

Bulk Analysis of Mortgage Data with Cluster Computing

A Major Qualifying Project (MQP)
Submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

In fulfillment of the requirement for the

Degree of Bachelor of Science

Submitted by:
Evan King

Thyagarajan Ramachandran

January 11th, 2018

Submitted to:
Project Advisors:

Professor Kevin Sweeney, Worcester Polytechnic Institute
Professor Michael Ciaraldi, Worcester Polytechnic Institute
Professor Renata Konrad, Worcester Polytechnic Institute

Project Liaisons
Scott Burton, Angelo, Gordon, & Co. Managing Director

This report represents the work of two WPI undergraduate students submitted to the faculty as evidence of

completion of a degree requirement. WPI routinely publishes these reports on its website without editorial or peer
review. For more information about the projects program at WPI, please see

http://www.wpi.edu/Academics/Projects

KMS ABGJ

http://www.wpi.edu/Academics/Projects

i

Abstract
Angelo, Gordon & Co. is developing a statistical model of loan delinquency status. This

project designed and implemented a software package to process a public data set from Wells

Fargo to build a rudimentary model. The data requires significant manipulation to convert it into

a useful form. A series of compartmentalized modules were created, each of which are combined

to form a “Tech Stack”, which runs each step in the sequence. This ends in an upload to a cloud

storage provider. Once the Tech Stack had processed the relevant data, several sample analyses

were run to demonstrate the data’s capabilities. The size of the data set made computations with

a single computer impractical, so a cluster was used to analyze the data.

ii

Acknowledgements

We would like to thank Angelo, Gordon & Co. for their consistent support and commend

them on their excellent hospitality. Thanks to Scott Burton, who was always available despite his

demanding schedule. We would like to thank Xinkai Wu, his mentorship throughout was

invaluable. His presence in the project was that of a teammate. We would also like to thank Cindy

Aguilar for her patience with all administrative issues and facilitating us throughout. Special

thanks to Oren Efrati, constantly solving our issues and going out of his way to do so.

We would like to thank the Director of the Wall Street project center Kevin Sweeney and

our advisors Michael Ciaraldi and Renata Konrad for the continuous care and devotion

throughout the process from applying to the MQP till submission. We would also like to thank

WPI for providing us with this opportunity. Finally, a special thanks to Jacob Aki for taking time

out of his schedule to coordinate with everyone to ensure a great MQP experience overall.

iii

Authorship
Section Author

1. Introduction

1.1. Objectives

2. Background

2.1. Angelo, Gordon & Co.

2.2. Mortgage-Backed Securities

2.3. Wells Fargo CTSLink

2.4. Cluster Computing and Spark

2.4.1. Spark

2.5. Technologies Used

2.5.1. Python

2.5.2. PARQ format

2.5.3. Azure Data Lake

2.5.4. Visual Studio Team Services

2.5.5. Azure DataBricks

2.5.6. HDInsight

2.5.7. Selenium & Geckodriver

3. Methodology

3.1. Project Planning & Analysis

3.2. Design

3.2.1. Object Oriented versus Imperative

Evan & Thyagarajan

Thyagarajan

Thyagarajan

Evan

Thyagarajan

Evan

Thyagarajan

Evan

iv

3.2.2. Usability vs flexibility

3.2.3. Automation

3.3. Data Wrangling

4. Process and Analysis

4.1. Work Breakdown Structure

4.1.1. Download

4.1.2. Extraction

4.1.3. Filtration

4.1.4. Cleaning

4.1.5. Parsing

4.1.6. Upload

4.1.7. Wrangling

4.1.8. Analysis

4.2. Process Flow Diagram

5. Implementation

5.1. Automated Downloader

5.2. Unzipper

5.3. Move Valid Files

5.4. Sort By Shelf

5.5. Parquet From Positional

5.6. Multiprocessing PARQ compression

5.6.1. DateTime idiosyncrasies

Thyagarajan

Thyagarajan

Evan

v

5.7. Schema Scanner

5.8. Azure Datalake Upload

5.9. Ingestion

5.10. Miscellaneous tools

5.10.1. Installer

5.10.2. DocGenerator

6. Data Wrangling and Analysis

6.1. Data Wrangling

6.1.1. Duplicate Loan Numbers

6.1.2. Checking Integrity of Original Balance Values

6.1.3. Delinquency Status of Loans

6.2. Data Processing

6.2.1. Delinquency Status Transition Matrix

6.2.2. Pay Off Rate in Different States of USA

6.2.3. Foreclosure in Various States

7. Conclusions

8. Recommendations

9. Reflection on the Project

9.1. Design Component

9.2. Constraints and Alternatives

9.3. Need for Life-Long Learning

Thyagarajan

Thyagarajan

Thyagarajan

Thyagarajan

vi

Table of Contents
ABSTRACT ... I

ACKNOWLEDGEMENTS .. II

AUTHORSHIP .. III

LIST OF FIGURES ... X

LIST OF TABLES ... XI

1. INTRODUCTION .. 1

1.1. OBJECTIVES .. 1

2. BACKGROUND .. 3

2.1. ANGELO, GORDON & CO. ... 3

2.2. MORTGAGE-BACKED SECURITIES .. 3

2.3. WELLS FARGO CTSLINK ... 4

2.4. CLUSTER COMPUTING AND SPARK .. 5

2.4.1. Spark .. 5

2.5. TECHNOLOGIES USED ... 6

2.5.1. Python .. 6

2.5.2. PARQ format .. 6

2.5.3. Azure Data Lake ... 6

2.5.4. Visual Studio Team Services .. 6

2.5.5. Azure DataBricks.. 6

2.5.6. HDInsight ... 7

2.5.7. Selenium & Geckodriver... 7

3. METHODOLOGY .. 8

3.1. PROJECT PLANNING & ANALYSIS .. 8

3.2. DESIGN ... 9

vii

3.2.1. Object Oriented versus Imperative .. 9

3.2.2. YAGNI ... 10

3.2.3. Usability vs flexibility ... 10

3.2.4. Automation .. 10

3.3. DATA WRANGLING .. 11

4. PROCESS AND ANALYSIS ... 13

4.1. WORK BREAKDOWN STRUCTURE .. 13

4.1.1. Download .. 14

4.1.2. Extraction... 16

4.1.3. Filtration .. 17

4.1.4. Cleaning ... 17

4.1.5. Parsing ... 17

4.1.6. Upload ... 18

4.1.7. Wrangling .. 18

4.1.8. Analysis .. 18

4.2. PROCESS FLOW DIAGRAM ... 19

5. IMPLEMENTATION .. 19

5.1. AUTOMATED DOWNLOADER ... 19

5.2. UNZIPPER .. 22

5.3. MOVE VALID FILES .. 23

5.4. SORT BY SHELF ... 24

5.5. PARQUET FROM POSITIONAL ... 25

5.6. MULTIPROCESSING PARQ COMPRESSION .. 28

5.6.1. DateTime idiosyncrasies .. 29

5.7. SCHEMA SCANNER ... 29

5.8. AZURE DATALAKE UPLOAD .. 29

viii

5.9. INGESTION ... 30

5.10. MISCELLANEOUS TOOLS .. 31

5.10.1. Installer ... 31

5.10.2. DocGenerator ... 31

6. DATA WRANGLING AND ANALYSIS ... 32

6.1. DATA WRANGLING .. 32

6.1.1. Duplicate Loan Numbers ... 32

6.1.2. Checking Integrity of Original Balance Values ... 34

6.1.3. Delinquency Status of Loans .. 35

6.2. DATA PROCESSING .. 37

6.2.1. Delinquency Status Transition Matrix.. 38

6.2.2. Pay Off Rate in Different States of USA ... 40

6.2.3. Foreclosure in Various States... 42

7. CONCLUSIONS .. 45

8. RECOMMENDATIONS ... 47

9. REFLECTION ON THE PROJECT ... 48

9.1. DESIGN COMPONENT ... 48

9.2. CONSTRAINTS AND ALTERNATIVES .. 49

9.3. NEED FOR LIFE-LONG LEARNING .. 50

10. REFERENCES ... 51

11. APPENDIX ... 53

11.1. SAMPLE DATA .. 53

11.1.1. Manifest Files ... 53

11.1.2. Sample Data file (.txt) ... 54

11.1.3. Sample Excel File .. 55

ix

11.2. RECURSHELFDOWNLOAD .. 56

11.3. UNZIPPER .. 57

11.4. SHELF FILE PROCESSOR ... 58

x

List of Figures
Figure 1 Work Breakdown Structure of the Project ... 13

Figure 2 Screenshot of Issuer Page on CTSLink .. 15

Figure 3 Ahk Script to Click and Download All Files .. 16

Figure 4 Ahk Script to Check for Data Files ... 16

Figure 5 File Structure from Downloading Each Shelf File ... 16

Figure 6 Swim Lane Diagram ... 20

Figure 7 Screenshot of CTSLink with Various Shelves .. 22

Figure 8: CTSLink shelf file layout ... 25

Figure 9 Screenshot of HTML with docstrings Embedded .. 31

Figure 10 Count Operation for Total Loans on Spark ... 32

Figure 11 Filter Operation and Output ... 33

Figure 12 Operations to Check Loan Numbers on Spark .. 33

Figure 13 Operations to Create Unique Loan Numbers on Spark 34

Figure 14 Operations to Change Formatting on Spark ... 35

Figure 15 Operations to Create Columns for Dates on Spark... 36

Figure 16 Output of Operations for First 10 Rows.. 36

Figure 17 Operations to Find Difference in Months on Spark .. 36

Figure 18 Operations to Bin Loans by Delinquency Status on Spark 37

Figure 19 Operations to Create Column of 'next_parsed_delinq' on Spark 38

Figure 20 Output of Operations to Build Transition Matrix on Spark 39

Figure 21 Delinquency Status Transition Matrix for month of March 1, 2000 40

file:///C:/Users/mrram/Desktop/Evan_Harry%20MQP%20Final%20Draft%20RK%20Edit.docx%23_Toc504407784
file:///C:/Users/mrram/Desktop/Evan_Harry%20MQP%20Final%20Draft%20RK%20Edit.docx%23_Toc504407785
file:///C:/Users/mrram/Desktop/Evan_Harry%20MQP%20Final%20Draft%20RK%20Edit.docx%23_Toc504407786
file:///C:/Users/mrram/Desktop/Evan_Harry%20MQP%20Final%20Draft%20RK%20Edit.docx%23_Toc504407787
file:///C:/Users/mrram/Desktop/Evan_Harry%20MQP%20Final%20Draft%20RK%20Edit.docx%23_Toc504407792

