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Abstract

Internet application servers are currently designed to maximize resource efficiency by servicing
many thousands of users that may fall within disparate privilege classes. Pooling users into a shared
execution context in this way enables adversaries not only to laterally propagate attacks against other
clients, but also to use the application server as a “confused deputy” to gain escalated privileges
against sensitive backend data. In this work, we present the Single-use Server (SuS) model, which
detects and defeats these attacks by separating users into isolated, containerized application servers
with tailored backend permissions. In this model, exploited servers no longer have unfettered access
to the backend data or other users. We create a prototype implementation of the SuS model for the
WordPress content management system and demonstrate our model’s ability to neutralize real-world
exploits against vulnerable WordPress versions. We find that the SuS model achieves a high level
of security while minimizing the amount of code modification required for porting an application
server. In our performance evaluation, we find that the CPU and latency overheads of the SuS
model are very low, and memory consumption scales linearly. We generalize the SuS model to be
applicable to a wide range of application server and backend resource pairs. With our modularized
codebase, we port IMAP, a widely-used mail retrieval protocol, to the SuS model and find that doing
so requires minimal effort.
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1 Introduction

In the modern Internet, the number of clients requesting remote access to resources is orders of mag-
nitude larger than the number of application servers available to mediate that access. We therefore
say that the Internet follows a “many-to-one” architecture. While efficient from a computing re-
source perspective, pooling users into a shared execution context in this way has significant security
consequences for both the server’s backend data and the clients themselves. Should a malicious user
find a vulnerability in the application server, the user may compel the server to perform actions
that go above his or her intended privilege set. This manipulation allows the user either to set up
mechanisms to attack subsequent users (called lateral propagation) or directly read or modify im-
portant backend data. The latter case is an illustration of the so-called Confused Deputy problem,
first coined by Hardy in 1988 [1].

The Confused Deputy problem arises implicitly from the Internet’s many-to-one architecture,
and it is inherently a problem of attribution. Each application server must be able to operate on
behalf of users with a wide variety of permission levels, so it must have high privilege over the
backend resource. From the perspective of the backend resource, all requests are thus made by a
single highly-privileged entity who must be obeyed. There is no mechanism in place to attribute a
particular request from the application server to a particular user. For example, it is impossible to
tell whether a request to delete all data was initiated by a legitimate administrator or by a malicious
user who has escalated their privileges by exploiting the application server (see Figure 1).

Our approach to eliminating both the Confused Deputy problem and lateral propagation is
simple. Users are isolated into ephemeral, private execution contexts (SuS containers) with a copy
of the application server that has privileges against the backend resource tailored to match the
intended privilege set of the user against the application server. Even if a malicious user is able to
induce his or her application server to make an unauthorized request against the backend, the server
itself will not have sufficient privileges to execute the request, and execution will be denied. This
eliminates the Confused Deputy problem. Furthermore, malicious changes made by the user to files
within his or her execution context do not propagate to other users’ execution contexts, and they
are permanently lost as the execution context is torn down after the user’s session ends. Hereafter
we refer to the private execution contexts as Single-Use Server (SuS) containers, and to the overall
system design as the SuS model.

The SuS model has many security benefits. By tailoring permissions at the backend, it is simple
to apply a desired high-level security policy by deciding what type of actions should be permitted
to a particular class of user (e.g. “Users with role X should be able to perform Y action against
Z resource”). Importantly, this eliminates the need to rely on the application server’s codebase
to implement the security policy correctly. In other words, the SuS model creates a vulnerability-
tolerant environment around the application server that detects when the actual access control
system does not match the desired one. Furthermore, since there is a one-to-one relationship between
users and application servers, it is simple to attribute a request denied by the backend to a particular
offending user. The SuS model can then freeze the adversary’s SuS container to prevent continued
operation. Then, via forensic analysis of the SuS container and associated network traces, security
analysts should be able to discover the vulnerability in the application server, and how the adversary
exploited it, without the adversary ever benefiting from revealing this information.

Other works have previously employed a design based on user containerization as a method for
attack attribution and preventing the Confused-Deputy problem (see Section 2.2). We improve upon
these works in the following ways:

• Generalization: Other works have limited the scope of their defense to LAMP-architecture
webservers, where website and webserver code function as the application server and a MySQL
database functions as the backend resource. Although many networked services share a similar
server/backend architecture that could be protected by a user-isolation approach, the protocols,
authentication models, and backend access control systems that the services employ are often
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Figure 1: Illustration of the Confused Deputy Problem. In this scenario, the application server executes all requests
on users’ behalf with the same high level of privilege, regardless of what the security policy says a particular user can
and cannot do. It is therefore impossible for the backend resource to distinguish between requests made by legitimate
users and requests resulting from exploitation of the application server. This renders the server a “Confused Deputy.”

very different. We implement a system that is modular enough to be applied to a variety
of application servers, and we demonstrate this attribute by applying it to the IMAP mail
retrieval protocol.

• Exploit Detection and Response: Our system includes mechanisms for detecting privilege
escalation (based on responses from the backend resource) and freezing offending containers.

• System Evaluation: We perform a practical evaluation of security and performance. Other
papers’ security evaluations are purely hypothetical, whereas we research and apply real-world
exploits that fit our threat model to demonstrate the SuS model defending against them.
Similarly, our scalability evaluation focuses on end-user experience instead of using micro-
benchmarks and counting number of operations per second.

The rest of this report is organized as follows. In Section 2, we provide necessary background
and more closely examine the aforementioned related works. In Section 3, we develop a prototype
implementation of the SuS model that has a similar design to that of previous work. We port a
simple blog on the popular web deployment platform WordPress to the SuS model and discuss the
engineering required to do so. In the first half of Section 4, we research and compile a set of exploits
against the WordPress blog from the Common Vulnerability and Exposures (CVE) database that
fit our threat model. We apply each of these exploits to both a control server and the SuS-protected
server and demonstrate that SuS is effective at neutralizing the attacks. In the second half of this
section, we evaluate the performance and scalability of the ported WordPress blog. In Section 5,
we abstract out the application-specific aspects of our prototype and modularize the system to
make minimal assumptions about the type of backend resource, the type of access control, and how
requests are made by the application server to the backend. We demonstrate our generalized system
by applying it to the IMAP mail retrieval protocol and show that it can be ported to the SuS model
with little effort. Finally, we conclude and discuss future work in Section 6.

2 Background and Related Work

In this section, we provide some background on virtualization and containerization, how they operate,
and how their security models differ. We discuss privilege escalation attacks and their relation to
the Confused Deputy problem, and then elaborate on works that attempt to thwart these attacks.

2.1 Virtualization and Containerization

Virtualization and containerization are two strategies for enabling process isolation, resource multi-
plexing and scalable deployment. A virtual machine, or VM, is a complete computing environment
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that is emulated on virtual hardware inside another host (the applications that manage VMs and per-
form the hardware emulation are known as hypervisors). This hardware-level virtualization means
that the VM’s OS, filesystem, processes, users, etc. are all completely distinct from the host’s.
Because of this, VMs have a “sand-boxing” effect on the operations performed inside of them. If an
external adversary compromises the VM, a user can simply delete it and install a fresh one without
ever having exposed sensitive data to the attacker.

Containers, by contrast, are groups of processes running within a particular directory on the
host’s filesystem that have been configured to have a limited view of the rest of the machine. Whereas
processes in one VM run on a completely separate kernel from those of another, containerization
offers a simpler, logical process separation in which containerized processes run on the same OS. For
this reason, containers offer better performance over VMs at the cost of a larger trusted computing
base (TCB). As we will explore in Section 2.2.3, the use of per-client VMs caused some older works
in privilege-escalation prevention to suffer from scalability concerns. More recent works, particularly
Radiatus [2], use containers as a lightweight alternative.

The fundamental mechanisms that enable containerization have been around for decades; how-
ever, tools for container management have only recently become mature enough for wide-scale use.
With this maturation, the use of containers has grown significantly. Here we will explain how
containers are built and deployed in the popular container management toolset Docker [3].

Accomplishing container-based process isolation requires a few different features of the Linux
kernel [4]. First, a command such as chroot or pivot root changes a particular process’s root
directory to a specificed subdirectory of the host’s root directory. So long as the chrooted process
does not gain root privileges, any files outside of this subdirectory become invisible and inaccessible
to it. For restricting the process’s view of non-file resources (user lists, network devices, process lists,
message queues, etc.), new namespaces are created for the process and applied. Finally, adding the
process, or set of processes, to a cgroup enables control over their usage of computational resources
(CPU time, memory, etc.). These three kernel features work in concert to produce the basic concept
of a container.

The usefulness of containers would be limited without a robust container management system,
such as Docker. Docker introduces features that abstract away all of the low-level work from the
developer and simplify building, deploying, modifying, and performing version-control for containers.
Deploying a container starts with a container image, which is a particular state of a container
filesystem that is used as a blueprint. To build a container image, developers write a Dockerfile,
which specifies a base image (often that of a particular OS and version) and then a set of commands
to apply to that image (such as copying in files, installing software, etc.). By executing the Dockerfile,
the commands are applied and the resulting filesystem is saved with a user-supplied tag. For instance,
someone deploying a webserver might use an Ubuntu 18.04 base image, install apache2, copy in a
directory containing the desired web content, and change some file permissions. The resulting image
is that of a webserver ready to be started.

Docker uses the UnionFS filesystem service to represent modifications to a container’s filesystem
as a set of layers. Thus, every instruction in a Dockerfile is represented as a layer on top of a base
image. The final layer added by the Dockerfile becomes the base layer for the new image. Then,
an arbitrary number of containers can be spawned from this image to run concurrently, making
impermanent edits (also represented as layers) to their version of the image filesystem.

2.1.1 System Interaction

Containers are designed for process isolation, but for a variety of use cases, interaction with the
wider system is necessary. Docker containers can be designated to have access to certain directories
in the host filesystem outside of their chroot jail. The older technique for providing external
directory access is called a bind mount, in which a directory on the host is directly mounted onto
the container’s filesystem. For security, the mounted directory can be set as read-only. Docker’s
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newer, preferred method for giving access to a directory uses Docker volumes [5]. When a directory is
shared with a container using a volume, that directory is first copied into Docker’s storage directory.
The new storage sub-directory is the one shared with the container. Since this content is managed
by Docker, volumes allow for safer sharing between containers, encryption, backups, and a variety
of other features.

Since containers lend themselves to running application servers, Docker also provides robust
networking tools. Deployers can create their own subnets and decide what IP address to assign to
their containers, or let Docker assign the address itself on a default subnet. For security, containers
on different subnets cannot communicate by default. Docker also provides an option for container
ports to be directly mapped to host ports at container start time; in this case a small docker-proxy
process is spawned for each port to handle the packet forwarding.

2.2 Privilege Escalation Defense

In an attack against a system, privilege escalation refers simply to the unauthorized and unintended
increase in an adversary’s privilege level. It is sometimes unclear when a Confused Deputy is at play
in a privilege escalation; here we attempt to clarify. Hardy, who first coined the phrase “Confused
Deputy” in a 1988 paper, offers only the following: “the [program] serves two masters and carries
some authority from each to perform its duties” [1]. While not a complete definition, this excerpt
makes the important distinction that the entity being exploited must serve more than one user with
disparate privilege sets. To be considered a Confused Deputy, we submit that an entity must satisfy
the following criteria:

1. The entity must mediate access to a backend resource which is clearly distinct from itself.

2. The entity must serve multiple users from more than one privilege class. This will necessitate
that the entity’s privilege over the backend be a superset of all user privileges.

