

Design and Evaluation of a Public Resource Computing Framework

by

James D. Baldassari

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

May, 2006

APPROVED:

Dr. David Finkel, Major Advisor

Dr. Craig E. Wills, Reader

Dr. Michael A. Gennert, Head of Department

 ii

Abstract

Public resource computing (PRC) is an innovative approach to high performance
computing that relies on volunteers who donate their personal computers’ unused
resources to a computationally intensive research project. Prominent PRC projects
include SETI@home, Folding@Home, and distributed.net. Many PRC projects are built
upon a PRC framework that abstracts functionality that is common to all PRC projects,
such as network communications, database access, and project management. These PRC
frameworks tend to be complex, limiting, and difficult to use. We have designed and
implemented a new PRC framework called the Simple Light-weight Infrastructure for
Network Computing (SLINC) that addresses the disadvantages we identified with
existing frameworks. SLINC is a flexible and extensible PRC framework that will enable
researchers to more easily build PRC projects.

 iii

Table of Contents
Abstract ... ii
Table of Contents... iii
Table of Figures .. v
Table of Tables .. vi
1 Introduction.. 1
2 Background .. 3
2.1 Related Work .. 3
2.2 Berkeley Open Infrastructure for Network Computing (BOINC)............................ 4
2.3 Limitations and Disadvantages of BOINC ... 5

3 Thesis Goals... 6
3.1 Create a Public Resource Computing Framework.. 6
3.2 Create a Public Resource Computing Project for Testing .. 6
3.3 Create Documentation and Tools.. 6
3.4 Major Contributions.. 7

4 Design .. 8
4.1 Requirements .. 8
4.1.1 Ease of Use .. 8
4.1.2 Flexibility... 8
4.1.3 Extensibility and Maintainability... 8

4.2 Initial Design Decisions.. 9
4.2.1 Programming Languages ... 9
4.2.2 Inter-Process Communication.. 9
4.2.3 Database Support ... 10

4.3 Tools ... 10
4.3.1 SourceForge ... 10
4.3.2 Eclipse.. 11
4.3.3 JUnit... 11
4.3.4 Abeille Forms Designer ... 11
4.3.5 Apache Ant .. 11

4.4 Third-Party Libraries .. 12
4.4.1 XML-RPC Implementations.. 12
4.4.2 Hibernate.. 12
4.4.3 Abeille Forms and JGoodies.. 12

4.5 Architecture... 13
4.5.1 Overview.. 13
4.5.2 Component-Based Architecture... 18
4.5.3 Server Components.. 19
4.5.4 Client Components... 25

5 Implementation .. 27
5.1 Methodology... 27
5.2 Persistent Classes .. 27
5.3 Components .. 27
5.4 Public Resource Computing Project Example.. 28

6 Testing.. 29

 iv

6.1 Regression Testing.. 29
6.1.1 Methodology.. 29

6.2 Functional Testing .. 29
6.2.1 Methodology.. 30

6.3 Performance Testing ... 33
6.3.1 Methodology.. 34
6.3.2 Test environment ... 35

6.4 Usability Testing... 35
6.4.1 Comparison with BOINC .. 35
6.4.2 Peer Review by a PRC Researcher .. 35

7 Analysis of Results .. 37
7.1 Performance Analysis ... 37
7.1.1 Results.. 37
7.1.2 Analysis.. 40

7.2 Usability Analysis... 41
7.2.1 Comparison with BOINC .. 41
7.2.2 Analysis of Peer Review.. 46

8 Conclusions.. 48
8.1 Functionality ... 49
8.2 Performance .. 49
8.3 Usability.. 49
8.4 Future Work .. 50
8.4.1 Additional Scalability Testing ... 50
8.4.2 Assimilator Component ... 50
8.4.3 Security Enhancements.. 50
8.4.4 Additional Spot-Check Configuration Options ... 51
8.4.5 Support for Database Migration... 51

Appendix A: Design Diagrams... 52
Appendix B: Project Creation Guide .. 57
Appendix C: Project Programming Guide.. 72
Appendix D: XML-RPC Interface Specification.. 99
Appendix E: Example Project... 106
References... 108

 v

Table of Figures
Figure 1: Work Unit States ... 14
Figure 2: Result States .. 15
Figure 3: SLINC Components .. 19
Figure 4: Time to Complete 64 Work Units with the Java Science Application.............. 38
Figure 5: Time to Complete 64 Work Units with the C++ Science Application.............. 39
Figure 6: Average Time to Complete 64 Work Units, Linear Time Scale 40
Figure 7: Average Time to Complete 64 Work Units, Logarithmic Time Scale.............. 40
Figure 8: Package Dependency Diagram.. 52
Figure 9: Client Package Diagram.. 52
Figure 10: Persistence Package Diagram.. 53
Figure 11: Project Package Diagram .. 53
Figure 12: Server Package Diagram ... 54
Figure 13: Task Package Diagram.. 54
Figure 14: Tools Package Diagram... 55
Figure 15: User Package Diagram .. 55
Figure 16: Util Package Diagram ... 56
Figure 17: Project Builder Tool, Project Actions ... 58
Figure 18: Project Builder Tool, Basic Project Configuration ... 59
Figure 19: Project Builder Tool, Database Configuration .. 60
Figure 20: Project Builder Tool, Network Configuration... 61
Figure 21: Project Builder Tool, Project Server Configuration.. 63
Figure 22: Project Builder Tool, Spot-Check Configuration.. 65
Figure 23: Project Builder Tool, Confirm Settings... 67
Figure 24: Work Unit Generator Control Flow .. 86
Figure 25: Result Validator Control Flow .. 92
Figure 26: Science Application Control Flow .. 96
Figure 27: Prime Finding Algorithm .. 106

 vi

Table of Tables
Table 1: Functional Tests.. 33
Table 2: Time to Complete 64 Work Units with the Java Science Application 37
Table 3: Time to Complete 64 Work Units with the C++ Science Application............... 38
Table 4: SLINC Project Creation Process .. 43
Table 5: BOINC Project Creation Process.. 44
Table 6: Comparison of Framework Requirements.. 45
Table 7: Comparison of Framework Features .. 46

 1

1 Introduction
Public Resource Computing (PRC) is a form of high performance computing

(HPC) in which volunteers from around the world donate a portion of their computers’
resources to a computationally intensive research project. Researchers who do not have
access to supercomputing facilities can use PRC to increase their ability to process
compute-intensive data at little to no extra cost.

PRC is related to grid computing, but there are some important distinctions. A
grid is traditionally a collection of computers or entire clusters that are owned and
maintained by universities, companies, and research organizations. PRC focuses on
utilizing the available resources in the personal computers of individual volunteers rather
than large networks of computers with persistent network connections and long uptimes.
Another distinction is that grids are inherently distributed1, but PRC systems tend to be
centralized, with a single point of contact for all volunteers.

Although PRC is a powerful tool for research, not all research projects are
compatible with the PRC model. To take advantage of the computing resources PRC
provides, the program that is used to analyze research data, called the science application,
must be parallelizable. A parallel program can be converted into a client-server system in
which the client performs the computations and the server coordinates the clients. The
server’s primary responsibilities are to partition the input data into smaller work units for
the clients to compute, and to store the results returned by the clients for further analysis.

There are several PRC frameworks that facilitate the creation of PRC projects by
managing many of the responsibilities of the client and server. One of the most widely
used PRC frameworks is the Berkeley Open Infrastructure for Network Computing
(BOINC)2. The advantage of using BOINC is that it abstracts much of the complexity
involved in creating and maintaining a large PRC project. BOINC will manage all
network communications between the clients and the server, so there is no need for a
PRC project developer to write any network code. BOINC manages the project database
and connections to it, so developers do not need to write any database connection code or
SQL queries. BOINC handles the distribution of work units and collection of results; it
can recover from situations in which clients receive a work unit, but never return a result
or return an erroneous result. The creators of BOINC designed it to be highly scalable,
and the system can currently support on the order of tens of millions of client requests per
day3.

BOINC has an advanced and scalable architecture that is well suited to large PRC
projects, but its implementation requires the developers of a PRC project to be very
familiar with specific technologies like Linux and MySQL, as well as the C++
programming language. Compounding the difficulties BOINC project developers face is
a lack of comprehensive documentation and configuration tools to automate common
project development tasks.

The primary goal of this thesis was to create a new PRC framework that
simplified the process of creating PRC projects. To accomplish this goal, we first
designed a modular, object-oriented architecture for the framework. We named this
framework the Simple Light-weight Infrastructure for Network Computing (SLINC).
During the design process we tried to make this architecture scalable by allowing the
separate modules to be run on different physical computers. After designing the

 2

architecture we researched tools and third-party libraries that would decrease our
development time by providing certain functionality that was critical to the framework.
Once we had chosen these libraries and tools, we began implementing and testing the
architecture.

We evaluated SLINC by performing functional testing, performance testing, and
usability testing. The functional tests evaluated the core functionality of the system to
verify that each feature worked correctly. The performance testing evaluated the
framework’s ability to scale when multiple volunteers were contributing to a PRC project
simultaneously. The usability testing evaluated SLINC’s ease of use and identified areas
for improvement. We used the results of the usability testing to address several issues,
making the framework easier to use for PRC project developers.

The framework we developed is simple, flexible, and scalable. It can be used
with science applications written in many different languages, so project developers can
use whichever language they are most comfortable with to develop PRC projects using
our framework. SLINC supports a wide range of operating systems and architectures, as
well as several different databases, allowing for greater flexibility in deployment. To
make SLINC easier to use, we created step-by-step guides for developing PRC projects,
tools to expedite and simplify the project creation process, and an example PRC project
implementation to use as a reference.

We believe we have succeeded in developing a PRC framework that is easier to
use than existing frameworks, yet offers the most important core functionality necessary
for a production PRC system. SLINC does not support some of the advanced
functionality available in other frameworks, but could be easily extended in the future to
offer similar features.

 3

2 Background
 Public resource computing is a relatively new subfield of distributed computing
and high performance computing, and as such there is comparatively little research in this
area. There were two primary sources of information about public resource computing
that we used frequently: Louis G. Sarmenta’s Ph.D. dissertation4 and a popular
framework for public resource computing called BOINC2.

2.1 Related Work

 Louis F. G. Sarmenta is one of the leading researchers in the field of public
resource computing. In his 2001 Ph.D. dissertation4 he classified new and existing forms
of PRC, designed and built a Java based PRC framework, and devised methods for
reducing the impact of malicious volunteers. Sarmenta’s PRC framework was called
Bayanihan, which he created to test his contributions to PRC research. Bayanihan was
different from previous PRC projects like SETI@home5 and distributed.net6 because
volunteers did not have to manually download a special client to contribute their
computers’ resources. Instead, volunteers would visit a website that would automatically
load and execute a Java applet7 in the web browser to perform computations for a PRC
project. Sarmenta showed that Bayanihan enabled PRC networks to be formed quickly
because software installation was not required on the client machines. Another
advantage of having an installation-free client was that users who did not have
permission to install software could still contribute to a Bayanihan-based PRC project.
Bayanihan improved security on the client machines because unsigned Java applets have
restrictions on the types of operations they are allowed to execute8, preventing a fake
PRC client from damaging a volunteer’s computer. Since Bayanihan was Java based, it
allowed PRC developers to create a single client that could execute on many different
platforms without modification.
 Sarmenta made another significant contribution to the PRC field in his
dissertation when he explored methods to detect and defend against malicious volunteers.
A malicious volunteer is one who deliberately returns incorrect results to the server. One
method to prevent malicious volunteers from sabotaging the research is to send the same
work unit to multiple clients, and to only accept the result returned by the clients if a
critical number of clients agree on the result. This method is called voting. Another
approach is to have the server calculate the result for a particular work unit, send the
same work unit to a client, and compare the result the client returns with the result the
server computed. If the two results differ, the client can be assumed malicious and be
removed from the network. This approach is called spot-checking. Sarmenta found that
an even more effective and accurate method is to combine voting and spot-checking9.
 In addition to Sarmenta’s work in PRC, several Major Qualifying Projects
(MQPs) at Worcester Polytechnic Institute (WPI) have explored an approach to PRC that
was similar to that of Bayanihan. These MQPs developed and evaluated a framework for
PRC called Distriblets10,11,12. Like Bayanihan, Distriblets used Java applets as a means to
execute computations on volunteers’ computers. These volunteers would visit a web site,
which would cause a Java applet to be downloaded into their web browsers. The applet
would then perform any computations needed by the PRC project. Unique features of the

 4

Distriblets framework included support for volunteers with non-persistent Internet
connections and the ability for volunteers to choose which PRC project they would
contribute their computer’s resources to.

2.2 Berkeley Open Infrastructure for Network Computing
(BOINC)

 BOINC is a framework for public resource computing that is comprised of both
server and client components13. The BOINC client itself uses very few system resources;
it only acts as an interface between the BOINC server and the volunteers’ computers.
The application that uses system resources to perform computations for a PRC project is
called the science application. The BOINC client requests work units from the BOINC
server on behalf of the science application and returns the results computed by the
science application to the BOINC server. The BOINC client and the science application
communicate through the BOINC Application Programming Interface (API), which is
written in C++.

The BOINC server is actually a collection of seven different daemon processes, or
server components, some of which are developed by BOINC and others that each PRC
project must implement individually14. The feeder and transitioner are components that
are supplied by BOINC. The server maintains a queue of work units that need to be sent
to the clients; the feeder retrieves newly generated work units from the database to fill
this queue. The transitioner controls the state transitions of work units and results
throughout their lifecycles. The lifecycle of a work unit begins when it is generated by
the work generator and is added to the database. Work units can then go through several
state transitions as they are distributed to one or more clients to be processed. For
example, if a work unit is distributed to a client, but a result for that work unit is not
returned within a predetermined amount of time, then that work unit is said to have timed
out or expired. The transitioner detects work units that have timed out and redistributes
them to different clients. The lifecycle of a work unit ends when enough valid results for
that work unit have been collected and a single result, called the canonical result is
chosen for that work unit. The lifecycle for a result begins when it is computed by a
client and sent to the project server. There are several state transitions that can occur for
results as well. For example, results that have just been received are in a different state
than canonical results. The lifecycle of a result can end in three ways: it is determined to
be invalid, it is marked valid and selected as the canonical result for a work unit, or it is
marked valid and is not selected as the canonical result for a work unit. All results that
are invalid or are not selected to be the canonical result are deleted.

The five remaining daemons need to be implemented by each PRC project. The
work generator generates new work units to be computed by the science application. The
validator attempts to determine which results are valid by comparing results from several
different clients. The assimilator processes valid results, which usually means storing
them to a separate database for later analysis. The file deletion and database purging
daemons remove files and work units that are no longer needed.

The BOINC architecture is highly modular and scalable. If the project server
becomes inundated with client requests, additional servers can be added to the project
with daemons running on all of the servers, each handling only a fraction of the total

 5

incoming requests. With a sufficient number of project servers, the only bottleneck in the
system is the MySQL server3.

2.3 Limitations and Disadvantages of BOINC

BOINC is a powerful and robust system for public resource computing, but it has
some significant limitations. The BOINC client has been ported to several platforms, but
the BOINC server can only be executed on Linux-based operating systems. Having
support for only one platform imposes limitations on the operating environments for PRC
projects and requires researchers to have experience with Linux system administration in
order to create a new BOINC project.

With the power of BOINC comes great complexity. BOINC is a composite of
several distinct applications, some of which have been created by the BOINC developers
and others that are developed separately by each public resource computing project. To
create a BOINC project one must first understand the interactions between the BOINC
components. In addition to understanding the BOINC architecture, researchers creating
BOINC projects must learn the BOINC programming API and be proficient in Linux
system administration, MySQL15 relational database administration, the Extensible
Markup Language (XML), and the C++ programming language. Even though the
BOINC system is quite complex, there is very little documentation available about how
to create a BOINC project. This lack of documentation is perhaps the largest barrier that
researchers face when creating a BOINC project. There are also very few tools to
facilitate the creation of new projects, resulting in a long, manual process.

The BOINC system is well suited to large scale PRC projects, but the limitations
and complexities of BOINC can be prohibitive factors for researchers interested in
creating small to medium size PRC projects.

 6

3 Thesis Goals

3.1 Create a Public Resource Computing Framework

 The primary goal of this thesis was to create a framework to support research
through public resource computing (PRC) that addressed the usability shortcomings we
identified with frameworks like BOINC. Reflecting our commitment to usability, we
named our framework the Simple Platform for Accessible Research Computing (SLINC).
In order for SLINC to be an improvement over existing frameworks, it had to be more
flexible and easier to use. SLINC had to simplify the process of creating a PRC project
and also to decrease the amount of time necessary to do so. Additionally, the
framework’s performance had to scale reasonably well. SLINC was designed to be both
modular and extensible so that future developers and researchers would be able to easily
modify and extend the functionality of the system. This modularity also improved the
scalability of the framework.

One of our goals for the implementation of SLINC was to create a cross-platform
server and client that were compatible with the most common operating systems. The
cross-platform property of SLINC contributed to our goals of flexibility and ease of use.
The implementation of the framework used open standards wherever possible to increase
interoperability and facilitate the addition of new features to the system. Lastly, the
concept of scalability was extended from the architecture through the implementation
using a combination of design patterns, features of the programming language, and third
party libraries based on open standards.

3.2 Create a Public Resource Computing Project for Testing

Once the implementation had achieved sufficient functionality, our next goal was
to create a simple PRC project, including both a server and a client. This example project
allowed us to test the system in several different ways. We were able to test the basic
functionality of the framework components, as well as the client-server communication.
We also tested SLINC’s ability to scale when multiple clients were accessing it
simultaneously. The example PRC project allowed us to compare SLINC to BOINC in
terms of the complexity of creating a project. Going through the steps of creating a
project with SLINC also helped us to create better documentation about the process for
researchers who will use the framework to create their own PRC projects.

3.3 Create Documentation and Tools

Our last goal was to make SLINC as easy to use as possible. We accomplished
this goal mainly by creating thorough documentation, both in the code itself and in the
form of user manuals, implementation guides, and interface specifications. We also
developed tools to automate as much of the project creation and maintenance process as
possible.

 7

3.4 Major Contributions

Through achieving these thesis goals, we developed a public resource computing
framework that was easy to use, scalable, and extensible. Researchers who need access
to large amounts of computational power will be able to use SLINC to solve complex
problems or modify the system for further research in public resource computing.