xi

Figure 22 Operations to Group US States by Delinquency Status 40

Figure 23 Transition Probabilities for Each State.. 41

Figure 24 Transition Probabilities for Each State.. 43

List of Tables
Table 1 Highest Pay Off Rate in States Ranked Descending Order................................... 42

Table 2 Highest Probability of Foreclosures Ranked in Ascending Order 44

file:///C:/Users/mrram/Desktop/Evan_Harry%20MQP%20Final%20Draft%20RK%20Edit.docx%23_Toc504407805

1

1. Introduction
Angelo, Gordon & Co. is an investment management company. Like many firms, Angelo

Gordon is looking for quantitative data insights to inform their investment decisions. Specifically,

Angelo Gordon seeks to build a statistical model of the probability for loans to default or be paid

in full. Although a third party vendor provides necessary reports to make decisions, the existing

data sets are paid and narrow. There is no freedom to perform personal analysis on the mortgage

data as the data is not owned by the firm.

Because of federal banking regulations, there is a great deal of public data available on

the Internet. The data is distributed across many files, in a proprietary format, and likely contains

errors. The firm requires a software package to download, process and upload the relevant data.

The data once uploaded also needs to be checked for quality and consistency. Additionally,

sample analysis on the data will give the Risk Management Team of Angelo Gordon a head start

towards building the necessary statistical model.

1.1. Objectives

There were three essential tasks that needed to be completed. First, we had to acquire

the data. This needed to be done in an automated way, as there was too much data to download

it all manually. Once this was complete, we needed to process the data to prepare it for analysis.

When the data was uploaded, the data had to be cleansed for proper formatting and field values.

Once the data was ready, we needed to prove that our processing was successful by

demonstrating sample analyses. This also allowed the firm to have a basic foundation to build

the necessary statistical model upon.

2

In addition to the practical objectives of the project, we also had to keep in mind the long-

term stability of whatever tool we chose to build. The data we harvested was not static— every

month, new data points are added. This means that the tool needs to be rerun every month. As

a direct byproduct of this, ease of use was made a priority. If the tool was too hard to install or

use, the newest dataset would not be incorporated with the larger data set. Other than delivering

the tool itself, proper documentation such as readme files were also provided.

3

2. Background
2.1. Angelo, Gordon & Co.

Angelo, Gordon & Co. (AG) is a privately held, registered alternative investment advisor

founded in 1988. Headquartered in New York City, NY, it has approximately $28 billion in assets

(Angelo, Gordon & Co.) under management around the globe. Although relatively small

compared to banks, AG has over 360 employees which is large relative to most hedge funds. The

firm is also less regulated compared to investment banks as it manages assets for high net worth

individuals and acts as an advisor (Staff, 2017).

The company is dedicated to alternative investing, capitalizing on various market

situations in the world. Angelo Gordon is invested in distressed debt, real estate, private equity,

and some multi-strategy investments. Angelo Gordon remains a leader in alternative investments

by exploiting market inefficiencies and seeking to capitalize on new investments that are not

mainstream. For such a firm, information about current market trends is invaluable if it is to

exploit these situations. The project serves the same purpose as the ultimate goal is to use the

data set to obtain information about the real estate market.

2.2. Mortgage-Backed Securities

Mortgage-backed securities (MBS) are bonds that are secured upon home and other real

estate loans. A group of loans with similar attributes such as credit score are pooled together. A

fixed amount worth of such mortgages is sold to a government agency such as Ginnie Mae or a

government sponsored-enterprise (GSE) such as Fannie Mae. The majority is sold as such and the

MBS carries the guarantee of the issuer. Unlike traditional bonds, since most home owners pay

mortgages monthly, MBS bondholders receive monthly interest payments (FINRA, 2018).

4

MBS played a central role in the 2008 financial crisis which wiped out trillions of dollars

and brought down Lehman Brothers. Mortgage backed securities allow a bank to move its

mortgages off the books by turning them into securities and selling them to investors such as

Angelo Gordon. Many loans are bundled together, which distributes the default risk across many

loans. This is compared to selling loans individually, which is referred to as whole loan. This

flexibility for banks gave room for more lending capital and encouraged banks to reach further

down in credit worth to supply more investors. GSE and other agencies supported this aggressive

sale of MBS and when poor performing loans began to default, the quality of the MBS started to

decline. Loans defaulted at an unacceptable rate, which meant that the otherwise safe

investment in MBS was now unstable. These non-payments led to the MBS market being over

valued and eventually drying up. MBS are still bought and sold today but the Federal Reserve still

holds onto the MBS purchased for $1.75 trillion in 2008. (Beattie, 2018)

2.3. Wells Fargo CTSLink

Wells Fargo CTSLink is a website provided by Wells Fargo. It contains publicly available

mortgage data on deals from 2000 to present. Data is divided across a multitude of shelves,

largely by what department, subsidiary or organization issued the loans.

There are other mortgage data sources available, most notably from Fannie Mae (Fannie

Mae n.d.) and Intex (Intex n.d.). Intex provides models based on data they have collected, rather

than the raw data itself. However, those models are very expensive. Fannie Mae’s data is a

limited subset of all their loans, while Wells Fargo is a complete set of roughly 8,000,000 loans.

For those reasons, the Wells Fargo data set was selected for analysis. Additionally, maintaining a

single data source means that inconsistencies between data sets are kept to a minimum.

5

2.4. Cluster Computing and Spark

A cluster refers to a group of computers and other resources that are connected through

hardware, networks and software to behave as a single system. The incentive to use clusters is

to improve performance and availability over that of using a single computer but still maintaining

the cost-effectiveness of having a single computer with the same performance or availability. The

aim of cluster computing has been to make the power of many computers from the “outside

world” or internal user departments available as if they were one and always working fast.

The desire for this came from using a series of low-cost off-the-shelf computers to do high

performance tasks. This was preferred by smaller firms as compared to purchasing high

performing computers from the market. Adding a layer of software over these nodes (computers)

has allowed firms to do computationally intensive tasks without the necessary costly machinery.

Cluster computing is used because clusters provide high availability, load balancing, parallel

processing, systems management and scalability (IBM 2002).

2.4.1. Spark
Apache Spark is an open-source cluster-computing framework. While there are a variety

of different APIs, we are using PySpark, which is a Python frontend for the Spark framework

(Zaharia, 2010). The core of Spark is centered on resilient distributed datasets (RDD). By passing

a function to Spark, one can invoke parallel operations such as filter or join. RDD operations are

lazy evaluated and immutable. Jupyter Notebook is an application that allows these operations

and allows one to edit, run and share the Python code.

6

2.5. Technologies Used

2.5.1. Python

Python is a popular programming language that can be used to solve a variety of

problems. It is a loosely typed language executed from compiled bytecode. This means that the

language is exceptionally flexible. While this can pose problems for developing very large

applications, it makes development of smaller applications much faster.

2.5.2. PARQ format

PARQ is a compression format useful for storing dataframes. A dataframe is a data set

organized into named columns. It is conceptually equivalent to a table in a relational database or

a data frame in R/Python. Our Spark software uses PARQ files as data sources. We use the Python

package fastparquet to serialize data into the PARQ format. Spark is capable of reading PARQ

files natively which reduces additional and unnecessary pre-processing.

2.5.3. Azure Data Lake

Azure Data Lake is a cloud storage platform offered by Microsoft. It can be accessed via a

variety of different APIs, which allows us to integrate uploads and downloads directly into our

Python tech stack.

2.5.4. Visual Studio Team Services

Version control is handled as a Visual Studio Team Services (VSTS) backed Git repository.

Strong version control software is essential to the success of a project.

2.5.5. Azure DataBricks

Azure DataBricks is a Microsoft cloud product that provides access to a Spark/PySpark

cluster owned by Angelo Gordon. DataBricks is used to create isolated cluster instances hosted

7

in the cloud. It is managed and run slightly different from HDInsight, but there are otherwise

limited differences between the two. While both are offered on the Azure platform, DataBricks

is different from Azure Data Lake.

2.5.6. HDInsight

HDInsight is another cluster computing client similar to Azure DataBricks. Both clients are

used interchangeably. There are some inconsistencies in Spark versioning between HDInsight and

DataBricks. Most notably, HDInsight supports large integer types which means it can store native

Python DateTime objects.

