find the minimum element b0,

one needs to compare each ai to every other element in the set. If it is smaller than

all ajs where i 6= j, then we can conclude it is the smallest element and set b0 = ai.

Similarly, in order to find the next smallest element b1, we need to compare every

ai to every other element and if it is smaller than all but one, then we know that it

is the second minimum and set b1 = ai. We can follow the same idea until the last

element of the sorted array bn−1, the maximum element, is found.

We can express the conditions yielding the minimum element explicitly as in

Algorithm 1, and the test conditions for finding the second smallest element is

given in Algorithm 2. The if-else statements give us an exact mutually exclusive

partitioning in the output assignments, hence we can use XOR (⊕) gates to combine

each statement.

Algorithm 1 Finding the minimum element in a set.

1: if (a0 < a1) ∧ (a0 < a2) ∧ . . . ∧ (a0 < aN−1) then
2: b0 = a0
3: else if ¬(a0 < a1) ∧ (a1 < a2) ∧ . . . ∧ (a1 < aN−1) then
4: b0 = a1
5: else if . . . then

...
6:

7: else if ¬(a0 < a1) ∧ ¬(a1 < a2) ∧ . . . ∧ ¬(a1 < aN−1) then
8: b0 = aN−1
9: end if

This method requires comparison of every pair in the set, thus the initial step

is to build a matrix M that holds the comparison results. Entries of this matrix,

denoted as Mi,j, are evaluated using the binary circuit given in Equation 4.3 such
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Algorithm 2 Finding the second minimum element in a set.

1: if [(a0 < a1) ∧ . . . ∧ ¬(a0 < aN−1)] ∨ . . . ∨ [¬(a0 < a1) ∧ . . . ∧ (a0 < aN−1)]
then

2: b1 = a0
3: else if [(a1 < a0) ∧ . . . ∧ ¬(a1 < aN−1)] ∨ . . . ∨ [¬(a1 < a0) ∧ . . . ∧ (a1 <
aN−1)] then

4: b1 = a1
5: else if . . . then

...
6:

7: end if

that Mi,j = Ai l Aj. Here, note that Mi,j = 1 −Mj,i (or Mj,i = Mi,j ⊕ 1 ) and

Mi,i = 0 for every i and j. Therefore Mi,j is only evaluated for i < j. Given the

comparison matrix, the ordered elements are computed as follows:

Br = θr,0A0 + · · ·+ θr,N−1AN−1 =
N−1∑
i=0

θr,iAi,

where

θr,i =
N−r−1∑
k1=0
k1 6=i

Mk1,i · · ·
N−1∑

kr=kr−1+1
kr 6=i

Mkr,i

N−1∏
j=0
j 6=i

j 6=k1,··· ,kr

Mi,j . (6.2)

The θr,i values can be seen as the binary place indicators or a decision flag that

indicates whether the input Ai will be mapped to output Br. In other words, if the

input Ai has the rank r, which is the position of Ai in the sorted array from the

left, θr,i is an encryption of 1 (naturally it is the encryption of 0, otherwise). This

requires the computation of all θr,i for i, r = 0, · · · , N − 1, thus making the method

inefficient. The Greedy Sort example can be found in Appendix A.3.
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6.3.2 Direct Sort

The first step is constructing the same comparison matrix M as in Greedy Sort.

Then, it computes the ranks by performing a column-wise summation of the entries

of M . Since the elements of M are bits, the summation result gives the Hamming

weights of the columns of M . The summation operation is implemented using a Wal-

lace Tree of depth O(log3/2N). The challenge is that the rank values are encrypted,

which requires an additional homomorphic equality check operation to place the ele-

ments in their correct order in the sorted array. This equality check is performed on

rank values which are logN bit numbers, hence requires a homomorphic evaluation

of a circuit of depth log logN . The steps of the method are given in Algorithm 3,

and an example can be found in Appendix A.4.

Algorithm 3 Direct Sort

Require: A, N
Ensure: B

for all Ai ∈ A do
for all j > i do
Mij ← Ai l Aj
Mji ← 1−Mij

end for
end for
M ← Transpose (M)
for all i do
Si ← HammingWeight (Mi)

end for
for all i do
Bi ← 0
for all j do
Bi ← Bi + (Sj � i) · Aj

end for
end for
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6.3.3 Polynomial Rank Sort

In this new method, the fundamental idea is to represent the rank of an array ele-

ment as the degree of a monomial — which we call a rank monomial — and position

the input element in the coefficient of the monomial.

Definition. Given an input unsorted array with N elements {a0, a1, · · · , aN−1}, let

ri be the rank of ai in the array, we denote ρi(x) = xri the rank monomial of integer

ai.

Proposition. If we can find the rank monomials corresponding to the array ele-

ments {a0, a1, · · · , aN−1}, namely {xr0 , xr1 , · · · , xrN−1}, then we can obtain an out-

put polynomial, where elements of the input array are its coefficients whose weigths

match the ranks of the elements:

b(x) =
N−1∑
i=0

aiρi(x) =
N−1∑
i=0

aix
ri

= b0 + b1x+ · · ·+ bN−1x
N−1

with b0 ≤ b1 ≤ · · · ≤ bN−1.

Proof Sketch. To see why this works, note that the ranks of the inputs are per-

mutations of natural numbers in the range [0, N − 1]. Thus, there is a bijective

mapping in between the i and ri values. The same mapping gives us the ordered

permutation of the input elements, i.e. bri = ai. This bijection ensures the exclusive

positions of each input element in the output polynomial.

Challenges. Implementing this method on private data has two challenges: i)
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finding the ranks of encrypted inputs and ii) placing the encrypted rank values in

the exponent. In the following section, we propose a solution to this problem.

Finding Rank Monomials

In order to show how our algorithm works, first we assume that the inputs are not

encrypted. After demonstrating the steps of the method, we show how to implement

it for encrypted data, i.e. by using only homomorphic operations.

We shortly describe the method as follows: For an N -element input set, we

start by finding the zero-based rankings in each 2-subset, which is an element of

pairwise combinations of the input set; e.g., {ai, aj}, where i, j ∈ [0, N − 1] and

i 6= j. As it contains only two elements, the ranks of its elements are either 0 or 1.

Then, we construct surrogate monomials using these ranks and merge the subsets

by performing multiplication of the surrogate polynomials. Consequently, the result

gives us the rank monomial of each input element.

Initially, we consider the simplest case: an input set with only two elements

{a, b}. We say the ranks of a and b are ra and rb, respectively with the rank

monomials defined as

ρa(x) = xra and ρb(x) = xrb .

If, for instance, the input elements have the relation a < b, then we can write ra = 0

and rb = 1, and therefore ρa = 1, ρb = x, respectively.

Now, we include a third element c in the input set. In this case, the first step is

to find the ranks in each 2-subset. Namely, we consider all pairwise combinations of
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the input set; {a, b}, {a, c} and {b, c} and define the following surrogate monomials

ρab(x) = xrab ρba(x) = xrba

ρac(x) = xrac ρca(x) = xrca

ρbc(x) = xrbc ρcb(x) = xrcb

where rij is the rank of input i in the 2-subset {i, j} and ρij is the rank monomial

of the same element in the same subset. The next step is merging two subsets to

find the final rank monomials of all elements. Multiplying two surrogates adjusts

the degree of the rank monomial for the set of three elements, namely {a, b, c}. To

find the rank monomial for a particular input, we multiply all surrogate polynomials

that are pertinent to that element, namely

ρa = ρab · ρac = xrab+rac

ρb = ρba · ρbc = xrba+rbc

ρc = ρca · ρcb = xrca+rcb .

Following the previous example with a < b, we fix the following relations and

the surrogate rank monomials for the set where c < a < b

a < b ⇔ ρab(x) = 1, ρba(x) = x

c < a ⇔ ρac(x) = x, ρca(x) = 1

c < b ⇔ ρbc(x) = x, ρcb(x) = 1.
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Then the rank monomials will be

ρa = ρab · ρac = x

ρb = ρba · ρbc = x2

ρc = ρca · ρcb = 1.

If we examine the degrees of the monomials, we find that the ranks are ra = 1,

rb = 2 and rc = 0, which are consistent with the given relation c < a < b.

We now generalize this method to an N -element input set by defining the fol-

lowing surrogate monomials for each input element ai

ρij(x) = xrij (6.3)

for all 2-subsets {ai, aj} that contain ai and aj, ∀j ∈ [0, N − 1] and j 6= i. Then,

computing the product of all its surrogates will yield the final rank of ai as the power

of monomial

ρi(x) =
N−1∏
j=0
j 6=i

ρij(x). (6.4)

The degree of ρi(x) is the rank of ai in the N -element set. During the process

of computing rank monomial of an element ai, its degree is incremented by one

whenever ai is larger than another element. In other words, the degree of rank

monomial of an element ai is the number of smaller elements than ai.

