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Abstract 
   Scientists have been looking towards the stars recently with the interest of finding 

Earth-like planets outside of our system, yet we have very little understanding of the planet formation 

process. A system of partial differential equations modeling the gas around a proto-star can be solved to 

find steady solutions where off-core local extrema form in the density. The off-core local extrema I 

found demonstrates the early formation of planets through gas accretion around these extrema in the 

steady state solution. 
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Executive Summary 
  As we look to understand life on our own planet we look for life elsewhere in the universe. The 

scientific community is currently looking to stars outside of our own system to host planets that may 

have life on them. While many exoplanets are being found in systems across our galaxy with a wide 

range of sizes, compositions and proximity to the host star. The diversity of exoplanets clearly indicates 

that there is a fundamental process in which planets are created that is not understood. To gain an 

understanding of the process a model needed to be developed to describe the gaseous cloud remaining 

around the newly formed protostar.  

  This model is created with the following assumptions: the gaseous cloud surrounding the newly 

formed protostar is homogenous and radially symmetric and has collapsed into a purely two-

dimensional disk. While this is a simplification, it does hold with the Nebula Theory, the currently 

accepted theory of solar system formation. Two equations can be used to describe the gaseous cloud 

once simplified and non-dimensionalized. 

𝜌′′ = −𝜑 −
𝜌′

𝑟
 

𝜑′′ = 𝑐𝜌 −
𝜑

𝑟
 

By solving this system of differential equations for a steady state solution entirely dependent on 

the initial density, a density curve can be used to demonstrate the possible formation of protoplanets in 

a solar system. For example with an initial density of 1.8*10-11 kg/m3 three protoplanets are indicated as 

possibly forming by the number of off-core local maximum points. 
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The number of off-core densities is shown below to be related to the initial density of the 

gaseous disk surrounding the star. As the initial density of the disk increases the number of potential 

protoplanets forming in the system also increases. 

 

  While this model is based off a few assumptions, it does provide for a starting point of 

developing a full model of planetary formation. The equations can be expanded to take into account a 

non-homogenous disk without radial symmetry to better predict the wide myriad of planetary systems 

we have found in our galaxy. 
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Introduction  
  The basis for this project is the paper ‘Steady states of self-gravitating incompressible fluid in 

two dimensions’ published in the Journal of Mathematical Physics authored by Mayer Humi. The goal of 

that paper was to derive the equations describing a solar system briefly after the protostar has formed 

and the remaining gasses are still rotating around it. These gasses later form planets and thus the 

system of equations that describes them can be used to locate and describe the number of planets 

possible forming in the system. This paper explores a diverse selection of possible initial equations and 

conditions in the search for a solution that results in multiple densities off core that are local maxima. 

These results will imply the formation of protoplanets in star systems. This steady state solution can be 

used to better analyze planetary system development in proto-stars and thus aide in the search for 

exoplanets.  

 For the sake of brevity the following terms are used in the Matlab function which can be found at the 

end:  

ρ(𝑟) = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑎𝑡 𝑟𝑎𝑑𝑖𝑢𝑠 𝑟  

φ(𝑟) = 𝑔𝑟𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑓𝑖𝑒𝑙𝑑 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑎𝑡 𝑟𝑎𝑑𝑖𝑢𝑠 𝑟  

𝑐 = 4𝜋𝐺  

  

Background  
  The birth of a solar system is a long drawn out process, with many complex variables and large 

systems of equations describing all of the conditions and parameters. How a star forms is dependent on 

its location and the material that the star draws from, resulting in the large gamut of stars we see in the 

night sky. Each one is unique in its composition, processes and life cycle, with literally billions of 

examples within our sight but far away from our grasp.  
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Stellar Formation  

  Stars form in large clouds of molecular hydrogen across the universe. An individual cloud may be 

anywhere from a few parsecs to a few thousand light-years in diameter. The larger clouds do not form 

stars light-years in radius, but instead form thousands of stars inside their depths. These large 

occurrences of star formations are called stellar nurseries because hundreds and thousands of stars are 

born in these regions. We look to giant molecular clouds like the Orion Molecular Cloud Complex in our 

local region to observe this process in our relative vicinity.   

