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Abstract 
for the design and implementation of Kiip, a Skeletal Motion Capture Library 

By 

Elliot Borenstein 

This report details the design and implementation of the Computer Science Major Qualifying 

Project (MQP) to create Kiip. Kiip is a library for the real-time conversion of optical motion 

capture data into hierarchical skeleton data. A large amount of research has been done previously 

on the topics of motion capture and retargeting, but there are few tools available to application 

and content developers. The tools that do exist are generally expensive closed systems. The Kiip 

library was designed to be free and easily integrated into external applications, where online 

conversion of the motion capture data is needed. 

This report begins by discussing the theory necessary to perform motion capture. Various 

existing methods for capture and retargeting are presented and compared. Next, an overview of 

the hardware required for motion capture is given, including examples of the hardware used by 

and created for the MQP. This is followed by explanations of the mathematics used by the 

library, as well as for related and more complex facets of retargeting that were not added to the 

final library. 

Following the theory, the report details the design and implementation of the Kiip library. The 

public API exists in a single Kiip class which handles all communication between an application 

and the various systems used to calculate the final motion. An application-definable Reader class 

handles the polling of data for use by the Kiip system. A Mover class then receives the data and 

processes it to find information about the movement of an actor in the real world. Finally, a 

Retargeter class attempts to apply that information to an application defined character, mapping 

the motion of an actor in the real world to a character in a digital world. Two applications of the 

library as discussed, one inside a real-time game engine, and another a plugin to an industry 

standard 3D animation software package. 

Following the implementation, discussions of the schedule and outcomes of the project are 

presented. Testing of the accuracy of the system is detailed and analyzed, showing that the Kiip 

library produces reasonably accurate output given sufficiently accurate input. Unfinished areas of 

the library, particularly with respect to motion retargeting, are discussed, including the research 

conducted and the methods attempted. Suggestions for solutions to the problems encountered are 

also given. Finally, a small selection of topics for future work is given. These topics include 

alternate methods of calculating certain kinds of data, a proposed generic server application of 

the library for general use, and suggestions for improved input and output methods. 
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1. Introduction 
Character animation is the process of bringing movement and life to a digital character, and is used in 

many applications. Traditionally, these animations were created manually, but more recently animations 

based on motion capture data have become more prevalent. Even with motion capture data though, the 

animations are normally processed and applied to characters offline using expensive commercial 

software. The Kiip library described here aims to provide a method for performing the conversion from 

motion capture data to an animated skeleton in real-time. In this system, the motions of an actor being 

tracked by an optical motion capture system were to be applied to an application-defined skeleton for 

use in any application. 

Two such applications were envisioned for the project. One intended to immerse the user fully within a 

3D environment, allowing him to look and move around an environment. This type of application could 

be used for 3D gaming, virtual reality research, virtual meetings and performances, or similar 

applications. The other was real-time feedback of a motion capture session, allowing content creators to 

quickly preview animations on their models as an actor moved about. 

Due to complications in the development of the project, the Kiip library does not yet properly calculate 

retargeted skeletons. As such, these applications were not fully completed for this MQP. However, the 

library does properly find the positions of joints in the world, and this functionality is visible in the 

applications. 

1.1 Motion Capture Basics 
Motion capture is a process of recording data about and object's movement, and using that data to 

control an animated character. In particular, Kiip uses captured data about the limbs of an actor, and uses 

it to calculate information about that actor's skeleton. There are several varieties of motion capture, such 

as optical, inertial, and magnetic, each with their own strengths and weaknesses. This project focuses on 

optical capture. Optical motion capture tracks fixed points, or markers, on an object from frame to 

frame, and provides their 3D coordinates. Unlike some other varieties, optical capture does not 

implicitly provide the orientation of the object being tracked. Some systems use passive markers, 

illuminating reflective spheres with external light sources that can be seen by cameras. More advanced 

systems use active markers, electronically modulating the rate and timing of LEDs to more accurately 

track each specific marker.  

Tracking markers and interpreting the data is a complex problem. Finding the coordinates of a single 

marker requires aligning images from multiple cameras, each of which must be carefully calibrated to 

ensure accurate results. If too few cameras are able to see the marker in a frame, its position cannot be 

determined. If two markers on different objects pass in front of one another, some method must be used 

to determine which is which. The exact methods for solving these problems are beyond the scope of this 

project, and many commercial systems are available, providing both hardware and software aimed at 

solving these problems. Kiip assumes that the marker data, comprising the positions of all markers in a 

given frame, has already been processed by some external system.  
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2. Related Work 
A great deal of previous work exists in the field of motion capture, including both research papers and 

commercial software that generate animations from optical marker data. However, most research topics 

only present solutions to specific portions of the motion capture pipeline, generally dividing capture of 

an actor’s motion and retargeting of that motion into two distinct areas of study. The majority of papers 

discussing the calculation of the actor’s motion also discuss various methods for capturing the base 

marker data, as previously described. 

2.1 Commercial Tools 
The industry standard tool for working with marker data is Autodesk MotionBuilder

1
. MotionBuilder is 

a character animation tool that is capable of calculating animations based on marker data, and 

retargeting those animations to a wide variety of skeletons. Many of the principles used in Kiip’s design 

come from MotionBuilder, including the division of the body’s limbs. While MotionBuilder is a 

powerful piece of software, it does have drawbacks. MotionBuilder is capable of retargeting animation 

based on real time marker data, but as it is a standalone application it cannot be integrated and shipped 

with a product. Also, MotionBuilder licenses are generally very expensive. While not as fully featured, 

Kiip was designed to be free and easily distributed with other applications, while also being easy to 

integrate into existing software. 

2.2 Actor Capture 
Three primary papers were used in designing Kiip. O’Brien et al.(2000) discuss finding joint locations 

using magnetic motion capture data. This method uses markers on limbs adjacent to each joint to find 

the position of the joint in world space. Unlike optical data, magnetic data has information about both 

the position and orientation of each marker, simplifying the calculations. Since optical data doesn’t have 

this orientation data, it must be calculated. Ringer (2004) discusses the same technique as it is applied to 

optical data. Finally, Charalambous (2005), a senior thesis from Cambridge University, discusses 

methods for calculating the orientation data, as well as providing further explanation about this method 

of calculating the joint positions. 

Xiao, Nait-charif, & Zhang (2009) use the same method as above, and describe a method for calculating 

the orientation of the actor’s skeleton once the positions are known. Hornung & Kobbelt (2004) also use 

the above method, and discuss a way of rebuilding the position of the elbow (and similar joints) when it 

has been lost by using information about the two surrounding joints. 

There are several other methods based on the same principle of using markers on adjacent limbs to find 

the joint positions. Kirk, O’Brien, & Forsyth (2005) and De Aguiar, Theobalt, & Seidel (2006) use 

alternate ways of calculating this data, while also using these calculations to automatically build a 

representation of the actor’s skeleton. By comparing marker groups on every pair of limbs (instead of 

known pairs, as above), they determine which pairings are most likely to be about a common point of 

rotation, and assign that point to be a joint. Herda et al. (2000) and Herda et al. (2001) present similar 

                                                 
1
 http://www.autodesk.com/motionbuilder 
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techniques. Kiip assumes that the correspondence between markers, limbs and joints is known, and so 

the techniques for finding that information were not used. 

Another common method for finding the joint positions is to use the skeleton’s hierarchy. This method 

uses the fact that a joint should always remain at a fixed local position relative to its parent joint. It also 

relies on each marker below that joint moving about a sphere centered at the joint’s location. Silaghi et 

al. (1998) use this method, but rely on a weighted average of the calculated centers of rotation for each 

marker to find the joint position. Gamage & Lasenby (2002), on the other hand, provide a closed form 

solution for finding the local joint positions using least squares estimation. The Gamage & Lasenby 

(2002) method is described further in Kwon (2010). Wen et al. (2006) use a similar technique to the 

ones in this category. 

