

Kiip

A Skeletal Motion Capture Library

Department of Computer Science

A Major Qualifying Project Report

Submitted to the faculty of

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

By

Elliot Borenstein

Advised By

Robert Lindeman

August 24, 2011

ii

Abstract
for the design and implementation of Kiip, a Skeletal Motion Capture Library

By

Elliot Borenstein

This report details the design and implementation of the Computer Science Major Qualifying

Project (MQP) to create Kiip. Kiip is a library for the real-time conversion of optical motion

capture data into hierarchical skeleton data. A large amount of research has been done previously

on the topics of motion capture and retargeting, but there are few tools available to application

and content developers. The tools that do exist are generally expensive closed systems. The Kiip

library was designed to be free and easily integrated into external applications, where online

conversion of the motion capture data is needed.

This report begins by discussing the theory necessary to perform motion capture. Various

existing methods for capture and retargeting are presented and compared. Next, an overview of

the hardware required for motion capture is given, including examples of the hardware used by

and created for the MQP. This is followed by explanations of the mathematics used by the

library, as well as for related and more complex facets of retargeting that were not added to the

final library.

Following the theory, the report details the design and implementation of the Kiip library. The

public API exists in a single Kiip class which handles all communication between an application

and the various systems used to calculate the final motion. An application-definable Reader class

handles the polling of data for use by the Kiip system. A Mover class then receives the data and

processes it to find information about the movement of an actor in the real world. Finally, a

Retargeter class attempts to apply that information to an application defined character, mapping

the motion of an actor in the real world to a character in a digital world. Two applications of the

library as discussed, one inside a real-time game engine, and another a plugin to an industry

standard 3D animation software package.

Following the implementation, discussions of the schedule and outcomes of the project are

presented. Testing of the accuracy of the system is detailed and analyzed, showing that the Kiip

library produces reasonably accurate output given sufficiently accurate input. Unfinished areas of

the library, particularly with respect to motion retargeting, are discussed, including the research

conducted and the methods attempted. Suggestions for solutions to the problems encountered are

also given. Finally, a small selection of topics for future work is given. These topics include

alternate methods of calculating certain kinds of data, a proposed generic server application of

the library for general use, and suggestions for improved input and output methods.

iii

Contents
Abstract ... ii

List Of Figures ... vi

1. Introduction ... 1

1.1 Motion Capture Basics .. 1

2. Related Work .. 2

2.1 Commercial Tools ... 2

2.2 Actor Capture .. 2

2.3 Retargeting .. 3

3. System Overview .. 5

3.1 User Setup and Capture System .. 5

3.2 Marker Input .. 7

3.3 Building the Actor Skeleton .. 7

3.3.1 Limb Rotations ... 7

3.3.2 Marker-to-Joint Vectors ... 9

3.3.3 Joint Positions ... 10

3.4 Skeletal Capture .. 10

3.5 Skeletal Retargeting .. 11

3.5.1 Retargeting.. 11

3.5.2 Simple Retargeting ... 13

3.5.3 Spine and Neck Retargeting ... 13

3.5.4 Clavicle ... 14

3.5.5 Roll Joints ... 14

3.5.6 Foot Planting... 14

4. Implementation ... 15

4.1 System Overview .. 15

4.2 Marker Input .. 16

4.2.1 Marker Reader .. 16

4.2.2 Markers ... 17

4.2.3 Marker Info ... 17

4.3 Building the Actor Skeleton .. 18

iv

4.3.1 Finding the Base Pose... 18

4.3.2 The Gym Motion .. 18

4.4 Skeletal Capture .. 19

4.4.1 Frame Processing .. 19

4.4.2 ActorJoint ... 19

4.4.3 Limb.. 20

4.5 Skeletal Retargeting .. 20

4.6 Input/Output .. 20

4.6.1 Data ... 20

4.6.2 Logging ... 20

4.7 Libraries .. 21

4.7.1 Eigen ... 21

4.7.2 Boost ... 21

4.7.3 PhaseSpace API .. 21

5. Applications .. 22

5.1 C4 Game Engine ... 22

5.2 Maya Plugin .. 23

6. Schedule .. 25

6.1 B-Term .. 25

6.3 C-Term .. 25

6.4 Beyond C-Term ... 25

7. Discussion ... 26

7.1 Joint Position Accuracy Testing .. 26

7.1.1 Methodology ... 26

7.1.3 Conclusions .. 27

7.2 Retargeting .. 28

7.2.1 Research.. 28

7.2.2 Proposed Methods .. 28

7.2.3 Complications ... 29

7.2.4 Conclusions .. 30

8. Future Work .. 31

v

8.1 Alternate Limb Rotations .. 31

8.2 Completed Retargeting .. 32

8.3 Generic Server Application ... 32

8.4 Data Input/Output .. 32

9. Conclusion .. 33

References ... 34

Appendix A - Integration .. A-1

vi

List Of Figures
Figure 1 – Basic Kiip System ... 5

Figure 2 – Part of the New Suit .. 6

Figure 3 - Rotation of Limbs X and Y .. 8

Figure 4 – Actor Joints .. 10

Figure 5 – Joint Location Correction .. 11

Figure 6 – Character Joints ... 12

Figure 7 – Spine Retargeting .. 13

Figure 8 – Kiip Implementation Overview ... 15

Figure 9 – Marker Input Overview ... 16

Figure 10 - Marker Info Class ... 17

Figure 11 - Actor Mover ... 19

Figure 12 - Kiip Retargeter ... 20

Figure 13 – C4 Application... 22

Figure 14 – Maya Plugin... 24

1

1. Introduction
Character animation is the process of bringing movement and life to a digital character, and is used in

many applications. Traditionally, these animations were created manually, but more recently animations

based on motion capture data have become more prevalent. Even with motion capture data though, the

animations are normally processed and applied to characters offline using expensive commercial

software. The Kiip library described here aims to provide a method for performing the conversion from

motion capture data to an animated skeleton in real-time. In this system, the motions of an actor being

tracked by an optical motion capture system were to be applied to an application-defined skeleton for

use in any application.

Two such applications were envisioned for the project. One intended to immerse the user fully within a

3D environment, allowing him to look and move around an environment. This type of application could

be used for 3D gaming, virtual reality research, virtual meetings and performances, or similar

applications. The other was real-time feedback of a motion capture session, allowing content creators to

quickly preview animations on their models as an actor moved about.

Due to complications in the development of the project, the Kiip library does not yet properly calculate

retargeted skeletons. As such, these applications were not fully completed for this MQP. However, the

library does properly find the positions of joints in the world, and this functionality is visible in the

applications.

1.1 Motion Capture Basics
Motion capture is a process of recording data about and object's movement, and using that data to

control an animated character. In particular, Kiip uses captured data about the limbs of an actor, and uses

it to calculate information about that actor's skeleton. There are several varieties of motion capture, such

as optical, inertial, and magnetic, each with their own strengths and weaknesses. This project focuses on

optical capture. Optical motion capture tracks fixed points, or markers, on an object from frame to

frame, and provides their 3D coordinates. Unlike some other varieties, optical capture does not

implicitly provide the orientation of the object being tracked. Some systems use passive markers,

illuminating reflective spheres with external light sources that can be seen by cameras. More advanced

systems use active markers, electronically modulating the rate and timing of LEDs to more accurately

track each specific marker.

Tracking markers and interpreting the data is a complex problem. Finding the coordinates of a single

marker requires aligning images from multiple cameras, each of which must be carefully calibrated to

ensure accurate results. If too few cameras are able to see the marker in a frame, its position cannot be

determined. If two markers on different objects pass in front of one another, some method must be used

to determine which is which. The exact methods for solving these problems are beyond the scope of this

project, and many commercial systems are available, providing both hardware and software aimed at

solving these problems. Kiip assumes that the marker data, comprising the positions of all markers in a

given frame, has already been processed by some external system.

2

2. Related Work
A great deal of previous work exists in the field of motion capture, including both research papers and

commercial software that generate animations from optical marker data. However, most research topics

only present solutions to specific portions of the motion capture pipeline, generally dividing capture of

an actor’s motion and retargeting of that motion into two distinct areas of study. The majority of papers

discussing the calculation of the actor’s motion also discuss various methods for capturing the base

marker data, as previously described.