Jeans Instability  

  When a cloud reaches sufficient size dependent on its composition and density, it will begin to 

collapse under self-gravitation. The Jeans length is the radius required for a cloud of specific density and 

composition to begin this process. To derive the Jeans length, start with the virial theorem that states 

that the total kinetic energy of a system, multiplied by two plus the potential energy of the system must 

be zero (Baez, n.d.). 

    

  

Where K is the kinetic energy of the gas molecules and U is the gravitational potential energy of the 

cloud of gas in the situation. Taking the cloud to be spherical, the spheres gravitational potential energy 

is  

    

  

Where G is the gravitational constant, M is the total mass of the cloud, and R is the radius of the cloud. 

Similarly, the kinetic energy is  

    

http://scienceworld.wolfram.com/physics/KineticEnergy.html
http://scienceworld.wolfram.com/physics/KineticEnergy.html
http://scienceworld.wolfram.com/physics/KineticEnergy.html
http://scienceworld.wolfram.com/physics/GravitationalPotentialEnergy.html
http://scienceworld.wolfram.com/physics/GravitationalPotentialEnergy.html
http://scienceworld.wolfram.com/physics/SphereGravitationalPotentialEnergy.html
http://scienceworld.wolfram.com/physics/SphereGravitationalPotentialEnergy.html
http://scienceworld.wolfram.com/physics/SphereGravitationalPotentialEnergy.html
http://scienceworld.wolfram.com/physics/GravitationalConstant.html
http://scienceworld.wolfram.com/physics/GravitationalConstant.html
http://scienceworld.wolfram.com/physics/GravitationalConstant.html
http://scienceworld.wolfram.com/physics/KineticEnergy.html
http://scienceworld.wolfram.com/physics/KineticEnergy.html
http://scienceworld.wolfram.com/physics/KineticEnergy.html
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Where N is the number of molecules, k is Boltzmann's constant, T is the temperature, and m is the 

molecular mass (Baez, n.d.). Plugging it gives  

    

  

But  

    

  

Where ρ is the cloud's mass density, so plugging this in and solving for R gives the Jeans length as  

    

  

  As the cloud collapses, it does so isothermally meaning the Jeans Mass (the mass equivalent to 

the Jeans Length) decreases as the density increases. This is because the thermal adjustment timescale 

is much shorter than the free-fall time which is (Gϱ)-1/2. When the Jeans Mass is half the original value, 

the cloud can split into two and so on. As density increases and opacity decreases the processes 

becomes more and more adiabatic. The conditions for fragmentation during adiabatic collapse can be 

derived with the ideal gas law.  

For adiabatic processes the following is true  

  

http://scienceworld.wolfram.com/physics/BoltzmannsConstant.html
http://scienceworld.wolfram.com/physics/BoltzmannsConstant.html
http://scienceworld.wolfram.com/physics/BoltzmannsConstant.html
http://scienceworld.wolfram.com/physics/Temperature.html
http://scienceworld.wolfram.com/physics/Temperature.html
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For any ideal gas by the Ideal Gas Law  

  

Thus by the polytrophic equation of state is reduced to  

  

So Jeans mass can be reduced to  

  

Thus  

  

If the adiabatic index   Jeans mass increases with increasing density while if   Jeans mass 

decreases with increasing density. The collapse and fragmentation occurs until the fragments are on the 

order of a solar mass (Kippenhahn and Weigert 1990).  The flaw with this model is it requires uniform 

initial density, constant temperature fixed by radiative processes and does not account for rotation, 

magnetic fields or turbulence. To account for non-uniform initial density, or more importantly 

considering the background density as clouds of gas have continuous boundaries. However, this 

disregarding of the background term is justified by the expansion of the Universe as the two terms 

surprisingly cancel out (Falco, et al. 2013).  