2.5.7. Selenium & Geckodriver

In order to access CTSLink, we used a popular Python package called Selenium. Selenium

is mostly used for UI test automation. In this case, we use it to emulate a user on CTSLink's

website.

Selenium provides an API to emulate browser interaction, but modern browsers are

extremely complicated. Rather than create their own browser, Selenium requires a driver which

links it with an installed version of a particular browser. We use Mozilla's Firefox driver,

Geckodriver, for this purpose.

 It is important to note that although Selenium is part of the tool provided, all initial

download was done manually to ensure accuracy.

8

3. Methodology
3.1. Project Planning & Analysis

When this project was first initiated, the initial thought was that this project will follow

three separate and distinct phases. Hence, a work breakdown structure (WBS) was created to

display all the then known defined activities necessary to accomplish this project. A WBS is a tool

used to plan projects as it not only defines a structure for necessary tasks but it also provides

great clarity while creating a project schedule.

A WBS allows the team to have a clear division of labor and create time estimates on how

long each phase or task may take. This is also why it is important to create a final process map to

include any changes that have occurred in the WBS and include greater detail for each step within

the map. This can be done through key symbols for each task/decision and with clearer titles.

Including streams where each set of tasks are classified within also gives clarity to the process

map. Once the business process tool to download all the data and upload them on Azure Data

Lake was achieved, a second process map was created to understand the new and developed

process at a whole level.

The exercise of creating a process map allows one to understand the limitations and

achievements of the project. The process map allows one to highlight what tasks need more

attention than others and allows handing the process over to a different stake holder to be much

clearer. This is important as the process needs to be reproducible and owned by the sponsor

even if the team is not present at the site. This is because new data sets are posted every month,

so the software package must be run every month. If there is not ownership and understanding

of the process, the data will become outdated.

9

3.2. Design

Simplicity and ease of use are at the core of the business process tool. We opted not to

add any features that were not requested by management. Each responsibility in the tech stack

is split into a module and there are no circular dependencies.

3.2.1. Object Oriented versus Imperative

Python does support the creation of classes, but we decided not to use classes in the tech

stack. There are several reasons for this. Classes and objects serve as a way of associating

functionality and data, but the data is loaded externally and none of the modules require any

state. Also, the division of modules helps isolate methods from each other. Creating a class

around a single function simply adds extraneous scaffolding

Classes and objects are useful when the path of execution is dynamic and abstract. This is

not the case. We have a very well defined process, with steps which are explicitly separate from

each other. The order does not change from execution to execution, and each step does not need

to relate to any other step. Furthermore, there are no fields or properties needed in any of the

modules. Once they finish executing their step, they resume the next module.

Repeated code was refactored into functions, but ultimately there was very little

repeated code. The only compelling example for deduplication was in the ask_token method for

datalake_upload because it is used in the main function for datalake_upload and ingestion.

There are no dependencies between any of the modules; ingestion serves as a “master”

script that runs each module in sequence, but each module does not depend on each other

module.

10

3.2.2. YAGNI

The common programming axiom “You Ain’t Gonna Need It” held true here. We planned

for the future to the extent that there is little to no coupling between modules. Adding new

modules or modifying existing ones will not result in changes throughout the codebase. We did

not speculate about what may be needed in the future, and only planned for three certainties:

1. The requirements for the software will change over time as the technology it is built on

does.

2. Processing phases may be added. Therefore, there can be no dependency between phases.

3. Phases may have to be modified. There are no dependencies between phases.

3.2.3. Usability vs flexibility
Usability was the single most important goal for the creation of this business tool. The

tool is only useful if it is run every month. If installation and execution were confusing due to the

number of features, it would be less likely that an average user would be able to build and run it.

We chose to embed the geckodriver binary within the Git repository directly to speed up

installation. Typically, build artifacts and required packages are installed by the user; however,

installing geckodriver is nontrivial.

Dependencies on projects can be installed with an installer script. This means that if

external packages are added, the installer package must be updated. Angelo Gordon’s primary

interest was making sure that the application can be rapidly deployed on a new machine.

3.2.4. Automation
Automation was also important, as it is peripherally related to usability. The user does not

need to interact with the script once it is running. The Selenium script eliminates a labor-intensive

11

step of the process. The only time the script will stop during execution is in the event of an

irreparable failure. In all other cases, the exception is logged and execution continues.

3.3. Data Wrangling

Data wrangling or data munging is the process of transforming data into a more desirable

and valuable format to be able to leverage it downstream. This is essential for any downstream

process such as data visualization, data analytics, training a statistical model or even further

wrangling. This generally follows steps such as extracting the data from whichever data source in

question, sorting or filtering the data set for the necessary data, parsing it into the necessary data

structures, depositing the resulting data into a data sink for storage, and finally wrangling the

data for field values.

The data transformations are performed on specific entities (e.g. fields, rows, columns,

data values, etc.) within a data set. These transformations can be extractions, parsing, joining,

standardizing, cleansing, and even creating new necessary data. These actions increase the

quality of the data set by ensuring their reliability, integrity, and reducing the need to do

preprocessing before being used for any downstream purpose.

The data set from Wells Fargo is open source and can only be downloaded through the

CTSLink website. Each issuer of a report deposits their data in Wells Fargo’s website in their

respective shelves. Since there are a variety of shelves, this already creates problems for

standardization of the data and the need to filter for the exact data amongst other files that may

have been uploaded by the issuer. Another problem that requires filtering is file names across

different issuers have a different naming convention. Our tool had to accommodate such

irregularities and correct them before uploading them to the data lake.

12

13

4. Process and Analysis
4.1. Work Breakdown Structure

As mentioned previously, a WBS was made to have a greater clarity over this project.

Figure 1 illustrates how the WBS for this project as perceived at the beginning of this project.

Figure 1 Work Breakdown Structure of the Project

The tasks are grouped in three bigger categories that were defined by the sponsor at the

beginning of this project. The “Data Collection” stage has three separate tasks that involve

acquiring the data set. “Data Upload” involves the tasks necessary to upload the collected data

set into Azure Data Lake, a service the sponsor is moving towards to store all data. Finally, “Data

Analysis” involves the tasks of transforming the data into a workable data set that has the highest

level of integrity to perform analysis and derive reliable findings. This is very important because

if the sponsor is to use this data to make investment decisions or assess risk, the data quality

must be at its highest.

At the third level, the specific tasks are outlined in order to complete this project. The

lettering before the task names indicates the sequence of tasks which is crucial for project

scheduling. These tasks must be completed in a linear fashion. This is definitely a drawback as no

14

two tasks can be finished simultaneously to save time. Below is a detailed explanation of each

task in chronological order:

4.1.1. Download
This task is the first and foremost in the process of gaining insight from the data. Wells

Fargo has uploaded data on their website called “Corporate Trust Services” (CTSLink) on a whole

loan level. After the 2008 crisis, Wells Fargo released large amounts of redacted mortgage data.

All the personal data regarding the loan e.g. addresses, names, contact information, etc. has

already been removed from the data set. The website does not have any API and therefore the

download must be done manually.

In the business process tool provided, we created a browser automation which eliminated

the need to manually download the files. Without automation this step would have been labor

intensive because there are 186 shelves to download. The tool provided is to collect the data set

for each month as new data for the previous month is uploaded every month.

However, at the beginning of this project, all the data had to be acquired manually as

automation of this task was completed later in the project. This was also to ensure that the data

set for all the previous years is accurate and no shelf is left missing.

There were three stages to download data for each shelf. These steps were done with

AutoHotkey (AHK) scripting which is a software package with its own language to assign actions

on the screen that are triggered with a certain key stroke. Figure 2 below shows a screenshot of

a particular issuer once opened.

15

The liquidated losses and the loan level collateral are the files that is the data set which is

to be downloaded. The first step was to check if a certain issuer/shelf had a data file uploaded.

Figure 3 shows the script used that was triggered with “Ctrl+b” and used the find function built-

in Chrome. If a data file is detected, then the next step is to download or else the user has to

move to the next issuer. Figure 4 shows the code to download the data set which can be done by

clicking the “Additional History” tab. The following code is entered in the Chrome console within

the hotkey to select all the check boxes (Giesbrecht, 2015):

var getInputs = document.getElementsByTagName("input");

for (var i = 0, max = getInputs.length; i < max; i++){ if (getInputs[i].type === 'checkbox')

getInputs[i].checked = true; }

Figure 2 Screenshot of Issuer Page on CTSLink

16

The hotkey script downloads all the files and returns to the website. The third step is to

go to the main page and start the search for the next available data set. This continues until all

the data set has been downloaded to a location in the device.

4.1.2. Extraction
Once the data is collected in one folder, the files need to be extracted. The format they

are downloaded in are compressed files with two levels within them. They are zipped as the

entire shelf and they are also zipped within the shelf by each month for all the years. Figure 5

below shows the file structure of each download with the data file at the end.

Figure 4 Ahk Script to Check for Data Files Figure 3 Ahk Script to Click and Download All Files

Figure 5 File Structure from Downloading Each Shelf File

17

The aim of the extraction step is to convert all the files from a compressed folder to their

native format. This was achieved through a Python script that has been included in the business

process tool and is in Appendix 10.3.

