

MAD-1802

Estimation of a Plume with an Unmanned Terrestrial Vehicle

A Major Qualifying Project
Submitted to the Faculty of the

WORCESTER POLYTECHNIC INSTITUTE
in Partial Fulfillment of the Requirements for the

Degree of Bachelor of Science
in Aerospace Engineering

By

Sylvester Halama

Spiridon Kasapis

Marios Kontopyrgos

Owen McGrath

Benjamin Preston

March 2, 2018

Approved by:
Prof. Michael A. Demetriou

Aerospace Engineering Program,
Mechanical Engineering Department, WPI

Abstract

This work involves the design and implementation of a gas-sensing mobile robot

as an experimental tool to localize a carbon dioxide source. The autonomous

robot achieves navigation through an embedded microcontroller using a strap-down

accelerometer and a fusion of four CO2 sensors. A mass flow controller and di↵user

are used to dependably generate a plume that simulates a point source. A base station

receives sensor data and calculates the robot’s position using the accelerometer data

filtered using a low pass filter followed an Extended Kalman Filter. This method

has applicability for unmanned vehicles tracking emissions of contaminants and their

e↵ects in the environment.

This report represents the work of WPI undergraduate students submitted to the faculty as evidence of completion of a degree

requirement. WPI routinely publishes these reports on its website without editorial or peer review. For more information about the

projects program at WPI, please see http://www.wpi.edu/academics/ugradstudies/project-learning.html

i

Acknowledgements

We would like to thank certain individuals for their continued help throughout
this project, which would not have been possible without them. We would first like
to thank our advisor Professor Demetriou for his guidance throughout this project.
We would also like to thank Professor Gatsonis for his help on the plume generation
system and plume simulations. Lastly, we would like to thank the Mechanical and
Aerospace Engineering Department stu↵ and more specifically Erica Stults, Barbara
Furnham and Randy Robinson for their logistical assistance.

ii

Table of Authorship
Section Primary Author Project Work

Introduction

Project Motivation SH, BP ALL
Overview of Earlier Relevant MQPs SH, BP ALL

Robot

Previous Robot BP ALL
New Robot BP, OM ALL
Sensor Platform Design SK SK
Structural Stability Simulation SK SK, SH, BP
Base Station OM OM
Camera Incorporation MK, OM OM, MK
Wireless Communication OM OM
CO2 Sensors OM, BP OM, SH
CO2 Sensor Calibration OM OM
IMU and Vibration Damping BP, SK BP, SK

Dynamics and Controls

Kinematic Equations SK ALL
Simulink Control Simulation SK ALL
Controller SH SH
Noise in the Simulation SH SH, MK
Dynamic Model OM, SK ALL
Extended Kalman Filter SK, OM OM, MK
Complete Control Diagram SH, MK SH, MK
Low Pass Filter SH SH

Plume Generation System

Flow Meter MK MK, SH
Solenoid Control SH MK, SH
LabVIEW Program MK MK
Point Source Simulation SK SK, OM, MK, BP
Plume Simulation SH MK, SH

Future Work and Suggestions

Interpolation BP, SK BP, SK
Budgeting SK SK
Hardware OM OM

Results and Conclusion

Filtering Results SH, MK OM, MK, SH
Spatial Gradient Based Guidance MK ALL
Project Conclusion SH, BP ALL

Appendices

Appendix A OM, MK, SH OM, MK, SH
Appendix B OM, BP ALL
Appendix C OM OM
Appendix D SK SK
Paper Editing SK, BP SK, BP

iii

Contents

1 Introduction . 1
1.1 Project Motivation . 1
1.2 Overview of Earlier Relevant MQPs . 1

2 Robot . 3
2.1 Previous Robots . 3
2.2 New Robot . 5
2.3 Sensor Platform Design . 7
2.4 Structural Stability Simulations . 9
2.5 Base Station . 13
2.6 Wireless Communication . 14
2.7 CO2 Sensors . 15
2.8 CO2 Sensor Calibration . 17
2.9 IMU and Vibration Damping . 17

3 Dynamics and Controls . 19
3.1 Kinematic Equations . 19
3.2 Simulink Control Simulation . 19
3.3 Controller . 21
3.4 Noise in the simulation . 22
3.5 Dynamic Model . 23
3.6 Extended Kalman Filter . 23
3.7 Complete Control Diagram . 26
3.8 Low Pass Filter . 27

4 Plume Generation System . 30
4.1 Flow meter . 30
4.2 Solenoid control . 30
4.3 LabVIEW Program . 31
4.4 Point Source Simulation . 32
4.5 Plume Simulations . 32

5 Future Work and Suggestions . 34
5.1 Interpolation . 34
5.2 Budgeting . 35
5.3 Hardware . 36

6 Results & Conclusions . 37
6.1 Filtering Results . 37
6.2 Spatial Gradient Based Guidance . 38
6.3 Project Conclusion . 39

A Code Appendix . 41
A.1 Robot Controller Code . 41
A.2 Kalman Filter Algorithm . 42
A.3 Robot Arduino Mega Code . 43
A.4 Base Station Python Code . 55

B Robot Wiring Diagram . 59
C Connecting Xbee Modules in XCTU Software [11] . 60
D Cost Breakdown . 62
E LabView Operation . 63

iv

List of Figures

1 Khepera IV & iRobot Create 2 Comparison. [14] [16] 4
2 Dagu Wild Thumper Robot. [21] . 5
3 Dagu Wild Thumper Robot Underside. [21] . 5
4 Wheel Motor with Encoder and Wired Connections. [21] 6
5 Wheel Motor Casing. [21] . 6
6 Arduino Mega. [3] . 6
7 Pololu Simple Motor Controller. [23] . 6
8 Xbee Series 1. [11] . 7
9 Adafruit BNO055 IMU. [1] . 7
10 Three views of the Sensors’ Stand Design on top of Robot. 8
11 Three views of the Sensors’ Stand Design on top of Rudolf. 9
12 The CoM for the Entire Robot (left) and the CoM of the Sensor Stand Only (right). . 9
13 Simulation of Loads on the Edges of the Cross Section of the Design. 10
14 Simulation of acceleration forces on the bottom part of the design. The Left is for 4G

and the right is for 0.5G accelerations. 10
15 Solidworks Simulation for an Acceleration of 0.5G. 11
16 Assembled Robot . 12
17 April Tag Detection Monitor . 14
18 Wireless Communication Between the Robot and Base Station 15
19 COZIR Ambient 10k ppm. [7] . 15
20 SprintIR WR 20%. [9] . 15
21 SprintIR WR 20% CO2 Sensor. 16
22 Simulink Block Diagram Representation of the Kinematic Equations (1). 20
23 Simulink Block Diagram Representation of the Kinematic Equations (2). 21
24 Simulink Controller Block Diagram. 22
25 Noise Introduced in the Simulink Model. 22
26 Feedback Loop of the Robot. 23
27 Complete Robot Control Diagram. 26
28 Reponse of a Butterworth Filter. [19] . 27
29 FFT of X Acceleration. 28
30 FFT of Y Acceleration. 28
31 FFT of ✓ Acceleration. 28
32 Schematic Used to Control the Solenoid. 31
33 LabVIEW Block Diagram. 31
34 Old Di↵user. 32
35 New Di↵user. 32
36 Concentration Along X-Axis. 33
37 Concentration Along Y-Axis. 33
38 Concentration Along Z-Axis for a Specified x and y. 33
39 The Robot Trajectory (Actual and Filtered). 37
40 Plume Source Localization Using the Gradient Method. 38
41 XBee Add Device Icon . 60
42 XBee Console Icon and Link Icon . 61
43 LabVIEW Front Panel Diagram. 63

v

List of Tables

2.1 Sensor Stands Comparison. 8
D.2 Project Cost Breakdown . 62

vi

1 Introduction

1.1 Project Motivation

Many gases exist that, when released, can be extremely harmful to humans as well as
di�cult to detect. While detection of the presence of these harmful gases is paramount
in preventing danger to humans, it is also vitally important to be able to map these
plumes of these gas. This mapping allows for their location, size, and movement to
be tracked and predicted.

Previous groups of students at Worcester Polytechnic Institute (WPI) have worked
to make this concept a reality by attempting to test the e↵ectiveness of an algorithm
created to map gas plumes. These groups have moved towards creating an assembly
that can generate plumes of gas in a controlled environment as well as a system
to prove the concept of the plume mapping theory. This proof of concept has been
performed using a wireless autonomous land-based robot, communicating with a base
station to sense, locate, and map the gas plumes.

This group aimed to improve and build upon the e↵orts of the previous students so
that we may prove the concept and be able to e↵ectively generate, locate, and map a
plume of gas in a controlled environment. The plume generation will be accomplished
using a refined version of the system used in previous projects and the locating and
mapping will be done by a new robot and updated base station.

1.2 Overview of Earlier Relevant MQPs

The plume MQP has seen many iterations beginning with di↵erent teams working on
di↵erent parts of the overall project. This project began by looking at past MQPs
to determine the steps previous teams took in order to further advance this project.
We used their reports to gain a firm understanding of the project and to understand
what needs to be improved.

MAD1501

In this project, the team began by deciding on the robot that would best suite the
needs of tracking a gas plume. The team decided on using a Kephera IV because of
its small size (13cm in diameter and 7cm in height) along with multitude of on-board
proximity sensors including an accelerometer and a gyroscope. For the gas sensor,
the team chose the COZIR Ambient 10K CO2 Sensor. This sensor was chosen for its
low power consumption, low response time, high accuracy, measurement range, and
measurement frequency. Next, the team researched wind sensors, but were unable
to find a practical sensor for the project, that being an accurate 360 degree sensor
for a reasonable price given the project budget. The team then designed and cut a
structure to hold the CO2 sensors. Focusing on the need for a light-weight structure

1

that was easy to manufacture, the team decided to use acrylic as the main build
material. [2]

NAG1501

This team was tasked with finding an appropriate gas and optimal flow rates. The
team chose carbon dioxide as the gas to be used in the project because of its low risk
factor, low cost, and ease of acquisition and refill. Using simulations of the di↵usivity
equation, the team found that flow rates between 100 and 500 milligrams per second
were the best options for the experiment. [6]

MAD1601

This team created the kinematic and dynamic equations that were to be used for
the guidance and navigation of the robot. Sensor noise represents a significant source
of error and needs to be accounted for. As such, the team also worked to linearize
the kinematic and dynamic models in order to apply an Extended Kalman Filter to
the guidance system. The team designed and fabricated a new mount for the four
CO2 sensors along with a new electronic shelf to house components. These additions
were mounted on top of the Kephera IV robot. [5]

NAG1602

This team created new simulations to confirm the results of past teams. They
found that mass flow rates between 500 and 700 milligrams per second would be
most e↵ective, as opposed to the earlier results of 100 to 500 milligrams per second.
The team bought a Sierra SmartTrak C100L mass flow controller and a Modern
Devices Wind Sensor to improve the gas plume generation and prepare for mobile
plume testing. They created a LabView program to control the plume generation
system, read CO2 sensor data, and read wind speed and temperature data. However,
the wind sensor was of a lower quality than would be necessary for successful and
accurate mobile plume mapping. [4]

MAD1702

This team bought a new robot, the iRobot Create 2, to replace the Kephera IV
robot. This decision was made because of the greater dynamic stability of the iRobot
Create 2 due to its wider base. The iRobot Create 2 had an inertial measurement unit,
a Raspberry Pi, and a Teensy 3.5 board installed to measure acceleration, perform
computations, and read sensor data respectively. Additionally, the team formulated a
new Extended Kalman Filter for the new robot. The team also put together the plume
generation system. Using a pressure regulator, a solenoid, a mass flow controller, and
di↵user, they were able to accurately control the flow of CO2. [12]

2

2 Robot

The robot makes up the mobile portion of the experimental set up. This unit holds
gas sensors to determine plume strength and find the highest concentration of gas in
an area. As such, the robot needs to be a mobile, yet stable, platform from which gas
sensors can be mounted so that they can move and indicate a gas plume’s location.
The robot base must hold not only the gas sensors, but also a power source, location
sensors, and a method to communicate with the base station.

2.1 Previous Robots

As noted in the Past MQP Overviews section, the earliest groups working on this
problem used the Khepera IV robot as the base of their mobile unit. This robot
was chosen for its high quality and inclusion of a wide array of features such as
ultrasonic distance sensors, omni-directional infrared (IR) distance sensors, wheel
encoders, on-board inertial measurement unit (IMU), and embedded Linux controller.
However, not all of these sensors could be used due to the size of the tower created
to mount the gas sensors. For instance, the tower’s arms stretched further from
the Khepera IV than the short-range IR sensors could reach. This fact renders them
useless as the arms would crash into any obstacle or wall before the sensors would know
there was an obstruction there. Additionally, other sensors such as the ultrasonic
long-range distance sensors were described by previous groups as unreliable and thus
unusable. Finally, the Khepera IV is only 14 centimeters in diameter and only weighs
540 grams. [16] As the earlier groups found out, this extremely small base contributed
to a very unstable ground unit. The center of gravity of the assembly was located
far above the robot itself thus allowing for a significant swaying action of the tower
when the robot moved.