Finally, Zordan & Van Der Horst (2003) use a different approach to the ones above, applying forces and 

constraints to the marker data to calculate the skeletal animation. 

Overall, most of the literature uses similar techniques to find the joint positions, though there are several 

different methods suggested for minimizing the error. As Kiip is designed for real-time processing, the 

solution found in the first three papers was used, providing reasonably accurate data using an algorithm 

that executes quickly. Many of these papers did not provide full solutions, omitting specific steps or only 

providing vague descriptions of the techniques used. Thus, information from multiple sources had to be 

combined, and some equations re-derived, to find the final solution. 

2.3 Retargeting 
A common element in papers about retargeting is the use of inverse kinematics (IK) to change an 

animation to do something new. For instance, Choi (2001) uses IK to adjust a skeleton to meet specific 

goal poses, as well as to enhance the captured motion. Unlike standard forward kinematics (FK), which 

defines poses by moving down the skeletal hierarchy and applying rotations, IK defines a final position 

for a joint and moves up the hierarchy solving for rotations. This mimics how humans instinctively 

move, but is more computationally expensive and harder to constrain. 

Another common approach is to use constraints that rely on what the motion does over time, or 

spacetime constraints. Gleicher (1997), Gleicher (1998), and Gleicher & Litwinowicz (1998) all use a 

combination of constraints on the character and IK to adjust the motion. Monzani (2001) also uses 

spacetime constraints, but first builds an intermediate skeleton to aid in the transfer of motion from the 

actor to the output skeleton. The problem with using these constraint-based approaches is that they 

generally rely on knowledge of what is happening in the animation. In some cases, they simply rely on 

information from frames in the future to calculate the current frame, such as the method in Gleicher 

(1998) for maintaining foot planting. Other methods require that the user make note of when certain 

actions begin and end. These requirements make such approaches inappropriate for real time retargeting 

where the nature of current and future motions is unknown. 

While Kiip is designed to apply the motion of a human actor onto a humanoid character, there has been 

research done on applying animations to arbitrary characters. One interesting example is Hecker (2008), 
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which discusses the methods used to animate user-generated characters in the video game Spore
2
. This 

approach allowed animators to flag each animation as being applicable to certain body parts in certain 

situations. A specialized IK solver was then used to apply these animations to the game characters. 

Another method for applying motion to an arbitrary skeleton is (Poirier & Paquette, 2009), which first 

builds a skeleton for the mesh based on its shape, and then maps input motion onto that skeleton.  

                                                 
2
 http://www.spore.com/ 



5 

 

3. System Overview 
The basic Kiip system is shown in Figure 1. First, the user defines the number of markers and the 

correspondence between each marker and one of several skeletal areas (e.g., forearm, leg, etc.). Next, a 

calibration motion is captured. From this motion, the position and orientation of the joints in the actor’s 

skeleton are calculated. Once the base skeleton has been calculated, the system begins calculating the 

skeleton based on real-time marker data. Finally, the system attempts to retarget the calculated motion to 

fit a more complex skeleton provided by the user, though this portion is not complete. 

 

Figure 1 – Basic Kiip System 

 

3.1 User Setup and Capture System 
Kiip can be configured to accept input marker data from any source, however it was tested during 

creation using an eight-camera PhaseSpace
3
 optical motion capture system. This system uses light-

emitting diodes (LEDs) placed on the actor as markers, and then returns the 3D coordinates of these 

markers. By pulsing the LEDs at specific times, the system is able to accurately determine which marker 

it sees, thus avoiding any errors due to misidentified markers. 

The user stands inside a ring of the eight cameras, wearing markers on each limb as indicated in Table 1. 

In general, each limb has four markers attached to it, though the feet, hands and clavicles each have 

three. These markers are semi-rigidly attached to the limbs to ensure that each marker maintains a 

constant distance from its controlling joint. 

                                                 
3
 http://www.phasespace.com/ 
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Table 1 – Marker Counts 

Limb Marker Count 

Lower Torso 4 

Upper Torso 4 

Clavicle 3 

Upper Arm 4 

Lower Arm 4 

Hand 3 

Head 4 

Upper Leg 4 

Lower Leg 4 

Foot 3 

 

The PhaseSpace system came with a full-body spandex suit pre-wired to accept markers. However, the 

suit was designed to hold far fewer markers on each limb than is outlined above. Also, it was difficult to 

take off and put on, and uncomfortable to wear. As such, a new modular suit was designed and created 

over the course of the project, and can be partially seen in Figure 2. Rather than use a single piece of 

material, the new suit is comprised of a separate piece for each limb, allowing the user to only wear as 

much of the suit as needed for a given application. Each piece is made of a Velcro-accepting fabric, 

allowing markers to be placed in arbitrary numbers and orientations on a given limb. 

 

Figure 2 – Part of the New Suit 
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3.2 Marker Input 
Before the system can work with input marker data, it needs some information about the markers. The 

user must define the number of markers that the system should expect to receive, as well as what limb of 

the body each marker is attached to. The possible limbs are the same as those listed in Table 1. To 

calculate the joint rotations, it is necessary to have at least three markers visible on each limb, with four 

being ideal for redundancy. 

3.3 Building the Actor Skeleton 
Now that the system knows how the markers are attached to the body, calculation of the actor’s rest 

skeleton can be performed. First, the actor performs a gym movement which is recorded. The gym 

movement consists of rotating every major joint around each degree of freedom, which is important for 

the next step of calculating each joint’s location. 

The method for determining the joint location requires that the marker locations be in the local space of 

the joint rather than in world space. (Ringer, 2004) shows that the joint location can be solved from: 

𝒛𝒍
𝒑 𝒌 = 𝑹𝒍 𝒌 𝒆𝒍

𝒑 + 𝒕(𝒌)     Eq 1 

Where 𝑧𝑙
𝑝 𝑘  is the world space position of marker p on limb l at frame k, 𝑅𝑙 𝑘  is the 3x3 matrix 

defining the orientation of the limb relative to the joint, 𝑒𝑙
𝑝  is the vector from the joint to the marker p, 

and 𝑡𝑙(𝑘) is the world space position of the joint. The background of this equation is further explained in 

O’Brien, Bodenheimer Jr, Brostow, & Hodgins (2000). 

3.3.1 Limb Rotations 

Before the local marker positions can be found, 𝑅𝑙 𝑘  must be found. Charalambous (2005) proposes 

two methods for estimating this value, one for limbs with at least three visible markers, and a less 

accurate one for limbs with only two visible markers. Both methods use a reference frame and the 

current frame to calculate the rotation of the limb relative to the joint. Kiip uses the three-marker 

version, which is based on Singular Value Decomposition (SVD). This method is also derived in (Kwon, 

2011). 

Figure 3 shows two limbs, X and Y, which rotate about a joint. Limb X has three visible markers, while 

limb Y has four. The limbs are shown at the base frame (k=1) and at some later frame, k>1. 
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Figure 3 - Rotation of Limbs X and Y 
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First, a pair of 3xN matrices is created, one at the base frame and one at the current frame, where N is 

the number of visible markers on the limb. N must be at least 3, but can be larger. Each column of the 

matrix is a vector from one of the markers to the next, going in a loop. 

𝐻 = 𝑀1 ∗ 𝑀𝑘
𝑇 

Next, matrix H is calculated by multiplying the base frame matrix by the transpose of the current frame 

matrix. 