Connection to Direct Sort This method is equivalent to summing the column

entries of the comparison matrix M , i.e. computing the Hamming weights, as per-

formed in Direct Sort (see Algorithm 3). In order to see this connection, we must

first show that comparison matrix elements Mij and 2-subset ranks Rij are com-
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plements of each other; i.e., Rij = 1 −Mij . This is because Mij is the Boolean

output of the comparison Ai < Aj, which is an encryption of 1 if and only if Ai

is smaller than Aj. However Rij is an encryption of 0 in this case, since it is the

smallest element in the same 2-subset. Also, we can easily see that Rij = Mji. We

formulate the product of all surrogate monomials as in Equation 6.5 and notice that

the summation in the exponent is equivalent to computing the Hamming weight of

the columns of M

ρi(x) =
N−1∏
j=0
j 6=i

xrij = x

N−1∑
j=0
j 6=i

rij

= x

N−1∑
j=0
j 6=i

mji

. (6.5)

Until now, we have shown that we can find the rank monomials given the surro-

gate monomials of element by applying polynomial multiplication. In the following

section, we describe how to apply this method to encrypted input sets; i.e. comput-

ing rank monomials homomorphically.

Finding Rank Monomials in the Encrypted Domain

In the encrypted domain, we have a set of N encrypted numbers {A0, A1, · · · , AN−1}

by a HE scheme. Recall that the first step of the proposed algorithm constructs the

surrogates for all 2-subsets as in Equation 6.3. This requires finding the encrypted

rank Rij in set {Ai, Aj}. Hence we use the comparison circuit from Equation 4.3

and compute the encrypted rank of ai as

Rij = 1− (Ai l Aj) .
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Using this value, we can set the surrogate monomials for element ai using the fol-

lowing operation that requires arithmetic suitable for homomorphic evaluation

Pij(x) = 1−Rij +Rij · x, (6.6)

for j = 0, . . . , N − 1 and j 6= i. Rechecking the base case example with a < b, we

can confirm that;

AlB = [1] B l A = [0]

Rab = [0] Rba = [1]

Pab(x) = 1− [0] + [0]x Pba(x) = 1− [1] + [1]x

= [1] = [x]

What happens when two elements are equal to each other? Then, both a l b and

b l a are expected to output a zero. To address this problem, we always perform

only the first comparison and fix the second comparison to its complement. In

other words, computing first one of the ranks Rji = Ai l Aj and setting the other

Rij = 1 − Rji solves the equality problem by making sure that the ranks of two

elements are always complement of each other. Thereby, we also avoid redundant

homomorphic comparisons. Note that, in the previous section, only the upper half

of the comparison matrix M is computed and the lower half entries are set to the

complements of the elements in the symmetric positions in the upper half of the

matrix. This is identical to computing Rij for half of the element pairs.

The next step is to compute the final rank monomials by using Equation 6.4. This

operation which only includes polynomial multiplication, can simply be evaluated
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using homomorphic evaluations

Pi(x) =
N−1∏
j=0
j 6=i

Pij(x) .

If we multiply each Pi with the corresponding input Ai, i.e. computing PiAi, we

can place the element in the rank coefficient and since every rank ri is exclusive to

an element, each element will be placed in a distinct coefficient. Thus, we can have

an output polynomial B with the ordered elements in its coefficients

B(x) =
N−1∑
i=0

Aix
ri =

N−1∑
j=0

Bjx
j,

where b0 ≤ b1 ≤ · · · ≤ bN−1. The overall method is summarized in the steps of

Algorithm 4 with given encrypted input set and the set size N . In comparison to

intricate Greedy Sort Algorithm, the simplicity and elegance of Algorithm 4 makes

it more favorable and straightforward to implement and less complicated to analyze.

As we shall see in the next section, we also gain further in efficiency.

Remark. To see the connection to Greedy Sort in more detail, note that the

coefficients of the product polynomial are the binary place indicator θr,i values:

ρi(x) =
N−1∏
j=0
j 6=i

ρij(x) =
N−1∏
j=0
j 6=i

(mi,j +mj,ix)

=
N−1∏
j=0
j 6=i

mi,j +

N−1∑k=0
k 6=i

mk,i

N−1∏
j=0
j 6=i
j 6=k

mi,j

x

+ · · ·+

N−1∏
j=0
j 6=i

mj,i

xN−1 (6.7)
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Algorithm 4 Polynomial Rank Sort

Require: A, N
Ensure: B(x)
B(x)← 0
for all Ai ∈ A do

for all j > i do
Mij ← Ai l Aj
Mji ← 1−Mij

end for
end for
for all Ai ∈ A do
Pi(x)← 1
for all j 6= i do
Pi(x)← Pi(x)× (Mij +Mjix)

end for
B(x)← B(x) + Ai · Pi(x)

end for

Batching Input Elements

The Polynomial Rank Sort algorithm that is optimized in terms of both the circuit

depth and the number of multiplications still requires N(N−1)
2

comparisons. In this

section we show how we can reduce it to N − 1 by enabling batching. When we

encrypt the k-bit input elements whereby the corresponding bits of input elements

batched into same ciphertexts, we only have k encryptions instead of Nk. As a

result, we have both a memory and performance gain by a factor of N . However,

there are a few additional factors that we need to take into account in this method.

First, rotations are followed by key-switching operations which cause a slight increase

in the ciphertext noise. Secondly, the number of slots must be greater or equal to

the number of elements. These two requirements lead to additional constraints in

parameter selection of the underlying HE scheme.

For our application, we use the plaintext modulus p = 2. Choosing Φm with

m|2d − 1, we utilize ` message slots defined over F2d .
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If we have a set of k-bit elements {a0, a1, · · · , aN−1}, we declare a vector ~αi

consisting of ith bits of the elements,



~α0

~α1

...

~αk−1


=



a0,0 a1,0 · · · aN−1,0

a0,1 a1,1 · · · aN−1,1
...

...
. . .

...

a0,k−1 a1,k−1 · · · aN−1,k−1


(6.8)

=

[
A0 A1 · · · AN−1

]
, (6.9)

where the jth slot in ~αi is reserved for the jth element’s corresponding bit. A vector

~α can be viewed as holding different elements in each slot for simplicity and we

switch to uppercase letters to represent the encrypted values in the slots. In matrix

representation, every row is a different ciphertext and the columns are the data slots

within that ciphertext.

The first step of Algorithm 4 is to compute the comparisons Mij = Ai l Aj for

all i < j. We first apply rotation and masking on the input vector to obtain the

rotated slots. The following row vectors represent the left-shifted ciphertexts



~α0

~α1

~α2

...

~αN−1


=



A0 A1 · · · AN−2 AN−1

A1 A2 · · · AN−1 0

A2 A3 · · · 0 0

...
...

. . .
...

...

AN−1 0 · · · 0 0


.

We perform comparisons in between the original input ciphertext (the first row) and

each shifted ciphertext (the rest of the rows). Let the resulting ciphertexts be Mi

where Mi = ~α0 l ~αi, then we have the following comparison results in the message
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slots



A0 l A1 A1 l A2 · · · AN−2 l AN−1 0

A0 l A2 A1 l A3 · · · 0 0

...
...

. . .
...

A0 l AN−1 0 · · · 0 0


.

Following the computation from Equation 6.6, we compute Mi + (1−Mi)x for each

ciphertext (row). The surrogate monomials are computed in the data slots as follows



P0,1(x) P1,2(x) · · · PN−2,N−1(x) 0

P0,2(x) P1,3(x) · · · 0 0

...
...

. . .
...

P0,N−1(x) 0 · · · 0 0


. (6.10)

The above matrix holds the surrogate monomials for all i, j pairs for i < j. In

order to have the rest of the surrogates, i.e. Pj,i for i < j we similarly compute the

surrogates for the complements of Mi, i.e. 1−Mi+Mix. This gives us the following

message slots



P1,0(x) P2,1(x) · · · PN−1,N−2(x) 0

P2,0(x) P3,1(x) · · · 0 0

...
...

. . .
...

PN−1,0(x) 0 · · · 0 0


. (6.11)

By rotating, masking and reordering the ciphertexts in (6.11), we can have the
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ciphertexts shown in (6.12).



0 0 · · · 0 PN−1,0(x)

0 0 · · · PN−2,0(x) PN−1,1(x)

...
...

. . .
...

...

0 P1,0(x) · · · PN−2,N−3(x) PN−1,N−2(x)


(6.12)

Finally, adding the ciphertexts in (6.10) and (6.12) we can have the corresponding

surrogates aligned in separate message slots as can be observed in (6.13).



P0,1(x) P1,2(x) · · · PN−2,N−1(x) PN−1,0(x)

P0,2(x) P1,3(x) · · · PN−2,0(x) PN−1,1(x)

...
...

. . .
...

P0,N−1(x) P1,0(x) · · · PN−2,N−3(x) PN−1,N−2(x)


(6.13)

The last step of the algorithm is to take the products of the surrogate monomials.