2.1 Commercial Tools
The industry standard tool for working with marker data is Autodesk MotionBuilder

1
. MotionBuilder is

a character animation tool that is capable of calculating animations based on marker data, and

retargeting those animations to a wide variety of skeletons. Many of the principles used in Kiip’s design

come from MotionBuilder, including the division of the body’s limbs. While MotionBuilder is a

powerful piece of software, it does have drawbacks. MotionBuilder is capable of retargeting animation

based on real time marker data, but as it is a standalone application it cannot be integrated and shipped

with a product. Also, MotionBuilder licenses are generally very expensive. While not as fully featured,

Kiip was designed to be free and easily distributed with other applications, while also being easy to

integrate into existing software.

2.2 Actor Capture
Three primary papers were used in designing Kiip. O’Brien et al.(2000) discuss finding joint locations

using magnetic motion capture data. This method uses markers on limbs adjacent to each joint to find

the position of the joint in world space. Unlike optical data, magnetic data has information about both

the position and orientation of each marker, simplifying the calculations. Since optical data doesn’t have

this orientation data, it must be calculated. Ringer (2004) discusses the same technique as it is applied to

optical data. Finally, Charalambous (2005), a senior thesis from Cambridge University, discusses

methods for calculating the orientation data, as well as providing further explanation about this method

of calculating the joint positions.

Xiao, Nait-charif, & Zhang (2009) use the same method as above, and describe a method for calculating

the orientation of the actor’s skeleton once the positions are known. Hornung & Kobbelt (2004) also use

the above method, and discuss a way of rebuilding the position of the elbow (and similar joints) when it

has been lost by using information about the two surrounding joints.

There are several other methods based on the same principle of using markers on adjacent limbs to find

the joint positions. Kirk, O’Brien, & Forsyth (2005) and De Aguiar, Theobalt, & Seidel (2006) use

alternate ways of calculating this data, while also using these calculations to automatically build a

representation of the actor’s skeleton. By comparing marker groups on every pair of limbs (instead of

known pairs, as above), they determine which pairings are most likely to be about a common point of

rotation, and assign that point to be a joint. Herda et al. (2000) and Herda et al. (2001) present similar

1
 http://www.autodesk.com/motionbuilder

3

techniques. Kiip assumes that the correspondence between markers, limbs and joints is known, and so

the techniques for finding that information were not used.

Another common method for finding the joint positions is to use the skeleton’s hierarchy. This method

uses the fact that a joint should always remain at a fixed local position relative to its parent joint. It also

relies on each marker below that joint moving about a sphere centered at the joint’s location. Silaghi et

al. (1998) use this method, but rely on a weighted average of the calculated centers of rotation for each

marker to find the joint position. Gamage & Lasenby (2002), on the other hand, provide a closed form

solution for finding the local joint positions using least squares estimation. The Gamage & Lasenby

(2002) method is described further in Kwon (2010). Wen et al. (2006) use a similar technique to the

ones in this category.

Finally, Zordan & Van Der Horst (2003) use a different approach to the ones above, applying forces and

constraints to the marker data to calculate the skeletal animation.

Overall, most of the literature uses similar techniques to find the joint positions, though there are several

different methods suggested for minimizing the error. As Kiip is designed for real-time processing, the

solution found in the first three papers was used, providing reasonably accurate data using an algorithm

that executes quickly. Many of these papers did not provide full solutions, omitting specific steps or only

providing vague descriptions of the techniques used. Thus, information from multiple sources had to be

combined, and some equations re-derived, to find the final solution.

2.3 Retargeting
A common element in papers about retargeting is the use of inverse kinematics (IK) to change an

animation to do something new. For instance, Choi (2001) uses IK to adjust a skeleton to meet specific

goal poses, as well as to enhance the captured motion. Unlike standard forward kinematics (FK), which

defines poses by moving down the skeletal hierarchy and applying rotations, IK defines a final position

for a joint and moves up the hierarchy solving for rotations. This mimics how humans instinctively

move, but is more computationally expensive and harder to constrain.

Another common approach is to use constraints that rely on what the motion does over time, or

spacetime constraints. Gleicher (1997), Gleicher (1998), and Gleicher & Litwinowicz (1998) all use a

combination of constraints on the character and IK to adjust the motion. Monzani (2001) also uses

spacetime constraints, but first builds an intermediate skeleton to aid in the transfer of motion from the

actor to the output skeleton. The problem with using these constraint-based approaches is that they

generally rely on knowledge of what is happening in the animation. In some cases, they simply rely on

information from frames in the future to calculate the current frame, such as the method in Gleicher

(1998) for maintaining foot planting. Other methods require that the user make note of when certain

actions begin and end. These requirements make such approaches inappropriate for real time retargeting

where the nature of current and future motions is unknown.

While Kiip is designed to apply the motion of a human actor onto a humanoid character, there has been

research done on applying animations to arbitrary characters. One interesting example is Hecker (2008),

4

which discusses the methods used to animate user-generated characters in the video game Spore
2
. This

approach allowed animators to flag each animation as being applicable to certain body parts in certain

situations. A specialized IK solver was then used to apply these animations to the game characters.

Another method for applying motion to an arbitrary skeleton is (Poirier & Paquette, 2009), which first

builds a skeleton for the mesh based on its shape, and then maps input motion onto that skeleton.

2
 http://www.spore.com/

5

3. System Overview
The basic Kiip system is shown in Figure 1. First, the user defines the number of markers and the

correspondence between each marker and one of several skeletal areas (e.g., forearm, leg, etc.). Next, a

calibration motion is captured. From this motion, the position and orientation of the joints in the actor’s

skeleton are calculated. Once the base skeleton has been calculated, the system begins calculating the

skeleton based on real-time marker data. Finally, the system attempts to retarget the calculated motion to

fit a more complex skeleton provided by the user, though this portion is not complete.

Figure 1 – Basic Kiip System

3.1 User Setup and Capture System
Kiip can be configured to accept input marker data from any source, however it was tested during

creation using an eight-camera PhaseSpace
3
 optical motion capture system. This system uses light-

emitting diodes (LEDs) placed on the actor as markers, and then returns the 3D coordinates of these

markers. By pulsing the LEDs at specific times, the system is able to accurately determine which marker

it sees, thus avoiding any errors due to misidentified markers.

The user stands inside a ring of the eight cameras, wearing markers on each limb as indicated in Table 1.

In general, each limb has four markers attached to it, though the feet, hands and clavicles each have

three. These markers are semi-rigidly attached to the limbs to ensure that each marker maintains a

constant distance from its controlling joint.

3
 http://www.phasespace.com/

6

Table 1 – Marker Counts

Limb Marker Count

Lower Torso 4

Upper Torso 4

Clavicle 3

Upper Arm 4

Lower Arm 4

Hand 3

Head 4

Upper Leg 4

Lower Leg 4

Foot 3

The PhaseSpace system came with a full-body spandex suit pre-wired to accept markers. However, the

suit was designed to hold far fewer markers on each limb than is outlined above. Also, it was difficult to

take off and put on, and uncomfortable to wear. As such, a new modular suit was designed and created

over the course of the project, and can be partially seen in Figure 2. Rather than use a single piece of

material, the new suit is comprised of a separate piece for each limb, allowing the user to only wear as

much of the suit as needed for a given application. Each piece is made of a Velcro-accepting fabric,

allowing markers to be placed in arbitrary numbers and orientations on a given limb.

Figure 2 – Part of the New Suit

7

3.2 Marker Input
Before the system can work with input marker data, it needs some information about the markers. The

user must define the number of markers that the system should expect to receive, as well as what limb of

the body each marker is attached to. The possible limbs are the same as those listed in Table 1. To

calculate the joint rotations, it is necessary to have at least three markers visible on each limb, with four

being ideal for redundancy.

3.3 Building the Actor Skeleton
Now that the system knows how the markers are attached to the body, calculation of the actor’s rest

skeleton can be performed. First, the actor performs a gym movement which is recorded. The gym

movement consists of rotating every major joint around each degree of freedom, which is important for

the next step of calculating each joint’s location.

The method for determining the joint location requires that the marker locations be in the local space of

the joint rather than in world space. (Ringer, 2004) shows that the joint location can be solved from:

𝒛𝒍
𝒑 𝒌 = 𝑹𝒍 𝒌 𝒆𝒍

𝒑 + 𝒕(𝒌) Eq 1

Where 𝑧𝑙
𝑝 𝑘 is the world space position of marker p on limb l at frame k, 𝑅𝑙 𝑘 is the 3x3 matrix

defining the orientation of the limb relative to the joint, 𝑒𝑙
𝑝 is the vector from the joint to the marker p,

and 𝑡𝑙(𝑘) is the world space position of the joint. The background of this equation is further explained in

O’Brien, Bodenheimer Jr, Brostow, & Hodgins (2000).