𝐻 = 𝑈 ∗ 𝑊 ∗ 𝑉𝑇 

Taking the SVD of H provides two orthogonal matrices, U and V, and a diagonal matrix, W. 
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𝑅(𝑘) = 𝑈 ∗  
1 0 0
0 1 0
0 0 𝑑𝑒𝑡(𝑈 ∗ 𝑉𝑇)

 ∗ 𝑉𝑇 

The limb rotation at the frame, R(k), is then given by multiplying U by the transpose of V. However, 

Kwon (2011) notes that the resulting matrix may have a negative determinant, meaning that the rotation 

matrix is a reflection of the one desired. To fix this, the inner matrix shown above is inserted, which will 

correct the reflection if necessary. 

This method provides a world-space rotation matrix of the limb relative to the base pose for that limb. 

This matrix is suitable for use in the following sections on finding joint positions, but does not work for 

finding the local rotation of a limb when retargeting. 

3.3.2 Marker-to-Joint Vectors 

With the rotations known, Charalambous (2005) and Ringer (2004) show that it is possible to solve for 

𝑒𝑙
𝑝 . Looking at two different limbs, x and y, attached to a given joint produces the following: 

𝒛𝒙
𝒊 𝒌 = 𝑹𝒙 𝒌 𝒆𝒙

𝒊 + 𝒕 𝒌      Eq 2 

𝒛𝒚
𝒋 𝒌 = 𝑹𝒚 𝒌 𝒆𝒚

𝒋 + 𝒕(𝒌)     Eq 3 

where i is a marker on x and j is a marker on y. Rearranging these equations to solve for 𝑡(𝑘) produces: 

𝒕 𝒌 = 𝒛𝒙
𝒊 𝒌 − 𝑹𝒙 𝒌 𝒆𝒙

𝒊     Eq 4 

𝒕 𝒌 = 𝒛𝒚
𝒋 𝒌 − 𝑹𝒚 𝒌 𝒆𝒚

𝒋     Eq 5 

which can be set equal to each other eliminating 𝑡 𝑘 , and producing: 

𝒛𝒙
𝒊 𝒌 − 𝑹𝒙 𝒌 𝒆𝒙

𝒊 = 𝒛𝒚
𝒋 𝒌 − 𝑹𝒚 𝒌 𝒆𝒚

𝒋   Eq 6 

and finally: 

𝒃𝒊𝒋 𝒌 = 𝒛𝒙
𝒊 𝒌 − 𝒛𝒚

𝒋 𝒌 = 𝑹𝒙 𝒌 𝒆𝒙
𝒊 − 𝑹𝒚 𝒌 𝒆𝒚

𝒋  Eq 7 

This is roughly in the form 𝐴𝑚 = 𝐵 where, 

𝐴 =  𝑅𝑥 𝑘 −𝑅𝑦 𝑘  , 3𝑥6 

𝐵 =  𝑧𝑥
𝑖 𝑘 − 𝑧𝑦

𝑗  𝑘  , 3𝑥1 

𝑚 =  
𝑒𝑥

𝑖

𝑒𝑦
𝑗  ,6x1 

which, when solved, will provide estimations for 𝑒𝑥
𝑖  and 𝑒𝑦

𝑗 . 
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3.3.3 Joint Positions 

Finally, with all other variables known, the value of 𝑡 𝑘  can be found by solving Eq 1 for all p markers 

on a given limb, for all limbs attached to the joint. The average of the locations for all markers is the 

estimate. From this, the distance from each marker to its corresponding joints, as well as the limb length 

for each limb, can be calculated by averaging the values from each frame. 

A rest pose is then chosen to be the base pose from which skeletal movement is defined. This pose is the 

first frame found in which all markers are visible, and is the same one used above to calculate limb 

rotations. Ideally, the actor will be in a pose similar to that of the skeleton to which motion is to be 

applied, as this creates less distortion later during retargeting. The world-space joint and marker 

positions in this pose are stored, along with the vectors from each joint to its adjacent markers. The final 

skeleton looks like the one in Figure 4. 

 

Figure 4 – Actor Joints 

3.4 Skeletal Capture 
At each frame during real-time capture, the position of the joints must be determined, again using Eq 1. 

As before, the rotation of each limb is calculated based on the world space positions of the markers on 

the limb. The 𝑒𝑙
𝑝  vectors for each marker that were stored for the base pose can be multiplied by this 

rotation to find the vectors for the current frame. Finally, Eq 1 can be solved and averaged for all 

markers as before, providing base locations for the joints. 

Once the joint locations are estimated, they are further refined by building the joint hierarchy outward 

from the root, which is assumed to be correct. Figure 5 shows how the positions for the children of the 
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root are calculated. A vector, 𝑣, is calculated from the root position, R, to the estimated child position, 

C’. Since the length of each limb, L, has been calculated, the position of the children joints must be 

constrained to that length. The final joint position, C, is placed at a distance of L along 𝑣. Ideally, the 

original estimation should be close to this point anyway, but this step ensures that the limbs of the 

skeleton maintain their rigid structure. 

 

Figure 5 – Joint Location Correction 

 

3.5 Skeletal Retargeting 

3.5.1 Retargeting 

Before retargeting can occur, the application must provide a character skeleton. Similar to marker input, 

the user must specify the type of each joint. Figure 6 shows the acceptable joint types that were intended 

to be handled by Kiip. Joints in yellow were to be required, while the others were optional. The red 

joints are roll joints that sit between two primary joints and help to smooth out the character’s 

deformation. The user was to be able to specify multiple spine and neck joints, in order, if desired. 
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Figure 6 – Character Joints 

 

As stated previously, the closer the provided skeleton's rest pose is to the actor's base pose, the more 

likely it is for retargeting to appear accurate. Monzani (2001) provides further examples and explanation 

as to why the base poses should be similar. 

As little to no research was found on the topic of real-time retargeting, a method had to be devised for 

the project. The simplest way to retarget the motion is to copy all of the local rotational values onto the 

new joints. Given accurate rotation data, this is simple for most joints. However, for the spine and neck, 

this is more complicated as the actor skeleton only has locations for the start and end of the spine and the 

position of the head. Any intermediate joints in the user's skeleton would require that the single rotation 

be broken up and applied to multiple joints. Also, for the spine root, there are two output limbs from 

which to determine a world orientation for the skeleton, which must be resolved. 

As of the end of the MQP, simple retargeting was implemented but unfinished. None of the more 

complex methods were implemented, but they are outlined in the next several sections for completeness. 
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3.5.2 Simple Retargeting 
𝑪𝑳 = 𝑪𝑾 ∗ 𝑷𝑾

−𝟏     Eq 8 

Eq 8 shows how to calculate the local rotation of a joint, 𝑪𝑳, given its world-space rotation, 𝑪𝑾, and the 

inverse of its parent's world-space rotation, 𝑷𝑾
−𝟏, using simple matrix math. This equation assumes 

column-vector matrices. The actor skeleton is not stored in a hierarchical relationship, but those 

relationships can still be used here (the shoulder is the parent of the elbow, for instance). 

𝑻𝑭 = 𝑪𝑳 ∗ 𝑻𝑩     Eq 9 

Eq 9 shows how the user joint's final transform, 𝑻𝑭, is calculated based on the previously found local 

rotation offset and the base transform, 𝑻𝑩, for that same user joint. 

3.5.3 Spine and Neck Retargeting 

Figure 7 shows a side-view of the actor spine (left) and a possible character spine (right). To retarget the 

movement of the spine, the start of the two spines must be aligned. Then, the end of the spines must also 

be aligned by calculating rotations for all of the intermediary spine joints along the way. The end points 

are not actually the same world space position, since the user’s skeleton is likely of a different scale than 

the actor. To address this, an offset must be calculated based on the base poses for both skeletons, and 

used to calculate the actual end point of the user spine. To calculate the rotations of the various spine 

joints, an IK chain can be used. The resulting rotations may then be assigned to the spine of the 

character’s skeleton. 