 8

4 Design
 This chapter describes the design of SLINC, including the initial requirements,
important design decisions, tools and third-party libraries that were used, and the system
architecture.

4.1 Requirements

 The requirements for SLINC were inspired mainly by the disadvantages and
limitations we identified in the BOINC system. We wanted our framework to be more
flexible than BOINC, but above all we needed to design a framework that was easier to
use.

4.1.1 Ease of Use

 In order for SLINC to be a successful platform for public resource computing it
needed to be easy to use, both for the developers of public resource computing projects
and for the volunteers participating in the projects. In the context of SLINC we defined
ease of use in several ways. Project developers, those who are responsible for
programming the necessary applications, should be able to learn the interface to SLINC
quickly. Additionally, the amount of project-specific code that needs to be written should
be minimized. Configuring the framework for the specific public resource computing
project should be made as simple as possible, for example through the use of a graphical
application. Finally, volunteers should be able to easily install and configure the software
on their personal computers.

4.1.2 Flexibility

 In addition to being easy to use and learn, a public resource computing framework
must be flexible enough to be used in a wide range of environments. Different research
groups may have very different needs or restrictions in terms of operating systems and
database management systems that they are able to use. We decided that SLINC must
support some of the most commonly used operating systems and database management
systems. In addition to flexibility in operating environments, we recognize that
researchers are not all proficient in the same programming languages, and certain
languages are better suited to research applications than others. Consequently, SLINC
must support a variety of programming languages for the applications it will manage.

4.1.3 Extensibility and Maintainability

 SLINC must be designed in such a way that it can be easily modified and
extended. Defects may be found at a later time, or certain assumptions about the
operating environment may change, so the source code must be organized and well
documented to facilitate corrective and adaptive maintenance. Since new features may
be required in the future, perfective maintenance must also be considered in the design of

 9

the system. The design of SLINC should be modular and make use of open standards
and libraries to make the system easier for future developers to learn and extend.

4.2 Initial Design Decisions

 This section describes important design decisions we made before beginning any
architecture design or implementation. It was necessary to decide what programming
language to use for the framework, what programming languages the framework would
support, what type of inter-process communication to use, and which database
management systems to support.

4.2.1 Programming Languages

 Our requirement that the system be as flexible as possible (see Section 4.1.2
Flexibility) greatly influenced our decisions about the programming languages we would
use. The programming language for the framework had to be portable and preferably
execute on different operating systems and architectures without modification; we wanted
to use a language that we were already familiar with so that implementation could begin
quickly; we needed a language that had a variety of third-party tools and libraries
available to decrease implementation time. For these reasons we decided to implement
the public resource computing framework in Java.
 The other programming language decision we had to make was which languages
we should allow researchers to use when creating public resource computing projects
with SLINC. We decided that at a minimum we should support C++ and Java, due to
their ubiquity and frequent use in public resource computing, and other common
languages if possible.

4.2.2 Inter-Process Communication

 The mechanisms used for inter-process communication (IPC) have a significant
impact on the architecture of a system, so we needed to make early decisions about how
the different components that comprise the framework would communicate. In keeping
with our requirements (see Section 4.1 Requirements), we wanted to use a form of IPC
that was based on open standards, was portable, and was implemented in a wide variety
of languages. We considered using standard TCP sockets, but that method can be prone
to error, especially in languages that do not perform array bounds checking like C and
C++. Java Remote Method Invocation (RMI) is a good remote procedure call (RPC)
implementation, but it is limited to use in Java, so it would make SLINC less flexible.

One type of IPC that seemed appropriate was XML-RPC16. XML-RPC has a
simple and open specification; it uses HTTP as its transport protocol and XML as its
encoding method, which are both open standards maintained by the World Wide Web
Consortium (W3C)17. There are implementations of XML-RPC for many languages,
including C, C++, Java, Perl, PHP, Python, Scheme, Ruby, ASP, and others16. Due to the
number of popular programming languages that have XML-RPC implementations, the
use of XML-RPC makes SLINC quite flexible. Researchers who develop applications

 10

for SLINC will have the freedom to choose the programming language that they are most
familiar with.

4.2.3 Database Support

All public resource computing systems need to store data. Typically, the storage
needs of a PRC project include configuration data, work units, results, and information
about users. For a large project, storing all of this data to a simple flat file would be
much too inefficient. There would be too much latency in searching through such a file
for relevant data, and even file size limitations of the file system might become a
limitation. For these reasons, systems like BOINC use external databases to store project
data. The problem with this approach is that an external database is usually not necessary
for a small project because the amounts of data are small enough to be stored in regular
files, and the use of a database makes creating and configuring a project more complex.
 We wanted SLINC to be easy to use for small projects, powerful enough to
support large projects, and flexible enough to be used in many different environments.
SLINC supports several different types of database systems to accommodate the needs of
different users and projects. Small projects can use an embedded Java database called
HSQLDB18, which saves data to a normal file on disk. Using HSQLDB is easier because
the project developers would not have to install and configure a separate database
management system, and small projects probably do not need the power of a full
database. Larger projects have the option to use a normal database management system.
We decided to provide support for some of the most popular databases, such as
MySQL15, PostgreSQL19, Oracle20, and Microsoft SQL Server21.

4.3 Tools

There were several tools we used extensively throughout the design and
implementation phases. This section describes the tools we used, why we used them, and
how they facilitated our work.

4.3.1 SourceForge

SourceForge22 is a software development management system. It provides
software developers with a complete management system intended for use with medium
to large software projects. Developers who use SourceForge have access to version
controlled source code and document repositories. They can set and track development
goals, post code releases, make project announcements, and perform other useful tasks.
WPI has its own SourceForge system located at http://sourceforge.wpi.edu, and our
SourceForge project is at http://sourceforge.wpi.edu/sf/projects/jdb_prc_thesis. We use
SourceForge primarily for its code repository and for storing documentation. The code
repository allows us to access the source code for the PRC framework from anywhere on
the Internet. The document repository provides a central location for us to post
documentation related to the project.

 11

4.3.2 Eclipse

 Eclipse23 is an open source integrated development environment (IDE). It is used
primarily for developing Java applications, but it can be used with other languages as
well. Eclipse has many features that can accelerate the code development process,
including integration with code repositories like CVS and Subversion, code completion,
integrated debugging capabilities, and automated building of executables. We used
Eclipse to implement, test, and debug all of the Java code related to our PRC framework.
One of the most useful features of Eclipse is its integration with JUnit.

4.3.3 JUnit

 JUnit24 is a framework for performing unit tests on Java code. In software
engineering terms, JUnit acts as a driver for testing small components of a Java project.
JUnit tests allow developers to execute methods, and then make assertions about certain
conditions that should be true if the tests were successful. Any number of assertions can
be made, and a test is only considered successful if all assertions were correct. Groups of
related JUnit tests can be organized into JUnit test suites, which when executed will run
all of the JUnit tests in the suite. The JUnit integration in Eclipse facilitates the creation
of JUnit tests and test suites. Eclipse allows developers to easily run JUnit tests and to
quickly see the results of each test.

4.3.4 Abeille Forms Designer

 Abeille Forms Designer25 is an open source application that facilitates the creation
of Java graphical user interfaces (GUIs). It has an editor that allows users to create forms
by dragging user interface components onto a graphical representation of a form. Abeille
uses the standard Java Swing graphics framework in addition to the JGoodies26 libraries,
which provide advanced layouts and GUI widgets. Using the Abeille Forms Designer
application allowed us to rapidly develop user interfaces for our public resource
computing system.

4.3.5 Apache Ant

 Apache Ant27 is a powerful build tool for Java projects. Its functionality is similar
to that of GNU Make, but Ant is a cross-platform tool. It is written in Java and uses
XML-based build configuration files. During the development of SLINC we used
Eclipse to manage the builds, but when development was completed we used Eclipse to
generate Ant build files for the framework. We modified those build files so that we
could use Ant to package our framework into Jar, ZIP, and bzip2 files to make it easier
for project developers and volunteers to use. The scripts that package a new public
resource computing project into client and server archives simply invoke Ant with
custom targets we wrote for these purposes.

 12

4.4 Third-Party Libraries

 We used several third-party libraries in our public resource computing
framework. These libraries increased our productivity by providing critical functionality
for XML-RPC marshalling and transport, database access, and GUI design, allowing us
to focus on implementing the framework itself. This section describes each of the
libraries we used and their licenses.

4.4.1 XML-RPC Implementations

We used two different libraries to enable XML-RPC communication between
processes: Apache XML-RPC28 and XML-RPC for C and C++29. Apache XML-RPC is
a Java implementation of the XML-RPC specification. It supports XML-RPC clients and
servers. Apache XML-RPC is released under the Apache Software License, Version 2.0.

As its name suggests, the XML-RPC for C and C++ library is an implementation
of the XML-RPC specification for the C and C++ languages. It contains a separate
library for each language, but both versions of the library support XML-RPC clients and
servers. The XML-RPC for C and C++ library is released under a BSD-style license.

SLINC is written entirely in Java, so only the Apache XML-RPC library is used
in the SLINC code. However, we wanted to provide both C++ and Java examples of
public resource computing projects that use our framework, so we needed the C++ XML-
RPC library for the C++ example project.

4.4.2 Hibernate

 Hibernate30 is a Java library that serves as an abstraction layer for database access.
It provides the ability to persist objects to a number of different relational database
management systems. Perhaps the most useful feature of Hibernate is that it allows
developers to write database-independent code. The same source code can be used to
store objects to many different types of databases. Changing the type of database that is
used is as simple as using a different configuration file or reconfiguring Hibernate using
API calls. We used hibernate for all database access, and it allowed us to quickly and
easily store and retrieve our objects from various database management systems.
Hibernate is released under the GNU Lesser General Public License.

4.4.3 Abeille Forms and JGoodies

 We used the Abeille Forms Designer25 (see Section 4.3.4 Abeille Forms
Designer) to create our GUIs. Two libraries are required in order to display these GUIs
correctly: the Abeille Forms runtime library and the JGoodies Forms26 library. Both of
these libraries are released under the BSD license.

 13

4.5 Architecture

 At a high level, some aspects of SLINC are similar to that of BOINC, but there
are many differences. This section explains the architecture of SLINC and justifications
for our architectural decisions.

4.5.1 Overview

 SLINC consists of several distinct components, similar to the way the BOINC
framework was designed. Also like BOINC, some of these components are provided by
SLINC, but others need to be implemented by the creators of a public resource
computing project. The components are classified into server-side and client-side
components. All components that are separate processes communicate via XML-RPC
(see Section 4.4.1 XML-RPC Implementations), an open specification for XML-based
remote procedure calls. The server-side components are designed to be run on machines
maintained by the project administrators, and the client-side components are meant to run
on the computers of people who choose to contribute to the project, referred to as
volunteers.

The server-side components are responsible for maintaining the project database,
partitioning input data into work units, distributing work units to clients, and processing
and validating results for each work unit. There is a single, central server application for
each project that all clients connect to. The client-side components request work units
from the project server, compute the result for each work unit, and return the result to the
server. There is exactly one client that runs on each volunteer’s computer and
communicates with the central project server.

4.5.1.1 Tasks: Work Units and Results

 In the context of SLINC, a task refers to either a work unit or a result. A work
unit is a subset of the total amount of a project’s input data that needs to be processed.
Usually each work unit is a very small subset of the total amount of work that needs to be
done so that an average computer can complete all necessary computations for that work
unit in a reasonable amount of time. However, decisions regarding work unit size,
content, partitioning, and other work unit properties are left to the creators of each
project. The output data generated by processing the work unit is called a result. All
tasks are stored as persistent Hibernate objects in the project database.

We have included several work unit properties to give project creators greater
flexibility in the way that work units are stored and distributed to clients. The priority
property controls the order in which work units will be distributed. Work units have a
default priority of zero, and work units with higher priorities are guaranteed to be
distributed before work units of lower priorities. Work Units are stored in a sorted queue,
so if two work units have the same priority, normal first-in-first-out ordering applies.
The priority of a result will be the same as the priority of the work unit from which it was
computed.

Each work unit has a point value associated with it. When a volunteer returns a
result for a work unit, the volunteer’s score is increased by that work unit’s point value.
The point value is a way to weight the value of each work unit and reward volunteers in a
fair way if all work units are not expected to take the same amount of time or resources to
process.

 14

When a work unit is distributed to a volunteer, it is described as being assigned to
that volunteer, and a work unit can be assigned to more than one user for redundancy and
validation (see Section 4.5.1 Overview). The expiration time property represents the
amount of time each volunteer has to return a result for his or her assigned work unit. If
insufficient results have been received for a work unit before the expiration time has
elapsed, the work unit is said to have expired. When a work unit expires, its expiration
time is reset, and the work unit will be assigned to a different user.

4.5.1.1.1 Task States

 We designed the work units to be flexible by providing several configurable
properties (see Section 4.5.1 Overview), but this flexibility introduced complexity. In
order to manage this complexity, we realized that we would need to assign several states
to each work unit, and these states would change as work units were created, distributed,
and completed. We also knew that some projects would want to have a mechanism for
validating results returned by clients, and that result tracking could also be facilitated by
assigning states to results. Fortunately, we were able to design a set of states that could
be used for both work units and results. All tasks must have one of the four following
states: ingress, pending, egress, or spot-check. The spot-check state is a special case that
is explained in Section 4.5.1.5.2 Spot-Checking, but every task will progress through
each of the other three states during its lifecycle.

4.5.1.1.2 The Task Lifecycle

Figure 1 and Figure 2 depict the state transitions of tasks.

Figure 1: Work Unit States

 15

Figure 2: Result States

All tasks begin in the ingress state, transition to the pending state, and end at the

egress state. Tasks can never make any other state transitions (e.g. egress to pending)
except in one exceptional scenario explained in Section 4.5.1.5.3 Saboteur Mitigation
Strategies. When a new work unit is generated and added into the system its state is set
to ingress. Similarly, when a new result is returned by a client its state is set to ingress.
After an ingress work unit has been assigned to a volunteer, the work unit’s state is
changed to pending. While the number of valid (i.e. pending) results for a given work
unit is less than the minimum number of valid results defined in the project configuration,
all valid results for that work unit remain in the pending state.
When the minimum number of valid results for a work unit has been received, one of the
results is chosen to be the canonical result. The canonical result is the result that is
accepted for the work unit, and it is the only one that is saved. All other results for that
work unit are purged. The process of selecting a canonical result is explained in more
detail in Section 4.5.3 Server Components. Once the canonical result is selected, the
canonical result’s state is changed from pending to egress, and then the work unit from
which the canonical result was computed is transitioned to the egress state. All tasks are
stored in memory as well as in the project database except egress tasks, which are only
stored in the database to conserve memory.

4.5.1.2 Projects

 Each public resource computing project is likely to have different requirements,
and each could be installed in a different environment. We came to the conclusion that
there was a need to store certain project-specific configuration options. Some of these
properties include the name of the project, the locations of important project files, the
uniform resource locators (URLs) of the server components, and the project database
configuration. For a complete list of configuration options, please see Appendix B:

 16

Project Creation Guide. The project configuration is stored to the project database as a
persistent Hibernate object.

One important project property that relates to work unit distribution is the number
of valid results (NVR) property. The NVR property controls the number of times each
work unit is distributed. For purposes of redundancy and validation (see Sections 4.5.1
Overview and 4.5.1 Overview) it is often necessary to assign the same work unit to
multiple volunteers. In this case, a work unit cannot be considered complete until the
specified number of valid results is received for that work unit, each computed by a
different volunteer.

4.5.1.3 Client-Server Model
 The well-known client-server model appears in several places in our architecture.
SLINC includes several processes that communicate via XML-RPC, so it is a natural
distinction to designate a server and a client for each interaction. Usually the process that
is running an XML-RPC server is referred to as the server. We tried to minimize the
number of server processes and processes that are both clients and servers in the
framework to decrease the complexity of the system and avoid the introduction of faults.
In particular, we wanted to eliminate the need for any component implemented by the
project creators to be a server to minimize the amount of work involved in developing a
public resource computing project. However, doing so actually increased the complexity
of the design in some cases. For this reason one project-specific component, the science
application (see Section 4.5.4 Client Components), must be a server as well as a client.

4.5.1.4 Framework Components and Project-Specific Components
 Several software components are required to create a public resource computing
project using SLINC. Some of these components are provided by the framework, but
others must be written specifically for each project. At a minimum, the creators of a
public resource computing project must implement a work unit generator and a science
application. The work unit generator creates new work units and sends them to the
project server to be distributed to clients. The science application takes a work unit as
input, performs all necessary computations on that work unit, then returns a result as
output. A third optional component for the project creators to implement is the result
validator. If the project creators do not want or need result validation, they can choose to
use the default validator provided by the framework. All other components are provided
by SLINC, including the project server, the transitioner, the spot-check generator, and the
client. Each of these components is described in more detail in Sections 4.5.2
Component-Based Architecture, 4.5.3 Server Components, and Appendix B: Project
Creation Guide.

4.5.1.5 Result Validation

An important difference between PRC systems and traditional distributed systems
is that PRC project administrators do not have control over the entire system. Most
computers that contribute to PRC projects are privately maintained, so the operators of
PRC projects cannot completely trust the results returned by their users. Some
distributed algorithms, such as those used in machine learning31, can be very sensitive to

 17

erroneous information. For this reason it is important for a PRC project to be able to
validate the results it receives.

When designing a PRC system one must also consider the possible presence of
malicious users, or saboteurs. Saboteurs may deliberately inject incorrect information
into the results they return. Sarmenta proposed32 two methods for validating results and
detecting saboteurs: voting and spot-checking.

4.5.1.5.1 Voting
 Voting helps prevent cheating by delaying the acceptance of a result until a
critical number of matching results is received from different users. A matching result
can be defined in several ways depending on the application domain. For a certain
distributed application a pair of results might be matching if they are equal at the byte
level. For another distributed application a pair of results could be matching if they
evaluate to floating-point values that are within a certain number of standard deviations
of each other. The voting technique is equally valid regardless of the operation used to
test for equality.

Sarmenta showed32 that linearly increasing the critical number of matching results
exponentially reduces the incidence of error in the results. This dramatic decrease in the
error rate comes at the price of the work completion rate. The amount of redundant work
that needs to be completed in order to compare results can greatly slow the overall
progress of a project, so a balance must be made between integrity and speed.