4.1.3. Filtration
There are other files that exist within the folders that are not contained within the data

set itself. Shelves often contain extraneous Excel, PDF and LIS (manifest) files. All these files are

extraneous and require removal. A Python script allows the detection of .txt & .dat files and

delete anything else that is extraneous. These files are later binned by shelf folder names once

they have been filtered. In this process, if there are data files that do not follow the same naming

convention as others, they are filed under a separate folder than the others. Encoded within the

name of the file is the shelf name, month and year.

4.1.4. Cleaning
Once all the data files have been collected in one folder, a quick visual inspection is done

to ensure all the data is relevant and the folder contains only data files. Files with erroneous file

names must be corrected manually by inspecting the data. Opening the data file hints as to how

to name the file correctly. The file itself has a column of remittance cycle that indicates the date.

This can also be cross referenced with the next due date column. As for most loans, the due date

is a month from the current cycle since most loans are in good standing. Once these checks are

performed, the files can enter the folder they would have according to the previous task.

4.1.5. Parsing
This step compresses the data for each shelf in parquet format which is most compatible

and favored with cluster computing. This process assigns fields (columns) according to Wells

Fargo’s positional layout schema. The Python script with the fields are given in Appendix 10.4.

18

Once fields are assigned, they are converted to .parq format and compressed by each shelf file.

This allows one .parq file for each shelf and reduces the total file size of all data from 500GB to

30GB. This definitely makes the next task of uploading much faster.

4.1.6. Upload
In this step, all the data using a script is uploaded into Microsoft Azure Data lake which is

the software used for data storage by the sponsor.

4.1.7. Wrangling
Using Spark, the field values are transformed to a more desirable format. New necessary

columns are added to conduct analysis and the data set is verified for variety of issues. The

chapter of Data Wrangling and Analysis will explain this task in detail.

4.1.8. Analysis
The data is then analyzed using Spark and Excel. Spark allows for the necessary processing

of data and it also allows the export of the results. Excel acts as a great graphical analysis software

for our purposes but the sponsor can use other powerful Data Visualization BI Tools such as

Tableau or Power BI.

19

4.2. Process Flow Diagram

After the project was completed, a detailed process flow diagram was necessary in order

to map the final process. This helps in evaluating the project’s success and understanding the

process. The business process tool also follows the same process. Hence mapping the process

flow will also result in mapping the business process tool which can be quite useful when the

software package needs maintenance. The map also ensures transparency amongst the various

stakeholders.

A swim lane diagram was created and is shown in Figure 6. The first line indicates who

performed which particular task. The same headings from the work break down structure is used

for tasks. Each lane (column) represents a single task and the smaller tasks that constitute the

main task are shown in that particular column.

20

Figure 6 Swim Lane Diagram

19

5. Implementation
The “Tech Stack” represents all of the technology used to download data from CTSLink all

the way to processing it on Spark. Each module is independent, but when linked together, they

form a pipeline that performs all the necessary actions to get data ready for analysis. This section

details each module. It describes the key features, as well as explains some of the design choices.

5.1. Automated Downloader

The automated downloader script was created as an optimization of the Download step

in the process flow diagram. It automates browser interactions to the Wells Fargo site CTSLink.

Wells Fargo CTSLink is a website that appears to be built-in ASP.NET. It is the data source

from which all data is gathered. It shows data on MBS securities Wells Fargo and its subsidiaries

own.

CTSLink presents some issues. First, the site itself has an incorrectly signed SSL certificate,

which means that navigating to ctslink.com directly results in a security warning. Not all of the

shelves available on the website contain the necessary data files. Additionally, CTSLink has poor

session handling, which can result in random logoffs and disconnections.

Data on CTSLink is divided into shelves based on the loan issuer. While Wells Fargo’s

WFMBS shelf is the largest shelf, the bulk of the loans appear to be from other subsidiaries and

departments.

Manual capture of the data in CTSLink is time consuming as it requires clicking through

many menus manually. There is no API for downloading files— everything must be done via user

interaction.

20

To solve that problem, we created a Selenium script to download shelf documents.

Selenium is a package typically used to automate GUI testing, but a companion package Splinter

adds some useful automation tools. The script searches for HTML elements on the page, then

clicks them.

Selenium uses geckodriver to emulate operations in Firefox. In order to maximize the ease

of use, we embed this directly into the Git repository. While it is unusual to embed build artifacts

into the repository, we prioritized ease of use over convention. Downloading geckodriver can be

confusing and ensuring it is properly loaded into your PATH environment variable is difficult. To

that end, we opted to include it into the Git repository directly.

There are several UI features in Firefox that are useful to humans but not to software,

such as file confirmation dialogs. To ensure consistency as the script is run, we load a custom

Firefox profile into the Selenium instance:

prof = {}

prof['browser.download.manager.showWhenStarting'] = 'false'

prof['browser.helperApps.alwaysAsk.force'] = 'false'

prof['browser.download.dir'] = output_path

prof['browser.download.folderList'] = 2

prof['browser.helperApps.neverAsk.saveToDisk'] = 'application/zip'

prof['browser.download.manager.useWindow'] = 'false'

prof['browser.helperApps.useWindow'] = 'false'

prof['browser.helperApps.showAlertonComplete'] = 'false'

prof['browser.helperApps.alertOnEXEOpen'] = 'false'

prof['browser.download.manager.focusWhenStarting'] = 'false'

browser = Browser('firefox', profile_preferences=prof)

21

Selenium allows interaction with elements only if the DOM was generated at the time of

interaction. That means that if a list of links is enumerated, then only one can be used before

the DOM is considered stale. For example, the following code will fail:

shelves = browser.find_by_text("Shelf Documents")

for shelf in shelves:

 shelf.click()

This code fails because after the shelf has been clicked, the page we are currently on no

longer contains a Shelf Documents link. Even though the URL is still accessible, that element is no

longer on the page, and as a result the entire shelves list is invalidated. In fact, even if we navigate

back before clicking on the next one, it will still fail, because there is no way for Selenium to know

for sure that the element still exists.

To fix that, we download shelves recursively. We still use an iterator, but skip shelves that

have already been downloaded, and only download one shelf per function instance. When all the

shelves are complete, the recursion will complete. It is non-intuitive to iterate over a list as well

as operate recursively, but because we skip shelves that we’ve already processed, each shelf is

only downloaded once. This guarantees that the DOM is not stale.

22

Figure 7 Screenshot of CTSLink with Various Shelves

5.2. Unzipper

As part of the Extraction step, we must retrieve files from the archives CTSLink provides.

Downloads are always double compressed in zip format. The unzipper module simply walks

through a directory and unzips all the files within it. This is run twice during ingestion.

Python’s builtin zip module is useful for this task. In order to extract information about

the zipfile, we must build an infolist object, which returns a list of enumerable ZipInfo objects.

These contain the metadata for the file. In order to determine the file type, unzipper uses the

23

magic number of the file. We have yet to find any corrupted zip files, so this step appears to be

very stable.

5.3. Move Valid Files

The only thing relevant to our extraction is .txt and .dat files. Shelf documents often

include PDFs, Excel files, and manifest files, all of which are not relevant or easily mined data.

def move_valid_files(rootDirectory, outputDirectory):

 """

 Moves files from rootDirectory to outputDirectory that have a .dat or

.txt extension.

 Mostly used to filter out pdfs and excel files which are occasionally

included in shelf reports.

 """

 file_count = 0

 total_start = datetime.now()

 for root, dirs, files in os.walk(rootDirectory):

 for file in files:

 start = datetime.now()

 name = Path(file).resolve().stem

 try:

 extension = os.path.splitext(file)[1]

 except IndexError:

 print("No extension found for file " + file + ". Skipping")

 continue

 if os.path.isdir(os.path.join(root, file)):

 print("Skipping directory.")

 continue

 if "dat" in extension or "txt" in extension:

 # left intentionally blank; easier to understand non-inverted

case

 pass

 else:

 print("Skipping file " + file + " as it is not a loan file.")

 continue

 if not os.path.exists(outputDirectory):

 # Create if missing

 os.makedirs(outputDirectory)

 print("Moving " + file + " to " + outputDirectory)

 if not os.path.exists(os.path.join(outputDirectory, file)):

 shutil.move(os.path.join(root, file), outputDirectory)

 else:

 print("Skipping file already found in output directory.")

 finish = datetime.now()

 elapsed = finish - start

 print('Time elpased on move job (hh:mm:ss.ms)

{}'.format(elapsed))

 total_end = datetime.now()

 total_elapsed = total_end - total_start

 print('Total time (hh:mm:ss.ms) {}'.format(total_elapsed))

24

5.4. Sort By Shelf

We next sort the files based on their shelf, as part of the Filtration step. They are placed

into folders corresponding to the value that follows the date entry. The Python Path module is

useful for this purpose as it can reliably determine the stem of a file.

def sort_by_shelf(rootDirectory):

 """Sorts in place files by their four letter shelf name."""

 file_count = 0

 total_start = datetime.now()

 for root, dirs, files in os.walk(rootDirectory):

 for file in files:

 start = datetime.now()

 name = Path(file).resolve().stem

 try:

 shelfname = name[4:]

 except IndexError:

 print("Invalid shelf name for file " + file)

 print("Skipping file.")

 continue

 dirPath = os.path.join(rootDirectory, shelfname)

 if not os.path.exists(dirPath):

 # Create if missing

 os.makedirs(dirPath)

 print("Moving " + file + " to " + dirPath)

 if not os.path.exists(os.path.join(dirPath, file)):

 shutil.move(os.path.join(root, file), dirPath)

 else:

 print("Skipping already present file " + file)

 finish = datetime.now()

 elapsed = finish - start

 print('Time elpased on move job (hh:mm:ss.ms)

{}'.format(elapsed))

 total_end = datetime.now()

 total_elapsed = total_end - total_start

 print('Total time (hh:mm:ss.ms) {}'.format(total_elapsed))

25

5.5. Parquet From Positional

This module is the most important in the tech stack. This parses Wells Fargo data one line

at a time and loads them into a Python dictionary. The positions for each field are arbitrary, so

we created a script that loads the positions based on what is outlined in the CTSLink shelf file

layout. ParquetFromPositional is the Parsing step in the process map.

