KMS ABGJ

Bulk Analysis of Mortgage Data with Cluster Computing

A Major Qualifying Project (MQP)
Submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

In fulfillment of the requirement for the
Degree of Bachelor of Science

Submitted by:
Evan King
Thyagarajan Ramachandran

January 11th, 2018

Submitted to:
Project Advisors:
Professor Kevin Sweeney, Worcester Polytechnic Institute
Professor Michael Ciaraldi, Worcester Polytechnic Institute
Professor Renata Konrad, Worcester Polytechnic Institute

Project Liaisons
Scott Burton, Angelo, Gordon, & Co. Managing Director

XY@ ANGELO
GORDON
SCORNeS)

This report represents the work of two WPI undergraduate students submitted to the faculty as evidence of
completion of a degree requirement. WPI routinely publishes these reports on its website without editorial or peer
review. For more information about the projects program at WPI, please see
http.//www.wpi.edu/Academics/Projects

http://www.wpi.edu/Academics/Projects

Abstract

Angelo, Gordon & Co. is developing a statistical model of loan delinquency status. This
project designed and implemented a software package to process a public data set from Wells
Fargo to build a rudimentary model. The data requires significant manipulation to convert it into
a useful form. A series of compartmentalized modules were created, each of which are combined
to form a “Tech Stack”, which runs each step in the sequence. This ends in an upload to a cloud
storage provider. Once the Tech Stack had processed the relevant data, several sample analyses
were run to demonstrate the data’s capabilities. The size of the data set made computations with

a single computer impractical, so a cluster was used to analyze the data.

Acknowledgements

ACKERE
RD
SCORRe)

We would like to thank Angelo, Gordon & Co. for their consistent support and commend

them on their excellent hospitality. Thanks to Scott Burton, who was always available despite his
demanding schedule. We would like to thank Xinkai Wu, his mentorship throughout was
invaluable. His presence in the project was that of a teammate. We would also like to thank Cindy
Aguilar for her patience with all administrative issues and facilitating us throughout. Special
thanks to Oren Efrati, constantly solving our issues and going out of his way to do so.

We would like to thank the Director of the Wall Street project center Kevin Sweeney and

NTE
QO CH)

%
OGS

our advisors Michael Ciaraldi and Renata Konrad for the continuous care and devotion
throughout the process from applying to the MQP till submission. We would also like to thank
WPI for providing us with this opportunity. Finally, a special thanks to Jacob Aki for taking time

out of his schedule to coordinate with everyone to ensure a great MQP experience overall.

Authorship

Section Author

1. Introduction Evan & Thyagarajan
1.1. Objectives

2. Background

2.1. Angelo, Gordon & Co. Thyagarajan
2.2. Mortgage-Backed Securities Thyagarajan
2.3. Wells Fargo CTSLink Evan
2.4. Cluster Computing and Spark Thyagarajan
2.4.1. Spark
2.5. Technologies Used Evan
2.5.1. Python

2.5.2. PARQformat

2.5.3. Azure Data Lake

2.5.4. Visual Studio Team Services
2.5.5. Azure DataBricks

2.5.6. HDInsight

2.5.7. Selenium & Geckodriver

3. Methodology
3.1. Project Planning & Analysis Thyagarajan
3.2. Design Evan

3.2.1. Object Oriented versus Imperative

4.

3.3.

3.2.2. Usability vs flexibility
3.2.3. Automation

Data Wrangling

Process and Analysis

4.1.

4.2.

Work Breakdown Structure
4.1.1. Download

4.1.2. Extraction

4.1.3. Filtration

4.1.4. Cleaning

4.1.5. Parsing

4.1.6. Upload

4.1.7. Wrangling

4.1.8. Analysis

Process Flow Diagram

Implementation

5.1.

5.2.

5.3.

5.4.

5.5.

5.6.

Automated Downloader

Unzipper

Move Valid Files

Sort By Shelf

Parquet From Positional
Multiprocessing PARQ compression

5.6.1. DateTime idiosyncrasies

Thyagarajan

Thyagarajan

Evan

5.7.

5.8.

5.9.

5.10.

Schema Scanner
Azure Datalake Upload
Ingestion
Miscellaneous tools
5.10.1. Installer

5.10.2. DocGenerator

Data Wrangling and Analysis

6.1. Data Wrangling
6.1.1. Duplicate Loan Numbers
6.1.2. Checking Integrity of Original Balance Values
6.1.3. Delinquency Status of Loans

6.2. Data Processing
6.2.1. Delinquency Status Transition Matrix
6.2.2. Pay Off Rate in Different States of USA
6.2.3. Foreclosure in Various States

Conclusions

Recommendations

Reflection on the Project

9.1.

9.2.

9.3.

Design Component
Constraints and Alternatives

Need for Life-Long Learning

Thyagarajan

Thyagarajan
Thyagarajan

Thyagarajan

Table of Contents

ABSTRACT ...uvveiiiiitteiiiiettiiisieetiisssesissstesssssstesessasesssssasesssssssesessasessessssessessssesssssstesessasessessssesssssasesssssnsessssaneessssanesss |
ACKNOWLEDGEMENTS ...ccocoutiiiiittiiiiieeiiisssteiiisstesiissesssssssesssssssesssssstesessssesssssssessssssesssssasesssssasesssssssessssasessssanenss]
AUTHORSHIP ...ttt strrssassssss s trssssassssssstssssssssssssstssennnnss 1}
LIST OF FIGURES........ueeiiiitiiiiiteeiiisnteiiiseteiissseesisssessssssesssssssessssssessessssesssssssesssssssessssssessessasesssssssesssssnsessssaneessnns X
LIST OF TABLEScuuvtiiiiiiteiiineeeiiieetiiisseesiisstessssstessssssessessssesssssssessssssesssssssessessssesssssssesessanesssssssesssssnsessssaneesssns Xi
1. INTRODUCGTIONiiiiiiiiuuniiiiiiiiiinessiisiiinssusssssssiimssmsssssssstissssssssssssstmsssanes 1
1.1. OBJECTIVES c .t teuttenteeuteeuteeutesteasteenteenteeatesaeesaeesaeesseessesnseeaeeassesstenseanseensesnsesasesaeesaeesseenseenseensesseenseenseans 1

2. BACKGROUNDcciiiietiiiiiteiiiiitesiisstessssssesssssssesssssssessssssessessasessessssessssssessessssesssssssessssssesssssasesssssssesssssnesssnns 3
2.1. ANGELO, GORDON & CO. .uuuuuuuuuuununununnnnnnnnnnnntnnnnnnnnnnannnnsnnnnnnnsnnnnnnnsnsnnnsnsnsnsssssssssnsssssssnnssnnnsnnsnnnnnnnnnnnn 3

2.2. MORTGAGE-BACKED SECURITIES ...euveutetterueeueenteeueeeueesseesseenseensesnsesueesaeesseensesnsesnsesssesseensesnsesnsesnsesnees 3

2.3. WWELLS FARGO CTSLINK 1.veutetterttenteerteeteeteeutesttesteeteenbeentesatesutesaeesaeesseenseensesnsesssasseanseenseensesnsesnsesanas 4

2.4, CLUSTER COMPUTING AND SPARK ..euterutesuterieesteenteeseentteueesseesseesseesesasesasesssesseesseesseensesnsesneessessseesseens 5

D B N o To | ¢ SO SR PPR 5

2.5. TECHNOLOGIES USED ...ttt sttt ettt ettt ettt ettt sn e n e s esaeesbe e ne e nesanesanes 6

D B o 1 Lo BO PP 6

2.5.2. PARQ fOIMQL.....oooceeeeeeeeeeeeeeee ettt ettt e ettt e ettt e e ettt e e e st a e e e aa e e e tssaaesstsaaaansssaeesasssaaassenenanes 6

2.5.3. AZUIE DA LOKE........cc.eeeneiiiiiieeieeeteee sttt 6

2.5.4. Visual StUAIO TEAM SEIVICEScccueeveeiirciiriiiiieieseete ettt 6

2,55, AZUIE DOLABIICKS. c....cooueeeiiiitieieeeet ettt 6

2.5.6. HDINSIGRAToooeaeeeeeeeeee ettt ettt e e e e et e e e e et et e e e e e aa i ————aaaaeairaaraaaans 7

2.5.7. 5elenium & GECKOIIVEN..............cooeeeueeerieiieiieeeeeee e 7

3. IMETHODOLOGYcicosittiiissuriiissneesisssnesiesssnesssssnnesesssnesssssssesssssseesessssessssssssssssssessessssessssssnsssssanessessssesssssnsessns 8
3.1. PROJECT PLANNING & ANALYSIS «..enueteiteeeiteesiteeeittesiteesiteesiteesaseesareesaseesabeesmseesabeeeaneesaneesneesareesneesanes 8

3.2. [[PP P PP PPRRRTRT 9

Vi

3.2.1. Object Oriented VErsus IMPEIALIVEccuueeeeueeeeiieeesiiiaeeeiteaessteaeessaeeeesissaessisssasssssesansans 9
3.2.2. YAGNI ottt ettt ettt ettt ettt ettt teeate et 10
3.2.3. USQDIlity VS FICXIDIlILYoeeeeeieeeeiiiseecieeeeeee ettt e e e sttt e st e e s staa e e saaaaessaseeeeas 10
0 V1 o) 0o 1o ¢ PN 10
3.3. DATA WRANGLING ...ceetteeteereeateeareseresteesieesbeesseeseeseesaeesbe e b eesse e seessesanesmnesaeesreesseenseenseensesneenneenneens 11
4. PROGCESS AND ANALYSISuiiiiiiiiieiiiiiiinniiseiiisiinessassissssiimssmssssssssiimsss 13
4.1. WORK BREAKDOWN STRUCTURE....c.uuvttteiurteeiinteeseinreresenreeesnstesesiresesesseeesenssessssnesesennnesesannnesssssneesss 13
41,00 DOWNIOUM ...t sttt et ettt ettt et nane s 14
N =5 ¢ (o Lot [PPN 16
O T o 14 o [¢ ISR 17
Q.14 ClEANING .ottt ettt ettt et ettt e at e ettt e et e ettt e st e ettt e st e eneeennee et 17
Q15 POISING oottt ettt ettt e e e ee e e et et e e e e s e e e e e e e e e s e s e s e s e s e s e s e s e s e s e reaarararaaaaaraaarararaearararararaaens 17
B N U) o Yo To O S PP PPTOPPRPPTOPPRPIOt 18
4.1.7. WIEANGING ettt ettt et et ettt e sat e ettt e sat e et e nate e eenaeeena 18
O T Vo To]| SRR 18
4.2. PROCESS FLOW DIAGRAMceutteuteeuterutenitesieesteesueenstentteutesseesbeenbeenbeeabesasesasesaeesaeenseenseenseensesneesseenseens 19
5. IMPLEMENTATION.....cctiiiittiiiiitteiiinnetiissneeiisssteiesssneeiesssnessesssnesssssssesesssnessesssnessssssnesesssnessssssnesssssnessessaneene 19
5.1. AUTOMATED DOWNLOADERcovvteuiieitiiirenreeteereereeresnesiee st esateneesnesaeesreesse e neenessnesanesanesreesneenneenns 19
5.2. L] PP PPP 22
5.3. IMIOVE VALID FILES ... uttuteeteeteeteete et sete st st e ste et et sae e sbeesbeebe e bt esbesasesabesaeesbeenbeenbeenbeenbesanenneenbeens 23
5.4. SORT BY SHELF .ttt ettt ettt ettt ettt st sh e et e a et e s s e n e r e e e s enesanesmeesreenneenneenes 24
5.5. PARQUET FROM POSITIONAL......uuuuiiiiiiiiiiitiiiiies ettt siaa e aaa e e s s s aab s s s e s s saabaaa s e e e e e 25
5.6. MULTIPROCESSING PARQ COMPRESSIONviiiiurriiiiriiesiiirireisireeesneeesssinesesenneessnaeesssnnasessnaesssanneesss 28
5.6.1. DAteTime idiOSYNCIUSIES ...cc...vvveeeeieseeeieeeeeeee e ettt e et e e s teaeestta e e s taaesstteaessasaaaessseasssnsenanas 29
5.7. SCHEMA SCANNER. ..c..ceuterieerteentt et et et e et e st et e e s s e seeesmeesreesa e e et et e e s e e sme e r e e r e e neenesanesanesreenneenneenns 29
5.8. AZURE DATALAKE UPLOAD....cciiuttieiiititeiiites ittt sttt seir e srat e s s b s s esa s e smas e s s saba s e s snae e e seanaeessnaeeeas 29

5.9. INGESTION ..ttteeeeeeettet et e e e e ettt e e e e s et e et e e e e e saam e n e e e e e e e s s s en e e e e e e s anssrereeeeeseaannreneeeeesesnnreneneeeeenan 30

5.10. IVIISCELLANEOUS TOOLS ... eteieieieieieieieteieseseseseseseseseseeeaeseseaeaaaasesesaessesasesasesesesesasesesesesesesesesesesssesasasens 31

I L B 1 1 o]| I=1 U 31

5.10.2. DOCGENEIALON .cceee e e ee s e se s e sesesesesesesesesesasesasssssesssasesasasasesssesasssesesens 31

6. DATA WRANGLING AND ANALYSIScuuuurreiiiiiiisissnnesisisssssssssesssssssssssssesssassasssssas 32
6.1. DATA WWRANGLING ..o ieeeeeeeie ettt e e e e e e e e e e e e e e e e s e e e e e e e e e e e e e e e setetateeeaeaeeeaataeaeaeaaasasaaaaaaaaasanns 32

6.1.1. DUPIICALE LOAN NUMDBELS ..ottt aee e 32

6.1.2. Checking Integrity of Original Balance VAIUES...............cc.oueeeceueeeeciieeeeciieeeiiieeesiieaeesveeeeeans 34