 

Figure 7 – Spine Retargeting 

 

A similar method can be used for calculating the rotation of any neck joints, with the end of the spine 

acting as the start of the IK chain, and the head acting as the end. Once again, a scale factor must be 

calculated from the base skeleton to find the position of the head on the user’s skeleton based on the 

head of the actor. 
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3.5.4 Clavicle 

The clavicle joints can sit somewhere between the tip of the spine and the shoulder, connecting the two. 

While the actor moves, the position of the shoulder joint may also move relative to the spine. Without a 

clavicle, this movement is not possible as rotating the spine joint would cause other joints to be in the 

wrong positions; thus, if no clavicle is provided, the movement is lost. If a clavicle is provided, its 

rotation can be set such that it points to the location where the shoulder should be placed, preserving the 

shoulder movement. 

3.5.5 Roll Joints 

Figure 6 shows upper and lower roll joints for the arms and legs in red. These joints sit between the 

main captured joints (shoulder, elbow, wrist for the arm; femur, knee, ankle for the leg) and distribute 

the twisting rotations to provide more realistic deformation of the muscles and bones in those areas. In 

particular, the upper roll joint distributes the twisting of the shoulder, and the lower joint distributes the 

twisting of the wrist; the elbow ideally acts as a hinge joint and so should not have any twisting to 

distribute. Retargeting to the roll joints involves calculating the twist along the limb’s axis, and then 

dividing that twist so that a portion of it is in the rotation of the primary joint and the other portion is in 

the roll joint. 

3.5.6 Foot Planting 

The final type of retargeting for the system is adjustment of leg movement to ensure that the feet do not 

penetrate the ground. Since the user’s skeleton is of a different scale than the actor skeleton, simply 

applying the rotation of the actor’s leg joints to the user’s skeleton may result in the feet floating above 

or penetrating through the floor. To fix this, IK chains can be attached to the legs and used whenever it 

is detected that the feet have penetrated a user-defined plane. The IK handles will then adjust the 

rotation of the femur and knee joints to pull the feet back above the ground plane.  
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4. Implementation 

4.1 System Overview 
The Kiip system is a C++ static library that can be linked into other applications. The system is 

comprised of one main class, "Kiip", which creates, and interacts with, various subsystems as needed. 

Figure 8 shows a high level overview of the system. For each actor being tracked, the user instantiates a 

Kiip object which acts as an interface between the user and the system. Based on user requests, the Kiip 

object interacts with the subsystems, sending and receiving data between them as needed and storing the 

most recent data to be provided as the user requests it. 

 

Figure 8 – Kiip Implementation Overview 

 

On instantiation, the Kiip object spawns a thread which continually loops until the object's destruction. 

As the Kiip object must not block when user code requests data, a copy of the most recent data is 

always held by the Kiip object. The looping thread polls the various subsystems for new data, and stores 

its own copies of this data. The Kiip object also maintains a single current task, explained in Table 2. 

The current task is changed by various user calls, moving through the various initialization stages until 

finally beginning general capture and retargeting. 

Table 2 - Kiip Task States 

kKiipNoTask Kiip is idle 
kKiipFindBasePoseTask Searching for a frame where all markers are visible 
kKiipCaptureGymMotionTask Capturing and storing frames of the gym motion 
kKiipProcessGymMotionTask Waiting for the Mover to process the gym motion 
kKiipProcessMotionTask Standard data processing from frame to frame 

 

Application

Kiip

MarkerReader RetargeterKiipMover
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4.2 Marker Input 
Markers are the main data source for Kiip, and up-to-date marker data is required for all of Kiip's 

computations. Kiip does not handle the tracking of markers, but rather reads in this data from another 

source. 

4.2.1 Marker Reader 

A MarkerReader object is responsible for reading in frames of marker data from a source. Figure 9 

shows the base class for Marker Readers, as well as the subclass used to read from the PhaseSpace 

system. The application instantiates a MarkerReader subclass, and passes it to the Kiip object, along 

with a list of marker correspondences, as described in Section 3.2. The application must be the one to 

instantiate this instance because each subclass may have specific initialization information that only the 

application knows, such as a filename to read from or a server address to connect to. 

 

Figure 9 – Marker Input Overview 

 

When the application tells Kiip to begin collecting marker data, the Kiip object will tell the 

MarkerReader to begin polling using Start(). The MarkerReader super class will begin calling the 

subclass’s PollMarkers() function in a new thread, which will continuously poll for marker data each 

MarkerReader

+GetMarkers()
+Initialize()
+Stop()
+Start()
#PollMarkers()
-Poll()
+HasNewMarkers()

PhasespaceReader

+Initialize()
#PollMarkers()
#StartReading()
#StopReading()
#GetCurrentMarkers()
+HasNewMarkers()

Marker

+Position
+Quality
+Offset

Kiip
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frame until Stop() is called. The Kiip object can access the most recent frame of marker data by calling 

GetMarkers(). 

4.2.1.1 PhaseSpace Reader 

The PhasespaceReader is able to connect to a desired PhaseSpace server and capture live marker data. 

It has various options including server address, capture rate, data interpolation, and capture mode, as 

defined by the PhaseSpace API. 

4.2.2 Markers 

The marker data being passed around consists of three values per marker: the 3D position, a quality 

value, and later an offset from the joints it rotates about. The quality value tells other parts of the Kiip 

system how that marker should be interpreted. For instance, when a marker position is known, it is 

assigned a quality of 'good', while if the position is unknown it is assigned 'bad'. When the existence of 

the maker is unknown, it is marked as 'unknown'. 

4.2.3 Marker Info 

In addition to a MarkerReader implementation, the user must pass an array of MarkerInfo objects to 

Kiip. These allow the user to define which limb each marker is attached to. This data is then passed on 

to the MarkerReader, and as such can be subclassed to include additional info for the specific reader. 

For example, the PhaseSpace Info subclass can assign a PhaseSpace marker ID that is different from the 

ID used locally by Kiip. 

 

Figure 10 - Marker Info Class 

 

  

MarkerInfo

-Location

+GetLocation()

PhasespaceInfo

+psMarkerId

+GetPsMarkerId()



18 

 

4.3 Building the Actor Skeleton 
Before capture can proceed, Kiip must determine and store various pieces of information about the 

current actor. This data is used in later steps as both a base and timesaver for computations. 

4.3.1 Finding the Base Pose 

The first step in capturing a skeleton is to capture a base pose for the actor. This pose should be as close 

as possible to the skeleton the motion is to be applied to for best results. The application tells Kiip to 

begin searching for a suitable base pose with the call "kiip->findBasePose()". This causes Kiip to 

begin checking every new frame of data until it finds one where all defined markers are visible. This 

becomes the base pose for the current session. 

4.3.2 The Gym Motion 

After finding a base pose, the application must call "kiip->captureGymMotion(time, fps) ". This 

will cause Kiip to begin recording frames of marker data into a buffer for 'time' seconds at a rate of 'fps' 

frames per second. While this data is being recorded, the actor should be moving his various limbs 

through a routine that moves them through their normal range of motion. Once this capture is complete, 

the application can call "kiip->processGymMotion()", which will send the base pose and the captured 

frames to the KiipMover. 

The KiipMover, as shown in Figure 11, is responsible for calculating the positions of the joints and the 

orientations of the limbs, as well as processing the gym motion. The first step in this processing is to 

determine the orientation of each limb for each frame. Using the method described in Section 3.3.1, the 

rotation is calculated for all limbs before moving on to the next step. Once the limb rotations are known, 

the marker offset vectors and joint positions can be calculated for each frame. Some joints may not be 

calculated on certain frames if their associated limb rotations could not be found in the previous step. 