History of Solar System Formation Theories  

  

  The first proposition of a model of the origin of the solar system was made by Rene Descartes in 

1662. The premise of his model was that the Universe was filled with currents and vortices of particles 

and our solar system had condensed on a larger vortex that then contracted. However because this was 

formulated before Newton had published his theory of gravity, Descartes had very little to base it off of 
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other than intuition. Newton’s paper and formulation of gravity paved the way for much more rigorous 

model development over the next couple of centuries.  

Tidal Theory  

  The tidal theory was the first proposed theory after the nebulae hypothesis, in order to resolve 

the angular momentum problem, by James Jeans in 1917. The theory formulated the planets formed 

due to another star approaching the Sun, and the tidal forces of the passing star upon the Sun would 

pull a filament of matter away from the Sun (Woolfson, 1992) . The filament would be pulled around the 

Sun in an elliptical orbit due to the gravitational attraction of the other star. The matter in the filament 

coalesced into the planetesimals that over time aggregated enough mass to form the planets of our 

system today. This theory however was shown to be unlikely as planets formed in this matter would not 

have had the required angular momentum to avoid being reabsorbed by the Sun nor the arrangement of 

inner rocky planets and outer gas ones (Woolfson, 1992). 

  

Figure 1 The Tidal Theory as proposed by Jean 

The Chamberlin-Moulton model  

  Forest Moulton in 1900 proposed a model based off of pictures of “spiral nebulas” (Cremin & 

Williams, 1968). While it was later shown these were galaxies instead of star forming nebulas, the 
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premise was that the protostar would eject filaments due to tidal forces from a passing star. These 

filaments would could and form the planets however, this model was incompatible with the angular 

momentum of Jupiter, but it was the first model to propose planetesimals accretion which is widely 

considered to be an important factor in protoplanet development (Cremin & Williams, 1968).  

Lyttleton’s model  

In 1937 Ray Lyttleton proposed a model similar to the tidal theory where the two stars collided 

as opposed to just pass by (Cremin & Williams, 1968). The majority of one star was absorbed by the 

other, with the remaining star mass splitting in two forming Jupiter and Saturn and the filament 

connecting the two coalescing into the remaining planets. In 1940 Lyttleton refined the model to include 

a binary star system and our Sun (Cremin & Williams, 1968). The binary stars would merge and then 

separate with the filament being pulled by our Sun to form the planets. This model however is not likely 

due to the rarity of occurrence and no evidence of a local binary system in our Sun exists.  

Band-Structure model  

  Hannes Alfven developed a model in 1954 where the nebula around the protostar became 

banded due to EM effects amplifying the rotational forces. Four distinct bands formed, A-cloud which 

was mostly helium, B-cloud which was mostly hydrogen, C-cloud which was mostly carbon and D-cloud 

mostly silicon and iron. Grains of dust in A-cloud led to the creation of Mars and the Moon (pre-capture 

by Earth) while the B-cloud condensed into Mercury, Venus and Earth. The C-cloud formed the outer 

planets and Kuiper objects such as Pluto and Triton formed from the D-cloud. This model is unlikely due 

to the known composition of planets, their locations and centrifugal force dynamics.  

Interstellar cloud theory  

  Soviet astronomer Otto Schmidt devised a theory that the Sun, already formed to near its 

current form, passed through an interstellar cloud of gas and dust in 1944 (Woolfson, 1992). The Sun 

then pulled part of the cloud away with it which would form the planets. This process would solve the 

issue of the angular momentum (Cremin & Williams, 1968) but however it was shown by Victor Safronov 

that this process would take longer than would be allowed under calculations of the Solar System’s 

determined age and thus this theory was discarded (Cremin & Williams, 1968).  
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Hoyle’s theory  

  Hoyle developed a hypothesis in 1944 where a companion star to the Sun went either nova or 

supernova (Cremin & Williams, 1968). This event caused some of the mass of the Sun to break off from 

the protostar and begin to form the planets. The magnetic couple of the gas ejected and the Sun would 

act as a transfer for the angular momentum to be sapped away from the Sun and into the majority of 

the mass for the planets, or Jupiter. This model correctly agrees with the mass and composition of the 

planets along with the angular momentum distribution but does not explain the belting of the planets 

and the ratio of mass in the terrestrial planets. Lyttleton concluded that the terrestrial planets must 

have formed as a result of tidal forces breaking up a larger protoplanet in conjunction with Hoyle’s 

theory (Cremin & Williams, 1968). 