Therefore, if we multiply the rows of (6.13) we will compute all products in parallel

message slots. [
P0(x) P1(x) · · · PN−2(x) PN−1(x)

]
(6.14)

The resulting ciphertext in (6.14) has rank monomials of all the input elements in

respective slots. If we multiply it with the original input vector, we can have the

inputs placed in the coefficients of their rank monomial as follows

[
A0P0(x) A1P1(x) · · · AN−1PN−1(x)

]

By shifting all data into the first slot, we can sum all of the rank monomials and
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Bit Size ` 8 32
Array Size N 4 8 16 32 64 4 8 16 32 64
CINS\CBUBS 30 140 600 2480 10080 42 196 840 3472 14112

COES 20 40 80 160 320 28 56 112 224 448
COEMS\CBITS 15 30 50 75 105 21 42 70 105 147
CDS (Ours) 9 10 11 12 13 11 12 13 14 15
CGS (Ours) 7 8 9 10 11 9 10 11 12 13

Table 6.1: The multiplicative depth of different sorting circuits given size N and `

find the output polynomial.



A0P0(x) 0 · · · 0

A1P1(x) 0 · · · 0

...
...

. . .
...

AN−1PN−1(x) 0 · · · 0

N−1∑
0

AiPi(x)︸ ︷︷ ︸
B(x)

0 · · · 0



.

6.4 Comparison with the Previous Methods

In Figure 6.1 and Table 6.1, we show how the circuit depths increase with different

sorting algorithms. We can achieve the minimum homomorphic evaluation depth

with Greedy Sort and Polynomial Rank Sort methods. Direct Sort has slightly

more levels than both. In order to compare their performances, we also take the

number of costly ciphertext multiplications into consideration. All three algorithms

work by computing the comparison matrix M . Since that is a common step for all

of the methods, we disregard the cost of constructing M in the following analysis.

The complexities of the rest of the operations are summarized for each method in

Table 6.2.
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Figure 6.1: Multiplicative depths of different sorting algorithms

Table 6.2: Comparison of the proposed algorithm with the previous methods in
terms of number of ciphertext multiplications, multiplicative depth and output size.

Näıve
Direct

Proposed
Greedy Method

Ciphertext O(N2N) O(N2 logN) O(N2)
Multiplications
Multiplicative O(logN) O(logN) O(logN)
Depth

The Näıve Greedy method implements Greedy Sort in a straightforward manner,

hence we need to count the number of multiplications to compute θr,i for i, r =

0, . . . , N−1. In order to find the binary place indicators for an arbitrary element Ai,

we need to compute θ0,i, θ1,i, · · · , θN−1,i as in Equation 6.2 with each one contributing

N−1∑
k=0

(
N − 1

k

)
= 2N−1

multiplications.
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Direct Sort has two steps that involve ciphertext multiplications: summation of

columns of M , i.e. Hamming Weight computation and the equality check of the rank

values. The former is computed by using a Wallace Tree of N bits for each column.

The latter is computed by using the bit-wise equality check circuit for logN bits for

each possible rank, i.e. N times. Therefore, the total number of multiplications to

find the rank of one element becomes O(logN) +O(N logN).

Finally, our most recently proposed method Polynomial Rank Sort requires only

the product of N − 1 ciphertexts, in order to find a single rank.

6.5 First Implementation

In our first implementation, we used DHS scheme of [20] and evaluated CDS for a

number of array lengths. Here, we briefly summarize the parameter selection process

and present the simulation results.

Parameter Selection. According to [20] the NTRU based SWHE Scheme requires

Hermite factor δ < 1.0066 to achieve a security level of 80-bit. We set the per level

cutting rate log p depending both on the circuit itself and its total depth, similarly

we choose a polynomial degree n according to security threshold and maximum coef-

ficient modulus size. We implemented COES, COEMS, CDS and CGS circuits, simulated

them for both ` = 8-bit and ` = 32-bit integer inputs and selected array size N . 2

In Table 6.3, we enumerate the parameters which we used in our experiments for

various circuit depths. The largest Hermite factor among our parameter choices is

δ = 1.0063, ensuring a security level of 99-bits, which is the lowest security level for

all cases.

Performance Results. We implemented homomorphic Odd Even Sort, Batcher’s

2Note that N is not restricted to a power of two.
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Depth d 9 12 15 21 28 42 56
log p 20 20 22 25 25 25 30
log q0 200 260 352 550 725 1075 1710
n 8190 8190 16384 16384 27000 32768 46656
S 630 630 1024 1024 1800 2048 2592
δ 1.0041 1.0054 1.0037 1.0057 1.0046 1.0056 1.0063

Table 6.3: Cutting size log p, maximum coefficient size log q0, Polynomial degree n,
message batching slot size S and Hermite Factor δ for different depths d

Bit Size ` 8 32
Array Size N 4 8 16 32 64 4 8 16 32 64

COES 400ms 3.45s n/a n/a n/a 2.4s n/a n/a n/a n/a
COEMS 270ms 3.30s n/a n/a n/a 530ms 5.8s 31s n/a n/a

CDS (Ours) 140ms 690ms 3.14s 13.9s 1m 200ms 944ms 4.28s 18.6s 49.7s
CGS (Ours) 90ms 470ms 2.8s 13.10s 52.2s 500ms 2.4s 10.8s 49.2s 2.2m

Table 6.4: Amortized execution time of circuits for different array sizes N and input
bit sizes `

Odd Even Merge Sort and both of the proposed algorithms in C++ using DHS

Library [20]. All simulations were performed on an Intel Xeon @ 2.9 GHz server

running Ubuntu Linux 13.10. We compiled our code using Shoup’s NTL library

version 6.0 and with GMP version 5.1.3. The sorting times for 8 and 32 bit integers

are given in Table 6.4. For N = 64 our algorithm runs in about 14.15 hours whereas

the amortized running time, where we use batching with slot size 630, is about 1.35

minutes per sort. For N = 4 the sorting takes as low as 0.20 seconds per sort. In

comparison, the homomorphic Lazy Sort implementation of [39] takes about 976

and 1400 seconds for array sizes of 10 and 40, respectively. For array sizes N = 16

and N = 64 our implementation takes 4.28 and 50 seconds, respectively.
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Figure 6.2: Execution times of two proposed sorting methods for different set sizes

6.6 Second Implementation

In our second implementation, we used HElib [15] that is a C++ library that imple-

ments the BGV [9] scheme. It provides homomorphic evaluations, batching and

message slot rotation functionalities that our algorithm requires. We chose an

NTRU-based scheme in our early work, because of its efficiency in leveled appli-

cations, compact ciphertext structure and low evaluation key sizes, specifically with

DHS customizations. It was not until later in 2016, that the DSPR assumption

in NTRU-variants was shown to have a security weakness in [21], hence in this

implementation we choose to implement our solutions by utilizing HElib.

We first implemented Direct Sort and Polynomial Rank Sort Algorithms using

HElib without packing the input elements. In that implementation we have a differ-

ent ciphertext for each bit of each number, i.e. kN bit-encryptions in total. In the

second implementation, we use the batching technique we described in Section 6.3.3

to pack the same indexed bit of each number in a single polynomial. By using the
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default parameter setup of HElib we measured the execution times of Direct Sort,

Polynomial Rank Sort and batched version of Polynomial Rank Sort. Experiment

results align with the complexity improvements and we conclude that the batched

Polynomial Rank Sort achieves the best results in practice. The comparison of three

methods can be seen in Figure 6.2.

There are, however a number of restrictions that come with the batched ap-

proach.

� Number of data slots (`) must be greater or equal to the number of input

elements (N). Although, this looks like an issue at first sight, it usually is not

difficult to find a parameter set that provides this constraint. That is mainly

due to the fact that with larger array sizes we need more levels of homomorphic

evaluations. More levels imply larger ring dimensions for security, and that

gives more room to find at least the required slot count.

� The order (d) of the plaintext modulus (p) in the ring must be greater or

equal to the number of input elements (N), because the final output is an

N−1 degree polynomial into which is encoded in a single data slot an element

of F2d . This d ≥ N requirement is only necessary if Polynomial Rank Sort is

combined with batching. In other words, any other algorithm that does not

output a polynomial, such as Direct Sort, does not need to have this property.

Similarly, if Polynomial Rank Sort is applied without batching then the output

can lay in the full plaintext polynomial and it has room for up to encryption

ring degree n which is usually quite large compared to the array size N .

In [59], Basilakis et al. also use batching to reduce the number of comparisons.

In what follows we highlight the differences between our work and that of [59].

� Our sorting methods are different. They use Direct Sort (Matrix Sort), whereas
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Table 6.5: Parameters and Execution Times for Different Input Sizes

Array Size 4 8 16 32 60

Circuit Depth 11 12 13 14 14

Ring Degree (n) 13200 14400 15840 15840 15840

Order (d) 60 60 60 60 60

Slot Count (`) 220 240 264 264 264

Time (sec) 30 103 206 438 865

we use Polynomial Rank Sort in this implementation. Polynomial Rank Sort

achieves both the minimum homomorphic evaluation depth and the minimum

homomorphic multiplications.

� They use Parallel Primitive Circuits (PPC) blocks they define in the paper to

do comparisons, instead of binary circuits that we use. This choice combined

with the sorting algorithm has an affect on the overall depth of the circuit.

Our levels are in between 11− 14 with respective array sizes, theirs are in the

17 − 22 range and these depths are only for sorting a maximum of 16 input

elements.