For these reasons, last year’s group decided to change the base robot and move
away from the Khepera IV, in favor of the iRobot Create 2. Shown in Figure 1, this
robot has a much wider and heavier base than the Khepera IV. This base lowered the
center of gravity and contributed to a more stable robot assembly. However, while
the iRobot Create 2 has wheel encoders, it does not have any of the other sensors the
previous robot had or an embedded Linux controller. The last group needed to make
up for this fact by mounting a 9 Degree of Freedom IMU on the robot and relying on
the wheel encoders more for location measurements.

3

Figure 1: Khepera IV & iRobot Create 2 Comparison. [14] [16]

Additionally, while this robot provided for a more stable base than the Khepera
IV, it still su↵ered from swaying of the tower during movement due to the heavy
weight of the tower and the natural motion of the iRobot Create 2. This swaying
represents a significant problem as it adds noise to the gas sensor measurements as
well as the risk that the tower or assembly falls apart due to the inertial forces exerted
on them. The iRobot Create 2 was also in poor condition due to the modifications
that the previous group had needed to make to it. For instance, the tray section of
the robot that held the IMU and other components was supported with duct tape
and supports of the gas sensor tower needed to be removed as they were too heavy.

While both of the previously used robots have strengths, each has a number of
weakness as well due simply to their base design. As a result of these short-comings,
our group decided that a new robot should be purchased for the project. We wanted
to find a robot with strong aspects such as a stable wheel configuration, weight of
at least 1.5 kilograms, a center of gravity located low on the robot’s z-axis, existing
sensors or IMUs, etc. However, rather than find a robot with most of these attributes
and then try to work around its weaknesses, our group decided to find a sturdy and
stable base that could be easily customized and added to. This search lead us to the
Dagu Wild Thumper 4WD All-Terrain Chasis.

4

2.2 New Robot

The Dagu Wild Thumper 4WD All-Terrain Chasis (Wild Thumper) was the base
robot selected for the current project as it fit the description of what was necessary
(shown in Figure 2, and Figure 3 below). This robot without any additions weighs 1.9
kilograms and is 28 centimeters by 30 centimeters when the wheels are attached. It
consists of 2 millimeter thick anodized aluminum plate with 4 millimeter holes every
10 millimeters. This design provides for strength and stability while also allowing
for ease in modifying and attaching accessories or other devices to the robot. The
Wild Thumper also has four separate motors, one motor with a 75:1 gearbox for each
wheel. This motor gearbox combination can reach a top speed of about 2 miles per
hour. As will be shown in the next section, the weight and low-laying design of the
robot is ideal for our gas sensor tower design in that it contributes a low center of
gravity for the entire assembly and a solid base to mount the stand from. [21]

Figure 2: Dagu Wild Thumper Robot. [21]
Figure 3: Dagu Wild Thumper Robot
Underside. [21]

In terms of additional accessories and modifications for the robot, the design
allowed for easy alterations to meet the needs of the group. For instance, the wheel
motors that come standard on the Wild Thumper do not have encoders, which are
vital for the robot to understand its location. As such, the group purchased wheel
motors with a 75:1 gearbox that also had encoders. The modification for switching
these motors with the existing ones was fairly simple in that all the group did was
sever the connections from the existing motors to the robot, remove them from the
motor housing and then replace them with the new motors and connect them to the
robot (seen below in Figures 4 and 5).

5

Figure 4: Wheel Motor with Encoder and
Wired Connections. [21] Figure 5: Wheel Motor Casing. [21]

In addition to replacing the wheel motors, the group also needed to add computing
and controller elements to the robot so that it was able to function autonomously and
communicate with the base station. The robot is using an Arduino Mega (Arduino),
seen in Figure 6, as it has enough pin locations to handle the inputs of the IMU, 4
motor encoders, 2 motor controllers, Xbee, battery, and 4 gas sensors. The motor
controllers being used are Pololu Simple Motor Controllers 18v7, seen in Figure 7.
Each of these is paired with two of the wheel motors on the Wild Thumper. This
setup was arranged so that one board was controlling a single side of the robot and
the other board the other side. For instance, one controls the left front and left rear
wheel motors while the other controls the right front and right rear motors. This
setup will contribute to the di↵erential method of steering used by the robot, which
will be discussed in a later section.

Figure 6: Arduino Mega. [3]
Figure 7: Pololu Simple Motor Controller.
[23]

In order to communicate with the base station, the robot uses the Xbee Series 1
(Xbee), seen in Figure 8 as the group chose to not use the Raspberry Pi the previous

6

groups had. The Xbee was chosen as it has the ability to send and receive data over a
wireless connection. As the Extended Kalman Filter’s computations are carried out
on the base station, values from the IMU (shown in Figure 9) are sent over Wifi. This
will be discussed further in Section 2.6. The complex and numerous wired connections
between all of these devices can be found in Appendix B.

Figure 8: Xbee Series 1. [11] Figure 9: Adafruit BNO055 IMU. [1]

This new robot, coupled with the modifications and additions made to it during
this project, allowed for the minimization of the problems that previous groups have
experienced as a result of their base robot. The final physical piece of the robot
assembly is that of the sensor stand and the addition of gas sensors.

2.3 Sensor Platform Design

In order for the robot to carry the CO2 sensors, the previous years’ teams designed
cross-like sensor stands which were attached to the robot. The sensor stand was
designed in this manner so as to keep the sensors at a distance from the ground to
avoid the floor bias or plume recirculation close to the ground. The length of the cross
design was chosen to keep the sensors apart from each other so that their readings
are independent.The old designs included an array of four CO2 COZIRTM that were
arranged in a cross. The design depicted in this figure is a machined metal plate
made out of Aluminum. Due to the high material density of 2800kg/m3 the design
was relatively heavy, especially the aluminum cross, which elevates the center of mass
of the structure and makes the robot oscillate in movement.

To counteract this e↵ect, the current team designed a new structure made
completely out of acrylonitrile butadiene styrene (ABS plastic), which has a density
of 1500kg/m3. The stand that is depicted in Figure 10 was designed so that it has a
reduced weight while being strong enough to support the sensors. It also contributes
to a very low center of mass, lowering the oscillation of the robot.

In order for the stand to be able to be 3D printed, the design was split into 3

7

Figure 10: Three views of the Sensors’ Stand Design on top of Robot.

sections, the bottom half, the top half and the upper extensions where the sensors
will be placed. The specifications of the new sensor stand are included in the table
below along with a comparison with the old MQP’s design.

MAD 1701 New Design % Increase/Decrease
Total Weight 1 kg 0.642 kg -36%
Total Height 0.5 m 0.45 m -10%
CoM Height 0.36 m 0.22 m -39%

Sensors’ Distance 0.5 m 0.55 m +10%

Table 2.1: Sensor Stands Comparison.

As shown in the table, there is a significant decrease (-36%) in total weight of the
structure and the center of mass is shifted downwards (-39%). This design makes the
robot much more stable and greatly reduces oscillation resulting from the previous
top-heavy stand. The sensors’ distances were increased slightly to make sure that
the readings are independent from one another. The only drawback of the design
is a slight (-10%) decrease in the height of the structure, which will not a↵ect the
experiment as our new robot is taller so it will make up for this small height loss.

Below are detailed sketches of the robot including the sensor stand. Figure 11
shows the dimensions of the whole structure including the robot and Figure 12 shows
the centers of mass (CoM) of the sensor stand and the entire robot. We additionally
have to take into account that the total CoM will be shifted slightly due to the
instillation of the circuit boards and sensors. The change however, is insignificant
dynamic analysis continued to be accurate.

Before proceeding to 3D Printing the stand, the group ran some SolidWorks
simulations to verify that the design meet the necessary requirements.

8

Figure 11: Three views of the Sensors’ Stand Design on top of Rudolf.

Figure 12: The CoM for the Entire Robot (left) and the CoM of the Sensor Stand Only
(right).

2.4 Structural Stability Simulations

The structural stability simulations were run on SolidWorks’ Structural Analysis
Software. By defining the material that is going to be used to 3D Print the sensor
stand parts the group was able to first simulate the stresses on the edges of cross
that makes up the upper portion of the stand. Loads of 70 grams were placed in the
simulator where the sensors are attached as shown in Figure 13.

The simulation showed that the stresses are insignificant (nothing close to fracture

9

Figure 13: Simulation of Loads on the Edges of the Cross Section of the Design.

toughness) and the deflection at the edge of the design is at maximum 3mm,
which is insignificant. Here it is important to note that a single sensor’s weight
is approximately 20 grams and not 70 grams as was input in the simulation, thus
there is certainty that the design is strong and will not deflect in reality.

The second test conducted was an acceleration test. The previous teams reported
that when the robot accelerated (started moving or was slowing down) the stand
was very likely to oscillate. Using Solidworks, a force was applied equivalent to an
acceleration of 4G’s to the very bottom part of the structure as shown on the left
part of Figure 14.

Figure 14: Simulation of acceleration forces on the bottom part of the design. The Left is
for 4G and the right is for 0.5G accelerations.

The deflection of the top section was approximately 1mm, which is insignificant
but still present as shown in the left picture (top part slightly tilted on the left). Yet
again, the structure will never accelerate at a value near 4G, so the same test was

10

run for 0.5G (still a large value for the project’s application). For the second test the
deflection was insignificant as observable on the right section of Figure 14.

Lastly, the group conducted one more simulation for the acceleration. For this test
the Accerelation Simulation Tool that Solidworks has was used. As shown in Figure
15 the stresses are insignificant for most of the structure (some barely observable
on the middle part) and the deflection is again insignificant (not observable) for an
acceleration of 0.5G.

Figure 15: Solidworks Simulation for an Acceleration of 0.5G.

Here it is important to note that these simulations were run only for the stand
itself and not the robot. These simulations show that the new stand is a much more
well thought out design than the ones used by the previous MQP teams for the reasons
discussed in the previous section.

11

Figure 16: Assembled Robot

The team proceeded to 3D Print this design after performing the successful
simulations described above and gaining approval from Dr. Demetriou. The printer
used was a Dimension SST 1200es at Higgins labs, WPI, a high quality printer with
a precision of 0.006 in. The printing was accomplished over three days (one day for
each of the three parts) and another day was used to dissolve the supporting material.
A small change was made between the original design and the final print. Instead of
printing a solid base for the top section, the piece was split into two smaller parts
vertically which omitted some of the plastic used on the base. This alteration was

12

made to ensure a safer printing process that would not fail in addition to reducing
the plastic used. This alteration additionally lowered the weight of the stand. The
structural integrity of the printed design was proven through the same simulations
as the previous design. The outcome was satisfactory and as rigid as expected. In
Figure ?? we can see the entire robot assembly including the base robot, the 3-D
printed sensor stand (white), the CO2 sensors attached on top and the wiring that
goes down and into the body of the robot where the arduino is located. Here it is
important to note that the device attached on the very center of the base platform is
the IMU, which will be discussed further in Section 2.9.

2.5 Base Station

In order to command both the robot and the plume generation system a ”Base
Station” computer was devised. Previous MQP teams used a Ubuntu Linux desktop
as it is the most advantageous operating system for programming. Unfortunately
this posed many issues as WPI could not provide licensing for LabV iewTM on Linux.
These issues prompted a reconfiguration of the base station.

The new base station runs the Windows 7TM operating system as it is the most
compatible with any software. It has LabV iewTM installed for the plume generation,
MatlabTM installed for plume modeling, and a UbuntuTM Virtual Machine to run
the Camera Trajectory Sensing. A wireless dongle is connected to the computer to
connect to the Robot’s Router onboard. This allows for data transfer between the
robot and the base station.

To verify that the Extended Kalman filter is outputting accurate results, a camera
was mounted to the ceiling facing downwards to record the pose and position of
the robot at every frame. This was done by the previous MQP teams because the
previous year’s Kalman Filters would not work, therefore the robot had to somehow be
located. In the case of the MAD 1702 MQP, the camera was mostly used to calibrate
the already working Kalman Filter and compare its precision. [12] The plot of the
trajectory output from the camera can be compared with the plot of the trajectory
output of the Extended Kalman Filter to check its accuracy. Trajectory is plotted
using MIT’s AprilTag Library. Tag 36h11 (similar to a QR code) was printed on
a paper and mounted on top of the robot directly in the center of the CO2 Sensor
Stand. In order to calculate the area of the experimentation field the lens equation
was used,

A = 2 tan�1

✓
W

lens

2L
focal

◆
, (1)

where W
Lens

is the lens width and L
Focal

is the focal length. Lens width is defined
as the diameter of the camera’s lens actual length and the focal length the distance
from the lens to its focus. Using the above equation, as well as empirical data, the

13

dimensions of the camera’s field of view were determined. These calculations ensured
that an experiment was never done where the camera would not be able to collect
data.