6.1.3. DelinQUenCy StALUS Of LOGNScceccueeeeeeiiieeeiieeeesieeeettaeetteaeesstaaesstssaessssassssssaessssssanines 35

6.2. DATA PROCESSING 1veuvveeuveeureessseassseesssesasssesssesasssesssssssseesssssssssessssssssesssssesssessssessssessssessssessnsessssensns 37

6.2.1. Delinquency Status Transition MOLIiX...........ceeeceereueeeiueeriieeeieeesieeeseeesiee et ssieeesite e siee e 38

6.2.2. Pay Off Rate in Different StAtes Of USAoo e e eceeeeeeeieeeeeiee e eteeeessveeeetaaaesasaaesseeaeenns 40

6.2.3. FOreclosure in VArioUS SEATES............uueeeeeeeeeeeieeeeeeeeeeeciteeeeeeeeettteaaa e e e e esissaraaaeeeesissssaaaeeenas 42

728 00 11110 R 0] [0 45
8. RECOMIMENDATIONSoiiiiirnereriiiisissssnneesssnssssssssssssssssssssssssssssssssssssssnsssssssssssssnssssssssssssssnsssssssssssssnnsassssssss 47
9. REFLECTION ON THE PROJECT ..ccciiiiiiiisinneeeississssssnnsesssssssssssnssesssssssssssnssssssssssssssnsssssssssssssnnsssssssssssssnnnsassssass 48
9.1. DESIGN COMPONENT ..vvteteuttteeeaustesesuteeeassseeessssesesssseeeasssesesssseesesssseesssssesesssssesssssseessssssessssssesssnseees 48

9.2. CONSTRAINTS AND ALTERNATIVES «...vveteeuuveeeesuteeeeasuresessseesessssessssssesesssssesssssseessssssessssssssssssssessssssnesnnns 49

9.3. NEED FOR LIFE-LONG LEARNINGctttteiiiaiiettteteeeaesiiettteeesesaatettteeesesesunsreeeeeesseannbeneeeeesesannreneeeeesenan 50

10. REFERENCEScceuuiiiiieiiiitneiiiiinniiiieneiiiiessisiiesssiiesssstmssssstmssssetmssssssssssssssssssstsasssssssssssssssssssssssssssanssssanssssssnns 51
11, APPENDIX ..ciiiiicueetiiiiiiiiiineeettiiisissssstesssessssssssssssssssssssssssssnsnssssssssssnns 53
11.1. SAMPLE DATA ettt ettt ettt et e e e ettt e e e e e s e abe bt e e e e e e s e bbb et e eeeeae e nnbbeeeeeeaeaanbeeeeeeeeeannrae 53

O O DY, [0 T T = o 1 =X S USSP 53

Y Yo [0 To (=2 D o [o I 1 =0 8 SRS 54

I T Y [T (= o3 ol =] N o - SRS 55

11.2.

11.3.

11.4.

RECURSHELFDOWNLOAD

UNZIPPER ...ccvvvveiiiennnens

SHELF FILE PROCESSOR ...

List of Figures

Figure 1 Work Breakdown Structure of the Projectcccccvveeieiieeeecciee e 13
Figure 2 Screenshot of Issuer Page on CTSLINKcooccviieiiciiee e 15
Figure 3 Ahk Script to Click and Download All Files.........ceeeviiiieccciiiieeeee e 16
Figure 4 Ahk Script to Check for Data FileS.......cccueiiiiiiiiiiiiieee e 16
Figure 5 File Structure from Downloading Each Shelf Fileccocevvviiiiiiniiiiiiiiiieeen, 16
FIgUre 6 SWim Lane Diagram..... ... e e it eebsbasssssssssssnsnnnnes 20
Figure 7 Screenshot of CTSLink with Various Shelvescccccvvciieeiiiiiiee e 22
Figure 8: CTSLink shelf file [ayoutcooviiiii e 25
Figure 9 Screenshot of HTML with docstrings Embedded...........cccccevvviiieeiniiiieeinciieeens 31
Figure 10 Count Operation for Total Loans on SParkcccceeveciieeiiiiieee e 32
Figure 11 Filter Operation and OULPULueiieiiiiieicieeee e e 33
Figure 12 Operations to Check Loan Numbers on Spark........cccccviiieeeeeieicccciiieeeee e, 33
Figure 13 Operations to Create Unique Loan Numbers on Spark........ccccoeeccviivvienenninnnns 34
Figure 14 Operations to Change Formatting on Spark.......ccccoeeeiiieiiiieiccceeee e, 35
Figure 15 Operations to Create Columns for Dates on Spark........cccceeeeiieicciiiinieeeencenn, 36
Figure 16 Output of Operations for First 10 ROWS.......c.cc.ueeeeeeiiieciiiiiiieee e eecccirieeee e e e 36
Figure 17 Operations to Find Difference in Months on Spark........ccccceeeiiiiiciiiinieneeniee, 36
Figure 18 Operations to Bin Loans by Delinquency Status on Spark.......cccccvvveeeeeeerinnnns 37
Figure 19 Operations to Create Column of 'next_parsed_deling' on Spark.........c........... 38
Figure 20 Output of Operations to Build Transition Matrix on Sparkcccevvvveeeeeiinnns 39
Figure 21 Delinquency Status Transition Matrix for month of March 1, 2000................ 40

file:///C:/Users/mrram/Desktop/Evan_Harry%20MQP%20Final%20Draft%20RK%20Edit.docx%23_Toc504407784
file:///C:/Users/mrram/Desktop/Evan_Harry%20MQP%20Final%20Draft%20RK%20Edit.docx%23_Toc504407785
file:///C:/Users/mrram/Desktop/Evan_Harry%20MQP%20Final%20Draft%20RK%20Edit.docx%23_Toc504407786
file:///C:/Users/mrram/Desktop/Evan_Harry%20MQP%20Final%20Draft%20RK%20Edit.docx%23_Toc504407787
file:///C:/Users/mrram/Desktop/Evan_Harry%20MQP%20Final%20Draft%20RK%20Edit.docx%23_Toc504407792

Figure 22 Operations to Group US States by Delinquency Status.........ccccoeevuvveveeeeerinnnnns 40
Figure 23 Transition Probabilities for Each State........cccceeeciiieeicciiie e, 41

Figure 24 Transition Probabilities for Each State........cccceeeeeiiieiicciiie e, 43

List of Tables

Table 1 Highest Pay Off Rate in States Ranked Descending Order.........ccoeccevvvveeeeeeeeennns 42

Table 2 Highest Probability of Foreclosures Ranked in Ascending Ordercccceeeeennnee. 44

xi

file:///C:/Users/mrram/Desktop/Evan_Harry%20MQP%20Final%20Draft%20RK%20Edit.docx%23_Toc504407805

1. Introduction

Angelo, Gordon & Co. is an investment management company. Like many firms, Angelo
Gordon is looking for quantitative data insights to inform their investment decisions. Specifically,
Angelo Gordon seeks to build a statistical model of the probability for loans to default or be paid
in full. Although a third party vendor provides necessary reports to make decisions, the existing
data sets are paid and narrow. There is no freedom to perform personal analysis on the mortgage
data as the data is not owned by the firm.

Because of federal banking regulations, there is a great deal of public data available on
the Internet. The data is distributed across many files, in a proprietary format, and likely contains
errors. The firm requires a software package to download, process and upload the relevant data.
The data once uploaded also needs to be checked for quality and consistency. Additionally,
sample analysis on the data will give the Risk Management Team of Angelo Gordon a head start

towards building the necessary statistical model.

1.1. Objectives

There were three essential tasks that needed to be completed. First, we had to acquire
the data. This needed to be done in an automated way, as there was too much data to download
it all manually. Once this was complete, we needed to process the data to prepare it for analysis.
When the data was uploaded, the data had to be cleansed for proper formatting and field values.
Once the data was ready, we needed to prove that our processing was successful by
demonstrating sample analyses. This also allowed the firm to have a basic foundation to build

the necessary statistical model upon.

In addition to the practical objectives of the project, we also had to keep in mind the long-
term stability of whatever tool we chose to build. The data we harvested was not static— every
month, new data points are added. This means that the tool needs to be rerun every month. As
a direct byproduct of this, ease of use was made a priority. If the tool was too hard to install or
use, the newest dataset would not be incorporated with the larger data set. Other than delivering

the tool itself, proper documentation such as readme files were also provided.

2. Background
2.1. Angelo, Gordon & Co.

Angelo, Gordon & Co. (AG) is a privately held, registered alternative investment advisor
founded in 1988. Headquartered in New York City, NY, it has approximately $28 billion in assets
(Angelo, Gordon & Co.) under management around the globe. Although relatively small
compared to banks, AG has over 360 employees which is large relative to most hedge funds. The
firm is also less regulated compared to investment banks as it manages assets for high net worth
individuals and acts as an advisor (Staff, 2017).

The company is dedicated to alternative investing, capitalizing on various market
situations in the world. Angelo Gordon is invested in distressed debt, real estate, private equity,
and some multi-strategy investments. Angelo Gordon remains a leader in alternative investments
by exploiting market inefficiencies and seeking to capitalize on new investments that are not
mainstream. For such a firm, information about current market trends is invaluable if it is to
exploit these situations. The project serves the same purpose as the ultimate goal is to use the

data set to obtain information about the real estate market.

2.2. Mortgage-Backed Securities

Mortgage-backed securities (MBS) are bonds that are secured upon home and other real
estate loans. A group of loans with similar attributes such as credit score are pooled together. A
fixed amount worth of such mortgages is sold to a government agency such as Ginnie Mae or a
government sponsored-enterprise (GSE) such as Fannie Mae. The majority is sold as such and the
MBS carries the guarantee of the issuer. Unlike traditional bonds, since most home owners pay
mortgages monthly, MBS bondholders receive monthly interest payments (FINRA, 2018).

3

MBS played a central role in the 2008 financial crisis which wiped out trillions of dollars
and brought down Lehman Brothers. Mortgage backed securities allow a bank to move its
mortgages off the books by turning them into securities and selling them to investors such as
Angelo Gordon. Many loans are bundled together, which distributes the default risk across many
loans. This is compared to selling loans individually, which is referred to as whole loan. This
flexibility for banks gave room for more lending capital and encouraged banks to reach further
down in credit worth to supply more investors. GSE and other agencies supported this aggressive
sale of MBS and when poor performing loans began to default, the quality of the MBS started to
decline. Loans defaulted at an unacceptable rate, which meant that the otherwise safe
investment in MBS was now unstable. These non-payments led to the MBS market being over
valued and eventually drying up. MBS are still bought and sold today but the Federal Reserve still

holds onto the MBS purchased for $1.75 trillion in 2008. (Beattie, 2018)

2.3. Wells Fargo CTSLink

Wells Fargo CTSLink is a website provided by Wells Fargo. It contains publicly available
mortgage data on deals from 2000 to present. Data is divided across a multitude of shelves,
largely by what department, subsidiary or organization issued the loans.

There are other mortgage data sources available, most notably from Fannie Mae (Fannie
Mae n.d.) and Intex (Intex n.d.). Intex provides models based on data they have collected, rather
than the raw data itself. However, those models are very expensive. Fannie Mae’s data is a
limited subset of all their loans, while Wells Fargo is a complete set of roughly 8,000,000 loans.
For those reasons, the Wells Fargo data set was selected for analysis. Additionally, maintaining a

single data source means that inconsistencies between data sets are kept to a minimum.

2.4. Cluster Computing and Spark

A cluster refers to a group of computers and other resources that are connected through
hardware, networks and software to behave as a single system. The incentive to use clusters is
to improve performance and availability over that of using a single computer but still maintaining
the cost-effectiveness of having a single computer with the same performance or availability. The
aim of cluster computing has been to make the power of many computers from the “outside
world” or internal user departments available as if they were one and always working fast.

The desire for this came from using a series of low-cost off-the-shelf computers to do high
performance tasks. This was preferred by smaller firms as compared to purchasing high
performing computers from the market. Adding a layer of software over these nodes (computers)
has allowed firms to do computationally intensive tasks without the necessary costly machinery.
Cluster computing is used because clusters provide high availability, load balancing, parallel

processing, systems management and scalability (IBM 2002).

2.4.1. Spark

Apache Spark is an open-source cluster-computing framework. While there are a variety
of different APls, we are using PySpark, which is a Python frontend for the Spark framework
(zaharia, 2010). The core of Spark is centered on resilient distributed datasets (RDD). By passing
a function to Spark, one can invoke parallel operations such as filter or join. RDD operations are
lazy evaluated and immutable. Jupyter Notebook is an application that allows these operations

and allows one to edit, run and share the Python code.

2.5. Technologies Used

2.5.1. Python

Python is a popular programming language that can be used to solve a variety of
problems. It is a loosely typed language executed from compiled bytecode. This means that the
language is exceptionally flexible. While this can pose problems for developing very large

applications, it makes development of smaller applications much faster.

2.5.2. PARQ format

PARQ is a compression format useful for storing dataframes. A dataframe is a data set
organized into named columns. It is conceptually equivalent to a table in a relational database or
a data frame in R/Python. Our Spark software uses PARQ files as data sources. We use the Python
package fastparquet to serialize data into the PARQ format. Spark is capable of reading PARQ

files natively which reduces additional and unnecessary pre-processing.

2.5.3. Azure Data Lake

Azure Data Lake is a cloud storage platform offered by Microsoft. It can be accessed via a
variety of different APls, which allows us to integrate uploads and downloads directly into our

Python tech stack.

2.5.4. Visual Studio Team Services

Version control is handled as a Visual Studio Team Services (VSTS) backed Git repository.

Strong version control software is essential to the success of a project.

2.5.5. Azure DataBricks

Azure DataBricks is a Microsoft cloud product that provides access to a Spark/PySpark

cluster owned by Angelo Gordon. DataBricks is used to create isolated cluster instances hosted

6

in the cloud. It is managed and run slightly different from HDInsight, but there are otherwise
limited differences between the two. While both are offered on the Azure platform, DataBricks

is different from Azure Data Lake.