We find that these criteria are supported by the definition of a Confused Deputy provided by
the Common Weakness Enumeration (CWE) database [6].

A Confused-Deputy-based privilege escalation attack must make use of the above two properties
to exploit or coerce the privileged entity into making valid but unintended requests to the backend.
It is important that the attack targets a vulnerability in the entity; using an application server to
exploit a kernel-level vulnerability and gain privileges does not qualify as a Confused-Deputy-based
attack. In this case, the OS is both the entity being exploited and the backend resource, thus the
first criterion is not met. A strong example of an OS-level Confused-Deputy-based attack is the
BluePill rootkit [7] that exploits the OS to insert an ultra-thin hypervisor between itself and the
hardware, allowing the attacker to monitor input and control the OS’s operation invisibly. Here, the
OS (which mediates access to hardware) is used as a deputy to install the hypervisor beneath itself.

In the literature review, we will distinguish between three general threat models. In the first
model, defenses remove vulnerabilities from the application server’s code, but ultimately trust both
the OS and the modified application. Defenses in the second threat model use virtualization, trusting
neither the application code nor the OS. In the third model, the OS is trusted to aid in the defense
against an untrusted application server.

2.2.1 Work Treating Both the Application and OS as Trusted

In the first threat model, both the application and OS are part of the TCB. Although the application
server code may be instrumented, hardened or analyzed for vulnerabilities, once the server’s execu-
tion is started its code is trusted. In their survey on server-side defenses against application-level
privilege escalation attacks, Li and Xue outlined three strategic paradigms [8]; all works in the first
two paradigms, and some in the third, fall into this threat model.
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The first paradigm involves developing secure server programs. Provos et al. describe a program
structure called “privilege separation,” in which the unprivileged and privileged pieces of a program
are split into two processes [9]. The unprivileged process must request the privileged process to
perform actions on its behalf, such as opening files, and is given access to those files by passing file
descriptors. Since web applications cannot be easily rewritten to follow this structure, other works
present special web frameworks that are designed to enforce security policies and track information
flow. Some of these works require code to be written in security-typed languages [10, 11], while
others check assertions and follow the flow of data from within an existing, unhardened language’s
runtime [12]. Unlike our work, most works in this field can only be applied to existing applications
through non-trivial rewrites.

The second paradigm uses offline analysis of the server code base to detect vulnerabilities in
advance. Sun et al. [13] build a web application sitemap and, leveraging implicit access control
assumptions written into the code (e.g., performing a redirection if privilege levels are too low),
find scenarios in which an unprivileged user can directly access a privileged PHP page. MACE is a
tool that takes a slightly different approach, finding inconsistencies in the “authentication context”
around each SQL query in the PHP code [14].

Li and Xue’s third paradigm involves using a run-time protection scheme to catch exploit at-
tempts and neutralize them. “Taint-tracking” is a traditional approach in this paradigm that involves
tagging untrusted user input as it arrives at the system and preventing unsanitized inputs from be-
ing used in sensitive operations. Examples include work by Su and Wasserrmann [15] and Chin
and Wagner [16]. This approach involves instrumenting either the application code itself, or the
underlying runtime; therefore, the threat model must still trust these components. When imple-
mented correctly, this approach is successful at preventing attacks based on poor input sanitation
and validation. However, it does not prevent lateral propagation since any malicious changes to the
application server or host system can still affect subsequent users.

2.2.2 Work Treating Both the Application and OS as Untrusted

Work in this threat model aims to give security guarantees regardless of whether the application
server code and underlying OS are free of vulnerabilities. To achieve such guarantees often requires
virtualization. For instance, in NICKLE, Riley et al. use a virtual memory manager to maintain a
shadow copy of kernel-level pages [17]; by comparing loaded memory to the second copy via hash
values, memory integrity can be guaranteed. Works such as SVA and KCoFI require porting the
OS to a new language in exchange for control flow integrity and memory safety guarantees [18, 19].
SecVisor makes use of modern processors’ ability to virtualize hardware to insert itself as a hypervisor
between the OS and the hardware (the same technique used by BluePill) [20]. It then introduces
an extra layer of translation between “guest” and “real” physical memory, allowing it to add extra
memory security features.

As is common in security research, the more security offered by these systems, the more per-
formance is impacted. Works like SVA do not have an excessive runtime overhead, but require
significant upfront work in porting the OS. A more detailed description and analysis of these works
and others can be found in a survey paper by Brookes and Taylor [21].

Client isolation is a different strategy with this threat model. Falling into Li and Xue’s third
paradigm, this strategy solves both privilege escalation and lateral propagation. Parno et al. were the
first to introduce work in this area with CLAMP, a system for protecting LAMP stack websites [22].
In CLAMP, individual users are assigned to isolated VMs each running a copy of the web server
code, and a MySQL proxy restricts each context’s access to specific parts of the database. Upon
logging into a separate, trusted authentication portal, a user can upgrade their VM’s privilege level
with fine granularity. A query restriction mechanism ensures that even if a VM is compromised, it
does not have unfettered access to the database and its sensitive data.

Taylor [23] also focuses on user isolation, and introduces a software-defined networking (SDN)
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controller to perform the client traffic demultiplexing. The Taylor work lacks the resource restriction
component present in CLAMP, but adds attack attribution. Furthermore, Taylor’s SDN-based
solution is not inherently tied to a particular protocol. Taylor finds that VMs are too heavy-weight
to implement client isolation on a production level.

Since CLAMP and Taylor put users in VMs, neither the application server nor the OS on which
it runs is trusted. However, unlike the previously described works, the hardware virtualization itself
is not a key part of the defense; it is used as a technique for enabling user isolation. As we will see
in Section 2.2.3, other works operate in the same field using containers as a light-weight alternative.

2.2.3 Work Treating Only the Application as Untrusted

This threat model assumes that vulnerabilities will exist in the application code, and a runtime
environment that tolerates them is built around the server’s execution context. The OS is involved as
part of the defense and so remains part of the TCB. Common techniques for detecting and preventing
low-level privilege escalation attacks include stack canaries, address space layout randomization,
and non-executable stack pages. They fall into this category since an exploitation of the OS could
sabotage their effectiveness. More recent work examines how to make control flow hijacking more
difficult by inserting extra instructions into program code at compile time [24, 25], or how to defeat
ROP attacks by removing instructions with the return opcode embedded in them [24]. Brookes and
Taylor compare the security of these works and more in their survey paper [21].

The SuS model that we present is a logical progression from the CLAMP and Taylor works
described in Section 2.2.2, combining tools for robust resource restriction and attack attribution
with a design that is focused on general networked services. Because our defense uses containers
instead of VMs to address the performance and scalability issues in these prior works, the OS must
be trusted and our threat model differs from theirs.

Another work in user isolation that uses containers is Radiatus by Cheng et al. [2], which in-
troduces even more stringent security measures than SuS or CLAMP. But whereas Radiatus places
restrictions on the design of the program it defends, requiring significant code restructuring, our SuS
model aims to provide reasonable security with minimal codebase modification. Furthermore, Ra-
diatus is explicitly designed for database backends, while we endeavor to produce a protocol-agnostic
design.

At the OS level, QubesOS is the tool that most closely matches the containerization approach
[26]. QubesOS is designed to run all processes (in isolation or in groups) inside dedicated VMs; this
way, exploiting any one application does not give immediate access to all other components of the
system.

3 Application-Specific Implementation

This section describes the intial design and implementation of the SuS model. We begin by dis-
cussing our threat model, then the high-level design and function of each component of the SuS
model. We then examine each component in detail and describe our experience implementing them
for WordPress, a popular website deployment and content management tool [27]. WordPress is
estimated to be used in over 35% of all websites on the Internet [28]; its widespread use and long
list of known vulnerabilities make it an ideal candidate for porting to the SuS model.

3.1 Threat Model

The SuS model is a server-side application-level defense system aimed at 1) preventing adversaries
from successfully executing any backend request above their privilege level, as defined by the server’s
intended security policy and 2) preventing adversaries from making changes to files on the server
that would enable them to attack other users. To demonstrate an attack against which the SuS
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Figure 2: Design overview of the SuS model. The four trusted entities (Client-to-SuS Middlebox, Container Manager,
Authentication Container, SuS-to-Backend Middlebox) coordinate to provision SuS containers and assign them to
clients, provide a means of upgrading privileges to the backend resource, and enable the neutralization and analysis
of exploited application servers running in SuS containers.

model is ineffective, we propose a scenario in which a user has permission to create a new row in
a SQL table and attempts to populate that row with a string (such as JavaScript code) that acts
maliciously when fetched by another user. Since no permissions have been violated, the SuS model
is incapable of preventing such an attack; defense falls to proper application-level input sanitation.
We also do not consider attacks which have the goal of disrupting the availability of the server
application, such as DoS (denial-of-service) attacks, and simply expect that defenders will employ
current best practices. Experiments show the SuS model’s running performance is roughly equivalent
to the control, but container start-up costs could be a DoS concern that would need to be addressed
in the deployment plan.

We assume that the application server being encapsulated in a SuS container facilitates user
access to a backend resource where data is stored, and we also assume that one or more of these
containerized servers may be exploited by adversaries. We assume that adversaries can only access
the application server’s host machine via network communication and will attempt application-level
exploits via the payload of one or more packets in the application server’s communication protocol.
Because we use containers instead of VMs, the OS is part of our trusted computing base, and we
cannot prevent attacks against it such as buffer overflows and return-oriented programming attacks.
Similarly, attacks against the hardware and SuS infrastructure are out of scope. Importantly, the
SuS model is incapable of detecting attacks above the application-level, such as social engineering
or CSRF, in which a privileged user is coerced into misusing his or her privileges.

3.2 High-level Design

The basis of the SuS design is the notion that the Confused Deputy problem could be solved if
each user operated within an application server that only had enough privileges over the backend
resource to perform any action the user is intended to be able to perform. This way the server would
be simply unable to execute any commands above the user’s privilege level, even if an adversary
exploited a vulnerability in the server code. An overview of the SuS model design is shown in Figure
2.

To assign users to unique copies of the application server, we need a virtualization and process-
isolation technology. We choose to use Docker containers because of their performance benefits
over VMs and mature set of API-based utilities. Once we have a Docker image of the webserver
that SuS containers can be spawned from, we need a manager process to handle provisioning,
starting and destroying containers, and maintaining their state. Each container needs a unique set
of credentials against the backend database so that container privileges can be altered independently
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of one another. The manager process that installs and removes credentials with each container, and
upgrades container privileges when prompted, is called the Container Manager.

To demultiplex user requests and forward each one to an appropriate SuS container, we need
a front-end proxy, which we call the Client-to-SuS middlebox (CSM). When a new user makes a
request, the CSM must retrieve a valid IP address for an unused container from the Container
Manager and store a mapping of that user to the retrieved IP. All subsequent traffic from that user
must be directed to the mapped container.

At some point during the session, a user may wish to authenticate to upgrade his or her privilege
level. Since the code within the SuS container is untrusted, we require an external portal to which
clients can be redirected to perform authentication. This portal is trusted to report the requisite
information for increasing privilege level to the Container Manager when a login occurs. We refer
to this entity as the Authentication Server.

The Container Manager controls privilege levels by changing the permissions of each container’s
database credentials over the tables in the database. As Parno et al. note in CLAMP, there are
scenarios in which the backend resource’s native access control mechanisms are insufficient to im-
plement a desired security policy. For instance, it may be desired to allow each authenticated user
to perform an UPDATE on their own row within the wp users table, but not any others. MySQL’s
grant system allows privileges to be granted only on a per-table basis, leaving room for adversaries to
make use of escalated privileges. Thus, we need a middlebox, called the SuS-to-Backend middlebox
(SBM), to sit between the SuS containers and backend and to “scope” queries to the appropriate
rows for the user’s privilege level.

