
Various Projects in the ASSISTments
Foundation

A Major Qualifying Project
Submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by
Adam Goldsmith

Date:
August 9, 2019

Submitted to:

Professor Neil Heffernan
Worcester Polytechnic Institute

Abstract
This Major Qualifying Project (MQP) consisted of several sub-projects, all relating to the
ASSISTments Foundation and associated projects. The first sub-project created a way to
inject JavaScript code into ASSISTments’ web tutor application via the PeerAssist system
for proving hints using stored Cross Site Scripting techniques to allow performing a study.
The second sub-project consisted of improvements to the mobile app written in C term of
2019 during my IQP, including an unsuccessful attempt to add support for the new version
of ASSISTments. The third sub-project was the successful migration of the entire codebase
between version control systems, from Subversion to Git, and to new hosting on Github.

i

Acknowledgments
I would like to thank Professor Neil Heffernan for offering the opportunity to continue work-
ing on projects in the ASSISTments Foundation. Thank you to Anthony Botelho for his
continued assistance with the mobile app, Cristina Heffernan for her UI advice on the mobile
app, and March Patikorn for his mentoring on PeerAssist and the ASSISTments develop-
ment environment. Thank you to Chris Donnelly and David Magid for their development
knowledge and willingness to work through the Git migration with me.

I would also like to thank all the contributors to ASSISTments for providing an environ-
ment to build upon.

ii

Authorship
The sole authorship of this paper and the associated code belongs to Adam Goldsmith. The
development of this project was completed exclusively at Worcester Polytechnic Institute
(WPI) for ASSISTments, a free public service of the ASSISTments Foundation created by
Neil and Cristina Heffernan.

iii

Contents
1 Introduction 1

2 TeacherAssist Code Injection 1
2.1 Introduction . 1
2.2 Implementation . 2
2.3 Future Work . 7

3 Mobile App Improvements 7
3.1 Introduction . 7
3.2 Style and Misc Improvements . 7
3.3 Implementing a Service Worker for Offline Support in 2.0 10
3.4 Mobile App Login Handling for 2.0 . 11
3.5 Future work . 13

4 SVN to Git Migration 14
4.1 Introduction . 14
4.2 Tool Selection . 16
4.3 Implementation . 17
4.4 Future Work . 24

5 References 27

Appendices 28

A Teacher Assist inject.js 28

B Service Worker Linker 29

C The ‘Rules’ Section of svn-all-fast-export/svn2git/README.md 33
C.1 create respository . 33
C.2 match . 33
C.3 include FILENAME . 34
C.4 declare VAR=VALUE . 34

D SVN-Git-Migration/rules/yamlParser.py 34

E SVN-Git-Migration/README.md 35
E.1 ASSISTments SVN -> Git Migration . 35

E.1.1 Requirements . 35
E.1.2 The Import Process . 35
E.1.3 Writing more rules . 37

iv

List of Figures
1 Normal Hint Display . 1
2 Failed Image Load . 3
3 Feedback Form Successfully Injected . 5
4 Comparison of v1.0.0 (top) vs v1.1.0 (bottom) 8
5 SVN “Standard” Layout . 15
6 Simple Git History with Branch (Note: History flows from bottom to top) . 15
7 Simple SVN → Git Mapping . 16
8 Simplified FindAndAssign Git Tree . 20

List of Tables
1 time and du Output for Commands in the Migration Process 22
2 Mapping of Created Git Repos to SVN Paths 23

List of Listings
1 Basic Image onerror . 2
2 URL Scheme onerror . 2
3 External Script Injection . 3
4 Injecting External Script Exactly Once . 3
5 Simplified TeacherAssist inject.js . 4
6 PeerAssistService Patch . 6
7 inject.js handleSubmit function . 6
8 Old ActionBar Implementation . 9
9 New ActionBar Implementation . 10
10 Service Worker JS Template . 11
11 Debug iOS apple-app-site-association . 12
12 Debug Android assetlinks.json . 12
13 Helpful svn Aliases . 18
14 svneverever Command . 18
15 Extracted findAndAssign Rules YAML . 19
16 SVN-Git-Migration/doImport.sh . 20
17 Line Endings and Style Cleanup Script SVN-Git-Migration/cleanup.sh 21
18 Remove Unused Branches and Refs SVN-Git-Migration/repoCleanup.sh 22
19 Git Repack Command . 22
20 Repository Creation Script SVN-Git-Migration/createRepos.py 25
21 Branch Protection Script SVN-Git-Migration/createControlledBranches.py . . 26

v

1 Introduction
ASSISTments is a free homework and tutoring service, as well as a scientific research plat-
form. It provides automatic grading and feedback for a wide variety of existing and user-
supplied content. ASSISTments also supports a number of scientific studies to improve
student learning. Currently, it is in the process of transitioning to a major new version (2.0),
which brings a number of new features. I worked on several projects for this MQP, including
injecting code into the 1.0 tutor, updates to the mobile app, and migrating the code base to
a new version control system.

2 TeacherAssist Code Injection

2.1 Introduction

PeerAssist and TeacherAssist are components of ASSISTments that provide hints and ex-
planations to students on demand. The hints can be provided by ASSISTments, the teacher,
or other students, depending on the teacher’s settings. An example of their normal usage in
ASSISTments 1.0 can be seen in Figure 1.

Figure 1: Normal Hint Display

A proposed study would try to gather data about how helpful these hints are, and how
the wording of the prompt (ex. “did this help” vs “was this hint helpful”) affects these results.
To do this, some buttons and a bit of JavaScript had to be added to the tutor. However,
PeerAssist and TeacherAssist are currently only implemented in ASSISTments 1.0, and the
tutor in 1.0 is in a feature freeze since all development effort is going into 2.0, so no code could
be added to it to implement this. However, the PeerAssistService project, which provides
the hints and explanations to the tutor, is a separate project which is still editable. I was
therefore asked to find a way to implement this study in such a way that it only required
editing the PeerAssistService code.

1

2.2 Implementation

I started by trying to see if I could get code injected into the client page at all. For testing, I
just manually inserted the HTML directly into the problem in the Postgres testing database.
The naive implementation would just be to inject a <script> tag into each Hint/Explanation
and be done with it. However, for unclear reasons this did not work, and so a more creative
method had to be implemented. My solution was to use a stored Cross Site Scripting (XSS)
technique to run a small amount of JavaScript which could then load a larger JS file, allowing
arbitrary code execution.

Cross Site Scripting is an injection attack in which an attacker exploits a vulnerability in
a site to cause an end user to download and run code of the attacker’s choosing.[1] There are
two main types of XSS attack: reflected and stored. A reflected attack relies on the attacker
convincing the user to interact with a malicious link, form, etc that has been modified to
insert their code. In a stored attack the attacker instead stores the malicious code on the
server in such a way that an end user will be sent the code during normal usage of the site.
The second is much more dangerous as it can hit every user with no further effort by the
attacker, but is typically much harder to achieve.

An XSS is very similar to this problem; in both the author is trying to get code into
a page for which they cannot modify the original source. This is clearly closer to a stored
XSS, as I need to have it affect all users, not just those who click a link, and I already have
access to the ability to store or modify data in PeerAssistService . After experimenting with
several different types of stored XSS with no success, I found that an tag’s onerror
did evaluate, when the image file did not exist, although it did cause a lot of 404 errors due
to the frequent requests for the specified file. A basic example is shown in Listing 1, and
Figure 2 shows what a user would see if this were injected (minus the alert window), as the
browser interprets this as a broken image.

1

Listing 1: Basic Image onerror

Some more experimenting revealed that I could use a custom URL scheme, which will
always fail without making a network request as long as no one defines it. I chose fail: , as
that seemed unlikely to be defined in the future. This is shown in Listing 2 This does still
produce warnings in the JavaScript console, but it was the best solution I could find.

1

Listing 2: URL Scheme onerror

Now that I had code injection working, I wrote up a bit of JavaScript to fetch a remote
script and insert it into the page source, shown in Listing 3.

However, this caused the page to retrieve and run many copies of the script. For whatever
reason, the script was executed far more times than the number of hints actually displayed.

2

Figure 2: Failed Image Load

1 <img src="fail:"
onerror="document.body.appendChild(document.createElement('script')).src =
'/inject.js'" />

←↩

↪→ ←↩

↪→

Listing 3: External Script Injection

So I adjusted the onerror script to run only if the script had not already been injected, as
shown in Listing 4.

1 <img src="fail:"
2 class="teacherassist-inject"
3 onerror="window.tainjected ||

(document.body.appendChild(document.createElement('script')).src =
'/inject.js')"

←↩

↪→ ←↩

↪→

4 />
5 <!-- inject.js sets window.tainjected to true when loaded -->

Listing 4: Injecting External Script Exactly Once

Now that I had the ability to load an external script, I wrote the code shown in Listing 5.
This is mostly straightforward creation of buttons and text and POSTing the choice to a
server. The MutationObserver at the end of the file allows us to re-run the tryReplace
function every time the page changes. This function looks for an element with the class
teacherassist-inject , indicating that it hasn’t been handled yet. It then strips that class
and the tag used to inject the code, and replaces them with text and buttons. The
output of this can be seen in Figure 3.