3.3.1 Limb Rotations

Before the local marker positions can be found, 𝑅𝑙 𝑘 must be found. Charalambous (2005) proposes

two methods for estimating this value, one for limbs with at least three visible markers, and a less

accurate one for limbs with only two visible markers. Both methods use a reference frame and the

current frame to calculate the rotation of the limb relative to the joint. Kiip uses the three-marker

version, which is based on Singular Value Decomposition (SVD). This method is also derived in (Kwon,

2011).

Figure 3 shows two limbs, X and Y, which rotate about a joint. Limb X has three visible markers, while

limb Y has four. The limbs are shown at the base frame (k=1) and at some later frame, k>1.

8

Figure 3 - Rotation of Limbs X and Y

𝑀1 =
↑

𝑔1
1

↓

↑
𝑔2

1

↓

↑
𝑔3

1

↓

↑
𝑔4

1

↓

 , 𝑀𝑘 =
↑

𝑔1
𝑘

↓

↑
𝑔2

𝑘

↓

↑
𝑔3

𝑘

↓

↑
𝑔4

𝑘

↓

First, a pair of 3xN matrices is created, one at the base frame and one at the current frame, where N is

the number of visible markers on the limb. N must be at least 3, but can be larger. Each column of the

matrix is a vector from one of the markers to the next, going in a loop.

𝐻 = 𝑀1 ∗ 𝑀𝑘
𝑇

Next, matrix H is calculated by multiplying the base frame matrix by the transpose of the current frame

matrix.

𝐻 = 𝑈 ∗ 𝑊 ∗ 𝑉𝑇

Taking the SVD of H provides two orthogonal matrices, U and V, and a diagonal matrix, W.

9

𝑅(𝑘) = 𝑈 ∗
1 0 0
0 1 0
0 0 𝑑𝑒𝑡(𝑈 ∗ 𝑉𝑇)

 ∗ 𝑉𝑇

The limb rotation at the frame, R(k), is then given by multiplying U by the transpose of V. However,

Kwon (2011) notes that the resulting matrix may have a negative determinant, meaning that the rotation

matrix is a reflection of the one desired. To fix this, the inner matrix shown above is inserted, which will

correct the reflection if necessary.

This method provides a world-space rotation matrix of the limb relative to the base pose for that limb.

This matrix is suitable for use in the following sections on finding joint positions, but does not work for

finding the local rotation of a limb when retargeting.

3.3.2 Marker-to-Joint Vectors

With the rotations known, Charalambous (2005) and Ringer (2004) show that it is possible to solve for

𝑒𝑙
𝑝 . Looking at two different limbs, x and y, attached to a given joint produces the following:

𝒛𝒙
𝒊 𝒌 = 𝑹𝒙 𝒌 𝒆𝒙

𝒊 + 𝒕 𝒌 Eq 2

𝒛𝒚
𝒋 𝒌 = 𝑹𝒚 𝒌 𝒆𝒚

𝒋 + 𝒕(𝒌) Eq 3

where i is a marker on x and j is a marker on y. Rearranging these equations to solve for 𝑡(𝑘) produces:

𝒕 𝒌 = 𝒛𝒙
𝒊 𝒌 − 𝑹𝒙 𝒌 𝒆𝒙

𝒊 Eq 4

𝒕 𝒌 = 𝒛𝒚
𝒋 𝒌 − 𝑹𝒚 𝒌 𝒆𝒚

𝒋 Eq 5

which can be set equal to each other eliminating 𝑡 𝑘 , and producing:

𝒛𝒙
𝒊 𝒌 − 𝑹𝒙 𝒌 𝒆𝒙

𝒊 = 𝒛𝒚
𝒋 𝒌 − 𝑹𝒚 𝒌 𝒆𝒚

𝒋 Eq 6

and finally:

𝒃𝒊𝒋 𝒌 = 𝒛𝒙
𝒊 𝒌 − 𝒛𝒚

𝒋 𝒌 = 𝑹𝒙 𝒌 𝒆𝒙
𝒊 − 𝑹𝒚 𝒌 𝒆𝒚

𝒋 Eq 7

This is roughly in the form 𝐴𝑚 = 𝐵 where,

𝐴 = 𝑅𝑥 𝑘 −𝑅𝑦 𝑘 , 3𝑥6

𝐵 = 𝑧𝑥
𝑖 𝑘 − 𝑧𝑦

𝑗 𝑘 , 3𝑥1

𝑚 =
𝑒𝑥

𝑖

𝑒𝑦
𝑗 ,6x1

which, when solved, will provide estimations for 𝑒𝑥
𝑖 and 𝑒𝑦

𝑗 .

10

3.3.3 Joint Positions

Finally, with all other variables known, the value of 𝑡 𝑘 can be found by solving Eq 1 for all p markers

on a given limb, for all limbs attached to the joint. The average of the locations for all markers is the

estimate. From this, the distance from each marker to its corresponding joints, as well as the limb length

for each limb, can be calculated by averaging the values from each frame.

A rest pose is then chosen to be the base pose from which skeletal movement is defined. This pose is the

first frame found in which all markers are visible, and is the same one used above to calculate limb

rotations. Ideally, the actor will be in a pose similar to that of the skeleton to which motion is to be

applied, as this creates less distortion later during retargeting. The world-space joint and marker

positions in this pose are stored, along with the vectors from each joint to its adjacent markers. The final

skeleton looks like the one in Figure 4.

Figure 4 – Actor Joints

3.4 Skeletal Capture
At each frame during real-time capture, the position of the joints must be determined, again using Eq 1.

As before, the rotation of each limb is calculated based on the world space positions of the markers on

the limb. The 𝑒𝑙
𝑝 vectors for each marker that were stored for the base pose can be multiplied by this

rotation to find the vectors for the current frame. Finally, Eq 1 can be solved and averaged for all

markers as before, providing base locations for the joints.

Once the joint locations are estimated, they are further refined by building the joint hierarchy outward

from the root, which is assumed to be correct. Figure 5 shows how the positions for the children of the

11

root are calculated. A vector, 𝑣, is calculated from the root position, R, to the estimated child position,

C’. Since the length of each limb, L, has been calculated, the position of the children joints must be

constrained to that length. The final joint position, C, is placed at a distance of L along 𝑣. Ideally, the

original estimation should be close to this point anyway, but this step ensures that the limbs of the

skeleton maintain their rigid structure.

Figure 5 – Joint Location Correction

3.5 Skeletal Retargeting

3.5.1 Retargeting

Before retargeting can occur, the application must provide a character skeleton. Similar to marker input,

the user must specify the type of each joint. Figure 6 shows the acceptable joint types that were intended

to be handled by Kiip. Joints in yellow were to be required, while the others were optional. The red

joints are roll joints that sit between two primary joints and help to smooth out the character’s

deformation. The user was to be able to specify multiple spine and neck joints, in order, if desired.

12

Figure 6 – Character Joints

As stated previously, the closer the provided skeleton's rest pose is to the actor's base pose, the more

likely it is for retargeting to appear accurate. Monzani (2001) provides further examples and explanation

as to why the base poses should be similar.

As little to no research was found on the topic of real-time retargeting, a method had to be devised for

the project. The simplest way to retarget the motion is to copy all of the local rotational values onto the

new joints. Given accurate rotation data, this is simple for most joints. However, for the spine and neck,

this is more complicated as the actor skeleton only has locations for the start and end of the spine and the

position of the head. Any intermediate joints in the user's skeleton would require that the single rotation

be broken up and applied to multiple joints. Also, for the spine root, there are two output limbs from

which to determine a world orientation for the skeleton, which must be resolved.

As of the end of the MQP, simple retargeting was implemented but unfinished. None of the more

complex methods were implemented, but they are outlined in the next several sections for completeness.

13

3.5.2 Simple Retargeting
𝑪𝑳 = 𝑪𝑾 ∗ 𝑷𝑾

−𝟏 Eq 8

Eq 8 shows how to calculate the local rotation of a joint, 𝑪𝑳, given its world-space rotation, 𝑪𝑾, and the

inverse of its parent's world-space rotation, 𝑷𝑾
−𝟏, using simple matrix math. This equation assumes

column-vector matrices. The actor skeleton is not stored in a hierarchical relationship, but those

relationships can still be used here (the shoulder is the parent of the elbow, for instance).

𝑻𝑭 = 𝑪𝑳 ∗ 𝑻𝑩 Eq 9

Eq 9 shows how the user joint's final transform, 𝑻𝑭, is calculated based on the previously found local

rotation offset and the base transform, 𝑻𝑩, for that same user joint.