Figure 17: April Tag Detection Monitor

2.6 Wireless Communication

As a Raspberry P iTM is no longer being used by the robot, an alternative wireless
communication method from the base station to the robot and back is necessary. A
convenient wireless communication hardware suitable for use with the Arduino Mega
is the Xbee Series 1 Wireless Module. [11] Two wireless Xbees can be configured with
a one time installation of firmware (See Appendix C) and become treated as a wireless
serial connection. This setup is especially advantageous for this application because
it allow for the use of the PySerial library to easily parse information sent from the
Arduino Mega to the Base Station. Once the information is parsed, the data is fed
through the filters and a trajectory is outputted.

14

Figure 18: Wireless Communication Between the Robot and Base Station

2.7 CO
2

Sensors

One of the most important tasks of the robot will be to record CO2 concentration
data from the sensors so that it can both manipulate that data to determine its
next point to navigate to, as well as provide data for plume modeling on the base
station. Previous projects used the COZIRTM Ambient 10,000 ppm CO2 sensor,
seen below in Figure 19. However, in early experiments it became clear that these
sensors were inadequate for the needs of the project. The settling time, or time the
sensor needs to return to an ambient CO2 reading after a rise or fall in adjacent CO2

levels, was far to long. For the COZIRTM , the settling time is listed as between
30 seconds and 3 minutes. The group found the 3 minute bound to be the more
accurate estimation. This length of settling time prevented the running of a smooth
experiment as the robot would turn or change direction, only to continue turning the
same way instead of fixating on the CO2 source. The turning error resulted from the
saturation of the sensors and their inability to return to an ambient reading between
movements. As such, explored other possible sensors were explored, finally settling
on the SprintIRTM WR 20% CO2 Sensor in Figure 20.

Figure 19: COZIR Ambient 10k ppm. [7] Figure 20: SprintIR WR 20%. [9]

Not only does the SprintIRTM have a settling time of only four seconds, which
allowed for experiments to be performed smoothly, but also a higher capability
of CO2 sensing. As shown in Figure 21 where the two sensors responses are

15

compared, the Sprintir reads the CO2 concentration very fast and peaks at the
concentration, whereas the COZIR takes time to respond, and by the time it responds
the concentration has already been reduced significantly. The SprintIRTM can
sense up to 200,000 ppm while the COZIRTM could only sense up to 10,000 ppm.
Simulations have shown that near the plume generation system, CO2 levels can reach
85,000 ppm. Thus, these new sensors allow the experimentj to be performed extremely
close to the plume generation. Additionally, the sensor has the same pin inputs and
draws the same voltage from the system as the COZIRTM so no modification needed
to be made to the wiring, coding or power input. Last but not least, although the
SprintIRTM is more expensive as it costs $155, the cost di↵erence is not great and
the company that provides it is the same. As such, to substitute the COZIRTM

with the SprintIRTM sensors was a simple process and significantly improved our
experiment quality.

Figure 21: SprintIR WR 20% CO2 Sensor.

16

2.8 CO
2

Sensor Calibration

Similar to most measurement equipment, the CO2 sensors need to be regularly
calibrated in order to obtain accurate measurements of CO2 concentrations. Without
regular calibration before each experiment, it is impossible to obtain accurate results.
In order to calibrate, Github user Roder’s COZIR CO2 library is used. The sensors
are calibrated in fresh air for experiments in unknown concentrations. Fresh air
is estimated to have a CO2 concentration of 450ppm. This can be accomplished
by sending the serial command ”Grn”. The CO2 sensors also have an option for
calibration in a known CO2 concentration. This can be accomplished by sending
the serial command ”X#rn” where ”#” is the value in ppm of the known CO2

concentration. [8]

2.9 IMU and Vibration Damping

In previous sections it was noted that in order to locate our robot and find its position
accurately, a camera with an April-tag can be used. In real world applications though,
where the robot operates outside the lab or even outside the range of the camera, a
di↵erent method of tracking the exact position of the robot is required.

As is standard in many engineering controls applications, an Inertial Measurement
Unit (IMU) was used. An IMU is an electronic device that measures and reports a
body’s specific force and angular rate, using a combination of accelerometers and
gyroscopes. For our robot we are using an Adafruit BNO055 IMU similar to Figure
2.9, which we attached at the measured center of our robot’s body, seen in Figure ??.
The IMU needed to be attached at the center of the robot in order for the readings
to be as accurate as possible. It was also assumed that the center of mass is located
at the center of the robot as it is set up in such a manner that it is symmetric on
both x and y axis and the weight is distributed evenly between these axis.

While running our simulations, it came to our attention that the IMU readings
were very noisy. While the robot is moving the motors, as expected, cause vibrations.
These vibrations are carried throughout the entirety of the robot reaching the IMU
and causing it to vibrate as well. To obtain readings that are accurate, these vibrations
needed to either be eliminated or the noise from the measurements filtered out using
software which will be discussed on Section 3.4. The group decided to use both
methods to mitigate as much noise as possible.

In order to eliminate the vibrations, the group used Poron foam. This
material is made out of Polyurethane, which is a polymer known for its vibration
absorbing characteristics. A 12x12 inch, extra soft, wear-resistant and quick-recovery
Polyurethane foam sheet, which is half an inch thick, was purchased. A 3x2 inch
piece was then cut to fit it on top of the robot base platform. Although soft, it was
possible to screw the IMU on top of the Poron and then glue the foam on top of the
piece of wood initially screwed to on top of the robot (as seen in Figure ??). It was

17

important to make sure the screws did not go through the foam and touch the piece
of wood, as this would transmit vibrations to the IMU, making our damper useless.
In the future the excess foam that was purchased could be placed between the motors
and the robot body so that the system’s vibrations can further damped.

18

3 Dynamics and Controls

3.1 Kinematic Equations

To begin deriving the equations of motion that were used for the simulations, the
group had to identify what type of steering the robot would be using. The two
methods of steering are the Ackerman steering where the wheels of the vehicle are
able to turn (cars use this method) and di↵erential steering where the vehicle is being
turned due to a di↵erence in wheel speeds on one side of the vehicle compared to the
other. The Dagu Wild Thumper chosen as the base robot uses di↵erential steering,
thus the group used equations which involve di↵erent wheel velocities for the left pair
of wheels (V

L

) and the right pair of wheels (V
R

).
x can be defined as the x-axis position of the CoM of the Robot and y as the y-axis

position on the inertial frame so that ẋ is the velocity of the CoM in the x-direction
and ẏ the velocity of the CoM in the y-direction. Let be the heading of the vehicle
(angle between x-axis and its total velocity vector V

T

) such that:

ẋ =
V
L

+ V
R

2
cos , (2)

ẏ =
V
L

+ V
R

2
sin , (3)

 ̇ = �V
L

+ V
R

W
, (4)

where W is the width of the robot (the distance between the left and right
wheels). Note here that the cosine and sine on the equations above are transformation
parameters from body-centered coordinates to inertial coordinates.

3.2 Simulink Control Simulation

To simulate the control of the robot we used Simulink. The first step in doing so was
to create Simulink block diagrams of the equations derived above. For Equations 2
and 3 we created the following block diagram:

19

Figure 22: Simulink Block Diagram Representation of the Kinematic Equations (1).

The point of making the block diagram is to simulate the way the robot was going
function. The inputs that are going to be given in the real life experiment are V

L

and
V
R

, thus on the block diagrams these are the inputs. By adding them together, then
dividing them by two or the vehicle width and then multiplying them with cosine
and sine respectively, it is possible to reconstruct the equations derived in Section
3.1. Next, these are integrated (integration is the 1/s block) so that x, y and are
yielded as outputs.

The block diagram in Figure 22 will be referred to as Plant 1, which is what the
Robot will be doing. It will get the wheel velocities as inputs and then translate them
to x, y and outputs. These outputs will be read by the wheel encoders and the
IMU, devices which are subject to noise. To simulate the noise, the block diagram
depicted in Figure 23 was created.

20

Figure 23: Simulink Block Diagram Representation of the Kinematic Equations (2).

Shown in the figure above, the entire block diagram in Figure 22 is replaced
with the larger block named Plant. Because the outputs are subject to noise, on this
diagram, all three output readings are taken and noise is added in the form of random
numbers (note the Random Number Blocks).

3.3 Controller

A controller was created in Simulink to simulate what the controller would do in
real world settings. The controller works as follows: the controller outputs a constant
di↵erential V

L

and V
R

to rotate the robot until the heading angle of the robot is within
5 degrees of the absolute heading between the robot and the point that the robot is
trying to reach. Once the controller detects that it is within 5 degrees, the controller
then sets VL and VR equal to a certain value and gives it to the plant. The controller
is given a requested x and y position, along with the estimated state from the Kalman
filter. The outputs are VL and VR values that are given to the plant. A model of
the controller is shown below and the code for the controller can be seen in Appendix
A.4. This model was initially based on the Pure Pursuit tracking algorithm, but was
then changed to the current stop and turn model due to simplicity. [10]

21

Figure 24: Simulink Controller Block Diagram.

3.4 Noise in the simulation

To simulate receiving data from accelerometers placed on the robot, the next step in
the Simulink block is to take the second derivative of the x and y produced by the
plant, and the first derivative of phi given by the plant. Random gaussian noise is
then added to each value. These values are then given to the Extended Kalman Filter
as measurements.

Figure 25: Noise Introduced in the Simulink Model.

22

3.5 Dynamic Model

Following completion of the kinematic equations and Simulink, a dynamic model was
created for the robot. The model begins with the Robot’s controller. This software
controller takes measurements from the robot (x, y, , and concentration sensor
values) and calculates V

L

and V
R

from the di↵erential steering model. V
L

and V
R

are
input into the kinematic equations 2, 3, and 4 to determine x, y, and . Since these
measurements will be noisy, an Extended Kalman Filter will need to be implemented
to linearize an estimate of the measurements. The measurements will then be input
back into the controller, establishing the Feedback Control Loop seen in Figure 26

Figure 26: Feedback Loop of the Robot.

3.6 Extended Kalman Filter

The Kalman Filter (KF) is an algorithm that uses a series of measurements observed
over time, which contain statistical noise and other inaccuracies, and produces
estimates for the states of the system, ”cleaning” out the noise of the measurements.
The filter is named after Rudolf E. Kálmán, one of the primary developers of the
filter and the theory behind it. The nonlinear version of the KF is referred to as the
Extended Kalman Filter (EKF). [13] In the case of the current robot, the group used
the EKF to clear out the noise from our IMU and encoder measurements. In order
to begin the analysis, the group began with continuous time state equations:

ẋ =

2

4
ẋ(t)
ẏ(t)
✓̇(t)

3

5 =

2

4
v(t) cos(✓(t))
v(t) sin(✓(t))

✓(t).

3

5 (5)

The goal is to discretize this state equation in order to run the algorithm in discrete
time. To perform the time discretization the di↵erence quotient is used

ẋ(t) ⇡ x(t+�T)� x(t)

�T
, (6)

23

Which can be written as

x(t+�T) = x(t) +�T ẋ(t). (7)

Using the kinematic equations (2), (3) and (4) discussed in the section above, �D
and �✓ can be defined as

�D =
V
L,k+1 + V

R,k+1

2
�T, (8)

�✓ =
V
L,k+1 � V

R,k+1

W
�T. (9)

Therefore the discrete time state equation becomes [20]

x
k+1 =

2

4
x
k+1

y
k+1

✓
k+1

3

5 =

2

4
x
k

+�D cos(✓
k

+�✓)
y
k

+�D sin(✓
k

+�✓)
✓
k

+�✓.

3

5 (10)

As described above, the state equations are non-linear because they involve
sinusoids. In this case the Extended Kalman Filter needs to be used and the state
equations linearized in discrete time. Once the equations are linearized, a filter gain
can be determined based o↵ of the process error covariance and the conversion of
measurement to state. The process error and the states are then updated with the
measurements, innovation matrix, and Kalman gain. To begin, define:

F
k

= x
k

=

2

4
x
k

y
k

✓
k

3

5 , (11)

and

u
k+1 =


�D
�✓

�
, (12)

To time linearize the model it is necessary to obtain two matrices, A
k

and B
k

.
These matrices are the Jacobian of the state matrix in respect with the states and
the control input respectively such that: [20]

24

A
k

= rF
k

|
xk

=

2

4
1 0 ��D sin(✓

k

+�✓)
0 1 �D cos(✓

k

+�✓)
0 0 1

3

5 , (13)

and

B
k

= rF
k

|
uk

=

2

4
cos(✓

k

+�✓) ��D sin(✓
k

+�✓)
sin(✓

k

+�✓) �D cos(✓
k

+�✓)
1 0

3

5 . (14)

Therefore the equation for the future state at time k+1 becomes:

x
k+1 = A

k

x
k

+B
k

u
k

+ n
k

, (15)

Where n
k

is the process noise. The last step before putting together the EKF
algorithm is to define the measurement model. As discussed, the EKF inputs are
the IMU measurements. The IMU reads acceleration on the x and y direction and
angular velocity with respect to the center of the IMU (and the center of mass).
Therefore, a Measurement Model is needed to convert the IMU accelerations and
angular velocities to states (x, y, ✓). To do that the group used a pseudo-integration
method. Since �T < 1 sec the observation matrix C can approximate the integrals
to 1/�T such that our measurements are equal to

2

4
ẍ
measured

ÿ
measured

✓̇
measured

3

5 =

2

66664

1

�T 2
0 0

0
1

�T 2
0

0 0
1

�T

3

77775

2

4
x
y
✓

3

5+

2

4
noise

ẍ

noise
ÿ

noise
✓̇

3

5 , (16)

So that the measurement model becomes:

Z
k+1 = Cx

k+1 + noise (17)

Now that all of the required matrices have been defined, the EKF iterative
algorithm can be put together, which is going to be split in two parts, the Predict
Stage (k+ 1|k) and the Update Stage (k+ 1|k+ 1). Every iteration of the algorithm
includes:

the Predict Stage

P
k+1|k = BP

k|kB
T +Q (18)

25

x̂
k+1|k = x̂

k|k +�x
k|k (19)

and the Update Stage

S
k+1|k+1 = CP

k+1|kC
T (20)

K
k+1|k+1 = P

k+1|kC
TS�1

k+1|k+1 (21)

x̂
k+1|k+1 = x̂

k+1|k +K
k+1|k+1(Zk+1|k+1 � Cx

k+1|k) (22)

P
k+1|k+1 = P

k+1|k �K
k+1|k+1Sk+1|k+1K

2
k+1|k+1 (23)

In the algorithm above the Innovation Matrix is denoted S, P is the Predicted
Covariance Estimate, K is the Kalman Gain and Q the Process Noise Covariance
Matrix. A Matlab example of this algorithm is presented in Appendix A.2

3.7 Complete Control Diagram

By putting together everything mentioned above, a complete Simulink block diagram
is formulated, presented below. The block diagram includes the controller, the plant,
the IMU measurements, the noise additions, the Extended Kalman Filter and the
required scopes in order to plot the outcomes.