1 window.tainjected = true;
2

3 function handleSubmit(event) {} // Omitted, shown below

3

4

5 function makeButton(text, value) {
6 let button = document.createElement("button");
7 button.className = "gwt-Button";
8 button.textContent = text;
9 button.setAttribute("value", value);

10 button.addEventListener("click", handleSubmit);
11 return button;
12 }
13

14 function tryReplace() {
15 // should never have more than one at a time, but just to be sure
16 [...document.querySelectorAll(".teacherassist-inject")].map(async el => {
17 // remove XSS img tag and CSS class
18 el.removeChild(el.firstChild);
19 el.className = "";
20

21 let buttonDiv = document.createElement("div");
22 buttonDiv.append(makeButton("No", "No"), makeButton("Yes", "Yes"));
23 el.append(
24 document.createElement("hr"),
25 el.getAttribute("data-prompt"),
26 buttonDiv
27);
28 });
29 }
30

31 // replace the already existing element (ie the one that loaded this)
32 tryReplace();
33

34 new MutationObserver(tryReplace).observe(document, {
35 // watch the whole page
36 childList: true,
37 subtree: true
38 });

Listing 5: Simplified TeacherAssist inject.js
(see Appendix A for the full file)

On the server side, a relatively simple patch, shown in Listing 6 was added to the PeerAs-
sistService project to inject the HTML and handle the submission. This allows for setting
the prompt text, via data-prompt , as well as passing in other data to retrieve later in the
client side submission function, shown in Listing 7. This function pulls out all of the data-
attributes on the element, and passes them back to the submitUsefulnesReport handler on
the Java side. This allows passing arbitrary identifiers to the client, and then getting them
back with the user’s selection later.

1 --- a/src/main/java/org/assistments/peerassist/rest/controller/PeerAssistController.java
2 +++ b/src/main/java/org/assistments/peerassist/rest/controller/PeerAssistController.java
3 @@ -3,8 +3,9 @@ package org.assistments.peerassist.rest.controller;
4 import java.time.Instant;
5 import java.util.ArrayList;

4

Figure 3: Feedback Form Successfully Injected

6 import java.util.List;
7 import java.util.Map;
8

9 +import org.assistments.domain.content.tutor.Hint;
10 import org.assistments.domain.content.tutor.ManifestCode;
11 import org.assistments.domain.content.tutor.ManifestDTO;
12 import org.assistments.domain.content.tutor.Persistable;
13 @@ -48,6 +49,16 @@ public class PeerAssistController {
14 private boolean debugPrint = false;
15 private boolean disablePeerAssist = true;
16 private boolean trackProcessingTime = true;
17 +
18 + @RequestMapping(method = RequestMethod.POST, value = "/submit_usefulness_report")
19 + public ResponseEntity<String> submitUsefulnesReport(@RequestBody Map<String,

Object> request) {
←↩

↪→

20 + if (request.containsKey("did_help")) {
21 + System.out.println("Got submission:" + request.get("did_help") +
22 + " key: " + request.get("key"));
23 + // do something with the value
24 + }
25 + return new ResponseEntity<String>(HttpStatus.OK);
26 + }
27

28 @JsonView(View.Exposed.class)
29 @RequestMapping(method = RequestMethod.POST, value = "")
30 @@ -154,7 +165,21 @@ public class PeerAssistController {
31 .getTutoringManifestsContents(userId, classId, assignmentId,

problemId, classType, isPreview);
←↩

↪→

32 if (!Util.isNullOrEmpty(teacherAssists.getFirst())) {
33 manifestList.addAll(teacherAssists.getFirst());
34 - contentList.addAll(teacherAssists.getSecond());
35 +
36 + // nasty hack to inject js into the tutor

5

37 + List<Object> tempContents = teacherAssists.getSecond();
38 + for (Object content : tempContents) {
39 + if (content instanceof Hint) {
40 + Hint hint = (Hint) content;
41 + // could change prompt text here
42 + hint.setText(
43 + hint.getText() +
44 + "<div class=\"teacherassist-inject\" data-prompt=\"Did that help?\"

data-key=\"" + peerHintKey + "\">" +
←↩

↪→

45 + "<img src=\"fail:\" onerror=\"window.tainjected ||
(document.body.appendChild(document.createElement('script')).src =
'https://users.wpi.edu/~asgoldsmith/inject.js')\" />" +

←↩

↪→ ←↩

↪→

46 + "</div>");
47 + }
48 + }
49 + contentList.addAll(tempContents);
50 error.addAll(teacherAssists.getThird());
51 ManifestDTO tutorStrategyDTO = ((ManifestDTO) teacherAssists.getFirst()
52 .get(teacherAssists.getFirst().size() - 1));

Listing 6: PeerAssistService Patch

1 function handleSubmit(event) {
2 // get all data attributes and add to request
3 const prefix = "data-";
4 let data_attrs = [...event.target.parentElement.parentElement.attributes]
5 .filter(a => a.name.startsWith(prefix))
6 .reduce((obj, a) => {
7 obj[a.name.substring(prefix.length)] = a.value;
8 return obj;
9 }, {});

10

11 fetch("/PeerAssistService/get_peer_tutoring/submit_usefulness_report", {
12 method: "POST",
13 headers: {
14 "Content-Type": "application/json",
15 "assistments-auth": 'partner="PeerAssistService"'
16 },
17 body: JSON.stringify({
18 did_help: event.target.value,
19 ...data_attrs
20 })
21 });
22

23 let thanks = document.createElement("div");
24 thanks.textContent = "Thanks for your feedback!";
25 event.target.parentElement.replaceWith(thanks);
26 }

Listing 7: inject.js handleSubmit function

6

2.3 Future Work

The actual study that utilizes this code has not been run yet, so there is no data as to how
well this actually works. This is also written entirely for the 1.0 version of the tutor, which
is what necessitated such a messy hack in the first place. Ideally, this functionality could be
written in much more cleanly to the 2.0 tutor, completely bypassing all of the work I did to
get it working in 1.0.

Once this is no longer required, it would be good to add some Content Security Policy
(CSP) rules to prevent a real XSS attack from being implemented. Unfortunately, I suspect
that some of Google Web Toolkit (GWT) may not allow for a strict policy, but even just
blocking inline scripts would be an excellent step in the right direction.

3 Mobile App Improvements

3.1 Introduction

In C term of 2018-2019, Ben Emrick and I wrote a cross-platform mobile app for ASSIST-
ments 1.0 using NativeScript-Vue1. It essentially just provides a webview wrapper around
the ASSISTments web interface with login saving, native handling of image submission for
showing work, and better handling of offline mode.

3.2 Style and Misc Improvements

The most visually obvious change was updating the app to use 2.0 branding. The app icon
and logo are essentially the only thing that changed. These changes can be seen in Figure 4.

There were a number of library updates since the end of my IQP, including a major
NativeScript version (6.0). The webview library that we used, nativescript-webview-ext ,
implemented an option to disable its setting of the viewport in WKWebView at my sug-
gestion, allowing me to drop the hacky patch disabling it locally. That project also added
handling of JavaScript dialogs, allowing me to remove a good chunk of code that I had
written for that purpose.

The main fix I wrote for this release was fixing the ActionBar element, which was im-
plemented somewhat oddly due to differences in behavior across iOS and Android. The old
solution, as shown in Listing 8 was the "correct" way to do it, using an actual ActionBar ele-
ment, but on iOS you cannot place arbitrary buttons on the left, and on android you can only
place ActionItem s on the right. This solution was to use a GridLayout inside the ActionBar
with nested StackLayout s that are aligned to the left and center, and ActionItem s for the
right buttons. However, this lead to the incorrect placement of buttons seen in Figure 4c
since the GridLayout overlaps with the ActionItem s on Android, but not on iOS.

1 <ActionBar class="action-bar">
2 <GridLayout class="action-bar-contents">
3 <StackLayout class="hstack btns-left">
4 <IconButton @tap="$drawer.showDrawer()" text="" />

1https://nativescript-vue.org/

7

https://nativescript-vue.org/

(a) Splash Screen (b) Login Screen (c) Home Screen (d) SideDrawer

Figure 4: Comparison of v1.0.0 (top) vs v1.1.0 (bottom)

8

5 </StackLayout>
6 <StackLayout class="hstack btns-center">
7 <IconButton
8 @tap="webview.goBack()"
9 :isEnabled="webview && webview.canGoBack"

10 text=""
11 />
12 <IconButton @tap="webview.reload()" text="" />
13 <IconButton
14 @tap="webview.goForward()"
15 :isEnabled="webview && webview.canGoForward"
16 text=""
17 />
18 </StackLayout>
19 </GridLayout>
20 <ActionItem ios.position="right" @tap="showWork">
21 <IconButton text="" :isEnabled="canShowWork" />
22 </ActionItem>
23 <ActionItem ios.position="right" @tap="openScratchPad">
24 <IconButton text="" :isEnabled="canShowWork" />
25 </ActionItem>
26 </ActionBar>

Listing 8: Old ActionBar Implementation
[from Assistments-Mobile/app/components/Home.vue]

After experimenting with several other ways to write this structure, I discovered that
I could just drop the ActionBar component, and use a GridLayout directly. This required
slightly restructuring the rest of the Home screen, but seems to work quite well on all
platforms. The code for this implementation can be seen in Listing 9, and the results at the
bottom of Figure 4c. At some point in this set of library upgrades, the font rendering on the
sidebar was fixed from being slightly cut off in v1.0.0, as seen in Figure 4d.