Under this privilege control model, a container should never be denied a request against the
backend due to insufficient privileges unless it has been exploited to perform an unauthorized oper-
ation. We can therefore easily detect exploited containers by monitoring query responses for such
denied requests. Since the SBM is already proxying backend traffic, we can simply incorporate
this mechanism into it. Once the SBM finds indication of a misbehaving container, it can notify
the Container Manager to freeze the container and have the CSM block subsequent traffic to that
container.

3.3 Container Manager

The Container Manager has two main responsibilities. First, it must handle all of the startup
and destruction of containers, and keep track which ones are running. Second, it must listen for
notifications or requests from the other trusted components of the SuS model and respond to them
by performing actions.

We do not want the act of spawning a container to delay the Container Manager’s ability to
respond to a message from another SuS model component. Thus, we split the Container Manager
into two main threads. The ContainerPoolWatcher thread is the smaller of the two and has ex-
clusive control over the creation of containers. While the pool of available containers is less than
the maximum size, it will continually generate new containers and add their information to the
live containers dictionary and unassigned containers list, both of which are mutex-protected.
When creating a container, the ContainerPoolWatcher retrieves a database username and IP ad-
dress from objects that manage these values to ensure no duplicates. The IP belongs to the address
range of a Docker network we created, thus allowing us to control the address each container is
assigned. A database password is randomly generated, and the database credentials are installed in
the MySQL database with appropriate permissions for an unauthenticated client. Then the docker

run command is executed to create and start the container.
The main program thread creates the ContainerPoolWatcher thread, waits for the pool of ready

containers to reach max capacity, and then creates sockets for communicating with the CSM, Au-
thentication Server, and the SBM. Using the select() function, the main thread sleeps until one
or more of these sockets is ready for processing. Later, we discuss each message type and response
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action with their appropriate SuS component.
When the Container Manager is terminated via SIGINT, we close gracefully by registering a

function with signal(). We notify the ContainerPoolWatcher to stop spawning containers via a
Condition variable, and send a message to a fourth socket, that the main thread selects on, to
interrupt its sleep. The sockets are closed, and the main thread iterates through live containers

to despawn each container and remove its database credentials.

3.3.1 Container Configuration

For our SuS container implementation, we run WordPress on Lighttpd (pronounced “lighty”), a
lightweight, single-threaded webserver [29]. We write a Dockerfile to build a image of a containerized
webserver that is appropriate for use in the SuS model. The Dockerfile handles installing Lighttpd
and PHP7 on Alpine Linux. It then copies the WordPress code directory and Lighttpd configuration
files into their proper locations within the container directory structure, and changes the permissions
of the files to belong to the lighttpd process. Port 80 is also exposed so that the container can
receive traffic forwarded by the CSM.

Before starting the webserver software, we need to set some unique per-container configurations
(namely, database credentials). We therefore instruct the Dockerfile to execute a start.sh script
on container startup instead of starting the Lighttpd server directly. When calling the docker run

command, any additional arguments passed are forwarded to the start.sh script, which then uses
them to overwrite temporary values for the database credentials in wp-config.php. After this, the
script finally executes the lighttpd webserver process.

3.4 Authentication

When a user logs in, the Container Manager must be notified so that it may record his or her
role and upgrade the container’s backend permissions. However, since the code running within
each SuS container is outside of the SuS model’s trusted computing base, a SuS container must
not directly perform its own user’s authentication or report the user’s identity and role to the
Container Manager. Authentication in the SuS model therefore requires that the containerized
software supports a pluggable authentication module (PAM) mechanism so that login decision-
making can be performed remotely by the Authentication Server. As of version 5.1.1, WordPress
does not natively support such a mechanism nor were we able to locate a satisfactory plugin, which
left us the task of building a mechanism ourselves.

This authentication mechanism involves two messages. The first is a redirect from the SuS
container to the Authentication Server’s login portal; this must also establish the identity of the SuS
container so the Container Manager can eventually be notified of the permission set to upgrade. We
select the database username as such an identifier, and we encode it as a query parameter in the
redirect URL. However, to prevent spoofing, we need a system by which an untrusted entity can
prove it is passing the correct identifier. Our solution (shown in Figure 3) is as follows.

The Container Manager and the Authentication Container are configured with a symmetric key.
When each SuS container is created, the Container Manager constructs a random salt value in
addition to the database credentials. Using the salt and the SuS container’s database username,
the Container Manager creates an HMAC output that will be used as the container key. The
Container Manager passes both the salt and the container key into the SuS container. When the
SuS container redirects the client to the Authentication Container, the SuS container includes its
database username, the salt, and an HMAC covering the request as a token. Since the Authentication
Container has the container’s database username, salt, and the key it shares with the Container
Manager, it can reconstruct the appropriate container key. It can then use the supplied message
and container key to generate the same HMAC output provided by the SuS container as a token.
If the outputs match, the Authentication Container knows the SuS container’s information is valid.
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Figure 3: The cryptographic scheme used to validate data sent between the Authentication Container and SuS
containers. This scheme enables the Authentication Container to validate messages from SuS containers without ever
directly sharing keys.

If a malicious agent attempts to supply a different database username, the Authentication Manager
would generate an incorrect container key and the resulting tokens would not match.

The second message is a redirect from the Authentication Server to the SuS container that
indicates to the SuS container that a successful remote login has occurred. The redirect contains
data such as the appropriate post-login destination URL, the user’s site ID, and a cryptographic
token (e.g., [SITE IP]/auth-redirect.php?data=redirect url;user id;salt&token=[F]). The
HMAC token for the second message is signed by the Authentication Server with the container’s
key.

Enabling this authentication scheme is the only part of incorporating WordPress into the SuS
model that requires modification of the WordPress codebase. We implement the authentication
as follows. First, we add two variable declarations to wp-config-base.php, namely HMAC KEY and
HMAC SALT. We then modify start.sh to accept additional command line arguments and write them
as the definitions of the aforementioned variables using sed.

To perform the first redirect, we change the wp login url() function in wp-includes/general-

template.php to point to the address and port of the authentication server. This way, all “Login”
buttons on the site automatically point to the Authentication Server. This function also calculates
the HMAC token and appends the requisite query parameters to the redirect URL.

We create the Authentication Server as a bare-bones PHP login page running on Lighttpd. The
login form includes hidden values retrieved from the redirect message’s query parameters, so they
can be passed to the POST functionality after the login submission button is clicked. Once the
Authentication Server verifies the HMAC token is valid, it checks the credentials entered by the user
against the wp users table of the WordPress database. For this, we simply copied the password
hashing PHP script over from the WordPress codebase. Then, the Authentication Server notifies the
Container Manager, via socket, of the database username of the container that just logged in and
what role the container now has. Finally, the Authentication Server constructs the second redirect
URL and redirects the user.

When the user is redirected to their original container, we need to convince WordPress to treat
an unknown user (that it has not seen log in) as if they had logged in as the user with ID X.
So, before the user can reach the desired destination URL (typically a role-specific console), we
need to stop at a waypoint page on which cookies can be set for the user. This way, when the
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user finally reaches his or her desired destination page, the browser will provide cookies that the
SuS container recognizes. We accomplish this as follows. First, we create a new script in the
WordPress codebase called auth-redirect.php and configure the Authentication Server to point to
that resource when performing the second redirect. In wp-includes/functions.php, we register a
callback set auth redirect cookies to fire at the after setup theme stage of the bootstrapping
process with the add action() WordPress function. In this function, we check if the current page is
auth-redirect.php. If so, we extract the data from the query parameters, verify the HMAC, and
then manually call the wp set auth cookie() function using the passed data. Finally, when the
auth-redirect.php code executes, it retrieves the desired destination URL and redirects the user
to that address. In the 302 HTTP redirect response returned by auth-redirect.php, the cookies
set in our callback function are delivered to the user, ready for use in the following request.

3.5 Client-to-SuS Middlebox

The CSM is a multi-threaded HTTPS-to-HTTP proxy written in C++ that performs additional per-
packet processing. The design and implementation of the CSM was a collaboration with another
graduate student, Yunsen Lei. The main thread of the proxy creates a server socket and listens for
new connections. SSL objects for these connections are passed via epoll to a dispatcher thread
which spawns a proxy worker thread for each one. We use the lightweight library axTLS to handle
SSL connections.

In order to demultiplex user connections, the CSM needs a unique identifier from the user that
can mapped to a SuS container IP address. Because each user’s browser may maintain multiple
concurrent SSL connections to a website, we cannot use an SSL ID for this task. Instead, we
introduce the concept of a SUS DEMULT COOKIE, which users must supply when requesting resources
over a new SSL connection. The process of client demultiplexing does not concern the SuS containers
themselves, so we do not set the demultiplex cookie inside of them; nor are they aware of the cookies’
existence. Instead, the cookie field is silently inserted into HTTP responses and removed from HTTP
requests by the proxy threads of the CSM.

When a user makes a request for the first time, he or she will not have a DEMULT COOKIE; this
causes the CSM to request a new container IP from the Container Manager. Upon receiving the
Container Manager’s response, the worker thread generates a new DEMULT COOKIE and maps it to
the container’s IP. The HTTP request is then forwarded to the SuS container; once a response
is received, the worker thread inserts the cookie in the response header before forwarding it on
to the client. Subsequent proxy threads handling the same user need only extract the DEMULT -

COOKIE from the request header and retrieve the corresponding IP address from the map object. As
per the HTTP specification, proxies must insert additional headers (e.g. X-Forwarded-Proto) for
each intercepted request, so extracting the demultiplex cookie from each request does not introduce
additional overhead.

Since the CSM is already positioned between the clients and SuS containers, it also has the
responsibility of detecting periods of inactivity and notifying the SuS Manager to reap containers.
Thus, the CSM’s COOKIE MAP ENTRY dictionary also maps demultiplex cookies to the last timestamp
when a request was forwarded to that container. This field is updated by proxy threads each time a
request is received. A separate reaper thread sleeps for a configurable period of time and, on wakeup,
iterates over the dictionary to find containers that have not been active since the last wakeup. It
then sends the IP addresses of these containers to the Container Manager.

Eventually, a container may be frozen by the Container Manager (see Section 3.6). At this point,
the Container Manager also notifies the CSM to block all subsequent traffic to the frozen container.
The CSM maintains a thread that listens for such messages from the Container Manager and adds
passed IPs to a drop list. Before forwarding an HTTP request to a SuS container, each proxy thread
consults the drop list. If the destination IP is on the drop list, the proxy thread closes the client’s
SSL connection and terminates.
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3.6 SuS-to-Backend Middlebox

As a foundation for the SBM, we write a simple multi-threaded TCP proxy in C++ to sit between
the SuS containers and the MySQL server. The SBM is responsible for intercepting queries and
appending additional WHERE clauses as needed to implement a particular row-level security policy.
For instance, we may desire that a non-admin user have UPDATE privileges over the row in wp users

that matches his or her user ID, but not on any other row.
To allow for flexible configuration, we introduce the concept of a ResourceRestrictTable, a 3-

dimensional array that maps the (role, resource, query type) for each MySQL query to a particular
WHERE clause, called an access predicate, that must be appended to the query. This table is
represented as a series of .csv files (one for each role) that are loaded into the program at startup.
The middlebox also maintains a UserContext dictionary that maps IP addresses to user information
(e.g., user id, role). For each database query, the SBM extracts the resource (table), and access type
(e.g., SELECT, INSERT). It also retrieves the container user’s role from the UserContext dictionary,
or uses a default role if the user has not logged in previously. Using these values, the SBM retrieves
the access predicate. An access predicate may have a variable; for example, “ID = :user id.” In
this case, the SBM inserts the corresponding value from the UserContext dictionary entry before
appending it to the query. Once an access predicate has been added, query header information is
updated to reflect the new message length. In this way, we silently restrict the type of data to which
each user has access, without their knowledge.