3.5.3 Spine and Neck Retargeting

Figure 7 shows a side-view of the actor spine (left) and a possible character spine (right). To retarget the

movement of the spine, the start of the two spines must be aligned. Then, the end of the spines must also

be aligned by calculating rotations for all of the intermediary spine joints along the way. The end points

are not actually the same world space position, since the user’s skeleton is likely of a different scale than

the actor. To address this, an offset must be calculated based on the base poses for both skeletons, and

used to calculate the actual end point of the user spine. To calculate the rotations of the various spine

joints, an IK chain can be used. The resulting rotations may then be assigned to the spine of the

character’s skeleton.

Figure 7 – Spine Retargeting

A similar method can be used for calculating the rotation of any neck joints, with the end of the spine

acting as the start of the IK chain, and the head acting as the end. Once again, a scale factor must be

calculated from the base skeleton to find the position of the head on the user’s skeleton based on the

head of the actor.

14

3.5.4 Clavicle

The clavicle joints can sit somewhere between the tip of the spine and the shoulder, connecting the two.

While the actor moves, the position of the shoulder joint may also move relative to the spine. Without a

clavicle, this movement is not possible as rotating the spine joint would cause other joints to be in the

wrong positions; thus, if no clavicle is provided, the movement is lost. If a clavicle is provided, its

rotation can be set such that it points to the location where the shoulder should be placed, preserving the

shoulder movement.

3.5.5 Roll Joints

Figure 6 shows upper and lower roll joints for the arms and legs in red. These joints sit between the

main captured joints (shoulder, elbow, wrist for the arm; femur, knee, ankle for the leg) and distribute

the twisting rotations to provide more realistic deformation of the muscles and bones in those areas. In

particular, the upper roll joint distributes the twisting of the shoulder, and the lower joint distributes the

twisting of the wrist; the elbow ideally acts as a hinge joint and so should not have any twisting to

distribute. Retargeting to the roll joints involves calculating the twist along the limb’s axis, and then

dividing that twist so that a portion of it is in the rotation of the primary joint and the other portion is in

the roll joint.

3.5.6 Foot Planting

The final type of retargeting for the system is adjustment of leg movement to ensure that the feet do not

penetrate the ground. Since the user’s skeleton is of a different scale than the actor skeleton, simply

applying the rotation of the actor’s leg joints to the user’s skeleton may result in the feet floating above

or penetrating through the floor. To fix this, IK chains can be attached to the legs and used whenever it

is detected that the feet have penetrated a user-defined plane. The IK handles will then adjust the

rotation of the femur and knee joints to pull the feet back above the ground plane.

15

4. Implementation

4.1 System Overview
The Kiip system is a C++ static library that can be linked into other applications. The system is

comprised of one main class, "Kiip", which creates, and interacts with, various subsystems as needed.

Figure 8 shows a high level overview of the system. For each actor being tracked, the user instantiates a

Kiip object which acts as an interface between the user and the system. Based on user requests, the Kiip

object interacts with the subsystems, sending and receiving data between them as needed and storing the

most recent data to be provided as the user requests it.

Figure 8 – Kiip Implementation Overview

On instantiation, the Kiip object spawns a thread which continually loops until the object's destruction.

As the Kiip object must not block when user code requests data, a copy of the most recent data is

always held by the Kiip object. The looping thread polls the various subsystems for new data, and stores

its own copies of this data. The Kiip object also maintains a single current task, explained in Table 2.

The current task is changed by various user calls, moving through the various initialization stages until

finally beginning general capture and retargeting.

Table 2 - Kiip Task States

kKiipNoTask Kiip is idle
kKiipFindBasePoseTask Searching for a frame where all markers are visible
kKiipCaptureGymMotionTask Capturing and storing frames of the gym motion
kKiipProcessGymMotionTask Waiting for the Mover to process the gym motion
kKiipProcessMotionTask Standard data processing from frame to frame

Application

Kiip

MarkerReader RetargeterKiipMover

16

4.2 Marker Input
Markers are the main data source for Kiip, and up-to-date marker data is required for all of Kiip's

computations. Kiip does not handle the tracking of markers, but rather reads in this data from another

source.

4.2.1 Marker Reader

A MarkerReader object is responsible for reading in frames of marker data from a source. Figure 9

shows the base class for Marker Readers, as well as the subclass used to read from the PhaseSpace

system. The application instantiates a MarkerReader subclass, and passes it to the Kiip object, along

with a list of marker correspondences, as described in Section 3.2. The application must be the one to

instantiate this instance because each subclass may have specific initialization information that only the

application knows, such as a filename to read from or a server address to connect to.

Figure 9 – Marker Input Overview

When the application tells Kiip to begin collecting marker data, the Kiip object will tell the

MarkerReader to begin polling using Start(). The MarkerReader super class will begin calling the

subclass’s PollMarkers() function in a new thread, which will continuously poll for marker data each

MarkerReader

+GetMarkers()
+Initialize()
+Stop()
+Start()
#PollMarkers()
-Poll()
+HasNewMarkers()

PhasespaceReader

+Initialize()
#PollMarkers()
#StartReading()
#StopReading()
#GetCurrentMarkers()
+HasNewMarkers()

Marker

+Position
+Quality
+Offset

Kiip

17

frame until Stop() is called. The Kiip object can access the most recent frame of marker data by calling

GetMarkers().

4.2.1.1 PhaseSpace Reader

The PhasespaceReader is able to connect to a desired PhaseSpace server and capture live marker data.

It has various options including server address, capture rate, data interpolation, and capture mode, as

defined by the PhaseSpace API.

4.2.2 Markers

The marker data being passed around consists of three values per marker: the 3D position, a quality

value, and later an offset from the joints it rotates about. The quality value tells other parts of the Kiip

system how that marker should be interpreted. For instance, when a marker position is known, it is

assigned a quality of 'good', while if the position is unknown it is assigned 'bad'. When the existence of

the maker is unknown, it is marked as 'unknown'.

4.2.3 Marker Info

In addition to a MarkerReader implementation, the user must pass an array of MarkerInfo objects to

Kiip. These allow the user to define which limb each marker is attached to. This data is then passed on

to the MarkerReader, and as such can be subclassed to include additional info for the specific reader.

For example, the PhaseSpace Info subclass can assign a PhaseSpace marker ID that is different from the

ID used locally by Kiip.

Figure 10 - Marker Info Class

MarkerInfo

-Location

+GetLocation()

PhasespaceInfo

+psMarkerId

+GetPsMarkerId()

18

4.3 Building the Actor Skeleton
Before capture can proceed, Kiip must determine and store various pieces of information about the

current actor. This data is used in later steps as both a base and timesaver for computations.

4.3.1 Finding the Base Pose

The first step in capturing a skeleton is to capture a base pose for the actor. This pose should be as close

as possible to the skeleton the motion is to be applied to for best results. The application tells Kiip to

begin searching for a suitable base pose with the call "kiip->findBasePose()". This causes Kiip to

begin checking every new frame of data until it finds one where all defined markers are visible. This

becomes the base pose for the current session.

4.3.2 The Gym Motion

After finding a base pose, the application must call "kiip->captureGymMotion(time, fps) ". This

will cause Kiip to begin recording frames of marker data into a buffer for 'time' seconds at a rate of 'fps'

frames per second. While this data is being recorded, the actor should be moving his various limbs

through a routine that moves them through their normal range of motion. Once this capture is complete,

the application can call "kiip->processGymMotion()", which will send the base pose and the captured

frames to the KiipMover.

The KiipMover, as shown in Figure 11, is responsible for calculating the positions of the joints and the

orientations of the limbs, as well as processing the gym motion. The first step in this processing is to

determine the orientation of each limb for each frame. Using the method described in Section 3.3.1, the

rotation is calculated for all limbs before moving on to the next step. Once the limb rotations are known,

the marker offset vectors and joint positions can be calculated for each frame. Some joints may not be

calculated on certain frames if their associated limb rotations could not be found in the previous step.

With the data for each frame known, the KiipMover proceeds to average the values it has calculated for

each frame, storing the average offset vectors for each marker, as well as an average length for each

limb. The former allows for quicker calculations later in the process, while the later allows for correcting

the joint positions that are found.

19

Figure 11 - Actor Mover

4.4 Skeletal Capture

Once the KiipMover finishes processing the gym motion, the main Kiip loop automatically switches to

skeletal capture. This process also takes place within the KiipMover. Using all of the pre-calculated

data, along with new marker data, the positions and orientations of visible joints and limbs are found and

stored for later access.