1 <StackLayout>
2 <GridLayout v-show="actionBarVisible" columns="*" class="action-bar">
3 <StackLayout class="hstack btns-left">
4 <IconButton @tap="$drawer.showDrawer()" text="" />
5 </StackLayout>
6 <StackLayout class="hstack btns-right">
7 <IconButton
8 @tap="showWork"
9 text=""

10 :isEnabled="canShowWork"
11 />
12 <IconButton
13 @tap="openScratchPad"
14 text=""
15 :isEnabled="canShowWork"
16 />
17 </StackLayout>
18 <StackLayout class="hstack btns-center">
19 <IconButton

9

20 @tap="webview.goBack()"
21 :isEnabled="webview && webview.canGoBack"
22 text=""
23 />
24 <IconButton @tap="webview.reload()" text="" />
25 <IconButton
26 @tap="webview.goForward()"
27 :isEnabled="webview && webview.canGoForward"
28 text=""
29 />
30 </StackLayout>
31 </GridLayout>
32 <GridLayout rows="*"> <!-- WebViewWrapper Ommitted --> </GridLayout>
33 </StackLayout>

Listing 9: New ActionBar Implementation
[from Assistments-Mobile/app/components/Home.vue]

3.3 Implementing a Service Worker for Offline Support in 2.0

In the 1.0 Tutor, an Application Cache is used to store the resources (ex HTML and
JavaScript Files) needed for running the tutor offline. However, according to Mozilla’s Docu-
mentation, Application Cache has been marked as deprecated since 2015 [2]. While it hasn’t
actually been removed quite yet, and may never be, AppCaches also have some significant
downsides, primarily in the fixed nature of the files that they cache and the caching behav-
ior that they provide. The replacement is Service Workers, which are much more powerful
and flexible, but somewhat more complicated. They allow running arbitrary JavaScript in a
separate worker thread, primarily to intercept network requests and provide cached versions
of the files instead.

The implementation in 1.0 was based on a GWT Linker, which are sort of like steps in
a bundler, operating on and producing Artifacts that eventually become files added to the
final build. GWT builds a large number of different permutations of its compiled JavaScript
output; as configured, one per browser and language pair. The 1.0 implementation used a
Linker called SimpleAppCacheLinker to make a large number of .nocache.manifest files, one
per permutation, as well as .nocache.manifest.html files that just applied those manifests.
The manifests only differed by two files, a single .cache.js and the .nocache.manifest.html ,
as these are the only files that are permutation specific. At runtime, the tutor created an
iframe tag with the appropriate .nocache.manifest.html as its source, causing the page to
load the right manifest.

In the 2.0 implementation, I could use JS to dynamically retrieve the right .cache.js
file, so I only needed to produce one service worker file instead of several .nocache.manifest
and .nocache.manifest.html files. The implementation of the Linker is rather similar to
the SimpleAppCacheLinker , although greatly simplified, and with use of Java 8’s Stream s
instead of large numbers of for loops. It can be seen in Appendix B. Essentially, it
creates a PermutationArtifact for each permutation, which stores a list of all the files asso-
ciated with that permutation, then uses those PermutationArtifact s to to create a mapping

10

from the permutation name to a list of files. It then creates a service-worker.js from
service-worker.template.js , shown in Listing 10, by prefixing it with the lists of files. At
runtime, instead of making an iframe with the .nocache.manifest.html , it just registers the
service worker with a query string to pass the permutation name. The service worker itself is
very basic; it just adds all the relevant files to the cache when it starts, and then uses them
when it can. There are a lot of more powerful things that could be done with this service
worker, but a present it works roughly the same as an Application Cache, with the benefits
of being much simpler and not being deprecated.

1 const CACHE_NAME = "v1";
2

3 this.addEventListener("install", event => {
4 const permutation = new URL(location).searchParams.get("permutation");
5

6 event.waitUntil(
7 caches.open(CACHE_NAME).then(cache => {
8 return cache.addAll([
9 ...STATIC_FILES,

10 ...COMMON_ARTIFACTS,
11 ...PERMUTATION_ARTIFACTS[permutation]
12]);
13 })
14);
15 });
16

17 this.addEventListener("fetch", event => {
18 event.respondWith(
19 new Promise(async res => {
20 // return a cached response if we have one
21 let match = await caches.match(event.request);
22 if (match) res(match);
23 else {
24 // retrieve the response from the network and add it to the cache
25 let response = await fetch(event.request);
26 let cache = await caches.open(CACHE_NAME);
27 cache.put(event.request, response.clone());
28 res(response);
29 }
30 })
31);
32 });

Listing 10: Service Worker JS Template
[from tutor/client/src/main/resources/service-worker.template.js]

3.4 Mobile App Login Handling for 2.0

The current mobile app only supports ASSISTments 1.0, which is in the process of being
phased out in favor of 2.0, so support for 2.0 was desired for the app. In 1.0, signin is
done through a webpage in ASSISTments directly to ASSISTments accounts, whereas 2.0

11

uses external authentication providers via OAuth. At the time of this writing, only Google
Classroom is supported. 2.0 also differs in that presently it has no UI for students to view
their assigned work, as that is all handled by Google Classroom.

Google Classroom gives students a link of the form
https://app.assistments.org/xis/xiid/[problem id] , which then redirects to the OAuth page
for Google if necessary, and then redirects to the actual assignment. To handle a link
from Google classroom, I used the nativescript-urlhandler plugin2. Seamless link handling
requires a few files placed in the server’s /.well-known/ directory confirm to the OS that the
App is actually related to the website. These can be seen in Listing 11 and Listing 12 for
iOS and Android, respectively.

1 {
2 "applinks": {
3 "apps": [],
4 "details": [
5 {
6 "appID": "X9723G3J94.org.assistments.mobile",
7 "paths": ["*"]
8 }
9]

10 }
11 }

Listing 11: Debug iOS apple-app-site-association

1 [{
2 "relation": ["delegate_permission/common.handle_all_urls"],
3 "target": {
4 "namespace": "android_app",
5 "package_name": "org.assistments.mobile.client",
6 "sha256_cert_fingerprints":
7

["7A:31:B1:7C:9C:A1:E3:CE:C0:44:29:BF:68:72:52:19:71:9A:D7:5E:45:87:EE:3E:FE:DB:DB:84:5A:85:E6:AE",
←↩

↪→

8

"39:66:7D:2C:16:9D:CA:40:AE:5C:99:99:DA:91:57:A3:0D:5A:6A:64:57:4E:18:C0:7E:62:E5:66:7F:85:E5:F9"]
←↩

↪→

9 }
10 }]

Listing 12: Debug Android assetlinks.json

The combination of these and the client side code is, however, extremely difficult to
debug, as there is minimal feedback as to whether or not the remote side is being detected
correctly by the OS. However, I did eventually get the redirection working, and could proceed
to attempt get authentication working.

2https://github.com/hypery2k/nativescript-urlhandler

12

https://github.com/hypery2k/nativescript-urlhandler

Google Classroom uses normal Google Accounts for authentication. In theory, this means
that I could use the native Google Sign-In libraries provided for both iOS and Android.
Unfortunately, there is no NativeScript library that supports both platforms and allows for
authenticating against a remote website, so I had to work with native code to implement
this feature, which slowed things down significantly.

The Android app, or more specifically it’s store page, is owned by
the.assistments.teacher@gmail.com. There is also a Firebase project containing both the
iOS and Android Apps, which gives us Crashlytics and some metrics, which is also owned
the.assistments.teacher@gmail.com. Google’s docs are somewhat inconsistent, but Fire-
base seems to be the recommended way of managing OAuth credentials; as a Google product,
is integrated into the rest of the ecosystem and automatically creates OAuth2.0 credentials
in the Google API Console for the managed project. Unfortunately, The ASSISTments CAS
has it’s OAuth2.0 Client ID in a project from ASSISTmentsOwner@gmail.com. There is a
method called requestServerAuthCode in the Google Sign In API which is supposed to be used
in exactly this scenario, with a app client authenticating for a remote server. As far as I can
tell, although I can find no source explicitly confirming this, to do a requestServerAuthCode ,
the server’s client ID has to be in the same project as the client’s client ID. I believe that
without those being in the same project, Google’s Sign-In returns DEVELOPER_ERROR .

This is as far as I got unfortunately, as I was unable to get this working before the end
of the term. I am uncertain how much work would be required to finish this authentication
procedure; it could just be fixing a minor bug in the call to the Google Sign In API, or
changing to a shared project, or I could be fundamentally misunderstanding the correct
OAuth signin procedure.