2.5.6. HDInsight

HDInsight is another cluster computing client similar to Azure DataBricks. Both clients are
used interchangeably. There are some inconsistencies in Spark versioning between HDInsight and
DataBricks. Most notably, HDInsight supports large integer types which means it can store native

Python DateTime objects.

2.5.7. Selenium & Geckodriver

In order to access CTSLink, we used a popular Python package called Selenium. Selenium
is mostly used for Ul test automation. In this case, we use it to emulate a user on CTSLink's
website.

Selenium provides an APl to emulate browser interaction, but modern browsers are
extremely complicated. Rather than create their own browser, Selenium requires a driver which
links it with an installed version of a particular browser. We use Mozilla's Firefox driver,
Geckodriver, for this purpose.

It is important to note that although Selenium is part of the tool provided, all initial

download was done manually to ensure accuracy.

3. Methodology
3.1. Project Planning & Analysis

When this project was first initiated, the initial thought was that this project will follow
three separate and distinct phases. Hence, a work breakdown structure (WBS) was created to
display all the then known defined activities necessary to accomplish this project. A WBS is a tool
used to plan projects as it not only defines a structure for necessary tasks but it also provides
great clarity while creating a project schedule.

A WBS allows the team to have a clear division of labor and create time estimates on how
long each phase or task may take. This is also why it is important to create a final process map to
include any changes that have occurred in the WBS and include greater detail for each step within
the map. This can be done through key symbols for each task/decision and with clearer titles.
Including streams where each set of tasks are classified within also gives clarity to the process
map. Once the business process tool to download all the data and upload them on Azure Data
Lake was achieved, a second process map was created to understand the new and developed
process at a whole level.

The exercise of creating a process map allows one to understand the limitations and
achievements of the project. The process map allows one to highlight what tasks need more
attention than others and allows handing the process over to a different stake holder to be much
clearer. This is important as the process needs to be reproducible and owned by the sponsor
even if the team is not present at the site. This is because new data sets are posted every month,
so the software package must be run every month. If there is not ownership and understanding

of the process, the data will become outdated.

3.2. Design

Simplicity and ease of use are at the core of the business process tool. We opted not to
add any features that were not requested by management. Each responsibility in the tech stack

is split into a module and there are no circular dependencies.

3.2.1. Object Oriented versus Imperative

Python does support the creation of classes, but we decided not to use classes in the tech
stack. There are several reasons for this. Classes and objects serve as a way of associating
functionality and data, but the data is loaded externally and none of the modules require any
state. Also, the division of modules helps isolate methods from each other. Creating a class
around a single function simply adds extraneous scaffolding

Classes and objects are useful when the path of execution is dynamic and abstract. This is
not the case. We have a very well defined process, with steps which are explicitly separate from
each other. The order does not change from execution to execution, and each step does not need
to relate to any other step. Furthermore, there are no fields or properties needed in any of the
modules. Once they finish executing their step, they resume the next module.

Repeated code was refactored into functions, but ultimately there was very little
repeated code. The only compelling example for deduplication was in the ask_token method for
datalake_upload because it is used in the main function for datalake_upload and ingestion.

There are no dependencies between any of the modules; ingestion serves as a “master”
script that runs each module in sequence, but each module does not depend on each other

module.

3.2.2. YAGNI

The common programming axiom “You Ain’t Gonna Need It” held true here. We planned
for the future to the extent that there is little to no coupling between modules. Adding new
modules or modifying existing ones will not result in changes throughout the codebase. We did
not speculate about what may be needed in the future, and only planned for three certainties:

1. The requirements for the software will change over time as the technology it is built on
does.
2. Processing phases may be added. Therefore, there can be no dependency between phases.

3. Phases may have to be modified. There are no dependencies between phases.

3.2.3. Usability vs flexibility

Usability was the single most important goal for the creation of this business tool. The
tool is only useful if it is run every month. If installation and execution were confusing due to the
number of features, it would be less likely that an average user would be able to build and run it.

We chose to embed the geckodriver binary within the Git repository directly to speed up
installation. Typically, build artifacts and required packages are installed by the user; however,
installing geckodriver is nontrivial.

Dependencies on projects can be installed with an installer script. This means that if
external packages are added, the installer package must be updated. Angelo Gordon’s primary

interest was making sure that the application can be rapidly deployed on a new machine.

3.2.4. Automation

Automation was also important, as it is peripherally related to usability. The user does not

need to interact with the script once it is running. The Selenium script eliminates a labor-intensive

10

step of the process. The only time the script will stop during execution is in the event of an

irreparable failure. In all other cases, the exception is logged and execution continues.

3.3. Data Wrangling

Data wrangling or data munging is the process of transforming data into a more desirable
and valuable format to be able to leverage it downstream. This is essential for any downstream
process such as data visualization, data analytics, training a statistical model or even further
wrangling. This generally follows steps such as extracting the data from whichever data source in
guestion, sorting or filtering the data set for the necessary data, parsing it into the necessary data
structures, depositing the resulting data into a data sink for storage, and finally wrangling the
data for field values.

The data transformations are performed on specific entities (e.g. fields, rows, columns,
data values, etc.) within a data set. These transformations can be extractions, parsing, joining,
standardizing, cleansing, and even creating new necessary data. These actions increase the
quality of the data set by ensuring their reliability, integrity, and reducing the need to do
preprocessing before being used for any downstream purpose.

The data set from Wells Fargo is open source and can only be downloaded through the
CTSLink website. Each issuer of a report deposits their data in Wells Fargo’s website in their
respective shelves. Since there are a variety of shelves, this already creates problems for
standardization of the data and the need to filter for the exact data amongst other files that may
have been uploaded by the issuer. Another problem that requires filtering is file names across
different issuers have a different naming convention. Our tool had to accommodate such

irregularities and correct them before uploading them to the data lake.

11

12

4. Process and Analysis
4.1. Work Breakdown Structure

As mentioned previously, a WBS was made to have a greater clarity over this project.

Figure 1 illustrates how the WBS for this project as perceived at the beginning of this project.

A 4 Y

[Data Collection] [Data Upload] [Data Analysis]

A 4 h 4 A 4 A A A 4 h 4

[A. Download} [B. Extract\onJ [€. Filtration] [D. Parsing } [E. Cleaning] [F. Upload] [G. Wranglmg] [H. Analysis]

Figure 1 Work Breakdown Structure of the Project

The tasks are grouped in three bigger categories that were defined by the sponsor at the
beginning of this project. The “Data Collection” stage has three separate tasks that involve
acquiring the data set. “Data Upload” involves the tasks necessary to upload the collected data
set into Azure Data Lake, a service the sponsor is moving towards to store all data. Finally, “Data
Analysis” involves the tasks of transforming the data into a workable data set that has the highest
level of integrity to perform analysis and derive reliable findings. This is very important because
if the sponsor is to use this data to make investment decisions or assess risk, the data quality
must be at its highest.

At the third level, the specific tasks are outlined in order to complete this project. The
lettering before the task names indicates the sequence of tasks which is crucial for project

scheduling. These tasks must be completed in a linear fashion. This is definitely a drawback as no

13

two tasks can be finished simultaneously to save time. Below is a detailed explanation of each

task in chronological order:

4.1.1. Download

This task is the first and foremost in the process of gaining insight from the data. Wells
Fargo has uploaded data on their website called “Corporate Trust Services” (CTSLink) on a whole
loan level. After the 2008 crisis, Wells Fargo released large amounts of redacted mortgage data.
All the personal data regarding the loan e.g. addresses, names, contact information, etc. has
already been removed from the data set. The website does not have any API and therefore the
download must be done manually.

In the business process tool provided, we created a browser automation which eliminated
the need to manually download the files. Without automation this step would have been labor
intensive because there are 186 shelves to download. The tool provided is to collect the data set
for each month as new data for the previous month is uploaded every month.

However, at the beginning of this project, all the data had to be acquired manually as
automation of this task was completed later in the project. This was also to ensure that the data
set for all the previous years is accurate and no shelf is left missing.

There were three stages to download data for each shelf. These steps were done with
AutoHotkey (AHK) scripting which is a software package with its own language to assign actions
on the screen that are triggered with a certain key stroke. Figure 2 below shows a screenshot of

a particular issuer once opened.

14

MyCTSLink My Account Change Password — Contact Us Help Sign Off Shelf v Search Q

WELLS
FARGO .
CTSLink® Thyagarajan Ramachandran About Wells Fargo

Securities Reports Special Services Additional Services

Home > MBS > GEH > Shelf Documents

GE Home Equity

To download/view a single report right click on the format icon and select the "Save Target As" option from the menu or click the format icon to view the report in your browser . To download
multiple reports select one or more check boxes and click on one of the download options. The Zip download option allows you to download a zip file containing all selected reports. The Bulk
download option uses an applet to download the reports to your computer.

Add to MyReports - To add cyclical reports to your "MyCTSLink" portfolio select one or more check boxes and click Add to MyReports.

Shelf Data
Document Name L] Format(s) Current Cycle Next Cycle Next Available History

‘ Importable Data |
Factor File ‘ﬂ 11/27/2017 12/26/2017 12/26/2017 10:00AM EST Additional History |
Trustee File ' 11/27/2017 12/26/2017 12/26/2017 10:00AM EST Additional History |
Loan Level Collateral I:EJ 11/27/2017 12/26/2017 12/26/2017 10:00AM EST Additional History |

‘ Liquidated Losses - Contains 2007 and Prior Deals] 11/27/2017 12/26/2017 12/26/2017 10:00AM EST Additional History |

Zip Download Add to MyReports

Figure 2 Screenshot of Issuer Page on CTSLink

The liquidated losses and the loan level collateral are the files that is the data set which is
to be downloaded. The first step was to check if a certain issuer/shelf had a data file uploaded.
Figure 3 shows the script used that was triggered with “Ctrl+b” and used the find function built-
in Chrome. If a data file is detected, then the next step is to download or else the user has to
move to the next issuer. Figure 4 shows the code to download the data set which can be done by
clicking the “Additional History” tab. The following code is entered in the Chrome console within
the hotkey to select all the check boxes (Giesbrecht, 2015):

var getlnputs = document.getElementsByTagName("input");
for (var i = 0, max = getlnputs.length; i < max; i++){ if (getInputs[i].type === 'checkbox')
getinputsli].checked = true; }

15

The hotkey script downloads all the files and returns to the website. The third step is to
go to the main page and start the search for the next available data set. This continues until all

the data set has been downloaded to a location in the device.

1 “e::
2 Send, {Click}
3 Sleep, 1500
1 |Ab:: 4 Send, {Click, 1153, 600}
- . S Send, “v
2 Send {Click} ¢ Send, {Enter}
3 Sleep 800 i 51ecp, 500
Send, {Click, 985, 448}
A
4 Send f 5 Send, {End}
S Sleep 50 Bleep;: 200
11 Send, {Click, 82, 719}
& Send {Enter} 12 sleep, 1000
7 Sleep 500 13 Send, {Enter}
14 Sleep 100
8 Send !{Left} 15 Send !{Left}
Return 16 Send !{Left}
17 return

Figure 4 Ahk Script to Check for Data Files Figure 3 Ahk Script to Click and Download All Files

4.1.2. Extraction

Once the data is collected in one folder, the files need to be extracted. The format they
are downloaded in are compressed files with two levels within them. They are zipped as the
entire shelf and they are also zipped within the shelf by each month for all the years. Figure 5

below shows the file structure of each download with the data file at the end.

Mame

| ABFC_NONE_reports
| ABSC_NONE _reports

H:\AGPublic\interns\zipFiles all data

Main Zipped File
of All Years

Manifest File of Folders for

all files within)). R200408
the main Zip File respective Year | R200409
- and Month J. R200410
(-mf)
. . Name -
Zipped File for & asrc.coL

that year and
month

Data File for that
lones in that
Month & Year
(.txt) & (.dat)

Name

Sub-Total for
Each Investment
1D (.fil)

| 0408abfc

HAAGPublic\interns\all extracted

Figure 5 File Structure from Downloading Each Shelf File

16

The aim of the extraction step is to convert all the files from a compressed folder to their
native format. This was achieved through a Python script that has been included in the business

process tool and is in Appendix 10.3.

4.1.3. Filtration

There are other files that exist within the folders that are not contained within the data
set itself. Shelves often contain extraneous Excel, PDF and LIS (manifest) files. All these files are
extraneous and require removal. A Python script allows the detection of .txt & .dat files and
delete anything else that is extraneous. These files are later binned by shelf folder names once
they have been filtered. In this process, if there are data files that do not follow the same naming
convention as others, they are filed under a separate folder than the others. Encoded within the

name of the file is the shelf name, month and year.

4.1.4, Cleaning

Once all the data files have been collected in one folder, a quick visual inspection is done
to ensure all the data is relevant and the folder contains only data files. Files with erroneous file
names must be corrected manually by inspecting the data. Opening the data file hints as to how
to name the file correctly. The file itself has a column of remittance cycle that indicates the date.
This can also be cross referenced with the next due date column. As for most loans, the due date
is @ month from the current cycle since most loans are in good standing. Once these checks are

performed, the files can enter the folder they would have according to the previous task.

4.1.5. Parsing

This step compresses the data for each shelf in parquet format which is most compatible
and favored with cluster computing. This process assigns fields (columns) according to Wells

Fargo’s positional layout schema. The Python script with the fields are given in Appendix 10.4.

17

Once fields are assigned, they are converted to .parg format and compressed by each shelf file.
This allows one .parq file for each shelf and reduces the total file size of all data from 500GB to

30GB. This definitely makes the next task of uploading much faster.

4.1.6. Upload

In this step, all the data using a script is uploaded into Microsoft Azure Data lake which is

the software used for data storage by the sponsor.

4.1.7. Wrangling

Using Spark, the field values are transformed to a more desirable format. New necessary
columns are added to conduct analysis and the data set is verified for variety of issues. The

chapter of Data Wrangling and Analysis will explain this task in detail.