� They batch all N2 comparisons into one or more ciphertexts by serially pack-

ing multiple copies of the input element bits into the message slots. Thus

require roughly dkN2/`e ciphertexts. We pack each integer once into a mes-

sage slot and have a separate batched ciphertext for each bit index. So our

implementation requires kdN/`e ciphertexts.

In Table 6.5, we show our batched Polynomial Rank Sort execution results for

different set sizes. We used 120-bit security level for all experiments. [59] gives

performance results for only 4, 8 and 16 inputs. Their implementation takes 12,

55 and 248 seconds with single-threading and 11, 49 and 220 seconds with multi-
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threads for respective input sizes. In comparison, our implementation takes 30, 103

and 206 seconds for the same number of input elements, respectively. As there is

no implementation with larger set sizes in the other work, we cannot compare the

timings of 32 and larger sets. We can however conclude that our method scales

better with the input size, as the increase in timing is only linear in our results.
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Chapter 7

Search

The Electronic Frontier Foundation writes “Anonymous communications have an

important place in our political and social discourse. The [US] Supreme Court

has ruled repeatedly that the right to anonymous free speech is protected by the

[US] First Amendment”1. The contents of our web searches give a glimpse into

our personal lives and the information harvested from a log of such activity has,

in several well-publicized instances, led to clear violations of privacy. It is not only

the keywords themselves that leak information. When a user chooses from among

query responses and chooses to be directed to a particular URL on the list, the

contents of the query are often shared with that website. Browsing history can be

tracked and shared, and with data mining techniques, the user can end up revealing

much more than keywords, such as their personally identifiable or sensitive personal

information. Search engines are also able to infer one’s geographic location through

one’s IP address. When search and other such data is stored, a user profile can be

created and this can be shared with third parties such as governments, marketers,

and even cyber-criminals. One can easily imagine, for instance, how knowledge of

1https://www.eff.org/issues/anonymity
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recent queries regarding financial instruments could assist a hacker in composing a

more credible phishing email that purports to originate at a bank at which the user

is a customer.

To protect users from such malicious players, search engines have introduced

encrypted search traffic (keywords and results) over the past few years, employing

secure connections and creating an encrypted channel between the user device and

the search engine server. This option prevents third parties from spoofing responses,

and also ends the practice of passing keyword history to the chosen URL (except

when that URL is selected through Adwords). Solutions of this sort put the privacy

barrier between the search engine and the websites who are their customers, but

make no guarantees of private queries. The search engines can still form user profiles

and can still share them with third parties for a price. Moreover, such keyword

histories can be released by the search engine unintentionally, for example by court

order or data breach. Standard search services such as Google require the cleartext

query to be handled on the server side revealing to the search company a wealth of

information to mine. When mined along with other sources of private information,

e.g. e-mail or cloud storage, the search provider can distill a wealth of sensitive

information at an unprecedented level of detail. To counter this trend, privacy

friendly search services have emerged in the last few years, e.g. DuckDuckGo and

StartPage by ixquick. DuckDuckGo, for instance, has rapidly gained customers,

recently reaching 25M searches per day. The standard approach taken by these

companies is to promise to respect the privacy of their customers. While there has

been no incident to suspect these products, here too privacy hangs by a thread, i.e.

a fragile trust mechanism.

Recent rapid progress in fully homomorphic encryption (FHE) has catalyzed re-

newed efforts to develop efficient privacy preserving protocols. Several works have
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already appeared in the literature that provide solutions to these problems by em-

ploying leveled or somewhat homomorphic encryption techniques. Here, we focus on

a natural application where privacy is a major concern: web search. An estimated 5

billion web queries are processed by the world’s leading search engines each day. It

is no surprise, then, that privacy-preserving web search was proposed as the paragon

FHE application in Gentry’s seminal FHE paper. Indeed, numerous proposals have

emerged in the intervening years that address various privatized search problems

over encrypted user data, e.g. private information retrieval (PIR). Yet, there is no

known work that focuses on implementing a truly blind search engine utilizing an

FHE construction. In this work, we focus first on single keyword queries with ex-

act matches, aiming toward real-world viability. We then discuss multiple-keyword

searches and tackle a number of issues currently hindering practical implementation,

such as communication and computational efficiency.

7.1 Our Search Model

In this section, we will define a privacy-preserving web search engine that evaluates

encrypted search queries.

To fully execute a typical web search, a server carries out four fundamental tasks:

web crawling, indexing, ranking and retrieval. For an encrypted web search engine,

the first three tasks are unchanged as these do not involve encryption; it is only the

task of retrieval in response to an encrypted query from the user that we need to

address here. Modern search engines have become quite sophisticated, accounting

for spelling errors, synonyms or word meanings, sometimes applying ranking after

retrieval. But this is beyond the scope of the present work: we deal only with exact

matches here. Thus we assume that pre-processing on the server side provides us
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with a rank-ordered output list of URLs attached to each keyword.

In our construction, we have two parties: a user U who submits the (encrypted)

search query and a server S who is the owner of the database and the entity that per-

forms the retrieval look up. Server S has a table consisting of the dictionary words

and their corresponding rank-ordered search results. In a regular search engine, S

has to know the user keyword κ in order to perform the look up. In order to be able

to process encrypted keywords, we convert this standard comparison/aggregation

model into a homomorphic circuit so that it can be evaluated using encrypted in-

put(s) and it can output encrypted results.

In a simple scenario, when U submits a query, the input keyword κ is first en-

crypted on the client side under client’s own encryption key, then the ciphertext(s)

are sent to the server and the server performs the retrieval step obliviously using

homomorphic circuits over the encrypted user input and the server’s own database

which is in cleartext form. For instance, in order to search for the keyword “in-

somnia”, U encrypts κ = “insomnia” using his own encryption key and sends the

encrypted data2 [insomnia] to the server. S then evaluates the homomorphic circuit

using only the encrypted input(s) and the index table it owns. During the homo-

morphic evaluation, all intermediate results will still be encrypted under the client’s

encryption key. After the circuit evaluation, S returns the corresponding output

ciphertext(s) to U . Finally, U decrypts the resulting ciphertext(s) using its own

decryption key and gets the matched query results (if any). Note that user-specific

filtering, ranking and formatting of results can then be performed on the client side

working with plaintexts obviating the need to share certain user preferences with

an untrusted server.

In reality, there are around 60 trillion web pages on the web and the number of

2Throughout this chapter, we will use [x] to denote an encrpytion of x.
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pages indexed by Google is around 54 billion and by Bing it is around 650 million3.

These numbers change every hour of every day. However, they can be much smaller

for a custom search engine that is designed for a specific target group of clients, for

example a medical search engine would only index the health care related pages.

Another example can be an internal search engine for a company that only crawls

the subnet of that company. Hence, in practice the indexed pages may contain a

small subset of the overall web, especially for a proof-of-concept design. We denote

the set of all indexed URLs under consideration by L and denote the size of L by T .

We will use a short URL representation where each element u ∈ L is a dlog T e bit

integer. In case of a universal search engine such as Google, this number can be as

high as 36 bits. This forces us to make a sacrifice by placing an upper limit t on the

number of “hits” for any given keyword; that is, we assume that our Search Engine

Results Page (SERP) contains only the t top-ranked URLs for each simple query.

This is obviously quite a bit simpler than modern search engines. However, since our

outputs will be encrypted under an FHE scheme, our plaintext space -total number

of bits that we can decrypt at the end of homomorphic computations- is limited

due to chosen FHE parameters. Therefore the number of output URLs t depends

on several factors like plaintext space, bit-size of a single URL and the number of

search keywords and the details of this relation will be given in Section 7.1.3.

The other component of the database is the keyword list. The Oxford English

Dictionary includes over a half million English words whereas a target-oriented vo-

cabulary can have fewer number of items, for example Stedman’s medical dictionary

has around a hundred thousand medical terms. Thus, the size of the keyword list

changes according to the search engine functionality. To accommodate a realistic

scenario where the database can be fairly large, we choose N as one million, which

3http://www.worldwidewebsize.com/
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is our bound on the number of entries in the lookup table. We will make use of a

local dictionary to encode each keyword κ as a 20-bit integer (logN) using their row

index in the table and reserving index 0 for the keywords not found in the dictio-

nary. These parameters determining the number of possible input/output values to

be transferred between the server and the client have an effect on both the circuit

size and the bandwidth, thus they have significant bearing on the runtime of the

application. We will design our circuits for generic values of these parameters and

return to specific values only later, in Section 7.2.3, where we observe their effect

on bandwidth and execution time.