3.5 Future work

Once the authentication problems are worked out, there are some UI issues with how the
LoginScreen would work with 2.0. Additionally, some UI for Offline support in 2.0 would
have to be written, specifically a button to download assignments. However, I am growing
less convinced that updating the app for 2.0 is entirely worthwhile. In terms of features, most
would not yet work in 2.0, and the offline support could just as easily be done with browser
support. The amount of odd behavior and inconsistency between platforms means that what
should be a very simple app to write and maintain quickly becomes much more difficult. Just
maintaining the app, with both platforms frequently changing their requirements, might be
difficult.

The problem with the app in it’s current state is simple: the more native features that
are developed, the more work will have to be put into maintenance in the future. As no
one besides me is working on directly, it will inevitably decay; things will change in the
rest of ASSISTments or the Android/iOS ecosystem, but the app will not be updated for
compatibility. This will lead to parts of the app breaking until it is unusable. To me, the
solution seems clear: integrate the mobile app more closely into the ASSISTments ecosystem.
Perhaps not this app in particular, just a mobile app in general. To do this, I see a two main
options:

The first option would be to re-write the whole of ASSISTments (or at least the tutor)
in a modern JavaScript or TypeScript framework, instead of the existing Java and Google

13

Web Toolkit (GWT). Switching to something more modern and featureful would be a good
thing in general, but would also allow for significant code reuse between the web app and
the native app, via tools such as NativeScript and React Native. This would be the better
option, but is an extremely large amount of work, and that time could probably be put to
better use elsewhere.

The second option, which seems more likely, is adding Progressive Web App (PWA)
features to the existing web app, removing the need for a native app entirely. If done right,
it would require little overhead to maintain, and would provide a native-feeling experience.
A PWA can do essentially all the things that our current app does, with much less overhead
and no need to download a separate app. The addition of a service worker, as discussed in
Section 3.3, is a big step towards being able to run the site as a PWA.

4 SVN to Git Migration

4.1 Introduction

Version control refers to keeping and managing versions and changes to files, typically source
code. There are many tools that allow for this functionality, known as Version Control
Systems (VCS). Apache Subversion (SVN), started in 2000, was quite popular for many
years. Git is a somewhat newer VCS, started in 2005 to manage the Linux kernel source.
It has since become one of the most popular VCSs available, especially in Open Source
development. SVN is “centralized,” meaning that it stores historical data on a central server,
which is required for operation. In contrast, Git is a Decentralized Version Control System
(DVCS), meaning that every user has a complete copy of the repository. This has distinct
advantages for usability, as each user has much more access and control over the historical
data for the repository. Since everything is local until pushed, it allows for experimentation
without affecting the state of the repository for other users.

Another major difference between SVN and Git is how they store the structure of the
repository. Many version control systems have the concept of “branches,” which are parallel
versions of code with a separate history, of and “tags,” which are named versions. SVN is es-
sentially just a versioned filesystem which imposes little structure on the repository, and only
has conventions as to how branches and tags should be created. In SVN’s “standard” layout
shown in Figure 5, “trunk” is the main place for development. Branches and tags are created
by making a copy operation from trunk to a folder in “branches” or “tags,” respectively. A
tag is not functionally different from a branch, although they have different semantic mean-
ing. The “branches” and “tags” folders are not created by default, and branches/tags do not
need to be made in them; they can be made anywhere in the repository. In SVN, a copy is
a distinct operation from an add, which creates a sort of hard link that shares history and
storage between the old and new files, diverging when one of them is changed. Despite it
being the way to make branches and tags, it can also just be used to make a normal copy
between files or folders. This can make it difficult to keep track of which copies are branches
or tags, and which are just actual copies. The standard layout gives some structure, and
therefore adds some clarity as to the structure of the repo. SVN also has a completely linear
history, with a serial revision number. All changes to the filesystem in the repository create a

14

revision, so branching and other operations on the repository itself get stored in the history.

/

/branches
...

/tags
...

/trunk
...

Figure 5: SVN “Standard” Layout

In Git, history is stored in a tree of commits, such that the meta-structure of the repos-
itory is independent of the history of the tracked data. Commits are referred to by their
hash, and are connected to their parents such that if the parent changes, the child’s hash
will change as well. (The structure is similar to a blockchain, for those familiar with the
concept.) Branches and tags are simply pointers to commits in the tree, with a tag referring
to a named commit and a branch referring to the string of parents before the marked commit.
A simple example of this structure can be seen in Figure 6, and a comparison to SVN in
Figure 7. This structure allows for very cheap branches as well as distributed development
and history manipulation. Since each user has their own copy of the entire repository, they
can manipulate it locally without affecting the state of other developers. Git also has quite
a lot of tooling built around it due to its popularity with open source developers, including
UIs, hosting sites, continuous integration support, and many other tools.

A

B

C D

master branch

Figure 6: Simple Git History with Branch
(Note: History flows from bottom to top)

ASSISTments has been using a single SVN repository hosted onWPI’s FusionForge server
since around 2012, which contained all of the code for all of the sub-projects. ASSISTments
also has had a lot of developers coming and going due to it’s association with WPI. It is

15

/

/branches

/example

...

/tags

/release1

...

/trunk
... A

B

C D

E
master

example

release1

Figure 7: Simple SVN → Git Mapping

therefore somewhat disorganized, and was up to 9762 revisions at the time of the conversion.
Due to the significant advantages of Git over SVN, and the fact that most new developers are
much more likely to be familiar with Git, it was decided that ASSISTments should switch to
Git. Additionally, it was decided that the single repository should be split up in to several
because the projects are separated as Maven modules, so they can be built independently,
and should never have commits that affect more than one project. Github 3, a popular Git
repository hosting site, was chosen as the server because it is well known and it provides
some useful features for organizations.

4.2 Tool Selection

When looking for tools to do the migration, the main thing that came up was git’s official
git svn 4 subcommand. I had already been using this for interacting with other parts of
ASSISTments, as it provides a nice way to use git commands and workflow with two-way
synchronization between SVN and Git. However, it is has some severe downsides, most of
all its speed. Earlier in the term I downloaded the entire SVN repo via git svn , which
took around 9 hours to complete. Since I would have to change the settings and rerun this
command frequently, this would be wildly impractical.

The other major problem is that the ASSISTments SVN repo does not follow the stan-
dard layout. There are nested folders in /branches and /tags , making it rather dif-
ficult to determine which folders are branches/tags and which just contain branches or
tags. Branches are sometimes from /trunk , sometimes from logically separate projects (ex
/trunk/WebApp), and sometimes from subfolders of those projects (ex just the service folder
of /trunk/ASSISTmentsServices/loginPortal). Occasionally, branches are made by re-creating

3https://github.com/
4https://git-scm.com/docs/git-svn

16

https://github.com/
https://git-scm.com/docs/git-svn

files in another location rather than correctly copying the folder. While git svn has support
for defining patterns to match for creating branches and tags, it is not expressive enough to
match all of the messy organization in the ASSISTments repository. Additionally, it doesn’t
convert SVN merges into git merges, meaning that historical commits would be lost without
manual post-processing.

Further research lead me to find KDE’s svn2git 5. (Note that there are other projects
named svn2git which are not compatible.) This is based on declarative rule definitions, and
is much faster due to using a a local server version of the SVN repo instead of constantly
calling out to the remote repo. It also supports merges in history and automatic generation
of .gitignore files from SVN properties. However, the documentation for svn2git was
somewhat lacking so I wrote my own docs for the rules syntax as shown in Appendix C,
which has now been merged into the official svn2git README.md .

4.3 Implementation

Yet another difference between git and SVN is how authors are stored. In SVN, the author
of a commit is just the username of the person who committed it, whereas Git stores a name
and email address since there is no central database of usernames to authenticate against.
To translate these, git2svn (as well as git svn and several other tools) takes an identity-
map/authors file, which I created based on the members list on FusionForge. This included
a list of real names to email address mappings, which with some manipulation was possible
to turn into an identity map. git2svn also takes an --identity-domain option, which it
uses as the email domain when the user does not exist in the authors file. Conveniently,
authentication to the SVN repo was done through WPI accounts, so all of the unknown
usernames simply map to a [username]@wpi.edu email address.

git2svn needs a local copy of server version of the SVN repository to operate. To
download the repo, I used svnrdump from the official subversion package. This creates a
“dump file” that can then be loaded with svnadmin load , creating a local SVN repo, accessible
via the file:// scheme. This is faster than any tool that calls out to a remote server, as it
doesn’t need to make network requests for every operation.

Early on, I decided that the rules format of svn2git was needlessly verbose, so I wrote
a simple Python program to read a YAML file and output a rules file which can be seen in
Appendix D. It allows me to use a much more compact representation of the repository and
rule definitions, especially with YAM L’s inline map syntax, and omit the
/assistments/theNextGeneration prefix on all of the matching rules. This representation
does have the downside of not allowing duplicate keys, which was occasionally a problem for
matching rules, but easy to work around by using regex character classes ([]) to differen-
tiate.