To support this functionality, the SBM must be notified of a SuS container’s role and user ID when
a user logs in so the proper access predicates are applied for the user. Thus, once the Authentication
Server notifies the Container Manager that a user has logged in, the Container Manager forwards
some of this information to the SBM. The SBM has a thread that blocks on a socket read from the
Container Manager, waiting for new information. When a message arrives, the thread parses it and
adds an entry to the UserContext dictionary. Similarly, the Container Manager notifies the SBM
when a container has been despawned, so the entry may be removed.

We note that instead of forwarding modified requests, it would be possible for the SBM to simply
monitor for requests that attempt to access improper table rows. It would consider such requests as
indications of compromise. However, this design significantly increases the complexity of the SBM,
as the middlebox must understand both the rows each user is authorized to access and the meaning
of existing WHERE clauses in the request. With our design, the SBM remains oblivious to this
information and simply applies additional WHERE clauses to requests that match its criteria.

A function of the backend middlebox that is not present in CLAMP is the monitoring of query
responses for error messages that indicate a compromised SuS container and notifying the Container
Manager to freeze the offending instance. We accomplish this by searching responses for the 1142
MySQL error code, which occurs when a client makes a request for which they had insufficient
privileges. Upon detecting such an error, the SBM messages the Container Manager to freeze the
offending container.

3.7 Extended Sessions

Although not integral to the SuS model, we also introduce the concept of an extended session. In
HTTP, cookies with longer expiration times are often used to let users return to websites after
periods of inactivity without re-authenticating. With the current SuS model, a user’s SuS container
is reaped after a sufficient period of inactivity, forcing re-authentication upon his or her return.

We introduce the concept of a SUS SESSION ID to track users’ authentication status and pre-
vent containers that time-out from being reaped. At container startup, the Container Manager’s
ContainerPoolWatcher thread generates a random string for the new container’s session ID and
includes it as an extra argument to the docker run command. The start.sh and wp-config.php

scripts are modified to include this value as a new variable in WordPress’s configuration. The set -

auth redirect cookies callback is modified to manually set an additional cookie with a value equal
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Figure 4: Message format used by SuS Model components.

to the session ID, which matches the expiration time of WordPress’s authentication cookies. When
the Container Manager is notified by the Authentication Server that a user has logged in, it sets some
authentication context in the container’s entry of live containers. Eventually, the SuS container
times out due to inactivity, and the Container Manager is notified to reap it. Since authentication
context has been set, the Container Manager does not despawn the container but simply halts its
execution using docker pause.

When a user makes a request to the CSM, they may or may not have a valid DEMULT COOKIE

value. If the cookie is not valid, the CSM searches the header for a SUS SESSION ID cookie. If one is
found, it is included in the body of the message the CSM sends to the Container Manager requesting
a container IP. The Container Manager may use this value to search live containers for a match.
If one is found, the Container Manager returns that SuS container’s IP address and restarts the
container using docker start. If no match is found, it simply returns the next IP address in the
unassigned containers list.

Our experience shows that a paused webserver container utilizes an insignificant portion of CPU
resources, making this approach feasible. In IPv4, leaving a container running long-term per-user
eventually leads to address exhaustion. By transitioning to IPv6, this ceases to be a concern, since
there are a significant number of available addresses. Furthermore, extended sessions cannot be used
to enable DoS attacks because only authenticated users are eligible to use their functionality. By
ensuring that each client can only have one dormant container at a time, to be able to generate a
large enough volume of stopped containers to impact performance, an adversary would need to have
already compromised credentials for a large portion of the service’s user-base.

3.8 Communication Protocol

To simplify message parsing and help polish the SuS model’s distinct components into a cohesive
tool, we standardize the format of messages in the SuS model as shown in Figure 4. This effort was
a collaboration with Yunsen Lei.

The message header consists of 3 bytes. The first byte contains the message’s action ID. The
second two bytes of the header indicate the length of the subsequent message bytes. Some messages
do not require a body, such as a container IP request from the CSM that does not contain a session
ID. See Table 1 for a list of action types and corresponding message bodies. For a production-level
tool, the communication protocol would be changed to support message acknowledgement (such as
using TCP instead of UDP sockets) and authenticity checks.

3.9 Discussion

The SuS Model seeks to maximize security while minimizing modifications to existing code. We
only made functional changes to the existing code for a PAM mechanism and session ID support.
Table 2 details the number of lines changed to each WordPress file to enable PAM functionality.
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Action ID Action Type Recipient Message Content

0x01 Get Container IP
Container Manager Session ID or none.
CSM Container IP address

0x02 Reap Container Container Manager Container IP address

0x03
Freeze/Block
Container

Container Manager
Container IP address

CSM

0x04 Login Update
Container Manager Container IP address,

user ID, role.SBM

Table 1: The action ID and corresponding contents for socket-based communication between SuS components.

File Name Lines Added Lines Modified
wp-config.php 3 2

auth-redirect.php 8 0
general-template.php 3 1

functions.php 14 0
Total 28 3

Table 2: The number of lines added and modified in the WordPress codebase to incorporate it into the SuS model

4 Evaluation

Here, we evaluate the security and performance of the SuS design and implementation from Section
3.

4.1 Security

In Section 3.1, we described the threat model for SuS containerization. The following classes of
attacks are relevant to this system:

• Persistent Codebase Modification: As a form of lateral movement, attackers may inject
malicious code into the application server (or other programs on the host) that attacks subse-
quent benign users when they attempt to access the service. The SuS model is effective against
this class of attack. We emphasize that attacks such as client-side XSS that are predicated on
data stored in the backend being maliciously rendered client-side are not in this class.

• Privilege Escalation: The SuS model is effective against the exploitation of logic flaws in
the server program codebase that would enable an unprivileged adversary to make privileged
requests.

• Privilege Misuse: Sometimes the backend resource’s existing access control system is too
coarse-grained for some desired policies, allowing for otherwise-isolated users to access and
modify each other’s data. The SuS-to-Backend middlebox enables SuS to defeat this class of
attack.

• Other Attacks: Social engineering, CSRF, client-side XSS, hardware attacks, container-
breakout attacks, attacks targeting the kernel, and attacks against the backend resource soft-
ware are out of the scope of SuS threat model.

We now test the SuS model’s effectiveness. We have selected a representative set of common
vulnerablitities and exploits (CVEs) fitting these classes to be executed against WordPress versions
with known vulnerabilities. Figure 5 provides an overview of the CVEs and the class in which they
belong. As a control, each exploit is run against an unmodified, containerized WordPress site with
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Figure 5: We evaluate the approach’s ability to prevent attacker persistence via the PhpUpload attack (1), misuse of
existing backend resource privileges via the PasswordReset attack (2), and confused-deputy-based privilege escalation
via the GdprOptions (3) and PhpUpload (4) attacks. In all cases, the SuS approach blocked the attacks, which succeeded
in the control group.

an appropriate version, allowing us to demonstrate the exploit’s effect in the absence of the SuS
model. We then run the same exploit against a modified WordPress codebase running inside a SuS
environment to show not only that the attack is automatically neutralized, but that the container
responsible for attempting the attack is frozen by the Container Manager.

4.1.1 Persistent Codebase Modification

CVE-2012-3578 describes a vulnerability (hereafter referred to as PHPUpload) in version 2.2.13.1 and
eariler of the FCChat widget plugin for WordPress. This plugin includes a form in the Upload.php

file that allows a user to upload an image file. By submitting a PHP file with the extension “.php.gif”,
an attacker can pass the plugin’s file extension checks, and his or her malicious, arbitrary PHP script
will be saved to a known directory inside the WordPress directory. Then, to execute the script, the
attacker directly navigates to the file’s location via a URL. In this attack, not only is the WordPress
codebase maliciously and persistently modified, but the attacker can access the WordPress database
credentials in the wp-config.php file to execute arbitrary MySQL commands against the backend
data.

We expect that the fundamental operation of the SuS model is adequate defense against codebase
modification. When a container image for a SuS-ified server program is built, the master server
program P is copied into the image in binary or script form. All SuS containers for a single server
application are spawned from this pre-built container image, so each container has a local copy of
the server program P’ derived from P. Any modification an adversary makes to P’ exists only inside
their container instance, and P’ ceases to exist upon termination of the container. Thus changes to
P’ do not reflect in P or any other user’s local program copy. Defending the database against the
MySQL commands of the uploaded script is similarly fundamental to SuS. If permissions for each
type of container user are set correctly in the Container Manager, an unauthenticated user should
be easily caught trying to make privileged queries.

To explore our hypotheses, we run an experiment in which we execute this attack against Word-
Press 2.8.2 with the vulnerable FCChat plugin version in a SuS environment. We write a script
for upload that uses credentials from the wp-config.php to delete all users in the wp users ta-
ble. Upon the adversary’s navigation to https://[IP]/wp-content/plugins/f cchat/html/U-

pload.php?id=1, the Client-to-SuS Middlebox retrieves a container IP from the Container Manager
and generates a SUS DEMULT COOKIE for the session. The adversary uploads the disguised PHP file
and navigates to it directly. In the control group without the SuS approach, the attack succeeds.
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However, in the SuS case, because the basic permission set for a new container does not include
performing DELETEs on the wp users table, the backend credentials hijacked by the adversary do
not provide that capability. The SuS-to-Backend middlebox observes that the query is denied by the
MySQL server and notifies the Container Manager to freeze the container. The script’s execution is
thus prevented. To prove that the malicious file’s presence does not persist, we attempt to navigate
to the files’s path from another browser without the adversary’s SUS DEMULT COOKIE and receive an
HTTP 404 “not found” response. This is expected, because without the same SUS DEMULT COOKIE,
the request is treated as coming from a new user, and thus is directed to a new container which is
unaffected by changes to the adversary’s container.

4.1.2 Privilege Escalation

CVE-2018-19207 describes a vulnerability (hereafter referred to as GdprOptions) in version 1.4.2 of
the Van Ons GDPR Compliance plugin for WordPress [30]. The plugin’s internal save-setting
action fails to check the user’s privilege level before using the HTTP request content to make
configuration changes. As a result, unprivileged users can submit arbitrary option names and values
to overwrite existing values in the wp options table. With this capability, an adversary can set
the default user role to administrator and allow users to register independently (by default, only
an administrator can register new users). Then, after registering a new user, the adversary could
remove the current site administrator and take control of all of the data in the backend database.
Since the flaw in the WordPress plugin code enables unprivileged users to make privileged requests,
this is a classic example of a Confused Deputy privilege escalation attack.

In our test without the SuS approach, the attack succeeds. However, when the SuS manager
implements site permission policies, the attack fails. Unauthenticated users should not have UP-

DATE privileges over the wp options table, so we configure the Container Manager not to endow
new containers with this capability. We run the GdprOptions exploit against a SuS-ified verison of
WordPress 5.1.1 with the aforementioned plugin version. In the first phase of the exploit, the adver-
sary requests the WordPress main page to extract an AJAX security token. When this first request
is made, the HTTPS proxy retrieved a container IP from the Container Manager and assigned a new
SUS DEMULT TOKEN that maps the user to the container. The second phase of the exploit attempts
to make a POST request changing the wp options table values. The SuS-to-Backend middlebox
intercepts an “UPDATE denied” message in transit from the MySQL server to the container (as a
response to the POST request) and notifies the Container Manager to freeze the container.