4.5.1.5.2 Spot-Checking
 In the spot-checking technique, a computer controlled by the PRC project first
computes the result for a work unit, and this result is assumed to be valid. The same
work unit is then sent to users with a certain probability. The result returned by the user
is then compared to the result that was computed by the project. These two results can be
compared in a number of ways as described in Section 4.5.1 Overview. If the result
computed by the project and the result computed by the user do not match, that user is
likely a saboteur.
 Work units and results involved in spot-checking are assigned a special task state
to separate them from normal tasks. This task state is called the spot-check state. Work
units that are in the spot-check state are assigned to clients much less frequently than
work units in the ingress or pending states because it would be inefficient to spot-check a
client frequently. Section 4.5.3.5 describes how spot-checks are performed in more
detail. The spot-check state is similar to the egress state in that spot-check work units
and results are at the end of their lifecycle and can be considered valid.

Spot-checking is more efficient than voting because a spot-check only needs to be
performed once. The spot-check could be performed regularly, perhaps after every one-
hundred work units, but the wasted work due to spot-checking would still be far less than
the work that is wasted by the redundancy of voting. However, spot-checking is not as
effective as voting at reducing the error rate in results because spot-checking only tests a
single user32. Linearly increasing the probability that a user will receive a spot-check
causes a linear decrease in the error rate.

4.5.1.5.3 Saboteur Mitigation Strategies

 18

 Once a saboteur has been detected there are several actions a PRC project can
take to mitigate the damage that saboteur may have caused or may cause in the future.
One possible action is to simply write identifying information about that user to a log file
for review later. This action would be appropriate if the distributed application were not
sensitive to incorrect data or if the methods used to detect the saboteur were known to be
imprecise. Another possible action is to ban the identified saboteur. This action will
prevent the saboteur from sending any more incorrect data, but the saboteur could have
already injected many errors into the results. A more severe action is to not only ban the
saboteur, but to also invalidate all results that user has previously returned. A
consequence of invalidating the saboteur’s results is that those results will need to be
recomputed by another user, creating more work for the other users in the system and
slowing the progress of the project.

4.5.1.5.4 Design Decisions
Each PRC project will likely have different needs in regard to result validation

and saboteur tolerance. Some researchers may need to create a robust PRC project that
maximizes the integrity of the results, while others may simply need to start a PRC
project as quickly and easily as possible. For these reasons we decided to allow the PRC
project creators to decide the amount of result validation and saboteur tolerance that will
be used by their project. Any combination of voting and spot-checking may be used, and
both the critical number of results for voting and the spot-check probability for spot-
checking may be defined by the project creators. For researchers who need to quickly
create a project with minimal effort, they can choose not to use any validation or spot-
checking. When spot-checking is used and a user fails a spot-check, the failure is always
logged. However, the project creators can choose to take further actions including
banning the user and optionally invalidating all of that user’s prior results. The flexibility
of our approach allows large projects to reduce the error rate in the results while giving
smaller projects the ability to get started quickly and with minimal effort.

4.5.2 Component-Based Architecture

Although many architectural aspects of SLINC are different from BOINC, we
recognized that BOINC’S partitioning of server-side and client-side functionality into
several distinct processes, called components, has many advantages. Component-based
systems can be easier to maintain if the components are divided in a logical, organized
way. In this model dependencies between components are analogous to class
dependencies, so if each component has a well-defined set of responsibilities and
interfaces to other components, that component can be replaced without impacting other
parts of the system.

Our choice to use XML-RPC as the interface between components in SLINC has
two additional consequences: language independence and location independence. Since
there are implementations of XML-RPC in many languages, each component could be
implemented in a different language if such a design decision would be beneficial to the
framework. XML-RPC uses HTTP as its transport, which means that any two computers
that can communicate across a network can also make XML-RPCs to each other. The
implication is that our component-based architecture is inherently distributed. Each

 19

component can execute on a different computer, reducing the average load on each
computer in the system.

4.5.3 Server Components

 There are five components that together provide all of the necessary server
functionality. These components include the project server, work unit generator, the
result validator, the spot-check generator, and the transitioner. Each of these components
can be executed on a separate computer with the exception of the spot-check generator,
which must be located on the same computer as the project server. Figure 3 shows the
components in the SLINC framework.

Figure 3: SLINC Components

4.5.3.1 Project Server

 The project server is a component provided by the framework that coordinates all
of the server components. The primary responsibilities of the project server are to handle
XML-RPC requests from the project clients and to act as a proxy between the project
database and the other server components. When it is first started, the server initializes
Hibernate and reads the project configuration from the project database. The server uses
this information to configure and initialize the other server components. The first
component the server creates is either a local transitioner or a remote transitioner (see
Section 4.5.3 Server Components), based on the project configuration. Following the
creation of the transitioner, the project server initializes and starts its XML-RPC server.
After the XML-RPC server has been started, the server is completely initialized and can
begin processing requests from other components.
 Once the server has been started its primary responsibility is to handle XML-RPC
requests from other components. These requests include adding new work units to the
system, distributing work units to clients, accepting results from clients, adding new
volunteers to the project, and several other requests necessary for the system to function.
A full specification of the server’s XML-RPC interface can be found in

 20

Appendix D: XML-RPC Interface Specification. In handling these XML-RPC requests
the server coordinates the actions of all of the components in the system, including both
server and client components. Although the server may seem simple compared to other
components, the services it provides are critical to the basic functionality of the system.
 Although most of the project server’s responsibilities are simple, one service the
project server provides that is somewhat complex is the getResultForValidation remote
procedure call. The result validator (see Section 4.5.3 Server Components) uses this RPC
to request the next result that needs to be validated. There are three types of validation
that can occur: the validation of a single result, the validation of a single spot-check
result, or the choice of a canonical result. The server must decide which validation
should occur each time the RPC is invoked. Each of these three types of validation has a
flag associated with it so that the result validator can determine which type of validation
needs to be performed. The server first queries the transitioner to determine whether
there are any groups of results for which a canonical result must be selected. If there are,
the server always instructs the result validator to select a canonical result so that the other
results can be deleted, and the appropriate work unit and result pair can be retired. In this
case, the server sends all of the related results to the result validator so that they can be
compared. If there are no canonical results that need to be selected, the server tries to
retrieve any other results that need to be validated from the transitioner.

4.5.3.2 Work Unit Generator

The work unit generator is a server component that must be implemented
separately by each public resource computing project that uses SLINC. The purpose of
the work unit generator is to partition a PRC project’s raw data into work units that can
be sent to clients to be analyzed by the science application (see Section 4.5.4 Client
Components). Since work partitioning is clearly a domain-specific problem, this
component must be implemented by the PRC project developers. For this reason we
have tried to make the implementation of the work unit generator as simple and flexible
as possible.

At a minimum the work unit generator must invoke one XML-RPC that sends the
work unit data to the project server. There are several versions of this XML-RPC that
allow the project developers to have greater control over the work units. The various
overloaded XML-RPC handlers for adding a work unit to the system allow developers to
specify different combinations of the work unit’s identification string, data, expiration
time, priority, point value (see Section 4.5.1 Overview). In the simplest case, only the
work unit data needs to be sent, and the rest of the parameters assume default values.
However, the developers have the option to specify the other parameters if greater control
is needed over the work units. When the work unit generator sends a work unit to the
project server, the server replies with the number of volunteers who are currently waiting
for work units. A volunteer is considered to be waiting for a work unit if that volunteer
has requested a new work unit when the server had none to distribute. The number of
users waiting can give the work unit generator an indication of how many additional
work units need to be generated.

Although only one XML-RPC is required for the work unit generator to function,
there are two other XML-RPCs the work unit generator can invoke that are quite useful.
The server has an XML-RPC handler that will return the number of ingress work units

 21

(see Section 4.5.1 Overview). The work unit generator can use this XML-RPC as a way
to determine whether any additional work units need to be generated without actually
sending a work unit to the server.

Another important XML-RPC will return the last work unit that was generated.
This functionality is useful when the work unit generator is restarted after being
terminated for any reason. By examining the last work unit that was generated, the work
unit generator can recover its state without the need to read or write any temporary files.
For example, suppose that the work unit generator is designed to generate sequential
work units that consist of a single positive integer, starting from one. Furthermore,
suppose that after generating five work units a careless project administrator accidentally
kills the work unit generator process. Without any way of recovering its state, when the
work unit generator is restarted, it would have to start generating work units from one,
introducing duplicate work units into the system. However, when the work unit
generator is restarted, it can query the server for the last work unit that was generated.
The server will reply with the work unit containing the number five. The work unit
generator can then recover its state and resume generating work units, starting with the
number six. Of course it is possible to save and recover state by writing and reading
temporary files, but the XML-RPC method is less error prone because it has already been
tested, and by using the XML-RPC the writers of the work unit generator do not need to
worry about details such as file permissions. Detailed information about XML-RPCs the
work unit generator can invoke can be found in Appendices C and D.

4.5.3.3 Result Validator

The result validator has two responsibilities: to determine whether an individual
result is valid and to select the canonical result for a work unit. Each result returned for a
work unit is first validated individually. The validator evaluates both ingress results and
spot-check results, which are results that are computed by a client for a spot-check work
unit. When a sufficient number of results has been validated for a given work unit, the
validator will select a single valid result for that work unit to be the canonical result. The
canonical result and its work unit are then retired, and all other results for that work unit
are deleted. The act of selecting a canonical result from a group of related results is part
of the voting technique described in Section 4.5.1 Overview.

The validator can be run from any computer because it interacts with the project
server via an XML-RPC interface. The validator connects to the project server
periodically, checking for any results that need to be validated. If the server has results
that need to be validated, it will respond with the type of validation that needs to be done
and the necessary result data. The three types of validation that can occur are validating
an individual result, selecting a canonical result, and validating a spot-check result. The
validator will decide whether the result is valid and return a Boolean value indicating its
decision. If the type of validation was selecting a canonical result, the validator will also
send the task ID of the canonical result it selected to the project server via XML-RPC.

The result validator requires specific information about the PRC project in which
it is used to function correctly, and so it must be implemented separately for each PRC
project by the project developers. If the project creators do not want to implement a
result validator, the project can use the default validator, which automatically marks all
results as valid and selects the first result it finds as the canonical result. If validation is

 22

not important to the creators of a public resource computing project, then the default
validator can reduce their development time. Information about implementing a result
validator can be found in Appendix C: Project Programming Guide.

4.5.3.4 Spot-Check Generator

 The spot-check generator creates results used in the spot-checking technique
described in Section 4.5.1 Overview. The spot-check generator runs in a separate, low-
priority thread in the project server. Its only responsibility is to invoke the science
application (see Section 4.5.4 Client Components) in order to compute the result for a
spot-check work unit. This result is assumed to be valid, and its state is set to spot-check.

The spot-check generator is the only server component that cannot be run on a
separate computer from the project server. One reason for this limitation is security. If
any computer could run the spot-check generator, then it would be possible for a saboteur
to intentionally generate invalid spot-check results and inject them into the system.
Another reason why there is no need to run this component on a separate computer is that
its task is very simple. The spot-check generator will usually only run once in the
lifecycle of the project. After generating the requested number of spot-checks the
generator will simply shut down. Also, since the spot-check generator runs in a low-
priority thread, it does not consume many system resources, so distributing this
component would not significantly reduce the load on the project server.

4.5.3.5 Transitioner

 The transitioner is one of the most complex components in the entire framework.
It keeps track of the state of every work unit, result, and volunteer in the project. The
transitioner distributes work units to clients, receives results from clients, controls the
spot-check generator, takes action against identified saboteurs, and performs many other
common tasks.
 The primary responsibility of the transitioner is to manage every task in the
system. It accomplishes this by maintaining seven task queues, each of which is sorted
by task priority. All tasks that are in the ingress, pending, or spot-check states are stored
in these queues as well as in the project database. Once a task reaches the egress state, it
is no longer managed by the transitioner or any other server component. Egress tasks are
stored only in the database for later retrieval and analysis by the researchers who created
the public resource computing project.

There is both a work unit queue and a result queue for each of the three states
managed by the transitioner: ingress, pending, and spot-check. We will refer to these
queues using a consistent naming convention. The queue will be named by the state of
the tasks in the queue followed by the type of tasks in the queue. For example, the queue
that stores work units that are in the ingress state will be referred to as the ingress work
queue, and the queue that stores results that are in the pending state will be called the
pending result queue. The seventh queue, called the canonical work queue, stores work
units for which a sufficient number of valid results have been received as specified by the
project configuration. When a work unit is in the canonical work queue it means that
enough valid results for that work unit have been received for a canonical result to be
selected. The purpose for maintaining this separate queue is that it simplifies and

 23

optimizes the process of identifying those work units for which a canonical result can be
selected.

4.5.3.5.1 Work Unit Distribution

 The distribution of work units is one of the most important and fundamental
functions of the framework. It is critical that work units are distributed correctly and
consistently, so the transitioner takes into consideration several factors when determining
which work unit will be assigned to a volunteer. Regardless of which work unit is chosen
to be distributed, we are assured that it is the highest priority work unit that is available
because the work queues are ordered first by priority, then by the traditional first-in-first-
out ordering.
 The transitioner first decides whether the volunteer will be given a normal work
unit or a spot-check work unit. It does so by choosing a random float in the range of zero
to one, and then compares it to the project settings. If the random number is less than or
equal to the spot-check probability property of the project, then that volunteer will
receive a spot-check work unit.
 If the transitioner did not assign a spot-check work unit, it will then search
through the pending work queue. Starting from the beginning of the pending work
queue, the transitioner will search for a work unit that was not previously assigned to the
volunteer who is requesting a work unit. If such a work unit is found, the transitioner
examines the number of times that work unit has previously been assigned. Since there is
always a minimum number of results that must be received for each work unit, work units
must be assigned to volunteers at least that minimum number of times. If the work unit
that the transitioner is currently examining has been assigned at least the minimum
number of times required by the project, then the transitioner will skip that work unit. In
this case the transitioner optimistically assumes that the work unit will be completed
before it expires. A work unit is said to have expired if enough time has passed such that
the current time is later than the work unit’s expiration time. If a pending work unit has
been assigned enough times but has expired, the transitioner will reset the work unit’s
expiration time and begin assigning it to other volunteers. The purpose of having the
expiration time is so that one work unit is not assigned many more times than is
necessary. Instead, it is only assigned a certain number of times every expiration period
until enough valid results have been received. If the transitioner cannot find a suitable
work unit in the pending work queue, it proceeds to the ingress work queue.
 The criteria for selecting an ingress work unit is much simpler than for selecting a
pending work unit. If there are one or more work units in the ingress work queue, the
transitioner selects the work unit at the head of the queue and assigns it to the volunteer
who is requesting a work unit. However, if no work units were selected from the spot-
check work queue, the pending work queue, or the ingress queue, the transitioner was not
able to find a suitable work unit for the volunteer. In this case an exception is thrown,
and the client requesting a work unit on behalf of that volunteer waits for a certain
amount of time before requesting a work unit again.

4.5.3.5.2 Result Processing

 When a client returns a result for a work unit, that result is passed to the
transitioner for processing. The transitioner first increases the score of the volunteer who

 24

computed the result. The volunteer’s score is increased by the point value of the work
unit for which the result was computed. Since scores are updated before the results are
validated, it would be trivial for a volunteer to artificially inflate his or her score simply
by sending many results containing arbitrary data to the project server. This possibility
exists, but it is not a major concern for us because preventing these types of exploits was
not one of our goals. Furthermore, since the framework was designed for small- or
medium-sized projects, this type of tampering is unlikely to occur. However, there is a
mechanism in the project server that is designed to prevent certain attacks of this type.
When a client returns a result to the server, the server performs several checks before
passing the result to the transitioner. It first verifies that the volunteer who is returning
the result exists as a member of the project. It then checks whether that volunteer has
been assigned to the work unit for which he or she is returning a result. A third check it
performs is to verify that the data portion of the result is not null. If all three checks pass,
the project server passes the result to the transitioner. The result sanitization performed
by the server reduces the number of ways in which results can be falsified.
 After the transitioner increases the volunteer’s score, it checks whether the work
unit associated with that result is already in the egress state. If it is, there is no reason to
keep the result that was just returned, so the new result is deleted immediately. If the
work unit associated with the new result is in the ingress, pending, or spot-check states,
the new result is added to the ingress result queue, and its state is set to ingress. This
result will eventually be validated by the result validator (see Section 4.5.3 Server
Components).

4.5.3.5.3 Spot-Check Generator Control

 The transitioner manages all tasks, including spot-check work units and results.
The transitioner’s responsibilities include starting the spot-check generator thread when
necessary. The spot-check generator thread is started by the transitioner when the
transitioner is first instantiated. The thread is only started if the number of spot-check
work units or spot-check results in the system is less than the minimum number of spot-
checks specified in the project configuration. When the spot-check generator thread is
started, it attempts to acquire a work unit from the ingress work queue. If an ingress
work unit is available, the thread changes that work unit’s state to spot-check and adds it
to the spot-check work queue. It then invokes the science application and passes it the
spot-check work unit. The result returned by the science application is added to the spot-
check result queue, and its state is set to spot-check.

4.5.3.5.4 Saboteur Response Strategies

 When a saboteur is detected by failing a spot-check, there are three ways in which
the transitioner can be configured to respond, which are also discussed in Section 4.5.1
Overview. The least disruptive method is to just log the fact that a volunteer has failed a
spot-check. Regardless of the way the project is configured, spot-check failures will
always be logged. Another possible response is to ban the identified saboteur.
Volunteers are associated with work units, so simply deleting the volunteer from the
database would result in inconsistencies. Instead, a Boolean flag is set in the properties
of the volunteer indicating that the volunteer is banned. If a banned volunteer tries to
request a new work unit or return a result, the project server will ignore the request. The

 25

third possible action is to both ban the volunteer and invalidate all results which have
been returned by that volunteer. This action can possibly have a large impact on other
tasks in the system. If the results that are deleted are in the ingress or pending states, they
can safely be deleted, but the situation is worse when a result from the saboteur has been
selected as the canonical result. In this case, the result and its associated work unit have
been retired. That is, they are both in the egress state. If this scenario occurs, the
transitioner has to delete the canonical result and bring its associated work unit out of
retirement. That work unit is placed back in the ingress work queue, and it will have to
be computed again.