4.1.8. Analysis

The data is then analyzed using Spark and Excel. Spark allows for the necessary processing
of data and it also allows the export of the results. Excel acts as a great graphical analysis software
for our purposes but the sponsor can use other powerful Data Visualization Bl Tools such as

Tableau or Power BI.

18

4.2. Process Flow Diagram

After the project was completed, a detailed process flow diagram was necessary in order
to map the final process. This helps in evaluating the project’s success and understanding the
process. The business process tool also follows the same process. Hence mapping the process
flow will also result in mapping the business process tool which can be quite useful when the
software package needs maintenance. The map also ensures transparency amongst the various
stakeholders.

A swim lane diagram was created and is shown in Figure 6. The first line indicates who
performed which particular task. The same headings from the work break down structure is used
for tasks. Each lane (column) represents a single task and the smaller tasks that constitute the

main task are shown in that particular column.

19

Thyagarajan Evan Thyagarajan Evan Thyagarajan
Download Extraction Filtration Cleaning Parsing Upload Wrangling Analysis
Download Data in Fi
Files from Wells UI;ZE:EhFISI;EZI];W
Fargo
Unzip Files for Remove « AAre files currently
each Month Extraneous Files - held relevant?
A
Yes
Assign Fields
Collect Files in One According to Wells
Folder Fargo's Positional
Layout
A $
Export te Data
Visualization BI
Convert from .txt Toals
to .parg Fermat
A
Y ¢
Separate Files with Rename File Compress .parq Upload Files to Trgﬁ:;r}gr?npaFT:Id Using Spark
Inconsistent File Names to Files by » Microsoft Azure ra »{Perform Necessary

Names

Consistent Format

ShelffIssuer

Data Lake

Values to Desirable
Format

Data Analysis

Export Results of
Analysis to Data
Lake

Figure 6 Swim Lane Diagram

20

5. Implementation

The “Tech Stack” represents all of the technology used to download data from CTSLink all
the way to processing it on Spark. Each module is independent, but when linked together, they
form a pipeline that performs all the necessary actions to get data ready for analysis. This section

details each module. It describes the key features, as well as explains some of the design choices.

5.1. Automated Downloader

The automated downloader script was created as an optimization of the Download step
in the process flow diagram. It automates browser interactions to the Wells Fargo site CTSLink.

Wells Fargo CTSLink is a website that appears to be built-in ASP.NET. It is the data source
from which all data is gathered. It shows data on MBS securities Wells Fargo and its subsidiaries
own.

CTSLink presents some issues. First, the site itself has an incorrectly signed SSL certificate,
which means that navigating to ctslink.com directly results in a security warning. Not all of the
shelves available on the website contain the necessary data files. Additionally, CTSLink has poor
session handling, which can result in random logoffs and disconnections.

Data on CTSLink is divided into shelves based on the loan issuer. While Wells Fargo’s
WFMBS shelf is the largest shelf, the bulk of the loans appear to be from other subsidiaries and
departments.

Manual capture of the data in CTSLink is time consuming as it requires clicking through
many menus manually. There is no API for downloading files— everything must be done via user

interaction.

19

To solve that problem, we created a Selenium script to download shelf documents.
Selenium is a package typically used to automate GUI testing, but a companion package Splinter
adds some useful automation tools. The script searches for HTML elements on the page, then
clicks them.

Selenium uses geckodriver to emulate operations in Firefox. In order to maximize the ease
of use, we embed this directly into the Git repository. While it is unusual to embed build artifacts
into the repository, we prioritized ease of use over convention. Downloading geckodriver can be
confusing and ensuring it is properly loaded into your PATH environment variable is difficult. To
that end, we opted to include it into the Git repository directly.

There are several Ul features in Firefox that are useful to humans but not to software,
such as file confirmation dialogs. To ensure consistency as the script is run, we load a custom

Firefox profile into the Selenium instance:

prof = {}
prof['browser.download.manager.showWhenStarting'] = 'false'
prof['browser.helperApps.alwaysAsk.force'] = 'false'
prof['browser.download.dir'] = output path
prof['browser.download.folderList'] = 2
prof['browser.helperApps.neverAsk.saveToDisk'] = 'application/zip'
prof['browser.download.manager.useWindow'] = 'false'
prof['browser.helperApps.useWindow'] = 'false'
prof['browser.helperApps.showAlertonComplete'] = 'false'
prof['browser.helperApps.alertOnEXEOpen'] = 'false'
prof['browser.download.manager.focusWhenStarting'] = 'false'

browser = Browser('firefox', profile preferences=prof)

20

Selenium allows interaction with elements only if the DOM was generated at the time of
interaction. That means that if a list of links is enumerated, then only one can be used before

the DOM is considered stale. For example, the following code will fail:

shelves = browser.find by text("Shelf Documents")
for shelf in shelves:

shelf.click()

This code fails because after the shelf has been clicked, the page we are currently on no
longer contains a Shelf Documents link. Even though the URL is still accessible, that element is no
longer on the page, and as a result the entire shelves list is invalidated. In fact, even if we navigate
back before clicking on the next one, it will still fail, because there is no way for Selenium to know
for sure that the element still exists.

To fix that, we download shelves recursively. We still use an iterator, but skip shelves that
have already been downloaded, and only download one shelf per function instance. When all the
shelves are complete, the recursion will complete. It is non-intuitive to iterate over a list as well
as operate recursively, but because we skip shelves that we’ve already processed, each shelf is

only downloaded once. This guarantees that the DOM is not stale.

21

p Cﬁ https?vmmc‘tsl\nk.com,-’a,-’sheIﬂisthtmI?she\ﬂ'ype:MBS i d

COLT Funamg - - - - - - Serlmpor‘ts— -

COLT Funding Asset-Backed Variable Funding Notes Series Reports

Commerce Mortgage Acceptance Corp. Series Reports Shelf Documents
Compass Residential Mortgage Trust Series Reports Shelf Documents
Conix Mortgage Asset Trust Series Reports

Continental Savings Series Reports Shelf Documents
Countrywide Home Loan Trust Series Reports Shelf Documents
Credit Suisse First Boston Mortgage Securities Corporation Series Reports Shelf Documents
CSAB Mortgage Backed Trusts Series Reports Shelf Documents
CSMC Mortgage Backed NIM Trusts Series Reports

CSMC Mortgage Backed Trusts Series Reports Shelf Documents
CSMLT Mortgage Pass-Through Certificates Series Reports Shelf Documents
DBARN Net Interest Margin Notes Series Reports

Deephaven Residential Mortgage Trust Series Reports

Delta Funding Corp HEL Trust Series Reports Shelf Documents
Delta Funding Corporation Series Reports Shelf Documents
Delta Funding Corporation Prepayment Trust Series Reports

Delta Funding NIM Trust Series Reports

Delta Funding Non-Performing Loan Trust Series Reports

Deutsche Alt A Securities Inc. (DBALT) Series Reports Shelf Documents
Deutsche Mortgage and Asset Receiving Corporation Series Reports

Deutsche Mortgage Securities Inc. (DMSI) Series Reports Shelf Documents
DFC Receivables Company LLC Series Reports

Figure 7 Screenshot of CTSLink with Various Shelves

5.2. Unzipper

As part of the Extraction step, we must retrieve files from the archives CTSLink provides.
Downloads are always double compressed in zip format. The unzipper module simply walks
through a directory and unzips all the files within it. This is run twice during ingestion.

Python’s builtin zip module is useful for this task. In order to extract information about
the zipfile, we must build an infolist object, which returns a list of enumerable ZipInfo objects.

These contain the metadata for the file. In order to determine the file type, unzipper uses the

22

magic number of the file. We have yet to find any corrupted zip files, so this step appears to be

very stable.

5.3. Move Valid Files

The only thing relevant to our extraction is .txt and .dat files. Shelf documents often

include PDFs, Excel files, and manifest files, all of which are not relevant or easily mined data.

def move valid files(rootDirectory, outputDirectory):

Moves files from rootDirectory to outputDirectory that have a .dat or
.txt extension.

Mostly used to filter out pdfs and excel files which are occasionally
included in shelf reports.

file count = 0

total start = datetime.now ()

for root, dirs, files in os.walk(rootDirectory):

for file in files:

start = datetime.now ()
name = Path(file) .resolve () .stem
try:

extension = os.path.splitext (file) [1]
except IndexError:
print ("No extension found for file " + file + ". Skipping")
continue
if os.path.isdir (os.path.join(root, file)):
print ("Skipping directory.")
continue
if "dat" in extension or "txt" in extension:
left intentionally blank; easier to understand non-inverted

case
pass
else:
print ("Skipping file " + file + " as it is not a loan file.")
continue

if not os.path.exists (outputDirectory) :
Create if missing
os.makedirs (outputDirectory)
print ("Moving " + file + " to " + outputDirectory)
if not os.path.exists(os.path.join (outputDirectory, file)):
shutil.move (os.path.join(root, file), outputDirectory)
else:
print ("Skipping file already found in output directory.")
finish = datetime.now()
elapsed = finish - start
print ('Time elpased on move job (hh:mm:ss.ms)
{}'.format (elapsed))
total end = datetime.now ()
total elapsed = total end - total start
print ('Total time (hh:mm:ss.ms) {}'.format(total elapsed))

23

5.4. Sort By Shelf

We next sort the files based on their shelf, as part of the Filtration step. They are placed
into folders corresponding to the value that follows the date entry. The Python Path module is

useful for this purpose as it can reliably determine the stem of a file.

def sort by shelf (rootDirectory):
"""Sorts in place files by their four letter shelf name.
file count = 0
total start = datetime.now ()
for root, dirs, files in os.walk(rootDirectory):
for file in files:

mmrn

start = datetime.now ()
name = Path(file) .resolve () .stem
try:

shelfname = name[4:]
except IndexError:
print ("Invalid shelf name for file " + file)
print ("Skipping file.")
continue
dirPath = os.path.join(rootDirectory, shelfname)
if not os.path.exists(dirPath):
Create if missing
os.makedirs (dirPath)
print ("Moving " + file + " to " + dirPath)
if not os.path.exists(os.path.join(dirPath, file)):
shutil.move (os.path.join(root, file), dirPath)
else:
print ("Skipping already present file " + file)
finish = datetime.now ()
elapsed = finish - start
print ('Time elpased on move job (hh:mm:ss.ms)
{}'.format (elapsed))
total end = datetime.now ()
total elapsed = total end - total start
print ('Total time (hh:mm:ss.ms) {}'.format(total elapsed))

24

5.5. Parquet From Positional

This module is the most important in the tech stack. This parses Wells Fargo data one line

at a time and loads them into a Python dictionary. The positions for each field are arbitrary, so

we created a script that loads the positions based on what is outlined in the CTSLink shelf file

layout. ParquetFromPositional is the Parsing step in the process map.

Issuer Loan Level Collateral File Layout (Shelf File)

As of 911242014
Data
Position Format Data Description Reference
112 a{12) 4 Loan Number Unique identifier
13-14 XX A Property Type Code Reference type table
15 X + Owner Occupied Code Reference type table
16-17 XX A Purpose Code Reference type table
18 X A Leasehald 1D ¥ =Yes N=No Blank = Not Applicable
19-20 XX Account or Note Type Code Reference type table
n X A No Ratio ID ¥=Yes N=No Blank=Not Applicable
2227 99.999 + Current Interest Rate Actual decimal in column 24; zero fill left
28-30 XX A Investor ID Investor ID - For Internal Use Only
31-32 XX Pool Number Pool Number - (Update Tape) as needed (right justified)
3343 9(8).99 4 Original Balance Actual decimal in column 41; zero fill left; NO insert "$"
454 a8).99 4 Ending Scheduled Balance Actual decimal in column 52; zero fill left; NO insert "$"
5562 9999999 Fixed Retained Yield Rate Actual decimal in column 56
63 X + Foreign National Code “F" = Foreign Mational Blank = Not Applicable
6471 98) o First Payment Date CCYYMMDD
7719 a9(8) + Maturity Date CCYYMMDD
BO-87 9(5).99 A Current P&l Constant Actual decimal in column 85; zero fill left; NO insert "$"
HE-95 9.999999 o Servicing Fee Actual decimal in column 9
96-98 999 { Original Term (in months) Zero fill left
99-100 XX Forecl ! ptcy/ REO FF = foreclosure BB = bankruptcy RE = REO
) **for any code not listed above, please reference the associated type table

101-105 999.9 4 Original LTV Ratio Actual decimal in column 104

100 x [Orig. loan amt. /(Min of orig. appraisal ar sales price)]
106-107 XX A Property State Postal abbreviation
108 9 ECS Score Version Mot used at this time
109-114 999.99 ECS Score Raw # Mot used at this time
115-116 XX ECS Score Code Mot used at this time
117-124 9(8) A Next Due Date CCYYMMDD

* NEXT DUE DATE for all loans
125 X 4 Adjustable Rate Mortgage (ARM) Indicator ~ "A"implies Arm loan
126-127 XX Program Code ST = Non-Conforming “A” Paper

EBlank = Non-Conforming “ A" Paper

AA = Alternative A

BC = B&C Shelf

HE = Home Equity
128-129 XX A Credit Grade Value as provided by underwriter
130-132 XX 4 Channel Code See Channel_code table
133 X Relocation Indicator ¥ =a relocation loan

N =NOT a relocation loan
134 X 4 Balloon Indicator *B" implies Balloon loan
135 X Lien Status 1 =First Lien

2 =Second Lien
EBlank = Mot Applicable

Figure 8: CTSLink shelf file layout

The shelf file layout tells us the location of each field in the file. One row

in the file

represents a single loan for a single month. The month itself and the name of the shelf is stored

in the name of the file. Each file contains anywhere between 1,000 lines and 25,000,000 lines. It

depends on how many loans there are for that month.

25

We extract the shelfname and month here. A shelf name is a string of arbitrary length
that comes after the date entry. Shelf files use the following format in their name:
MMYYshelfname. So, a January 2001 WFMBS shelf file would be 0101wfmbs.txt. Files are
occasionally incorrectly named. The most common mistake is a three-character date code instead
of a complete MMYY date. Some of these were manually renamed before processing; however,
if such files are encountered, the software makes a note of it and ignores the file.