Figure 8: CTSLink shelf file layout

The shelf file layout tells us the location of each field in the file. One row in the file

represents a single loan for a single month. The month itself and the name of the shelf is stored

in the name of the file. Each file contains anywhere between 1,000 lines and 25,000,000 lines. It

depends on how many loans there are for that month.

26

We extract the shelfname and month here. A shelf name is a string of arbitrary length

that comes after the date entry. Shelf files use the following format in their name:

MMYYshelfname. So, a January 2001 WFMBS shelf file would be 0101wfmbs.txt. Files are

occasionally incorrectly named. The most common mistake is a three-character date code instead

of a complete MMYY date. Some of these were manually renamed before processing; however,

if such files are encountered, the software makes a note of it and ignores the file.

Thankfully, Python supports a built-in method of extracting substrings called slicing.

Slicing allows us to do many things, but in this case, we are using it to extract a substring. Note

that CTSLink’s file uses an index that starts at 1, so the indices in our parser are adjusted to

account for the fact that Python (and most modern languages) begin their indices at 0.

Since the format is arbitrary, we must manually encode the shelf file layout in some way.

There is no programmatic way to determine the locations of the fields.

When we parse the files, we extract the file name. This presents several potential issues.

Sometimes, file names have typos in them. We check for that using some simple string

comparisons. Before dt is passed into process_single_line, it is checked for validity:

name = Path(path).resolve().stem

assuming YYMM(shelf)

print("File name is " + name)

try:

 year = int("20" + name[0:2])

except ValueError:

 print("Skipping invalid file " + name)

 return

if year > datetime.datetime.now().year:

 print("Shelf reports from the future indicate an invalid file name.

Skipping.")

 return

elif year < datetime.datetime.now().year and not ingest_old_files:

 print("Shelf reports from the past indicate that we may have already

ingested this file.")

 return

try:

 month = int(name[2:4])

27

except ValueError:

 print("Skipping invalid file " + name + " because it appears to have an

invalid month value.")

 return

if month > 12 or month < 1:

 print("Skipping invalid file " + name + " because it appears to have an

invalid month value.")

 return

if month != datetime.datetime.now().month and not ingest_old_files:

 print("Skipping file from the past as this indicates that we may have

already ingested this file.")

 return

ingest_old_files is by default true. It can be disabled to prevent the function from

processing any files whose shelf date is prior to the current month. This is useful as it prevents

data duplication, but because shelf publication dates vary from shelf to shelf, we enable ingestion

of old files by default. This feature can be disabled in case someone needs to modify the code in

the future.

Once we have the data in a Python dictionary, it gets significantly easier to serialize it into

a new format. We use the Python package fastparquet to perform this operation. First we

compile a list of dictionary objects, each representing a line in the file. Then we simply use Pandas

dataframes to build a single dataframe that can be written into a PARQ file.

Parquet files can be easily read by the Spark cluster, so they are an ideal choice for

compressing large amounts of text. The compression ratio is roughly 10:1; that is to say, 400 GB

of data will result in roughly 40 GB of Parquet archives. We mostly attribute this to the large

amount of whitespace and repeated digits found in the files. The nature of compression is such

that the less diverse the set of compressed entities is, the better the compression ratio.

Because of the significant file IO required to read in, compress, and write out the PARQ

files, they are created once and then appended to throughout processing.

28

PARQ compression is a CPU bound operation. This is due to the algorithm used to create

PARQ archives. Parquet is a columnar format; compression is performed column by column. Like

many popular compression schemes, Parquet uses run length encoding (RLE). A value is only

stored once, followed by the number of occurrences. Most of the files processed by

ParquetFromPositional have large sections of intentionally omitted data, such as the address of

the house being purchased, so Parquet compression significantly reduces the space consumed.

5.6. Multiprocessing PARQ compression

Parquet compression is a time-consuming operation, particularly when so much data is

involved. To remedy this, we use a ProcessPoolExecutor to start 6 processes, which each take a

single shelf folder. This prevents the need for an explicit mutex strategy as each process executes

on a single archive at a time. This is why we execute SortByShelf, not only for organizational

consistency, but also to distribute work.

"""

Distributes the PARQ process over max_worker threads. Setting the number too

high may lock up your machine.

"""

shelves = [(os.path.join(target, x[0]), output) for x in os.walk(target)]

#get all shelf files

with ProcessPoolExecutor(max_workers=max_workers) as executor:

 executor.map(walk_entire_directory, shelves)

Like any application making use of parallelization, it is important to be aware of the fact

that the thread and process pools are limited. Based on some rough testing, we found that 6

processes allows a 400-500% performance increase, while still allowing the rest of the OS to

function normally.

29

5.6.1. DateTime idiosyncrasies

One of the problems we encountered during development was issues with using POSIX

timestamps with the Spark cluster. Python’s default datetime class reports time in microseconds

since January 1st, 1970. This is an exceptionally granular way of describing date, and it introduces

many confusing issues. Since this measures milliseconds since a fixed point in time, (also known

as an epoch), determining which day it is requires the time zone. While there are tools to do this,

it adds an unnecessary level of complexity. Most importantly, however, is the incompatibility

with Azure DataBricks. DataBricks cannot process such a large timestamp; this is a known bug in

Parquet as well as DataBricks. To resolve this, we opted to store dates in a CCYYMMDD string

format to guarantee compatibility across all versions of Spark.

5.7. Schema Scanner

We discovered that some of the Parquet files we generated ended up having mismatched

schema as others. To combat this, we built a simple module that compares the schema of the

first file in the directory with every other file. This is an acceptance test we implemented to

ensure that no data with a mismatched schema ends up in Azure.

5.8. Azure Datalake Upload

The last step in the tech stack before the data is ready for analysis is to upload it to Azure.

Microsoft provides the package adl_store for this purpose. To authenticate (not authorize) we

use an Azure Data Lake (ADL) token to upload files. The function ask_token prompts the user for

the token. For convenience, the default department Risk Data Lake token is used if no value is

entered; however, it is omitted from this report for security reasons. ask_token returns a 3-tuple

30

string with the values the user inputted, or the default values if none were entered. They are

then immediately loaded into an adl_store.lib.auth object for use.

def ask_token():

 """Asks the user for ADL token information or supplies hardcoded values

if none are provided. Used in ingestion.py as well."""

 client_id = input("Input client key; leave blank for default riskdatalake

token: ")

 if client_id == "":

 client_id = 'Intentionally Omitted'

 client_secret = input("Input client secret; leave blank for default

riskdatalake token: ")

 if client_secret == "":

 client_secret = 'Intentionally Omitted'

 tenant_id = input("Input tenant id; leave blank for default riskdatalake

token: ")

 if tenant_id == "":

 tenant_id = 'Intentionally Omitted'

 return (client_id, client_secret, tenant_id)

While hardcoded token values would normally be undesirable, a heavy emphasis was

placed on a fast, painless install with minimal configuration over flexibility for customization. This

function is also used in ingestion to ask the user what token they wish to use. From there, the

upload to ADL is straightforward. The upload will always place files in a directory - never the root,

and will not upload files when they already exist on the datalake. Since it is required by adl_store,

all files are uploaded as binary files.

5.9. Ingestion

Ingestion is the composition root for the entire tech stack. It loads all of the modules and

runs them sequentially. Prior to running, ingestion asks for the following information:

• Whether to use an explicit directory instead of a tempfile, and if so, which directory to use

• What directory to upload files to on the datalake

• Whether or not to run on a small subset of data for testing purposes

• Whether or not to delete transient files when done

• The Azure Data Lake token, defaulting to Risk’s token

31

Ingestion then creates five folders, phase1 through phase5. This is to aid with debugging,

because if a step fails, it can be resumed manually by executing the scripts individually. Ingestion

merely runs the other modules in sequence; it has no business logic of its own.

5.10. Miscellaneous tools

5.10.1. Installer

Installer was a request by AG to speed preparation for use. It simply calls pip repeatedly to

download all of the required packages. While this task is often left to whoever is using the

repository, this does reduce the effort required to get started. Running main will install the

packages required.

5.10.2. DocGenerator

DocGenerator was created to help ensure that the automatically generated

documentation is up to date. This calls pydoc on the modules in the project, as well as the other

modules used in the software. This generates HTML files that show a neatly formatted page with

the docstrings embedded within it. Each time ingestion is run, the user is prompted to generate

the latest documentation.

Figure 9 Screenshot of HTML with docstrings Embedded

32

6. Data Wrangling and Analysis
6.1. Data Wrangling

After the data is uploaded to the data lake, the data is available to be used through Spark.

However, before the data can be processed, certain operations need to be performed to prepare

the data. These operations are not predefined but are specific to each data set. While exploring

the data set, certain irregularities become apparent that need correction. A large portion of this

project was spent on this stage. This stage ensured data integrity by finding and correcting

irregularities.