Kuiper’s theory  

  Gerard Kuiper put forth a theory in 1944 that the density distribution of the protoplanetary disk 

would determine if a planetary system formed or a stellar companion. By arguing that large gravitational 

instabilities would eventually form due to the density distribution the disk would collapse into either 

multiple gaseous planets or a secondary star. By this theory, the two distinct types of planets formed 

due to the Roche limit but this theory did not explain the speed (or lack thereof) of the Sun’s rotation 

and thus angular momentum issue.  

Whipple’s theory  

  Fred Whipple devised a scenario in 1948 where a single cloud contracted and formed the Sun. 

This cloud would have had little to no angular momentum and just enough mass to form the protostar. 

This event however would draw in a secondary cloud, smaller than the first but with a large angular 

momentum. This second cloud would collapse into the planets we currently have, with the accretion 

process reducing eccentricity of the orbits. The weakness with this scenario was that the majority of the 

final results are based heavily off of a priori assumptions and not quantitative calculations.  

Protoplanet theory  

  The Protoplanet Theory was first proposed by W. H. McCrea in 1960 and is centered on the 

concept that there was no difference between the solar nebula and the protoplanetary one with the 

planets individually forming at the same time as the Sun and then being captured by gravity (Cremin & 

Williams, 1968). The model started with a dense interstellar cloud forming a stellar cluster. This collapse 
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would create turbulence and pockets of high pressure termed floccules. McCrea calculated while a large 

number of these floccules coalescing would create a star, a smaller number could form protoplanets 

around a star (Cremin & Williams, 1968). By forming from randomly spinning floccules, the star would 

naturally have little angular momentum while a body formed from just a few would have a better 

chance of having more angular momentum. This theory does not explain the orbits of the planets all 

being in the same direction, an unlikely feat if all of the planets formed independently.  

Cameron’s theory  

  American astronomer Alastair G. W. Cameron formed a hypothesis in 1962 where a protosun 

formed of greater mass than our current Sun (Woolfson, 1992). The star becomes unstable and breaks 

apart into smaller parts causing the magnetic lines of force to twist.  This allows for some of the fallen 

apart star to form a disk and cool down (Cremin & Williams, 1968). This disk then forms the planets that 

we currently have, but it does not provide a solid argument for the arrangement of planets in our Solar 

System however.  

Capture theory  

  The capture theory first proposed in 1964 by M. M. Woolfson proposed that tidal forces upon a 

nearby, low-density protostar would have drawn enough material from it to halt the fusion core and 

have it collapse to form Jupiter (Woolfson, 1992). The rest of the planets would have formed from the 

mass drawn away from the neighbor star. However this model proposes a very big difference between 

the age of the Sun and the rest of the solar system, something we have evidence against (Cremin & 

Williams, 1968).  

Solar Fission theory  

  The solar fission theory first proposed in 1951 by Louis Jacot reintroduced the ideas of swirling 

vortices across space time of varying sizes and degrees (Louis, 1981). This meant that the planets formed 

by being expelled from the Sun one at a time and was dragged outward by these vortices. The asteroid 

belt formed from a shattered planet possibly due to a collision with Mars. Planetary moons were formed 

in the same way, except being expelled from their host planet as opposed to the Sun (Louis, 1981). Jacot 

used the unknown vortex dynamics to explain the differences in the planets. While this does provide an 

adequate answer to the angular momentum quandary, it is disproven by the known age of the planets 

with the smaller terrestrial planets forming before the larger Jovian bodies (Louis, 1981).  
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  These theories were all formulated to try to solve in major problems with the widely accepted 

nebula theory, the largest of which is the distribution of angular momentum. However, since the nebula 

theory only does not account for the distribution as opposed to contradict it, it is widely accepted since 

the previous theories all contradicted some observed evidence about the formation of the solar system.  