4.4.1 Frame Processing

When the MarkerReader has a new frame of marker data ready, and the KiipMover is not busy, Kiip

will pass the new marker data into the Mover. This spawns a new thread responsible for processing of

the frame, using the method from Section 3.4. First each limb’s rotation is calculated based on the base

pose and the current frame, as before. Then, for each visible marker, a position is found for the joint by

multiplying the stored offset for that marker by the limb's rotation, and subtracting this value from the

marker's current position. All of these rough position values are averaged across all limbs attached to a

given joint, providing the final joint position. Finally, the joint positions are adjusted based on the stored

limb lengths found earlier.

By pre-calculating the marker offsets from the gym motion, the process above can remove a step from

the calculations, providing a speed increase. More importantly, calculating the offsets requires that two

limbs around each joint have enough visible markers to calculate their orientations. By pre-calculating

the offsets, joints can often still be found even if one of their attached limbs is missing.

4.4.2 ActorJoint

The KiipMover provides an ActorJoint for each requested joint in the system. These store both a

world-space joint position, and a quality value. Similar to Markers, the quality specifies if the joint

position for the frame is calculated, unable to be calculated, or if the joint cannot exist given the

available markers.

KiipMover

+Initialize()
+SetCurrentMarkers()
+GetData()
+ProcessGymCapture()

ActorJoint

+worldPosition
+quality

Limb

+orientation
+quality
+visibleMarkers
+length

20

4.4.3 Limb

The KiipMover also provides a Limb for each limb in the system. These store a world orientation, a

quality value, the number of markers visible on the given limb, and the constant length of the limb.

4.5 Skeletal Retargeting

The KiipRetargeter subsystem, when enabled by the application, is designed to apply the animation of

the actor to a skeleton provided by the application as described in Section 3.5. The user passes local-

space transform matrices of a skeleton's base pose to Kiip, which activates that joint in the

KiipRetargeter and stores the matrix. Once a frame has been processed by the KiipMover, the

ActorJoint and Limb data are passed to the KiipRetargeter for final processing. The final outcome is

a series of transform matrices which apply new transforms to the base matrices passed in by the user.

Figure 12 - Kiip Retargeter

With the exception of the neck, spine, and clavicles, all of the joints are handled by a single function.

This function is intended to calculate local rotations for each limb, and apply them to the base matrices,

as described in Section 3.5.2. Unfortunately, this portion of the project is incomplete, as will be

addressed further in the evaluation section.

4.6 Input/Output

4.6.1 Data

Internally, Kiip uses a linear algebra library to store vectors and matrices. However, applications using

Kiip will most likely have their own data structures for these elements. To avoid complicating data

access, all previously defined structures (Markers, Actor/Skeleton Joints, Limbs) have a 'user' version

where vectors and matrices are stored as simple arrays.

4.6.2 Logging

Kiip uses a simple global logging class with multiple levels of debug logging, as well as error, warning,

and general info. The desired verbosity can be changed at both compile time, and at run time. By

default, the log prints to a file called "kiip.log" in the application's working directory, but this can also

be changed by the user at runtime.

KiipRetargeter

+Initialize()
+AddBaseJoint()
+GetData()
+SetData()

SkeletonJoint

+localTransform

21

4.7 Libraries
Kiip uses two external, cross-platform libraries for linear algebra, threading and other tasks.

4.7.1 Eigen

Eigen
4
 is a free C++ template library providing fast implementations of standard linear algebra concepts,

including those specific to 3D animation such as 4x4 transformation matrices and quaternions. Eigen

also includes modules for SVD and least-squares calculations, which are both at the core of the motion-

capture process described here. Kiip was developed using Eigen version 3.

4.7.2 Boost

Boost
5
 is a set of free, cross-platform peer-reviewed C++ libraries. Kiip uses the Boost Thread

6
 library

to handle threading. Kiip also uses a handful of other Boost components, including the Date/Time
7

library for accurate timers. Kiip was developed using Boost version 1.45.0.

4.7.3 PhaseSpace API

Kiip also uses a library provided by PhaseSpace to communicate with the motion capture equipment

used for testing.

4
 http://eigen.tuxfamily.org/index.php?title=Main_Page

5
 http://www.boost.org

6
 http://www.boost.org/doc/libs/1_45_0/doc/html/thread.html

7
 http://www.boost.org/doc/libs/1_45_0/doc/html/date_time.html

22

5. Applications
Despite the fact that the retargeting system is incomplete, Kiip is still able to calculate joint positions. To

demonstrate that Kiip is application independent, it has been integrated into two different applications.

Both of these applications use similar code to integrate Kiip, and a generic overview of this integration

code is provided in Appendix A - Integration.

5.1 C4 Game Engine
The first application uses the C4 Game Engine

8
, and was built alongside the Kiip library. When run, it

generates spheres representing marker and joint positions of the actor. C4 uses a z-up orientation, with

row-vector matrices, while Kiip uses y-up and column-vector matrices. The C4 implementation includes

an interface which converts positions and matrices between the two systems. Once a frame, the interface

polls Kiip for the newest data, and stores it for access by other game-world elements. Figure 13 shows

an example of the C4 application in use. The small spheres represent marker locations, and change color

between green and red depending on the quality of the data. The larger spheres are calculated joint

positions. The grey shapes near the bottom represent the joints of an arm.

Figure 13 – C4 Application

8
 http://www.terathon.com/c4engine/index.php

23

5.2 Maya Plugin
The second application is a plugin for displaying the data in Autodesk’s Maya

9
, a standard application

for creating 3D content. The original goal of this plugin was to allow producers to get a visual

representation of how motion capture will look on a character while the capture session is taking place.

Normally, only a view of the markers is available, hindering the producer’s ability to know what the

final animation will look like. As the retargeting is not complete, this plugin is essentially used to show

that the library is application independent. The plugin currently performs broken retargeting onto a

skeleton in Maya, showing that the application is sound even if the internals of the library are not. While

the C4 implementation was created alongside Kiip, the Maya plugin was created once the API was set in

place as a way of testing ease of integration.

Unlike C4, Maya uses the same y-up column-vector system as Kiip, so no translation of data was

needed. However, Maya is not designed to stream data in for playback; it is built on a node-based

architecture, and does not work well with data that changes independently of its internal timing. Also,

Maya does not allow transformation matrices to be set directly through its node graph, but instead wants

the decomposed translation, rotation, and scale values only, along with some internal undocumented

offsets. To overcome this, the plugin takes advantage of the ability to set a callback to run every time the

current time is set in Maya. Pressing the 'Play' button, normally intended to playback keyframed

animation, causes a special command to be run that queries a Kiip object attached to a Maya node for

new data. This data can then be set directly to a transform in the scene, without first having to

decompose it. Figure 14 shows an example of the Maya plugin. The green symbols near the top

represent marker locations, while the structure at the bottom are the joints of two arms.

9
 http://www.autodesk.com/maya

24

Figure 14 – Maya Plugin

An alternate method for such a plugin, and also for generic use of Kiip, would be to build a local server

that passes data between Kiip and Maya over sockets. Maya does have a method for sending network

data to its node-graph, but it is fairly limited. This would potentially also sidestep the need to 'Play' the

timeline to force updates. Again, this server-based method could also be useful for other integrations,

especially when the destination software is not written in C++.

25

6. Schedule
This project began in B-term of 2010 and was completed in E-term of 2011. A division of work by term

follows.

6.1 B-Term
B-term was spent researching background information for the MQP. The majority of the necessary

research was compiled over this term, and the fundamentals of the math needed for the process were

determined.

6.3 C-Term
C-term was primarily used for setting up the basic Kiip framework, and implementing a proof-of-

concept for the calculation of joint positions. This term also included:

 prototyping of the improved capture suit

 debugging of the PhaseSpace system

 sourcing of parts for the new suit's wiring and camera mounts

 determining and implementing a plan for mounting the eight capture cameras to provide a stable

and large capture volume

6.4 Beyond C-Term
Due to external complications, the project was put on hold over the course of D-term. Work resumed in

E-term, and included:

 generalization of the joint position algorithm to work with an arbitrary set of limbs

 creation of cabling and pieces for the new suit

 creation of the Retargeter sub-system, which involved testing many different methods for

calculating the final transforms to be output

 Reworking the C4 implementation to be a better integration example, along with implementation

of Maya plugin implementation

26

7. Discussion

7.1 Joint Position Accuracy Testing

7.1.1 Methodology

The main data output that Kiip successfully produces are the positions of the actor's joints. To test the

accuracy of this data, a simple jig was setup in Maya. The Maya jig was chosen, as using data from a

real actor would introduce several forms of error into the testing. One major source of error comes from

the fact that the markers attached to the actor are not completely fixed relative to the actor's joints, and

can move slightly along the actor's limb. Another source comes from the inability to accurately measure

the real position of each joint. It would be possible to construct a physical jig in place of the virtual one

used in Maya, but no sources of easily measurable and usable joint-like devices could be found, and

even these could potentially have error. Using a virtual input from Maya ensures consistent data quality,

and removes any outside variables This allows for testing to focus solely on the accuracy of the

algorithms in Kiip.