Thankfully, Python supports a built-in method of extracting substrings called slicing.
Slicing allows us to do many things, but in this case, we are using it to extract a substring. Note
that CTSLink’s file uses an index that starts at 1, so the indices in our parser are adjusted to
account for the fact that Python (and most modern languages) begin their indices at 0.

Since the format is arbitrary, we must manually encode the shelf file layout in some way.
There is no programmatic way to determine the locations of the fields.

When we parse the files, we extract the file name. This presents several potential issues.
Sometimes, file names have typos in them. We check for that using some simple string

comparisons. Before dt is passed into process_single_lineg, it is checked for validity:

name = Path (path) .resolve () .stem
assuming YYMM (shelf)
print ("File name is " + name)
try:
year = int ("20" + name[0:2])
except ValueError:
print ("Skipping invalid file " + name)
return
if year > datetime.datetime.now() .year:
print ("Shelf reports from the future indicate an invalid file name.
Skipping.")
return
elif year < datetime.datetime.now().year and not ingest old files:
print ("Shelf reports from the past indicate that we may have already
ingested this file.")
return
try:
month = int (name[2:47])

26

except ValueError:

print ("Skipping invalid file " + name + " because it appears to have an
invalid month value.")

return
if month > 12 or month < 1:

print ("Skipping invalid file " + name + " because it appears to have an
invalid month value.")

return
if month != datetime.datetime.now().month and not ingest old files:

print ("Skipping file from the past as this indicates that we may have
already ingested this file.")

return

ingest_old_files is by default true. It can be disabled to prevent the function from
processing any files whose shelf date is prior to the current month. This is useful as it prevents
data duplication, but because shelf publication dates vary from shelf to shelf, we enable ingestion
of old files by default. This feature can be disabled in case someone needs to modify the code in
the future.

Once we have the data in a Python dictionary, it gets significantly easier to serialize it into
a new format. We use the Python package fastparquet to perform this operation. First we
compile a list of dictionary objects, each representing a line in the file. Then we simply use Pandas
dataframes to build a single dataframe that can be written into a PARQ file.

Parquet files can be easily read by the Spark cluster, so they are an ideal choice for
compressing large amounts of text. The compression ratio is roughly 10:1; that is to say, 400 GB
of data will result in roughly 40 GB of Parquet archives. We mostly attribute this to the large
amount of whitespace and repeated digits found in the files. The nature of compression is such
that the less diverse the set of compressed entities is, the better the compression ratio.

Because of the significant file 10 required to read in, compress, and write out the PARQ

files, they are created once and then appended to throughout processing.

27

PARQ compression is a CPU bound operation. This is due to the algorithm used to create
PARQ archives. Parquet is a columnar format; compression is performed column by column. Like
many popular compression schemes, Parquet uses run length encoding (RLE). A value is only
stored once, followed by the number of occurrences. Most of the files processed by
ParquetFromPositional have large sections of intentionally omitted data, such as the address of

the house being purchased, so Parquet compression significantly reduces the space consumed.

5.6. Multiprocessing PARQ compression

Parquet compression is a time-consuming operation, particularly when so much data is
involved. To remedy this, we use a ProcessPoolExecutor to start 6 processes, which each take a
single shelf folder. This prevents the need for an explicit mutex strategy as each process executes
on a single archive at a time. This is why we execute SortByShelf, not only for organizational

consistency, but also to distribute work.

Distributes the PARQ process over max worker threads. Setting the number too
high may lock up your machine.

win

shelves = [(os.path.join(target, x[0]), output) for x in os.walk(target)]
#get all shelf files

with ProcessPoolExecutor (max workers=max workers) as executor:
executor.map (walk entire directory, shelves)

Like any application making use of parallelization, it is important to be aware of the fact
that the thread and process pools are limited. Based on some rough testing, we found that 6
processes allows a 400-500% performance increase, while still allowing the rest of the OS to

function normally.

28

5.6.1. DateTime idiosyncrasies

One of the problems we encountered during development was issues with using POSIX
timestamps with the Spark cluster. Python’s default datetime class reports time in microseconds
since January 1st, 1970. This is an exceptionally granular way of describing date, and it introduces
many confusing issues. Since this measures milliseconds since a fixed point in time, (also known
as an epoch), determining which day it is requires the time zone. While there are tools to do this,
it adds an unnecessary level of complexity. Most importantly, however, is the incompatibility
with Azure DataBricks. DataBricks cannot process such a large timestamp; this is a known bug in
Parquet as well as DataBricks. To resolve this, we opted to store dates in a CCYYMMDD string

format to guarantee compatibility across all versions of Spark.

5.7. Schema Scanner

We discovered that some of the Parquet files we generated ended up having mismatched
schema as others. To combat this, we built a simple module that compares the schema of the
first file in the directory with every other file. This is an acceptance test we implemented to

ensure that no data with a mismatched schema ends up in Azure.

5.8. Azure Datalake Upload

The last step in the tech stack before the data is ready for analysis is to upload it to Azure.
Microsoft provides the package adl_store for this purpose. To authenticate (not authorize) we
use an Azure Data Lake (ADL) token to upload files. The function ask_token prompts the user for
the token. For convenience, the default department Risk Data Lake token is used if no value is

entered; however, it is omitted from this report for security reasons. ask_token returns a 3-tuple

29

string with the values the user inputted, or the default values if none were entered. They are

then immediately loaded into an adl_store.lib.auth object for use.

def ask token():
"""Asks the user for ADL token information or supplies hardcoded wvalues
if none are provided. Used in ingestion.py as well."""
client id = input ("Input client key; leave blank for default riskdatalake
token: ")
if client id == "":
client_id = 'Intentionally Omitted'
client secret = input ("Input client secret; leave blank for default
riskdatalake token: ")
if client secret == "":
client secret = 'Intentionally Omitted'
tenant id = input ("Input tenant id; leave blank for default riskdatalake
token: ")
if tenant id == "":
tenant id = 'Intentionally Omitted'
return (client id, client secret, tenant id)

While hardcoded token values would normally be undesirable, a heavy emphasis was
placed on a fast, painless install with minimal configuration over flexibility for customization. This
function is also used in ingestion to ask the user what token they wish to use. From there, the
upload to ADL is straightforward. The upload will always place files in a directory - never the root,
and will not upload files when they already exist on the datalake. Since it is required by adl_store,

all files are uploaded as binary files.

5.9. Ingestion
Ingestion is the composition root for the entire tech stack. It loads all of the modules and
runs them sequentially. Prior to running, ingestion asks for the following information:

o \Whether to use an explicit directory instead of a tempfile, and if so, which directory to use
e \What directory to upload files to on the datalake

o Whether or not to run on a small subset of data for testing purposes

o \Whether or not to delete transient files when done

e The Azure Data Lake token, defaulting to Risk’s token

30

Ingestion then creates five folders, phasel through phase5. This is to aid with debugging,
because if a step fails, it can be resumed manually by executing the scripts individually. Ingestion

merely runs the other modules in sequence; it has no business logic of its own.

5.10. Miscellaneous tools

5.10.1. Installer

Installer was a request by AG to speed preparation for use. It simply calls pip repeatedly to
download all of the required packages. While this task is often left to whoever is using the
repository, this does reduce the effort required to get started. Running main will install the

packages required.
5.10.2. DocGenerator

DocGenerator was created to help ensure that the automatically generated
documentation is up to date. This calls pydoc on the modules in the project, as well as the other
modules used in the software. This generates HTML files that show a neatly formatted page with
the docstrings embedded within it. Each time ingestion is run, the user is prompted to generate

the latest documentation.

datetitne itertools andas
fastparquet 08

multiprocess_parg(target, output, max_workers=6)
Distributes the PARQ process over max_worker threads. Setting the number too high may lock up your machine.

process_entire_file(path. output. ingest_old_files=True)
This function parses an entire Wells Fargo shelf collateral file, then compresses it to PARQ format.
It will not process files from the past unless the flag ingest_old_files is set to true.
The automated download script (automated_downloader.py) only scrapes files from the most recent shelf month.
In order to get more

process_single_line(inputLine, dt, shelfname)

This function parses a line of the arbitrary Wells Fargo Collateral File.

You can Tind more information about the format on CTSLink under Additional Services --> File Layouts
walk_entire_directory(args)

Walks a directory and compresses each file into a PARQ archive based on the shelf name.
Args is a 2-tuple containing the target path and the output directory- this is to allow use with concurrency

Figure 9 Screenshot of HTML with docstrings Embedded

31

6. Data Wrangling and Analysis
6.1. Data Wrangling

After the data is uploaded to the data lake, the data is available to be used through Spark.
However, before the data can be processed, certain operations need to be performed to prepare
the data. These operations are not predefined but are specific to each data set. While exploring
the data set, certain irregularities become apparent that need correction. A large portion of this
project was spent on this stage. This stage ensured data integrity by finding and correcting
irregularities.

6.1.1. Duplicate Loan Numbers

The risk management team had estimated the data set to account for 9.5 million loans.

When a count function was initially performed, the total number of loans was 7,784,221. This

clearly suggested inconsistencies within the data.

dfl = df.groupBy('Loan_number’).agg(countDistinct(shelfname’))

dfl.count

7784221

Figure 10 Count Operation for Total Loans on Spark

The first action was to check if the entire data set has been uploaded correctly. Once that
was confirmed, there was suspicion that multiple shelves have the same loan numbers leading
to a lesser count than total. The filter function was used to show all loan numbers that occurred
more than once. In Figure 11, the first line executes the code and the second line shows a sample

of the operation performed.

32

In [19]:

In [20]:

df2 = dfi.filter(df1['count(DISTINCT shelfname)']>1)

df2.show(10)

Hommmmmme e e e +

|Loan_number | count (DISTINCT shelfname) |
$occccncacns Poecncnccsacnssscacncncsncas +
ee11817426	2
ee110754e4	2
eeeee01761	3
@103712875	2
6818198795 3	
6297916766 2	
6632249014	3

ee13910354	3
eee2274558	
eee1307206	2
(s e g s o 90 ' oo ey ek i el B .

only showing top 1@ rows

Figure 11 Filter Operation and Output

The table shows that the count of some loan numbers are more than 1 and sometimes

even more. For example, if one were to search the data set for the loan number “0011817426”,

then it should appear twice in two different shelves. Figure 12 below does such an operation:

In

In

: egln = df2.select('Loan_number').head(1)

egln

[Row(Loan_number="0011817426")]

checkDf = df.filter(df['Loan_number']=="0811817426")

: checkDf.select(' shelfname').distinct().show()

R +
| shelfname
Hommmemnan +
[ABFC
| ABSC
Fommmmmmmm +

Figure 12 Operations to Check Loan Numbers on Spark

The particular loan number in question appears in shelf “Asset Backed Funding

Corporation (ABFC)” and “Asset Backed Securities Corp (ABSC)”. Although it is the same loan

number, they are different loans entirely and should be treated separately for data processing

purposes. To solve this issue, each loan number was assigned a new loan number with the new

format of “Shelfname_LoanNumber”.

33

. df = df.withColumn('p loan_id',concat(df[‘shelfname’],1it("'_"),df['Loan_number']))

In [34]: df.select('parsed_loan_id').show(5)

|ABFC_101029308 |
|ABFC_101029549 |
|ABFC_101030132|
|ABFC_101030256 |
|ABFC_101030348 |

only showing top 5 rows

Figure 13 Operations to Create Unique Loan Numbers on Spark

The new total of loan numbers was raised to 9,852,826 which was much closer to the
estimate amount of loan data. Had this irregularity been overlooked, approximately data of 2
million loans, 21% of the total data, would be accidentally excluded. Any analysis with respect to
loan numbers would have also been erroneous.

6.1.2. Checking Integrity of Original Balance Values

A sanity check was performed for certain field values that were relevant to the data
processing. Original balance (loan balance) was one relevant field that was problematic as spark
was unable to perform operations on the field. When able, the value itself was incorrect. The
problem was found in the formatting of the field. The field values were string types and needed
to be converted to float values. A User Defined Function (udf) was written to perform this

conversion. Figure 14 shows these operations.

34

In [85]: #now create a udf to convert string into double
from pyspark.sql.functions import udf
from pyspark.sql.types import DoubleType

def convert_string_to_double(input_string):
try:
output_d = float(input_string)
except ValueError:
output_d = -9999

return output_d

new_double_val = udf(convert_string_to_double, DoubleType())
df = df.withColumn('parsed_orig bal', new_double val(df.Original_ Balance))

In [86]: df.describe('parsed_orig bal').show()

Fo-mmmm- ommmmm e +
|summary| parsed_orig_bal|

count	496081118
mean	274203.998141447
stddev	249884.39711245202
min	0.0
max	1.00000006ES

Figure 14 Operations to Change Formatting on Spark

The second command generates a quick summary of the field values. The average loan
balance for a Mortgage Backed Security with Alternative A credit in USA is estimated to be
$250,000 (Appleyard, 2004). The new mean loan balance of $274,204 is close to the estimate

confirming that the values are formatted correctly.

6.1.3. Delinquency Status of Loans

Delinquency status is the current status of a loan with respect to delay in monthly
payments if any. The delinquency status deteriorates as the loaner defaults on more monthly
payments. Delinquency status is an important indicator of loan performance and the Wells Fargo

data set did not have this field built-in. This field was added as part of the data wrangling stage.

6.1.3.1.Standardizing Date Values

To be able to find difference in monthly due dates and monthly payments, the dates have
to be in proper format. Since all fields are in string format including numbers, specific fields have
to be assigned new formats such as integer type to numbers. The operations below remove

whitespace (trim) and cast types to the fields (columns) current date and next due date. They

35

also create two separate columns for the year and month of each dates to facilitate subtraction
later to find the difference in months.