4.5.3.5.5 Local and Remote Transitioners

 Like most of the server components, the transitioner can run on the same
computer as the project server or on a remote computer. When configured to run on the
same computer as the project server, the project server directly instantiates a local
transitioner. When the project is configured to use a transitioner running on a separate
computer, the server instead instantiates a transitioner proxy which forwards all requests
over XML-RPC to the remote transitioner. The remote transitioner is a process that
contains a local transitioner and an XML-RPC server. The remote transitioner’s XML-
RPC server interprets the requests from the transitioner proxy and passes each one to the
appropriate method of the local transitioner.
 There are not many circumstances under which a project should use a remote
transitioner. The use of a remote transitioner will probably increase the load on the
project database because a greater number of connections will have to be established.
Network load will also increase due to the extra traffic caused by sending all transitioner
requests via XML-RPC to the remote computer. Finally, it is not possible to use the
HSQLDB database together with a remote transitioner because HSQLDB only allows a
single process to access the database at any given time. The use of a remote transitioner
may, however, slightly reduce the load on the project server. Given these facts, the only
case in which a project should use a remote transitioner is when network and database
load are not issues, but the project server exhibits poor performance.

4.5.4 Client Components

 There are two framework components that are required for the client-side of the
system to function: the project client and the science application. The project client is
provided by SLINC, but the science application needs to be implemented separately by
each public resource computing project.

4.5.4.1 Project Client

 The project client acts as a layer of abstraction between the project server and the
science application. The client provides services to reduce the complexity of the science
application. The client parses the project configuration file to determine the location of
the project server and other important information. It also collects and stores volunteer
information so that the science application only has to implement the functionality
necessary to compute results for work units. The client requests work units from the
project server on behalf of the science application. When the client has received a work
unit from the user, it will start the science application if it is not already running. After

 26

sending the work unit to the science application, the client will wait for the science
application to compute the result. After the science application has computed the result,
the client will send that result back to the project server for processing.

The client also provides check-pointing services to the science application.
Check-pointing is a way to save temporary state information in the event that the client is
shut down before computation of a work unit is complete. The client provides an XML-
RPC interface for the science application to use in order to store and retrieve check-point
data. The science application only needs to send and receive XML-RPC data, but the
client actually stores that data to disk and retrieves it when requested by the science
application.

4.5.4.2 Science Application

 The science application is the component that takes a work unit as input and
produces a result as output. This component is the one that actually performs the
computations needed by the project. Unlike the other project-specific components like
the result validator and work unit generator, the science application requires the use of an
XML-RPC server in addition to using an XML-RPC client. This restriction unfortunately
may make the science application slightly more difficult to implement for project
developers who are not familiar with XML-RPC, but we decided that including an XML-
RPC server in the science application was necessary for two reasons. The first reason
was that we needed a way to be notified if the science application terminated
unexpectedly in the middle of a computation. The only way we could receive this
notification is if the project client were invoking an XML-RPC in the science application.
In this scenario, when the connection between the client and science application is
broken, the client will receive an exception and be able to determine that it was caused by
the termination of the science application. If the science application had to act only as a
client to the project client, the project client would not receive any notification in the
event of the termination of the science application. The other reason is that both the
project client and the project server use the science application. The project server uses
the science application to compute spot-check results. However, the project server and
project client listen on different ports, so the science application would have to somehow
determine which port was the correct one to connect to. Although the XML-RPC server
in the science application introduces additional complexity, it was the only way to make
the framework architecture work reliably. Information on the implementation of the
science application can be found in Appendix C: Project Programming Guide.

 27

5 Implementation
 This chapter describes the processes we followed during the implementation of
the framework, including the general methodology we followed as well as information
about the implementation of specific parts of the framework.

5.1 Methodology

 Most modules that comprise the framework were implemented and integrated in a
bottom-up fashion. That is, all base classes were implemented and tested before classes
that depended on them. The main reason we implemented the framework in this way was
that we needed to determine how well Hibernate would work in our system and how
difficult it would be to make our classes compatible with Hibernate. Only the base
classes needed to be stored in the database, so we implemented and tested them with
Hibernate first. If we found that Hibernate would not suit our needs, we could have
immediately changed our architecture to use a different method. This type of change
would have been much more difficult to make if we had implemented the base classes
last.
 During the implementation of each class we wrote unit tests in JUnit to test the
important functionality of that class. Not all classes could be tested in this way, such as
the main project server class, but we were able to write JUnit tests for many of the
classes. The base classes and the transitioner were especially well suited for unit testing
because they contained methods that could be tested without having the server or client
running. By the time implementation was completed we had created over 30 unit tests
for most of the base classes and the transitioner. We used these unit tests frequently
during our regression testing (see Section 6.1 Regression Testing).

5.2 Persistent Classes

 Persistent classes are classes whose objects can be stored in a database. The
persistent classes were among the first that we implemented because they were the most
important base classes, and we needed to verify that Hibernate could be used to easily
store and retrieve them from various types of databases. The four classes in SLINC that
needed to be persistent were: WorkUnit, Result, Project, and Volunteer. To make these
classes compatible with Hibernate we needed to create XML configuration files that
described the composition of each class. Once these configuration files were created, we
could use Hibernate to store, retrieve, and query objects without needing to write any
SQL or JDBC code.

5.3 Components

 The server components were implemented after the base classes. The transitioner
was implemented first because it only depended on the base classes, and it could be tested
without a functioning project server. Following the transitioner the spot-check generator
and default validator were implemented because they both interacted with the

 28

transitioner. The project server was the last server component to be implemented because
it depended on all of the other components, so it could not be easily tested before the
other components were completed. The project client was one of the last components to
be implemented, but it was implemented concurrently with the server. Having parts of
the client and server working simultaneously facilitated the testing of the system, as all of
the communication between the server and client was sent over XML-RPC. Testing the
XML-RPC interface outside of the context of an executable was very difficult, so almost
all testing involving XML-RPC was performed with the project server and client.

5.4 Public Resource Computing Project Example

 Learning to use any framework can be difficult, so we recognized the need to
create an example for others to use as a reference. Another reason we wanted to create an
example public resource computing project was that we would be able to use it in our
functional and performance testing. Our example project is a distributed application for
finding prime numbers. We chose this application to be our example because it was
simple to implement, and it demonstrated all of the features of SLINC.
The work unit generator for this project partitioned the set of positive integers into ranges
which each contained 1,000,000 numbers. To create the work units we only needed to
encode the first and last numbers in the range into a byte array. In the science
application, we used a very simple algorithm to test whether a given number was prime.
The algorithm divided the number by all numbers between two and the square root of the
number being tested, inclusive. A consequence of this method was that different work
units could require different numbers of operations to compute their results. The number
of computations required grew proportionally to the square root of the last number to be
checked in each successive work unit. The reason why it might have been a problem to
have work units of different complexities was that our performance tests could have been
skewed by the work units that took much longer to complete. Fortunately, the growth of
the work unit complexity was small enough that our results were not significantly
affected by it. More information can be found in Appendix E: Example Project.

 29

6 Testing
 This chapter describes the methods we used to test the framework during its
implementation. We primarily used regression testing, functional testing to find faults
during the development of the framework. After we completed the implementation of the
framework, we conducted performance tests to determine whether there existed any
serious performance problems. In addition to quantitative testing, we used two forms of
qualitative testing to assess the utility of our framework. One method was a comparison
of the steps required to create a public resource computing project using BOINC to the
steps required to create the same project using SLINC. The other qualitative assessment
was a peer review of our work by another researcher in the field of public resource
computing.

6.1 Regression Testing

 Regression testing was a critical part of our testing process. It allowed us to
quickly find faults introduced by changes to the architecture or modifications at the class
level. Through regular regression testing we were able to reduce the amount of time
between the introduction of a fault and its detection and correction.

6.1.1 Methodology

We created a JUnit test suite for the unit tests we had created (see Section 5.1
Methodology), which allowed us to easily run all of the unit tests and to quickly see
which tests had failed. After any significant change to the framework we ran the test
suite to verify that the framework was still working correctly. Regression testing was
very useful for finding subtle faults during the testing process. For example, after
changing the abstract data type that was used to store queues of work units and results in
the transitioner, we ran all of our regression tests. We found that four of the transitioner
unit tests had failed, and we were able to use that information to quickly isolate the cause
of the errors. Without regression testing we would not have found problems like these
until the functional testing was performed, which would have made it much more
difficult to find the cause of the errors.

We used regression testing to test all of the base classes as well as the transitioner.
All of these classes had interfaces that were simple enough that they could be driven by a
unit test. We wrote unit tests to save and retrieve the base classes from the database to
test the integration with Hibernate. We also tested the transitioner to determine whether
each type of state transition was performed correctly.

6.2 Functional Testing

 Unit testing was effective in testing individual code modules and for limited
integration testing, but it was also necessary to test the server and client components in
configurations that would simulate their intended use. We performed many functional
tests to verify that the major components of the framework were working correctly. We

 30

found functional testing to be the most effective method for testing inter-process
communication between the framework components, and it was also effective for testing
functionality that could not easily be driven by a unit test. An example of a code module
that could not easily be tested through unit testing was the project server. It was designed
to perform many tasks automatically, such as initializing the database, configuring the log
files, and starting necessary server components such as the transitioner. Since each of
these tasks was designed to be completed automatically by the server process
immediately after being started, and the server methods were not intended to be called
directly by another process, it would have been difficult to write unit tests for those
methods.

6.2.1 Methodology

 After the implementation of each major feature was completed, we designed a
functional test to verify that the feature was working as intended. We performed these
tests regularly during the implementation process in order to detect any faults as soon as
possible. Table 1 contains our most frequently performed functional tests. Before each
test was performed, we first deleted all tables in the project database and then recreated
all of the necessary tables so that each test would begin with an empty database.

Functional Test Name Components Tested Description of Test

1. Project Server
Initialization

Project Server 1. Write a valid project configuration
file, and save it in the cfg directory.
2. Start the project server.
3. Verify that the project server did
not produce any error messages, and
that it is listening on the correct port
for XML-RPC requests.

2. Work Unit Generation Work Unit Generator,
Project Server

1. Start the project server.
2. Start the example work unit
generator, which is configured to
generate 64 work units if the database
does not contain any. These work
units should each have a point value
of 1 and a priority of 0.
3. Shut down both components.
4. Verify that there are 64 work units
in the database, that the task IDs are
correct, that every work unit is in the
ingress state, and that the point value
and priority of each work unit is
correct.

3. Client Work Unit
Request

Project Client,
Project Server, Local
Transitioner, Work
Unit Generator

1. Start the project server.
2. Start the example work unit
generator.
3. Start the project client.

 31

4. Verify that the client requested a
new work unit, and that the
transitioner assigned the first ingress
work unit to the client.

4. Invocation of Science
Application by Client

Project Client,
Science Application,
Project Server, Local
Transitioner, Work
Unit Generator

1. Perform all steps in functional test
3.
2. After the client has requested a
new work unit, verify that the client
has started the science application,
which should be listening for XML-
RPC requests on a port defined by the
project. The science application
should also output log files after
being started.

5. Computation of
Work Unit by Science

Application

Project Client,
Science Application,
Project Server, Local
Transitioner, Work
Unit Generator

1. Perform all steps in functional test
4.
2. After the science application has
started, verify that it is functioning by
examining its log file in the log
directory. It should contain a list of
all the prime numbers the science
application has found.

6. Work Unit
Save/Restore by Client

Project client,
Science Application,
Project Server, Local
Transitioner, Work
Unit Generator

1. Perform all steps in functional test
5
2. After the client requests a new
work unit, verify that the client has
written the work unit data to disk in
the data directory.
3. Shut down the client and science
application before the science
application has finished computing
the result for that work unit.
4. Start the project client.
5. Verify that the client does not
request a new work unit from the
project server, but instead reads the
work unit stored in the data directory
and sends that work unit to the
science application for processing.
This verification can be performed by
examining the client and science
application log files.

7. Use of Check-
pointing by Science

Application

Project client,
Science Application,
Project Server, Local
Transitioner, Work

1. Perform all steps in functional test
5
2. Verify that the science application
is sending check-points to the client

 32

Unit Generator by examining the log files and
checking for the presence of the
data/checkpoint.dat file.
3. After a check-point has been saved,
restart the science application and the
project client.
4. Verify that the science application
received its last checkpoint and
resumed its computations from the
point at which the last check-point
was saved.

8. Spot-Check
Generation

Project Server, Local
Transitioner, Work
Unit Generator, Spot-
Check Generator

1. Configure the example project to
use some minimum number of spot-
checks, for example 3.
2. Start the project server.
3. Start the example work unit
generator.
4. After the spot-check generator has
completed (see log files), verify that 3
spot-check work units and 3 spot-
check results exist in the database.

9. Validation of Results
and Selection of
Canonical Results

Project Server, Local
Transitioner, Work
Unit Generator,
Default Validator,
Project Client,
Science Application

1. Start the project server
2. Start the example work unit
generator.
3. Start the project client.
4. Verify that each result is validated
by observing the state transition of
each result from ingress to pending.
5. As soon as the minimum number
of results has been received for a
work unit, verify that a canonical
result is selected by observing one
result transition from pending to
egress and the removal of all other
results for that work unit.

10. Spot-Check Failure
Action

Project Server, Local
Transitioner, Work
Unit Generator,
Default Validator,
Project Client,
Science Application

1. Modify the default transitioner to
always mark spot-check results as
invalid.
2. Configure the example project to
use spot-checks and distribute them
with a probability of around 0.25.
3. Also, set the minimum number of
results to 1 so that it is likely that
some work units will be retired before
the spot-check work unit is
distributed.

 33

4. Choose a spot-check action to test
and configure the project to perform
that action when a spot-check fails.
5. Start the project server.
6. Start the example work unit
generator.
7. Start the project client.
8. Wait until the spot-check result is
received and invalidated. This can be
discovered by examining the server
log files.
9. Examine the database and log files
to determine whether the appropriate
action was taken after the saboteur
was discovered. For example, if
configured to invalidate all past
results, all egress work units should
have been transitioned back to the
ingress state.

11. Remote Transitioner Project client,
Science Application,
Project Server,
Remote Transitioner,
Work Unit Generator

1. Configure the example project to
use a remote transitioner.
2. Start the remote transitioner.
3. Perform functional tests 1-10.

12. Database Support Project client,
Science Application,
Project Server,
Remote Transitioner,
Work Unit Generator

1. Configure the example project to
use the HSQLDB database.
2. Perform functional tests 1-11.
3. Repeat using the MySQL,
PostgreSQL, Oracle, and Microsoft
SQL Server databases.

Table 1: Functional Tests

6.3 Performance Testing

 SLINC must be scalable if it is to be a useful tool for public resource computing.
Most of the functional tests were conducted with only one or two clients. We decided to
test the scalability of the system by comparing the amount of time it took to complete a
set number of work units with different numbers of clients. We also used the
performance tests to determine whether the choice of programming language had any
effect on the overall performance of the project server. One of the most significant
advantages of SLINC is that project-specific components can be developed in many
different languages, so we wanted to identify any significant performance discrepancies
between languages. We chose to compare C++ and Java in our performance test. The
results of our performance tests appear in Section 7.1 Performance Analysis.

 34

6.3.1 Methodology

We used the example project (see Appendix E: Example Project) to test the
performance of the framework. The example work unit generator partitions the set of
positive integers into work units containing 1,000,000 consecutive integers. The example
science application searches that range of integers for prime numbers using a simple
algorithm described in Appendix E: Example Project. We decided to conduct the
performance test using both the Java and C++ versions of the example science
application. Our reason for doing so was that we wanted to determine whether there were
any major performance discrepancies between the two implementations of the
application. Since the science application was so simple we did not expect the choice of
programming language to have a significant impact on its performance. Therefore, any
appreciable difference in performance would probably indicate that one or more
components of SLINC behaved differently depending on the programming language used
to implement the project-specific components. Programming language independence was
critical to of our goal of creating a flexible framework, so it was important to verify that
different languages would work equally well when coupled with SLINC.

Our tests required only the most basic functionality from the framework, so the
project configuration was simple. For these tests we used the WPI MySQL server
(mysql.wpi.edu) as our project database. We configured the project to use the local
transitioner and the default validator, and spot-checks were not used. The project was
configured to accept one result for each work unit.

We began each test by purging the project database, starting the project server,
and executing the example work unit generator. The example work unit generator would
then create sixty-four work units and send them to the project server. With 64 work units
and 1,000,000 integers per work unit, the total quantity of numbers tested for primality
was 64,000,000. After the initial 64 work units were created, we shut down the work unit
generator so that it would not generate more work units. Once the work units had been
generated, we started one or more clients. We measured the time to complete all work
units by examining the server log files. The time to completion was computed by
comparing the time the first work unit was requested to the time the last result was
returned.

We used several different configurations for the performance test. We varied the
number of clients in the system using 1, 2, 4, 8, 16, and 32 computers with one client per
computer. We tested each configuration twice, once using the Java science application
and once using the C++ science application. The C++ application was compiled with
gcc, and we did not optimize the binary in any way. Only the following compile flags
were used: -Wall –g. The –Wall flag enables all warnings during the compilation, and the
–g flag adds extra debugging symbols to the binary, which may slightly degrade the
performance of the application.

Each test was conducted three times, and the average time for each test was used
in our analysis. It is important to note that this performance test was incomplete. Public
resource computing projects may have hundreds or thousands of users, but our tests used
a maximum of only 32 clients. The purpose of this test was not to determine how the
framework would react to extreme load, but rather to verify that the framework would
behave as expected when multiple clients were used and to determine whether the
amount of work completed would scale efficiently as the number of clients increased.

 35

6.3.2 Test environment

 To carry out the performance test we built a cluster in the distributed computing
lab in the Computer Science Annex. Although we were given over 70 computers to use
in the cluster, we had a limited number of switches, cables, and surge suppressors, so we
were only able to use 32 of them for our tests. Of those 32, 23 had 350MHz Pentium II
processors, and the remaining 9 had 400MHz Celeron processors. All of the machines
had 128MB of RAM. The head node was a dual processor Athlon MP 1.2GHz machine
with 1GB of RAM. We chose to install an OSCAR33 cluster due to its ease of installation
and compatibility with our older hardware. OSCAR supports many distributed
computing architectures and has tools to simplify the use and administration of the
cluster. One tool we used in our tests was cexec. This tool allows a user to run the same
command on all nodes in the cluster simultaneously. We used cexec to start all of the
project clients simultaneously after the work units had been generated.
 Due to the heterogeneous composition of our cluster in terms of processor
architecture, we tried to minimize the effects of any performance discrepancy during our
testing. The tests using 1, 2, 4, 8, and 16 nodes were all executed on the Pentium II
machines. Only the last test, using all 32 nodes, included a mixture of both Pentium II
350MHz and Celeron 400MHz machines.