With the data for each frame known, the KiipMover proceeds to average the values it has calculated for 

each frame, storing the average offset vectors for each marker, as well as an average length for each 

limb. The former allows for quicker calculations later in the process, while the later allows for correcting 

the joint positions that are found. 



19 

 

 

Figure 11 - Actor Mover 

 

4.4 Skeletal Capture 

Once the KiipMover finishes processing the gym motion, the main Kiip loop automatically switches to 

skeletal capture. This process also takes place within the KiipMover. Using all of the pre-calculated 

data, along with new marker data, the positions and orientations of visible joints and limbs are found and 

stored for later access. 

4.4.1 Frame Processing 

When the MarkerReader has a new frame of marker data ready, and the KiipMover is not busy, Kiip 

will pass the new marker data into the Mover. This spawns a new thread responsible for processing of 

the frame, using the method from Section 3.4. First each limb’s rotation is calculated based on the base 

pose and the current frame, as before. Then, for each visible marker, a position is found for the joint by 

multiplying the stored offset for that marker by the limb's rotation, and subtracting this value from the 

marker's current position. All of these rough position values are averaged across all limbs attached to a 

given joint, providing the final joint position. Finally, the joint positions are adjusted based on the stored 

limb lengths found earlier. 

By pre-calculating the marker offsets from the gym motion, the process above can remove a step from 

the calculations, providing a speed increase. More importantly, calculating the offsets requires that two 

limbs around each joint have enough visible markers to calculate their orientations. By pre-calculating 

the offsets, joints can often still be found even if one of their attached limbs is missing. 

4.4.2 ActorJoint 

The KiipMover provides an ActorJoint for each requested joint in the system. These store both a 

world-space joint position, and a quality value. Similar to Markers, the quality specifies if the joint 

position for the frame is calculated, unable to be calculated, or if the joint cannot exist given the 

available markers. 

KiipMover

+Initialize()
+SetCurrentMarkers()
+GetData()
+ProcessGymCapture()

ActorJoint

+worldPosition
+quality

Limb

+orientation
+quality
+visibleMarkers
+length
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4.4.3 Limb 

The KiipMover also provides a Limb for each limb in the system. These store a world orientation, a 

quality value, the number of markers visible on the given limb, and the constant length of the limb. 

4.5 Skeletal Retargeting 

The KiipRetargeter subsystem, when enabled by the application, is designed to apply the animation of 

the actor to a skeleton provided by the application as described in Section 3.5. The user passes local-

space transform matrices of a skeleton's base pose to Kiip, which activates that joint in the 

KiipRetargeter and stores the matrix. Once a frame has been processed by the KiipMover, the 

ActorJoint and Limb data are passed to the KiipRetargeter for final processing. The final outcome is 

a series of transform matrices which apply new transforms to the base matrices passed in by the user. 

 

Figure 12 - Kiip Retargeter 

 

With the exception of the neck, spine, and clavicles, all of the joints are handled by a single function. 

This function is intended to calculate local rotations for each limb, and apply them to the base matrices, 

as described in Section 3.5.2. Unfortunately, this portion of the project is incomplete, as will be 

addressed further in the evaluation section. 

4.6 Input/Output 

4.6.1 Data 

Internally, Kiip uses a linear algebra library to store vectors and matrices. However, applications using 

Kiip will most likely have their own data structures for these elements. To avoid complicating data 

access, all previously defined structures (Markers, Actor/Skeleton Joints, Limbs) have a 'user' version 

where vectors and matrices are stored as simple arrays. 

4.6.2 Logging 

Kiip uses a simple global logging class with multiple levels of debug logging, as well as error, warning, 

and general info. The desired verbosity can be changed at both compile time, and at run time. By 

default, the log prints to a file called "kiip.log" in the application's working directory, but this can also 

be changed by the user at runtime. 

KiipRetargeter

+Initialize()
+AddBaseJoint()
+GetData()
+SetData()

SkeletonJoint

+localTransform
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4.7 Libraries 
Kiip uses two external, cross-platform libraries for linear algebra, threading and other tasks. 

4.7.1 Eigen 

Eigen
4
 is a free C++ template library providing fast implementations of standard linear algebra concepts, 

including those specific to 3D animation such as 4x4 transformation matrices and quaternions. Eigen 

also includes modules for SVD and least-squares calculations, which are both at the core of the motion-

capture process described here. Kiip was developed using Eigen version 3. 

4.7.2 Boost 

Boost
5
 is a set of free, cross-platform peer-reviewed C++ libraries. Kiip uses the Boost Thread

6
 library 

to handle threading. Kiip also uses a handful of other Boost components, including the Date/Time
7
 

library for accurate timers. Kiip was developed using Boost version 1.45.0. 

4.7.3 PhaseSpace API 

Kiip also uses a library provided by PhaseSpace to communicate with the motion capture equipment 

used for testing.  

                                                 
4
 http://eigen.tuxfamily.org/index.php?title=Main_Page 

5
 http://www.boost.org 

6
 http://www.boost.org/doc/libs/1_45_0/doc/html/thread.html 

7
 http://www.boost.org/doc/libs/1_45_0/doc/html/date_time.html 
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5. Applications 
Despite the fact that the retargeting system is incomplete, Kiip is still able to calculate joint positions. To 

demonstrate that Kiip is application independent, it has been integrated into two different applications. 

Both of these applications use similar code to integrate Kiip, and a generic overview of this integration 

code is provided in Appendix A - Integration. 

5.1 C4 Game Engine 
The first application uses the C4 Game Engine

8
, and was built alongside the Kiip library. When run, it 

generates spheres representing marker and joint positions of the actor. C4 uses a z-up orientation, with 

row-vector matrices, while Kiip uses y-up and column-vector matrices. The C4 implementation includes 

an interface which converts positions and matrices between the two systems. Once a frame, the interface 

polls Kiip for the newest data, and stores it for access by other game-world elements. Figure 13 shows 

an example of the C4 application in use. The small spheres represent marker locations, and change color 

between green and red depending on the quality of the data. The larger spheres are calculated joint 

positions. The grey shapes near the bottom represent the joints of an arm. 

 

Figure 13 – C4 Application 

                                                 
8
 http://www.terathon.com/c4engine/index.php 
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5.2 Maya Plugin 
The second application is a plugin for displaying the data in Autodesk’s Maya

9
, a standard application 

for creating 3D content. The original goal of this plugin was to allow producers to get a visual 

representation of how motion capture will look on a character while the capture session is taking place. 

Normally, only a view of the markers is available, hindering the producer’s ability to know what the 

final animation will look like. As the retargeting is not complete, this plugin is essentially used to show 

that the library is application independent. The plugin currently performs broken retargeting onto a 

skeleton in Maya, showing that the application is sound even if the internals of the library are not. While 

the C4 implementation was created alongside Kiip, the Maya plugin was created once the API was set in 

place as a way of testing ease of integration. 

Unlike C4, Maya uses the same y-up column-vector system as Kiip, so no translation of data was 

needed. However, Maya is not designed to stream data in for playback; it is built on a node-based 

architecture, and does not work well with data that changes independently of its internal timing. Also, 

Maya does not allow transformation matrices to be set directly through its node graph, but instead wants 

the decomposed translation, rotation, and scale values only, along with some internal undocumented 

offsets. To overcome this, the plugin takes advantage of the ability to set a callback to run every time the 

current time is set in Maya. Pressing the 'Play' button, normally intended to playback keyframed 

animation, causes a special command to be run that queries a Kiip object attached to a Maya node for 

new data. This data can then be set directly to a transform in the scene, without first having to 

decompose it. Figure 14 shows an example of the Maya plugin. The green symbols near the top 

represent marker locations, while the structure at the bottom are the joints of two arms. 