Figure 27: Complete Robot Control Diagram.

26

3.8 Low Pass Filter

The data received from the Inertial Measurement Unit always has a certain amount
of noise associated with it. As the Kalman Filter was not successfully removing
all of the noise, the group decided to use a Low Pass Filter to remove some of the
higher frequency noise prior to sending the data through the EKF thus improving
measurements.

A low pass filter is a filter that passes signals with a frequency lower than the cuto↵
frequency and attenuates signals higher than the cuto↵ frequency. The purpose of
our low pass filter was to remove the higher frequency noise received from the IMU
and also let the low frequency information pass through to the Kalman Filter. In
continuous time, low pass filters may be described in terms of the Laplace transform
and Bode plots. Equation (24) is the Laplace notation for a first order low pass filter,
otherwise known as a Butterworth filter

H(s) =
1

1 +
s

!
c

, (24)

where !
c

is the cuto↵ frequency, and s is the Laplace transform variable. [15] In the
discrete-time domain, a di↵erence equation is used

y[n] = ay[n� 1] + bu[n], (25)

where y[n] is the output in discrete-time, y[n-1] is the previous output, u[n] is the
input, and a and b are filter coe�cients that are found when designing the filter. [26]
The magnitude response of a Butterworth filter is shown below.

Figure 28: Reponse of a Butterworth Filter. [19]

27

To begin, the group ran a sample path using the robot and recorded the IMU
values. The specific path was not important as long as the robot started moving,
stopped moving, and rotated during the path. The values were then put through
a Fast Fourier Transform function in MATLAB. The Fast Fourier Transform is an
algorithm that will map a time-based signal into a frequency-based signal. You can
then analyze which frequency ranges are present within the time-based signal. An
example of the FFT of the x-acceleration, y-acceleration, and theta-acceleration are
shown below.

Figure 29: FFT of X Acceleration. Figure 30: FFT of Y Acceleration.

Figure 31: FFT of ✓ Acceleration.

As shown in the figures above, the x and y accelerations have essentially an
equal amount of power in the lower and higher frequency sections, while the theta

28

acceleration has a better result, showing higher power in the lower frequencies and
decreasing power in the higher frequencies. Optimally, because the accelerations are
not cyclic, having only low frequency measurements is desired.

29

4 Plume Generation System

The plume stand was built by a previous team in order to provide a sturdy place
to hold either CO2 sensors or the di↵user. The stand is made from steel and has
a height of about 1 meter. For the plume generation the current group continued
to use the hardware and setup used by the previous project, though to control the
plume generation the current group chose to use LabVIEW c�. To control the mass
flow rate of the plume we used the Sierra SmartTrak c� C100L. Additionally, the group
has used the Omegar SV3308 Solenoid Valve to control the on/o↵ operation of the
plume. This operation was done manually in the past using a switch but this was
integrated into the LabVIEW c� program. The CO2 tank is connected to a Harrisr

Model 9296 Regulator to decrease the pressure from 700psi.

4.1 Flow meter

Unfortunately, due to an incorrect calculation by the previous team that purchased
this product, current experiments were limited in terms of flow rates. This is due
to the fact that the flow meter only allows 15SLPM of CO2 through it, which works
out to 459 mg/s. The test runs of the apparatus validated this result as flow rate
values higher than 467 mg/s were not achieved even though the selected flow rates
were higher. This made plume simulation results from previous projects obsolete and
therefore new simulations with di↵erent flow rate values were needed.

4.2 Solenoid control

The previous MQP team used a mechanical switch connected to an 18V power source
in order to control the solenoid. The group decided that using LabVIEW c� to control
the solenoid would prove to be more convenient and safer if the system needed
to be disabled quickly. The following figure was the schematic used to implement
LabVIEW c� control of the solenoid.

30

Figure 32: Schematic Used to Control the Solenoid.

It is important to note key aspects of the diagram above. First, a heat sink
will most likely be needed on the transistor. The diagram in Figure 27 is for DC
solenoids rated up to about 24We Lo. 12VB2A, 6V04A, 24V01A etc. Additionally,
the protection diode should preferable be a schottky type, which has better response
times. Something similar to a MUA340 is good for loads up to 3A.

4.3 LabVIEW Program

The LabVIEW c� program designed can switch the solenoid valve, set a mass flow rate
setpoint as well as monitor the actual mass flow rate. This is done by sending and
receiving voltages of 0 to 5 volts through the Arduino. To connect to the Arduino,
the virtual instrument package Linx was used. Additionally, to make it easier for the
user, the input for the mass flow rate is in milligrams and then it is converted to
voltage. To give a value other than the 0 or 5 volts we used a Duty Cycle function
and an Arduino port that can support this function.

Figure 33: LabVIEW Block Diagram.

31

This virtual instrument package can also collect data from a carbon dioxide sensor.
As such, this system can be used to test the plume simulations. To accurately collect
data from the sensor and to avoid spikes in the data, an average of the last 10 values
is calculated and projected on the front panel.

4.4 Point Source Simulation

The experiment this project was trying to verify requires simulating a point source
of gas which the robot is going to be detecting. To simulate the point source, the
previous years used a ping-pong ball in which they poked holes in order for the CO2

that exits the tank with a certain speed to slow down and defuse. This technique
seemed to work for the previous MQP teams, but because of the improvement of the
level of accuracy and precision in the current experiments this year, it was determined
that it would be appropriate to build a better di↵user for the experiment which is
going to simulate a point source more accurately. In the picture below one can see the
old and new di↵users. The main problem with the ping-pong ball was that because
of the gas’ velocity, it would not di↵use uniformly while more gas would come out
from some holes than from others. The new designed di↵user has a large chamber
where it allows the gas mean velocity to drop close to 0 and therefore act as a point
source.

Figure 34: Old Di↵user. Figure 35: New Di↵user.

4.5 Plume Simulations

In the experiments our group used data produced by the plume simulation program.
To do this the group placed 4 CO2 sensors at known positions around the source.
Then the group had the plume generation run for the same time as the simulation,
which is 120 seconds, and then compare our concentration data with the ones from
the simulation. The simulation parameters were selected to be appropriate with our
experiment limitations. The dimensions of the simulation are 5x5x5 meters and the
time interval is of 1 second.

32

Figure 36: Concentration Along X-Axis. Figure 37: Concentration Along Y-Axis.

Figure 38: Concentration Along Z-Axis for a Specified x and y.

The figures above show the concentration over one of the axes with the other 2
directional components being held constant. The constants selected for each case are
the same with the source location. This means that the maximum plane is obtained
for each graph. Furthermore, all of these graphs are at 120 seconds, which is the
last time stamp as well as at a flow rate of 400 mg/s which is the maximum rate
achieveable with the flow meter.

33

5 Future Work and Suggestions

5.1 Interpolation

The main goal of this project was to verify the results of a gas plume simulation and
reconstruct the plume based to our sensor readings. However, it is not possible to
get CO2 concentration data for every single point in space, therefore a mathematical
model needs to be used in order to estimate the gas concentration at points for which
the group did not have data. A suggestion for future work is the use of Interpolation
in future projects. In this section what interpolation is will be briefly described as
well as how it can be used in the context of these projects.

Interpolation is a method used to construct new points of a function within the
range of a discrete set of known data points. The following example will help to gain
a better understanding of what interpolation is and how it can be used. Assuming
that one has the following set of x and f(x) values that are part of an unknown
continuous function:

f(x) 0.0000 0.8415 0.9093 0.1411 -0.7568 -0.9589 -0.2794
x 0 1 2 3 4 5 6

The following points plotted would look as follows:

The question that is being addressed is whether there is a function that passes
through all these points, and if there is, what is the equation that describes it. On a
first look one can imagine a polynomial function to be the solution to this problem, but
the solution is never obvious. To find solutions that are mathematically accurate, one
needs to use the interpolation equations. There are a number of interpolation methods
including, but not limited to: Piecewise Constant, Linear, Polynomial and Spline
Interpolation.These are all one-dimensional interpolation methods, though most high
dimension interpolation simply involves applying these methods in one dimension first
and then in the next dimension and so on. For instance, Figure ?? shows the general

34

equations used for a linear interpolation. While this example seems fairly simple,
the equations for linear interpolation in two dimensions, or bilinear interpolation, are
shown in Figure ??.

y = y0 + (x� x0)
y1 � y0
x1 � x0

=
y0(x1 � x) + y1(x� x0)

x1 � x0
, (26)

By linearly interpolating on a 2D space we obtain four new points, Q11 = (x1, y1),
Q12 = (x1, y2), Q21 = (x2, y1) and Q22 = (x2, y2) so that

f(x, y1) ⇡
x2 � x

x2 � x1
f(Q11) +

x� x1

x2 � x1
f(Q21), (27)

f(x, y2) ⇡
x2 � x

x2 � x1
f(Q12) +

x� x1

x2 � x1
f(Q22), (28)

so that

f(x, y) ⇡ y2 � y

y2 � y1
f(x, y1) +

y � y1
y2 � y1

f(x, y2), (29)

which in matrix form can be written as follows

f(x, y) =
1

(x2 � x1)(y2 � y1)

⇥
x2 � x x� x1

⇤ f(Q11) f(Q12)
f(Q21) f(Q22)

� 
y2 � y
y � y1

�
. (30)

At first the problem may seem elementary, even in two dimensions, but in the
case of the project one needs to use interpolation in three dimensions. In this case
the equations get more involved and the interpolation errors can grow in scale if
interpolation is performed multiple times. However, there are built in MATLAB
functions for interpolation, therefore one suggestion for future e↵orts is working with
these in order to interpolate the plume concentration at specific points within the
area created by the four gas sensors.

5.2 Budgeting

An important part of every engineering project is the available budget which is used to
buy the required materials. Although the project involved a lot of software and theory
development, the group chose to build a new robot from the ground up, therefore a
lot of hardware needed to be purchased. The project’s initial budget was $1250 for
the five person team ($250 per student), and the purchase orders and expenses are

35

listed in the table located in Appendix D.
As we can see on the budget table we went over budget for almost $ 600 This

is because we decided that the robots and hardware used the previous years did
not fit our needs so we build the entire robot from the beginning. Although the
group attempted to purchase the cheapest materials with the best possible quality,
a budget of $ 1,250 was insu�cient. Note that the gross total does not take into
account mistakes that the team made while building the robot, such as burning
some motor controllers and Arduinos due to a lack of knowledge regarding circuitry.
The most important thing that the team would like to warn students that will work
on this project in the future is to be careful with project hardware and battery
connections. By not burning controllers and electronics due to wiring connection
errors and short-circuiting, one could save a significant amount of money and time,
which is always crucial for an engineering project. Before starting work on any robot
circuitry the team recommends brushing up on Electrical and Computer Engineering
knowledge from any relevant courses (i.e. ECE 2010 etc.).

5.3 Hardware

Any error on our results can be attributed to the quality of hardware used. First of
all, our IMU’s raw data was very noisy and the data obtained was only particularly
valid after significant filtering e↵orts. An upgrade to the IMU would allow the results
to have increased accuracy due to less measurement noise and process error. Another
potential hardware upgrade would be to the Arduino Mega. Since the microcontroller
did not have enough processing power, the use of a base station computer was
necessary to computer filtering outputs. With a much better microcontroller, Filtering
could be calculated onboard the robot and results could be obtained both in real time
and quicker. This would be optimal for future work in remodeling the plume instead
of just localization.