Formation of Solar System by Nebula Theory  

  The generally accepted method of planet formation is accretion, where tiny amounts of dust 

began to accumulate and through collisions and gravity slowly became larger and larger. This theory is 

based off the Nebula Theory. Because of the chaotic nature of the inner Solar System, the rare metals 

that were present in the nebula were the ones that formed the majority of the planetesimals. Some of 

the angular momentum of the sun was leeched onto the terrestrial planets due to the drag of the 

planets through the remaining, slower orbiting gas. Beyond the frost line, or where icy compounds were 

able to remain solid, the Jovian planets formed. Due to an overabundance of these ices, the Jovian 

planets grew large enough to swallow up the remaining hydrogen and helium gasses the Sun did not 

encapsulate.  Pressure systems in the gas caused large amounts to be stopped at the frost line, allowing 

for Jupiter to reach its massive size with Saturn forming a few million years later picking up the leftover 

gasses. By the time Uranus and Neptune started to form, the Sun reached a period in its life cycle where 

the stellar winds were strong enough to blow away much of the remaining disc material. Current models 

predict Uranus and Neptune formed closer to the Sun than they currently reside and slowly migrated 

outwards. By the time the Sun was 5 million years old most of the gas and dust had been blown away by 

stellar winds ending the formation of planets.  
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Figure 2 Artist Illustration of proto-planet formation in a Solar System  

  

  The inner Solar System ended the formation epoch with 50-100 size planetary embryos which 

collided and merged until forming the four terrestrial planets and their respective moons. This process 

would have required eccentric orbits of the large planetary bodies, a stark contrast from the nearly 

circular orbits of the modern planets. The leading hypothesis behind this is a gravitation wake made of 

smaller bodies that were caught by the gravitational pull of the large planetoids and formed tails that 

slowed them down and then either merged with their planet leaders or were slingshot off to form the 

asteroid belt. Large bodies did not form in the region currently known as the asteroid belt due to tidal 

forces from Jupiter’s gravity which forced the bodies to shatter upon collision as opposed to accrete like 

the bodies of the inner solar system. Some of the larger bodies were forces out of the asteroid belt and 

impacted the inner planets. These objects are thought to have delivered the water currently found on 

Earth and hypothesized on Mars.  
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Figure 3 Diagram of the Formation of the Solar System  

Constructing the Model 

  Following the derivation by Humi (Humi, 2006) we start with the hydrodynamic equations of 

inviscid and incompressible stratified fluid with u=(u,v) being the velocity vector, ρ is the density, p is the 

pressure and ψ is the gravitational field strength: 

𝑢𝑥 + 𝑣𝑦 = 0 

𝑢𝜌𝑥 +  𝑣𝜌𝑦 = 0 

𝜌(𝑢𝑢𝑥 + 𝑣𝑢𝑦) =  −𝑝𝑥 −  𝜌𝜑𝑥  

𝜌(𝑢𝑣𝑥 + 𝑣𝑣𝑦) =  −𝑝𝑦 −  𝜌𝜑𝑦  

∇2𝜑 = 4𝜋𝐺𝜌 
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The first equation describes the incompressibility of the cloud, the second details the 

conservation of mass. The third and fourth equations are the ones describing the momentum of the 

gas in the cloud and the final equation is that for the gravitational field of the cloud. All of the 

equations are nondimensionalized by scaling factors as follows: 

𝑥 = 𝐿𝑥~, 𝑦 = 𝐿𝑦~, 𝑢 =  𝑈0𝑢~, 𝑣 =  𝑈0𝑢~, 𝜌 =  𝜌0𝜌~ , 𝑝 =  𝜌0𝑈0
2𝑝~,

𝜑 =  𝑈0
2𝜑~ , 𝐺~ = 𝐺𝜌0

𝐿2

𝑈0
2 

The very basic case first considered is the one where h =1 and S= 0. S is chosen as a simple case 

as S can be any function. The first part of the case states that for all ρ the square of the first ρ 

derivative of the stream function is 1/ρ.  