                                                 
9
 http://www.autodesk.com/maya 
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Figure 14 – Maya Plugin 

An alternate method for such a plugin, and also for generic use of Kiip, would be to build a local server 

that passes data between Kiip and Maya over sockets. Maya does have a method for sending network 

data to its node-graph, but it is fairly limited. This would potentially also sidestep the need to 'Play' the 

timeline to force updates. Again, this server-based method could also be useful for other integrations, 

especially when the destination software is not written in C++.  
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6. Schedule 
This project began in B-term of 2010 and was completed in E-term of 2011. A division of work by term 

follows. 

6.1 B-Term 
B-term was spent researching background information for the MQP. The majority of the necessary 

research was compiled over this term, and the fundamentals of the math needed for the process were 

determined. 

6.3 C-Term 
C-term  was primarily used for setting up the basic Kiip framework, and implementing a proof-of-

concept for the calculation of joint positions. This term also included: 

 prototyping of the improved capture suit 

 debugging of the PhaseSpace system 

 sourcing of parts for the new suit's wiring and camera mounts 

 determining and implementing a plan for mounting the eight capture cameras to provide a stable 

and large capture volume 

6.4 Beyond C-Term 
Due to external complications, the project was put on hold over the course of D-term. Work resumed in 

E-term, and included: 

 generalization of the joint position algorithm to work with an arbitrary set of limbs 

 creation of cabling and pieces for the new suit 

 creation of the Retargeter sub-system, which involved testing many different methods for 

calculating the final transforms to be output 

 Reworking the C4 implementation to be a better integration example, along with implementation 

of Maya plugin implementation 
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7. Discussion 

7.1 Joint Position Accuracy Testing 

7.1.1 Methodology 

The main data output that Kiip successfully produces are the positions of the actor's joints. To test the 

accuracy of this data, a simple jig was setup in Maya. The Maya jig was chosen, as using data from a 

real actor would introduce several forms of error into the testing.  One major source of error comes from 

the fact that the markers attached to the actor are not completely fixed relative to the actor's joints, and 

can move slightly along the actor's limb. Another source comes from the inability to accurately measure 

the real position of each joint. It would be possible to construct a physical jig in place of the virtual one 

used in Maya, but no sources of easily measurable and usable joint-like devices could be found, and 

even these could potentially have error. Using a virtual input from Maya ensures consistent data quality, 

and removes any outside variables This allows for testing to focus solely on the accuracy of the 

algorithms in Kiip. 

The Maya Jig consisted of four joints, mimicking a human arm (clavicle, shoulder, elbow, wrist). Only 

the last three had positions calculated, with the clavicle used to provide the second limb needed to find 

the shoulder. Each limb had exactly three points (called locators in Maya) parented rigidly to it. Five 

tests were performed, with the rotation of all joints changed for each test. After the first 3 tests, the base 

pose was changed. 

7.1.2 Results 

Table 3 shows the results of the five tests, separated by joint. For each test, both the standard SVD 

rotation and an alternate rotation (discussed in Section 8.1) were calculated, and were individually used 

to calculate the joint's position as described previously. The first column shows the difference between 

the position calculated using the SVD method, and the one calculated using the alternate (triangle) 

method. The second column shows the distance between the real joint position, and the position found 

using the SVD method. The final column shows the same, but using the position from the triangle 

method. All units are in centimeters. 
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Table 3 - Test Data (units are in cm) 

Limb Method Difference SVD Error Triangle Error 

Test 1    

Shoulder 0.069 0.505 0.442 

Elbow < 0.001 0.757 0.757 

Wrist < 0.001 0.984 0.984 

Test 2    

Shoulder 0.417 0.892 0.851 

Elbow 0.441 1.354 1.215 

Wrist 0.231 1.194 1.092 

Test 3    

Shoulder 0.204 0.425 0.416 

Elbow 0.264 0.903 0.700 

Wrist 0.161 1.210 1.318 

Test 4    

Shoulder 0.237 0.425 0.586 

Elbow 0.206 0.903 0.899 

Wrist 0.263 1.210 1.345 

Test 5    

Shoulder 0.217 0.661 0.538 

Elbow 0.548 1.082 1.174 

Wrist 0.169 0.999 1.113 

 

Table 4 shows the average values across all tests, again divided by joint. Table 5 shows the maximum 

value for each calculation. 

Table 4 – Averages (units are in cm) 

Limb Method Difference SVD Error Triangle Error 

Shoulder 0.229 0.582 0.567 

Elbow 0.292 1.000 0.949 

Wrist 0.165 1.120 1.170 

 

Table 5 – Maxima (units are in cm) 

Limb Method Difference SVD Error Triangle Error 

Shoulder 0.417 0.892 0.853 

Elbow 0.548 1.354 1.215 

Wrist 0.263 1.210 1.345 

 

7.1.3 Conclusions 

The first conclusion that can be drawn from the data is as regards the accuracy of the two methods for 

calculating the orientation of a limb. On average, the distance between the two calculated positions was 

less than a third of a centimeter, with the largest difference seen equal to 0.55 centimeters. Comparing 

the average error from the actual position shows an even smaller difference (ranging from 0.014cm to 
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0.051cm). These results seem to indicate that both methods are roughly comparable in accuracy, and 

thus the choice of which to use should be based on which method would be better suited for retargeting 

calculations later in the process. 

The other conclusion to be drawn is the accuracy of the system's ability to find actor joint locations. The 

highest error seen was 1.354cm, with the overall average at 0.898cm. This data shows that, while not 

exact, Kiip is able to fairly accurately calculate the position of the actor's joints. This level of accuracy is 

sufficient for the intended uses of the library, where the overall movement of the actor is more important 

than absolute accuracy. Also, it is likely that retargeting to skeletons with proportions different from the 

actor's would cause larger error than seen here. 

Overall, the data appears to show that, in the absence of external error, the algorithms used by the 

system are sufficiently accurate for calculation of joint positions. As previously stated, capture of a 

physical actor has the potential to introduce additional error into the calculations that would make the 

calculated positions less accurate, though, observation has shown that the general movement is still 

correct, and the error introduced by retargeting will likely outweigh any error from the calculation of the 

joint positions. 

7.2 Retargeting 

7.2.1 Research 

A significant portion of E-term was spent attempting to perfect algorithms for retargeting the motion. 

While researching in B-term, very little useful information was found regarding methods for retargeting. 

Almost every paper seemed to discuss offline techniques that required either knowledge of the 

movements at a given time, or knowledge of future movements. These methods are not applicable to 

Kiip's design, as all calculations must work for any motion without knowledge of the future. It would be 

possible to buffer the data by several frames, allowing for knowledge of future frames, but this would 

cause a delay in output. For applications like the Maya plugin, which would be used solely for observing 

the results of movement as applied to a character, a small delay could be acceptable. However, for 

applications that are designed to immerse a user within a virtual world, any delay between a user's 

movement and his avatar's movement could break the immersion completely. In particular, if a game 

using the system required fast reactions, a delay would ruin the gameplay experience. 

7.2.2 Proposed Methods 

The inability to find research on the topic meant that methods had to be devised from scratch. The first 

several methods tested used the vectors between joints to calculate the appropriate angles. By taking the 

vector between two joints at the base pose and at the current frame, a cross product and a dot product of 

those vectors will provide an axis and an angle respectively. A rotation matrix that rotates about this axis 

by the angle will also rotate one of the limb vectors to the other. This simple method, working limb by 

limb, would retarget the skeleton such that the joints would be in the right positions, but would have 

improper rotations and deformations. For instance, using this method on the shoulder, a ball joint, will 

point the shoulder in the right direction, but will not take twisting into account. Then, using this method 
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on the elbow, a hinge joint with one degree of freedom, will 'break' the elbow to compensate for the lack 

of twist, causing it to move with too many degrees of freedom. 