The Maya Jig consisted of four joints, mimicking a human arm (clavicle, shoulder, elbow, wrist). Only

the last three had positions calculated, with the clavicle used to provide the second limb needed to find

the shoulder. Each limb had exactly three points (called locators in Maya) parented rigidly to it. Five

tests were performed, with the rotation of all joints changed for each test. After the first 3 tests, the base

pose was changed.

7.1.2 Results

Table 3 shows the results of the five tests, separated by joint. For each test, both the standard SVD

rotation and an alternate rotation (discussed in Section 8.1) were calculated, and were individually used

to calculate the joint's position as described previously. The first column shows the difference between

the position calculated using the SVD method, and the one calculated using the alternate (triangle)

method. The second column shows the distance between the real joint position, and the position found

using the SVD method. The final column shows the same, but using the position from the triangle

method. All units are in centimeters.

27

Table 3 - Test Data (units are in cm)

Limb Method Difference SVD Error Triangle Error

Test 1

Shoulder 0.069 0.505 0.442

Elbow < 0.001 0.757 0.757

Wrist < 0.001 0.984 0.984

Test 2

Shoulder 0.417 0.892 0.851

Elbow 0.441 1.354 1.215

Wrist 0.231 1.194 1.092

Test 3

Shoulder 0.204 0.425 0.416

Elbow 0.264 0.903 0.700

Wrist 0.161 1.210 1.318

Test 4

Shoulder 0.237 0.425 0.586

Elbow 0.206 0.903 0.899

Wrist 0.263 1.210 1.345

Test 5

Shoulder 0.217 0.661 0.538

Elbow 0.548 1.082 1.174

Wrist 0.169 0.999 1.113

Table 4 shows the average values across all tests, again divided by joint. Table 5 shows the maximum

value for each calculation.

Table 4 – Averages (units are in cm)

Limb Method Difference SVD Error Triangle Error

Shoulder 0.229 0.582 0.567

Elbow 0.292 1.000 0.949

Wrist 0.165 1.120 1.170

Table 5 – Maxima (units are in cm)

Limb Method Difference SVD Error Triangle Error

Shoulder 0.417 0.892 0.853

Elbow 0.548 1.354 1.215

Wrist 0.263 1.210 1.345

7.1.3 Conclusions

The first conclusion that can be drawn from the data is as regards the accuracy of the two methods for

calculating the orientation of a limb. On average, the distance between the two calculated positions was

less than a third of a centimeter, with the largest difference seen equal to 0.55 centimeters. Comparing

the average error from the actual position shows an even smaller difference (ranging from 0.014cm to

28

0.051cm). These results seem to indicate that both methods are roughly comparable in accuracy, and

thus the choice of which to use should be based on which method would be better suited for retargeting

calculations later in the process.

The other conclusion to be drawn is the accuracy of the system's ability to find actor joint locations. The

highest error seen was 1.354cm, with the overall average at 0.898cm. This data shows that, while not

exact, Kiip is able to fairly accurately calculate the position of the actor's joints. This level of accuracy is

sufficient for the intended uses of the library, where the overall movement of the actor is more important

than absolute accuracy. Also, it is likely that retargeting to skeletons with proportions different from the

actor's would cause larger error than seen here.

Overall, the data appears to show that, in the absence of external error, the algorithms used by the

system are sufficiently accurate for calculation of joint positions. As previously stated, capture of a

physical actor has the potential to introduce additional error into the calculations that would make the

calculated positions less accurate, though, observation has shown that the general movement is still

correct, and the error introduced by retargeting will likely outweigh any error from the calculation of the

joint positions.

7.2 Retargeting

7.2.1 Research

A significant portion of E-term was spent attempting to perfect algorithms for retargeting the motion.

While researching in B-term, very little useful information was found regarding methods for retargeting.

Almost every paper seemed to discuss offline techniques that required either knowledge of the

movements at a given time, or knowledge of future movements. These methods are not applicable to

Kiip's design, as all calculations must work for any motion without knowledge of the future. It would be

possible to buffer the data by several frames, allowing for knowledge of future frames, but this would

cause a delay in output. For applications like the Maya plugin, which would be used solely for observing

the results of movement as applied to a character, a small delay could be acceptable. However, for

applications that are designed to immerse a user within a virtual world, any delay between a user's

movement and his avatar's movement could break the immersion completely. In particular, if a game

using the system required fast reactions, a delay would ruin the gameplay experience.

7.2.2 Proposed Methods

The inability to find research on the topic meant that methods had to be devised from scratch. The first

several methods tested used the vectors between joints to calculate the appropriate angles. By taking the

vector between two joints at the base pose and at the current frame, a cross product and a dot product of

those vectors will provide an axis and an angle respectively. A rotation matrix that rotates about this axis

by the angle will also rotate one of the limb vectors to the other. This simple method, working limb by

limb, would retarget the skeleton such that the joints would be in the right positions, but would have

improper rotations and deformations. For instance, using this method on the shoulder, a ball joint, will

point the shoulder in the right direction, but will not take twisting into account. Then, using this method

29

on the elbow, a hinge joint with one degree of freedom, will 'break' the elbow to compensate for the lack

of twist, causing it to move with too many degrees of freedom.

The same concept of calculating the rotation between two vectors can be applied to other possible

methods. Another method attempted to work backwards, and handled entire portions of the body, as

arms and legs have the same general setup (three joints, with a hinge joint in the middle). This method

first attempted to rotate the current joints about the shoulder, to align with the base shoulder, the inverse

of above. Then, the shoulder was twisted to align the forearm to the same plane as the base pose.

Finally, the elbow was aligned to the base pose. Since the shoulder's twist was already taken into

account, the theory was that the elbow rotation calculated would only have one degree of freedom. In

practice, this method didn't work at all, and was quickly dropped in favor of the method described in

Section 3.5.2.

One final method that would likely work well is to use an IK solver to calculate the joint orientations. It

was intended that IK would be used in some parts of the body, but the delay in finding a solution for the

other parts of the body meant that there wasn't enough time to research a suitable IK solver.

Unfortunately, a non-IK solution was needed for the leaf joints (the head, hands, and feet). These joints

have no children, and so cannot use IK or the other methods suggested above to find their orientation,

save for the method in Section 3.5.2.

7.2.3 Complications

One major complication in the processes above is factoring out the overall transformation of the actor.

For instance, if the actor simply bends his elbow, the angle between the base forearm and the current

forearm can be simply calculated as above. If the actor then rotates his shoulder by some amount, then

this same method does not work, as the new forearm vector will include the rotation of the arm and the

rotation of the shoulder. Calculating the angle now will provide an inaccurate result. If the actor then

rotates his entire body, the result will be even more incorrect. A large amount of time was spent trying

to find the best way to factor out these other rotations so as to find only the local rotation for each joint.

Another complication that hindered progress was a misunderstanding of how the SVD method of finding

a limb's rotation worked. Simple tests with a jig in Maya seemed to indicate that it provided a simple

offset rotation between the current frame and the base frame. When the parent joints didn't move, the

SVD method produced a roughly accurate result, as compared to the actual rotation taking place, and

factoring in the rotation of the parent joint produced the same result as having a static parent joint.

However, the world orientation of the system did greatly affect the output rotation value. Due to an

oversight, the tests in Maya were performed such that the primary joints were always pointed into one of

the positive Z quadrants. As they moved closer to aligning with the Z axis, the calculated rotations

became less accurate, to the point of flipping certain axes when pointing into negative Z quadrants.

Meanwhile, the test data being used was of an arm whose base pose was pointing into the negative Z

quadrant. Much time was spent trying to find errors in the code and trying alternate algorithms for

retargeting due to this oversight.

30

Not all of that time was wasted though, as it caused the discovery of another problem. As previously

mentioned, Kiip uses a y-up coordinate system with column-vector matrices, while C4 uses z-up. This

was known, and was thought to be corrected by a simple rotation when passing data between the two.