7.1.1 Associative Array and Search Algorithms

The dictionary we defined in Section 7.1 consists of a pair of objects — a key from

the alphabetically sorted keyword list; and a list of values, each from the URL list

— in each row. The association between the two objects will be referred to as

binding. Whenever we want to find the value which is bound to a given keyword,

we will apply an operation called Aggregation. This Aggregation operation requires

a Comparison operation to find the keyword location in the array. To this end,

there are a number of search algorithms that one can normally use such as serial

search, binary search and search by hashing. From these three serial search and

hash methods have a worst case complexity of Θ(N) whereas binary search has

Θ(log(N)). However logarithmic complexity for binary search is not achievable in a

blind search. Since homomorphic execution requires the method to explore all paths

regardless of outcome, even the binary search has linear complexity in this setting.
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7.1.2 The Construction for Comparison

In encrypted search schemes, expensive computations and massive user-server band-

width requirements remain as serious obstacles to achieving real-time FHE-based

applications. In this section, we present a homomorphic construction that can han-

dle practical scenarios. We start with a primitive scheme with low circuit depth and

then provide optimizations and propose a lightweight algorithm, to push our design

closer to a real-life application. This improvement comes with a price: the more we

decrease bandwidth, the deeper the circuit required.

The first step of the blind search is encrypting the user input κ. Hence the first

decision to make is about the representation of the keywords. As the keywords are

arbitrary length strings and we will be working in an homomorphic setting, binary

representation seems like a natural choice. But binary representation of a string

would leak information about its length. And particularly too short or too long

keywords can be easier to guess. The second option is to encrypt the string as a

word by setting a large plaintext domain. This requires a word-wise homomorphic

comparison method which is possible, but costly. Lastly, we can use the index w of

the input keyword in the dictionary. We consider the following four algorithms for

encrypted keyword search. In the following algorithms, all w are logN bits, where

N is the dictionary size.

� Standard Comparison Algorithm. In this method, the bits of the index

w are encrypted. Using an equality check circuit
∏logN

j=1 (wj ⊕ ij ⊕ 1), we can

compare the input to every single possible index value i = 1, · · · , N with bits

i1i2 · · · . The bandwidth of this approach is equal to the number of bits of the

index w, hence it is bounded by s = logN . The number of multiplications will

be s− 1 for each i, thus in total there are N(s− 1) ciphertext multiplications

in this method.
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� Kushilevitz-Ostrovsky (KO) Algorithm [49]. In this case the input index

w is divided into two parts, w = (w1, w2) where w = w1

√
N + w2 and both

w1 and w2 are one-hot encoded using the above approach. This reduces the

bandwidth to 2log(N)/2+1 = 2
√
N , and the depth becomes 1. This method

can be applied recursively on the new index values w1, w2 and we can have

partitions into four subwords w = (w1, w2, w3, w4) which would reduce the

bandwidth to 4N1/4 and increase the depth to 2. If we partition into k pieces,

we end up with a bandwidth of kN1/k. In the case of multiplications, we

are not able to set up a regular multiplication tree which is optimized for

KO constructions because of the limitations of the F-NTRU scheme. In order

to compute the comparison, we perform k-dimensional multiplication in a

serial manner. First, we multiply along two axes, contributing N1/k · N1/k

multiplications. Next, the results are multiplied with values along a third axis

which results in N1/k · N2/k multiplications. After k − 1 iterations, the total

number of multiplications is N1/k
∑k−1

i=1 N
i/k.

� Hybrid Algorithm. We will divide the input index w into two parts w =

(w1, w2) where w = w1N/2
s + w2, i.e. w1 is the first s bits of the index. We

will perform the standard comparison on the first part w1 of length s and

encode the second part w2 of length logN − s using the KO algorithm. Then,

the bandwidth of scheme is summarized as s+ k(N/2s)1/k, where s is coming

from the first part and the rest is coming from the KO algorithm. The number

of multiplications are 2s(s − 1) and
∑k−1

i=1 (N/2s)
i+1
k for the first and second

parts, respectively. Since we need to multiply the results of first and seconds

parts with each other to form the decisions, the total number of multiplications

results in 2s(s− 1) +
∑k−1

i=1 (N/2s)
i+1
k +N .
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Table 7.1: Comparison of bandwidth requirements and number of multiplications
for different Comparison algorithms

Algorithms Bandwidth Multiplications
Standard Comparison logN N(logN − 1)

KO Construction kN1/k
∑k−1

i=1 N
i+1
k

Hybrid Method s+ k(N/2s)1/k 2s(s− 1) +
∑k−1

i=1 (N/2s)
i+1
k +N

The overall bandwidth and multiplicative complexity comparison is given in

Table 7.1. We quickly observe that the optimal choice of encoding depends heavily

on the properties of the FHE scheme in use.

7.1.3 Construction for Aggregation

After the Comparison step is completed for a user input, we have the intermediate

values which we call the decision vector and denote by ~d. This vector has N en-

crypted bit values; ~d[i] = [1] if i = w and ~d[i] = [0] otherwise. After constructing

our circuits, we will see that we do not need the Comparison results all at once, but

instead we can have one result at a time. This means that we do not have to store

N encrypted values, but we will compute the ~d[i] values in an iterative way.

The second step of our application is the actual Aggregation step, where we will

compute our final output(s). Note that for a more practical engine, we consider the

multi keyword search (e.g., a conjunction of m terms). This means that whenever

there are two or more input keywords, we will perform the Comparison multiple

times. As a result, we will have one decision vector corresponding to each input

keyword. For an m-keyword search, we will have decision vectors: ~d1, ~d2, . . . , ~dm

corresponding to the inputs w1, w2, . . . , wm.

The size of each URL list Li that is bound to the ith keyword in the database

is |Li| = ti, for i ∈ [1, N ]. Since the server is oblivious to the input value(s) w, it

is also oblivious to the list size tw. This means that the output size |Lout| will be
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determined by the longest list in the database, given by t = max {ti|i ∈ [1, N ]}. In

the next part of this section, we will describe the algorithm for a single keyword

query (i.e., m = 1). In the following part, we will give the details for our multi-

keyword aggregation problem (m > 1).

Single Keyword

First let us assume that we have a single input keyword with dictionary index w.

We have the URL list4 Li = [ui,1, ui,2, . . . , ui,t] for each keyword index i. After

computing the decision vector ~d, we can find the final outputs by simply computing

L =
N∑
i=1

~d[i]Li

=

[
N∑
i=1

~d[i]ui,1,
N∑
i=1

~d[i]ui,2, . . . ,
N∑
i=1

~d[i]ui,t

]

= [[uw,1], [uw,2], . . . , [uw,t]] .

If each URL index ui,j is dlog T e bits in length as we defined in Section 7.1, at

the end the server will have tdlog T e bits to return to the client. By using the

large integer encoding technique from Section 3.3, we can decode a single ciphertext

and retrieve n bits where n is the FHE ring degree. This means that we can have

dtdlog T e/ne output ciphertexts or alternatively, if we limit the t value such that

the inequality tdlog T e ≤ n holds, then all outputs can be encoded into a single n

degree polynomial. It means that the server will send back only a single ciphertext.

A further economy can be found by noting that we do not need to compute

all ~d[i] values in advance. Instead, in the first iteration we can compute ~d[1] and

after initializing L to ~d[1]L1, we can then compute ~d[2] and update L = L+ ~d[2]L2.

4In order to maintain uniformity, we define ui,j = 0 for ti < j ≤ t.
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Iterating in this way, we only need to store t + 1 encrypted polynomial coefficients

at a time.

For reasons that will become clear shortly, we propose an alternative way to

encode the list Li = [ui,1, ui,2, . . . , ui,t] as a polynomial

`i(x) =
t∏

j=1

(ui,j − x).

After computing the decision vector ~d, we can find the final outputs by simply

computing

`(x) =
N∑
i=1

~d[i]`i(x).

If each URL index ui,j is again dlog T e bits in length, hence the coefficient of xh in

`i(x) is about dlog T e(t−h) bits. Total number of bits to be returned to the user will

be dlog T e
∑t

h=0(t−h) = (t2+t)
2
dlog T e which is more compared to the first approach

where we only have tdlog T e bits. Hence, we will use this polynomial representation

of the URL lists for multiple keyword construction in the next section.

Multiple Keywords

We discuss here only conjunctive queries; while the product of two polynomials gives

a natural solution to the disjunction of keywords (union of URL lists), this changes

polynomial degrees and, since disjunctive queries are uncommon, we choose not to

address this added level of complexity here. In Aggregation, if a user wants to find

all URL values that are bound to multiple keys, we are faced with a set intersection

problem [60]. Suppose, for simplicity the query takes the form w∧w′ and the above

procedures generate corresponding polynomials `w(x) and `w′(x), respectively. The

roots of `w(x) (resp., `w′(x)) encode the top-ranked URLs for keyword w (resp., w′)
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so the conjunction would naturally correspond to the gcd of the two polynomials.

But this is difficult to compute homomorphically. So, as previously noted by [60],

we can instead take a random polynomial in the ideal generated by `w(x) and `w′(x).

Clearly, if d = gcd(`w, `w′) and

f(x) = g(x)`w(x) + g′(x)`w′(x),

then d(x) divides f(x) and the probability that f(x) has any additional “spurious”

roots is negligible assuming reasonable parameters. In practice, it may even suffice

to take f(x) = `w(x) + `w′(x). But we prefer to take a more careful approach.

We can, in fact, reduce this probability of spurious roots to zero with careful

choice of coefficients. All valid URLs are known to lie in the range [1, T ]. If r and

r′ are primes just a bit larger than T , then it is impossible for

f(x) = r`w(x)− r′`w′(x)

to have any root in range [1, T ] which is not a common root of `w and `w′ . Indeed,

if f(u) = 0, then

r`w(u) = r′`w′(u).