The same concept of calculating the rotation between two vectors can be applied to other possible 

methods. Another method attempted to work backwards, and handled entire portions of the body, as 

arms and legs have the same general setup (three joints, with a hinge joint in the middle). This method 

first attempted to rotate the current joints about the shoulder, to align with the base shoulder, the inverse 

of above. Then, the shoulder was twisted to align the forearm to the same plane as the base pose. 

Finally, the elbow was aligned to the base pose. Since the shoulder's twist was already taken into 

account, the theory was that the elbow rotation calculated would only have one degree of freedom. In 

practice, this method didn't work at all, and was quickly dropped in favor of the method described in 

Section 3.5.2. 

One final method that would likely work well is to use an IK solver to calculate the joint orientations. It 

was intended that IK would be used in some parts of the body, but the delay in finding a solution for the 

other parts of the body meant that there wasn't enough time to research a suitable IK solver. 

Unfortunately, a non-IK solution was needed for the leaf joints (the head, hands, and feet). These joints 

have no children, and so cannot use IK or the other methods suggested above to find their orientation, 

save for the method in Section 3.5.2. 

7.2.3 Complications 

One major complication in the processes above is factoring out the overall transformation of the actor. 

For instance, if the actor simply bends his elbow, the angle between the base forearm and the current 

forearm can be simply calculated as above. If the actor then rotates his shoulder by some amount, then 

this same method does not work, as the new forearm vector will include the rotation of the arm and the 

rotation of the shoulder. Calculating the angle now will provide an inaccurate result. If the actor then 

rotates his entire body, the result will be even more incorrect.  A large amount of time was spent trying 

to find the best way to factor out these other rotations so as to find only the local rotation for each joint. 

Another complication that hindered progress was a misunderstanding of how the SVD method of finding 

a limb's rotation worked. Simple tests with a jig in Maya seemed to indicate that it provided a simple 

offset rotation between the current frame and the base frame. When the parent joints didn't move, the 

SVD method produced a roughly accurate result, as compared to the actual rotation taking place, and 

factoring in the rotation of the parent joint produced the same result as having a static parent joint. 

However, the world orientation of the system did greatly affect the output rotation value. Due to an 

oversight, the tests in Maya were performed such that the primary joints were always pointed into one of 

the positive Z quadrants. As they moved closer to aligning with the Z axis, the calculated rotations 

became less accurate, to the point of flipping certain axes when pointing into negative Z quadrants. 

Meanwhile, the test data being used was of an arm whose base pose was pointing into the negative Z 

quadrant. Much time was spent trying to find errors in the code and trying alternate algorithms for 

retargeting due to this oversight. 
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Not all of that time was wasted though, as it caused the discovery of another problem. As previously 

mentioned, Kiip uses a y-up coordinate system with column-vector matrices, while C4 uses z-up. This 

was known, and was thought to be corrected by a simple rotation when passing data between the two. 

However, eventually it was discovered that C4 uses row-vector matrices. Compounding this problem, it 

was discovered that Eigen also uses row-vector matrices for its built-in transformations and quaternion 

conversions. This meant that the column-vector rotations were being incorrectly used with the input 

row-vector matrices. It also meant that matrix multiplications were being performed in the wrong order, 

as column-vector math was assumed. Once this was discovered, the Eigen transformation classes were 

replaced with normal Eigen matrices, and the transformation math was instead done by hand. Matrices 

moving between Kiip and C4 now must be both rotated and transposed before being used. 

7.2.4 Conclusions 

The lack of concrete methods for retargeting was the biggest challenge in the project. Ideally, more time 

could have been spent finding existing research on the topic of real-time retargeting, however the limited 

time in the overall schedule precluded it. Instead, a basic method that seemed feasible was proposed in 

B-term, which turned out not to work. In hindsight, some of the time spent trying unworkable solutions 

could have been spent on additional research, but at the time the solutions seemed like they would 

probably work. 

Also, the problem of factoring in the overall transformations to find local joint rotations was 

underestimated. Had the difficulty of this problem been discovered sooner, the best course of action 

would have been to find an expert in 3D math to consult on the problem. 

Finally, it is possible that some of the earlier methods could work to find the rotations of limbs 

connected to two joints. These were attempted before the row/column-vector problem was discovered, 

and also didn't properly factor in the overall actor transformation properly. Given more time, it is 

possible that one of these could produce a suitable outcome, however some other method remains to be 

found for handling the leaf joints.  
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8. Future Work 

8.1 Alternate Limb Rotations 
The method for finding limb rotations does not provide a rotation for the base pose, and is not always 

accurate. As finding the joint positions uses these rotations, an alternate algorithm for finding the 

rotations may improve calculation of the joint positions and retargeting. In addition, having access to the 

orientation at the base pose may allow for the creation of alternate retargeting methods that use this data. 

One alternate way of calculating the limb rotations is to find a set of three markers on a limb and treat 

those as a triangle. The base pose is required to have all markers visible, but that is not the case from 

frame to frame, so the three markers used may be different each frame. For that reason, the base pose 

rotation must always be re-calculated each frame using the same markers as the current rotation. 

Calculating a rotation requires three orthogonal vectors. The first two of these can come from two of the 

edges of the triangle. If the three vertices of the triangle are A, B, and C, then the X and Y vectors of the 

matrix can be calculated as: 

𝑋 = 𝐵 − 𝐴
 𝐵 − 𝐴   

𝑌 = 𝐶 − 𝐴
 𝐶 − 𝐴   

As indicated, the vectors must be normalized. The third vector can be found by taking the cross product 

of the X and Y vectors, producing the triangle normal, Z: 

𝑍 = 𝑋 × 𝑌
 𝑋 × 𝑌   

Finally, these can be placed into a matrix, R, with each vector representing a column: 

𝑅 =  
↑ ↑ ↑
𝑋 𝑌 𝑍
↓ ↓ ↓

  

As before, the current matrix will still need to have the overall transformation of the actor factored out to 

be useful. Also, there may be other, more useful, methods for calculating the orientation that can be used 

in place of either this or the original SVD methods. 

This method of calculating the orientation has been implemented in Kiip, and the current and base 

orientations for each frame are passed along in the Limb structures. Tests with arbitrary triangles in 

Maya suggest that this method finds the rotation very accurately when there is no other rotation being 

added in, but still succumbs to the same retargeting issues as the SVD method, as described in Section 

7.2.3. The accuracy of this method with regard to calculating joint positions was discussed in Section 

7.1. 
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8.2 Completed Retargeting 
One major piece that future work should focus on is completing the retargeting subsystem. At the most 

basic, just finding a method that solves all of the previously listed problems would be beneficial. Beyond 

those, implementing IK for use in the spine and neck, as well as foot planting, is a possible avenue, as 

discussed in Section 3.5. 

More complex still would be to perform adjustments based on the difference in scale between the actor 

and the digital character. The suggested methods only copy rotations 1:1 between the two. If there is a 

significant discrepancy in size, for instance one is a tall adult and the other a small child, the animations 

will look incorrect; the stride-length will be wrong, one may have to reach to move to the same position 

as the other, etc. These are some of the more powerful features of commercial software like 

MotionBuilder, and would be a significant undertaking to implement well. 

8.3 Generic Server Application 
The end of Section 5.2 discusses the idea of using a client-server model to pass data between Kiip and 

an application. This would be useful for situations such as the Maya plugin, where streamed in data can 

potentially be easier to apply than going through the node-graph. In addition, creating a generic server 

application to pass Kiip messages would allow the library to be used with any software capable of 

socket-based communication. This may be necessary for integration with an engine such as Unity3D
10

, 

which uses C# in place of C++, or to make the data available to scripted interfaces rather than fully 

integrating Kiip with the application. 