6.4 Usability Testing

 The purpose of the usability testing was to determine whether we had succeeded
in creating a public resource computing framework that was easy to use. We performed
this testing by comparing SLINC to BOINC and by asking other public resource
computing researchers to evaluate our framework.

6.4.1 Comparison with BOINC

 Using documentation available on the BOINC website, we made a qualitative
comparison of SLINC to BOINC. We compared the two frameworks using three
different measures: the number of steps involved in creating a project, system and project
requirements, and major features. The purpose of the comparison was to determine
whether the process of making a simple public resource computing project was easier
using SLINC or using the BOINC. Using this comparison we analyzed the distinguishing
features of our framework to determine whether they contributed to our primary objective
of creating a public resource computing framework that was easy to use. The comparison
with BOINC can be found in Section 7.2.1 Comparison with BOINC.

6.4.2 Peer Review by a PRC Researcher

 In addition to the performance testing and qualitative comparison to BOINC, we
were interested in the opinions of other researchers in the field of public resource
computing. We spoke with David Toth, a graduate student at Worcester Polytechnic
Institute who is currently writing a Ph.D. dissertation on the topic of public resource

 36

computing. He agreed to help us test the usability of SLINC by using it to create a
simple public resource computing project himself. Using Appendix B: Project Creation
Guide, Appendix C: Project Programming Guide, and the latest release of SLINC, David
modified our examples to create a new public resource computing project. We asked for
his opinion about the current state of SLINC and for suggestions for ways in which we
might improve it. We used David’s responses in our analysis, which can be found in
Section 7.2.2 Analysis of Peer Review.

 37

7 Analysis of Results
 We performed several different types of tests on SLINC to determine whether we
accomplished our goals. The performance test evaluated the framework’s ability to
support multiple clients that were simultaneously contributing to a public resource
computing project. The comparison with BOINC assisted in evaluating the usability of
SLINC. By interviewing a researcher in the field of public resource computing who had
tested our framework we were able to obtain important insights about which aspects of
SLINC were easy to use and which could be improved.

7.1 Performance Analysis

 We used varying numbers of clients to determine whether there were any serious
performance problems with the framework when multiple clients were active
simultaneously. We also used the performance test to try to identify any possible
performance issues with science applications written in different programming languages.

7.1.1 Results

 Table 2 shows the results from the three trials of each of the Java science
application performance tests, as well as the average time required to complete each test.
The average test time for 1 computer was approximately 63 minutes, and the average test
time for 32 computers was approximately 2 minutes. Figure 4 is a graph of the three
trials for each Java test. We expected an exponential decrease in the time required to
complete the test as the number of computers doubled. It is clear that we achieved this
exponential decrease in our tests.

Number of
Computers

Trial 1
Time (ms)

Trial 2
Time (ms)

Trial 3
Time (ms)

Average
Time (ms)

1 3785748 3785712 3783552 3785004

2 1905617 1905044 1903378 1904680

4 966749 966450 966740 966646

8 495291 495671 494140 495034

16 260058 260361 260395 260271

32 141056 141471 141337 141288

Table 2: Time to Complete 64 Work Units with the Java Science Application

 38

Time to Complete 64 Work Units with the Java Science Application

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

1 2 4 8 16 32

Number of Computers

T
im
e
 (
m
s
)

Trial 1

Trial 2

Trial 3

Figure 4: Time to Complete 64 Work Units with the Java Science Application

 Table 3 shows the results for our performance tests using the C++ science
application. For the C++ application, the average test time for 1 computer was
approximately 53 minutes, and the average time for 32 computers was approximately 2
minutes. Figure 5 is a graph of the C++ science application results. Again, it clearly
shows an exponential decrease in the amount of time required to complete the tests.

Number of
Computers

Trial 1
Time (ms)

Trial 2
Time (ms)

Trial 3
Time (ms)

Average
Time (ms)

1 3162388 3156844 3156226 3158486

2 1904458 1905281 1904039 1904593

4 965900 966862 965063 965942

8 494775 493883 494053 494237

16 260280 259806 259948 260011

32 141880 141806 140944 141543

Table 3: Time to Complete 64 Work Units with the C++ Science Application

 39

Time to Complete 64 Work Units with the C++ Science Application

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

1 2 4 8 16 32

Number of Computers

T
im
e
 (
m
s
)

Trial 1

Trial 2

Trial 3

Figure 5: Time to Complete 64 Work Units with the C++ Science Application

 The following two graphs show a comparison between the average performance
of the C++ science application and the Java science application. Figure 6 uses a linear
scale on the time axis, and Figure 7 uses a logarithmic scale. Both graphs show that the
performance of the two science applications is roughly equivalent.

It is interesting that the C++ science application had a noticeably lower time than
the Java science application when run on only one computer, but this performance
advantage disappeared when more than one computer was used. It is not apparent what
would cause this performance discrepancy in only one of the tests, but it could be caused
by a difference in the way that C++ and Java threads are scheduled. The minimum-
priority compute thread that is created with the pthreads library in the C++ science
application is scheduled directly by the Linux kernel. However, the corresponding thread
in the Java science application is not scheduled by the Linux kernel, but rather by the
Java Virtual Machine, which has its own thread scheduler34. It is possible that Java’s
thread scheduler might have allocated less processor time to the thread than the Linux
kernel would have. The use of different schedulers may explain the performance
discrepancy between C++ and Java, but it does not necessarily explain why the two
science applications only performed differently when a single computer was used. One
property of the single computer test that is much different from the other tests is its run
time. The single computer test runs for about an hour, which is significantly longer than
the other tests. It is possible that the two schedulers treat this long-running process
differently.

 40

Average Time to Complete 64 Work Units

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

1 2 4 8 16 32

Number of Computers

T
im
e
 (
m
s
)

C++

Java

Figure 6: Average Time to Complete 64 Work Units, Linear Time Scale

Average Time to Complete 64 Work Units

10000

100000

1000000

10000000

1 2 4 8 16 32

Number of Computers

T
im
e
 (
m
s
)

C++

Java

Figure 7: Average Time to Complete 64 Work Units, Logarithmic Time Scale

7.1.2 Analysis

 Our goals in the performance testing were to verify that the framework could
support multiple clients simultaneously, as well as to identify any serious performance
discrepancies between projects developed in C++ and in Java. Our results indicated that
both our C++ and Java example projects scaled well up to 32 clients. Unfortunately, we
were not able to test SLINC with more than 32 clients, but the results we obtained were
encouraging. The results also showed that the C++ and Java versions of the example
project performed within one percent of each other in most cases, so there did not appear

 41

to be any major performance discrepancies between the two languages. The results of the
performance test suggest that we were successful in our goal of creating a scalable
framework, although additional testing with greater numbers of clients would be
necessary to verify this claim with greater certainty.

7.2 Usability Analysis

One of the problems we identified with the BOINC framework was that the
process of creating a public resource computing project with BOINC was difficult,
especially for those who were not familiar with Linux, MySQL, Apache, and C++.
Furthermore, the process of installing BOINC and developing even a simple project
involved many steps and required a high level of proficiency in Linux administration and
C++. We used two methods to qualitatively measure the usability of SLINC: comparing
SLINC to BOINC and having a colleague conduct a peer review of SLINC.

7.2.1 Comparison with BOINC

 We compared SLINC to BOINC in three ways. We compared the process of
creating the simplest possible project with SLINC to the process required to do the same
with the BOINC framework. We also compared the requirements of our framework to
the requirements of the BOINC framework. Lastly, we compared the major features of
the two frameworks.
 Table 5 shows a comparison of the steps necessary to create the simplest possible
project using each framework. Due to its dependency on other software packages, such
as MySQL and Apache, there are several steps involved in the installation of BOINC.
Installing these other software packages requires proficiency in Linux system
administration. Specifically, those installing BOINC must be familiar with installing,
configuring, and securing those software packages in a Linux environment. By contrast,
SLINC has no dependencies on other software packages, and there is no installation
necessary to use SLINC. Everything required to make simple projects with SLINC is
included in each release of the framework, available from our WPI SourceForge website
(https://sourceforge.wpi.edu/sf/projects/jdb_prc_thesis).

To create a functional project, BOINC requires that an assimilator be developed.
The assimilator component receives canonical result data from BOINC and sends it to a
database that is separate from the project database. The advantage of having an
assimilator is that it provides a way to separate the project and work unit data from the
result data that needs to be analyzed. The reason that BOINC requires this component is
that there is no automated way to extract all the results from the project database and to
store them in a more accessible way, as files for example. The reason SLINC does not
currently use an assimilator is that the framework does provide a way to extract the
canonical results from the project database: the extract_results script. We believe that the
functionality provided by the assimilator is useful, especially for projects that need to
store their results in a unique way in order to make analysis easier. However, we also
believe that the assimilator should be an optional component in order to keep the project
creation process as simple as possible for projects that do not need the advanced

 42

functionality it provides. The optional assimilator component would be an appropriate
future enhancement to SLINC, as described in Section 8.4 Future Work.

Aside from the assimilator component, it is necessary to develop the same
components with SLINC as with BOINC in order to create a simple project. These
components include the science application and the work unit generator. The method
each framework uses to communicate with the project-specific components is very
different. BOINC uses an API written in C++ with FORTRAN wrappers, so components
developed for the BOINC framework must be written in C++ or FORTRAN. Our
interface is based on XML-RPC, and can therefore be implemented in any language for
which there is an XML-RPC library. Developers are more likely to be familiar with
XML-RPC because it is an open, general purpose web standard. The BOINC API,
although it is open, is not a general API; it can only be used with BOINC projects.

Both SLINC and BOINC provide a default validator that simply marks all results
as valid. The difference between the two frameworks in regard to the validator is that
SLINC provides an integrated default validator that is part of the project server, whereas
with BOINC it is necessary to compile the default validator and to configure the project
server to execute that validator process. The difference in the way the default validator
was implemented in the two frameworks is not a major advantage or disadvantage for
either, but it serves as an example of one way in which we tried to minimize the number
of steps necessary to create a project.

Perhaps the most significant difference between SLINC and BOINC is the project
configuration process. With SLINC, projects can be configured using the Project Builder
tool (see Appendix B: Project Creation Guide). The Project Builder is a graphical tool
that is modeled after the ubiquitous installation wizards that most people are accustomed
to using for installing and configuring software. Each step in the project configuration
has its own screen in the Project Builder, and each screen has a text box near the bottom
explaining the options that can be configured on that screen. After a user has completed
the Project Builder, no further configuration is necessary. The Project Builder generates
the project configuration files automatically. BOINC has many configuration steps,
indicated by rows 11-17, 19, 21-22, 24, and 26 in Table 5. Each of these steps requires
editing an XML file or executing a script.

Table 5 and Table 5 show that there are more steps involved in creating a project
with BOINC than with SLINC. In addition, the steps in the BOINC project creation
process tend to be more difficult to complete. There are several reasons why the BOINC
process can be more challenging. One reason is that several of the steps require specific
skills like experience with Linux system administration. Another reason is that BOINC
does not have a single, unified configuration utility. Instead, users are required to edit
XML configuration files in several different locations to create a functional project.
Developing components for the BOINC framework requires not only an understanding of
the C++ or FORTRAN programming languages, but also of the BOINC-specific API.
All of these factors contribute to the complexity of the BOINC framework. We have
addressed these problems in SLINC by making it platform-independent, programming
language-independent, and by providing a simple tool for configuring projects.

Step Description of Step for the SLINC Framework

1 Download the latest release of the framework

 43

2 Configure the project using the Project Builder program. The project
should use the HSQLDB database and the default validator.

3 Develop the science application in any language for which there is an
XML-RPC library

4 Develop the work unit generator in any language for which there is an
XML-RPC library

5 Copy the project-specific components to the appropriate client or server
directories in the main framework directory

6 Run the make_project_files script

7 Extract the server distribution file, and run the start_server script to
start the project server

8 Start the work unit generator

Table 4: SLINC Project Creation Process

Step Description of Step for the BOINC Framework

1 Install Python

2 Install PHP

3 Install and configure Apache with the PHP module

4 Install and configure MySQL

5 Download the BOINC source code

6 Compile and install BOINC

7 Develop the science application component in C++ or FORTRAN
using the BOINC API

8 Develop the work unit generator component in C++ using the BOINC
API

9 Compile the provided “sample trivial validator” component

10 Develop the assimilator component in C++ using the BOINC API

11 Run the make_project script

12 Append the BOINC Apache configuration to the system Apache
configuration

13 Configure the project by editing the XML configuration file

14 Add the project to the database using the xadd program

15 Move the MySQL socket to /var/lib/mysql/mysql.sock

16 Rename the science application using the correct naming scheme for
the intended platform

17 Create an application version for the science application

18 Sign the science application with the sign_executable program

19 Run the update_versions script

20 Add work units to the project work folder at
$PROJECTROOT/download

21 Create XML configuration files for each work unit

22 Create XML configuration files for each result

23 Run the create_work program to add the work units to the project
database

24 Add entries for the work unit generator, feeder, transitioner, file

 44

deleted, trivial validator, and assimilator to the project configuration
file

25 Start the project server

26 Edit the project configuration file to allow users to create accounts

Table 5: BOINC Project Creation Process

 Table 6 shows a comparison of the requirements and restrictions of each
framework. This table clearly presents the most significant advantages of SLINC. Since
our entire framework is Java-based, both the server and client can be used on any
platform supported by Java. Platform-independence is an important property of SLINC
because it allows users to choose the platform they are most comfortable using. The
BOINC server is restricted to the Linux platform. Another limitation of BOINC is the
choice of languages in which the various server-side and client-side components can be
developed. BOINC requires project developers to use C++ or FORTRAN. SLINC has a
degree of language-independence due to its use of XML-RPC. Components for SLINC
can be developed in any language for which there is an XML-RPC library. This language
independence gives users of SLINC the ability to use the programming language that
they are most familiar with. SLINC’s use of Hibernate allows flexibility in the type of
database a project can use. BOINC requires that every project use a MySQL database,
but SLINC provides the ability to use the embedded HSQLDB database, MySQL,
PostgreSQL, Oracle, or Microsoft SQL Server. The option to use the HSQLDB database
is convenient for small projects because it allows projects to be created quickly without
the need to install and configure an external database. Projects that need better
performance have the option to use one of several types of databases. The databases that
are supported by SLINC can easily be extended to include any database that is
compatible with Hibernate. In addition to being flexible, SLINC is simple to use because
it does not have any external software dependencies other than the Java Virtual Machine.
Everything required to use the framework is provided.

Requirement SLINC BOINC

Platform Server and client tested on
Linux and Windows, but
should function on any
platform supported by Java

Server limited to Linux
platform; client supported
on Windows, Linux, and
Mac OS X

Programming Language
for Project-Specific

Components

Any for which there exists an
XML-RPC library

C++ and optionally
FORTRAN

Framework Interface XML-RPC interfaces,
documented in Appendix D:
XML-RPC Interface
Specification

C++ APIs with FORTRAN
wrappers

Database HSQLDB, MySQL,
PostgreSQL, Oracle, or
Microsoft SQL Server, but
can be extended to support

MySQL

 45

any database that is
compatible with Hibernate

Other Software JVM version 1.5 or later Apache, Python, PHP

Table 6: Comparison of Framework Requirements

 Table 7 shows a comparison of the major features of each framework. Several of
the features, representing the core functionality of a public resource computing
framework, are present in both SLINC and in BOINC. Some of these features include
result validation, saboteur detection, clients that are supported on multiple platforms, and
the ability to distribute server components in order to accommodate heavy server loads.
The other features of the two frameworks are quite different, reflecting possible
differences in design goals. Our goals were to design a public resource computing
framework that was flexible and easy to use so that researchers could rapidly develop and
deploy projects. The features of the BOINC framework suggest that the goals of its
designers were to create a single framework to support many projects simultaneously.
Security also seems to have been a major concern for the BOINC developers; each
project’s science application must be signed with that project’s private key, providing a
way to verify the authenticity of a science application by using the project’s public key.
One of the major advantages of SLINC over BOINC is the complete example project and
templates provided with the project. Future project developers will be able to learn about
how to create projects using SLINC by examining an example of a simple, but
completely functional, project. The component templates are intended to simplify and
shorten the development process for projects written in the C++ and Java languages. The
templates contain all code necessary to build a project with the exception of certain
methods which are specific to each project. These methods include the science
algorithm, the method that generates work units, and the method that validates results.
The code that controls the logic of each component, as well as the implementation of the
XML-RPC interfaces, is provided to minimize the amount of code that project developers
need to write. The use of the templates is optional, so the project developers wanted to
implement all of the code for each component themselves, they would be free to do so
using the documentation in Appendix C: Project Programming Guide and Appendix D:
XML-RPC Interface Specification.

Feature SLINC BOINC

Component-based
architecture

Yes Yes

Result validation Yes Yes

Voting Yes Yes

Spot-checking Yes Yes

Cross-platform server Yes No

Cross-platform client Yes Yes

Server components can be
distributed for scalability

Yes Yes

Single utility for
configuring projects

Yes No

 46

Support for hosting multiple
projects with the same
project server process

No Yes

Support for executing
multiple science
applications from the same
project client process

No Yes

Support for exporting
results to another database

No Yes

Support for extracting
results from the database
and writing them to disk

Yes No

Support for signed science
applications

No Yes

Included example
components

Science Application, Work
Unit Generator, and Result
Validator implemented in

C++ and Java.

Science Application
implemented in C.

Included template
components

Science Application, Work
Unit Generator, and Result
Validator implemented in

C++ and Java.

None

Table 7: Comparison of Framework Features

7.2.2 Analysis of Peer Review

 We interviewed David Toth, a graduate student at WPI who is currently writing
his Ph.D. dissertation in public resource computing, to gain insights about the usability of
SLINC and how it might be improved. We provided David with the latest release of
SLINC as well as our framework documentation, which consisted of Appendix B: Project
Creation Guide, Appendix C: Project Programming Guide, and Appendix D: XML-RPC
Interface Specification. David’s goal was to use SLINC to create a simple public
resource computing project.

Before creating his own project, he went through the process of creating a project
using the example components we wrote (see Appendix E: Example Project). David
provided us with several suggestions for improving the usability of the Project Builder
tool and accompanying documentation. Originally, we did not have any help system in
the Project Builder itself, only the separate documentation. He suggested that we develop
a simple help system in the Project Builder so that users would be able to view basic
information about each step in the Project Builder without the need to search through the
separate documentation. Our response to this suggestion was to include a help section at
the bottom of each screen in the Project Builder. These help sections were simply text
boxes that were not editable, so we were able to add them to the Project Builder without a
great expenditure of time and effort. The help sections were meant to provide quick
answers to common questions, and were thus extremely detailed. If users needed more

 47

detailed information, they could refer to the complete documentation. Upon reviewing
our modifications, David commented that the help sections made the Project Builder
easier to understand and use. He also identified certain Sections of the documentation
that seemed ambiguous or confusing and suggested ways in which we could improve
them. We updated our documentation based on these comments.