An issue we ran into a lot with the spatial gradient based guidance was the robot
leaving the boundaries due to it not being close enough to the plume for it to obtain
accurate di↵erences in CO2 measurements. This led to the robot not being able to
compute accurate rotations to navigate toward the plume, so it would sometimes
leave the boundaries of the experiment. A recommendation for resolving this issue
is to use black-white color sensors and use black tape to lay out a boundary. That
way if the robot sensed it was crossing the tape, it could turn back to be within the
boundary. The current microcontroller has enough empty IO ports to support the
addition of these sensors.

36

6 Results & Conclusions

6.1 Filtering Results

A sample path of the robot was run using both the camera and the EKF
simultaneously. In terms of the low pass filters, because the signal was more noisy
from the x and y accelerometers, separate Butterworth filters were designed for the
x and y, and theta accelerations. For x and y measurements, the Butterworth filters
were set to 4th order, with a cuto↵ frequency of 0.4 Hz, and a sampling frequency of
40 Hz. As the theta acceleration had less noisy measurements, the filter was set to
filter out less, with an order of 3, a cuto↵ frequency of 1 Hz, and a sampling frequency
of 20 Hz.

In Figure 39 one can note the e↵ectiveness of the Low Pass and Extended Kalman
Filters as the actual position, taken with the camera, is nearly mirrored by the filtered
outputs. Note that the red line is that of the filtered outputs while the blue is the
camera trajectory.

Figure 39: The Robot Trajectory (Actual and Filtered).

37

6.2 Spatial Gradient Based Guidance

The goal of this project was to localize a carbon dioxide plume source using the
gradient search method. Using the data from the IMU, filtered through the Low
Pass Filter and the EKF, to know the robot’s position and navigating itself using the
measurements from the SprintIR sensors, the team ran various tests to determine if
the plume source could be localized. The robot undergoes two maneuvers for each
iteration until it reaches the source of the plume. First it calculates an angle to rotate
based on the di↵erences in concentration between the front and back sensors as well
as the left and right sensors using trigonometric equations. The robot then rotates
that angle at a set constant rate of rotation that will be used for each turn. The robot
then stops and moves forward for a very short distance with a set velocity that is also
used for each iteration. The robot then repeats the sequence until it reaches a point
where one of the sensors is saturated. A sensor is considered saturated when it reads
a concentration above 4000 ppm. This number was chosen because at the height of
the sensors, the concentration would only reach 4000 ppm only if the robot was within
10 centimeters of the plume source. This distance was decided to be su�cient for the
experiment’s purposes. The robot thus traveled towards the source albeit not in a
direct path as the levels of carbon dioxide around its sensors were not high enough
at the beginning of a test to register a significant di↵erence.

Figure 40: Plume Source Localization Using the Gradient Method.

38

For instance, in the test shown above in Picture 40, the robot stopped in the
vicinity of the plume source with its rear sensor almost directly below it. The data
from the IMU was processed through the EKF and the graph below was produced
showing the trajectory of the robot. The rear sensor read 5500 ppm which was a
reasonable result since it was the closest to the source. To then calculate the position
of the plume source, the position of the rear sensor was calculated. The plume source
is located within a 10 centimeter radius from the rear sensor. On the graph below
this sensor is marked with an X. The trajectory of the robot is the line starting from
the origin. The actual plume source location was measured before the experiment
and was found to be at (0.98,0.91)m. This is marked on the graph below with an O.
The absolute distance between the center of the estimated position and the actual
position is 7.5cm which is within the allowed radius.

An important fact to note is that there has to be a significant amount of time
between each experiment. This is so that the room adequately disperses any residual
carbon dioxide gas that might a↵ect the robot’s measurements but also to allow for
time to recalibrate the sensors to ambient levels.

6.3 Project Conclusion

Localization of a plume has a number of di↵erent applications that can have useful
purposes in the future. This project explored the viability of a robot that uses four
CO2 sensors for CO2 sensing, an Inertial Measurement Unit for localization, and a
plume generation system for controlled release of CO2. An Extended Kalman Filter,
along with a Low Pass Filter, was used to process noisy sensor data and give us more
accurate locations. A simulation was designed in Simulink to determine best values
for velocities and control methods. A robot was assembled and a sensor stand was 3D
printed to provide a stable platform for the microcontrollers and CO2 sensors. Tests
were run that showed the robot was able to locate the source of the plume using a
spatial gradient-based search algorithm that used the di↵erences in concentrations of
CO2 gas. Data from these tests was post-processed to determine the location of the
robot during the test and thus the plume.

Overall, the projected presented a number of di�culties. These ranged from
inconsistent results of previous groups to burning robot components due to small
wiring mistakes. For instance, one major obstacle was that of creating an Extended
Kalman Filter for the project. The EKF was completely designed for this project and
the majority of the di�culties surrounding the filter were due to this fact. The major
challenge being tuning the filter to function correctly. However, this complication,
along with others that occurred during the course of the project forced the need to
learn additional concepts, skills, and theories that added to the overall value and
success of the work performed.

Over the span of the project, a number of objectives were accomplished. These
include the complete redesign of the robot, base station, EKF, and communication

39

system, the outcomes of successful spatial gradient based guidance, a working EKF
and Low Pass Filter, as well as a functional plume generation system. Given the
short time span of this work, the number of desirable outcomes represents an e↵ective
project, though of course there are still a number of ways to forward the work done
by this group and build on the work outlined in this report to accomplish more.

40

A Code Appendix

A.1 Robot Controller Code

1 f unc t i on [VR, VL, ps i r , p s i r d i f f , thold , turn] = . . .
2 f cn (xr , yr , x , y , ps i , thold , turn , vt)
3 p s i r = atan2 (yr�y , xr�x) ;
4 %atan2 i s used because i t r e tu rn s the 4�quadrant i nv e r s e tangent ,
5 %whi le atan i s l im i t ed from �pi /2 to p i /2
6 p s i r d i f f = ps i�p s i r ;
7 i f (abs (p s i � p s i r) > 0 . 1)
8 i f p s i < p s i r
9 %vl i s g r e a t e r

10 VL = vt ;
11 VR = �vt ;
12 turn = 1 ;
13 e l s e
14 VL = �vt ;
15 VR = vt ;
16 turn = 1 ;
17 end
18 e l s e
19 %move
20 i f (turn == 1)
21 i f (tho ld == 5)
22 tho ld = 0 ;
23 VR = 2⇤ vt ;
24 VL = 2⇤ vt ;
25 e l s e
26 tho ld = tho ld + 1 ;
27 VR = 0 ;
28 VL = 0 ;
29 end
30 e l s e
31 VR = 2⇤ vt ;
32 VL = 2⇤ vt ;
33 end
34 end

41

A.2 Kalman Filter Algorithm

1 %Inputs
2 t s = 0 . 1 ; %Sampling Time
3 W = 0 . 2 5 ; %Robot Width (m)
4 nsteps = 200 ;
5 load (’ f i g 8 2 0 0 0 1 .mat ’) ;
6 load (’ no i s edata . mat ’) ;
7

8 %I n i t i a l Condit ions
9 Th(1) = pi ;

10 x (1) = 1 ;
11 y (1) = 0 . 1 5 ;
12 %i n i t i a l s ta te , updates every d i s c r e t e time increment
13 xhat = [x (1) ; y (1) ; Th(1)] ;
14 sigmaD = eps ;
15 sigmaTheta = eps ;
16 sigmaX = 1.878 e�4;
17 sigmaY = 2.921 e�4;
18 sigmaOmega = 3.6774 e�5;
19 R = [sigmaXˆ2 ,0 ,0 ; 0 , sigmaYˆ2 ,0 ; 0 ,0 , sigmaOmega ˆ 2] ; %Var iances Matrix
20 C = [2/ (t s ˆ2) , 0 , 0 ; 0 , 2 / (t s ˆ2) , 0 ; 0 , 0 , 1/ t s ;] ; %Observat ion Matrix
21 P(: , : , 1) = eye (3) ; %Process Erros Covariance Matrix
22

23 f o r i = 2 : ns teps
24 %Change in s t a t e s at t h i s t imestep
25 dD = 0.5⇤ t s ⇤(Vr(i �1)+Vl (i �1)) ;
26 dTh = ts ⇤(Vr(i �1)�Vl (i �1)) /W;
27 %State Pred i c t (same as F)
28 xhat (: , i) = [xhat (1 , i �1) + dD⇤ cos (xhat (3 , i �1)+dTh) ; . . .
29 xhat (2 , i �1) + dD⇤ s i n (xhat (3 , i �1)+dTh) ; . . .
30 xhat (3 , i �1) + dTh] ;
31 %Jacobian o f F in k�1 with r e sp e c t to the s t a t e s
32 dFdXhat = [1 ,0 ,�dD⇤ s i n (xhat (3 , i �1)+dTh) ; . . .
33 1 ,0 ,dD⇤ cos (xhat (3 , i �1)+dTh) ; . . .
34 0 , 0 , 1 ;] ;
35 %Process Error Covariance Pred i c t
36 P(: , : , i) = dFdXhat⇤P(: , : , i �1)⇤dFdXhat ’ ;
37 %Innovat ion Matrix
38 S = (C⇤P(: , : , i) ⇤C’)+R;
39 %Kalman Gain
40 K = P(: , : , i) ⇤C’⇤ inv (S) ;
41 %State Update
42 xhat (: , i) = xhat (: , i)+K⇤(Z (: , i)�C⇤(xhat (: , i)�xhat (: , i �1))) ;
43 %Process Error Update
44 P(: , : , i) = (eye (3)�K⇤C) ⇤P(: , : , i) ;
45 end

42

A.3 Robot Arduino Mega Code

1 /⇤
2 | \ | | | \ | | | |
3 | |) | | | |) | | | | |
4 | / | | | | | ’ ‘ \ / \ | // \ | ’ \ / \ | |
5 | | | | | | | | | | | | / | | \ \ () | |) | () | |
6 | | | | \ , | | | | | | \ | | | \ \ / | . / \ / \ |
7

8 A 4�wheeled d i f f e r e n t i a l s t e e r i n g robot that measures CO2 concent ra t i on
9

10 Authors : Owen McGrath , Ben Preston , Spyros Kasapis , Marios Kontopyrgos ,
11 Sly Halama
12

13 ==
14

15 EXTERNAL LIBRARIES :
16

17 coz i r�master from Github user Rodir at https : // github . com/ roder / c o z i r
18

19 ada f ru i t bno055 from Adafru i t at
20 https : // l e a rn . ada f r u i t . com/ ada f ru i t�bno055�abso lute�o r i en t a t i on�s enso r
21

22 ad a f r u i t s e n s o r from Adafru i t at
23 https : // l e a rn . ada f r u i t . com/ ada f ru i t�bno055�abso lute�o r i en t a t i on�s enso r
24

25 ==
26

27 FUNCTIONS:
28

29 getImuMeasurements () � Pu l l s new a c c e l e r a t i o n s and angular v e l o c i t y
30 from the IMU
31

32 getCO2Measurements () � Pu l l s new CO2 Concentrat ions from the Sensors
33

34 getVel (i n t pin) � Ca l cu l a t e s f requency o f the square wave outputted
35 from the motors in e i t h e r A or B, conver t s to a v e l o c i t y
36

37 getVelAverage (i n t s i d e) � Ca l cu l a t e s v e l o c i t y average f o r Vl and Vr
38

39 e x i t S a f e S t a r t (So f twa r eS e r i a l mc) � Resets the motor Con t r o l l e r s from
40 ”Error Mode” so that the motors can move again a f t e r the re i s an
41 e r r o r (red l i g h t turns o f f)
42

43 void setMotion (i n t type) � Sets motion mode f o r the robot
44

45 ⇤/
46 #inc lude <c o z i r . h>
47 #inc lude <Adaf ru i t Sensor . h>
48 #inc lude <Adafruit BNO055 . h>

43

49 #inc lude <u t i l i t y /imumaths . h>
50 #inc lude <Wire . h>
51 #inc lude <So f twa r eS e r i a l . h>
52

53 //MATHEMATICAL CONSTANTS AND DIMENSIONS
54

55 #de f i n e p i 3.141592653589
56 #de f i n e w .25 // robot width
57 #de f i n e MAX SPEED 3200
58 St r ing command ;
59 i n t count = 0 ;
60 long motionStartTime = 0 ;
61 long currentTime = 0 ;
62 i n t motionStep = 0 ;
63 i n t motionMode = 5 ;
64 i n t timeAmount = 30000 ;
65 double omega = 1 .338667 ;
66 double ang le = 0 ;
67 double forwardTime = 0 ;
68 i n t mode = 0 ;
69 i n t isMoving = 0 ;
70 double deltaT = 0 ;
71 i n t prevTime = 0 ;
72 i n t waitingForCommand = 1 ;
73 i n t msmtCounter = 0 ;
74 char s epa ra to r = ’+’ ;
75