However, eventually it was discovered that C4 uses row-vector matrices. Compounding this problem, it

was discovered that Eigen also uses row-vector matrices for its built-in transformations and quaternion

conversions. This meant that the column-vector rotations were being incorrectly used with the input

row-vector matrices. It also meant that matrix multiplications were being performed in the wrong order,

as column-vector math was assumed. Once this was discovered, the Eigen transformation classes were

replaced with normal Eigen matrices, and the transformation math was instead done by hand. Matrices

moving between Kiip and C4 now must be both rotated and transposed before being used.

7.2.4 Conclusions

The lack of concrete methods for retargeting was the biggest challenge in the project. Ideally, more time

could have been spent finding existing research on the topic of real-time retargeting, however the limited

time in the overall schedule precluded it. Instead, a basic method that seemed feasible was proposed in

B-term, which turned out not to work. In hindsight, some of the time spent trying unworkable solutions

could have been spent on additional research, but at the time the solutions seemed like they would

probably work.

Also, the problem of factoring in the overall transformations to find local joint rotations was

underestimated. Had the difficulty of this problem been discovered sooner, the best course of action

would have been to find an expert in 3D math to consult on the problem.

Finally, it is possible that some of the earlier methods could work to find the rotations of limbs

connected to two joints. These were attempted before the row/column-vector problem was discovered,

and also didn't properly factor in the overall actor transformation properly. Given more time, it is

possible that one of these could produce a suitable outcome, however some other method remains to be

found for handling the leaf joints.

31

8. Future Work

8.1 Alternate Limb Rotations
The method for finding limb rotations does not provide a rotation for the base pose, and is not always

accurate. As finding the joint positions uses these rotations, an alternate algorithm for finding the

rotations may improve calculation of the joint positions and retargeting. In addition, having access to the

orientation at the base pose may allow for the creation of alternate retargeting methods that use this data.

One alternate way of calculating the limb rotations is to find a set of three markers on a limb and treat

those as a triangle. The base pose is required to have all markers visible, but that is not the case from

frame to frame, so the three markers used may be different each frame. For that reason, the base pose

rotation must always be re-calculated each frame using the same markers as the current rotation.

Calculating a rotation requires three orthogonal vectors. The first two of these can come from two of the

edges of the triangle. If the three vertices of the triangle are A, B, and C, then the X and Y vectors of the

matrix can be calculated as:

𝑋 = 𝐵 − 𝐴
 𝐵 − 𝐴

𝑌 = 𝐶 − 𝐴
 𝐶 − 𝐴

As indicated, the vectors must be normalized. The third vector can be found by taking the cross product

of the X and Y vectors, producing the triangle normal, Z:

𝑍 = 𝑋 × 𝑌
 𝑋 × 𝑌

Finally, these can be placed into a matrix, R, with each vector representing a column:

𝑅 =
↑ ↑ ↑
𝑋 𝑌 𝑍
↓ ↓ ↓

As before, the current matrix will still need to have the overall transformation of the actor factored out to

be useful. Also, there may be other, more useful, methods for calculating the orientation that can be used

in place of either this or the original SVD methods.

This method of calculating the orientation has been implemented in Kiip, and the current and base

orientations for each frame are passed along in the Limb structures. Tests with arbitrary triangles in

Maya suggest that this method finds the rotation very accurately when there is no other rotation being

added in, but still succumbs to the same retargeting issues as the SVD method, as described in Section

7.2.3. The accuracy of this method with regard to calculating joint positions was discussed in Section

7.1.

32

8.2 Completed Retargeting
One major piece that future work should focus on is completing the retargeting subsystem. At the most

basic, just finding a method that solves all of the previously listed problems would be beneficial. Beyond

those, implementing IK for use in the spine and neck, as well as foot planting, is a possible avenue, as

discussed in Section 3.5.

More complex still would be to perform adjustments based on the difference in scale between the actor

and the digital character. The suggested methods only copy rotations 1:1 between the two. If there is a

significant discrepancy in size, for instance one is a tall adult and the other a small child, the animations

will look incorrect; the stride-length will be wrong, one may have to reach to move to the same position

as the other, etc. These are some of the more powerful features of commercial software like

MotionBuilder, and would be a significant undertaking to implement well.

8.3 Generic Server Application
The end of Section 5.2 discusses the idea of using a client-server model to pass data between Kiip and

an application. This would be useful for situations such as the Maya plugin, where streamed in data can

potentially be easier to apply than going through the node-graph. In addition, creating a generic server

application to pass Kiip messages would allow the library to be used with any software capable of

socket-based communication. This may be necessary for integration with an engine such as Unity3D
10

,

which uses C# in place of C++, or to make the data available to scripted interfaces rather than fully

integrating Kiip with the application.

8.4 Data Input/Output
Currently, all Kiip data is only available at runtime, and is not saved out to a file. Creation of a generic

file format for marker data may be useful, for instance, to allow sessions to be run using the PhaseSpace

equipment, and later played back at a remote location. When played back, the data would be interpreted

by Kiip and output data would be produced just as it was during the original capture session. This would

require the creation of a new MarkerReader implementation to read in the data, as well as an application

to write out the data to a file. These tasks could be done without changing the core Kiip software. A

more involved approach could integrate the output into the Kiip loop, writing out marker data as it is

received. The base pose could also be saved out, and a new way of setting the base pose provided to

ensure that the data is always interpreted the same way from run to run.

Another potentially useful output application would save out the data produced by Kiip (Actor

Joints/Limbs and eventually retargeted joints). This would then allow Kiip to be used as the first step in

an offline animation process, potentially reducing the need for MotionBuilder for the production of

simple animations.

10

 http://unity3d.com/

33

9. Conclusion
The development of Kiip has involved both success and failure. The retargeting components do not

work, but the actor data is fully calculated and available in real-time. Despite gaps in the explanations of

many of the cited references, much of the missing information was determined over the course of the

project, and has been documented here for use in future research. Even though the retargeting is not

complete, the framework is setup and future work could fill in the details of retargeting specific joints;

changing which joints can exist and how each one is retargeted is very simple, and all of the data

required to perform the calculations is available to functions within the Retargeter.

This project was designed to try and provide a small subset of the features provided by expensive

commercial software such as MotionBuilder in a free and easily integrated library. That parts of the

project were only partially complete is a testament to the complexity of such software and the effort put

into its creation. Still, despite these partial failings, the project still succeeded in providing a free

implementation of some of the functionality of this software. This makes it, at least in part, a success.

34

References

Charalambous, Themistoklis. 2005. Interacting with a virtual environment.

http://themistoklis.org/mengthesis.pdf.

Choi, Kwang-Jin. 2001. Online motion retargetting. The Journal of Visualization and Computer

Animation 61, no. 5 (December): 260-235. doi:10.1002/1099-1778(200012)11:5<223::AID-

VIS236>3.0.CO;2-5.

De Aguiar, E., Christian Theobalt, and H.P. Seidel. 2006. Automatic learning of articulated skeletons

from 3D marker trajectories. Advances in Visual Computing: 485–494.

http://www.springerlink.com/index/26760v071m0962m5.pdf.

Gamage, Sahan S Hiniduma Udugama, and Joan Lasenby. 2002. New least squares solutions for

estimating the average centre of rotation and the axis of rotation. Journal of biomechanics 35, no. 1

(January): 87-93. http://www.ncbi.nlm.nih.gov/pubmed/11747887.

Gleicher, Michael. 1997. Motion editing with spacetime constraints. In Proceedings of the 1997

symposium on Interactive 3D graphics, 139. ACM. http://portal.acm.org/citation.cfm?id=253321.

Gleicher, Michael. 1998. Retargetting motion to new characters. In Proceedings of the 25th annual

conference on Computer graphics and interactive techniques, 33-42. ACM.

doi:http://doi.acm.org/10.1145/280814.280820.

http://portal.acm.org/citation.cfm?id=280814.280820.

Gleicher, Michael, and Peter Litwinowicz. 1998. Constraint-based motion adaptation. The journal of

visualization and computer animation 9, no. 2: 65–94.

http://www3.interscience.wiley.com/journal/5507/abstract.

Hecker, Chris. 2008. Real-time motion retargeting to highly varied user-created morphologies. ACM

Transactions on Graphics 27, no. 3 (August): 1. doi:10.1145/1360612.1360626.

Herda, L, P Fua, R. Plankers, R Boulic, and D Thalmann. 2000. Skeleton-based motion capture for

robust reconstruction of human motion. ca: 77.

http://www.computer.org/portal/web/csdl/doi/10.1109/CA.2000.889046.