But `w(x) =
∏

(uj−x) for some roots uj all lying in [1, T ]. So `w(u) =
∏

(uj−u) has

no prime factor exceeding T . Therefore f(u) = 0 for u ∈ [1, T ] forces both `w(u) = 0

and `w′(u) = 0. This naturally generalizes to a conjunction of m keywords, as we

outline below. But we point out here that, with m = 2 being the most common

conjunction, we see some economy by choosing r and r′ close together — twin
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primes, for example, with r = r′ + 2 — and noting

f(x) = r`w(x)− r′`w′(x)

= r′ [`w(x)− `w′(x)] + 2`w(x)

sometimes allows us to control growth of coefficients.

Lemma 5. Let w1, . . . , wm be m distinct keywords with corresponding polynomials

`1(x), . . . , `m(x) where the roots of `i(x) encode the top-ranked URLs bound to key-

word wi. Let s1, . . . , sm be m distinct primes with si > T for all i and, for 1 ≤ i ≤ m,

define ri = 1
si

∏m
h=1 sh. Then, for f(x) =

∑m
i=1 ri`i(x), gcd

(
f(x),

∏T
u=1(x− u)

)
=

gcd (`1(x), . . . , `m(x)).

Proof. If u ∈ [1, T ] and f(u) = 0, then reduction modulo si gives `i(u) = 0

(mod si). But `i(u) has no large prime factors, so `i(u) = 0 and, since this holds for

all i, u is a common root. �

The second problem we must deal with is the representation of the polynomials.

Assuming the polynomials `i have degree t, we have ‖`i‖∞ = t log T . Therefore the

large integer encoding technique from Section 3.3 turns these (t log T )-bit numbers

into polynomials of degree t log T with 0/1 coefficients. The computations we must

perform on the `i are polynomial additions and constant multiplications; so we can

perform the same operations over each coefficient separately, send the results to

the user without further processing, and the user can reconstruct the polynomial

encoding the conjunction of m keywords. If we write

`i(x) =
t∑

k=0

αikx
k,
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then constant multiplication by integer b is computed

b`i(x) =
t∑

j=0

bαikx
k

and similarly, the sum of m polynomials is computed coefficient by coefficient:

m∑
i=1

`i(x) =
t∑

j=0

(
m∑
i=1

αik

)
xk.

We have (t log T )-bit coefficients and the constant multiplication with the integers

ri in the above lemma will add (m− 1) (log T + 1) bits to the end result, so we will

have approximately (m + t) log T bit values to be encoded/decoded. If we have an

FHE ring of degree n, we can afford t < bn/ log T c −m.

We have `i(x) =
∑t

k=0 αikx
k and it will be convenient to likewise write `wj(x) =∑t

k=0 α(wj)kx
k. These are stored as lists of coefficients and when the server processes

a decision vector ~dj encrypting the one-hot encoding of the jth keyword of the query,

it may compute
∑N

i=1
~dj[i]`i(x) one coefficient at a time. But we can do better.

The user needs access to the polynomial `(x) =
∑M

j=1 rj`wj(x) and, if we write

`(x) =
∑t

k=0 βkx
k, we have

[`(x)] =
m∑
j=1

rj[`wj(x)]

=
m∑
j=1

rj

N∑
i=1

~dj[i][`i(x)]

so that,

[βk] =
m∑
j=1

rj

N∑
i=1

~dj[i][αik] .
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This list {[βk]}tk=0 is passed to the user who, upon decryption, recovers all βk,

reconstructs `(x) and applies standard root-finding techniques to obtain the desired

list of URLs arising from the conjunctive query. Note that the constant term of `(x)

has no large prime factors, so its roots lying within [1, T ] can be recovered rather

efficiently by standard techniques.

7.1.4 Noise Analysis

We take same approach as authors did in [24], since we are using the F-NTRUscheme

with a small modification. Our scheme changes only the message space from 2 to

x − 2. Using ||g||∞ = ||f ′||∞ = Bkey, ||s||∞ = ||e||∞ = Berr, a fresh ciphertext has

the following noise bound:

||y(0)f ||∞ ≤ 4nBkeyBerr + 4nBerr(4Bkey + 1)

≤ 4nBerr(5Bkey + 1).

At each multiplication, using the single sided multiplication approach as in [24],

the noise bound is equal to

Bi = ||fyi||∞ ≤ [4n2BkeyBerr(2
w − 1)`

+ 4n2Berr(4Bkey + 1)(2w − 1)`]

+ [4nBerrBkey + 4nBerr(4Bkey + 1)]

+ [Bi−1] + [(4Bkey + 1)]

The number of multiplications for the decision depends on the Comparison algo-

104



Table 7.2: The values of index i in noise bound Bi to compute decisions for each
entry in Comparison algorithms.

Algorithms # Multiplications (i)
Standard Comparison s− 1

KO Construction k − 1
Hybrid Method s+ k − 1

rithm. Thus, it changes the required bitsize for each algorithm. In Table 7.2 we give

the maximum length of multiplicative chain to compute a decision for an entry, i.e.

it is the index i used in noise bound Bi.

In addition to the base noise which is occurring from the decisions, we have

additional noise occurring from the latter operations. We can list the additional

noise occurrences as follows

� multiplication of decision with the message (encoded as binary polynomial):

log log n

� summation of all the entries: logN

� multiplication with prime number to eliminate spurious roots (encoded as

binary polynomial): log log r

� number of search results which we add together (number of keywords): logm

These additional noise should be added to the base noise bound so that the modulus

is large enough to support the operations.

7.2 Implementation and Performance

Either single-keyword or multi-keyword search requires a tremendous amount of

computation power. Taking advantage of previous research in [61, 62, 63], we believe
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Table 7.3: Testing Environment

Item Specification
CPU Intel Core i7-3770K
CPU Freq. 3.50 GHz
System Memory 32 GB DDR3
GPU NVIDIA GeForce Titan X
GPU Core Freq. 1.20 GHz
GPU Memory 12 GB
# of CUDA Cores 3072

Table 7.4: A comparison of hybrid and KO algorithms with different parameters.
Database has N = 220 entries.The bandwidth is calculated for 576 KB input cipher-
texts and 48 KB output ciphertext. The first column gives the number of input
keywords in each scenario. Time includes the latencies of Comparison and Aggrega-
tion, and is normalized per database entry.

# Algorithm s k
Bandwidth

Time (µs)
Input Output

1 KO 0 2 1,152 MB 48 KB 304
1 KO 0 9 24 MB 48 KB 341
1 Hybrid 8 8 17 MB 48 KB 168
1 Hybrid 12 5 15 MB 48 KB 173
2 KO 0 9 48 MB 2.40 MB 3,544
2 Hybrid 8 8 34 MB 2.40 MB 3,198
2 Hybrid 12 5 30 MB 2.40 MB 3,207
3 Hybrid 8 8 51 MB 2.35 MB 4,722

an implementation on CUDA-enabled GPUs offers high efficiency. We compared our

proposed hybrid algorithm to a recursive KO algorithm in terms of bandwidth re-

quirements and computation time. All the timing results in this paper are measured

on the machine described in Table 7.3.

7.2.1 Polynomial Multiplications

During the evaluation steps, the performance of ciphertext multiplications domi-

nates the total execution time. Our implementation focuses on optimizing a cipher-

text multiplication (recall Section 2.2) which is the product of a vector of polyno-
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(a) Bandwidth (base 2 logorithm)

(b) Latency (number of multiplications)

Figure 7.1: A comparison of hybrid and KO algorithms in bandwidth and latency
with respect to parameter choices. The database has N = 220 entries. Standard
comparison is applied on the first s bits of input index. A KO algorithm with k
iterations is applied on the rest. KO algorithm is adopted when s = 0.
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mials and a matrix of polynomials: R1×l
2w × Rl×l

2w . Note that we perform ciphertext

multiplications in a chain and keep only the last row of the left-hand multiplier all

the time, which explains why one of the multiplier is in vector form.

Starting with polynomial multiplications, we compare the efficiency of Karatsuba

algorithm and the Number-theoretic transform (NTT) based algorithm proposed in

[61]. We ignore overhead caused by additions or binary operations such as shift-

ing/or/and/xor to draw a simpler yet fair comparison. Assume polynomials have

degree slightly smaller than 2048. We need to perform 4096-sample NTT conver-

sions.

In [61] a special finite field FP where P = 0xffffffff00000001 is chosen. Also

the NTT or inverse-NTT (INTT) conversions of 4096 samples can be factorized

into smaller size (e.x. 64 sample) following the Cooley–Tukey FFT algorithm [64].

Conversions of no larger than 64 samples are implemented with shifting, addition

and fast modular reduction over P , which takes advantage of properties of P . The

NTT-based algorithm only requires 4096 integer multiplications per conversion when

multiplying twiddle factors. One polynomial multiplication requires two NTT con-

version, a coefficient-wise multiplication of two NTT domain vectors (4096 integer

multiplications) and one INTT conversion, which add up to a total of 16384 integer

multiplications. However, the Karatsuba algorithm that requires 3log 2048 = 177147

multiplications would be much slower.