76

77

78

79 //ARDUINO INITIALIZATIONS
80

81 // arduino p ins
82

83 //CO2 Sensors
84 #de f i n e c o 2 f r x 10
85 #de f i n e c o 2 f t x 3
86 #de f i n e co2 b rx 11
87 #de f i n e co2 b tx 5
88 #de f i n e c o 2 l r x 12
89 #de f i n e c o 2 l t x 7
90 #de f i n e c o 2 r r x 13
91 #de f i n e c o 2 r t x 9
92

93 //motor c o n t r o l l e r s
94 #de f i n e l c o n t r o l l e r r xP i n 15
95 #de f i n e l c o n t r o l l e r t xP i n 14
96 #de f i n e r c o n t r o l l e r r xP i n 17
97 #de f i n e r c o n t r o l l e r t xP i n 16
98

99 // encoders

44

100 #de f i n e rb encoder A 35
101 #de f i n e rb encoder B 37
102 #de f i n e r f encoder A 39
103 #de f i n e r f encode r B 41
104 #de f i n e lb encoder A 43
105 #de f i n e lb encoder B 47
106 #de f i n e l f en code r A 49
107 #de f i n e l f e n code r B 46
108

109 // sample ra t e f o r determining encoder f requency
110 #de f i n e SAMPLES 16
111

112 // s e r i a l connec t i ons
113 So f twa r eS e r i a l rmc=So f twa r eS e r i a l (r c o n t r o l l e r r xP i n , r c o n t r o l l e r t xP i n) ;
114 So f twa r eS e r i a l lmc=So f twa r eS e r i a l (l c o n t r o l l e r r xP i n , l c o n t r o l l e r t xP i n) ;
115 So f twa r eS e r i a l c o 2 f = So f twa r eS e r i a l (c o2 f r x , c o 2 f t x) ;
116 So f twa r eS e r i a l co2 b = So f twa r eS e r i a l (co2 b rx , co2 b tx) ;
117 So f twa r eS e r i a l c o2 r = So f twa r eS e r i a l (co2 r rx , c o 2 r t x) ;
118 So f twa r eS e r i a l c o 2 l = So f twa r eS e r i a l (c o 2 l r x , c o 2 l t x) ;
119

120 //IMU INITIALIZATIONS
121 Adafruit BNO055 bno = Adafruit BNO055 (55) ;
122 f l o a t z [3] = {0} ;
123

124 //COZIR INITIALIZATIONS
125 i n t c f = 0 ;
126 i n t cb = 0 ;
127 i n t cr = 0 ;
128 i n t c l = 0 ;
129 i n t cmax idx l r ;
130 i n t cmax idx fb ;
131 i n t c [4] = {0} ;
132

133 //MOTOR CONTROLLER INITIALIZATIONS
134 #de f i n e a c c e l e r a t i on ID 5
135 #de f i n e de c e l e r a t i on ID 9
136

137

138

139

140 /⇤ FUNCTION: getImuMeasurements ()
141 ⇤ DESCRIPTION:
142 ⇤ Pu l l s new a c c e l e r a t i o n s and angular v e l o c i t y from the IMU
143 ⇤/
144 void getImuMeasurements () {
145 s e n s o r s e v e n t t event ;
146 bno . getEvent(&event) ;
147 imu : : Vector<3> gyro=bno . getVector (Adafruit BNO055 : :VECTORGYROSCOPE) ;
148 imu : : Vector<3> a c c e l=bno . getVector (Adafruit BNO055 : :VECTOR LINEARACCEL) ;
149 z [0] = a c c e l . x () ;
150 z [1] = a c c e l . y () ;

45

151 z [2] = gyro . z () ;
152 }
153

154 /⇤ FUNCTION: getCO2Measurements ()
155 ⇤ DESCRIPTION:
156 ⇤ Pu l l s new CO2 Concentrat ions from the Sensors
157 ⇤/
158 void getCO2Measurements () {
159 COZIR c z r f (c o 2 f) ;
160 c o 2 f . l i s t e n () ;
161 c f = c z r f .CO2() ;
162

163 COZIR c z r r (co2 r) ;
164 co2 r . l i s t e n () ;
165 cr = c z r r .CO2() ;
166

167 COZIR cz r b (co2 b) ;
168 co2 b . l i s t e n () ;
169 cb = cz r b .CO2() ;
170

171 COZIR c z r l (c o 2 l) ;
172 c o 2 l . l i s t e n () ;
173 c l = c z r l .CO2() ;
174 }
175

176 /⇤ FUNCTION: getVel (i n t pin)
177 ⇤ DESCRIPTION:
178 ⇤ Ca l cu l a t e s f requency o f the square wave outputted from the motors in
179 ⇤ e i t h e r A or B, conver t s to a v e l o c i t y
180 ⇤ PARAMETERS:
181 ⇤ i n t pin //Pin number f o r encoder f requency measurement
182 ⇤ RETURNS:
183 ⇤ Wheel Ve loc i ty (m/ s)
184 ⇤/
185 f l o a t getVel (i n t pin) {
186 long f r e q = 0 ;
187 f o r (unsigned i n t j =0; j<SAMPLES; j++){
188 f r e q+= 500000/ pu l s e In (pin , HIGH, 250000) ;
189 }
190 r e turn .39⇤ f r e q /SAMPLES/898 ;
191 }
192

193 /⇤ FUNCTION: getAppVel (i n t s i d e)
194 ⇤ DESCRIPTION:
195 ⇤ Returns predetermined v e l o c i t i e s f o r a motion mode (see setMotion)
196 ⇤ PARAMETERS:
197 ⇤ i n t s i d e //0 f o r Vl , 1 f o r Vr
198 ⇤ RETURNS:
199 ⇤ Wheel Ve loc i ty (m/ s)
200 ⇤/
201 f l o a t getAppVel (i n t s i d e) {

46

202 switch (motionMode) {
203 case 1 :
204 i f (s i d e == 0) { r e turn . 2 539 ;} e l s e { r e turn . 2 467 ;}
205 case 2 :
206 r e turn �0.261;
207 case 3 :
208 i f (s i d e == 0) { r e turn . 186562 ;} e l s e { r e turn � .182777;}
209 case 4 :
210 i f (s i d e == 0) { r e turn � .195741;} e l s e { r e turn . 176269 ;}
211 case 5 :
212 r e turn 0 ;
213 }
214 }
215

216 /⇤ FUNCTION: getVelAverage (i n t s i d e)
217 ⇤ DESCRIPTION:
218 ⇤ Ca l cu l a t e s v e l o c i t y average f o r Vl and Vr
219 ⇤ PARAMETERS:
220 ⇤ i n t s i d e // Le f t v e l o c i t y �> 0 or Right Ve loc i ty �> 1
221 ⇤ RETURNS:
222 ⇤ Ve loc i ty Average f o r each s i d e both A and B pins . (m/ s)
223 ⇤/
224 f l o a t getVelAverage (i n t s i d e) {
225 //Need t h i s i f statement because getVel doesn ’ t work i f the motors are
226 //not moving , i t pauses f o r a whi l e
227 i f (isMoving == 0) {
228 r e turn 0 ;
229 } e l s e {
230 switch (s i d e) {
231 case 0 :
232 r e turn . 25⇤ (getVel (lb encoder A)+getVel (lb encoder B)+
233 getVel (l f en code r A)+getVel (l f e n code r B)) ;
234 case 1 :
235 r e turn . 25⇤ (getVel (rb encoder A)+getVel (rb encoder B)+
236 getVel (r f encoder A)+getVel (r f encode r B)) ;
237 }
238 }
239 }
240

241 /⇤ FUNCTION: e x i t S a f e S t a r t (Software S e r i a l mc)
242 ⇤ DESCRIPTION:
243 ⇤ Resets the motor Con t r o l l e r s from ”Error Mode” so that the motors
244 ⇤ can move again a f t e r the r e i s an e r r o r (red l i g h t turns o f f)
245 ⇤ PARAMETERS:
246 ⇤ So f twa r eS e r i a l mc // S e r i a l Connection to the motor Con t r o l l e r
247 ⇤/
248 void e x i t S a f e S t a r t (So f twa r eS e r i a l mc) {
249 mc. wr i t e (0 x83) ;
250 }
251

252

47

253

254 /⇤ FUNCTION: setMotorSpeed (i n t speed , So f twa r eS e r i a l mc)
255 ⇤ DESCRIPTION:
256 ⇤ Writes Speed command to the Motor c o n t r o l l e r s over s e r i a l
257 ⇤ PARAMETERS:
258 ⇤ i n t speed //Needs to be in the range �3200 to 3200
259 ⇤ So f twa r eS e r i a l mc // S e r i a l Connection to the Motor Con t r o l l e r
260 ⇤/
261 void setMotorSpeed (i n t speed , So f twa r eS e r i a l mc) {
262 i f (speed < 0) {
263 mc. wr i t e (0 x86) ; // motor r e v e r s e command
264 speed = �speed ; // make speed p o s i t i v e
265 } e l s e {
266 mc. wr i t e (0 x85) ; // motor forward command
267 }
268 mc. wr i t e (speed & 0x1F) ;
269 mc. wr i t e (speed >> 5) ;
270 }
271

272

273 /⇤ FUNCTION:
274 ⇤ setMotorLimit (unsigned char l imitID , unsigned i n t l imitValue ,
275 ⇤ So f twa r eS e r i a l mc)
276 ⇤ DESCRIPTION:
277 ⇤ Sets Acce l e r a t i on and Dece l e r a t i on va lue s f o r ramping the motors .
278 ⇤ PARAMETERS:
279 ⇤ unsigned char l imi t ID // Type o f l im i t to be changed (r e f e r e n c e polo
280 ⇤ So f twa r eS e r i a l mc // S e r i a l Connection to the Motor Con t r o l l e r
281 ⇤/
282 unsigned char setMotorLimit (unsigned char l imitID ,
283 unsigned i n t l imitValue , So f twa r eS e r i a l mc) {
284 mc. wr i t e (0xA2) ;
285 mc. wr i t e (l im i t ID) ;
286 mc. wr i t e (l im i tVa lue & 0x7F) ;
287 mc. wr i t e (l im i tVa lue >> 7) ;
288 }
289

290

291 /⇤ FUNCTION: setMotion (i n t type , i n t time)
292 ⇤ DESCRIPTION:
293 ⇤ Sets motion mode f o r the robot
294 ⇤ PARAMETERS:
295 ⇤ i n t type // t r a j e c t o r y type f o r the robot
296 ⇤ MOVE FORWARD �>1
297 ⇤ MOVE IN REVERSE �>2
298 ⇤ CW ROTATION �>3
299 ⇤ CCW ROTATION �>4
300 ⇤ STOP MOTION �>5
301 ⇤/
302 void setMotion (i n t type) {
303 switch (type) {

48

304 case 1 :
305 motionMode = 1 ;
306 isMoving = 1 ;
307 setMotorSpeed (. 252⇤MAX SPEED, lmc) ;
308 setMotorSpeed (� .2538⇤MAX SPEED, rmc) ;
309 break ;
310 case 2 :
311 motionMode = 2 ;
312 isMoving = 1 ;
313 setMotorSpeed (� .245⇤MAX SPEED, lmc) ;
314 setMotorSpeed (. 259⇤MAX SPEED, rmc) ;
315 break ;
316 case 3 :
317 motionMode = 3 ;
318 isMoving = 1 ;
319 setMotorSpeed (� .245⇤MAX SPEED, lmc) ;
320 setMotorSpeed (� .2538⇤MAX SPEED, rmc) ;
321 break ;
322 case 4 :
323 motionMode = 4 ;
324 isMoving = 1 ;
325 setMotorSpeed (. 255⇤MAX SPEED, lmc) ;
326 setMotorSpeed (. 262⇤MAX SPEED, rmc) ;
327 break ;
328 case 5 :
329 motionMode = 5 ;
330 isMoving = 0 ;
331 setMotorSpeed (0 , lmc) ;
332 setMotorSpeed (0 , rmc) ;
333 break ;
334 }
335 }
336

337

338 void setup () {
339 S e r i a l . begin (9600) ;
340 S e r i a l . p r i n t l n (”Setup beg inn ing ”) ;
341

342 // i n i t i a l i z a t i o n s f o r the IMU
343 bno . begin () ;
344 bno . setExtCrysta lUse (t rue) ;
345

346

347 // i n i t i a l i z e so f tware s e r i a l ob j e c t with baud ra t e o f 19 .2 kbps
348 rmc . begin (19200) ;
349 lmc . begin (19200) ;
350 // the Simple Motor Cont r o l l e r must be running f o r at l e a s t 1 ms
351 // be f o r e we try to send s e r i a l data , so we de lay here f o r 5 ms
352 de lay (5) ;
353 // i f the Simple Motor Con t r o l l e r has automatic baud de t e c t i on
354 // enabled , we f i r s t need to send i t the byte 0xAA (170 in decimal)

49

355 // so that i t can l e a rn the baud ra t e
356 rmc . wr i t e (0xAA) ; // send baud�i n d i c a t o r byte
357 lmc . wr i t e (0xAA) ; // send baud�i n d i c a t o r byte
358