I started writing rules with a ’catchall’ rule, which ignored everything, as the final rule,
since svn2git throws an error and stops when it finds an unmatched path. This allowed
me to develop rules without having to worry about the rest of the repository. To work
my way through the structure and history of the SVN repository, I used a few aliases for
svn subcommands, shown in Listing 13. The most important of these is slogstop , which

5https://github.com/svn-all-fast-export/svn2git

17

https://github.com/svn-all-fast-export/svn2git

allowed me to find where paths had been copied from. Using essentially just these commands,
I started to piece together a few repositories.

1 # -*- mode: sh; -*-
2

3 function resolve_path() {
4 if [["$1" =~ ^'/assistments/theNextGeneration/']]
5 then
6 echo "file://$PWD/assistments-svn-repo/$1"
7 else
8 echo "file://$PWD/assistments-svn-repo/assistments/theNextGeneration/$1"
9 fi

10 }
11

12 function slogstop() {
13 svn log -v --stop-on-copy $(resolve_path "$1")
14 }
15

16 function slogone() {
17 svn log -v -l 1 $(resolve_path "$1")
18 }
19

20 function sls() {
21 svn ls $(resolve_path "$1")
22 }

Listing 13: Helpful svn Aliases

However, it soon became clear that it would be difficult to figure out the history of parts
of the repository in isolation, as this technique could not help me find branches of projects,
which were scattered around the repository. So I switched to listing all unmatched paths
explicitly, which also gave better feedback to help ensure I wasn’t missing any paths. To
find all the project folders in the repository, I first generated a list of all directories in the
svn repo across the entire history with svneverever6 and the command in Listing 14. I then
manually pruned that down to only directories that looked like projects, and placed that in
the unhandled.yaml file, evaluated last instead of the ’catchall’ rule. As I figured out where
things went, I removed them from the unhandled rules, such that I had a list of things left
to do, and could see if I let anything slip through.

1 svneverever --tags --branches --flatten assistments-svn-repo > alldirs.txt

Listing 14: svneverever Command

During this process, I found svn2git ’s prefix rules, which seemed rather ideal for this
use case. They allow combining separate parts of the SVN repository into one Git repository,
which seemed quite ideal for this case, as there are a number of projects that start out

6https://github.com/hartwork/svneverever

18

https://github.com/hartwork/svneverever

separated, but end up joined together later. However, this rule does not work as I had
expected, leading to several odd behaviors that were difficult to debug. Mostly, they lead to
files existing in commits when they shouldn’t, since I had brought them in as prefixed paths,
and then they were added normally later. They also broke branch and merge detection
several times, for reasons that I haven’t entirely been able to determine.

As an example of a completed ruleset, Listing 15 is a simplified version of the rules for
the FindAndAssign project, pulled out from my misc.yaml rule file. It creates a repository
findAndAssign , then matches various paths to create branches and releases. In this case, the
releases are essentially tags, although that was not true in all cases. A heavily simplified
version of the produced tree can be seen in Figure 8.

1 repositories:
2 findAndAssign:
3

4 rules:
5 /trunk/ASSISTmentsServices/applications/findAndAssign/:
6 repository: findAndAssign
7 branch: master
8

9 # branches
10 /branches/dm/0.12/findAndAssign/:
11 repository: findAndAssign
12 branch: dm/0.12
13

14 /branches/CanvasAndLTI/applications/findAndAssign/:
15 repository: findAndAssign
16 branch: CanvasAndLTI
17

18 /pgoel/ASSISTmentsServices/applications/findAndAssign/:
19 repository: findAndAssign
20 branch: pgoel
21

22 # releases
23 /releases/ASSISTmentsServices/applications/findAndAssign/([^/]+)/:
24 repository: findAndAssign
25 branch: \1
26 /releases/ASSISTmentsServices/applications/findAndAssign: {action: ignore}

Listing 15: Extracted findAndAssign Rules YAML

To actually run the extraction, I wrote a script called doImport.sh to make things easier
to run repeatedly, shown in Listing 16. It uses zsh for easier array manipulation, although
it could easily be bash or a makefile, as it is rather simple.

Once I had the repositories extracted, there were a few cleanup operations that needed
to be done. First, I converted all files to use LF instead of CRLF for line feeds, as this is
strongly preferred in Git. On Windows Git will (by default) automatically convert back to
CRLF when the repository is cloned. For Java files I also added a trailing newline if there was

19

A

B

C

D

E

F

G

H

I

J

H’

E’

D’

B’

2.1.0

2.2.0

2.2.1

master

0.8

CanvasAndLTI

dm/0.12

pgoel

Figure 8: Simplified FindAndAssign Git Tree

1 #!/bin/zsh
2 # written in zsh for easier array manipulation
3

4 set -e # exit on errors
5

6 # reset repos dir
7 rm -rf repos
8 mkdir repos
9 cd repos

10

11 RULES=(findAndAssign catchall)
12

13 # parse yamls into svn2git rules
14 python3 ../rules/yamlParser.py
15

16 # run the import
17 svn-all-fast-export \
18 --identity-map ../authors.txt \
19 --identity-domain wpi.edu \
20 --rules ${(j:,:)${:-../compiledRules/${^RULES}.rules}} \
21 --svn-ignore --add-metadata $@ \
22 $PWD/../assistments-svn-repo

Listing 16: SVN-Git-Migration/doImport.sh

20

none, and applied consistent a style using Artistic Style (astyle)7. These operations can be
seen in cleanup.sh , shown in Listing 17. The call to true at the end prevents filter-branch
from failing if there are no files, which causes astyle to return an error code. I originally had
a number of other operations in this file, but replaced most of them with the call to astyle.

1 #!/bin/bash
2

3 # convert CRLF to LF
4 git ls-files -z | xargs -0r dos2unix -q
5

6 # ensure a trailing newline
7 find . -type f -name '*.java' -print0 | xargs -0r sed -i -e '$a\'
8

9 astyle --quiet --indent=spaces=2 --style=allman --indent-switches
--break-closing-braces --lineend=linux --preserve-date --suffix=none
--recursive "./*.java"

←↩

↪→ ←↩

↪→

10

11 true

Listing 17: Line Endings and Style Cleanup Script SVN-Git-Migration/cleanup.sh

However, I wanted to apply this across history, as it would simplify diffs between revisions
and generally be cleaner, without having a single commit that changes every line in every
file. To do this, I used the git filter-branch subcommand, the --tree-filter argument of
which checks out each commit and runs a command on it. I also passed the --prune-empty
argument, which removes empty commits, as there are a lot of SVN revisions that just
add folders which become empty commits in Git because Git only tracks files. However, this
operation is extremely slow, taking several hours to run, as it needs to checkout each revision,
and then run astyle on it. The solution to this was to run the operation on rambo.wpi.edu , a
WPI compute server available to students. This provided a powerful CPU with many cores,
as well as a SSD work disk and lots of RAM, allowing me to parallelize the process. I used
GNU Parallel [3] to do this, which handles jobs quite nicely.

After running my cleanup script, I wrote another script that cleaned up merged branches
and the unneeded refs created by git2svn and filter-branch . This script is shown in
Listing 18, and was also run with parallel , although it was not particularly slow. The
import process is further documented in Appendix E, the README I wrote.

Finally, I repacked all of the repositories, which improves their size and clone speed, with
the command shown in Listing 19. This doesn’t benefit quite as much from parallel , as it
does it’s own multithreading, but I ran it with 4 jobs because it never seemed to use more
than about 10 of the 32 cores when run one at a time. I’m not entirely sure that this is
necessary since this ended up being hosted on Github which may do this on their servers,
but it only takes a few minutes and reduces the size by almost half, as shown in Table 1.

The result of this process was the 36 Git repositories shown in Table 2. This table only
shows the master branches of each repository; many had several branches and tags as well.

7http://astyle.sourceforge.net/

21

http://astyle.sourceforge.net/

1 #!/bin/bash
2

3 # remove backup tags
4 git tag | grep '^backups/' | xargs git tag -d
5

6 # remove git-filter-branch backup tags
7 git for-each-ref --format="%(refname)" refs/original/ | xargs -n 1 git update-ref -d
8

9 # remove merged branches
10 git branch --merged | grep -v master | xargs git branch -d

Listing 18: Remove Unused Branches and Refs SVN-Git-Migration/repoCleanup.sh

1 git gc; git repack -adf --window 250 --depth 250

Listing 19: Git Repack Command

Table 1: time and du Output for Commands in the Migration Process

Command User System CPU Total Total Repository Size (GB)
svn2git 414.11s 47.91s 82% 9:21.38 1.3
cleanup.sh 4317.25s 2898.38s 189% 1:03:19.23 2.0
repoCleanup.sh 0.46s 2.79s 690% 0.471 2.0
git gc; git repack 423.49s 43.39s 312% 2:29.50 1.1
Total 5155.31 s 2992.47 s 01:15:09

22

Table 2: Mapping of Created Git Repos to SVN Paths

Git Repository SVN Path for master branch
ARRSService /trunk/ASSISTmentsServices/applications/ARRSService

Assets /trunk/ASSISTmentsServices/assets
AWSService /trunk/ASSISTmentsServices/applications/data_modeling/awsService