ℎ(𝜌) =  𝜌𝜑𝜌
2 = 1 

𝜑𝜌
2 =

1

𝜌
 

 

To derive the system of equations to use in Matlab we substitute in the values for h and S to 

obtain the following.  

∇2𝜌 = −𝜑  

∇2𝜑 = 𝑐𝜌  

Converting these from Cartesian coordinates to polar coordinates and considering that both ρ 

and ψ are independent of the angle theta results in this new system via the following process. 

∇2𝑓 =
1

𝑟

𝑑

𝑑𝑟
(𝑟

𝑑𝑓

𝑑𝑟
) + 

1

𝑟2

𝑑2𝑓

𝑑𝜑2
 

  

 

This results in the following second order differential equations. All derivatives of the angle 

cancel out leaving the equations just dependent on the radial derivatives. 
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𝜌′′ = −𝜑 −
𝜌′

𝑟
 

𝜑′′ = 𝑐𝜌 −
𝜑

𝑟
 

This system of equations can also be solved analytically where α is √4𝜋𝐺 

𝜌(𝑟) = −
1

𝛼2
(𝛼 (−𝐶1 ∗ 𝐽0( √−𝛼 ∗ 𝑟) − 𝐶2 ∗ 𝑌0(√−𝛼 ∗ 𝑟) + 𝐶1 ∗ 𝐽0 ((−𝛼2)

1
4⁄ ∗ 𝑟) + 𝐶2 ∗ 𝑌0((−𝛼2)

1
4⁄ ∗ 𝑟)  

The coefficients are alternating C1 and C2 only because we are looking for a real solution. 

Sturm-Liouville Theory 

 These two equations need to satisfy some boundary conditions at both the interior of the cloud 

and the exterior, and we are hoping to find cyclic density of some degree in order to demonstrate 

multiple planetoids forming. These conditions make our problem and optimal candidate for a Sturm-

Liouville problem approach.  The classical Sturm-Liouville equation is (Sturm-Liouville theory, n.d.) 

−
𝑑

𝑑𝑥
[𝑝(𝑥)

𝑑𝑦

𝑑𝑥
] + 𝑞(𝑥)𝑦 = 𝜆𝑤(𝑥)𝑦 

An S-L problem is said to be regular if all functions are continuous on [a,b] and p(x), w(x) > 0 and has 

boundary conditions of the form (Sturm-Liouville theory, n.d.) 

𝛼1𝑦(𝑎) +  𝛼2𝑦′(𝑎) = 0 

𝛽1𝑦(𝑏) +  𝛽2𝑦′(𝑏) = 0 

Under these conditions, the eigenvalues of the problem are all real and can be strictly ordered. Each 

eigenvalue λn also has a unique eigenfunction with exactly n-1 zeroes in the interval (a,b) and these 

eigenfunctions form an orthonormal basis (Sturm-Liouville theory, n.d.) Therefore in a system in which 

we hope to find x number of planetoids forming, we look at the eigenfunction for λ2x+1 . This helps by 

providing an abstract foundation to our analytical problem. 
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Results  
  This system is solvable using the Matlab function bvp5c as demonstrated in the annotated 

Matlab function at the conclusion of the paper. The next step was to apply the function using selected 

boundary conditions.  