6.1.1. Duplicate Loan Numbers

The risk management team had estimated the data set to account for 9.5 million loans.

When a count function was initially performed, the total number of loans was 7,784,221. This

clearly suggested inconsistencies within the data.

The first action was to check if the entire data set has been uploaded correctly. Once that

was confirmed, there was suspicion that multiple shelves have the same loan numbers leading

to a lesser count than total. The filter function was used to show all loan numbers that occurred

more than once. In Figure 11, the first line executes the code and the second line shows a sample

of the operation performed.

Figure 10 Count Operation for Total Loans on Spark

33

Figure 11 Filter Operation and Output

The table shows that the count of some loan numbers are more than 1 and sometimes

even more. For example, if one were to search the data set for the loan number “0011817426”,

then it should appear twice in two different shelves. Figure 12 below does such an operation:

Figure 12 Operations to Check Loan Numbers on Spark

The particular loan number in question appears in shelf “Asset Backed Funding

Corporation (ABFC)” and “Asset Backed Securities Corp (ABSC)”. Although it is the same loan

number, they are different loans entirely and should be treated separately for data processing

purposes. To solve this issue, each loan number was assigned a new loan number with the new

format of “Shelfname_LoanNumber”.

34

Figure 13 Operations to Create Unique Loan Numbers on Spark

The new total of loan numbers was raised to 9,852,826 which was much closer to the

estimate amount of loan data. Had this irregularity been overlooked, approximately data of 2

million loans, 21% of the total data, would be accidentally excluded. Any analysis with respect to

loan numbers would have also been erroneous.

6.1.2. Checking Integrity of Original Balance Values

A sanity check was performed for certain field values that were relevant to the data

processing. Original balance (loan balance) was one relevant field that was problematic as spark

was unable to perform operations on the field. When able, the value itself was incorrect. The

problem was found in the formatting of the field. The field values were string types and needed

to be converted to float values. A User Defined Function (udf) was written to perform this

conversion. Figure 14 shows these operations.

35

Figure 14 Operations to Change Formatting on Spark

The second command generates a quick summary of the field values. The average loan

balance for a Mortgage Backed Security with Alternative A credit in USA is estimated to be

$250,000 (Appleyard, 2004). The new mean loan balance of $274,204 is close to the estimate

confirming that the values are formatted correctly.

6.1.3. Delinquency Status of Loans

Delinquency status is the current status of a loan with respect to delay in monthly

payments if any. The delinquency status deteriorates as the loaner defaults on more monthly

payments. Delinquency status is an important indicator of loan performance and the Wells Fargo

data set did not have this field built-in. This field was added as part of the data wrangling stage.

6.1.3.1. Standardizing Date Values

 To be able to find difference in monthly due dates and monthly payments, the dates have

to be in proper format. Since all fields are in string format including numbers, specific fields have

to be assigned new formats such as integer type to numbers. The operations below remove

whitespace (trim) and cast types to the fields (columns) current date and next due date. They

36

also create two separate columns for the year and month of each dates to facilitate subtraction

later to find the difference in months.

Figure 15 Operations to Create Columns for Dates on Spark

Below is the output of these operations for the first 10 rows of the data set:

Figure 16 Output of Operations for First 10 Rows

6.1.3.2. Binning Loans by Delinquency Status

 The difference between current shelf and the next due date field was calculated. This

difference was calculated in months.

Figure 17 Operations to Find Difference in Months on Spark

37

 Next, the loans were binned in four separate categories that serve as delinquency

statuses. Terminated loans are loans that have been paid in full and have a zero loan balance

remaining. Loans payments that are being paid, already paid, or are ahead of schedule are

Current. If a loan payment is behind by 5 months or less, the loan is binned as Delinquent. If a

loan payment is behind by more than 5 months, then the loan is in a Seriously Delinquent status.

An important distinction is that loans of Delinquent or Seriously Delinquent status are only

binned if they are marked for foreclosure in the future.

Figure 18 Operations to Bin Loans by Delinquency Status on Spark

After the binning of loans, the field or column is ready to be used in data processing.

6.2. Data Processing

Once the data has been transformed into the desirable format with the necessary fields,

it is ready to be explored for various insights. The Risk Team of Angelo Gordon eventually wants

to use this data set amongst others to build a statistical model to predict the upcoming

delinquency status of a loan, which in turn indicates if the loan is to improve or deteriorate. This

is largely modeled on various transition (Markov) matrices. A change from someone paying

monthly on time (Current) can pay off their loan (Terminated) or not pay for a couple of months

(Delinquent). This change can be seen as a transition between two states. Hence, knowing the

38

probability of going from one state to the other can be useful in determining which loans will

perform well with consistent payments throughout. A matrix consisting of such transition

probabilities would be a transition matrix.

In order to better understand such a model and how to start building it, certain sample

analyses were performed. Section 6.2.1 explains how to build a transition matrix and shows two

sample models. This procedure also serves as a sanity check to ensure all the data retrieval and

manipulation performed until this stage is correct.

6.2.1. Delinquency Status Transition Matrix

A variety of indicators can be used to track the progression of loan repayment and/or the

quality of loan. For our purposes, delinquency status will be used as an indicator to which other

attributes can be measured against.

Firstly, the column of delinquency status is renamed to “parsed_delinq”. The second

operation creates a new column that has the next delinquency status when the loan advances to

the next month. The third operations creates an additional column that shows the number of

loans that have made that particular change in delinquency status. Finally, the fourth operation

orders them the table in a chronological manner. Figure 19 illustrates the said operations:

Figure 19 Operations to Create Column of 'next_parsed_delinq' on Spark

39

After finding the count, a sum column consisting of the total loans for that particular

month is added. This later allows one to find the probability for each row as it is simply a function

of the count over the sum. The output of these operations can be seen in Figure 20:

Figure 20 Output of Operations to Build Transition Matrix on Spark

 The last cell of the first row of Figure 20 shows a null value for the next delinquency status.

This is likely because some loans are still on file when they need to be deleted. A transition matrix

can be built for each month. As an example, a transition matrix is below for March 1st, 2000

(Marked Region).

40

 Current Delinquent Seriously Delinquent Terminated Null

Current 0.960 0.017 0.000 0.023 0.000

Delinquent 0.312 0.538 0.119 0.031

Seriously

Delinquent
0.016 0.020 0.911 0.054

Terminated 0.000 0.820 0.180

Figure 21 Delinquency Status Transition Matrix for month of March 1, 2000

 Since each row in this matrix sums to 1, this is said to be a Right Stochastic Matrix. A group

function passed on to Spark allowed to consolidate all transition matrices into one. This matrix

can be also grouped along with other attributes such as borrower’s FICO score or state of

residence.

6.2.2. Pay Off Rate in Different States of USA
 This section will explore the data to understand which state has the highest pay off rate

with delinquency status as an indicator. A table was created using the consolidated transition

matrix and grouping all loans by the state. The operations necessary are shown along with the

table in Figure 22.

Figure 22 Operations to Group US States by Delinquency Status

41

 This table is later exported to a local drive as a csv file. This csv file can be used with Data

Visualization BI Tools to create powerful graphs. In this case, the csv file was used with excel to

use inbuilt visualization tools. The state change from paying monthly to termination of the loan

is isolated. This isolates loaners who have been paying consistently and in the end have paid off

their loan which is different from loaners whose property has been foreclosed. A screenshot of

the Excel file can be found in Appendix 10.3.1 and the resulting visual is in Figure 23. The warmer

the color, the higher the transition probability.

Figure 23 Transition Probabilities for Each State

42

Table 1 shows the top 10 states with the highest pay off rate.

Table 1 Highest Pay Off Rate in States Ranked Descending Order

Position States

1 Utah

2 Rhode Island

3 New Jersey

4 Massachusetts

5 Wyoming

6 Washington DC

7 Montana

8 Wisconsin

9 California

10 Illinois

It is important to note at this point that this is just a simplification of a possible model.

There are many other factors to be considered such as population, FICO scores, etc that would

alter the above list.

6.2.3. Foreclosure in Various States

The chances of foreclosure in each state can be useful information to decide which loans

are easily cleared of debt through foreclosure. This is shown by the transition from the state

Seriously Delinquent to the state Terminated. This means that the loaner has moved from

faulting for a long period of time to the sale of property. Figure 24 is a map of this transition

probability for each state.

43

Figure 24 Transition Probabilities for Each State

A judicial foreclosure state is a state that has court proceedings before a bank can foreclose a

property. In non-judicial foreclosure states, foreclosures usually are processed without a court.

Table 2 shows states ranking from least to highest probability for the first 15 states and their

judicial status.

44

Table 2 Highest Probability of Foreclosures Ranked in Ascending Order

Position States Judicial

1 NY Yes

2 NJ Yes

3 HI No

4 VT Yes

5 DC No

6 DE Yes

7 PA Yes

8 ME Yes

9 MA No

10 CT Yes

11 LA Yes

12 FL Yes

13 MD Yes

14 NM Yes

15 MS No

As suspected, 11 out of 15 are judicial states. These states have a significantly lower

probability of foreclosure on a property. In fact, 21 out of the first 30 are judicial states.

Considering there are only 27 judicial states in total, this finding is strongly supported.

45

7. Conclusions
One goal of the Risk Management team at Angelo Gordon is to build a sound statistical

model to predict loan performance. Specifically, to predict if a loan will default and anticipate the

progression of the loan to termination. Building the complete model was always outside the

scope of this project. However, we were able build a basic statistical model to serve as a

foundation for the model. The success in this project lies in that the sample analyses performed

could serve as a check for all the accomplished work.