CommonUI /trunk/ASSISTmentsServices/CommonUI
CompetitionSite /branches/CompetitionSite

ContentBuilder /trunk/ASSISTmentsServices/applications/builders/contentBuilder

ContentMakerRESTfulService /trunk/ASSISTmentsServices/applications/ContentMakerRESTfulService

CAS /trunk/ASSISTmentsServices/core
DataDumper /branches/analytics/DataDumper

Documents /trunk/documents
ExperimentBuilder /trunk/ASSISTmentsServices/applications/ExperimentBuilder

FindAndAssign /trunk/ASSISTmentsServices/applications/findAndAssign

FlywayRestService /trunk/ASSISTmentsServices/applications/FlywayRestService

GenerateSkillBuilder /trunk/ASSISTmentsServices/applications/GenerateSkillBuilder

ImageForward /trunk/ASSISTmentsServices/applications/samples/imageForward

LiveChart /trunk/ASSISTmentsServices/applications/LiveChart

LoginPortal /trunk/ASSISTmentsServices/LoginPortal

LRS /trunk/ASSISTmentsServices/applications/LRS

Operations /trunk/ASSISTmentsServices/operations

PeerAssistService /trunk/ASSISTmentsServices/applications/PeerAssistService

PGStats /trunk/ASSISTmentsServices/applications/monitoring/pgStats

PGWebApp /trunk/ASSISTmentsServices/applications/samples/pgWebApp

Placements /trunk/ASSISTmentsServices/applications/placementsService

/trunk/ASSISTmentsServices/applications/placementsWebApp

ProblemSetRecommender /trunk/ASSISTmentsServices/applications/ProblemSetRecommender

QuizAssistWebApp /trunk/ASSISTmentsServices/applications/QuizAssistWebApp

ResourceService /trunk/ASSISTmentsServices/applications/resourceService

Rest /trunk/ASSISTmentsServices/rest
ServiceAdmin /trunk/ASSISTmentsServices/applications/ServiceAdmin

Survey /trunk/ASSISTmentsServices/applications/survey

TeacherUsage /trunk/ASSISTmentsServices/applications/teacherUsage

TNG /trunk/ASSISTmentsServices/applications/TNG

Tools /trunk/tools
Tutor /trunk/ASSISTmentsServices/applications/tutor

UtilTools /trunk/ASSISTmentsServices/applications/UtilTools

WorkflowService /trunk/ASSISTmentsServices/applications/WorkflowService

XmlBuilder /trunk/ASSISTmentsServices/applications/builders/XmlBuilder

23

With all of the repositories cleaned up, they just needed to be uploaded to Github.
However, since there are 36 repositories created from SVN, it would be very tedious to
create and upload them all manually. While Github does not have a bulk import function,
they do have an API, so I wrote a Python script to create Github repos and push to them.
This script requires PyGithub8, and can be seen in Listing 20.

There are a number of workflows that work well with Git, but the most popular style
is to have long-running master and dev branches, with short-lived topic/feature branches.
On Github, it is possible to enforce that all code goes through a Pull Request to get into
dev via branch protection, which allows enforcing various rules on a branch. To set the
repositories up for this workflow, I wrote another script using the Github API to create a
dev branch and apply branch protection to it and master . It is written to run across all the
repos in an organization, except archived repos and those explicitly listed. It adds a simple
rule to enforce pull requests and reviews to merge into dev , and have only members of the
Admin team push to master . The code can be seen in Listing 21.

4.4 Future Work

I didn’t include a number of folders from the ASSISTments SVN repo, primarily branches
that didn’t connect to a folder in trunk. Those unhandled paths are listed in the
SVN-Git-Migration/rules/unhandled.yaml file, along with a number of empty paths. If these
are needed in the future, I have hopefully provided enough information in the README,
shown in Appendix E, to help someone add those and re-run the process. There are also a
few repositories in SVN that have some prior history in Git elsewhere on FusionForge; these
could be integrated into the current repositories without too much work beyond tracking
them down.

Continuous Integration (CI) provides constant testing of code as well as automatic de-
ployment. With Github, it is possible to enforce that tests pass before a branch can be
merged into dev , enforce style checks, automatically test and deploy with every push to
dev , and a number of other improvements to the development workflow. Setting one of the
various CI platforms shouldn’t be too hard, but there are some issues with the way unit tests
are currently written that makes them a lot less effective than they should be.

8https://github.com/PyGithub/PyGithub

24

https://github.com/PyGithub/PyGithub

1 #!/usr/bin/env python3
2

3 import os
4 import subprocess
5

6 from github import Github
7

8 from githubAuth import GITHUB_TOKEN
9

10 g = Github(GITHUB_TOKEN)
11

12 def createRepo(name):
13 org = g.get_organization('ASSISTments')
14 org.create_repo(name,
15 private=True,
16 has_downloads=False,
17 has_issues=False,
18 has_wiki=False,
19 has_projects=False)
20

21 # Use with caution!
22 def deleteRepo(name):
23 org = g.get_organization('ASSISTments')
24 org.get_repo(name).delete()
25

26 for repo in os.listdir('repos'):
27 repoPath = os.path.join('repos', repo)
28 if os.path.isdir(repoPath):
29 print(repo)
30 try:
31 createRepo(repo)
32 except:
33 print("failed to create repo")
34

35 gitBaseCommand = ["git",
36 "-C", repoPath,
37 "push", "github:ASSISTments/" + repo + ".git"]
38 subprocess.call(gitBaseCommand + ["--all"])
39 subprocess.call(gitBaseCommand + ["--tags"])

Listing 20: Repository Creation Script SVN-Git-Migration/createRepos.py

25

1 #!/usr/bin/env python3
2

3 import os
4 import subprocess
5

6 from github import Github
7

8 from githubAuth import GITHUB_TOKEN
9

10 g = Github(GITHUB_TOKEN)
11

12 ignoredRepos = ['SVN-Git-Migration',
13 'XmlBuilder',
14 'Operations',
15 'Documents',
16 'Assistments-Mobile']
17

18 def fixBranches(org, repo):
19 admins = org.get_team(3338516)
20 admins.add_to_repos(repo)
21 admins.set_repo_permission(repo, 'admin')
22

23 master = repo.get_branch('master')
24

25 # if there is no dev branch
26 try:
27 dev = repo.get_branch('dev')
28 except:
29 # create dev branch from master
30 repo.create_git_ref(ref='refs/heads/' + 'dev',
31 sha=master.commit.sha)
32 dev = repo.get_branch('dev')
33

34 dev.edit_protection(strict=True,
35 dismiss_stale_reviews=True,
36 required_approving_review_count=1,
37 team_push_restrictions=[admins.slug])
38

39 master = repo.get_branch('master')
40 master.edit_protection(strict=True,
41 team_push_restrictions=[admins.slug])
42

43 repo.edit(default_branch="dev")
44

45 dev = repo.get_branch('dev')
46

47 org = g.get_organization('ASSISTments')
48 for repo in org.get_repos():
49 if not (repo.archived or repo.name in ignoredRepos):
50 print(repo)
51 fixBranches(org, repo)

Listing 21: Branch Protection Script SVN-Git-Migration/createControlledBranches.py

26

5 References
[1] OWASP Foundation. Cross-site scripting (xss). https://www.owasp.org/index.php/

Cross-site_Scripting_(XSS), Jun 2018. Accessed 2019-06-25.

[2] Mozilla. Using the application cache. https://developer.mozilla.org/en-US/docs/
Web/HTML/Using_the_application_cache, Mar 2019. Accessed 2019-08-08.

[3] O. Tange. Gnu parallel - the command-line power tool. ;login: The USENIX Magazine,
36(1):42–47, Feb 2011.

27

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://developer.mozilla.org/en-US/docs/Web/HTML/Using_the_application_cache
https://developer.mozilla.org/en-US/docs/Web/HTML/Using_the_application_cache

Appendices
A Teacher Assist inject.js

1 window.tainjected = true;
2

3 function handleSubmit(event) {
4 // get all data attributes and add to request
5 const prefix = "data-";
6 let data_attrs = [...event.target.parentElement.parentElement.attributes]
7 .filter(a => a.name.startsWith(prefix))
8 .reduce((obj, a) => {
9 obj[a.name.substring(prefix.length)] = a.value;

10 return obj;
11 }, {});
12

13 fetch("/PeerAssistService/get_peer_tutoring/submit_usefulness_report", {
14 method: "POST",
15 headers: {
16 "Content-Type": "application/json",
17 "assistments-auth": 'partner="PeerAssistService"'
18 },
19 body: JSON.stringify({
20 did_help: event.target.value,
21 ...data_attrs
22 })
23 });
24

25 let thanks = document.createElement("div");
26 thanks.textContent = "Thanks for your feedback!";
27 event.target.parentElement.replaceWith(thanks);
28 }
29

30 function makeButton(text, value) {
31 let button = document.createElement("button");
32 button.className = "gwt-Button";
33 button.textContent = text;
34 button.setAttribute("value", value);
35 button.addEventListener("click", handleSubmit);
36 button.style["margin-right"] = "1em";
37 return button;
38 }
39

40 function tryReplace() {
41 // should never have more than one at a time, but just to be sure
42 [...document.querySelectorAll(".teacherassist-inject")].map(async el => {
43 // remove XSS img tag and CSS class
44 el.removeChild(el.firstChild);
45 el.className = "";
46

47 // TODO: could create this once and clone it

28

48 let buttonDiv = document.createElement("div");
49 buttonDiv.append(makeButton("No", "No"), makeButton("Yes", "Yes"));
50 buttonDiv.style["font-size"] = "10px";
51 el.style["margin-top"] = "2em";
52 el.style["text-align"] = "center";
53

54 el.append(
55 document.createElement("hr"),
56 el.getAttribute("data-prompt"),
57 buttonDiv
58);
59 });
60 }
61

62 // replace the already existing element (ie the one that loaded this)
63 tryReplace();
64

65 // TODO: narrow the scope of observation for better performance
66 new MutationObserver(tryReplace).observe(document, {
67 // watch the whole page
68 childList: true,
69 subtree: true
70 });

B Service Worker Linker
From tutor/client/src/main/java/org/assistments/gwt/student/tutor/linkers/ServiceWorkerLinker.java.