  The first few boundary conditions were chosen with normalized values for starting density at the 

core, no pressure at r tended to 1 (a normalized boundary) and the gravitational field was normalized to 

small values at the core with no gravity influence at the outer boundary. In figure set one the boundary 

conditions used are:  

 ρ(. 1) = 1 

ρ(1) = 0 

𝜑 (. 1) = −10 

𝜑 (1) = 0 
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The curve is not quite linear in nature so the thought process behind choosing the next 

boundary values was to see if the linearity was due to the ratio of density at the core and the gravity 

field strength being 1 to 10. In figure set two the following boundary conditions were considered:  

ρ(. 1) = 1 

ρ(1) = 0 

𝜑 (. 1) = −15 

𝜑 (1) = 0 
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As visible in the first figure, the shape taken by the density does indeed have a local maximum 

off the core, however it is still too close to the core to be considered an off-core density maximum we 

are looking for. In an attempt to accentuate this maximum the ratio between the density and the 

gravitational field strength at the core was increased from 1:15 to 1:25 in figure set three resulting in the 

following boundary conditions:  

ρ(. 1) = 1  

ρ(1) = 0 

𝜑 (. 1) = −25  

𝜑 (1) = 0 
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ρ(. 1) = 1 

ρ(5) = 0 

𝜑 (. 1) = −10 

𝜑 (5) = −.1 

. 1 ≤ 𝑟 ≤ 5 
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ρ(. 1) = 1 

ρ′(5) = 1 

𝜑 (. 1) = −10 

ρ(5) = 0 

. 1 ≤ 𝑟 ≤ 5 

 

 

  



Peter Dowling  

  

26 
 

    

The result is a promising description of a more well-defined binary star system than in our past 

results. Modifying these conditions should produce even more well-defined systems and possibly a 

system with a smaller proto-star or possibly even planetoid forming.   

  Now, all four conditions are assumed to be related to the condition of the density while the 

gravitational field strength is just determined by the system of equations. This still follows logically as we 

scaled the size of the initial protostar anyways, so the gravity field would be directly related to this 

scaling. With the ability to now control both the value of the density at both ends but the slope of the 

density curve, a shape more in line with our target may be reached.  
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ρ(. 1) = 1 

ρ′(. 1) = −5 

ρ(5) = 0 

ρ′(5) = −1 

. 1 ≤ 𝑟 ≤ 5 
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ρ(. 1) = 1 

ρ′(. 1) = −5 

ρ(5) = 0 

ρ′(5) = −.5 

. 1 ≤ 𝑟 ≤ 5 
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 This is where we split into 2 separate portions of the solution 

Portion 1 

ρ(. 1) = 1 

ρ′(. 1) = −4.5 

ρ(6) = .05 

ρ′(6) = −.3 

. 1 ≤ 𝑟 ≤ 6 

Portion 2 

ρ(6) = .05 

𝜑 (6) = −.3 

ρ(10) = 0 

𝜑 (10) = 0 

6 ≤ 𝑟 ≤ 10 
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 This result, while promising, exhibits this behavior because of our chosen characteristics of the 

initial cloud of gas. In these cases the initial density of the cloud has been so small that the scaling factor 

on the density in the equations approached zero, causing the density to be negligible in the solution. To 

remedy this I looked at the term itself and the constants and variables it depended on. 

𝐺 = 𝐺𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝜌0

𝐿2

𝑈2
 

 The L value is the diameter of the cloud in m, but obviously the diameter of our solar system is 

not the same as it was when it was forming. To determine the initial diameter of I looked at studies of 

stellar nurseries to estimate the average size of a protoplanetary nebula. The vast majority of such 

nebula were in the range of 50-150 AU (Rost, Eckart, & Ott, 2005) so a size of 100 AU is chosen. The U 

value is also estimated to be in the range of 30 m/s. I then use these values and the known value of the 

Gravitational Constant to graph the number of resulting off-core densities resulting from such a G value. 

 

 

  The following graphs are representative of the groups with same number of off-core densities. 