David’s next step was to create his own simple public resource computing project
based on SLINC. An important usability issue that he identified immediately was the
requirement that project developers learn XML-RPC in order to write the project
components that would interact with SLINC. His observation was that the XML-RPC
code for a given component would never need to change; only the logic specific to each
project would need to change. David’s suggestion was to separate the implementation of
the XML-RPC code from the project-specific logic by creating templates for each
component. Each project could simply add its own logic to certain classes in these
templates without the need to implement the XML-RPC code. However, each
programming language would need its own set of component templates. Although we
agreed that component templates would make the project creation process easier, we
realized that creating templates for many programming languages would require a
significant time investment. The compromise we reached was to develop templates for
C++ and Java. Our choice to create templates for the C++ and Java programming
languages was partially based on their established use in public resource computing.
C++ is used in BOINC projects, and Java was used in Sarmenta’s Bayanihan4 system.
Developing a project using any other language would require writing the necessary
XML-RPC code using information from Appendix C: Project Programming Guide and
Appendix D: XML-RPC Interface Specification.

 48

8 Conclusions
 Our primary goal in this thesis was to design and implement a public resource
computing framework that addressed the usability issues we identified with similar
frameworks like BOINC. Our focus was on ease of use, but it was also important to
create a framework whose core functionality was equivalent to existing frameworks and
whose performance could scale efficiently as volunteers joined the project.
 The architecture of the framework is modular and scalable. It is possible to
execute most of the server components on separate computers, reducing the load on each
individual computer. Our design decisions centered on making the framework as
flexible, extensible, and easy to use as possible. Our choice to develop the framework in
Java had several important implications. It allowed SLINC to be inherently cross-
platform, which made it both flexible and easier to use because future project developers
would be able to use whichever operating system they were most familiar with. Since
most of our development was in Java, we were able to use the Eclipse IDE and the
Apache Ant build system, which simplified our development process. Using Java also
allowed us to take advantage of other Java libraries such as Hibernate and HSQLDB. By
using the Hibernate library we were able to support many different types of databases
without much effort. Another advantage of Hibernate was that it allowed SLINC to
support the HSQLDB embedded database. The HSQLDB database is convenient for
users who do not have experience installing and configuring a traditional RDBMS. If
HSQLDB is used, it will run as part of the main server process, so there is no need to
install, configure, and start an external database. Our decision to use XML-RPC for
communication between the framework components was important because it provided
the flexibility for project developers to write their project components in potentially any
language.
 In addition to flexibility, usability was an important concern for us. We identified
the properties of other frameworks that made them difficult to use and tried to find ways
to make public resource computing more accessible to the average researcher.
Configuring BOINC was difficult because there are several different configuration files
that need to be edited by hand. To address this problem we developed a single, unified
configuration utility with a graphical wizard-style interface. We also found that
developing projects with BOINC was difficult because it required strong C++ skills and
there was very little example project source code available. Our solution was to provide
a complete example of a working project, including all components that could be
implemented by project developers, as well as component templates. These template
components contain all necessary code except the algorithms that are specific to each
project. Project developers can use these templates to rapidly develop complete public
resource computing projects by filling in the appropriate methods with project-specific
code to generate work units, process science data, and optionally to validate results. We
have implemented the examples and templates in Java and C++, but since these project-
specific components communicate with the framework via XML-RPC, they can be
written in potentially any programming language.

 49

8.1 Functionality

 SLINC provides all of the core functionality necessary to create and maintain a
public resource computing project, as well as some advanced features and features that
are not present in other frameworks. At a high level the core features we implemented
were the ability to generate work units from some data source, distribute the work units to
clients running on volunteers’ computers, compute the result for each work unit using a
domain-specific algorithm, and to return the results to the project server. These high-
level core features are comprised of several other core features, such as the ability to
manage the lifecycle of a work unit to guarantee that a result will be accepted for that
work unit in a timely manner.
 In addition to the core features necessary for a public resource computing
framework to be useful, we also implemented several advanced features and features that
are unique to SLINC. The advanced features available in our framework are the three
types of result validation that we implemented, including validation of individual results
and Sarmenta’s voting and spot-checking techniques. There are several unique features
in SLINC. The framework has cross-platform compatibility and the project-specific
components are programming language-independent. There is a graphical utility to
simplify the project configuration process. We also provide a tool to extract the results
from the database and write them to a file system so they can be accessed more easily.

8.2 Performance

 The client computers that comprise public resource computing projects are
typically personal computers with modest performance capabilities. Due to the relatively
low performance of personal computers, public resource computing projects often need
hundreds or even thousands of volunteered computers to process their science data in a
reasonable amount of time. Any public resource computing framework needs to be able
to support a large number of clients, a significant percentage of which might be
attempting to access the project server simultaneously at any given time. Thus, the
performance of the framework must scale efficiently as new volunteers join a project and
begin contributing their resources. Although we did not have the resources to test the
performance of SLINC with hundreds or thousands of clients, we were able to analyze
the framework’s performance with 1, 2, 4, 8, 16, and 32 clients contributing to the project
simultaneously. We found that the performance of the framework scaled efficiently to 32
clients, and that there was no significant performance difference between the C++ and
Java implementations of the example project.

8.3 Usability

 Usability was the major problem we found with other public resource computing
frameworks like BOINC. During the design and implementation of SLINC we
endeavored to make it as easy to use and as flexible as possible. The cross-platform
nature of the framework makes it flexible, but also easier to use because there is no need
to learn a new operating system in order to use the framework. The Project Builder tool
facilitates the project configuration process by providing a simple interface with help
information for choosing project configuration options. We have developed a complete

 50

and thoroughly documented example project in both C++ and Java to demonstrate how
the project components should be implemented. To minimize development time, we
have also created template components in C++ and Java that can be filled in with project-
specific code to create a complete project. We also created step-by-step documentation
explaining the process of developing a public resource computing project using SLINC.

8.4 Future Work

 Although we have succeeded in creating a fully functional public resource
computing framework, there are several features that could be added or further developed
to provide additional functionality.

8.4.1 Additional Scalability Testing

 Public resource computing projects can have hundreds or thousands of active
volunteers, but we were only able to test SLINC with 32 clients. We would like to be
able to analyze the performance of the framework with a large number of clients. This
testing could be done by using a larger cluster or by developing a program to simulate a
pool of clients. If we were to find any scalability problems in this performance testing,
we could then use a code profiler tool to determine where the bottlenecks were and
attempt to remove them.

8.4.2 Assimilator Component

 The BOINC framework has a server component that ours does not: the
assimilator. The function of the assimilator is described in detail in 7.2.1 Comparison
with BOINC, but its basic purpose is to move the retired work units and valid results out
of the project database and into a different database. This functionality is useful because
it keeps the project database small so that access times are minimized. It also maintains a
cleaner separation of the work units and results that are still in progress and those that are
complete. The disadvantage of the assimilator is that it is a project-specific component,
so using an assimilator would require more work on the part of project developers, which
would not support our usability goal. However, the assimilator could be implemented in
a similar way as the validator. The framework could provide a default assimilator, which
would just keep all work units and results in the project database, but the project
developers could choose to implement a custom assimilator that would transfer the
completed work units and results to a different database.

8.4.3 Security Enhancements

 Security is implemented in a very simple way in SLINC because security was not
one of our primary goals. Certain XML-RPCs, like those used to shut down the project
server or retrieve all valid result data, are password-protected. However, the password is
sent in clear text; it is not encrypted in any way. A better approach would be to have the
project server start two XML-RPC servers, one that is for normal client access and one
that is for secure administrator access. The Apache XML-RPC library supports SSL-

 51

encrypted communications, so passwords could be transmitted securely. It also might be
necessary for some projects to encrypt the work unit data and results that are transferred
between the project server and the clients, so it could be useful to provide the option to
encrypt the public XML-RPC server as well.

8.4.4 Additional Spot-Check Configuration Options

 David Toth suggested that we enhance the way the framework performs spot-
checking to include a feature that is present in other frameworks. This feature allows
projects to specify that every client should have to pass a spot-check before it has
computed a specified number of work units. For example, a project might want to
specify that every client be sent a spot-check work unit within the first 10 work units it
receives. This feature would reduce the impact of a saboteur because that saboteur would
be detected more quickly. If the project were configured to invalidate all of the
saboteur’s past results, there would be a smaller number of results that would need to be
recomputed. This feature would require a way to uniquely identify every client rather
than every volunteer because there might be multiple clients associated with a single
volunteer, and each of those clients would be required to pass the spot-check. Clients
could be uniquely identified by having them generate some hash or a public-private key
pair the first time they are started; they could then send their unique identifier to the
project server.

8.4.5 Support for Database Migration

 Some project developers may decide to use the HSQLDB database for their
project because it is the simplest, but as their project grows the performance of HSQLDB
may degrade significantly. It could be a useful feature to allow a project to migrate its
project database to a different database. For example, the project database could be
migrated from HSQLDB to MySQL for better performance. This operation would
require exporting the database schema to the new database, then transferring all
information from the old database to the new database. The database migration could be
performed through the Project Builder tool. Having the ability to change databases
would increase the flexibility of the framework because projects could start with a simple
configuration and move to a higher performance configuration at a later time if necessary.

 52

Appendix A: Design Diagrams

Figure 8: Package Dependency Diagram

Figure 9: Client Package Diagram

 53

Figure 10: Persistence Package Diagram

Figure 11: Project Package Diagram

 54

Figure 12: Server Package Diagram

Figure 13: Task Package Diagram

 55

Figure 14: Tools Package Diagram

Figure 15: User Package Diagram

 56

Figure 16: Util Package Diagram

 57

Appendix B: Project Creation Guide
 There are four main tasks that need to be performed to create a public resource
computing project using SLINC: configuring a new project, developing project-specific
components, preparing project distribution files, and deploying the project. Many of
these steps include automation to facilitate the project development process, but due to
the flexibility of our project there are many configuration options. This guide provides
step-by-step instructions for creating a new public resource computing project. In order
to use SLINC, you must have version 1.5 or later of the Java Runtime Environment
(JRE). To compile the Java example project components, you will need version 1.5 or
later of the Java Development Kit (JDK). If you do not have the correct version of Java
installed, you can obtain it from Sun’s Java website: http://java.sun.com.

Step 1: Configuring a New Project

First, obtain the latest release of the public resource computing framework from
the following URL:

https://sourceforge.wpi.edu/sf/frs/do/listReleases/projects.jdb_prc_thesis/frs.prcf

There are two formats for each release, a tar.bz2 file and a zip file. The tar.bz2
files achieve better compression and are recommended for users who will create a PRC
project on a UNIX-like system because tar.bz2 files retain the proper execute permissions
on the scripts. On a UNIX-like system, use the command tar xjf prcf.tar.bz2 to extract
the archive. The file size may seem large, but most of that space is being used by the
libraries needed to build the C++ examples as well as the libraries for connecting to
various types of databases.

After you have obtained the latest release of the framework, you should choose a
convenient directory to work from and extract the framework release there. Note that the
platform on which the project is developed has no effect on which platforms the project
server and client may run on. A project developed on a Linux system can run on UNIX-
like platforms, Windows platforms, or both. Similarly, a project developed in Windows
can run on both Windows and UNIX-like systems. The framework itself is cross-
platform, but your project will only be cross-platform if you decide to create project
components that can run on both UNIX-like and Windows systems. If you develop these
components in a cross-platform language like Java or Python, there is no additional work
required to make your project compatible with several different platforms.

We will now explain the process of configuring a new project using the Project
Builder tool. Find the files that begin with project_builder in the location where you
extracted the archive. We will refer to any files with the extension .sh or .bat as scripts.
The scripts ending in .sh are for use on UNIX-like systems, and those ending in .bat are
for use on Windows systems. Start the project_builder by invoking the appropriate script
for your platform. In Windows this can be done by double-clicking the
project_builder.bat file or by navigating to the correct directory in the Windows
command prompt, typing project_builder.bat, and then pressing the Enter key. On
UNIX-like systems the script should be started by navigating to the framework directory

 58

in a shell, then typing ./project_builder.sh. Running the project_builder script will start
the Project Builder tool that is used to configure new or existing projects.

Figure 17: Project Builder Tool, Project Actions

The first form in the Project Builder asks whether you want to create a new
project or modify an existing project. In this case, select Create new project, and click
the Next button.

 59

Figure 18: Project Builder Tool, Basic Project Configuration

On the second form you must select a project name and a password for the
project. There are no restrictions on the name except that it must be at least one character
long. The password is used when you want to perform certain restricted actions on the
project. Currently, the only restricted actions are shutting the project server down and
requesting data about all completed work units and results. Shutting down the project
server must be done via an XML-RPC request; a password is required so that only project
administrators are able to perform this action. Retrieving all completed work units and
results can result in a large database and network load, so this function is also restricted.
The password must be at least six characters long to discourage brute-force password
cracking attempts.

 60

Figure 19: Project Builder Tool, Database Configuration

The third form allows you to configure the project database. The framework
supports five types of databases: HSQLDB, MySQL, PostgreSQL, Oracle, and Microsoft
SQL Server. HSQLDB is an embedded Java database that stores its data in a simple file
format. Using HSQLDB is the easiest option because it does not require manually
installing the database software, creating a database, and adding a user. However, the
other types of databases probably outperform HSQLDB. Another limitation of HSQLDB
is that only one process may access it at a time, so it is not possible to use a remote
transitioner if your project uses an HSQLDB database. If you choose to use HSQLDB,
the Database Address should be the location where the HSQLDB data files will be stored
on disk. This address can be a relative or absolute file path. It is recommended that you
place these files in the data directory; an example address for an HSQLDB database is:
data/prcdb. If you want to use one of the other types of databases, you will be required
to configure the database yourself, including installing the database software, creating a
database for your project, and creating a user who has permissions to CREATE, DROP,
SELECT, INSERT, UPDATE, and DELETE on that database. This database must be
created before completing the last step in the Project Builder. To use a non-HSQLDB

 61

database you will need to enter the URL of the database in the Database Address field.
The database address usually consists of the hostname of the computer that hosts the
database followed by a forward slash, and then the name of the database. It is important
to note that the framework may not be able to establish the database connection if an IP
address is used instead of a hostname. An example of a MySQL database address is:
mysql.wpi.edu/jdbprcthesis. The computer or computers on which the project server
components will run must be able to access the address you enter. The User Name and
Password fields must contain the user name that should be used to access the project
database and the password associated with that user. It is not necessary to have a user
name and password for HSQLDB databases.

Figure 20: Project Builder Tool, Network Configuration

The fourth form in the Project Builder is used for configuring project network
settings. The Project Server Address field is the IP address or fully qualified domain
name that all project components will use to contact the server. Examples of valid server
addresses are cstag04.cs.wpi.edu or 130.215.29.35. Of course the computer on which the
project server will run must actually have this address or the other components will not

 62

be able to connect to the project server. Also note that all server components and client
components must be able to access this address. If there will be clients outside of your
local area network, you must make sure that they will be able to connect to the server
address that you will use. The Project Server Port is the TCP port on which the project
server will listen for XML-RPC connections from the project client and other server
components. The Project Client Port is the TCP port on which the project client will
listen for XML-RPC connections from the science application. The project client listens
on the localhost address, so there is no need to configure this parameter. The Science
Application Port is the TCP port on which the science application will listen for XML-
RPC connections from the project client or server. Since the science application is not
provided by the framework, the science application developer must make sure that the
science application actually listens on this port. It is also important to verify that the port
numbers you have chosen will be available on the computers on which each component
will run. Keep in mind that the science application will run on the same computer as the
project client, and the science application may also run on the same computer as the
project server if the project is configured to use spot-checking. Since different
components may run on the same machine, it is necessary to use different port numbers
for the project server, project client, and science application.

 63

Figure 21: Project Builder Tool, Project Server Configuration

The next form is the project server configuration. The first part of this form is the
transitioner configuration. The transitioner is a server component that keeps track of all
work units and results in the project. You will almost always want to use a local
transitioner, which will cause the transitioner to run as part of the project server.
However, if the computer on which the project server is running is experiencing extreme
performance problems, you have the option to run the transitioner on a different
computer, as long as that computer can connect to the project server. To use a remote
transitioner, click the Remote radio button, and then enter the address for the computer on
which the transitioner will run. The format of the transitioner address is the same as that
of the project server. For example, a valid transitioner address would be
cstag04.cs.wpi.edu or 130.215.29.35. The Remote Transitioner Port is the port number
on which the transitioner should listen. This port should be different from all of the other
ports you have configured. The next part of the form is for configuring the type of result
validator your project will use. You can either use the default validator, which simply

 64

marks all results returned by clients as valid, or you can choose to implement your own
result validator. If you want to implement your own result validator, choose Custom for
the validator type. You do not need to configure any address or port for the custom
validator because the server never needs to connect to the validator. The validator simply
polls the server on a regular basis, asking if there are any results that need to be validated.
The last part of the form is the Minimum Number of Results value. This setting controls
the number of results that must be received for each work unit before that work unit may
be retired. You may want to use a value greater than one if you are writing a custom
validator. In that case, your validator will be able to compare all of the results that have
been returned for the same work unit and choose a single one of those results to be the
canonical result. The canonical result is the one result that is accepted for a given work
unit. All other results for that work unit are discarded after the canonical result has been
chosen. Using a minimum number of results that is greater than one with a custom
validator can be used as a way of identifying incorrect results by comparing results
returned by different users. It is important to realize that, as the minimum number of
results increases, the efficiency of your public resource computing project decreases
because the same work unit is being computed multiple times. Also, if the number of
users participating in the project is smaller than the minimum number of results, no work
units would ever be retired because a work unit cannot be assigned to the same user
twice.