4.1.3 Coarse-Grained Privilege Misuse

This attack class includes those by malicious users who take advantage of permissions that were
intentionally given to access or modify data that the security policy did not intend. This can
happen when the backend resource’s native access control system is too coarse-grained to properly
implement the desired policy (for instance, MySQL’s lack of row-level permissions). This type of
attack only exists because the SuS model restricts the privileges of each application server. In a
typical WordPress configuration, the server already has full permissions over the database and thus
unrestricted access to the data.

CVE-2009-2762 describes a vulnerability (hereafter referred to as PasswordReset) in WordPress
version 2.8.2. The wp-login.php script fails to perform a proper sanity check on the type of the
key query parameter for the reset password action. When key is set to an empty array instead of
a string, such as in a GET request to http://[DOMAIN NAME]/wp-login.php?action=rp&key[]=,
the password of the first user in the wp users table is reset automatically. This vulnerability is more
powerful if the first user is an administrator and the adversary can access the password reset email.
However, even if this condition is not met, the exploit can be triggered intermittently to repeatedly
force a password reset, resulting in an account-level denial-of-service attack against a particular user.
We confirm that the attack succeeds when SuS is not in place.
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To prevent unauthenticated clients from exploiting this vulnerability, it is sufficient for the Con-
tainer Manager to provision new containers without the ability to execute UPDATE queries against
the wp users table. However, authenticated users need the ability to modify their own information
in wp users, so we cannot prevent them from altering the content of other rows simply by using
MySQL’s table-level access control. With the SBM, we can prevent this attack with the following
access predicate: resourceRestrictTable [’subscriber’] [’UPDATE’] [’wp users’] = "ID =

:user id". We empirically show that this defense is effective against PasswordReset.
We use the administrator console for WordPress to create a new user with the role of sub-

scriber and an ID of 2. Before the attack, the user pass field of the row with ID 1 in wp -

users is $P$B3VzGAHiiqb6BM72IkP9721u.KvO/p/. To perform the attack, we first navigate to
the site main page to get assigned a container, then log in as the non-admin user at the Au-
thentication Container. The Authentication Container verifies that the credentials are correct
and notifies the Container Manager that our container belongs to a user with the “subscriber”
role. The Container Manager then updates this container’s privilege to include performing up-
dates on wp users and relays the role update to the SBM along with the user ID. Then, we
navigate to the aforementioned malicious URL as the authenticated subscriber. The SBM in-
tercepts and modifies the resulting UPDATE request with the access predicate so the new request
is UPDATE ‘wp users‘ SET ‘user pass‘ = ’$P$BczMNW7LPQ4JiZZLu9JMk7HKnnqRNo0’, ‘user -

activation key‘ = ‘‘ WHERE ‘ID‘ = 1 AND ‘ID‘ = 2. Since no row in the table could possibly
match both the query’s WHERE clauses, the query response indicates that 0 rows were affected. We
then re-check the row with ID 1 in wp users and verify that the user pass field is unchanged. This
silently renders the attack ineffective. Since no table-level permissions were violated by the attacker,
the SBM does not notify the Container Manager to freeze the container.

4.2 Performance

In addition to meeting its security promises, the SuS model needs to satisfy concerns about perfor-
mance overheads and scalability. In this section, we examine the overheads associated with the SuS
model’s middleboxes, memory consumption, CPU usage, and overall latency, as well as how these
individual metrics scale with number of concurrent users.

Unless otherwise stated, our performance evaluation compares the SuS-ified WordPress 5.1.1
blog against a containerized, unmodified, and shared WordPress blog that acts as the control. Our
evaluation setup includes two VMs running on physically separate hosts. The first VM executes bot
scripts that emulate user traffic directed at the second VM. The second VM runs either the SuS-ified
webserver or the control server for each trial.

We provision both VMs with 16 GB of RAM to ensure that memory never becomes a bottleneck
in the experiments. The bot VM is provisioned with 12 CPU cores, but we limit the server VM to a
single core so that we can study CPU usage more effectively and prevent the SuS model from gaining
an unfair advantage due to its larger number of concurrent processes. The server VM has a 40 GB
SSD hard drive, and its vCPU process is pinned to a single core on the physical host. The host has
192 GB of RAM, 20 Intel(R) Xeon(R) Silver 4114 2.20GHz CPUs, and 21 TB of hard drive space,
configured with RAID. The containers used in the performance experiments are not configured to
enforce any CPU or memory limits.

Although our original SuS WordPress implementation uses the Lighttpd webserver, for our perfor-
mance evaluation we use the Apache webserver on both SuS and control containers unless otherwise
stated. In our initial testing, we found that Lighttpd’s single-threaded, single-processed architecture
strongly favors the SuS model because of the inherent multiprocessing associated with spawning
multiple instances of the same server. When Lighttpd blocks on query responses from the MySQL
server, no other user requests can be processed in the meantime. Thus, user requests are processed
serially instead of in parallel, which is much more problematic for the control than the SuS scenario
since each container in the latter only processes requests for a single user. In the SuS scenario,
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(a) 10 concurrent users (b) 20 concurrent users (c) 40 concurrent users

Figure 6: CDFs of 100 home page load trials of a 1KB HTML page with 10, 20, and 40 concurrent users in SuS
and control scenarios. Some outlier data points from both the SuS and Control experiments were removed from each
graph for readability.

when a lighttpd process blocks, the scheduler can easily swap to another SuS container’s lighttpd
process. We therefore switch to Apache, which has a multiprocessed architecture, and find that this
offers a computational advantage to neither scenario.

Each experiment adheres to the following general structure. The experiment is run as a script
on the bot VM and consists of a number of independent trials. In each trial, the script first SSHes
into the server VM and builds up the necessary infrastructure. For the control, this is as simple as
starting the webserver container. For the SuS scenario, this includes starting all necessary processes
and waiting for the pool of containers to fill up. Once the preparation is complete, the trial script
starts any necessary bot scripts, each of which infinitely loop between fetching a random page from a
small pool of options, using wget, and sleeping for 2 seconds. Then, the main metric collection bot is
started, which performs some task and terminates. Finally, the other bots are gracefully terminated
and the infrastructure is torn down on the server VM’s side.

Since background container spawning and middlebox overheads are examined separately, these
features are disabled during the other experiments. To demultiplex users without the CSM, we add
a -p flag to the docker run command to map the SuS container’s port 80 to an external port on
the VM and let Docker’s internal mechanisms handle the traffic forwarding. Each bot created for
SuS trials is therefore assigned different ports to connect to on the VM.

4.2.1 Scalability: Latency and CPU

In our first evaulation stage, we compare the CPU usage and main page load latency of the SuS
model against the control server. We test how these measurements scale by simulating 10, 20, and
40 distinct users. To accurately monitor the CPU during each trial, we record the usage of the server
VM’s vCPU on the physical host every 0.5 seconds using the top command. We perform each trial
100 times, and in each trial the main collection bot times how long it takes to fetch the main page
and all associated resources, then repeats this 5 times for a total of 500 data points.

We first perform a microbenchmark by downloading a roughly 1KB static HTML page; the
results of this experiment are shown in Figure 6. For all 3 user counts, more than 93% of page
loads take less than 0.03 milliseconds. The results also show that the latency overhead of the SuS
model is almost entirely nonexistent. We note that the microbenchmark is not representative of the
complexity of a real website, and so we repeat the experiment using WordPress and loading its main
page. WordPress has a complex bootstrapping process whenever a page is loaded which executes
many PHP scripts and multiple database queries; it is well-known as a heavy-weight application
[31].

The latency results of the WordPress scalability experiments are shown in Figure 7. We also
show the distribution of average per-trial CPU usage in Figure 8. We can see from the latency
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(a) 10 concurrent users (b) 20 concurrent users (c) 40 concurrent users

Figure 7: CDFs of 100 home page load trials in WordPress 5.1.1 with 10, 20, and 40 concurrent users in SuS and
control scenarios. Up to 2 outlier data points from both the SuS and Control experiments were removed from each
graph for readability.

Figure 8: Comparison of per-trial average CPU usage between SuS and the control at various user counts.

graphs that at 10 and 20 users, the SuS model is competitive with the control. However, as CPU
resources become scarce, differences begin to appear, as shown in the 40-user scenario. Due to the
heavy-weight nature of WordPress, CPU resources start becoming very constrained at only 20 users
for both the SuS and control; from there on, CPU becomes a large bottleneck in the server’s user
request handling. This bottleneck affects both the SuS and control latencies, but SuS is affected
more, as shown by the roughly 1-second extra delay in the SuS model latency for 40 users.

From these results, we conclude the following. The CPU overhead introduced by the SuS model
is light: at 10 users, the SuS model’s median CPU usage is 67.5%, barely 1.2% over that of the
control. However when CPU becomes constrained, the SuS model suffers more than the control.
This is likely due to the fact that SuS must spend precious CPU cycles, which could otherwise be
used servicing client requests, to do context switches between containers. We anticipate that in a
real-world scenario, companies will already be provisioned against CPU exhaustion, making the SuS
model’s performance under such a bottleneck less of a concern.

4.2.2 Memory

To examine the memory overhead of the SuS model, we maintain an experimental structure that
is largely the same as in Section 4.2.1. We record average memory consumption under the same
user counts in 5 trials. For each trial, the main collection bot loads the WordPress main page 40
times and then terminates. We record the memory consumption on the server VM once per second
using the docker stats command, and use the output of the free command to validate the data it
returns. We use only the last 20 data points collected from each trial to sample only the stabilized
memory consumption, for a total of 100 data points per server type and user count configuration.
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(a) SuS with Apache (b) SuS with Lighttpd (c) Control

Figure 9: CDFs of 100 average per-container memory samples with 10, 20, and 40 concurrent users in SuS and
control scenarios. In the control scenario there is only one container, so each data point represents the total memory
consumption of the system. For the SuS model, average memory consumption must be multiplied by the number of
users to calculate the total memory usage.

The results of this experiment are shown in Figure 9. The median average per-container con-
sumption for SuS containers with WordPress running on Apache was between 109 MB and 111
MB. This corresponds to a five-fold increase in total memory consumption in the 10-user scenario
over the control, and a nearly six-fold increase in consumption in the 40-user scenario. However,
we had originally used Lighttpd in our implementation in Section 3.3.1; we switched to the much
heavier-weight Apache server for the performance evaluation to give the control server a fair chance
in our latency and scalability assessment. Since each application server process does less total work
in the SuS model than in the control, the SuS model lends itself to using lightweight versions of the
application server inside its containers. Thus, we also perform the experiment with SuS containers
running Lighttpd. With this modification, the SuS model’s average per-container memory consump-
tion becomes about 33 MB, which is a reduction factor of more than 3. Compared to the control,
the Lighttpd-based SuS model uses 1.5x the total memory consumption in the 10-user scenario, and
1.8x in the 40-user scenario.

While these overhead factors are manageable, we believe that they may be reduced even further.
The file data each SuS container uses is practically identical, making it a prime candidate for copy-
on-write memory strategies such as KSM [32] that would help with memory de-duplication. We note
that while this type of approach could potentially create vulnerabilities that allow for unauthorized
data-reads between containers, the host OS is part of our trusted computing base and exploits
against it are out of the scope of our threat model.