1 /*
2 * Based on SimpleAppCacheLinker from gwt
3 *

https://code.google.com/p/google-web-toolkit/source/browse/trunk/dev/core/src/com/google/gwt/core/linker/SimpleAppCacheLinker.java?r=10181
←↩

↪→

4 */
5 package org.assistments.gwt.student.tutor.linkers;
6

7 import java.io.BufferedReader;
8 import java.io.InputStream;
9 import java.io.InputStreamReader;

10 import java.util.Map;
11 import java.util.Set;
12 import java.util.stream.Collectors;
13 import java.util.stream.Stream;
14

15 import com.fasterxml.jackson.core.JsonProcessingException;
16 import com.fasterxml.jackson.databind.ObjectMapper;
17 import com.google.gwt.core.ext.Linker;
18 import com.google.gwt.core.ext.LinkerContext;
19 import com.google.gwt.core.ext.TreeLogger;
20 import com.google.gwt.core.ext.UnableToCompleteException;

29

21 import com.google.gwt.core.ext.linker.AbstractLinker;
22 import com.google.gwt.core.ext.linker.Artifact;
23 import com.google.gwt.core.ext.linker.ArtifactSet;
24 import com.google.gwt.core.ext.linker.EmittedArtifact;
25 import com.google.gwt.core.ext.linker.EmittedArtifact.Visibility;
26 import com.google.gwt.core.ext.linker.LinkerOrder;
27 import com.google.gwt.core.ext.linker.LinkerOrder.Order;
28 import com.google.gwt.core.ext.linker.Shardable;
29 import com.google.gwt.core.ext.linker.impl.SelectionInformation;
30 import com.google.gwt.core.ext.linker.Transferable;
31

32 @Shardable
33 @LinkerOrder(Order.POST)
34 public class ServiceWorkerLinker extends AbstractLinker
35 {
36 @Override
37 public String getDescription()
38 {
39 return "ServiceWorkerLinker";
40 }
41

42 @Transferable
43 private class PermutationArtifact extends Artifact<PermutationArtifact>
44 {
45 private static final long serialVersionUID = -2097933260935878782L;
46 private final Set<String> permutationFiles;
47 private final String permutationName;
48

49 public PermutationArtifact(Class<? extends Linker> linker,
50 String permutationName,
51 Set<String> permutationFiles)
52 {
53 super(linker);
54 this.permutationName = permutationName;
55 this.permutationFiles = permutationFiles;
56 }
57

58 @Override
59 public int hashCode()
60 {
61 return permutationFiles.hashCode();
62 }
63

64 @Override
65 protected int compareToComparableArtifact(PermutationArtifact o)
66 {
67 return permutationName.compareTo(o.permutationName);
68 }
69

70 @Override
71 protected Class<PermutationArtifact> getComparableArtifactType()
72 {
73 return PermutationArtifact.class;

30

74 }
75

76 public Set<String> getPermutationFiles()
77 {
78 return permutationFiles;
79 }
80

81 public String getPermutationName()
82 {
83 return permutationName;
84 }
85 }
86

87 // Add any other files not handled by GWT here
88 // ex. cross domain resources
89 static protected String[] staticCachedFiles = {};
90

91 @Override
92 public ArtifactSet link(TreeLogger logger,
93 LinkerContext context,
94 ArtifactSet artifacts,
95 boolean onePermutation) throws UnableToCompleteException
96 {
97 ArtifactSet toReturn = new ArtifactSet(artifacts);
98

99 if (artifacts.find(SelectionInformation.class).isEmpty())
100 {
101 // hosted mode
102 return toReturn;
103 }
104

105 if (onePermutation)
106 {
107 toReturn.add(
108 new PermutationArtifact(
109 ServiceWorkerLinker.class,
110 artifacts.find(SelectionInformation.class).first().getStrongName(),
111 getOutputFiles(artifacts)));
112

113 return toReturn;
114 }
115

116 // get all permutation-specific artifacts
117 Set<PermutationArtifact> permutationArtifacts =
118 artifacts.find(PermutationArtifact.class);
119

120 // get all permutation-specific files
121 Set<String> allPermutationFiles = permutationArtifacts.stream()
122 .flatMap(artifact ->

artifact.getPermutationFiles().stream())
←↩

↪→

123 .collect(Collectors.toSet());
124

125 // remove permutation-specific files from all artifacts to get common files

31

126 Set<String> commonFiles = getOutputFiles(artifacts);
127 commonFiles.removeAll(allPermutationFiles);
128

129 // make a map of permutation names to permutation-specific files
130 Map<String, Set<String>> permutationFilesMap = permutationArtifacts.stream()
131 .collect(Collectors.toMap(PermutationArtifact::getPermutationName,
132 PermutationArtifact::getPermutationFiles));
133

134 InputStream templateStream = getClass().getClassLoader()
135 .getResourceAsStream("service-worker.template.js");
136

137 try
138 {
139 ObjectMapper objectMapper = new ObjectMapper();
140

141 String out = Stream.concat(
142 Stream.of(
143 "const STATIC_FILES = " +

objectMapper.writeValueAsString(staticCachedFiles) +
";",

←↩

↪→ ←↩

↪→

144 "const COMMON_ARTIFACTS = " +
objectMapper.writeValueAsString(commonFiles) + ";",

←↩

↪→

145 "const PERMUTATION_ARTIFACTS = " +
objectMapper.writeValueAsString(permutationFilesMap) +
";"),

←↩

↪→ ←↩

↪→

146 new BufferedReader(new InputStreamReader(templateStream)).lines())
147 .collect(Collectors.joining("\n"));
148

149 toReturn.add(emitString(logger, out, "service-worker.js"));
150 }
151 catch (JsonProcessingException e)
152 {
153 logger.log(TreeLogger.ERROR, "Failed to create JSON for Service Worker", e);
154 throw new UnableToCompleteException();
155 }
156

157 return toReturn;
158 }
159

160 protected Set<String> getOutputFiles(ArtifactSet artifacts)
161 {
162 return artifacts.find(EmittedArtifact.class).stream()
163 .filter(artifact -> artifact.getVisibility() == Visibility.Public)
164 .map(EmittedArtifact::getPartialPath)
165 .filter(artifact -> shouldArtifactBeInManifest(artifact))
166 .collect(Collectors.toSet());
167 }
168

169 protected boolean shouldArtifactBeInManifest(String pathName)
170 {
171 return !(pathName.endsWith("symbolMap")
172 || pathName.endsWith(".xml.gz")
173 || pathName.endsWith("rpc.log")

32

174 || pathName.endsWith("gwt.rpc")
175 || pathName.endsWith("manifest.txt")
176 // || pathName.endsWith("manifest.html")
177 || pathName.endsWith("cssmap")
178 || pathName.contains("tiny_mce_wiris")
179 || pathName.contains("soycReport")
180 || pathName.startsWith("rpcPolicyManifest")
181 || pathName.equals("compilation-mappings.txt")
182 || pathName.endsWith(".devmode.js")
183 || pathName.endsWith(".cache.js.gz"));
184 }
185 }

C The ‘Rules’ Section of svn-all-fast-export/svn2git/README.md

(I wrote this section, which has now been merged into svn-all-fast-export/svn2git)

C.1 create respository

create repository REPOSITORY NAME
[PARAMETERS...]

end repository

PARAMETERS is any number of:
• repository TARGET REPOSITORY Creates a forwarding repository , which allows for

redirecting to another repository, typically with some prefix.
• prefix PREFIX prefixes each file with PREFIX, allowing for merging repositories.
• description DESCRIPTION TEXT writes a DESCRIPTION TEXT to the description file

in the repository

C.2 match

match REGEX
[PARAMETERS...]

end match

Creates a rule that matches paths by REGEX and applies some PARAMETERS to them.
Matching groups can be created, and the values used in the parameters.