 65

Figure 22: Project Builder Tool, Spot-Check Configuration

The sixth form is spot-check configuration. A spot-check is a method used to
identify malicious users, or saboteurs. A saboteur is defined as a user who deliberately
sends invalid results to the project server. When spot-checking is used, the project server
computes the result for one or more work units by invoking the project’s science
application. The results it computed are referred to as spot-check results and are assumed
to be valid because they have been computed by a trusted source, the server. The work
units from which the spot-check results were computed are called spot-check work units.
Once one or more spot-check results have been computed, the server can send a spot-
check work unit to a client, which will not know that the work unit it received is a spot-
check. The validator can then compare the result returned by that client to the accepted
spot-check result. If the validator determines that the result returned by the client is not
valid, the user who submitted that result is identified as a saboteur. Once a saboteur has
been identified, the project server can take actions to mitigate the risk introduced by that
user. The first value in the form, Spot-Check Probability, allows you to specify the
probability that any given client will be assigned a spot-check work unit when it requests
a new work unit. This value should be between zero and one. The next configurable
parameter is the Number of Spot-Checks. This value specifies how many spot-check
results the server should generate. You may want to have more than one spot-check if

 66

you are concerned that a single spot-check work unit will eventually be identified by
saboteurs, who will return the correct result upon receiving that work unit, circumventing
the spot-check. Generally you will want to specify a small value here, between one and
three, unless you suspect that saboteurs are trying to identify the spot-check work units in
order to evade detection. The Spot-Check Failure Action determines what course of
action the project server will take once a saboteur has been identified. If a saboteur is
identified, this event will be logged to the spot-check log file, called spotcheck.log in the
log directory. If this is the only action you wish the server to take, select Log Only.
Another option is to ban the identified user. When a user is banned, that user will no
longer be able to request new work units or return results. The third option is to both ban
the user and delete all results that user has previously returned. This is the most extreme
action you can take against identified saboteurs. If the saboteur submitted a result that
was later chosen as the canonical result for a work unit, deleting that result means that the
associated work unit will have to be recomputed by other users.

 67

Figure 23: Project Builder Tool, Confirm Settings

 68

The last step in the Project Builder is to confirm your settings. At this point you
can go back to any previous form and change the information. When you have confirmed
your settings, the project configuration files will be saved to disk in the cfg directory, and
the project database will be initialized. Please note that initializing the project database
will erase any data that it currently contains. If you are modifying an existing project, the
database will have already been initialized, so this step will not be performed. When the
Project Builder has finished configuring and initializing your project, you can begin
developing project-specific components or preparing your project distribution files if you
have already created the project-specific components.
 Before developing your own project components, you may wish to first practice
creating a project using the example components provided by the framework. The C++
and Java example components are located in the example directory after the framework
file has been extracted. There is a folder for the C++ implementation and a separate
folder for the Java implementation. Each of these folders has a build script that compiles
the example source files and, if necessary, any libraries that are needed by the examples.
The script also creates client and server directories. To create a project using the
example components, first run the build script in either the C++ or Java example
directory, then copy the client and server directories with all of their subdirectories to the
main framework directory. The main framework directory is the directory where you
extracted the framework. You can then continue to Step 3: Preparing Project
Distribution Files. Note that you must have the Java Development Kid (JDK) version
1.5 or later installed to compile the example Java project. Furthermore, if you are
building the Java example on a Windows platform, the javac executable must be in your
path. You will know that javac is not in your path if, after executing the build script,
there are no .class files in the example Java directory. To add this program to your path,
navigate to the Control Panel, and open the System configuration. Select the Advanced
tab, and click on the Environment Variables button. Select the Path variable, and click
the Edit button. Add a semi-colon at the end of the line, the paste in the path to the bin
directory of your JDK installation. For example, the path might be C:\Program
Files\Java\jdk1.5.0_06\bin. Click OK when you are finished, and the javac program
should be in your path. You can now execute the build script in the Java example
directory.

Step 2: Developing Project-Specific Components

 Project-specific components are executables that are not provided by SLINC, but
instead must be implemented separately by each project. Most public resource
computing projects have a large set of data that can be processed in smaller subsets. We
will use the term science data to refer to the entire set of data that needs to be processed
by a public resource computing project. In order to process all of the science data in a
distributed way, the data must be partitioned into many subsets, and there must be an
algorithm that accepts a subset as input and computes some result as output. The results
produced by this algorithm can later be recombined to draw meaningful conclusions
about the original data set.

There are two components that each project must develop to in order have a
complete public resource computing project: a work unit generator and a science
application. The work unit generator partitions your data set into smaller subsets called

 69

work units, which can be of any size. The science application takes a work unit as input,
executes your project-specific algorithm on the data, and produces a result as output,
which also does not have any size limitation.

In addition to the required components there is one optional component that you
may wish to develop: the result validator. The result validator has three responsibilities.
The first is to determine whether each individual result for a work unit is valid. The
second is to decide whether a client has passed or failed a spot-check. The last
responsibility is to choose a single result from the set of all results for a work unit, and to
mark that result as canonical. When a canonical result is chosen, the canonical result will
be saved permanently in the database, and all other results for that work unit will be
deleted. Although the result validator must perform all three tasks, one or more of these
tasks can be stubbed. For example, instead of writing an algorithm to determine which
result should be selected as the canonical result, you can simply always designate the first
result that was received as the canonical result, which is what the default validator does.
That way the validator would have fulfilled its responsibilities, but you would have only
had to write a few lines of code. Of course this assumes that the result that is selected as
the canonical result is not important for your project. Any or all of the three validator
tasks can be stubbed in this way, so you only need to implement the functionality that is
necessary for your project to be successful.

Information about how to implement each of these components can be found in
Appendix C: Project Programming Guide. Once you have implemented the necessary
project components, please continue to Step 3: Preparing Project Distribution Files.

Step 3: Preparing Project Distribution Files

 After all of your project-specific components have been developed, it is necessary
to package them, along with the framework, into server and client distribution files.
Once these files have been created you will be able to uncompress them on a server or
client computer and execute the appropriate components more easily. In order to build
these files you will need to copy your project-specific components into the correct
framework directories. When you extracted the framework archive in step one, the
server and client directories should have been created. The server directory is where all
server components should be placed, and the client directory is where your science
application should be. First, copy your work unit generator, and optionally your result
validator, into the server directory. Note that you will need to copy all binaries, libraries,
and other files required for your components to execute, but not necessarily the source
code. You may also want to write a script in that directory for easily starting and
stopping these components. The framework does not automatically start and stop your
server components because you may want them to execute on a separate computer from
the server.

Next, copy your science application into the client directory. Again, verify that
all necessary files and libraries have been copied into that folder. After you have copied
your client components into the client directory you need to create one or more scripts in
that directory using a specific naming convention. The purpose of these scripts is to
begin execution of your science application. These scripts are run by the project client in
the event that it receives a new work unit, but your science application is not running. If
your client is designed to run only on Windows systems, create a script called

 70

run_sci_app.bat with the appropriate Windows commands to start your science
application. If your client is only meant to run on UNIX-like systems, you need to create
a script called run_sci_app.sh with the appropriate UNIX commands and the execute
permissions set, which is very important. If your science application is designed to run
on both types of platforms, you will need to write both a run_sci_app.sh script and a
run_sci_app.bat script. The client will detect what type of platform on which it is
running and will call the appropriate script for that platform.

As mentioned in step one, there are examples of client-side and server-side
components in the example directory. You will find a directory containing a C++
example and another directory with a Java example. Run the build script in either one of
those directories, and when it has completed, client and server directories will have been
created that contain all the necessary files to execute the client-side and server-side
example components. If you want, you can create distribution files for the example
project by copying the contents of example/[c++ or java]/client/* to the client directory
and example/[c++ or java]/server/* to the server directory. Both the C++ and Java
examples have a lib directory that must be present for them to execute correctly, so it is
important to copy this folder as well.

When the client and server components have been copied to the appropriate
directories, and you have written the necessary run_sci_app scripts, the project
distribution files can be built. Before creating the distribution files, the project must have
already been configured using the Project Builder, and the project configuration files
project_server.properties and project_client.properties must be in the cfg directory.
Please see step two if you have not yet configured the project. To create the project
distribution files, simply run the make_project_files script that should be in the main
framework directory. This script will build tar.bz2 and zip files for the client and server,
which will appear in the current directory when the script has completed. The files will
be named prcf_client and prcf_server followed by the tar.bz2 or zip extension. These
files should be used to deploy your public resource computing project.

Step 4: Deploying the Project
 To deploy your project, copy the prcf_server.tar.bz2 or prcf_server.zip file that
you created in step three to the computer which will be the main server for your public
resource computing project. If your server is a UNIX-like system, you should use the
tar.bz2 file so that the scripts will have the correct permissions set. Choose a convenient
directory for your public resource computing project, and uncompress the distribution file
there. Start the server by running the appropriate start_server script for your platform.
The server should output status information to the console, and you can also monitor its
progress by inspecting the server.log file in the log directory. If your platform is
Windows, and the Windows firewall asks you whether you want to block the Java
program from accessing the network, choose to unblock it. As explained in step three,
the framework does not provide any way to start your other server components, the work
unit generator and result validator, because these components might be run on different
computers. At this time you should start your server components, which should be
located in the server directory. If your project uses a remote transitioner, you can use the
start_remote_transitioner script to start that component. Your project should now be
ready to accept client connections. Please be aware that if you need to shut down the

 71

project server, you must use the stop_server script. Failing to do so may cause some or
all of your data to be lost. If you execute the stop_server script, and several minutes later
the server has not shut down, there may be a problem with one of the XML-RPC
connections to your server that is preventing the shutdown from completing. In this case
you may need to execute the emergency_shutdown script. This script will shut down the
server immediately, without waiting for all client transactions to complete. The
emergency_shutdown script should only be used as a last resort to shut down the server
because it may cause inconsistency in the database if a transaction has begun but has not
yet completed.

If your project uses an HSQLDB database, and you need to view the contents of
the database directly, you can use the hsqldb_client script that is included in the server
distribution file. First, you will need to shut down the project server using the
shutdown_server script. It is only necessary to shut down the server to view the contents
of an HSQLDB database. All other types of databases should allow simultaneous access.
After the server has been shut down, run the hsqldb_client script, which will start the
HSQLDB client. Go to the File menu and select Connect. This action will display a
connection dialog. The only field you need to modify is the URL field. It should contain
the string jdbc:hsqldb:file: followed by the path to your HSQLDB database. For
example, the URL might be jdbc:hsqldb:file:data/prcdb. After you connect, you will be
able to execute SQL queries in the window at the top right of the HSQLDB client.
 The volunteers who will contribute their computers’ resources to the project
should download the project_client.tar.bz2 or project_client.zip file. After
uncompressing these files, they should use the start_client script to start the project
client. The first time the project client is executed, it will prompt the volunteer to enter
his or her desired user name and a valid e-mail address. That information is then stored
to the cfg/client.properties file, where it will be read on subsequent executions of the
project client.
 At some point you will want to access the result data that was computed by the
science application. The server distribution file contains a script called extract_results
for this purpose. When the extract_results script is run, you will be prompted for your
project password. This script is password protected because it can cause a high network
and database load, so it is more highly susceptible to a denial-of-service (DOS) attack.
This script connects to the project database and retrieves the data for all results, and then
writes this data out to disk. A folder called results will be created, which is the base
directory for all results. Inside that directory, directories will be created for each work
unit, and will be named by the ID of that work unit. Inside each work unit directory, a
file called result.dat will be created. This file contains the canonical result data for that
work unit.

 72

Appendix C: Project Programming Guide
 The purpose of this appendix is to provide specific information about how to
write client and server components to interface with our public resource computing
framework. The three types of components that can be developed separately for each
public resource computing project are the work unit generator, result validator, and the
science application. Each of these components communicates with SLINC via XML-
RPC. A full specification of all XML-RPCs available to project developers can be found
in

 73

Appendix D: XML-RPC Interface Specification. We encourage all new project
developers to look at the example components included with the framework; we believe
that these are valuable resources when developing a public resource computing project
for the first time with SLINC.
 There are two ways in which the project components can be developed. We have
developed template components that can be used to quickly build the project components.
Alternatively, project developers can write all of the code for the components themselves.
The first part of this guide describes how to use the templates to build project
components, and the second part of the guide explains how to build the components
without using the templates.

Developing Template-Based Components
 We have provided component templates written in both C++ and Java. If a
different language is desired, it will be necessary to develop all project component code
using the second part of this guide, Developing New Components. The C++ and Java
component templates are located in the templates directory where the framework
distribution file was extracted. There are templates for the science application, work unit
generator, and result validator. Navigate to either the c++ or java directory inside the
templates directory, and then continue to the appropriate section of this appendix: Using
the C++ Templates or Using the Java Templates.

Using the C++ Templates

 For the rest of this section we will call the c++ directory inside the templates
directory $CTBASE. The source code for the C++ templates is located in $CTBASE/src.
In that directory there should be five directories: common, lib, sci_app, validator, and
work_gen. The lib directory contains the source code for the necessary XML-RPC
libraries, which will be built by the build script.
 To create a work unit generator component using the templates it is necessary to

edit the WorkUnitGenerator class, contained in
$CTBASE/src/work_gen/generator.cpp and $CTBASE/src/work_gen/generator.hpp. The
parts of the template files that will or might need to be changed are denoted by a TODO
comment. There are three methods that need to be modified in the

WorkUnitGenerator class: recoverState, generateWorkUnit, and

generateAndSend. If the work unit generator were ever restarted, it would need
some way to reinitialize its state information so that it could resume generating work

units from the appropriate place in the science data. The recoverState method
retrieves the last work unit that was generated from the server and uses that work unit to
determine what work unit should be generated next. This method retrieves the last work

unit using the provided getLastWorkUnit method of the WorkGeneratorClient
class. If the project server throws an exception while retrieving the last work unit, it
means that no work unit was ever generated, so the work unit generator should begin
generating the first work unit.

 The generateWorkUnit method in the WorkUnitGenerator class
generates the next work unit and returns a byte vector representing the new work unit. It

should also update some state information in the WorkUnitGenerator class to
indicate the next work unit that should be generated.

 74

 The last WorkUnitGenerator method that needs to be edited is

generateAndSend. This method generates a given number of work units by calling

generateWorkUnit and then sends each work unit to the server by calling one of the

overloaded WorkGeneratorClient::sendWorkUnit methods, which are

declared in $CTBASE/src/work_gen/work_gen_client.hpp. All of the sendWorkUnit
methods require the work unit byte vector as a parameter, but some allow extra
parameters to be passed such as the work unit ID, the priority of the work unit, the point
value of the work unit, and the amount of time before the work unit should expire. All of
these variants are documented in both the

WorkUnitGenerator::generateAndSend method and the

WorkGeneratorClient class.
 In addition to the three previously mentioned methods, project developers may

wish to edit the work unit generator’s main function, located in

$CTBASE/src/work_gen/work_gen.cpp. The main periodically queries the project
server to determine how many ingress work units it has. If the server has less than a

certain number of work units, which we will refer to as the low-water mark, the main

will invoke the WorkUnitGenerator::generateAndSend method to send more

work units to the server. The main can be edited to change how often the server is
queried, change the low-water mark, or the number of work units that are generated and
send to the server when the low-water mark is reached.
 The next component that should be modified is the science application, located in
$CTBASE/src/sci_app. The class that needs to be modified is

ScienceDataProcessor, located in $CTBASE/src/sci_app/sci_data_proc.cpp and
$CTBASE/src/sci_app/sci_data_proc.hpp. There are two methods that need to be

modified: run and scienceAlgorithm. The run method takes a byte vector
representing the work unit to compute as its parameter. If the science application uses

check-pointing, the first action that should be taken by the run method is to check for

previously saved check-points by calling the getCheckpoint method of the

ScienceApplicationClient class. This method will return a byte vector
representing the check-point. The template demonstrates how to do this. If a check-point
vector is of length zero, it means that no check-point was found. If a check-point was

found, the run method should set some private member variables to indicate where in

the work unit to resume processing. The next action taken by the run method is to
initialize and start a low-priority thread, called the compute thread, in which the

scienceAlgorithm method will execute. This is also demonstrated in the science
application template. Any data needed by the science algorithm will have to be passed as

a void* because that is the way the pthreads library handles parameter passing to

threads. After starting the compute thread, the run method should join with the compute

thread, causing the run method to block until the compute thread has terminated. The

compute thread will return a void* representing the result for the work unit, which will
then have to be cast to the appropriate type and converted to a byte vector.

 The scienceAlgorithm method uses information passed by the run method
to compute the result for a work unit. If the science application uses check-pointing, the

scienceAlgorithm method should periodically save a check-point by calling the

 75

saveCheckpoint method of the ScienceApplicationClient class, as
demonstrated in the template. When the computation of the result has completed, the

scienceAlgorithm method must return the result as a void* to the run method,
which will convert it to the appropriate type.
 Implementing the result validator component is optional, but the template for this
component can be found in $CTBASE/src/validator. The class that needs to be modified
is ResultValidator, located in $CTBASE/src/validator/result_validator.cpp and
$CTBASE/src/validator/result_validator.hpp. There are three methods in the

ResultValidator class that must be implemented: validateSingleResult,

selectCanonicalResult, and validateSpotCheck. The

validateSingleResult method examines the data from a result and decides
whether or not it is valid. This method should return true if the result is valid or false if
the result is invalid. If necessary, it is possible to examine the work unit from which the

result was computed using the ResultValidatorClient class; this is demonstrated

in the template source. The selectCanonicalResult method examines all of the
valid results for a work unit and determines which one of those results should be chosen
to be the canonical result. This method should return the result ID of the result that was
chosen. It is possible to examine the work unit from which the results were computed in

the same way as was done when validating a single result. The validateSpotCheck
method compares the spot-check result computed by a client to the accepted spot-check
result that was computed by the project server to determine whether the client passed the
spot-check. This method should return true if the client passed the spot-check or false if
the client failed the spot-check. Again, it is possible to examine the spot-check work unit
from which the spot-check result was computed.

Using the Java Templates

 For the rest of this section we will call the java directory inside the templates
directory $JTBASE. The source code for the Java templates is located in $JTBASE/src.
In that directory there should be four directories: common, generator, science, and
validator.

We will first examine the work unit generator template, located in the
$JTBASE/src/generator directory. The class that needs to be edited to create a functional

work unit generator is the WorkUnitGenerator class, which can be found in the file
$JTBASE/src/generator/WorkUnitGenerator.java. The best way to learn what needs to

be implemented is to examine the WorkUnitGenerator class, which is thoroughly
documented, and contains the string TODO wherever there is something that may need to
be implemented or changed. There are at least two methods that must be implemented in

that class: recoverState and generateWorkUnit. If the work unit generator
were ever restarted, it would need some way to reinitialize its state information so that it
could resume generating work units from the appropriate place in the science data. The

purpose of the recoverState method is to reinitialize this state information. This

method uses the supplied WorkGeneratorClient class to retrieve the last work unit
that was generated from the server via XML-RPC. If the server throws an Exception, it
indicates that there were no previously generated work units, so the work unit generator
should begin generating the first work unit. Otherwise it will return a work unit, which
can be inspected to determine where to resume generating the next work unit.