4.2.3 Container Spawning

In this section, we examine the latency and computational overheads associated with spawning
containers, and the effect of spawning on page load latency when peformed while users are accessing
SuS containers. As part of the scalability assessment performed in Section 4.2.1, we wrapped the
docker run commands executed by the Container Manager in a time command to measure the
total time it takes to spawn a container. An analysis of these measurements is recorded in Table 3.
Overall, the median container spawn time was roughly 2.3 seconds.

As part of our implementation of the SuS design, the Container Manager maintains a “pool” of
containers that are ready to be assigned to new users. As this pool is depleted, it is replenished in
the background by the ContainerPoolWatcher thread. For previous tests, the replenishing feature
was disabled to isolate the variables we were trying to test. Here, we measure the impact of pool
replenishing on end-user experience by running the 10-user scalability assessment procedure from
Section 4.2.1 with the Container Manager constantly spawning containers in the background. We
opt to measure only the 10-user scenario since even without pool replenishing, the CPU is very
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User count # Samples Median (sec.) Std. dev.
10 1000 2.25 0.309
20 2000 2.31 0.248
40 4000 2.35 0.185

Table 3: Analysis of container spawning elapsed time across various user counts, taken during the scalability assess-
ment.

Figure 10: Main page load latency with 10 concurrent users in the SuS model with and without background container
spawning.

constrained for higher user counts.
The latency results of the experiment are shown in Figure 10. Clearly, background container

spawning has a significant impact on the user experience, raising the home page load latency by
roughly 1.5 seconds. Whereas the 10-user median CPU usage in the scalability assessment was
67.5%, with container spawning the median CPU usage is 99.1%. Thus, Docker container startup
is an expensive operation which must be done intelligently to minimize impact on latency.

There are a number of strategies that may ameliorate or hide the cost of container spawning.
Most simply, we may accept that container spawning is CPU intensive and allocate an extra core
to the server VM. By pinning the dockerd, containerd, and the Container Manager processes to
this core, we may perform container spawning without detracting from SuS containers’ time on the
CPU. Another strategy orthogonal to this is intelligent selection of container spawning times. We
could rewrite the Container Manager to make the ContainerPoolWatcher a separate process that
shares memory with the main process, and greatly increase the pool watcher’s nice value to make the
scheduler deprioritize it. We could add a monitoring thread that waits for times of low CPU-usage to
initiate a container spawn, so as to minimize the effect on end users. Finally, emerging virtualization
technologies promise much shorter boot times than what we have reported with Docker; Amazon’s
Firecracker claims boot times of 125 milliseconds [33]. In the near future, the SuS model’s Docker
containers could be replaced entirely.

4.2.4 Middleboxes

In our final experiment, we examine the overheads associated with the use of our CSM and SBM
middleboxes. For this experiment, we again load the WordPress homepage 5 times from our collec-
tion bot: first with no middleboxes, then with the CSM only, and finally with both middleboxes.
We perform each sub-experiment 50 times, with only one SuS container and no additional traffic
generation bots.

The results of our experiment are shown in Figure 11. The average overhead of enabling both
middleboxes, compared to having neither, is 0.13s across the 250 data points. Middleboxes are often
used in production environments with minimal impact on latency; we believe that with optimization,
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Figure 11: CDF of main page load times on a single SuS container with and without SuS middlebox components. We
have not found an adequate explanation for the step-function-like quality of the graph.

our SuS middleboxes could achieve similar performance results.

4.2.5 Discussion

Here we summarize our findings from the performance evaluation of the SuS model.

Scalability and CPU: We find that the SuS model’s computation overhead, compared to the
control, is insignificant. When CPU is unconstrained, the latency overhead of the SuS model is
similarly slight. When CPU becomes a bottleneck, page load latency under SuS suffers more than
the control due to the need for context switching between containers.

Memory: Memory usage for both SuS and the control scale with the number of users. SuS does
so by a higher factor, and so benefits from the use of lightweight application servers that may not
be adequate for the control. Copy-on-write memory sharing may help further reduce SuS memory
overhead.

Container Spawning: Although much better than VM boot performance, the act of spawning a
Docker container is still somewhat slow and quite CPU-intensive. We have outlined strategies for
ameliorating or hiding this overhead.

Middleboxes: Middlebox overheads are small and could be further reduced with optimizations.

5 Generalization

In Section 3, we created a basic implementation of the SuS model for a WordPress blog running
on the Lighttpd webserver. Although some of the functionality of our implementation is specific to
this use-case, much of the SuS infrastructure is not and can be abstracted into a configurable tool.
In this section, we restructure and modularize the SuS components to arrive at a generalized model
that should greatly simplify the process of applying this defense tool to various application servers.
To evaluate our generalized model, we convert a popular mail retrieval protocol, IMAP, to operate
with the SuS model and show that it can be done without further redesign of the SuS components.

5.1 SuS-to-Backend Middlebox

We now work to abstract away the application-specific components of the SBM. We show our analysis
of the SBM’s features in Table 4. Based on this analysis, we can see that although the SBM operates
on resource requests and responses, it need not be concerned with how they are are transported or
intercepted. The SBM can be decoupled from these mechanisms, allowing it to operate with many
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Universal Application-specific
Interact with Container Manager Message transport protocol

ResourceRestrictTable Request protocol & access predicates
Maintain user info from Container Manager Roles, resources, user types

Respond to denied request Request modification method
Denied request error format

Table 4: Breakdown of functions of the original SBM.

Figure 12: The SBM is implemented as a .a static library that can be compiled into proxy programs that are positioned
between the SuS containers and the backend resource (database, remote filesystem, etc.). The SBM itself relies on a
set of API calls defined in sbmm.h that must be implemented on a per-request-protocol basis. The API implementation
is compiled into a .so dynamic library that the SBM can load without recompilation. In this way, the SBM allows
API modules to be swapped between successive executions simply by changing a value in its configuration file.

different types of proxies (TCP, UDP, syscall interception, etc.). Similarly, the SBM should offload
most of the analysis of the requests and responses to user-defined functions. The universal SBM
functionality can exist as a mediating layer between the interception and modification layers. The
SBM should enforce the existence of a table (known as the ResourceRestrictTable) that maps each
request’s (role, resource, access type) tuple to an access predicate, but not make any assumptions
about the table’s indexes or content. Finally, since we want to support many different application
protocol types, the SBM should declare an API that developers can implement for their particular
use case. For ease of development, the SBM will ideally allow users to swap between the API
implementations easily and to write a module without needing to recompile the SBM.

To accomplish these goals, we design the modularized SBM as shown in Figure 12. We implement
the SBM as a .a static library which can be included in the compilation of a program that proxies
requests between SuS containers and the backend resource. The SBM library in turn loads a .so

dynamic library based on a field specified in the configuration file; this dynamic library handles the
protocol-specific request parsing and modification. The library must implement the API functions
defined in sbmm.h (SuS-to-Backend Middlebox Module). With this program structure, the request-
level functionality of the SBM can be altered between executions simply by changing which request
module is loaded at runtime.

5.1.1 Request/Response Interception

The SBM library exposes a small API to the proxy, of which the important functions are sbm ma-

nipulateRequest(RequestContext&, buffer *) and sbm monitorResponse(RequestContext&).
When receiving a new request, the proxy simply needs to elevate it to the SBM using sbm mainpu-
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lateRequest() and forward the (potentially) modified result. Similarly, the proxy elevates responses
via sbm monitorResponse() to allow the SBM to check for request denial. Since the SBM cannot
anticipate the format of requests, requests must be handled as variable-length arrays of raw bytes.
These arrays are encapsulated in a contextual object that allows the proxy to specify the source of
the request.

1 typedef struct

2 {

3 void *data;

4 uint32_t len;

5 } buffer;

6
7 class RequestContext

8 {

9 buffer request;

10 std::string src;

11 std::map<std::string, std::string> contextDict;

12 }

5.1.2 SBM Library Internals

When the SBM is initialized via a function call from the proxy, it first loads a configuration file. This
file includes the API module name, information for connecting to the Container Manager, and the
list of roles, resources, and access types that will be used in the ResourceRestrictTable. The dynamic
library specified by the API module name is loaded via a dlopen() function call and dlsym() is
used to get each function pointer and ensure the API is completely defined. As with Section 3.6, the
ResourceRestrictTable is populated by a .tsv file for each role that maps access types and resources
to access predicates. In this way, the SBM controls the table object but allows the developer to
control its content.

The SBM also creates a socket for interacting with the Container Manager and a separate thread
for listening for login updates. Both the main thread and listener thread can share the socket,
because only the former writes to it (when a request denial response is found), and only the latter
reads from it. The listener thread uses the messages from the Container Manager to build up
a dictionary of contextual information for each user, indexed by the container IP address. This
dictionary is used by the API module to fill out variables in the access predicates when modifying
requests.

5.1.3 Request Modification and Response Monitoring

During the course of execution, the proxy will elevate a request to the SBM as a RequestContext

object via the sbm manipulateRequest() function. At this point, the SBM accesses the user-context
dictionary keyed by the RequestContext.src field to retrieve the user’s role and any additional
information. This data is then copied into the RequestContext.contextDict. If no such entry exists
in the user context dictionary, the SBM inserts the default role specified in the configuration file.
Next, the SBM passes the RequestContext object to the module API functions getAccessType()

and getResource(), as these values are application-specific and determined by the content of the
request. With the role, resource, and access type, the SBM then retrieves the proper access predicate
from the ResourceRestrictTable. The RequestContext object is then sent along with the access
predicate to the API modifyRequest() function. In this function, the access predicate is applied to
the request. The resulting buffer structure is finally returned to the proxy program.

Once a response is elevated to the SBM via sbm monitorResponse(), it is forwarded to the
isPermissionsErrorMessage() API function. This allows the API module to specify whether a
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Universal Application-specific
Interact with Container Manager User communication protocol

Container Manager communication protocol User identifier value
User identifier mapped to IP address Container prune strategy

Block user requests

Table 5: Breakdown of functions of the original CSM.

response indicates that the associated request was denied due to insufficient privileges. Based on
the function’s return value, the SBM will use the response destination IP to notify the Container
Manager to stop the associated container.

In this way, the SBM achieves high flexibility while still providing some foundational structure.
With the SBM’s access predicates, it would be feasible to completely supplant the backend resource’s
built-in permission control system and perform all access control using the ResourceRestrictTable
(we considered doing this with our MySQL backend in the WordPress implementation). However,
as the SBM becomes more powerful, it has the potential to become another Confused Deputy in the
communication pipeline. If that were to happen, the SuS model would only complicate the problem
instead of solving it. Thus, it is important that the backend resource’s built-in access control system
be used to the extent possible.

5.2 Client-to-SuS Middlebox

To generalize the CSM, we must abstract out code, as we did with the SBM, that is specific to
the protocol with which clients communicate with their SuS containers. Since we are focused on
protecting networked services, we can assume that, as the front-end proxy, the CSM will use sockets.
In Table 5, we present our analysis of the functions of the CSM. Due to time constraints, this section
describes work that has not been implemented; however, this section provides a comprehensive
blueprint for future implementation.

As with the SBM, we implement the CSM as a .a static library which can be compiled into
a proxy program to make the proxy “CSM-enhanced.” At startup, the proxy must call the CSM
library’s init() function which, is establishes the socket connection used for communication with
the Container Manager. This function sets up a separate thread belonging to the CSM library that
listens for messages from the Container Manager about which IP to block.

Aside from startup and teardown procedures, the CSM library exposes three main functions
that need to be called by the proxy. The csm retrieve ip() function takes a client identifier string
and session ID and returns the associated container IP (for WordPress, the user identifier was the
SUS DEMULT COOKIE). The csm ip blocked() function takes the container IP address and returns a
true value if the Container Manager has specified that traffic to the container should be blocked
because it is frozen. Finally, csm prune container is used to notify the Container Manager that a
container with the specified IP can be reclaimed since the session has finished.