359 //SET MOTOR ACCEL AND DECEL VALUES
360 setMotorLimit (acce l e ra t i on ID , 1 , rmc) ;
361 setMotorLimit (acce l e ra t i on ID , 1 , lmc) ;
362 setMotorLimit (dece l e ra t i on ID , 1 , rmc) ;
363 setMotorLimit (dece l e ra t i on ID , 1 , lmc) ;
364

365 // next we need to send the Exit Safe Sta r t command , which
366 // c l e a r s the sa f e�s t a r t v i o l a t i o n and l e t s the Motor run
367 e x i t S a f e S t a r t (rmc) ;
368 e x i t S a f e S t a r t (lmc) ;
369

370 //START AFTER BEING POWERED ON FOR 15 SEC
371 motionStartTime = m i l l i s () ;
372 S e r i a l . p r i n t l n (”Setup Complete”) ;
373 }
374

375 void loop () {
376 // getCO2Measurements () ;
377 getImuMeasurements () ;
378 currentTime = m i l l i s () ;
379 deltaT = currentTime � prevTime ;
380 prevTime = currentTime ;
381 //// PRINT VELOCITIES FROM ENCODERS
382 // S e r i a l . p r i n t (” , ”) ;
383 // S e r i a l . p r i n t (getVelAverage (0) , 8) ;
384 // S e r i a l . p r i n t (” , ”) ;
385 // S e r i a l . p r i n t l n (getVelAverage (1) , 8) ;
386

387 //PRINT PREDETERMINED VELOCITIES, IMU DATA, AND CO2 CONCENTRATIONS
388 i f (isMoving) {
389 // S e r i a l . p r i n t (deltaT , 8) ;
390 // S e r i a l . p r i n t (” ”) ;
391 S e r i a l . p r i n t (getAppVel (0) ,8) ;
392 S e r i a l . p r i n t (” ”) ;
393 S e r i a l . p r i n t (getAppVel (1) ,8) ;
394 S e r i a l . p r i n t (” ”) ;
395 S e r i a l . p r i n t (z [0] , 8) ;
396 S e r i a l . p r i n t (” ”) ;
397 S e r i a l . p r i n t (z [1] , 8) ;
398 S e r i a l . p r i n t (” ”) ;
399 S e r i a l . p r i n t l n (z [2] , 8) ;
400 msmtCounter++;
401 // S e r i a l . p r i n t l n (” ”) ;
402 // S e r i a l . p r i n t (c f , 8) ;
403 // S e r i a l . p r i n t l n (” ”) ;
404 // S e r i a l . p r i n t (cb , 8) ;
405 // S e r i a l . p r i n t l n (” ”) ;

50

406 // S e r i a l . p r i n t (c l , 8) ;
407 // S e r i a l . p r i n t l n (” ”) ;
408 // S e r i a l . p r i n t (cr , 8) ;
409 // S e r i a l . p r i n t l n (” ”) ;
410 }
411

412 ////GRADIENT MODE
413 // s t a r t new motion sequence a f t e r time ”timeAmount” (in ms)
414 i f (currentTime�motionStartTime > timeAmount) {
415 i f (mode == 0) {
416 i f (count) {
417 deltaT = timeAmount/msmtCounter ;
418 msmtCounter = 0 ;
419 S e r i a l . p r i n t (”>”) ;
420 S e r i a l . p r i n t l n (deltaT) ;
421 }
422 count++;
423 // stop f o r a delay , get the C02 measurements then d i sp l ay them
424 setMotion (5) ;
425 delay (2000) ;
426 getCO2Measurements () ;
427 c [0] = c f ⇤10 ;
428 c [1] = cr ⇤10 ;
429 c [2] = cb ⇤10 ;
430 c [3] = c l ⇤10 ;
431 S e r i a l . p r i n t (”F : ”) ; S e r i a l . p r i n t (c f) ; S e r i a l . p r i n t (” , ”) ;
432 S e r i a l . p r i n t (”R: ”) ; S e r i a l . p r i n t (cr) ; S e r i a l . p r i n t (” , ”) ;
433 S e r i a l . p r i n t (”B: ”) ; S e r i a l . p r i n t (cb) ; S e r i a l . p r i n t (” , ”) ;
434 S e r i a l . p r i n t (”L : ”) ; S e r i a l . p r i n t l n (c l) ;
435 //Determine the g r e a t e s t concent ra t i on in f r on t /back then L/R.
436 i f (c [1] > c [3]) {
437 cmax idx l r = 1 ; // r i gh t
438 } e l s e i f (c [3] > c [1]) {
439 cmax idx l r = 3 ; // l e f t
440 } e l s e {
441 r e turn ;
442 }
443

444 i f (c [0] > c [2]) {
445 cmax idx fb = 0 ; // f r on t
446 } e l s e i f (c [2] > c [0]) {
447 cmax idx fb = 2 ; //back
448 } e l s e {
449 r e turn ;
450 }
451 // c a l c u l a t e the g rad i en t between f r on t /back ,
452 // l e f t / r i g h t then f i nd the ang le o f r o t a t i on
453 i f (cmax idx fb == 0) {
454 i f (cmax idx l r == 1) {
455 ang le = atan2 (c [1]� c [3] , c [0]� c [2]) ;
456 }

51

457 e l s e {
458 ang le = atan2 (c [3]� c [1] , c [0]� c [2]) ;
459 }
460

461 } e l s e {
462 i f (cmax idx l r == 1) {
463 ang le = pi � atan2 (c [1]� c [3] , c [2]� c [0]) ;
464 }
465 e l s e {
466 ang le = pi � atan2 (c [3]� c [1] , c [2]� c [0]) ;
467 }
468 }
469 // Ca l cu la t e the time i t needs to r o t a t e at angular v e l o c i t y omega
470 timeAmount = (ang le /omega) ⇤1000 ;
471 S e r i a l . p r i n t (”Rotat ing at ang le : ”) ; S e r i a l . p r i n t (ang le) ;
472 S e r i a l . p r i n t (” , f o r time : ”) ; S e r i a l . p r i n t l n (timeAmount) ;
473

474 i f (cmax idx l r == 1) {
475 S e r i a l . p r i n t (”Moving Clockwise , concent ra t i on i s : ”) ;
476 S e r i a l . p r i n t l n (c [cmax idx l r]) ;
477 setMotion (3) ;
478 } e l s e {
479 S e r i a l . p r i n t (”Moving Counter Clockwise , concent ra t i on i s : ”) ;
480 S e r i a l . p r i n t l n (c [cmax idx l r]) ;
481 setMotion (4) ;
482 }
483 motionStartTime = m i l l i s () ;
484 mode = 1 ;
485 } e l s e i f (mode == 1) {
486 i f (cmax idx l r == 1) {
487 deltaT = .031⇤ timeAmount ;
488 } e l s e {
489 deltaT = .032⇤ timeAmount ;
490 }
491 msmtCounter = 0 ;
492 S e r i a l . p r i n t (”>”) ;
493 S e r i a l . p r i n t l n (deltaT) ;
494 S e r i a l . p r i n t l n (”Moving Forward”) ;
495 setMotion (5) ;
496 delay (1000) ;
497 setMotion (1) ;
498 timeAmount = 2000 ;
499 motionStartTime = m i l l i s () ;
500 mode = 0 ;
501 }
502 }
503 i f (c [0] > 4000 | | c [1] > 4000 | | c [2] > 4000 | | c [3] > 4000) {
504 S e r i a l . p r i n t l n (”END”) ;
505 S e r i a l . p r i n t (”F : ”) ; S e r i a l . p r i n t (c [0]) ; S e r i a l . p r i n t (” , ”) ;
506 S e r i a l . p r i n t (”R: ”) ; S e r i a l . p r i n t (c [1]) ; S e r i a l . p r i n t (” , ”) ;
507 S e r i a l . p r i n t (”B: ”) ; S e r i a l . p r i n t (c [2]) ; S e r i a l . p r i n t (” , ”) ;

52

508 S e r i a l . p r i n t (”L : ”) ; S e r i a l . p r i n t l n (c [3]) ;
509 setMotion (5) ;
510 whi le (1) {}
511

512 }
513 ////TEST TRAJECTORY MODE
514 // i f (currentTime�motionStartTime > timeAmount) {
515 // switch (motionStep) {
516 // // forward
517 // case 0 :
518 // i f (count == 2 | | count == 4) {
519 // deltaT = .031⇤ timeAmount ;
520 // } e l s e i f (count == 6 | | count == 8) {
521 // deltaT = .032⇤ timeAmount ;
522 // }
523 // i f (count) {
524 // msmtCounter = 0 ;
525 // S e r i a l . p r i n t (”>”) ;
526 // S e r i a l . p r i n t l n (deltaT) ;
527 // }
528 // setMotion (5) ;
529 // de lay (500) ;
530 // setMotion (1) ;
531 // motionStartTime = m i l l i s () ;
532 // prevTime = m i l l i s () ;
533 // count++;
534 // i f (count == 1 | | count == 3) {
535 // motionStep = 1 ;
536 // } e l s e i f (count == 5 | | count == 7) {
537 // motionStep = 2 ;
538 // } e l s e {
539 // motionStep = 3 ;
540 // }
541 // timeAmount = 2000 ;
542 // break ;
543 //
544 // //CW
545 // case 1 :
546 // deltaT = timeAmount/msmtCounter ;
547 // msmtCounter = 0 ;
548 // S e r i a l . p r i n t (”>”) ;
549 // S e r i a l . p r i n t l n (deltaT) ;
550 // setMotion (5) ;
551 // de lay (1000) ;
552 // setMotion (3) ;
553 // motionStartTime = m i l l i s () ;
554 // prevTime = m i l l i s () ;
555 // count++;
556 // motionStep = 0 ;
557 // timeAmount = 1200 ;
558 // break ;

53

559 //
560 // //CCW
561 // case 2 :
562 // deltaT = timeAmount/msmtCounter ;
563 // msmtCounter = 0 ;
564 // S e r i a l . p r i n t (”>”) ;
565 // S e r i a l . p r i n t l n (deltaT) ;
566 // setMotion (5) ;
567 // de lay (1000) ;
568 // setMotion (4) ;
569 // motionStartTime = m i l l i s () ;
570 // prevTime = m i l l i s () ;
571 // count++;
572 // motionStep = 0 ;
573 // timeAmount = 1200 ;
574 // break ;
575 // // stop
576 // case 3 :
577 // deltaT = timeAmount/msmtCounter ;
578 // msmtCounter = 0 ;
579 // S e r i a l . p r i n t (”>”) ;
580 // S e r i a l . p r i n t l n (deltaT) ;
581 // S e r i a l . p r i n t l n (”END\n”) ;
582 // setMotion (5) ;
583 // whi l e (1) {}
584 //
585 // }
586 // }
587 }

54

A.4 Base Station Python Code

1 import s e r i a l
2 import sys
3 import time
4 from numpy import matrix
5 from numpy import l i n a l g
6

7 s e r = s e r i a l . S e r i a l (’COM20 ’) #INSERT SERIAL PORT HERE
8 s e r . open
9

10 i f s e r . i s open :
11 pr in t (”\n”)
12 pr in t (”===\n”)
13 pr in t (” S e r i a l Communication Estab l i shed with the Plume Robot , ”)
14 pr in t (” beg inning operat i on \n”)
15 pr in t (”===\n\n”)
16 e l s e :
17 pr in t (”===\n\n”)
18 pr in t (” S e r i a l Communication Fa i l ed to Estab l i sh , ”)
19 pr in t (” p l e a s e check hardware connec t i ons \n”)
20 pr in t (”Ending Sc r i p t in 5 (s) \n”)
21 time . s l e e p (5)
22 sys . e x i t ()
23

24 i s r e c o r d i n g = True ;
25 f = open (” robotdata . txt ” , ”w”) ;
26 whi le i s r e c o r d i n g :
27 da t a l i n e = s e r . r e ad l i n e () . decode ()
28 i f d a t a l i n e == ”END\n” :
29 f . c l o s e ()
30 break
31 f . wr i t e (da t a l i n e)
32

33 pr in t (”\n”)
34 pr in t (”===\n”)
35 pr in t (”Data s u c c e s s f u l l y recorded , beg inn ing par s ing \n”)
36 pr in t (”===\n\n”)
37

38 f = open (” robotdata . txt ” , ” r ”) ;
39

40 t r a j e c t o r i e s = []
41 t r a j e c t o r y = []
42 deltaT = []
43

44 f o r data in f . r e a d l i n e s () :
45 i f data == ’ \n ’ :
46 cont inue
47 e l i f data [0] == ’> ’ :
48 deltaT . append (f l o a t (data [1 : �2]))

55

49 t r a j e c t o r i e s . append (t r a j e c t o r y)
50 t r a j e c t o r y = []
51 e l s e :
52 datapoint = data . s p l i t (” ” , 5)
53 pr in t (datapoint)
54 l a s t p o i n t = datapoint [4]
55 datapoint [4] = l a s t p o i n t [: �2]
56 t r a j e c t o r y . append (l i s t (map(f l o a t , datapo int)))
57

58 # ROBOT INITIAL CONDITIONS
59 v l i = 0
60 v r i = 0
61 x i = 0
62 y i = 0
63 t h e t a i = 0
64 width = .25 #robot width in meters
65