A formal meeting was arranged with all the key stakeholders at the end of this project.

The business process tool (tech stack) was run in its entirety during the meeting. The meeting

was fruitful as it allowed everyone to carefully check for any mistakes and formalized handing

over the tech stack. All key stakeholders left the meeting with full confidence that they

understood the tech stack. This ensured that the firm had complete process ownership which

was previously lacking with third party vendors of data.

The data set provided was also a crucial deliverable that had to be correct and ready to

use. This included running many sanity checks for various values such as average loan balances

studying foreclosures. The data was also cleansed ensuring proper formatting for all field values.

Additional fields were also added to the data set when necessary but was missing. Performing

sample analyses allowed the risk team and others to understand how to use the data set for their

benefit.

The firm was also new to many software tools that were being used for this project such

as Data Lake or Spark. Operations such as format changes and export of data to local csv files

were foreign to everyone. A Jupyter notebook with all the operations performed so far was

46

delivered to the AG risk team as documentation. Not only will this be useful when building the

comprehensive statistical model but the documentation will accelerate the learning curve for

new stakeholders/employees if any.

47

8. Recommendations
The primary recommendation is to maintain the tech stack and the data set. The tech

stack should be run every month to ensure that the most recent data is being fed to the model.

Since the tech stack does not have a provision to download past months, running every month

in a timely fashion is crucial.

The Selenium script of the tech stack also should be maintained carefully. The specific

module is based on the CTSLink website. Since changes to the website cannot be predicted, one

should be prepared to make changes to the script when necessary. However, no drastic change

in the website is expected in the foreseeable future.

There is much potential for conducting more studies and further exploring the data for

insights. Running the tech stack every month and adding more data from various open source

data sets will allow the total data set to grow. A larger data set increases the reliability of

predictions made and also accounts for a larger sample population. A total of 9.5 million loans

may seem a lot but it is only a portion of the total loans. This means that Angelo Gordon has to

pursue more data if it is to build a model to make investment decisions.

48

9. Reflection on the Project
9.1. Design Component

The Risk Management team at Angelo Gordon aims to build a comprehensive and precise

statistical model to predict loan performance. The project’s overall deliverable was to create a

foundation for this model to begin building upon. This was achieved by designing a rudimentary

statistical model using the Wells Fargo public data set. Elements of data analysis required

knowledge of stochastic models, data manipulation in Excel, and strong understanding of data

wrangling. When building the model, Markov matrices were used in understanding probability of

various state changes. These state changes marked loan performance changes and were

reflective of borrowers paying or defaulting their monthly payments. These state changes were

later grouped by US States to understand performance varying across the country. Once

completed, the data was exported to excel to be analyzed and gain insights such as most judicial

states have the lowest probability for foreclosure on properties.

The Wells Fargo data set was used through Spark, an open source software that supports

big data exploration. However, the data set had to be acquired from their website and processed

before being able to begin data analysis. Angelo Gordon also required that the complete data set

be updated with every month’s loan information. This required designing and implementing a

business process tool that could run every month by the risk team to update with new data. The

project management aspect of implementing the process required that all key stakeholders have

process ownership. Process ownership is key in implementing a sustainable project. This was

achieved through weekly update meetings and delivering documentation about software

package implementation, maintenance, and data analysis on spark.

49

9.2. Constraints and Alternatives

One of the most crucial limitations of this project was large wait times at each step of the

process. The data accounted for 9.5 million loans which uses a total of 500 GB disk space. The

download step of the process alone took 10 days. The download was I/O bound and no existing

API meant that the download had to be done manually by clicking on a website. Later the data

set had to be converted to .parq format which was CPU bound. Every step of the process took

long wait times simply because of the size of the data set. This was overcome by various methods.

For operations that were I/O bound, multiple operations were queued overnight and maintained

remotely. For operations that were CPU bound, the risk team volunteered four of their high

performing CPUs for computation. The operations were distributed amongst these CPUs to

ensure effective allocation of time.

Another constraint was the sustainability of this project. The software package is designed

to download the most recent month’s data set for each shelf or loan issuer. Hence, the download

needs to be run every month to update the data set. If not, the download needs to be done

manually. The modularity of the software package allows for the rest of the process to run after

the manual download. However, if the website were to be updated differently in any way, the

Selenium script would need changes. To ensure sustainability, the risk team has been trained on

the use of the business process tool. Documentation also has been provided containing

instructions on how to make changes to the software package and the data analysis.

50

9.3. Need for Life-Long Learning

The project in the end was both challenging and fulfilling. Despite studying how to analyze

data through lab work and class work, analysis of a data set of this size was challenging. The real-

life application of the project was at first tough to grasp. However, the firm provided us with

guidance and support throughout which facilitated understanding the financial context of this

project. The project was unique in that it required an implementation of a process that

simultaneously allowed for continual improvement of the precision of the data set. Increasing

the data set monthly will allow more data points for the statistical model, improving precision of

studies conducted.

One of the challenges was to be able to use big data analytics software Spark. Not having

any experience in big data from coursework, the learning curve was very steep. Although Apache

Spark is a great open source software, using it was quite difficult initially. The coding was done in

PySpark which is an IPython based frontend API. Learning to use Spark was a fruitful challenge as

the software is a very powerful tool.

The project showed the application of our majors in a light that we had not given much

thought to previously. Many Industrial Engineering skills were transferrable to big data analysis

that surprised me. The skills learned at Angelo Gordon may or may not be useful in whatever

professional paths we take but the mentorship and guidance received was invaluable.

51

10. References
Angelo, Gordon & Co. "ANGELO, GORDON." Home : Angelo, Gordon & Co. January 22, 2006.

Accessed January 22, 2018. https://www.angelogordon.com/.

Appleyard, Randy. "Overview of the Mortgage-Backed Securities Markets." October 1, 2004.

Accessed January 20, 2018.

https://warrington.ufl.edu/graduate/academics/msf/docs/speakers/presentation_Appleyar

d0405.pdf.

Beattie, Andrew. "Mortgage-Backed Security (MBS)." Investopedia. January 17, 2018. Accessed

January 21, 2018. https://www.investopedia.com/terms/m/mbs.asp.

Fannie Mae. n.d. Loan Performance Data. Accessed 1 11, 2018.

https://loanperformancedata.fanniemae.com/lppub/.

FINRA. "Mortgage-Backed Securities." Mortgage-Backed Securities | FINRA.org. January 18,

2018. Accessed January 21, 2018. http://www.finra.org/investors/mortgage-backed-

securities.

Giesbrecht, Nathan. "Javascript Check all Checkboxes in Google Chrome or Firefox." Nathan

Giesbrecht Winnipeg Web Design & Development. January 27, 2015. Accessed January 22,

2018. http://nathangiesbrecht.com/check-all-checkboxes-chrome-javascript.

https://www.angelogordon.com/

52

 IBM. 2002. Clustering: A basic 101 tutorial. April 03. Accessed 12 10, 2017.

https://www.ibm.com/developerworks/aix/tutorials/clustering/clustering-pdf.pdf .

Intex. n.d. Cashflow Analytics for Global Structured Finance. Accessed 1 11, 2018.

http://www.intex.com/main/.

Staff, Investopedia. "Hedge Fund." Investopedia. August 23, 2017. Accessed January 22, 2018.

https://www.investopedia.com/terms/h/hedgefund.asp.

Zaharia, Matei. "HotCloud'10 Proceedings of the 2nd USENIX conference on Hot topics in cloud

computing." USENIX, June 22, 2010, 10. Accessed January 20, 2018.

https://dl.acm.org/citation.cfm?id=1863103.1863113#.

53

11. Appendix
11.1. Sample Data

11.1.1. Manifest Files

54

11.1.2. Sample Data file (.txt)

55

11.1.3. Sample Excel File

56

11.2. RecurShelfDownload

def RecurShelfDownload(browser, shelves_processed, download_limit):

 """

 This function exists because Selenium's DOM becomes stale as soon as

the page changes.

 In order to keep track of the running list of which shelves we've

visited, this function iterates recursively rather

 than through a normal loop. This allows us to refresh the DOM each

time the function is caused.

 It will also automatically dismiss any popups that it encounters.

 """

 shelves = browser.find_by_text("Shelf Documents")

 if len(shelves) == len(shelves_processed):

 return

 if download_limit is not None:

 #user has placed an arbitrary limit on the number of files that

can be downloaded

 if len(shelves_processed) >= download_limit:

 print("Stopping download as the script has reached the

download limit of " + str(download_limit))

 return

 for shelf in shelves:

 if shelf['href'] in shelves_processed:

 continue

 shelves_processed.append(shelf['href'])

 shelf.click()

 try:

 checkboxes = browser.find_by_id('documentChkBx')

 checkboxes.first.check()

 except:

#We use this catch-all exception here because some shelves are terminated

#This can cause errors in Splinter that manifest in a variety of

#unpredictable ways, so we catch all exceptions to reduce the likelihood

of #failed ingestion.

 print("Skipping suspected terminated shelf")

 try:

 # There is no common sense ordering of shelf files, so we will

download them all and filter them later.