In [34]: from pyspark.sql.types import *
from pyspark.sql.functions impert *
df = df.withColumn(shelf_year',trim(df['shelf_year']).cast(IntegerType()))

df = df.withColumn(’shelf_month',trim(df[shelf_month']).cast(IntegerType()))
df = df.withcColumn(’next_due_year',trim(df['Next_Due Date']).substr(1,4).cast(IntegerType()))
df = df.withColumn(next_due_month’,trim(df['Next Due Date']).substr(5,2).cast(IntegerType()))

Figure 15 Operations to Create Columns for Dates on Spark

Below is the output of these operations for the first 10 rows of the data set:

In [4@]: df.select('shelf_year",'shelf_month','Next_Due_Date’, "next_due_year’, 'next_due_month").show(16)

Fommmmm o Fommmmmm e Fommmmmmm o Fommm oo Fommmmm e +
| shelf year|shelf month|Next Due Date|next due year|next_due month]|
Fomm - oo Fomm - Foomm - B i +
2008 11	20081101	2008	11
2008 11] 20081101	2008	11	
2008 11] 20081101	2008	11	
2008 11] 26081101	2008	11	
2008 11] 26081001	2008	10	
2008 11] 26081101	2008	11	
2008 11] 26081201	2008	12	
2008 11	20060101	2006	1
2008 11	20081101	2008	11
2008 11	20081201	2008	12
Hommmmm oo Ho-mmmmm oo Fo-mmmmm- oo - e e et +

only showing top 1@ rows

Figure 16 Output of Operations for First 10 Rows

6.1.3.2.Binning Loans by Delinquency Status

The difference between current shelf and the next due date field was calculated. This
difference was calculated in months.

In [22]:

dfl = dfil.withColumn('Difference_in_Months', ((((df['shelf_year']-dfl['Next_Due_Date_str'].substr(1,4))*12)+
(df['shelf_month']-df1['Next_Due_Date_str'].substr(5,2)))
) .cast(IntegerType())
)

dfl.select('Difference_in_Months').show(5)

s e UL L L LI LS S L +
|Difference_in_Months|
R +
| -1
| -1]
| -1
| -1]
| 8|
B e T +

only showing top 5 rows

Figure 17 Operations to Find Difference in Months on Spark

36

Next, the loans were binned in four separate categories that serve as delinquency
statuses. Terminated loans are loans that have been paid in full and have a zero loan balance
remaining. Loans payments that are being paid, already paid, or are ahead of schedule are
Current. If a loan payment is behind by 5 months or less, the loan is binned as Delinquent. If a
loan payment is behind by more than 5 months, then the loan is in a Seriously Delinquent status.
An important distinction is that loans of Delinquent or Seriously Delinquent status are only
binned if they are marked for foreclosure in the future.

In [205]: from pyspark.sql.functions import udf
from pyspark.sgl.types import StringType

def parse_deling(parsed_actual_current_balance, Foreclosure_Bankruptcy REO_Indicator, months_deling):

try:

if parsed_actual_current_balance == None or parsed_actual_current_balance<1.8e-4:
return 'Terminated’

elif months_deling == None:
return ‘Current’

elif months_deling<=1 and Foreclosure_Bankruptcy REO_Indicator!='FF' and Foreclosure_Bankruptcy REO_Indicator!='RE':
return ‘Current’

elif months_deling<=5 and Foreclosure_Bankruptcy REO_Indicator!='FF' and Foreclosure_Bankruptcy REO_Indicator!='RE":
return 'Delinquent’

else:

delinquen

return ‘Seriously
except ValueError
return ‘'Current’

new_delinq = udf(parse_deling, StringType())

Figure 18 Operations to Bin Loans by Delinquency Status on Spark

After the binning of loans, the field or column is ready to be used in data processing.

6.2. Data Processing

Once the data has been transformed into the desirable format with the necessary fields,
it is ready to be explored for various insights. The Risk Team of Angelo Gordon eventually wants
to use this data set amongst others to build a statistical model to predict the upcoming
delinquency status of a loan, which in turn indicates if the loan is to improve or deteriorate. This
is largely modeled on various transition (Markov) matrices. A change from someone paying
monthly on time (Current) can pay off their loan (Terminated) or not pay for a couple of months

(Delinquent). This change can be seen as a transition between two states. Hence, knowing the

37

probability of going from one state to the other can be useful in determining which loans will
perform well with consistent payments throughout. A matrix consisting of such transition
probabilities would be a transition matrix.

In order to better understand such a model and how to start building it, certain sample
analyses were performed. Section 6.2.1 explains how to build a transition matrix and shows two
sample models. This procedure also serves as a sanity check to ensure all the data retrieval and

manipulation performed until this stage is correct.

6.2.1. Delinquency Status Transition Matrix

A variety of indicators can be used to track the progression of loan repayment and/or the
quality of loan. For our purposes, delinquency status will be used as an indicator to which other
attributes can be measured against.

Firstly, the column of delinquency status is renamed to “parsed_deling”. The second
operation creates a new column that has the next delinquency status when the loan advances to
the next month. The third operations creates an additional column that shows the number of
loans that have made that particular change in delinquency status. Finally, the fourth operation

orders them the table in a chronological manner. Figure 19 illustrates the said operations:

In [191]: df = df.withColumnRenamed('new_delinqg', 'parsed_delinq")

In [197]: from pyspark.sql.window import Window
df = df.withColumn('next_parsed_deling',func.lead(df['parsed_deling']).over(Window.partitionBy(
‘parsed_loan_id').orderBy('shelf_date)))

In [198]: ct = df.groupBy('shelf date','parsed_deling', 'next_parsed _deling').count()

In [199]: ct = ct.orderBy('shelf_date', 'parsed_delinqg’, 'next_parsed_deling")

Figure 19 Operations to Create Column of 'next_parsed_deling' on Spark

38

After finding the count, a sum column consisting of the total loans for that particular

month is added. This later allows one to find the probability for each row as it is simply a function

of the count over the sum. The output of these operations can be seen in Figure 20:

4o - - o - +------- +---------- B i +
| shelf date| parsed _deling| next_parsed deling| count|sum(count)| prob|
20000301 | Current | null| 5] 158872]3.147187673095322E-5
20000301 | Current | Current| 152492 | 158872| ©.9598418852913037
20000301 | Current | Delinquent| 2691| 158872|@.016938164056599023
20000301 | Current|SeriouslyDelinquent | 81| 158872|5.098444030414422E-4
20000301 | Current | Terminated| 3603 | 158872| 0.02267863437232489
20000301 | Delinquent| Current| 2783 8915| ©.31217049915872125
20000301 | Delinquent | Delinquent| 4795 8915| ©.5378575434660624
20000301 | Delinquent|SeriouslyDelinquent| 1060 | 8915| ©.11896072910824454
20000301 | Delinquent| Terminated | 277 | 8915| ©.03187122826696579
20000301 | SeriouslyDelinquent | Current | 196 | 12485|0.015698838606327592
20000301 |SeriouslyDelinquent | Delinquent | 247 | 12485|0.019783740488586304
20000301 | SeriouslyDelinquent |SeriouslyDelinquent| 11373 12485| ©.9109331197436924
20000301 |SeriouslyDelinquent | Terminated | 669 | 12485| ©.05358430116139367
20000301 | Terminated| null| 3611 20040| 0.18018962075848302
20000301 | Terminated | Current | 3| 20040|1.497005988023952E-4
20000301 | Terminated | Terminated| 16426| 20040| ©.8196606786427145
20000401 | Current| null] T] 165473]6.0451086005 /6005F -6
20000401	Current	Current	158535 165423	0.95836129196061	
20000401 Current	Delinquent	3366 165423	0.020347835548865635		
20000401 Current	SeriouslyDelinquent	36	165423	2.176239096135362E-4	
20000401	Current	Terminated	3485]	165423	©.02106720347231038
20000401	Delinquent	Current	1952	8086	©.24140489735345041
20000401 Delinquent	Delinquent	4667 2086	©.5771704180064309		
20000401 Delinquent	SeriouslyDelinquent	1221	8086	©.15100173138758347	
20000401	Delinquent	Terminated	246	8086	@.030422953252535245

Figure 20 Output of Operations to Build Transition Matrix on Spark

The last cell of the first row of Figure 20 shows a null value for the next delinquency status.

This is likely because some loans are still on file when they need to be deleted. A transition matrix

can be built for each month. As an example, a transition matrix is below for March 15, 2000

(Marked Region).

39

Current Delinquent Seriously Delinquent Terminated Null

Current 0.960 0.023 0.000

Delinquent 0.312 0.538 0.119 0.031
Seriously
0.016 0.020 0.911 0.054
Delinquent
Terminated 0.000 0.820 0.180

Figure 21 Delinquency Status Transition Matrix for month of March 1, 2000

Since each row in this matrix sums to 1, this is said to be a Right Stochastic Matrix. A group
function passed on to Spark allowed to consolidate all transition matrices into one. This matrix
can be also grouped along with other attributes such as borrower’s FICO score or state of

residence.

6.2.2. Pay Off Rate in Different States of USA

This section will explore the data to understand which state has the highest pay off rate
with delinquency status as an indicator. A table was created using the consolidated transition
matrix and grouping all loans by the state. The operations necessary are shown along with the
table in Figure 22.

In [248]: #Property State
state_ct = df.groupBy('Property_State’, 'parsed_delinqg’, ‘'next_parsed_deling').count()
state_aggCt = state_ct.groupBy('Property State’, ‘'parsed_deling').agg({'count':'sum'})
state_ct = state_ct.join(state_aggCt, ['Property_State', 'parsed_deling'],'left_outer')
state_ct = state_ct.withColumn('prob’,state_ct['count’]/state_ct['sum(count)"])
state_ct = state_ct.orderBy('parsed_deling’, 'next_parsed_delinq’, 'Property_State’)
state_ct.show(10000)

AR	Current	Terminated	11678 1675140	©.01086184124858158	
Az	Current	Terminated	158114 9765383	@.016191274832743376	
ca	Current	Terminated	1288664	72061361	@.0178828706382944776
co	Current	Terminated	121628	7551510	@.016106447584655254
cT	Current	Terminated	59591	3618822	@.016466968795529596
oc	Current	Terminated	19163 1@47950	@.018286177775657237	
DE	Current	Terminated	11833	841475	@.014862212186933659
FL	Current	Terminated	356191	28251191	@.012607999429121414
GA	Current	Terminated	130046	12275973	@.011300992489393712]
Gu	Current	Terminated	6	4860.012345679012345678	
HI	Current	Terminated	25038 1460737	0.017035700945135082	
14	Current	Terminated	157@9	1@04259	©.01564237910738166
10	Current	Terminated	10454	1222237	0.01501671664333513
IL	Current]	Terminated	186560 10471880	0.017815330198588083	
IN	Current	Terminated	39767	3535203	0.011248572607701823
Ks	Current	Terminated	17798	1248304	0.014256717030040196
KY	Current]	Terminated	21158	1648553	0.012891994345800005

Figure 22 Operations to Group US States by Delinquency Status

40

This table is later exported to a local drive as a csv file. This csv file can be used with Data
Visualization BI Tools to create powerful graphs. In this case, the csv file was used with excel to
use inbuilt visualization tools. The state change from paying monthly to termination of the loan
is isolated. This isolates loaners who have been paying consistently and in the end have paid off
their loan which is different from loaners whose property has been foreclosed. A screenshot of
the Excel file can be found in Appendix 10.3.1 and the resulting visual is in Figure 23. The warmer

the color, the higher the transition probability.

Current to Terminated

-t " Powered by Bing

2 [IEAT Tor MEFT, Geofames, Mavbsg

Figure 23 Transition Probabilities for Each State

41

Table 1 shows the top 10 states with the highest pay off rate.

Table 1 Highest Pay Off Rate in States Ranked Descending Order

Position States

Utah

Rhode Island
New Jersey
Massachusetts
Wyoming
Washington DC
Montana

Wisconsin

O 00 N o Uu b~ W N

California
10 Illinois

It is important to note at this point that this is just a simplification of a possible model.
There are many other factors to be considered such as population, FICO scores, etc that would

alter the above list.

6.2.3. Foreclosure in Various States

The chances of foreclosure in each state can be useful information to decide which loans
are easily cleared of debt through foreclosure. This is shown by the transition from the state
Seriously Delinquent to the state Terminated. This means that the loaner has moved from
faulting for a long period of time to the sale of property. Figure 24 is a map of this transition

probability for each state.

42

Seriously Delinquent to Terminated

Powsered by Bing
S DSAT for MISFT, GEohames, Mavteg

Figure 24 Transition Probabilities for Each State

A judicial foreclosure state is a state that has court proceedings before a bank can foreclose a
property. In non-judicial foreclosure states, foreclosures usually are processed without a court.
Table 2 shows states ranking from least to highest probability for the first 15 states and their

judicial status.

43

Table 2 Highest Probability of Foreclosures Ranked in Ascending Order

Position States Judicial
2 NJ Yes
3 HI No
4 VT Yes
5 DC No
6 DE Yes
7 PA Yes
8 ME Yes
9 MA No
10 CcT Yes
11 LA Yes
12 FL Yes
13 MD Yes
14 NM Yes
15 MS No

As suspected, 11 out of 15 are judicial states. These states have a significantly lower
probability of foreclosure on a property. In fact, 21 out of the first 30 are judicial states.

Considering there are only 27 judicial states in total, this finding is strongly supported.

44

7. Conclusions

One goal of the Risk Management team at Angelo Gordon is to build a sound statistical
model to predict loan performance. Specifically, to predict if a loan will default and anticipate the
progression of the loan to termination. Building the complete model was always outside the
scope of this project. However, we were able build a basic statistical model to serve as a
foundation for the model. The success in this project lies in that the sample analyses performed
could serve as a check for all the accomplished work.

A formal meeting was arranged with all the key stakeholders at the end of this project.
The business process tool (tech stack) was run in its entirety during the meeting. The meeting
was fruitful as it allowed everyone to carefully check for any mistakes and formalized handing
over the tech stack. All key stakeholders left the meeting with full confidence that they
understood the tech stack. This ensured that the firm had complete process ownership which
was previously lacking with third party vendors of data.