Herda, L, P Fua, R Plänkers, R Boulic, and D Thalmann. 2001. Using skeleton-based tracking to

increase the reliability of optical motion capture. Human movement science 20, no. 3 (June): 313-

41. http://www.ncbi.nlm.nih.gov/pubmed/11517674.

Hornung, Alexander, and Leif Kobbelt. 2004. Robust and Automatic Optical Motion Tracking.

ahornung.net. Workshop Virtuelle und Erweiterte Realität der GI-Fachgruppe VR/AR.

http://www.ahornung.net/files/pub/Hornung_VRAR04.pdf.

35

Kirk, Adam G., James F. O’Brien, and David A. Forsyth. 2005. Skeletal Parameter Estimation from

Optical Motion Capture Data. In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)

2005, 782–788. June. http://graphics.cs.berkeley.edu/papers/Kirk-SPE-2005-06/.

Kwon, Young-Hoo. 2010. Joint Center: Functional Method.

http://www.kwon3d.com/theory/jkinem/jcent.html.

Kwon, Young-Hoo. 2011. Computation of the Rotation Matrix.

http://www.kwon3d.com/theory/jkinem/rotmat.html.

Monzani, Jean-S. 2001. Using an Intermediate Skeleton and Inverse Kinematics for Motion Retargeting.

Computer Graphics Forum 19, no. 3 (December): 11-19. doi:10.1111/1467-8659.00393.

O’Brien, J.F., R.E. Bodenheimer Jr, G.J. Brostow, and J.K. Hodgins. 2000. Automatic joint parameter

estimation from magnetic motion capture data. Proceedings of Graphics Interface 2000, no. May:

53--60. http://graphics.cs.berkeley.edu/papers/Obrien-AJP-2000-05/.

Poirier, Martin, and E. Paquette. 2009. Rig retargeting for 3D animation. In Proceedings of Graphics

Interface 2009, 103–110. Canadian Information Processing Society.

http://portal.acm.org/citation.cfm?id=1555907.

Ringer, M. 2004. A procedure for automatically estimating model parameters in optical motion capture.

Image and Vision Computing 22, no. 10 (September): 843-850. doi:10.1016/j.imavis.2004.02.011.

Silaghi, M C, R Plankers, R Boulic, P Fua, and D Thalmann. 1998. Local and global skeleton fitting

techniques for optical motion capture. In Proceedings {CAPTECH}’98, ed. N Magnenat and D

Thalmann, 26-40. Springer.

Wen, G., Zhaoqi Wang, S. Xia, and D. Zhu. 2006. From motion capture data to character animation. In

Proceedings of the ACM symposium on Virtual reality software and technology, 165–168. ACM.

http://portal.acm.org/citation.cfm?id=1180495.1180528.

Xiao, By Zhidong, Hammadi Nait-charif, and Jian J Zhang. 2009. Real time automatic skeleton and

motion 20, no. September: 523-531. doi:10.1002/cav.

Zordan, V.B., and N.C. Van Der Horst. 2003. Mapping optical motion capture data to skeletal motion

using a physical model. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on

Computer animation, 245–250. Eurographics Association.

http://portal.acm.org/citation.cfm?id=846311.

A-1

Appendix A - Integration

Dependencies
There are three dependencies that must be included to compile Kiip, four when using PhaseSpace as a

source of marker data. Includes for the external libraries is located in /Kiip/Code/Libraries/. These are:

 eigen3

 boost_1_45_0

 phasespace\include

The headers for Kiip itself are located in /Kiip/Code/KiipCode/. For compiled libraries, the folder

/Kiip/Code/lib/ should be included.

Headers

KiipCore.h and Kiip.h are the two headers required to include Kiip. KiipCore.h stores definitions

for the data structures that are used to pass data between Kiip and an application, as well as

enumerations used to specify what limb/joint/etc is being used in a given function call. Kiip.h stores the

definition for the Kiip class, which defines the public API available to applications.

PhasespaceReader.h is needed when using PhaseSpace as a marker source.

Defining Markers

On construction, the application must pass an array of pointers to MarkerInfo structures, defined in

KiipCore.h. Each struct stores a MarkerLocation, which defines on which limb the marker resides.

The order of the structs in the array defines the index numbers used to refer to the markers in the future.

The application owns the array, and is responsible for deallocating it when no longer in use. This

deallocation can occur anytime after the Kiip constructor has returned.

The array of structs is passed to the MarkerReader subclass currently in use. The MarkerInfo struct

accepts a value of type long on construction, which acts as a type identifier for the struct. Subclasses of

MarkerInfo can be defined and used, allowing for extra information to be passed to the reader. For

instance, the PhasespaceReader defines a PhasespaceMarkerInfo which includes an extra field for

the PhaseSpace ID value of the marker, allowing it to differ from the value Kiip assigns it. The

MarkerReader subclass can determine if a given MarkerInfo object is of the proper type by calling

getInfoType() on it.

Constructing Kiip

The constructor for Kiip takes in 3 values: a pointer to a MarkerReader implementation, a pointer to the

array of MarkerInfo pointers, and the number of elements in that array (the number of markers being

tracked). Once passed to the constructor, Kiip owns the MarkerReader and will handle its destruction at

the appropriate time.

A-2

Input Joints
Only joints that are activated by the application are eligible for retargeting. Joints are activated by

calling addSkeletonJoint() on the Kiip object. This function takes in a SkeletonJointLoc defining

which joint to activate, and a 4x4 array of floats representing the column-vector transformation matrix of

the joint in its base pose.

Initialization

A series of steps must be performed to allow Kiip to begin processing of incoming frames, including

finding the base pose, capturing the gym motion, and finally processing that gym motion.

Base Pose

Initially, Kiip has no base pose. To tell Kiip to begin searching for one, the findBasePose() function

must be called. This will cause Kiip to begin searching each new frame of marker data until it finds one

in which all markers are visible. While searching, calls to getCurrentTask() will return

kKiipFindBasePoseTask. Once the pose is found, hasBasePose() will return true. Calling

findBasePose() and passing in a value of false will cause Kiip to stop looking for a base pose.

Gym Capture

A call to captureGymMotion() will cause Kiip to begin storing frames of data in a list. The first

argument is a long representing the number of seconds that the capture should last. The second argument

is an integer representing the number of frames to capture each second. For instance, the arguments (2,

10) will result in 20 frames being captured over 2 seconds. While capturing, a call to

getCurrentTask() will return kKiipCaptureGymMotionTask, and kKiipNoTask when the capture has

completed. Calls to getCaptureLength() will return the number of frames that have been captured

thus far, or -1 if the capture has not been started.

Gym Processing

Once the motion has been captured, it must be processed by calling processGymMotion(). While this is

taking place, calls to getCurrentTask() will return kKiipProcessGymMotionTask. Once processing is

complete, calls to isGymMotionProcessed() will return true, and Kiip's task will automatically switch

to kKiipProcessMotionTask. From this point on, Kiip will process incoming marker data and store the

calculated joint and limb information.

Accessing Data

Kiip will run an internal loop, storing new marker data, passing it between the various subsystems, and

updating flags to indicate this new data. There are four flags, one for each type of data that can be

retrieved. Retrieving the corresponding data will reset the flag to false until new data is available:

 hasNewMarkers() indicates if new marker data is available. Call getMarkers() to retrieve

them, passing in a pointer to an array of uMarker structs, and the number of markers to get

 hasNewLimbs() indicates if new limb data is available. Call getLimbs(), passing in a pointer to

kActorLimbCount uLimb structs to be filled.

A-3

 hasNewActorJoints() indicates that new joint position data for the actor is available. Call

getActorJoint(), passing a pointer to kActorJointCount uActorJoint structs.

 hasNewSkeletonJoints() indicates that new joint transform data for the retargeted skeleton is

available. Call getSkeletonJoints(), passing a pointer to kNumSkeletonJoints

uSkeletonJoint structs.

Restarting

A call to getKiipStatus() should always return kKiipOk. If it does not, then Kiip is not running

correctly and should be restarted by deleting the existing Kiip object, and repeating all of the previous

steps. The same MarkerInfo array can be reused, if not already freed. In practice, the only time the

status changes is when the PhasespaceReader has a server error. This could come from one of two

places. First, if the reader is unable to connect to the PhaseSpace server for some reason, it will fail.

More often, though, is the case where a pre-recorded capture session is being streamed in place of live

data. When the recorded data ends, the server stops streaming and sends an error that causes Kiip to

stop running. In general, when not using pre-recorded data, Kiip should never stop running until

deleted.