 # Most of the files are negligible in size.

 browser.find_by_name('zip').first.click()

 browser.back()

 except UnexpectedAlertPresentException:

 alert = browser.get_alert()

 alert.dismiss()

 browser.back()

 except ElementDoesNotExist:

 print("ERROR: no zip button found!")

 browser.back()

 print("Shelves processed: " + str(shelves_processed))

 break

 #Selenium invalidates any objects that are in the DOM, so we really

 #only want the first entry that we have not already computed- hence break

after the first iteration.

 RecurShelfDownload(browser, shelves_processed, download_limit)

57

11.3. Unzipper

def execute_unzip(rootDirectory, outputDirectory):

 """

 Unzips all file in rootDirectory and places their output in

outputDirectory.

 """

 file_count = 0

 for root, dirs, files in os.walk(rootDirectory):

 for file in files:

 path = os.path.join(root, file)

 print("Now extracting: " + file)

 print('target path: ' + path)

 print("File count " + str(file_count))

 if zipfile.is_zipfile(path):

 zip_ref = zipfile.ZipFile(path, 'r')

 # ensure it does not exist already, if so, skip

 infolist = zip_ref.infolist()

 for info in infolist:

 if os.path.exists(os.path.join(root, info.filename)):

 print("File " + info.filename + " exists and

therefore will be skipped during processing.")

 zip_ref.close()

 continue

 zip_ref.extractall(outputDirectory)

 zip_ref.close()

 file_count += 1

 print("Extraction complete.")

58

11.4. Shelf file processor

def process_single_line(inputLine, dt, shelfname):

 """

 This function parses a line of the arbitrary Wells Fargo Collateral File.

 You can find more information about the format on CTSLink under

Additional Services --> File Layouts

 """

 line = "{:<1063}".format(inputLine) # pad to max length with whitespace

 out = {}

 # metadata from filename

 out['shelfname'] = shelfname # the shelfname from CMSLink

 out['shelf_date'] = dt.strftime("%Y%m%d") # the datettime this loanmonth

is for

 out['shelf_month'] = dt.strftime("%m")

 out['shelf_year'] = dt.strftime("%Y")

 # Raw positional formatting

 out['Loan_Number'] = line[0:12]

 out['Property_Type_Code'] = line[12:14]

 out['Owner_Occupied_Code'] = line[14]

 out['Purpose_Code'] = line[15:17]

 out['Leasehold_ID'] = line[17]

 out['Account_or_Note_Type_Code'] = line[18:20]

 out['No_Ratio_ID'] = line[20]

 out['Current_Interest_Rate'] = line[21:27]

 out['Investor_ID'] = line[27:31]

 out['Pool_Number'] = line[30:32]

 out['Original_Balance'] = line[32:43]

 out['Ending_Scheduled_Balance'] = line[43:54]

 out['Fixed_Retained_Yield_Rate'] = line[54:62]

 out['Foreign_National_Code'] = line[62]

 out['First_Payment_Date'] = line[63:71]

 out['Maturity_Date'] = line[71:79]

 out['Current_PI_Constant'] = line[79:87]

 out['Servicing_Fee'] = line[87:95]

 out['Original_Term_in_months'] = line[95:98]

 out['Foreclosure_Bankruptcy_REO_Indicator'] = line[98:100]

 out['Original_LTV_Ratio'] = line[100:105]

 out['Property_State'] = line[105:107]

 out['ECS_Score_Version'] = line[107]

 out['ECS_Score_Raw'] = line[108:114]

 out['ECS_Score_Code'] = line[114:116]

 out['Next_Due_Date'] = line[116:124]

 out['Adjustable_Rate_Mortgage_ARM_Indicator'] = line[124]

 out['Program_Code'] = line[125:127]

 out['Credit_Grade'] = line[127:129]

 out['Channel_Code'] = line[129:132]

 out['Relocation_Indicator'] = line[132]

 out['Balloon_Indicator'] = line[133]

 out['Lien_Status'] = line[134]

 out['Original_Appraisal_Value'] = line[135:146]

 out['Prepayment_Penalty_Indicator'] = line[146:149]

 out['Interest_Collection_Code'] = line[149]

 out['Original_Interest_Rate'] = line[150:156]

 out['Index_Code'] = line[156:158]

 out['Margin'] = line[158:163]

59

 out['Next_Interest_Rate_Change_Date'] = line[163:171]

 out['Next_Payment_Change_Date'] = line[171:179]

 out['Interest_Rate_Adjustment_Frequency'] = line[179:182]

 out['Payment_Adjustment_Frequency'] = line[182:185]

 out['Periodic_Rate_Cap'] = line[185:190]

 out['Periodic_Payment_Cap_Percentage'] = line[190:196]

 out['Life_Maximum_Interest_Rate_Ceiling'] = line[196:202]

 out['Lifetime_Rate_Floor'] = line[202:208]

 out['Issue_PI'] = line[208:216]

 out['Original_Index_Value'] = line[216:222]

 out['Negative_Amortization_Code'] = line[222]

 out['Interest_Rate_at_Next_Reset_Date'] = line[223:229]

 out['ARM_Convertibility_Code'] = line[229]

 out['Property_City'] = line[287:298]

 out['Property_Zip_Code'] = line[298:303]

 out['PMI_Insurer_Code'] = line[311:313]

 out['Origination_Date_or_Note_Date'] = line[313:321]

 out['FICO_Raw_Score_Number'] = line[321:325]

 out['Product_Type_Code'] = line[325:328]

 out['CLTV'] = line[328:334]

 out['Sale_Balance'] = line[334:345]

 out['Document_Type_Code'] = line[345:347]

 out['Issue_Year'] = line[347:351]

 out['Series'] = line[351:354]

 out['Loss_on_Liquidated_Property'] = line[354:365]

 out['Actual_Current_Balance'] = line[365:376]

 out['Prepayments_in_Full'] = line[376:387]

 out['Partial_Prepayments'] = line[387:398]

 out['Paid_in_Full_Effective_Date'] = line[398:406]

 out['Issuer_Identification'] = line[406:414]

 out['Servicer_Number'] = line[414:420]

 out['Master_Servicing_Fee'] = line[420:428]

 out['Trustee_Fee'] = line[428:436]

 out['Pool_Insurance_Fee'] = line[436:444]

 out['Special_Hazard_Fee'] = line[444:452]

 out['Spread_1_Fee'] = line[452:460]

 out['Spread_2_Fee'] = line[460:468]

 out['Property_County'] = line[468:486]

 out['Mortgagor_Employer_Name'] = line[486:511]

 out['Subsidy_Code'] = line[511:517]

 out['LEX_Lender_Identification'] = line[517:522]

 out['Client_Code_Identification'] = line[522:527]

 out['Senior_Lien'] = line[539:550]

 out['Certificate_Administration_Fee'] = line[550:558]

 out['Paid_Off_Remittance_Cycle'] = line[558:564]

 out['Repurchase_Date'] = line[564:572]

 out['Substituted_Loan_Number'] = line[572:584]

 out['Remittance_Cycle'] = line[584:590]

 out['Pledged_Asset_Mortgage_Indicator'] = line[590]

 out['Group_ID'] = line[591:593]

 out['Current_FICO_Score_Nbr'] = line[593:597]

 out['Prepayment_Penalty_Amount'] = line[597:609]

 out['Prepayment_Penalty_Waived_Amount'] = line[609:621]

 out['Modification_Date'] = line[621:629]

 out['Substitution_Date'] = line[629:637]

 out['Issuance_Balance'] = line[637:649]

 out['Losses_on_Previously_Liquidated_Loans'] = line[649:661]

60

 out['Servicer_Name'] = line[661:761]

 out['Arm_Rate_Life_Cap'] = line[761:768]

 out['Arm_Negative_Amortization_Cap'] = line[768:776]

 out['Arm_Round_Factor'] = line[776:783]

 out['Arm_Teaser_Period'] = line[783:786]

 out['Pay_Teaser_Period'] = line[786:789]

 out['Number_of_Arm_Look_Back_Days'] = line[789:792]

 out['Interest_Only_Original_Term'] = line[792:795]

 out['Originator_Name'] = line[795:895]

 out['Interest_Forgiveness_Amount'] = line[895:906]

 out['Expense_Forgiveness_Amount'] = line[906:917]

 out['Principal_Forgiveness_Amount'] = line[917:928]

 out['Total_Capitalized_Amount'] = line[928:939]

 out['Balloon_Date'] = line[939:947]

 out['Balloon_Payment_Amount'] = line[947:958]

 out['Modified_Next_Payment_Adjust_Date'] = line[958:966]

 out['Modified_Next_Interest_Rate_Adjust_Date'] = line[966:974]

 out['ARM_to_Fixed_Conversion'] = line[974]

 out['Fixed_to_ARM_Conversion'] = line[975]

 out['IO_to_Fully_Amortized_Conversion'] = line[976]

 out['Fully_Amortized_to_IO_Conversion'] = line[977]

 out['Segmentation'] = line[978:984]

 out['Temporary_Modification'] = line[984]

 out['Ending_Scheduled_Interest_Bearing_Balance'] = line[985:996]

 out['Ending_Actual_Interest_Bearing_Balance'] = line[996:1007]

 out['Ending_Scheduled_TDO_Balance'] = line[1007:1018]

 out['Ending_Actual_TDO_Balance'] = line[1018:1029]

 out['Non_Interest_Bearing_Deferred_Principal_Bal'] = line[1029:1040]

 out['Principal_Reduction_Alternative_Forbearance_Balance'] =

line[1040:1051]

 out['Non_Interest_Bearing_Treatment_Methodology'] = line[1051:1061]