The data set provided was also a crucial deliverable that had to be correct and ready to
use. This included running many sanity checks for various values such as average loan balances
studying foreclosures. The data was also cleansed ensuring proper formatting for all field values.
Additional fields were also added to the data set when necessary but was missing. Performing
sample analyses allowed the risk team and others to understand how to use the data set for their
benefit.

The firm was also new to many software tools that were being used for this project such
as Data Lake or Spark. Operations such as format changes and export of data to local csv files

were foreign to everyone. A Jupyter notebook with all the operations performed so far was

45

delivered to the AG risk team as documentation. Not only will this be useful when building the
comprehensive statistical model but the documentation will accelerate the learning curve for

new stakeholders/employees if any.

46

8. Recommendations

The primary recommendation is to maintain the tech stack and the data set. The tech
stack should be run every month to ensure that the most recent data is being fed to the model.
Since the tech stack does not have a provision to download past months, running every month
in a timely fashion is crucial.

The Selenium script of the tech stack also should be maintained carefully. The specific
module is based on the CTSLink website. Since changes to the website cannot be predicted, one
should be prepared to make changes to the script when necessary. However, no drastic change
in the website is expected in the foreseeable future.

There is much potential for conducting more studies and further exploring the data for
insights. Running the tech stack every month and adding more data from various open source
data sets will allow the total data set to grow. A larger data set increases the reliability of
predictions made and also accounts for a larger sample population. A total of 9.5 million loans
may seem a lot but it is only a portion of the total loans. This means that Angelo Gordon has to

pursue more data if it is to build a model to make investment decisions.

47

9. Reflection on the Project
9.1. Design Component

The Risk Management team at Angelo Gordon aims to build a comprehensive and precise
statistical model to predict loan performance. The project’s overall deliverable was to create a
foundation for this model to begin building upon. This was achieved by designing a rudimentary
statistical model using the Wells Fargo public data set. Elements of data analysis required
knowledge of stochastic models, data manipulation in Excel, and strong understanding of data
wrangling. When building the model, Markov matrices were used in understanding probability of
various state changes. These state changes marked loan performance changes and were
reflective of borrowers paying or defaulting their monthly payments. These state changes were
later grouped by US States to understand performance varying across the country. Once
completed, the data was exported to excel to be analyzed and gain insights such as most judicial
states have the lowest probability for foreclosure on properties.

The Wells Fargo data set was used through Spark, an open source software that supports
big data exploration. However, the data set had to be acquired from their website and processed
before being able to begin data analysis. Angelo Gordon also required that the complete data set
be updated with every month’s loan information. This required designing and implementing a
business process tool that could run every month by the risk team to update with new data. The
project management aspect of implementing the process required that all key stakeholders have
process ownership. Process ownership is key in implementing a sustainable project. This was
achieved through weekly update meetings and delivering documentation about software

package implementation, maintenance, and data analysis on spark.

48

9.2. Constraints and Alternatives

One of the most crucial limitations of this project was large wait times at each step of the
process. The data accounted for 9.5 million loans which uses a total of 500 GB disk space. The
download step of the process alone took 10 days. The download was I/0O bound and no existing
APl meant that the download had to be done manually by clicking on a website. Later the data
set had to be converted to .parg format which was CPU bound. Every step of the process took
long wait times simply because of the size of the data set. This was overcome by various methods.
For operations that were |/O bound, multiple operations were queued overnight and maintained
remotely. For operations that were CPU bound, the risk team volunteered four of their high
performing CPUs for computation. The operations were distributed amongst these CPUs to
ensure effective allocation of time.

Another constraint was the sustainability of this project. The software package is designed
to download the most recent month’s data set for each shelf or loan issuer. Hence, the download
needs to be run every month to update the data set. If not, the download needs to be done
manually. The modularity of the software package allows for the rest of the process to run after
the manual download. However, if the website were to be updated differently in any way, the
Selenium script would need changes. To ensure sustainability, the risk team has been trained on
the use of the business process tool. Documentation also has been provided containing

instructions on how to make changes to the software package and the data analysis.

49

9.3. Need for Life-Long Learning

The project in the end was both challenging and fulfilling. Despite studying how to analyze
data through lab work and class work, analysis of a data set of this size was challenging. The real-
life application of the project was at first tough to grasp. However, the firm provided us with
guidance and support throughout which facilitated understanding the financial context of this
project. The project was unique in that it required an implementation of a process that
simultaneously allowed for continual improvement of the precision of the data set. Increasing
the data set monthly will allow more data points for the statistical model, improving precision of
studies conducted.

One of the challenges was to be able to use big data analytics software Spark. Not having
any experience in big data from coursework, the learning curve was very steep. Although Apache
Spark is a great open source software, using it was quite difficult initially. The coding was done in
PySpark which is an IPython based frontend API. Learning to use Spark was a fruitful challenge as
the software is a very powerful tool.

The project showed the application of our majors in a light that we had not given much
thought to previously. Many Industrial Engineering skills were transferrable to big data analysis
that surprised me. The skills learned at Angelo Gordon may or may not be useful in whatever

professional paths we take but the mentorship and guidance received was invaluable.

50

10. References

Angelo, Gordon & Co. "ANGELO, GORDON." Home : Angelo, Gordon & Co. January 22, 2006.

Accessed January 22, 2018. https://www.angelogordon.com/.

Appleyard, Randy. "Overview of the Mortgage-Backed Securities Markets." October 1, 2004.

Accessed January 20, 2018.

https://warrington.ufl.edu/graduate/academics/msf/docs/speakers/presentation_Appleyar

d0405.pdf.

Beattie, Andrew. "Mortgage-Backed Security (MBS)." Investopedia. January 17, 2018. Accessed

January 21, 2018. https://www.investopedia.com/terms/m/mbs.asp.

Fannie Mae. n.d. Loan Performance Data. Accessed 1 11, 2018.

https://loanperformancedata.fanniemae.com/lppub/.

FINRA. "Mortgage-Backed Securities." Mortgage-Backed Securities | FINRA.org. January 18,

2018. Accessed January 21, 2018. http://www.finra.org/investors/mortgage-backed-

securities.

Giesbrecht, Nathan. "Javascript Check all Checkboxes in Google Chrome or Firefox." Nathan
Giesbrecht Winnipeg Web Design & Development. January 27, 2015. Accessed January 22,

2018. http://nathangiesbrecht.com/check-all-checkboxes-chrome-javascript.

51

https://www.angelogordon.com/

IBM. 2002. Clustering: A basic 101 tutorial. April 03. Accessed 12 10, 2017.

https://www.ibm.com/developerworks/aix/tutorials/clustering/clustering-pdf.pdf .

Intex. n.d. Cashflow Analytics for Global Structured Finance. Accessed 1 11, 2018.

http://www.intex.com/main/.

Staff, Investopedia. "Hedge Fund." Investopedia. August 23, 2017. Accessed January 22, 2018.

https://www.investopedia.com/terms/h/hedgefund.asp.

Zaharia, Matei. "HotCloud'10 Proceedings of the 2nd USENIX conference on Hot topics in cloud
computing." USENIX, June 22, 2010, 10. Accessed January 20, 2018.

https://dl.acm.org/citation.cfm?id=1863103.18631134.

52

11. Appendix
11.1. Sample Data

11.1.1. Manifest Files

[HA\AGPublic\interns\ processed_shelves\B\BKONE_NONE_reports\manifest.mf - Notepad-++ [& |
File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window 2 X
cHHE LA aDae a3 BEISITIEDEOHD 2| BE DR
L

1 File Name File Size(Byte)

2 R200611/BRONE_COL.zip 44226

3 R200610/BEONE_COL.zip 44667

4 R200603/BEONE_COL.zip 46248

5 R200608/BRONE_COL.zip 46805

& R200607/BECONE_COL.zip 79861

7 R200606/BRONE_COL.zip 82208

8 R200605/BRONE_COL.zip 70738

S R200604/BEONE_COL.zip 87182

10 R200603/BRONE_COL.zip 77378

11 R200602/BEONE_COL.zip 76514

12

13 Total Number of Files: 10

14 Total Size: €55827

15

16

17

18 Notes:

1s

20 Maximum File Entries: 7000 Maximum File Size: 2.9 GB
Normal text file length : 646 lines: 20 Ln:20 Col:58 5el:0|0 ‘Windows (CRLF) UTF-8 INS

53

11.1.2. Sample Data file (.txt)

FE AppDataLocaTempwal 2 - Notep == =

File Edit Search View Encoding language Settings Tools Macro Run Plugins Window 2 X
cHDEERLe 4D oeiayax B3 1EERELHE® | BED®ER
[WEMBS_TXT_FCT s (3| BB 1710ufmbs bt (3| B wiha0701 cit (3 | B w0072 dat £ (=] 0004min ¢ £ |

1 Jo1o0000685

U 14.350 0 00050000.0000045224.370.000000 195805062018080600634.520.500000240 000.0XxX 20000306 -~
2 0100000704 Lul 11.850 0 00051000.0000050414.880.000000 19%805032023080300531.510.500000300 000.0XX 20000303 N
2 0100000787 U 10.250 0 00212500.0000210773.970.000000 195810082013050801504.220.500000180 000.0X¥xX 20000408 E
4 0100000809 uu 11.800 0 00064100.0000063724.490.000000 195810142028051400649.4590.500000360 000.0XxX 200002142
5 0100000813 U 02.650 0 00023500.0000092640.600.000000 195810142013091400796.460.500000180 000.0XX 20000414 E
& 0100000820 U 07.950 0 00057142.0000056404.100.000000 195810142028051400417.300.5000002360 000.0XxX 20000414
7 0100000823 uy 09.800 0 D0055000.0000053564.950.000000 199810152018091500523.500.500000240 000.0XX 20000415
8 0100000829 U 0%.3%00 0 00077600.0000076522.460.000000 195810212013052100675.270.500000180 000.0XxX 20000221 E
S 0100000830 uy 11.250 0 00021500.0000020647.460.000000 199811052013100500247.760.500000180 000.0XX 20000405
10 0100000847 U 11.750 0 00044800.0000044534.630.000000 195810232013052300452.220.500000180 000.0xXxX 20000223 E
11 01000008483 uy 12.250 0 00011552.0000010588.110.000000 199811022008100200167.420.500000120 000.0XX 20000402
12 0100000864 U 10.950 0 00042225.0000042524.130.000000 195810282013052800411.320.500000180 000.0X¥xX 20000428 E
12 0100000875 uu 11.250 0 00030400.0000025202.250.000000 19%811052013100500350.320.500000180 000.0XxX 20000405
14 0100000876 U 10.200 0 00050000.0000048757.760.000000 19581030201680930004682.160.500000240 000.0XX 20000330
15 0100000878 U 08.850 0 0D00€5600.0000064437.660.000000 195811022023100200542.800.500000300 000.0xXxX 20000402
16 0100000888 uy 13.050 0 00027000.0000026869.550.000000 199811062013100600299.730.500000180 000.0XX 20000406 E
17 0100000890 U 0%.99%0 0 00050400.0000045553.660.000000 195811052013100500441.930.500000180 000.0XxX 20000405 E
18 0100000902 uy 11.250 0 D0016500.0000014407.000.000000 199811052013100500190.140.500000180 000.0XX 20000505
15 0100000905 U 12.500 0 0002€300.0000025281.910.000000 195811052013100500324.160.500000180 000.0XxX 20000405
20 0100000909 uy 10.600 1 D0108000.0000107037.610.000000 199811132028101300994.180.500000360 000.0XX 200004132
21 0100000532 U 10.400 0 0009%500.0000095160.350.000000 1958112020131020005906.370.500000180 000.0X¥xX 20000420 E
22 0100000936 uu 09.250 1 D006%600.0000068587.940.000000 195812042026110400572.590.500000360 000.0XxX 200003042
23 0100000537 U 08.550 0 00082100.0000088137.2680.000000 1958111520131012300668.270.500000180 000.0XX 20000315 E
24 0100000542 uu 0%.950 0 00074700.0000000000.000.000000 19%8112820268102800652.790.500000360 000.0XX
25 0100000955 uy 10.400 2 D0065200.0000064717.190.000000 199811202028102000591.550.500000360 000.0XX 200002202
26 0100000960 U 11.150 2 000€8000.0000067456.010.000000 195812162028111600655.300.500000260 000.0XxX 20000516
27 0100000970 uy 08.600 0 00032000.0000028933.690.000000 199811282008102800398.470.500000120 000.0XX 20000328
28 0100000580 U 12.250 1 00017000.0000016425.450.000000 195812042013110400206.780.500000180 000.0XxX 20000404
29 0100000992 uy 12.500 2 D0026600.0000025720.890.000000 199812202013112000327.860.500000180 000.0XX 20000320
320 0100001002 U 10.350 2 00072800.0000073282.630.000000 195812042028110400666.820.5000002360 000.0XxX 20000404
31 0100001056 uu 10.950 2 D0051600.0000045645.350.000000 19%5010120131201005684.870.500000180 000.0XxX 20000401
32 0100001081 U 10.900 2 00057600.0000057287.770.000000 199501072013120700544.200.500000180 000.0XX 20000307
33 0100001058 uu 09.950 2 00091400.0000087888.020.000000 199501242013122400981.630.500000180 000.0XxX 20000224
34 0100001151 U 02.600 2 00072000.0000071449.630.000000 1955012820268122800610.680.500000360 000.0XX 20000328
35 0100001187 U 07.250 2 00053550.0000051142.560.000000 195502042014010400488.840.500000180 000.0xXxX 20000404
36 0100001209 uy 08.990 2 D0048000.0000047613.600.000000 199302042029010400385.880.500000360 000.0XX 20000404
27 0100001216 U 08.800 2 00075400.0000074758.490.000000 195502062014010600595.870.500000180 000.0XxX 20000406
38 0100001217 uy 10.700 2 D0060000.0000057986.070.000000 199302062014010600670.700.500000180 000.0XX 20000306
322 0100001225 U 10.500 2 00108000.0000107205.820.000000 1955020520290105005987.920.5000002360 000.0XxX 20000405
0 0100001236 Lul 10.350 2 0007%050.0000078508.070.000000 199502132014011300714.260.500000180 000.0XX 20000313
41 0100001248 U 08.300 2 00071400.00000707359.850.000000 199502152029011500538.920.500000260 000.0XX 200004158
42 0100001250 uu 10.100 1 00063200.0000060564.930.000000 199502212014012100683.030.500000180 000.0XxX 20000321
43 0100001268 U 10.350 2 00073100.0000072655.440.000000 195503012014020100660.500.500000180 000.0XX 20000401
44 0100001278 U 11.400 2 00050400.00000502316.080.000000 195503012014020100495.270.500000180 000.0XxX 19930801
45 D100001280 uy 08.300 2 D0069000.0000067470.490.000000 199503082019020800590.100.500000240 000.0XX 19991008
46 01000012%¢ U 10.650 1 0005%200.0000055076.580.000000 195503032029020300547.870.500000260 000.0XxX 199310032
47 0100001238 uy 11.100 1 D0036000.0000035827.340.000000 199503262014022600345.560.500000180 000.0XX 20000426 -
< e | +
Normal text file length : 4,999,844 lines: 8,390 Ln:1 Col:1 Sel:0|0 Windows (CRLF) UTF-8 NS