PARAMETERS is any number of:

• repository TARGET REPOSITORY determines the repository

• branch BRANCH NAME determines which branch this path will be placed in. Can also
be used to make lightweight tags with refs/tags/TAG NAME although note that tags

33

in SVN are not always a single commit, and will not be created correctly unless they
are a single copy from somewhere else, with no further changes. See also annotate
true to make them annotated tags.

• [min|max] revision REVISION NUMBER only match if revision is above/below the
specified revision number

• prefix PREFIX prefixes each file with PREFIX, allowing for merging repositories. Same
as when used in a create repository stanza.

• Note that this will create a separate commit for each prefix matched, even if they were
in the same SVN revision.

• substitute [repository|branch] s/PATTERN/REPLACEMENT/ performs a regex sub-
stitution on the repository or branch name. Useful when eliminating characters not
supported in git branch names.

• action ACTION determines the action to take, from the below three:

• export I have no idea what this does

• ignore ignores this path

• recurse tells svn2git to ignore this path and continue searching it’s children.

• annotate true creates annotated tags instead of lightweight tags

C.3 include FILENAME

Include the contents of another rules file

C.4 declare VAR=VALUE

Define variables that can be referenced later. ${VAR} in any line will be replaced by VALUE.

D SVN-Git-Migration/rules/yamlParser.py

1 #!/usr/bin/env python3
2

3 import os
4 import yaml
5

6 # move into rules directory
7 os.chdir(os.path.dirname(os.path.realpath(__file__)))
8 OUTPUT_DIR='../compiledRules/'
9 os.makedirs(OUTPUT_DIR, exist_ok=True)

10

11 RULE_PATH_PREFIX='/assistments/theNextGeneration'

34

12

13 def format_props(props):
14 if props:
15 return [f' {k} {v}' for k, v in props.items()]
16 else:
17 return []
18

19 # convert each yaml into a svn2git rules file
20 for yaml_filename in [y for y in os.listdir() if y.endswith('.yaml')]:
21 with open(yaml_filename) as input_f, \
22 open(OUTPUT_DIR + yaml_filename[:-5] + '.rules', 'w') as output_f:
23 y = yaml.safe_load(input_f)
24 if y['repositories']:
25 for repo, props in y['repositories'].items():
26 output_f.write(
27 '\n'.join(['create repository ' + repo,
28 *format_props(props),
29 'end repository\n\n']))
30

31 for rule, props in y['rules'].items():
32 if not rule.startswith('/assistments/'):
33 rule = RULE_PATH_PREFIX + rule
34 output_f.write(
35 '\n'.join(['match ' + rule,
36 *format_props(props),
37 'end match\n\n']))

E SVN-Git-Migration/README.md

E.1 ASSISTments SVN -> Git Migration

This is a set of rules and helper scripts for migrating the ASSISTments SVN monorepo into
a set of separate git repositories.

E.1.1 Requirements

• KDE’s svn2git9
• Python 3
• ZSH (although this could be pretty easily avoided, it made writing the script easier)

Optional, but recommended (Artistic Style)[http://astyle.sourceforge.net/astyle.html]
Optional, but wow would that be slow [gnu parallel](https://www.gnu.org/software/parallel/)

E.1.2 The Import Process

1. We need a local server repo (ie not a normal SVN working copy) to operate on, which
we can make via:

9<https://github.com/svn-all-fast-export/svn2git>

35

https://github.com/svn-all-fast-export/svn2git

1 svnadmin create assistments-svn-repo
2 rsvndump --username=<your username> https://fusion.wpi.edu/svn/assistments-rep/ |

svnadmin load assistments-svn-repo
←↩

↪→

As other people commited to this repository, this local copy becomes out of date, and
can be brought back up to date with:

1 svnrdump dump --username=<your username>
https://fusion.wpi.edu/svn/assistments-rep/ --incremental -r <old revision +
1>:HEAD | svnadmin load assistments-svn-repo

←↩

↪→ ←↩

↪→

2. Next, run doImport.sh to perform the actual import. It will pass arguments into the
svn-all-fast-export command, so for instance –stats is prettyhelpful. The other
part of the following command just jams the stdout/stderr into separate files as well
as printing them, for easier debugging later.

1 ./doImport.sh --stats > >(tee import.log) 2> >(tee import-stderr.log >&2)

You could also just run svn-all-fast-export manually, in which case you will have to
convert the rules from YAML to the expected rules format with python3 ../rules/yamlParser.py.
The rules were written in YAML instead because it is more compact and easier to work with,
and allowed me to prefix all the rules with /assistments/theNextGeneration/ automati-
cally, which had been getting tedious.

3. Next, there are some cleanup scripts. cleanup.sh is intended to be run via git
filter-branch on each repo. It preforms a few cleanup operations, mostly tidying up
whitespace and applying a style with Artistic Style. It is intended to be run like this:

1 git filter-branch --prune-empty --tree-filter /path/to/cleanup.sh -- --all

Just running git filter-branch –prune-empty by itself would be suggested even if
you don’t want the whitespace/style cleanup, as it will remove empty commits (primarily
empty directory creation in SVN) from history.

In either case, git filter-branch is rather slow. Since there are a lot of repositories to work
with, I would recommend using GNU parallel to run a lot of these at once.

1 parallel "cd {}; git filter-branch --prune-empty -f --tree-filter $PWD/cleanup.sh
-- --all" ::: repos/*/

←↩

↪→

4. There is a further cleanup script to be run on each repo that deletes merged branches
and backup refs from svn2git called repoCleanup.sh. It can be run with or without
GNU parallel:

1 /path/to/repoCleanup.sh
2 # OR
3 parallel "cd {}; $PWD/repoCleanup.sh" ::: repos/*/

36

5. Next, repack the repos to make them smaller/more efficient. Again, GNU parallel
can be used, but since repacking already does its own parallel processing, it is not as
helpful.

1 git gc; git repack -adf --window 250 --depth 250
2 # OR
3 parallel -j4 "cd {}; git gc; git repack -adf --window 250 --depth 250" ::: repos/*/

I ran this with with only 4 jobs (-j4), since it seems to spike around 1000% CPU usage
on rambo (ie 10 cores) and it has 32 total cores, so this should mostly help rather than
hinder.

6. Finally, upload the repos to Github. I’ve written a script to assist with creating and
uploading repositories to Github called createRepos.py. To use this script, you will
need PyGithub, and a Github personal access token10 with at least the repo permission.
Set your token in a file called githubAuth.py, containing the following:

1 GITHUB_TOKEN = '<your token here>'

Then, you can run the repo creation script:

1 python3 createRepos.py

E.1.3 Writing more rules

Mostly, my best advice would be to go read the docs11. They are, however, somewhat lacking.
TODO: finish this section

Helpful tools

svn
I’ve got some aliases for svn commands that I used frequently in the aliases file. They

mostly just handle prefixing the path argument with the full file:// path to the repo, plus
the /assistments/theNextGeneration/ prefix if needed. You should just be able to run
source aliases in a bash-like shell.

• slogstop is svn log –stop-on-copy, which will stop when it finds a copy operation.
It is good for finding where something (like a branch) came from.

• slogone is svn log -l 1, which gets exactly one commit. (The most recent one, unless
you use <@revision number>)

• sls is svn ls
10<https://github.com/settings/tokens>
11<https://techbase.kde.org/Projects/MoveToGit/UsingSvn2Git#How_rulesets_work>

37

https://github.com/settings/tokens
https://techbase.kde.org/Projects/MoveToGit/UsingSvn2Git#How_rulesets_work

svneverever
svneverever12 is an incredibly useful tool which creates a list of all the directories in the

repo throughout history, along with the revision they were created and deleted. I mostly
used it to create this list once and then pruned it down, but it has more features that I
didn’t really use that much.

1 svneverever --tags --branches --flatten assistments-svn-repo > alldirs.txt

svn-all-fast-export itself:
When run with only a "catchall" ruleset, svn2git will provide a nice list of all copy

operations. These sometimes correspond to branch/merge operations, but frequently not.
Mostly it can be faster than trying to read through the svn log output.

catchall.rules
match /*/
end match

1 svn-all-fast-export --rules catchall.rules $PWD/assistments-svn-repo 2>&1 | grep
"was copied" > copies.txt

←↩

↪→

That catchall rules file is also pretty helpful for running one rules file at a time, as it is
much faster.

12<https://github.com/hartwork/svneverever>

38

https://github.com/hartwork/svneverever

	Introduction
	TeacherAssist Code Injection
	Introduction
	Implementation
	Future Work

	Mobile App Improvements
	Introduction
	Style and Misc Improvements
	Implementing a Service Worker for Offline Support in 2.0
	Mobile App Login Handling for 2.0
	Future work

	SVN to Git Migration
	Introduction
	Tool Selection
	Implementation
	Future Work

	References
	Appendices
	Teacher Assist textinject.js
	Service Worker Linker
	The `Rules' Section of svn-all-fast-export/svn2git/README.md
	create respository
	match
	include FILENAME
	declare VAR=VALUE

	SVN-Git-Migration/rules/yamlParser.py
	SVN-Git-Migration/README.md
	ASSISTments SVN -> Git Migration
	Requirements
	The Import Process
	Writing more rules