Plus, the NTT-based algorithm is highly parallelizable hence more suitable for

a GPU implementation. In conclusion, the NTT-based algorithm outcomes the

Karatsuba algorithm on a GPU. Following the ideas in [61], we developed 4096-point

NTT/INTT conversions for a GPU. Each NTT conversion takes 0.75 µs and each

INTT conversion takes 1.45 µs. Every ciphertext multiplication contains l2 + l NTT

converions and l INTT conversions. The overhead of multiplications and additions

108



in NTT domain is negligible.

7.2.2 Modulus Selection For Efficient Flattening

Ciphertext multiplications, although taking 16-bit norm polynomials as input, pro-

duce polynomials with ln times larger norm (less than 64-bit) as output. A Flatten

operation is expected to reformat the ciphertext coefficients back to 16-bit. The

Flatten includes (e.x. 64-bit) integer additions with shifting and reductions modulo

q. We choose the coefficient modulus q as a power of 2 for efficient modulo reduction

and a prime polynomial degree n as in the classic NTRU cryptosystem.

A ciphertext multiplication takes l + 1 polynomials in Rq as input. The Bit-

Decomp takes no time. Then the multiplication algorithm produces l polynomials

with 64-bit coefficients. BitDecomp−1() or Flatten() = BitDecomp(BitDecomp−1()) is

achieved with a sequence of 16-bit additions with carries, which adds 2.66 µs.

7.2.3 Performance of the Proposed Methods

In our experiments, we first fix the dictionary size N = 220 and the FHE parameters

according to the noise analysis given in Section 7.1.4 and the security parameter

of F-NTRU scheme. We use the ring Zq/ (xn + 1) where the coefficient modulus is

q = 2192 and the degree is n = 2039. Following the security analysis from [20], the

Hermite factor for the chosen values is 1.00525 which provides 128-bit security.

Based on previous analysis of bandwidth requirements and computation time,

Fig. 7.1 illustrates a comparison of several algorithms with selected yet typical

parameters. The hybrid algorithm becomes a KO construction when s = 0. And

when k = 2, it is a basic (non-recursive) KO construction. With the help of those

figures, we may find optimal parameters that has low bandwidth and latency.
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As shown in Table 7.1, a standard comparison algorithm has minimum band-

width requirement. The same fact is reveal in Fig. 7.1a: a hybrid algorithm, when

applying standard comparison on more bits, i.e. when choosing a larger s, has a

lower bandwidth requirement. Then as we apply more iterations of KO, i.e. as

k increases from 2, bandwidth requirement drops significantly. The value k, al-

though affects latency of KO, has insignificant influence on hybrid schemes. Hence,

a optimal hybrid scheme with a certain s would choose k with minimal bandwidth.

The number of multiplications in a hybrid method is expressed as a formula

in Table 7.1. The fact that one part of the formula involves s while another part

involves k makes Fig. 7.1b more complicated (rather than increasing/decreasing

along with s). We can see that when s = 8, the latency is lower than all other cases.

And choosing s = 4, 8, 12 does not gives a critical difference in latency. However,

when comparing s = 4, 8, 12 in Fig. 7.1a, one may easily notice the remarkable

difference in bandwidth.

The hybrid methods outcome the (recursive) KO construction on bandwidth

requirements and computation time. Within the hybrid methods, if the priority

is to reduce bandwidth requirement, select s = 12 and k = 5; if the priority is

efficiency, select s = 8 and k = 8. These two parameter sets are adopted in Table

7.4. For single-keyword search, the hybrid scheme with s = k = 8 requires 37.7% less

bandwidth and costs half the time, comparing to those of the KO construction with

k = 9 iterations. However, for multi-keyword scenarios, the Aggregation weights

most of the latency. Therefore the advantage of hybrid methods is clear.

Finally, the size of the output ciphertexts depends on the number of URLs

that we return t in the multikeyword scenario with respect to the inequality from

Section 7.1.3, t < bn/ log T c −m where n is 2039. We set dlog T e = 40 so that the

indexed URL set L can have up to a billion URLs. Therefore for 2 keywords, we

110



afford sending back at most t = 49 URLs and for 3 keywords, t = 48 at most. In each

case the server sends back t+ 1 encrypted coefficients of the resulting t-degree URL

polynomial and each coefficient is represented in a separate ciphertext. In order to

increase t, we have to choose a larger degree for the FHE setup, which would end

up increasing both the bandwidth and the computation time. In the single keyword

scenario, we choose to limit the number of URL outputs t = 50, so that the result

fits into a single ciphertext following the relation tdlog T e ≤ n from Section 7.1.3.

Note that in this case, if we want to increase the number of output URLs t, we can

do so by increasing the bandwidth and sending back ñ ciphertexts each carrying n

bits, as long as t ≤ ñn
dlog T e holds.
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Chapter 8

Conclusion

In this dissertation, we adapted the most fundamental programming problems to

be used in real world fully homomorphic encryption applications. To this end, we

analyzed the existing methods, proposed new algorithms and optimized them with

respect to the cost of homomorphic evaluations. We also improved our solutions by

utilizing different encoding and packing methods to achieve the best communication

and computation efficiency.

This work first explores advances in word-based homomorphic encryption. Di-

rectly addressing the weakest points of the current word-based approach, we pro-

pose an assortment of solutions to challenging algorithmic bottlenecks that have

hampered existing systems from exploiting the full utility of ring operations in large

characteristic. As our starting point, we have proposed three distinct approaches to

inversion. These lead to efficient algorithms for division, zero test, equality check,

thresholding, comparison, and square root, mostly in terms of approximation-based

algorithms. While many of these operations involve unsurprisingly high degree poly-

nomials (hence require evaluation of deep circuits), our implementation experiments

give reasonable timings for limited applications. The most practical use of these
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techniques remains in applications where all but a small number of gates are ad-

dition and multiplication gates, with approximation-based algorithms applied only

just before decryption. While we have focused on the F-NTRU variant of the Stehlé

and Steinfeld scheme, much of what we explore here is system agnostic and can be

adapted to any word-based FHE.

We next tackled the encrypted sorting problem and proposed two depth op-

timized sorting algorithms for efficient homomorphic evaluation. Circuit depth is

intimately related to the parameter sizes in leveled homomorphic encryption imple-

mentations and therefore directly affect the overall performance of the homomorphic

circuit evaluation. Existing sorting algorithms are not optimized for homomorphic

evaluation. To close this gap we presented the depth analysis for several classical

sorting algorithms: Bubble sort, Insertion Sort, Odd Even Sort, Odd Even Merge

Sort, Merge Sort, and Bitonic Sort. Inspired by the performance of Merge Sort

we introduced two new depth-optimized sorting algorithms which achieve a circuit

depth of O(log(N) + log(`)). To study the real-life performance of our sorting al-

gorithms, we instantiated an NTRU based SHE scheme in the DHS library and

presented simulation results for selected array lengths. For this we determined the

ideal parameter choices, e.g. modulus cutting levels to cope with noise growth and

Hermite work factor estimates to ensure reasonable security margins. The imple-

mentation performs favorably achieving significant speedup over the proposal in [39]

for similar array lengths.

We proposed another method, polynomial rank sort, which performs significantly

better than previous algorithms and provides a depth and cost-optimized circuit for

homomorphic sorting. It reduces the number of ciphertext multiplications to O(N2)

for sorting an array of N elements without packing. Furthermore, the algorithm is

suitable for parallel implementation as the algorithm steps are designed to take ad-
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vantage of multiple functional units. When batching is enabled, we sort the whole

list with only N/2 comparisons followed by only N multiplications. Proposed batch-

ing method also reduces the ciphertext size from kN to N where k is the bit-length

of the input elements. Although costly key switching operations are required to

enable batching, the timing results demonstrate that its overall advantage proves

to be much more significant than its overhead in BGV homomorphic encryption

scheme. The new algorithm (along with its two precursor algorithms in our ear-

lier work, namely direct and greedy sort algorithms) is generic and can be used

with other recent FHE schemes. Although we expect a performance gain when the

new algorithm is implemented using other FHE schemes, this, however, depends on

the choice of the scheme and the trade-off between the costs of key switching and

ciphertext multiplication, which is left as future work.