54

11.1.3. Sample Excel File

A B T D E F
i@ Property_State §d parsed_deling B8 next_parsed_deling B4 count B4 sum({count) k4 prob K4
2 |NM Current 10126 1250583 0.008097
3 NV Current 47391 5709192 0.008301
4 |NY Current 107032 14070377 0.007607
5 |OH Current 63750 7692579 0.008287
6 OK Current 13239 1624456 0.00815
7 |CO Current Current 7260153 7551510 0.961417
g |CT Current Current 3461173 3618822 0.956436
9 |DC Current Current 1008370 1047950 0.962231
10 [DE Current Current 806572 841475 0.958522
11 |FL Current Current 27036298 28251191 0.956997
12 (5D Current Current 161429 168511 0.957973
13 [TM Current Current 3910676 4102323 0.953283
14 |TX Current Current 18825996 19629740 0.959055
15 |UT Current Current 2236941 2344673 0.954052
16 VA Current Current 9201570 9575425 0.900957
17 (VI Current Current 18295 18923 0.966813
18 OR Current Delinguent 50637 3743571 0.013526
19 PA Current Delinguent 186399 7799861 0.023898
20 (PR Current Delinguent 27496 1863525 0.014755
21 |RI Current Delinquent 22485 958326 0.023463
22 |5C Current Delinguent 72812 3698968 0.019684
23 |5D Current Delinguent 2979 168511 0.017678
24 |ND Current SeriouslyDelinquent 101 136512 7.40E-04
25 |ME Current SeriouslyDelinquent 822 636168 0.001252
26 |MH Current SeriouslyDelinquent 1187 1024531 0.001159
27 [N Current SeriouslyDelinquent 6300 8104469 7.77E-04
28 |NM Current SeriouslyDelinquent 798 1250583 6.38E-04
29 MM Current Terminated 65747 4405246 0.014925
20 MO Current Terminated 54125 3774341 0.0143238
31 (M5 Current Terminated 10898 1166868 0.00934
32 |MT Current Terminated 6365 381526 0.01799%4
33 |NC Current Terminated 91565 6974936 0.013128
34 |NY Current Terminated 157297 14070377 0.014022

55

11.2. RecurShelfDownload

def RecurShelfDownload (browser, shelves processed, download limit):
This function exists because Selenium's DOM becomes stale as soon as
the page changes.
In order to keep track of the running list of which shelves we've
visited, this function iterates recursively rather
than through a normal loop. This allows us to refresh the DOM each
time the function is caused.
It will also automatically dismiss any popups that it encounters.
shelves = browser.find by text("Shelf Documents")
if len(shelves) == len(shelves processed):
return
if download limit is not None:
#user has placed an arbitrary limit on the number of files that
can be downloaded
if len(shelves processed) >= download limit:
print ("Stopping download as the script has reached the
download limit of " + str(download limit))
return
for shelf in shelves:
if shelf['href'] in shelves processed:
continue
shelves processed.append(shelf['href'])
shelf.click ()
try:
checkboxes = browser.find by id('documentChkBx')
checkboxes.first.check()
except:
#We use this catch-all exception here because some shelves are terminated
#This can cause errors in Splinter that manifest in a variety of
#unpredictable ways, so we catch all exceptions to reduce the likelihood
of #failed ingestion.
print ("Skipping suspected terminated shelf")
try:
There is no common sense ordering of shelf files, so we will
download them all and filter them later.
Most of the files are negligible in size.
browser.find by name('zip') .first.click()
browser.back ()
except UnexpectedAlertPresentException:
alert = browser.get alert()
alert.dismiss ()
browser.back ()
except ElementDoesNotExist:
print ("ERROR: no zip button found!")
browser.back ()
print ("Shelves processed: " + str(shelves processed))
break
#Selenium invalidates any objects that are in the DOM, so we really
#only want the first entry that we have not already computed- hence break
after the first iteration.
RecurShelfDownload (browser, shelves processed, download limit)

56

11.3. Unzipper

def execute unzip(rootDirectory, outputDirectory):

Unzips all file in rootDirectory and places their output in
outputDirectory.
mmrn
file count = 0
for root, dirs, files in os.walk(rootDirectory):
for file in files:
path = os.path.join(root, file)
print ("Now extracting: " + file)
print ('target path: ' + path)
print ("File count " + str(file count))
if zipfile.is zipfile(path):
zip ref = zipfile.ZipFile(path, 'xr'")
ensure it does not exist already, 1if so, skip
infolist = zip ref.infolist ()
for info in infolist:
if os.path.exists(os.path.join(root, info.filename)):
print ("File " + info.filename + " exists and
therefore will be skipped during processing.")
zip ref.close()
continue
zip ref.extractall (outputDirectory)
zip ref.close()
file count += 1
print ("Extraction complete.")

57

11.4. Shelf file processor

def process single line(inputLine, dt, shelfname):
This function parses a line of the arbitrary Wells Fargo Collateral File.
You can find more information about the format on CTSLink under

Additional Services --> File Layouts
line = "{:<1063}".format (inputlLine) # pad to max length with whitespace
out = {}
metadata from filename
out['shelfname'] = shelfname # the shelfname from CMSLink
out['shelf date'] = dt.strftime ("%$¥%m%d") # the datettime this loanmonth
is for
out['shelf month'] = dt.strftime ("%m")
out['shelf year'] = dt.strftime ("%Y")
Raw positional formatting
out['Loan Number'] = line[0:12]
out['Property Type Code'] = line[12:14]
out ['Owner_ Occupied Code'] = line[14]
out['Purpose Code'] = line[15:17]
out['Leasehold ID'] = line[l7]
out['Account or Note Type Code'] = line[18:20]
out ['No_Ratio ID'] = line[20]
out['Current Interest Rate'] = line[21:27]
out['Investor ID'] = line[27:31]
out['Pool Number'] = line[30:32]
out['Original Balance'] = line[32:43]
out ['Ending Scheduled Balance'] = line[43:54]
out['Fixed Retained Yield Rate'] = line[54:62]
out ['Foreign National Code'] = line[62]
out['First_ Payment Date'] = line[63:71]
out['Maturity Date'] = line[71:79]
out['Current PI Constant'] = 1ine[79:87]
out['Servicing Fee'] = 1line[87:95]
out['Original Term in months'] = 1ine[95:98]
out ['Foreclosure Bankruptcy REO Indicator'] = 1ine[98:100]
out['Original LTV Ratio'] = 1ine[100:105]
out['Property State'] = 1ine[105:107]
out ['ECS_Score Version'] = line[107]
out ['ECS_Score Raw'] = line[108:114]
out ['ECS_Score Code'] = line[114:116]
out ['Next Due Date'] = line[116:124]
out ['Adjustable Rate Mortgage ARM Indicator'] = line[124]
out['Program Code'] = line[125:127]
out['Credit Grade'] = line[127:129]
out['Channel Code'] = line[129:132]
out['Relocation_Indicator'] = line[132]
out['Balloon Indicator'] = line[133]
out['Lien Status'] = line[134]
out['Original Appraisal Value'] = line[135:146]
out ['Prepayment Penalty Indicator'] = line[146:149]
out['Interest_Collection Code'] = line[149]
out['Original Interest Rate'] = 1line[150:156]
out['Index Code'] = line[156:158]
out['Margin'] = 1ine[158:163]

58

out ['Next Interest Rate Change Date'] = line[163:171]
out ['Next Payment Change Date'] = 1line[171:179]

out ['Interest Rate Adjustment Frequency'] = line[179:182]
out ['Payment Adjustment Frequency'] = 1line[182:185]
out['Periodic_Rate Cap'] = 1line[185:190]
out['Periodic_Payment Cap Percentage'] = 1ine[190:196]
out['Life Maximum Interest Rate Ceiling'] = 1ine[196:202]
out['Llfetime_Rate_Floor'] = 1ine[202:208]

out['Issue PI'] = 1line[208:216]

out['Original Index Value'] = line[216:222]

out ['Negative_| Amortlzatlon Code'] = line[222]
out['Interest Rate_at] Next Reset Date'] = 1line[223:229]
out ["ARM Convertlblllty Code'] = llne[229]
out['Property City'] = llne[287.298]

out['Property Zip Code'] = 1ine[298:303]

out ['PMI Insurer Code'] = line[311:313]
out['Orlglnatlon Date or Note Date'] = line[313:321]
out ['FICO_Raw_Score_] Number'] = 1ine[321:325]

out[' roduct_Type_Code] = line[325:328]

Oout['CLTV'] = 1ine[328:334]

out['Sale Balance'] = line[334:345]

out ['Document Type Code'] = line[345:347]
out['Issue_Year'] = line[347:351]

out['Series'] = 1line[351:354]

out['Loss_on_Liquidated Property'] = line[354:365]
out['Actual Current Balance'] = line[365:376]
out['Prepayments_in Full'] = 1line[376:387]
out['Partial Prepayments'] = 1ine[387:398]
out['Paid_in Full Effective Date'] = 1ine[398:406]
out['Issuer TIdentification'] = line[406:414]
out['Servicer Number'] = line[414:420]
out['Master_Servicing Fee'] = line[420:428]
out['Trustee Fee'] = 1ine[428:436]

out['Pool Insurance Fee'] = line[436:444]

out['Special Hazard Fee'] = line[444:452]

out['Spread 1 _Fee'] = line[452:460]

out['Spread 2 _Fee'] = line[460:468]

out['Property County'] = 1ine[468:486]

out ['Mortgagor Employer Name'] = 1line[486:511]
out['Subsidy Code'] = line[511:517]

out ['LEX Lender Identification'] = line[517:522]
out['Client ¢ Code Identification'] = 1line[522:527]
out['Senior_: Lien'] = 1ine[539:550]

out['Certificate Administration Fee'] = 1ine[550:558]
ocout['Paid Off Remittance Cycle'] = line[558:564]

out[' epurchase Date'] = line[564:572]
out['Substltuted_Loan_Number'] = line[572:584]
out['Remittance Cycle'] = 1ine[584:590]

out['Pledged Asset Mortgage Indicator'] = 1line[590]
out['Group ID'] = 1ine[591:593]

out['Current FICO Score Nbr'] = 1ine[593:597]

out ['Prepayment | Penalty Amount'] = 1ine[597:609]

out ['Prepayment Penalty Waived Amount'] = 1line[609:621]
out['Modification Date'] = llne[621 629]
out['Substitution Date'] = 1line[629:637]
out['Issuance Balance'] = line[637:649]

out['Losses_on_ Previously Liquidated Loans'] = 1line[649:661]

59

out['Servicer Name'] = line[661:761]

out['Arm Rate Life Cap'] = line[761:768]

out['Arm Negative Amortization Cap'] = line[768:776]
out['Arm Round Factor'] = line[776:783]

out['Arm Teaser Period'] = line[783:786]

out['Pay Teaser Period'] = line[786:789]

out ['Number of Arm Look Back Days'] = 1line[789:792]
out['Interest_Only Original Term'] = 1line[792:795]
out['Originator Name'] = 1ine[795:895]

out['Interest Forgiveness Amount'] = 1ine[895:906]

out ['Expense_Forgiveness Amount'] = 1ine[906:917]
out['Principal Forgiveness Amount'] = 1ine[917:928]

out['Total Capitalized Amount'] = 1ine[928:939]

out['Balloon Date'] = 1ine[939:947]
out['Balloon Payment Amount'] = 1line[947:958]

out['Modified Next Payment Adjust Date'] = 1ine[958:966]
out['Modified Next Interest Rate Adjust Date'] = 1ine[966:974]
out['ARM_to_leed_Conver51on] = 1ine[974]

out['Fixed_to_ ARM Conversion'] = 1line[975]

out['IO_to Fully Amortized Conversion'] = 1ine[976]
out['Fully Amortized to_ IO Conversion'] = 1ine[977]

out ['Segmentation'] = llne[978 984]

out ['Temporary Modification'] = line[984]

out ['Ending Scheduled Interest Bearing Balance'] = 1ine[985:996]
out['Ending Actual__ Interest . Bearing Balance'] = 1ine[996:1007]
out ['Ending . Scheduled TDO Balance'] = 1line[1007:1018]
out['Endlng_Actual_IDO_Balance] = 1ine[1018:1029]
out['Non_Interest Bearing Deferred Principal Bal'] = 1ine[1029:1040]

out['Principal Reduction_Alternative_ Forbearance_ Balance'] =
1ine[1040:1051]
out['Non_ Interest Bearing Treatment Methodology'] = 1ine[1051:1061]

60