66 #STATES + VELOCITIES�
67 v l = v l i
68 vr = v r i
69 x = x i
70 y = y i
71 theta = t h e t a i
72

73 #EKF INITIAL CONDITIONS
74

75 #these are Rˆ2 va lue s
76 sigmaD = 0
77 sigmaTheta = 0
78 sigmaX = f l o a t (. 0001878)
79 sigmaY = f l o a t (. 0002921)
80 sigmaOmega = f l o a t (.0000036774)
81

82 R = matrix ([[sigmaX , 0 , 0] , [0 , sigmaY , 0] , [0 , 0 , sigmaOmega]])
83 P = R;
84

85 f i r s tMea s = True
86

87 pr in t (” I n i t i a l Condit ions are VL = ” , v l i , ” , VR = ” , v r i , ” , x = ” ,
88 x i , ” , y = , ” , y i , ” , theta = ” , th e t a i , ”\n”)
89 pr in t (”\n”)
90

91 #SEND VALUES TO FILTERS
92 count = 0
93 f o r x in t r a j e c t o r i e s :
94 f o r po int in x :
95 vl , vr , x acce l , y acce l , omega = point . s p l i t () ;
96 t s = f l o a t (deltaT (count))
97 v l = f l o a t (v l)
98 vr = f l o a t (vr)
99 Z = matrix ([[f l o a t (x a c c e l)] , [f l o a t (y a c c e l)] , [f l o a t (omega)]])

56

100 i f f i r s tMea s == true :
101 Z f i l t = Z
102 f i r s tMea s = f a l s e
103

104 #PUSH MEASUREMENTS THROUGH LOW PASS FILTER
105 Z f i l t = l owp a s s f i l t e r (Z , Z f i l t)
106 Z = Z f i l t ;
107

108 #PUSH FILTERED MEASUREMENTS THROUGH EKF
109 EKF(vl , vr , Z , t s)
110 count = count+1
111

112 pr in t (” Fina l p o s i t i o n i s : X: ” , xhat (1) , ” Y: ” , xhat (2) , ” Theta : ”
113 , xhat (3))
114

115 de f ek f (vl , vr , Z , t s) :
116 g l oba l xhat
117 g l oba l P
118

119 C =matrix ([1 / (. 0 0 1⇤ t s ˆ2) , 0 , 0] , [0 , 1 / (. 0 0 1 ⇤ t s ˆ2) , 0] , [0 , 0 , 1 / (. 0 0 1 ⇤ t s ˆ2)])
120

121 #l i n e a r i z e d change in pose f o r t h i s d i s c r e t e time step
122 dD = .5⇤ . 0 01⇤ t s ⇤ v l ⇤vr
123 dTh = .001⇤ t s ⇤(vr�v l) /width
124

125 #sta t e p r ed i c t i on
126 xhat p = matrix ([[xhat . item (0)+dD⇤ cos (xhat . item (2))] ,
127 [xhat . item (1)+dD⇤ s i n (xhat . item (2))] , [xhat . item (2)+dTh]])
128

129 #jacob ian o f f with r e sp e c t to s t a t e s
130 dFdXhat = matrix ([[1 ,0 , �1⇤dD⇤ s i n (xhat . item (2))+dTh] ,
131 [0 , 1 ,dD⇤ cos (xhat . item (2))+dTh] , [0 , 0 , 1]])
132

133 #jacob ian o f f with r e sp e c t to c on t r o l input
134 dFdU = matrix ([[�1⇤dD⇤ s i n (xhat . item (2)+dTh)] ,
135 [0 , 1 ,dD⇤ cos (xhat . item (2)+dTh)] , [0 , 0 , 1]])
136

137 #Process no i s e covar iance
138 Q = dFdU. dot (matrix ([[sigmaTheta , 0] , [0 , sigmaD]]) . dot (dFdU. t ranspose ()))
139

140 #Process Error Covariance Pred i c t i on
141 P = dFdXhat . dot (P. dot (dFdXhat . t ranspose ()))+Q
142

143 #Innovat ion Matrix
144 S = C. dot (P. dot (C. t ranspose ()))+R
145

146 #Kalman Gain
147 K = P. dot ((C. t ranspose ()) . dot (inv (S)))
148

149 #State Update
150 xhat = xhat p+K. dot (Z�(C. dot (xhat p � xhat)))

57

151

152 #Process Error Update
153 P = (numpy . i d e n t i t y (3)�(K. dot (C))) ⇤P
154

155

156 de f l owp a s s f i l t e r (Z , Z f i l t) :
157 Z f i l t = (.3758⇤Z) +(.6242⇤ Z f i l t)
158 r e turn Z f i l t

58

B Robot Wiring Diagram

59

C Connecting Xbee Modules in XCTU Software
[11]

1. Install the XCTU software (https://www.digi.com/products/xbee-rf-solutions
/xctu-software/xctu)

2. Connect your XBee S1 modules to their breakout boards and connect both to
your computer with mini USB cables.

3. Click on the ”Add Device Icon” and select the proper COM port of your Xbee
module. The default settings for 9600-8-N-1 are recommended. Repeat for the
other module

Figure 41: XBee Add Device Icon

4. To connect your XBee S1 modules wirelessly, click on the Console Icon. Then
Click on the Link Icon, the border should turn green. You can type text into
the console to send from one module to the other. Confirm the connection by
sending a message in the console then selecting the other module to see if it
received the message.

60

Figure 42: XBee Console Icon and Link Icon

5. Now that your XBee’s are linked, you can disconnect one Xbee and Breakout
Board from your computer and connect it to your microcontroller using the 5V
Power and Ground. Make sure to connect TX to TX and RX to RX, unlike
Arduino SoftwareSerial connections. For Arduino’s these pins are usually pins
0 and 1.

6. With the other XBee module connected to the Computer, Open up a Serial
Monitor connecting with the port of the XBee connected (Arduino IDE is
recommended for this). You should be able to see what your microcontroller
is printing. You have now established a wireless serial connection to your
microcontroller.

61

D Cost Breakdown

Part Quantity Total Cost ($) Provider Source
CO2 Tanks 3 215.7 Praxair MAD 1802 MQP

Robot Body Kit 1 174.95 Pololu MAD 1802 MQP
Motor Driver Shields 2 99.90 Pololu MAD 1802 MQP
Motors with Encoders 4 147.80 Pololu MAD 1802 MQP

Wheels 8 29.90 Pololu MAD 1802 MQP
Battery 1 35.26 Amazon MAD 1802 MQP

Battery Charger 1 25.99 Amazon MAD 1802 MQP
Motor Controllers 4 135.80 Pololu MAD 1802 MQP

SprintIR CO2 Sensor 1 141.55 CO2 Meter MAD 1802 MQP
Total Shipping Costs N\A 41.00 N\A MAD 1802 MQP

Total: $ 1073.85 MAD 1802 MQP
Sensor Stand 3D Print 1 150.00 Higgins Labs N\A

Di↵user 3D Print 1 40.00 Higgins Labs N\A
Total: $ 190.00 N\A

SprintIR CO2 Sensor 3 424.65 CO2 Meter MAD 1801 MQP
Total Shipping Cost N\A 14.60 N\A MAD 1801 MQP

Total: $ 439.25 MAD 1801 MQP
Poron Foam 1 15.49 McMaster-Carr Spiridon Kasapis

Total Shipping Cost N\A 7.22 N\A Spiridon Kasapis
Total: $ 22.71 Spiridon Kasapis

Xbee 24 S1 2 26.95 Amazon Owen McGrath
Xbee USB to Serial 2 6.99 Amazon Owen McGrath

Arduino Mega 1 11.99 Amazon Owen McGrath
ESP 8266 1 6.99 Amazon Owen McGrath
Crimp Tool 1 13.97 Amazon Owen McGrath

Dupont Connector Kit 1 9.99 Amazon Owen McGrath
Total: $ 76.88 Owen McGrath

Gross Total: $ 1802.69

Table D.2: Project Cost Breakdown

62

E LabView Operation

1. Open LabView version 2017 or later and load the ’plume.vi’. Connect to the
Arduino on the plume generation stand and then run the VI.

2. Setup a time interval for which you desire a gas flow. Turn the valve switch
on. This will start a timer and the flow. Select a mass flow rate. This has been
limited to 410mg/s and can be readjusted if you wish.

3. After the timer reaches the desired flow time, the valve turns o↵ and the flow
stops. You can then turn o↵ the valve switch which will zero the timer and turn
it back on or increase the experimentation timer.

Figure 43: LabVIEW Front Panel Diagram.

63

References

[1] Adafruit Adafruit BNO055 Absolute Orientation Sensor Retrieved From:
https://learn.adafruit.com/adafruit-bno055-absolute-orientation-sensor/overview

[2] Anglin, Mica; Hunt, Mitchell; Myles, MatthewMAD 1501 Gas Source Localization
with a Mobile Sensing Ground Vehicle Worcester Polytechnic Institute, Worcester,
MA, 2015.

[3] Arduino Arduino Mega Retrieved From:
https://store.arduino.cc/usa/arduino-mega-2560-rev3

[4] Barney, M., Rivard, S. NAG 1602 Design and Integration of an Indoor Plume
Experimental Setup Worcester Polytechnic Institute, Worcester, MA, 2015.

[5] Christie, Nicholas; Colfer, John MAD 1601 Plume Estimation Using a
Gas-Sensing Mobile Robot Worcester Polytechnic Institute, Worcester, MA, 2016.

[6] Clark, Christopher; Greene, Mitchell; Seigle, Madeline NAG 1501 Design
of Plume Generation and Detection Systems Worcester Polytechnic Institute,
Worcester, MA, 2015.

[7] CO2Meter.com COZIR 2000 ppm CO2 Sensor Retrieved From:
https://www.co2meter.com/products/cozir-2000-ppm-co2-sensor

[8] CO2Meter.com GSS Sensor User Manual August 2015

[9] CO2Meter.com SprintIR WR 100% CO2 Sensor
https://www.co2meter.com/products/sprintir-100-percent-co2-sensor

[10] Coulter, R. Craig. Implementation of the Pure Pursuit Path Tracking Algorithm.
Carnegie Mellon University, Pittsburgh, Pennsylvania, 1992.

[11] Digi Xbee Series 1 Wireless Serial Module
Retrieved From: https://www.sparkfun.com/products/8665

[12] Fast, E. D.; Harnais; S. M.; Wiesenberg, R. M. MAD-1702 Plume Analysis and
Detection. Worcester Polytechnic Institute, Worcester, Massachusetts, 2017.

[13] Hassanzadeh, Iraj; Abedinour Fallah, Mehdi Design of Augmented Extended
Kalman Filter for Real Tie Simulation of Mobile Robots Using Simulink 6th
International Symposium on Mechatronics and its Applications Sharjah UAE
(2009)

[14] iRobot iRobot Create2 Retrieved From:
http://www.irobot.com/About-iRobot/STEM/Create-2.aspx

64

[15] Kamenetsky, Max. Filtered Audio Demo.
Retrieved from https://web.stanford.edu/˜boyd/ee102/conv demo.pdf

[16] KTeam Khepera IV Mobile Sensing Robot Retrieved From:
https://www.k-team.com/mobile-robotics-products/khepera-iv

[17] Luong Van, Daniel; Katupitiya, Jayantha An Adaptive Kalman Filter With
Quadrature Encoder Quantisation Compensation IFAC Mechatronic Systems,
Sydney Australia 2004

[18] NumPy NumPy Scientific Computing Library for Python Retrieved from:
http://www.numpy.org/

[19] Omegatron. (2008, July 4). Butterworth Filter Response. Retrieved from
https://commons.wikimedia.org/wiki/File:Butterworth response.svg

[20] Otahal, Thomas J.; Tanner, Herbert G. Extended Kalman Filter Implementation
for the Khepera II Mobile Robot (2009) University of New Mexico Mechanical
Engineering Faculty Publications

[21] Pololu Dagu Wild Thumper 4WD All Terrain Chassis Retrieved From:
https://www.pololu.com/product/1565

[22] Pololu Pololu Simple Motor Controller User’s Guide 2017

[23] Pololu Pololu Simple Motor Controller 18v7 Retrieved From:
https://www.pololu.com/product/1372

[24] Pololu 75:1 Metal Gearmotor 25Dx54L mm HP 6V with 48 CPR Encoder
Retrieved From:
https://www.pololu.com/product/2275

[25] Roder Cozir CO2 Sensor Arduino Library Retrieved from:
https://github.com/roder/cozir

[26] Smith J.O. Introduction to Digital Filters with Audio Applications,
http://ccrma.stanford.edu/˜jos/filters/, online book, 2007 edition, accessed
February 25, 2018.

[27] Welch, Greg; Bishop, Gary An Introduction to the Kalman Filter UNC Chapel
Hill Department of Computer Science (2006)

[28] Wu, Xiaodong; Xu, Min; Wang, Lei Di↵erential Speed Steering Control
for Four-Wheel Independent Driving Electric Vehicle International Journal of
Materials, Mechanics and Manufacturing Vol. 1, No4. November 2013

65