This work is also the first to present a blind web search engine prototype in

which both keywords and responses are encrypted in an end-to-end fashion. This

model can be be used in specialized indexes of the web that is focused on specific

content and can be eventually extended to a generic web search engine. We used

a hybrid adaptation of KO PIR for search look-ups. We also explored the realm of

multi-keyword search and combined our homomorphic search with a PSI solution

that uses the roots of a polynomial to embed information. This allows user to

submit search queries with multiple keywords. We implemented our search model

using leveled FHE scheme F-NTRU and by enabling an NVIDIA Titan Xp with

3840 CUDA cores. Our experiments show that what was possible in theory, is also

possible in practice if we index a targeted portion of the web as we can retrieve

results in under 0.2 milliseconds for a single keyword and around 3.2 milliseconds

for a 2-keyword search.
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Appendix A

Appendix

A.1 Truth tables for boolean gates.

a b a⊕ b a ∧ b a ∨ b ¬a ¬b ¬(a⊕ b) ¬a ∧ b

0 0 0 0 0 1 1 1 0

0 1 1 0 1 1 0 0 1

1 0 1 0 1 0 1 0 0

1 1 0 1 1 0 0 1 0
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A.2 Truth tables for comparison and equality check.

a b a < b a = b

0 0 0 1

0 1 1 0

1 0 0 0

1 1 0 1

a1 a0 b1 b0 (a1a0) < (b1b0) (a1a0) = (b1b0)

0 0 0 0 0 1

0 0 0 1 0 0

0 0 1 0 0 0

0 0 1 1 0 0

0 1 0 0 1 0

0 1 0 1 0 1

0 1 1 0 0 0

0 1 1 1 0 0

1 0 0 0 1 0

1 0 0 1 1 0

1 0 1 0 0 1

1 0 1 1 0 0

1 1 0 0 1 0

1 1 0 1 1 0

1 1 1 0 1 0

1 1 1 1 0 1

116



A.3 Greedy sort example.

We demonstrate a simple example for an input vector with four elements A =

〈[1], [3], [4], [3]〉. The comparison matrix M will be evaluated as

M =



0 [1] [1] [1]

[0] 0 [1] [0]

[0] [0] 0 [0]

[0] [1] [1] 0


.

The outputs for N = 4 can be computed as follows. Note that in each group θr,i

selects only one index i value for each output position r. At the end we have the

output vector B = 〈[1], [3], [3], [4]〉 i.e. encryptions of the ordered input numbers
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〈1, 3, 3, 4〉.

B0 = A0θ0,0 ⊕ A1θ0,1 ⊕ A2θ0,2 ⊕ A3θ0,3

= A0(M01M02M03)⊕ A1(M10M12M13)

⊕ A2(M20M21M23)⊕ A3(M30M31M32)

= A0 · [1]⊕ A1 · [0]⊕ A2 · [0]⊕ A3 · [0]

= A0

B1 = A0θ1,0 ⊕ A1θ1,1 ⊕ A2θ1,2 ⊕ A3θ1,3

= A0[M10(M02M03)⊕M20(M01M03)⊕M30(M01M02)]

⊕ A1[M01(M12M13)⊕M21(M10M13)⊕M31(M10M12)]

⊕ A2[M02(M21M23)⊕M12(M20M23)⊕M32(M20M21)]

⊕ A3[M03(M31M32)⊕M13(M30M32)⊕M23(M30M31)]

= A0 · [0]⊕ A1 · [0]⊕ A2 · [0]⊕ A3 · [1]

= A3

B2 = A0θ2,0 ⊕ A1θ2,1 ⊕ A2θ2,2 ⊕ A3θ2,3

= A0[M10(M20(M03)⊕M30(M02))⊕M20(M30M01)]

⊕ A1[M01(M21(M13)⊕M31(M12))⊕M21(M31M10)]

⊕ A2[M02(M12(M23)⊕M32(M21))⊕M12(M32M20)]

⊕ A3[M03(M13(M32)⊕M23(M31))⊕M13(M23M30)]

= A0 · [0]⊕ A1 · [1]⊕ A2 · [0]⊕ A3 · [0]

= A1

B3 = A0θ3,0 ⊕ A1θ3,1 ⊕ A2θ3,2 ⊕ A3θ3,3

= A0(M10(M20M30))⊕ A1(M01(M21M31))

⊕ A2(M02(M12M32))⊕ A3(M03(M13M23))

= A0 · [0]⊕ A1 · [0]⊕ A2 · [1]⊕ A3 · [0]

= A2
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A.4 Direct sort example.

If we demonstrate an example for Direct Sort using the same input vector

A = 〈[1], [3], [4], [3]〉

, the comparison matrix M and the index vector σ will be obtained as

M =



0 [1] [1] [1]

[0] 0 [1] [0]

[0] [0] 0 [0]

[0] [1] [1] 0


σ =

(
[0] [2] [3] [1]

)
.
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Then, the elements of the sorted set are obtained as follows

B0 = (σ0 � 0) ·A0 ⊕ (σ1 � 0) ·A1 ⊕ (σ2 � 0) ·A2 ⊕ (σ3 � 0) ·A3

= [1] ·A0 + [0] ·A1 + [0] ·A2 + [0] ·A3

= A0

B1 = (σ0 � 1) ·A0 ⊕ (σ1 � 1) ·A1 ⊕ (σ2 � 1) ·A2 ⊕ (σ3 � 1) ·A3

= [0] ·A0 + [0] ·A1 + [0] ·A2 + [1] ·A3

= A3

B2 = (σ0 � 2) ·A0 ⊕ (σ1 � 2) ·A1 ⊕ (σ2 � 2) ·A2 ⊕ (σ3 � 2) ·A3

= [0] ·A0 + [1] ·A1 + [0] ·A2 + [0] ·A3

= A1

B3 = (σ0 � 3) ·A0 ⊕ (σ1 � 3) ·A1 ⊕ (σ2 � 3) ·A2 ⊕ (σ3 � 3) ·A3

= [0] ·A0 + [0] ·A1 + [1] ·A2 + [0] ·A3

= A2

As expected, the output vector isB = 〈A0, A3, A1, A2〉 or an encrypted 〈[1], [3], [3], [4]〉.

A.5 Polynomial rank sort example.

Similar to Greedy and Direct Sort, we demonstrate the working of the new method

in an example with the same encrypted input set A = 〈[1], [3], [4], [3]〉 and the
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comparison matrix:

M =



0 [1] [1] [1]

[0] 0 [1] [0]

[0] [0] 0 [0]

[0] [1] [1] 0


.

The surrogates are evaluated as

P0(x) = (M01 +M10x) · (M02 +M20x) · (M03 +M30x)

= [1] · [1] · [1]

= [1]

P1(x) = (M10 +M01x) · (M12 +M21x) · (M13 +M31x)

= [x] · [1] · [x]

= [x2]

P2(x) = (M20 +M02x) · (M21 +M12x) · (M23 +M32x)

= [x] · [x] · [x]

= [x3]

P3(x) = (M30 +M03x) · (M31 +M13x) · (M32 +M23x)

= [x] · [1] · [1]

= [x]

and finally, the output can be seen as a polynomial, whose coefficients are the
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elements of the input set ordered in terms of their magnitudes

B(x) = A0 · P0(x) + A1 · P1(x) + A2 · P2(x) + A3 · P3(x)

= A0 · [1] + A1 · [x2] + A2 · [x3] + A3 · [x]

= A0 + A3x+ A1x
2 + A3x

3

= [1 + 3x+ 3x2 + 4x3].
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[21] Martin Albrecht, Shi Bai, and Léo Ducas. A subfield lattice attack on over-
stretched ntru assumptions. In Proceedings, Part I, of the 36th Annual Inter-
national Cryptology Conference on Advances in Cryptology — CRYPTO 2016
- Volume 9814, pages 153–178, Berlin, Heidelberg, 2016. Springer-Verlag.

[22] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster, attribute-
based. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology –
CRYPTO 2013, pages 75–92, Berlin, Heidelberg, 2013. Springer Berlin Heidel-
berg.

[23] Léo Ducas and Daniele Micciancio. Fhew: Bootstrapping homomorphic en-
cryption in less than a second. In Elisabeth Oswald and Marc Fischlin, editors,
Advances in Cryptology – EUROCRYPT 2015, pages 617–640, Berlin, Heidel-
berg, 2015. Springer Berlin Heidelberg.
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[43] Gizem S. Çetin, Hao Chen, Kim Laine, Kristin Lauter, Peter Rindal, and Yuhou
Xia. Private queries on encrypted genomic data. BMC Medical Genomics,
10(2):45, Jul 2017.

[44] Miran Kim, Yongsoo Song, and Jung Hee Cheon. Secure searching of biomark-
ers through hybrid homomorphic encryption scheme. BMC Medical Genomics,
10(2):42, Jul 2017.

[45] Adi Akavia, Dan Feldman, and Hayim Shaul. Secure search on encrypted data
via multi-ring sketch. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’18, pages 985–1001, New York,
NY, USA, 2018. ACM.

[46] Adi Akavia, Craig Gentry, Shai Halevi, and Max Leibovich. Setup-free secure
search on encrypted data: Faster and post-processing free. Cryptology ePrint
Archive, Report 2018/1235, 2018.

[47] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information
retrieval. In Proceedings of the 36th Annual Symposium on Foundations of
Computer Science, FOCS ’95, pages 41–, Washington, DC, USA, 1995. IEEE
Computer Society.

[48] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private
information retrieval. J. ACM, 45(6):965–981, November 1998.

[49] E. Kushilevitz and R. Ostrovsky. Replication is not needed: single database,
computationally-private information retrieval. In Foundations of Computer Sci-
ence, 1997. Proceedings., 38th Annual Symposium on, pages 364–373, Oct 1997.
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