Although not required, we anticipate that the proxy will be set up in a multi-threaded fashion
so each thread corresponds to one user connection. Here we present a pseudo-code example of how
the proxy’s client handler function can be “enhanced” using the CSM library:

function client_socket_handler()

{
string container_ip;

string client_id;

string session_id;
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socket container_socket;

while true

{
read whole message from user;

if container_ip is not set

{
client_id = extract client identifier;

container_ip = csm_retrieve_ip(client_id, session_id);

container_socket = connect to container;

}

if csm_ip_blocked(container_ip)

{
break out of while loop;

}

forward message to container;

wait for response from container;

forward response to user;

}

...

csm_prune_container(container_ip);

}

Internally, the CSM maintains two data structures: a map of client IDs to container IPs and an
array of blocked container IPs. Since both may be accessed by any of the proxy threads, as well
as the CSM’s internal Container Manager communication thread, both of these data structures are
mutex-protected.

When a proxy thread makes a call to the csm retrieve ip() function, it provides the client
identifier and an optional session ID. If the client identifier matches an existing key in the map
structure, then the corresponding IP address is returned immediately. If no such key exists, the CSM
must build a message (which may include a session ID) to request an IP from the Container Manager.
Once an IP address is received, the mapping is added as a new entry to the map structure. Once
the proxy issues a csm prune container() request for that container IP, the mapping is removed
and a prune notification message is sent to the Container Manager.

An IP block message is the only message that may be received unprompted from the Container
Manager. The CSM library’s internal thread exists to listen for these messages, parse the IP address
inside of them, and add the value to the blocked container IP array.

5.2.1 Pruning Strategies

Here, we briefly touch on when the proxy program should prune a container. In applications where
a client connects using only a single TCP or SSL connection, we can take a client-side connection
termination as indication that the client intends to end his or her session with the container. However,
as we found with our WordPress implementation in Section 3.5, stateless protocols such as UDP
and HTTP make it difficult to know when a session has ended. After each individual request or
packet sent, the client may suddenly decide to stop interacting with the system without making any
protocol-level notification to the server.

The proxy may be able to make use of application-specific information (such as an HTTP request
for the URL associated with the logout button) to guess the user’s intention to cease interaction
with their SuS container and thus initiate pruning. However, these application-level heuristics are
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Universal Application-specific
Spawn/despawn container Install/remove credentials
Select/maintain IP address Upgrade privileges
Maintain cont. ID and role Generate extra container configuration

Own component communication ports docker run extra arguments
Freeze/stop container Forward extra login context to SBM

Build/unpack component messages Maintain/honor session ID
Close container/ports gracefully

Table 6: Breakdown of functions of the original Container Manager

not guaranteed to cover all scenarios. Thus, as was the case with WordPress, the proxy will need
modification to expire containers by time-stamping each request and noting which containers have
passed a certain threshold. In this work, we make the design decision to leave this functionality
outside of the CSM.

5.3 Container Manager

The CSM and SBM are modularized by abstracting SuS functionality into an API that is com-
piled into separate proxy code. The purpose of this compilation is to avoid making any limiting
assumptions about the communication medium of the application server being protected. No mat-
ter the protocols are in use, we must still designate a process to manage the container information
and handle buildup and teardown. During the modularization process, the Container Manager’s
codebase therefore remains mostly intact as a standalone program. We present our analysis of the
functionality of the Container Manager in Table 6.

To maintain the existing codebase structure while allowing developers to inject additional func-
tionality at various stages, we adopt a callback function system. At initialization time, developer-
defined functions are registered with specific events via a callback manager. When an event occurs
during execution, the callback manager is instructed to execute or “fire” the functions registered with
that event. These functions may perform side-effects (such as installing user credentials), modify
passed arguments, or return values to be used in subsequent execution.

For flexibility and cohesion with the new callback system, the container context object maintained
by the Container Manager is re-defined as follows:

1 class ContainerContext():

2 def __init__(self, container_id, container_ip, configs):

3 self.container_id = container_id

4 self.container_ip = container_ip

5 self.status = ContainerState.READY

6 self.role = None

7 self.configs = configs

The only information about each container that the Container Manager “owns” are its ID, IP
address, status, and site role. All application-specific information about a container is stored in
the user-defined dictionary configs; for our WordPress implementation, that includes the database
username/password, session ID, and the HMAC salt and key. Although a user’s role is an application-
specific value, we want to emphasize that upgrading privilege as a response to confirmed authenti-
cation is an essential component of the SuS model. Thus we design the container context object to
enforce the use of roles.

In the following subsections, we address how our design supports each of the application-specific
features listed in Table 6.
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5.3.1 Additional Container Configuration Generation

We do not anticipate a need for developers to control the IP address assigned to each SuS container,
as IP address selection should be irrelevant to operation of the SuS model. Therefore, in our
system design, the Container Manager retains control over this configuration. We do anticipate that
developers will need to assign some additional configuration based on the application being secured;
this need is satisfied by the aforementioned user-defined dictionary configs.

To allow developers to populate this dictionary, we insert a callback action at the beginning of
the container spawn function of the ContainerPoolWatcher called spawn gen config. To functions
that register with this callback, we pass the IP address of the container and an empty dictionary. In
Python, objects such as dictionaries are passed by reference; thus changes made to the dictionary
within each callback function are visible to the Container Manager. The populated dictionary is
passed as an argument to subsequent callback functions and eventually is used in the creation of the
container’s ContainerContext object.

5.3.2 Retrieving Extra Arguments For docker run

As in our WordPress implementation, we anticipate that developers will want to pass a subset
of the configuration values generated in spawn gen config callbacks to the container on startup in
order to modify the behavior of the containerized code. Passing backend resource credentials and
cryptographic information are straightforward use-cases for this functionality.

To allow developers to specify a set of arguments to append to the docker run command executed
by the ContainerPoolWatcher, we add the spawn get params callback action. Functions registered
with this action are passed the container IP, configs dictionary, and an empty list object which
the functions populate to specify the desired arguments. With a loop, we then append any values
in the resulting list to the string containing the docker run command before executing it.

5.3.3 Installing Credentials and Performing Side-effects

At some point during the container spawning/despawning process, the developer may need to per-
form side-effects, particularly installing/removing credentials from the backend resource. To handle
any general use-cases that correspond with container spawning and despawning, we add the follow-
ing callback actions to the callback manager: spawn pre, spawn post, spawn pre, and despawn post.
All of these actions pass the container’s IP address and configs dictionary, but only spawn post
and despawn pre are passed the container ID, since they occur while the container is running.

For our WordPress implementation, we perform database credential installation during spawn pre
and removal during despawn post, since these actions do not require the container to be running.

5.3.4 Upgrading Privileges

While it is important for the Container Manager to know which users have logged in, we expect
developers to handle upgrading privileges upon a confirmed authentication. We therefore create the
login callback action that fires after the Container Manager receives a message from the Authen-
tication Server. We require that the Authentication Manager’s login notifications begin with the
container’s IP address and new role, as those are relevant to the Container Manager. However, we
also anticipate that developers may need the Authentication Server to send additional information
for application-specific responses to login; for our WordPress implementation, that includes the time
of login for determining the expiration time of a session ID. Thus, a function registered with the
login action is passed the container’s IP address, ID, the user’s new role, configs dictionary, and
any additional information appended to the received login notification message.
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5.3.5 Forwarding Information to the SBM

Upon receiving a login notification from the Authentication Server, the Container Manager passes
the received IP address and role information to the SBM so that it may apply the correct access
predicates from the ResourceRestrictTable. We anticipate that developers will need to forward
additional information in these messages to fill in variables within the access predicates (see Section
3.6).

We therefore alter the login callback action to expect functions registered with it to return a
string value containing the additional information the developer wants forwarded to the SBM. After
the string value is appended to the IP and role in the message, and the appropriate message header
is prepended, the information is forwarded.

For our WordPress implementation, we use this feature to supply the SBM with the site user ID
associated with each container, which is used as a variable to control which rows of the wp posts

table an authenticated user can modify.

5.3.6 Handling Session IDs

Although we do not anticipate many application servers (other than webservers) needing session
IDs, we make them a full-fledged feature of the SuS model. Session IDs are used to influence the
decisions of the Container Manager at two stages of execution. First, when the CSM requests a
container IP address, a provided session ID may influence the Container Manager to return the IP
address corresponding to that session ID instead of a fresh one. Second, when the CSM notifies the
Container Manager to prune a container for inactivity, the existence of an active session ID may
cause the Container Manager simply to stop the container instead of destroying it.

To handle IP address retrieval, we add a callback action to the container get() function called
get session. This function receives the passed session ID and is expected to return an IP address. If
the return value is None, we assume either the developer has decided that the session ID is expired
or the session ID is invalid or nonexistent. In this case, we continue on to retrieving an IP address
from the unassigned containers list.

To handle container pruning, we insert a callback action after the sanity checks in the
container stop() function called stop session. Functions registered with this callback are ex-
pected to return True if the developer wishes the container to be saved; otherwise, False or None.
Based on the result of firing the callback action, we either call docker stop or invoke the Container
Manager’s container despawn() function.

5.4 Applying the Modularized System

With the SuS components rewritten to abstract out protocol-specific behavior, we test the SuS
model’s modularity by applying it to another networked service. The service we chose is the Internet
Message Access Protocol (IMAP), used for retrieving user mail from a remote server. E-mail is a
popular form of communication, so the IMAP protocol is widely used today. IMAP is also useful for
testing our system’s modularity because it involves a different type of backend resource than web
applications. Whereas WordPress’s sensitive data was stored in a MySQL database, IMAP’s email
data is stored using the Linux filesystem. An IMAP server is also unlike a webapp in that users
are required to log in before accessing any other functionality of the system, so there is no need for
cookies to remember a user’s data beyond a single session.

In the following subsections, we describe the functioning of the IMAP server and how it is ported
to the SuS model.
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5.4.1 Background

The IMAP protocol is one of two widely-used protocols for retrieving mail from a remote server.
Unlike its counterpart, POP3, IMAP does not delete the email from the remote server after it
has been locally downloaded. Emails, drafts, and local sub-folders are synchronized across a user’s
devices. Both IMAP and POP3 can be configured to work one of two different storage structures:
flat-file and maildir. In the flat-file system, each user’s entire mailbox is represented as a single file.
In the maildir system, each email is represented as a separate file, and each user has a directory with
three subdirectories: /tmp, /new, and /cur. Mail transfer protocols such as SMTP and LMTP use
the /tmp directory during mail transfer for storing partially-written email files. Once the transfer is
complete, the email file is moved into /new. The /new directory holds all complete email files that
have not yet been read by the user. Once the user logs in and checks his or her inbox, the emails in
/new are moved to /cur with the rest of the user’s previous mail. For our purposes, we opted for the
maildir storage system over flat-file because representing emails as individual files within well-defined
directories, instead of lines within a single file, allows us to make better use of the existing Linux
file access control mechanisms.

5.4.2 Containerizing IMAP

To prepare IMAP for integration into the SuS model, we need a container image with an IMAP
server that defers its authentication to an external, trusted entity that will operate as the SuS
Authentication Server. We begin by installing Postfix and Dovecot, two widely-used Linux mail
server programs for SMTP and IMAP/POP3, on the host machine. We opt to use a virtual domain
(abc.com) and virtual users, so that we may aggregate all maildirs in a single superdirectory. This
decision also gives us better scalability, as we would otherwise have to assign a dedicated Linux user
account for every mail account we wanted to set up.