8.4 Data Input/Output 
Currently, all Kiip data is only available at runtime, and is not saved out to a file. Creation of a generic 

file format for marker data may be useful, for instance, to allow sessions to be run using the PhaseSpace 

equipment, and later played back at a remote location. When played back, the data would be interpreted 

by Kiip and output data would be produced just as it was during the original capture session. This would 

require the creation of a new MarkerReader implementation to read in the data, as well as an application 

to write out the data to a file. These tasks could be done without changing the core Kiip software. A 

more involved approach could integrate the output into the Kiip loop, writing out marker data as it is 

received. The base pose could also be saved out, and a new way of setting the base pose provided to 

ensure that the data is always interpreted the same way from run to run. 

Another potentially useful output application would save out the data produced by Kiip (Actor 

Joints/Limbs and eventually retargeted joints). This would then allow Kiip to be used as the first step in 

an offline animation process, potentially reducing the need for MotionBuilder for the production of 

simple animations.  

                                                 
10

 http://unity3d.com/ 
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9. Conclusion 
The development of Kiip has involved both success and failure. The retargeting components do not 

work, but the actor data is fully calculated and available in real-time. Despite gaps in the explanations of 

many of the cited references, much of the missing information was determined over the course of the 

project, and has been documented here for use in future research. Even though the retargeting is not 

complete, the framework is setup and future work could fill in the details of retargeting specific joints; 

changing which joints can exist and how each one is retargeted is very simple, and all of the data 

required to perform the calculations is available to functions within the Retargeter. 

This project was designed to try and provide a small subset of the features provided by expensive 

commercial software such as MotionBuilder in a free and easily integrated library. That parts of the 

project were only partially complete is a testament to the complexity of such software and the effort put 

into its creation. Still, despite these partial failings, the project still succeeded in providing a free 

implementation of some of the functionality of this software. This makes it, at least in part, a success. 
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Appendix A - Integration 

Dependencies 
There are three dependencies that must be included to compile Kiip, four when using PhaseSpace as a 

source of marker data. Includes for the external libraries is located in /Kiip/Code/Libraries/. These are: 

 eigen3 

 boost_1_45_0 

 phasespace\include 

The headers for Kiip itself are located in /Kiip/Code/KiipCode/. For compiled libraries, the folder 

/Kiip/Code/lib/ should be included. 

Headers 

KiipCore.h and Kiip.h are the two headers required to include Kiip. KiipCore.h stores definitions 

for the data structures that are used to pass data between Kiip and an application, as well as 

enumerations used to specify what limb/joint/etc is being used in a given function call. Kiip.h stores the 

definition for the Kiip class, which defines the public API available to applications. 

PhasespaceReader.h is needed when using PhaseSpace as a marker source. 

Defining Markers 

On construction, the application must pass an array of pointers to MarkerInfo structures, defined in 

KiipCore.h. Each struct stores a MarkerLocation, which defines on which limb the marker resides. 

The order of the structs in the array defines the index numbers used to refer to the markers in the future. 

The application owns the array, and is responsible for deallocating it when no longer in use. This 

deallocation can occur anytime after the Kiip constructor has returned. 

The array of structs is passed to the MarkerReader subclass currently in use. The MarkerInfo struct 

accepts a value of type long on construction, which acts as a type identifier for the struct. Subclasses of 

MarkerInfo can be defined and used, allowing for extra information to be passed to the reader. For 

instance, the PhasespaceReader defines a PhasespaceMarkerInfo which includes an extra field for 

the PhaseSpace ID value of the marker, allowing it to differ from the value Kiip assigns it. The 

MarkerReader subclass can determine if a given MarkerInfo object is of the proper type by calling 

getInfoType() on it. 

Constructing Kiip 

The constructor for Kiip takes in 3 values: a pointer to a MarkerReader implementation, a pointer to the 

array of MarkerInfo pointers, and the number of elements in that array (the number of markers being 

tracked). Once passed to the constructor, Kiip owns the MarkerReader and will handle its destruction at 

the appropriate time. 
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Input Joints 
Only joints that are activated by the application are eligible for retargeting. Joints are activated by 

calling addSkeletonJoint() on the Kiip object. This function takes in a SkeletonJointLoc defining 

which joint to activate, and a 4x4 array of floats representing the column-vector transformation matrix of 

the joint in its base pose. 

Initialization 

A series of steps must be performed to allow Kiip to begin processing of incoming frames, including 

finding the base pose, capturing the gym motion, and finally processing that gym motion. 

Base Pose 

Initially, Kiip has no base pose. To tell Kiip to begin searching for one, the findBasePose() function 

must be called. This will cause Kiip to begin searching each new frame of marker data until it finds one 

in which all markers are visible. While searching, calls to getCurrentTask() will return 

kKiipFindBasePoseTask. Once the pose is found, hasBasePose() will return true. Calling 

findBasePose() and passing in a value of false will cause Kiip to stop looking for a base pose. 

Gym Capture 

A call to captureGymMotion() will cause Kiip to begin storing frames of data in a list. The first 

argument is a long representing the number of seconds that the capture should last. The second argument 

is an integer representing the number of frames to capture each second. For instance, the arguments (2, 

10) will result in 20 frames being captured over 2 seconds. While capturing, a call to 

getCurrentTask() will return kKiipCaptureGymMotionTask, and kKiipNoTask when the capture has 

completed.  Calls to getCaptureLength() will return the number of frames that have been captured 

thus far, or -1 if the capture has not been started. 

Gym Processing 

Once the motion has been captured, it must be processed by calling processGymMotion(). While this is 

taking place, calls to getCurrentTask() will return kKiipProcessGymMotionTask. Once processing is 

complete, calls to isGymMotionProcessed() will return true, and Kiip's task will automatically switch 

to kKiipProcessMotionTask. From this point on, Kiip will process incoming marker data and store the 

calculated joint and limb information.  

Accessing Data 

Kiip will run an internal loop, storing new marker data, passing it between the various subsystems, and 

updating flags to indicate this new data. There are four flags, one for each type of data that can be 

retrieved. Retrieving the corresponding data will reset the flag to false until new data is available: 

 hasNewMarkers() indicates if new marker data is available. Call getMarkers() to retrieve 

them, passing in a pointer to an array of uMarker structs, and the number of markers to get 

 hasNewLimbs() indicates if new limb data is available. Call getLimbs(), passing in a pointer to 

kActorLimbCount uLimb structs to be filled. 
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 hasNewActorJoints() indicates that new joint position data for the actor is available. Call 

getActorJoint(), passing a pointer to kActorJointCount uActorJoint structs. 

 hasNewSkeletonJoints() indicates that new joint transform data for the retargeted skeleton is 

available. Call getSkeletonJoints(), passing a pointer to kNumSkeletonJoints 

uSkeletonJoint structs. 

Restarting 

A call to getKiipStatus() should always return kKiipOk. If it does not, then Kiip is not running 

correctly and should be restarted by deleting the existing Kiip object, and repeating all of the previous 

steps. The same MarkerInfo array can be reused, if not already freed. In practice, the only time the 

status changes is when the PhasespaceReader has a server error. This could come from one of two 

places. First, if the reader is unable to connect to the PhaseSpace server for some reason, it will fail. 

More often, though, is the case where a pre-recorded capture session is being streamed in place of live 

data. When the recorded data ends, the server stops streaming and sends an error that causes Kiip to 

stop running. In general, when not using pre-recorded data, Kiip should never stop running until 

deleted. 