The scaling is variable and thus can be altered to better fit realistic models, however the shape matches 

our desired results.  
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Initial Density = 2*10-12 kg/m3 
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Initial Density = 7*10-12 kg/m3 
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 Initial Density = 1.8*10-11 kg/m3 
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Initial Density = 5.3*10-11 kg/m3 
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Initial Density = 1.24*10-10 kg/m3 
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Initial Density = 2.29*10-10 kg/m3 
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Initial Density = 4.42*10-10 kg/m3 
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Initial Density = 7.09*10-10 kg/m3 
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Initial Density = 1.125*10-9 kg/m3 
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Conclusion 
  The model produced depicts the formation of planetoids in a newly formed solar system with a 

direct variance between the initial density of the gaseous disc and how many planetoids possibly are 

forming. The scope of the project was to consider a singular, average proto-star with accompanying 

homogenous disc surrounding it to find how many planetoids could possibly form in such a system. This 

was accomplished by modeling the disc around the proto-star and finding the steady state solution to 

the equations describing the gas and looking for points of density off of the core with greater values 

than the surrounding thus indicating the clumping of gas. This gaseous clumping should theoretically 

through gravitational accretion form planetoids according to the Nebula Theory.  

  While the model clearly shows that the number of planets forming around a proto-star is related 

to the initial density of the gaseous disk surrounding the proto-star, the model is far from perfect. The 

model is a two dimensional simplification of a process in a three dimensional space. This simplification is 

why the planetoids formed all in the same plane, a very unlikely result practically and unlike our own 

Solar System. The consideration of a radially symmetric cloud of homogenous gas also eliminated w 

wide number of variables present in real-world examples. Very few stars form on their own, and often 

form in clusters even in binary systems, which this model also does not account for. Future work is 

planned by Professor Mayer Humi of the Mathematics Department of Worcester Polytechnic Institute to 

further develop the model and consider more of the variables involved in planetoid formation. 

    

Appendix  

Matlab Function  

function bscattmp2  

 %-------------------------------------------------  

 % h(p) = 1 ---------------------- S(p)=0  

 % r is radius  
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 % p is density  

 % b is gravitational field  

 %-------------------------------------------------  

   

 %-------------------------------------------------  

 % Initial solution required by bvp5c  

 %-------------------------------------------------  

solinit = bvpinit(linspace(0.1,1,2500),@a2init);  

   

 %-------------------------------------------------  

 % The solving of the reduced system using bvp5c  

 % followed by the plotting of the result  %--------

-----------------------------------------  sol = 

bvp5c(@a2ode,@a2bc,solinit);  

   

 x = linspace(0.1,1,2500);  

y = deval(sol,x);  v = 

y(1,:);  plot(x,v)    

 xlabel('Radius');  ylabel('Density');  legend('density(r)');  

title('Solution to system of ODEs using specified boundary values');  

   

shg  

    

 %-------------------------------------------------  

 % This is the equation vector with the following allocation  

 % r = r  

 % p = y(1)  

 % p' = y(2)  

 % p'' = y(3)-y(2)/r  

 % b = y(3)  

 % b' = y(4)  

 % b'' = y(1)-y(4)/r    

  %-------------------------------------------------      

function dydx = a2ode(r,y,c)         c = 

4*pi*(6.67e-11);         dydx = [y(2)                 

y(3)-y(2)/r                 y(4)  

                c*y(1)-y(4)/r];  
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  %-------------------------------------------------  

  % This function is the boundary value conditions on the interval [a b]  

  % p(.1) = x* {gotten from your paper, eqn 4.3}  

  % b(.1) = y* {mass of the star normalized to 1}  

  % p(1) = 0 {edge of the system}  

  % b(1) = 0 {from the paper you sent me this week}   

%-------------------------------------------------         

function res = a2bc(ya,yb)            res = [ya(1)-

x*                   ya(3)+y*                   

yb(1)                   yb(3)  

                  ];  

  %-------------------------------------------------  

  % This function is the 'guess' required by bvp5c  

  % for simplicty I just used a vector of ones   %--

-----------------------------------------------             

function v = a2init(r)  

            v = [1                 

1  

                1  

                1  

                ];    

              

Figure Sources  

All Figures, images and graphics are either original creations or reused with permission 

Figure 1: created by Peter Dowling 

Figure 2:  http://origins.jpl.nasa.gov/stars-planets/ra4.html 

Figure 3: created by Peter Dowling 

http://origins.jpl.nasa.gov/stars-planets/ra4.html
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