To resolve the virtual domain and its mail server to IP addresses, we create a local authoritative
DNS server with MX, NS, and A records for the abc.com zone. We then point the host to first query
this local DNS server before attempting to resolve elsewhere.

Finally, we need a method to prevent the standalone Postfix process from accessing mail that has
already been written to the maildir. Following an online tutorial [34], we set up a non-containerized
Dovecot process running only the Local Mail Transfer Protocol (LMTP). Then, we configure Postfix
to pass the received mail to Dovecot via Unix socket. Dovecot then delivers the mail to the correct
directory under ownership of dovecot-user. Relevant pieces of our configuration files for Postfix,
Dovecot-LMTP, and containerized Dovecot are shown below.

1 alias_maps = hash:/etc/aliases

2 alias_database = hash:/etc/aliases

3
4 # Configuration for virtual domains and LMTP delivery

5 masquerade_domains = abc.com

6 virtual_mailbox_domains = abc.com

7 virtual_mailbox_base = /home/vmail

8 virtual_mailbox_maps = hash:/etc/postfix/virtual

9 virtual_minimum_uid = 1000

10 virtual_uid_maps = static:6001

11 virtual_gid_maps = static:6002

12 virtual_transport = lmtp:unix:private/dovecot-lmtp

1 protocols = lmtp

2 mail_location = maildir:~/

3 listen = *
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4
5 # Which directory to deposit mail into, based on domain and username

6 userdb {

7 driver = static

8 args = uid=dovecot-user gid=dovecot-user home=/home/vmail/%d/%n

9 }

10
11 # LMTP Configuration

12 service lmtp {

13 unix_listener /var/spool/postfix/private/dovecot-lmtp {

14 group = postfix

15 mode = 0600

16 user = postfix

17 }

18 }

19 protocol lmtp {

20 postmaster_address = postmaster@sus-ubuntu-2.cs.wpi.edu

21 }

22 service lmtp {

23 user = dovecot-user

24 }

1 protocols = imap

2 mail_location = maildir:~/

3 auth_mechanisms = plain

4
5 passdb {

6 driver = passwd-file

7 args = /etc/dovecot/passwd

8 }

9
10 userdb {

11 driver = static

12 args = uid=6000 gid=6002 home=/var/mail/mail_mount

13 }

Next, we need to restrict the system data that each IMAP user is able to access. It is intuitive that
a particular user should only be able to access his or her own maildir from within the containerized
IMAP server, and we should therefore mount only that directory. Barring a hypervisor breakout,
each user would be rendered totally incapable of accessing other users’ files. However, this line of
thought leads straight to the following paradox: we cannot know which maildir needs to be mounted
until the user has provided login credentials to the running IMAP container, but docker can only
mount volumes at the time of container instantiation. Thankfully, we are not the first to notice the
usefulness of dynamic volume mounting; an online article by Jerome Petazzoni describes a method
for accomplishing this [35]. The technique involves entering the container to manually create the
device containing the entire host filesystem, mounting the entire filesystem from within the container,
and then mounting the desired subdirectory from that mount into its final desired location. This
cannot be accomplished solely with docker exec; using that command causes the namespace with
which one enters the container to prevent performing mountings for security reasons. So we use a
non-Docker tool called nsenter to enter the container with a desired namespace that does not have
such restrictions. Based on Petazzoni’s article, we wrote a script to take in a mail username and
dynamically mount the corresponding maildir into the given container ID (shown below).
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1 #!/bin/sh

2
3 # Requested username and container ID originating request supplied as args

4 CONTAINERID=$1

5 MAILUSER=$2

6
7 # Lookup the PID associated with the container, needed for nsenter

8 CONTAINERPID=‘docker inspect --format {{.State.Pid}} $CONTAINERID‘

9
10 # Create the device for the filesystem root in the container

11 docker exec -d $CONTAINERID mknod --mode 0600 /dev/sus--ubuntu--2--vg-root b 252 0

12
13 # Create requisite folders

14 docker exec -d $CONTAINERID mkdir -p /tmpmnt

15 docker exec -d $CONTAINERID mkdir /var/mail/mail_mount

16
17 # Mount the fileystem root device to /tmpnt

18 sudo nsenter --target $CONTAINERPID --mount --uts --ipc --net --pid mount

/dev/sus--ubuntu--2--vg-root /tmpmnt

19
20 # Mount the desired directory from within /tmpmnt to mail_mount dir

21 sudo nsenter --target $CONTAINERPID --mount --uts --ipc --net --pid mount --bind

/tmpmnt/home/vmail/abc.com/$MAILUSER /var/mail/mail_mount

22
23 # Cleanup

24 sudo nsenter --target $CONTAINERPID --mount --uts --ipc --net --pid umount /tmpmnt

25 docker exec -d $CONTAINERID rm -r /tmpmnt

With this mechanism, we can mount the proper directory once a user has authenticated. As part
of the SuS model, however, we cannot trust the containerized IMAP server’s native authentication
to accurately report which user has logged in. This is because the container becomes untrusted as
soon as a user connects to it. Dovecot v2.3 has native support for PAM, and can be configured
to send a JSON string containing a user login and password hash to a remote HTTP server for
login approval. Dovecot’s PAM system does not supplant its native authentication, but it can be
configured to launch before or after. The PAM configuration in the SuS IMAP server is shown
below.

1 auth_policy_server_url = http://172.17.0.1:8080/

2 auth_policy_hash_nonce = SwarmsOfSuperSuspiciousServers

3 auth_policy_server_timeout_msecs = 5000

4 auth_policy_hash_mech = sha256

5 auth_policy_request_attributes = login=%{requested_username} pwhash=%{hashed_password}

remote=%{rip} device_id=%{client_id} protocol=%s

6 auth_policy_reject_on_fail = yes

7 auth_policy_check_before_auth = yes

8 auth_policy_check_after_auth = no

9 auth_policy_report_after_auth = no

10 auth_policy_hash_truncate = 0

We create a simple HTTP server in Python3 that verifies the username/password-hash pair sent
by Dovecot, and accepts or rejects the login based on a file of the correct password hashes. This acts
as the Authentication Server in the SuS model for IMAP. After a set of credentials are verified to
be correct, but before a response has been sent to the container, the Authentication Server invokes
the dynamic volume mounting script with the given username and a reverse-searched container ID.
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Consequently, the maildir is always loaded into the container before the Dovecot instance attempts
to access it.

Because Dovecot’s PAM mechanism does not replace its native authentication, we still need to
provide a file of password hashes to the containerized server. Since we have been using password-
hash-file-based authentication, this would allow each SuS IMAP server to have access to the whole
password hash file, with undesirable security implications. However, since we already know at the
Authentication Server which username the client is attempting login as, we can simply split the
password hash file into a set of files with only one username/hash entry per file. The relevant
password file is then copied into the container at the same time we perform the maildir mount.
This method prevents a user from ever having access to other users’ login information, even if the
container is totally compromised.

Now we have a containerized IMAP server ready for use in the SuS model. Building the SuS
IMAP server is much simpler than building one for WordPress. For one, Dovecot already has a
remote authentication mechanism, so we do not need to invent one. Also, all clients have the same
role and must log in before they can access any sensitive data. Finally, the permission control boils
down to directory access, which we can control easily via bind mounting.

5.4.3 Complete System

We now explain how the modularized SuS components are combined with the IMAP containers
to create a complete system. Due to time constraints, the work described in the section is not
implemented.

• Client Demultiplexing: The CSM library is compiled into an SSL-to-TCP proxy, and the
SSL ID used by each client becomes the identifier used to distinguish them.

• Container Pruning: Since the SSL protocol is not stateless, we use connection termination
as a catalyst for container pruning in the CSM.

• Container Spawning and Despawning: No credentials need to be installed or removed in
the backend resource. Our user script for the Container Manager registers a callback function
with the spawn gen config action. When a container is going to be spawned, we generate a
nonce for the IMAP server to use when hashing user-supplied credentials to the Authentication
Server. As in the WordPress implementation, this hash nonce is based on the container IP
and a shared key, so information supplied to the Authentication Server cannot be spoofed.

• Container Freezing: SuS containers running IMAP can be considered compromised when
the internal dovecot process attempts to read or write files outside the associated user’s mail
directory. Thus, the SBM is compiled into a program that monitors log files of the auditd

service for improper read/write syscalls made based on the calling PID and the destination file’s
path. We therefore need to know the PID associated with each IMAP process, so information
is recorded in each container’s context object after the spawn occurs during the spawn post

action.

• Query Scoping: With IMAP, the backend resource is a filesystem, so the “requests” are
simply read/write syscalls against specific files. For simplicity, we compile the SBM library
into a program that monitors log files; thus, the SBM is not positioned as a “man in the
middle” to scope queries. If this functionality is desired, we may be able to compile the SBM
into a loadable kernel module that replaces the relevant syscalls and can approve or deny them.

• Login Handling: Our HTTP Authentication Server is extended to communicate role updates
to the Container Manager process. The function we register with the Container Manager’s
login callback action forwards the container IP, username, and associated dovecot PID to
the SBM.
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• Extended Sessions: IMAP does not call for the use of extended sessions marked by session
IDs.

We have now arrived at a generalized SuS model that can be applied to a wide range of
server/backend pairs. The Container Manager, SBM, and CSM are modularized so they can be ap-
plied in different contexts by changing configurations instead of rewriting them on a per-application
basis. To demonstrate this capability, we port dovecot, an IMAP protocol server, to use the gener-
alized SuS model and do so without any further changes to the SuS components.

6 Conclusion

The goal of this work is to create a generalized model for protecting application servers against lateral
propagation and Confused-Deputy-based privilege escalation attacks. Internet application servers
are currently designed to maximize resource efficiency by handling many users that fall within
disparate privilege classes. This co-hosting of users allows adversaries to attack other clients or
exploit privilege escalation vulnerabilities to read and modify sensitive backend data. Our proposed
solution, the SuS model, separates each user into an isolated execution context with tailored backend
permissions so that these attack classes are thwarted. We design our system to achieve a high level
of security while minimizing the amount of code modification required for porting an application
server to SuS.

In the first phase of this work, we define a set of SuS components that have well-defined roles and
responsibilities for enabling user separation, trusted authentication, state maintenance, and compro-
mise detection. We implement these components for the popular web deployment tool WordPress.
We also create a containerized version of the WordPress codebase, using Docker, that is appropriate
for use in the SuS model.

In the second phase, we select three real-world exploits against WordPress that are representative
of our threat model and show that the SuS model is effective at detecting and neutralizing them.
We go on to perform a comprehensive evaluation of the SuS model’s performance with a focus on
end-user experience. We find that in an unconstrained system, the CPU and latency overheads of
the SuS model are low. Further, we find that memory consumption and container spawning CPU
usage are non-trivial overheads, and we outline a set of strategies for ameliorating them that will be
examined in future work.

In the final phase, we arrive at a generalized version of the SuS model by modularizing the SuS
components. We find that the two SuS middleboxes can be effectively rewritten as libraries for proxy
programs to abstract away protocol-specific details while still implementing SuS-specific features such
as query scoping, client demultiplexing, and communication with the container manager. We also
find that the container manager process can offer flexibility to deployers while maintaining its original
structure by adopting a callback system. We then evaluate our modularization efforts by applying
the SuS model to the IMAP mail retrieval protocol, which has a very different privilege model than
WordPress. Although some of the work in this phase is theoretical, due to time constraints, we show
that IMAP can be ported to the SuS model with little effort.
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