 76

The other WorkUnitGenerator method that needs to be edited is the

generateWorkUnit method. This method generates a work unit from the science
data, converts that work unit into a byte array, and returns that byte array to the calling

method. Another method that may need to be edited is sendWorkUnit. This method

uses the WorkGeneratorClient class to send the generated work unit to the project
server. However, there are several options for how the work unit can be added. The
simplest way is to send only the byte array containing the work unit data to the server. It
is also possible to specify other options, such as the desired work unit ID, priority, point
value, and expiration time. There are several combinations of these options that can be
used, with each combination corresponding to a call to a different overloaded

WorkGeneratorClient.sendWorkUnit method. These methods are documented

in sendWorkUnit. The last aspect of the template that may need to be changed is the

main method located in $JTBASE/src/generator/Generator.java. The main controls
when the work unit generator should generate more work units and how many new work
units should be generated at once.

The next component template that needs to be modified is the science application
template, located in the $JTBASE/src/science directory. To create a working science

application from the template it is necessary to edit the ScienceDataProcessor
class in the $JTBASE/src/science/ScienceDataProcessor.java file. The methods in that

class that will need to be edited are computeResult and scienceAlgorithm,
although these two methods could be combined into a single method if desired. The

computeResult method will be started in its own low-priority thread by the

ComputeThread class. The work unit data, a byte array, is passed into the

ScienceDataProcessor class in its constructor. If the science application uses

check-pointing, the computeResult method should first attempt to retrieve the last

check-point from the project client; the template code for the computeResult method
demonstrates how to do this. If any check-point was found, it should be used to initialize
the science algorithm, possibly by setting certain private member variables. The

computeResult method should then execute the science algorithm on the work unit
and produce a result. The result has to be converted into a byte array before being

returned by the computeResult method.

It is possible to perform all necessary computations in the computeResult
method, but it is usually a cleaner design to use a separate method to actually execute the

science algorithm; the scienceAlgorithm method is used for this purpose. The

intended design is to use the computeResult method to interpret the work unit and

perform any initialization that needs to occur. Then the computeResult method can

call the scienceAlgorithm method to compute the result for the work unit. After a

result has been computed, the computeResult method can convert the result into the
byte array that needs to be returned. During the execution of the science algorithm,
check-points can periodically be saved by the project client. The template source for the

scienceAlgorithm method demonstrates how to do this.
The third template component, the result validator, is optional. If result validation

is required, this component can be implemented. The template for the result validator is
located in $JTBASE/src/validator. The class that needs to be edited is

ResultValidator, which is located in the file

 77

$JTBASE/src/validator/ResultValidator.java. There are three methods that need to be
implemented, each corresponding to a different type of validation:

validateSingleResult, selectCanonicalResult, and

validateSpotCheck. The validateSingleResult method decides whether a
single result is valid by examining the result data. The method should return true if the
result was valid or false if the result was not valid. If necessary, it is possible to retrieve
the work unit from which that result was generated; this operation is demonstrated in the

template source. The selectCanonicalResult method examines the set of valid
results returned for a work unit and selects one of those results to be the canonical result.
The method should return a string, the result ID of the canonical result. If it is necessary
to examine the work unit for which the results were computed, it is possible to retrieve
that work unit data as demonstrated in the template source. The

validateSpotCheck method decides whether a client passed a spot-check. It does
so by comparing the spot-check result data computed by the client to the accepted spot-
check result data that was computed by the project server. As in the other two methods,
it is possible to examine the work unit from which the spot-check result was computed.
This method should return true if the client passed the spot-check and false if it failed the
spot-check.

Building Template-Based Components
 After modifying the templates to add the required functionality, it is simple to
build the template-based components so that they may be used in a project. There are
separate build scripts for the C++ and Java templates, located in the base of each template
directory, $CTBASE and $JTBASE. It may be necessary to modify the build script or
makefile if additional classes have been added or if additional libraries are required.
When the build script is executed, it will first compile all necessary binaries; then it will
cerate client and server directories that have all required binaries and libraries. These
directories are analogous to those created by the build script for the example project. The
client and server directories should be copied to the directory where the framework was
extracted, at which point the make_project_files script can be used to build the .tar.bz2
and .zip files as described in Appendix B: Project Creation Guide.

Developing New Components
Before explaining each component in detail, we will present some conventions

that will be used throughout this appendix, as well as a brief introduction to XML-RPC.

All text that contains source code will be written in the Courier New type face. We

assume that the Apache XML-RPC28 library will be used for Java applications or the
xmlrpc-c29 library will be used for C and C++ applications. The information in this
appendix applies to all XML-RPC implementations, but the source code is specific to
those two libraries. The Apache and xmlrpc-c libraries require that a parameter always
be passed to the XML-RPC call. However, some of the XML-RPC handlers that are
being called do not take any parameters. The solution is to pass an empty parameter to
the XML-RPC library when executing RPCs that do not take any parameters. In Java,

parameters are passed as java.util.Vector objects; passing an empty parameter

means passing a Vector that contains zero elements, as in new Vector(). In C++,

parameters are passed as xmlrpc_c::paramList objects. To pass an empty

 78

parameter, create a paramList object without using the new operator, and then pass
that newly created object to the appropriate XML-RPC method.

Although the xmlrpc_c::paramList object is used to send parameters to an
XML-RPC with the xmlrpc-c library, the return value of an XML-RPC is often an

std::vector object. The return value will be an std::vector if it is a compound
value, for example a string and two integers. To avoid using implementation-specific
terminology, and to keep a consistent style, we will simply refer to compound return
values as vectors. The meaning of the term vector should be interpreted appropriately
based on the programming language and XML-RPC library you have chosen to use.

The way in which most XML-RPC libraries handle parameters is not necessarily
intuitive, so it deserves further explanation. No matter how many parameters an RPC
accepts, the client executing that RPC must wrap them in a vector. Recall that in the
context of building parameters for an XML-RPC, the term vector may mean

java.util.Vector, xmlrpc_c::paramList, or some other type, depending on
your programming language and XML-RPC library. Also, even though the client makes
the XML-RPC call by passing a vector, the RPC handler itself should not accept a vector
as its parameter, but rather the object types contained within the vector. For example,
consider an RPC that accepts two strings followed by an integer, and returns a boolean.
The client executing that RPC would create a vector and add the strings and integer in the
specified order. The signature of the RPC handler, however, should look like the
following:

boolean HandlerName(String arg0, String arg1, int arg2)

Notice that the signature of the handler does not take a vector, but the types contained
within the vector. The XML-RPC library removes the elements from the vector, searches
for a handler with a matching signature, and then calls that handler, passing in the
elements that were extracted from the vector.
 It is important to be familiar with XML-RPC before attempting to develop any
project components. The following block of code demonstrates how to execute an XML-
RPC using the xmlrpc-c library in C++. For complete examples, please see the example
directory in the latest release of the framework.

// The HTTP connections will be made using libwww.
xmlrpc_c::clientXmlTransport_libwww xmlrpcTransport;

// Create the XML-RPC client.
xmlrpc_c::client_xml xmlrpcClient(&xmlrpcTransport);

// Create an "empty parameter."
xmlrpc_c::paramList params;

// Create an RPC with the name of the RPC handler and the
// parameter list.
xmlrpc_c::rpcPtr xmlrpc("server.getLastWorkUnit", params);

// Set the URL of the XML-RPC server.
// Note the format, http://host:port/RPC2

 79

xmlrpc_c::carriageParm_curl0 cParm("http://localhost:2080/RPC2");

// Execute the RPC.
try {
 xmlrpc->call(xmlrpcClient, &cParm);
} catch (char const* e) {
 cerr << "Exception thrown while making XML-RPC: ";
 cerr << e << endl;
 exit(1);
} catch (girerr::error e) {
 // The host could not be found, or the connection

// was refused.
 cerr << "ERROR: Could not connect to the XML-RPC ";

cerr << "server. ";
 exit(1);

}

if (xmlrpc->isSuccessful() == false) {

// Some XML-RPC problem occurred.
// Ex. RPC not found on server.
// Ex. Incorrect number of parameters passed to RPC.
// Ex. Server threw an exception (not necessarily a
// problem).

 if (xmlrpc->isFinished()) {
 // NOTE: xmlrpc->isFinished() must be true

// before calling xmlrpc->getFault().
 xmlrpc_c::fault err = xmlrpc->getFault();

 // err.getCode() will be 0 if an exception was thrown

// by the server.
 if (err.getCode() == 0) {
 // Take some action if exceptions are expected.
 }
 else {
 // An exception was not thrown by the server.
 // Some other problem has happened.
 // Read the error message.
 xmlrpc_c::fault err = xmlrpc->getFault();
 cerr << "recoverStartRange: XML-RPC error ";
 cerr << err.getCode() << ": ";

cerr << err.getDescription() << endl;
 }
 }
}

else {
 // XML-RPC was successful. Now extract the data.
 // xmlrpc->isFinished() must be true in order to continue.
 assert(xmlrpc->isFinished());

 // Get the xmlrpc_c::value object that represents

 80

// the result returned by the server.
 xmlrpc_c::value result = xmlrpc->getResult();

 // Cast the result to an std::vector<xmlrpc_c::value>

// if it is not a simple data type (like an integer).
 std::vector<xmlrpc_c::value> resultVector =
 xmlrpc_c::value_array(result).vectorValueValue();

 // Now it is possible to extract each element of the
 // vector, casting each element to its known type.
}

 The next example demonstrates the execution of the same RPC, but in Java using
the Apache XML-RPC library.

// Create the XML-RPC client.
private XmlRpcClient xmlrpcClient = null;

// Initialize the client.
try {
 // Set up the XML-RPC client to connect to the project

// server.
 // Note the format, http://host:port/RPC2
 xmlrpcClient = new

XmlRpcClient("http://localhost:2080/RPC2");
} catch (MalformedURLException e) {
 // The URL given to the client was invalid.
 e.printStackTrace();
 System.exit(1);
}

// Execute the RPC.
try {
 Object returnValue =

xmlrpcClient.execute("server.getLastWorkUnit",
new Vector());

 Vector resultVector = null;

 // Get the return value.
 try {
 resultVector = (Vector)returnValue;

 // Now it is possible to extract each element of the
 // vector, casting each element to its known type.
 } catch (Exception e) {
 // The return value was not a Vector, it was an

// Exception.
 // We can interpret the Exception and take appropriate

// action.
 }

 81

} catch (XmlRpcException e) {
 // Some XML-RPC problem occurred.
 // Ex. RPC not found on server.
 // Ex. Incorrect number of parameters passed to RPC.
 // Ex. Server threw an exception (not necessarily a
 // problem).

 System.exit(1);
} catch (IOException e) {
 // The host could not be found, or the connection
 // was refused.

 System.exit(1);
}

 Creating an XML-RPC server is slightly more complicated, but it is necessary to
do so in order to develop a science application. The following block of code is an
example of the steps needed to create a C++ XML-RPC server with one RPC handler,

called sciapp.shutdown. A more complete example can be found in the example
directory of the framework.

// Thread in which the XML-RPC server will run.
pthread_t serverThread;

// Flag that controls whether the application should be running.
bool isRunning = true;

// BEGINNING OF XML-RPC HANDLERS
// ...

/**
 * Sets the isRunning flag to false so the loop in main will
 * terminate, causing the application to shutdown.
 * @return Returns true.
 */
class ShutdownMethod : public xmlrpc_c::method {
public:
 /**
 * This method is called when the sciapp.shutdown RPC is

 * handled.
 * @param paramList List of RPC parameters.
 * @param retvalP Pointer to the return value of the

 * method.
 */
 void execute(xmlrpc_c::paramList const& paramList,

xmlrpc_c::value* const retvalP) {
 isRunning = false;
 *retvalP = xmlrpc_c::value_boolean(true);
 }
};

 82

// ...
// END OF XML-RPC HANDLERS

/**
 * Starts the XML-RPC server in a separate thread.
 * @param arg Pointer to the xmlrpc_c::serverAbyss object to run.
 */
void* startServerThread(void* arg) {
 // Cast the void* argument to a pointer to an

// xmlrpc::serverAbyss
 xmlrpc_c::serverAbyss* server =

static_cast<xmlrpc_c::serverAbyss*>(arg);
 server->run();
 pthread_exit(EXIT_SUCCESS);
}

/**
 * Cleanly shuts down the application.
 */
void shutdown() {
 isRunning = false;
 pthread_cancel(serverThread);
 pthread_join(serverThread, NULL);
 exit(EXIT_SUCCESS);
}

int main(int argc, char** argv) {
 xmlrpc_c::registry xmlrpcRegistry;

 // Register the RPC handlers.
 xmlrpc_c::methodPtr const shutdownMethod(

new ShutdownMethod);
 // "sciapp.shutdown" is the name of the RPC

// shutdownMethod is the handler.
 xmlrpcRegistry.addMethod("sciapp.shutdown",

shutdownMethod);
 // ...

 // Initialize the XML-RPC server.
 // The second parameter is the port number on which to

// listen.
 // The third parameter is the path to the log file.
 xmlrpc_c::serverAbyss abyssServer(xmlrpcRegistry, 2082,

"log/sciapp.xmlrpc.log");

 // Start the XML-RPC server thread.
 // Pass a pointer to the server as an argument to

// startServerThread().
 pthread_create(&serverThread, NULL, startServerThread,

&abyssServer);

 // XML-RPC server is in its own thread, so make the main

 83

// thread sleep until the application should terminate.
 while (isRunning == true) {
 sleep(5);
 }

 // Shut down the application.
 shutdown();
}

 The next block is the Java implementation of the code necessary to start an XML-

RPC server containing the sciapp.shutdown RPC handler.

/**
 * This is the class that will start the XML-RPC server.
 */
public class ExampleXMLRPCServer {

// The XML-RPC server object.
private WebServer xmlrpcServer = null;

// Flag that controls whether the application should be
// running.
private boolean isRunning = false;

 /**
 * Initializes and starts the XML-RPC server.
 */
 private void initXmlRpcServer() {
 try {
 // Instantiate the web server.
 // The parameter is the port number on which to

// listen.
 xmlrpcServer = new WebServer(2082);

 // Register the RPC handler class.
 // Any public methods in the handler will be

// treated as RPC handlers. It is possible to
// use "this" as the RPC handler, but it is
// cleaner to use a separate class.

 // We pass a reference to "this" to the handler
// class so that the handler can access our
// methods. An alternative would be

 // to make ExampleXMLRPCServer a singleton.
 // We will call the handler "sciapp"
 // All clients connecting to this server will use

// RPCs in the form: sciapp.rpcName
 xmlrpcServer.addHandler("sciapp", new

ExampleXMLRPCHandler(this));
 } catch (Exception e) {
 System.err.print("Error initializing the ”);

System.err.println(“XML-RPC server: " + e);
 System.exit(1);

 84

 }
 }

 /**
 * Starts the XML-RPC server and begins handling requests.
 */
 public void run() {
 if (isRunning == false) {
 // Note: the server starts in a new thread.
 xmlrpcServer.start();
 isRunning = true;
 }
 }

 /**
 * Performs any tasks necessary to cleanly shut down the

 * science application.
 * @return Returns true.
 */
 public boolean shutdown() {
 xmlrpcServer.shutdown();
 isRunning = false;
 return true;
 }

 public static void main(String[] args) {
 ExampleXMLRPCServer server =

new ExampleXMLRPCServer();
 server.run();

 // The XML-RPC server is in another thread, so just
 // sleep until the application is shut down.
 while (sciApp.isRunning()) {
 try {
 Thread.sleep(5000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

 // The application is shut down.
 System.exit(0);
 }
}

/**
 * This is the class that handles the RPCs.
 * Each method in this class is interpreted
 * as an RPC.
 */
public class ExampleSciAppRPCHandler {
 // Reference to the ExampleXMLRPCServer

 85

 // that created this handler.
 private ExampleXMLRPCServer server = null;

 /**
 * Constructor that takes a reference to the

 * ExampleXMLRPCServer that instantiated this object.
 * @param server The ExampleXMLRPCHandler that instantiated

 * this RPC handler.
 */
 public ExampleXMLRPCHandler(ExampleXMLRPCServer server) {
 this.server = server;
 }

 // BEGINNING OF XML-RPC HANDLERS
 // ...

 /**
 * Performs any tasks necessary to clearnly shut down this

 * application.
 * @return Returns true. Note: All XML-RPC handlers MUST

 * return a value.
 */
 public boolean shutdown() {
 return server.shutdown();
 }

 // ...
 // END OF XML-RPC HANDLERS
}

Server-Side Components

The two server-side components that can be developed by each project are the
work unit generator and the result validator. Neither of these components needs to
implement an XML-RPC server because they both periodically poll the project server,
and only take action based on the result of each poll. The server will never need to
contact them directly.

Work Unit Generator

The purpose of the work unit generator is to partition a project’s science data into
smaller work units to be computed by the science application, which runs on each
volunteer’s computer. There is no limit to the amount of data that can be stored in a work
unit. Figure 24 shows an overview of the work unit generator’s control flow.

 86

Figure 24: Work Unit Generator Control Flow

 87

The first step taken by the work unit generator after it is started is to execute the

server.getLastWorkUnit RPC on the project server. This RPC instructs the
server to return all information about the last work unit that was generated, including its
ID, data, creation date, point value, and priority. Complete specifications of this RPC
and all other RPCs that project developers can use can be found in

 88

Appendix D: XML-RPC Interface Specification. The reason that this RPC should be
executed when the work unit generator is first started is that the generator will need to
know at what position in the science data to resume partitioning. If the work unit
generator is being started for the first time, there will not be any work units in the project
database, so the project server should notify the generator, which would then start
generating work units from the beginning of the science data. Thus, there are two

possible return types for the server.getLastWorkUnit RPC: either it is a vector or
some other object representing an exception. If the return value is not a vector, it does
not matter what that other object is; it is only important to know whether the return value
is a vector or not. If it is not a vector, then an exception has occurred. Depending on the
XML-RPC library that is used, determining whether the return value is a vector can be
done in two ways. Using the xmlrpc-c library, it is possible to query the status of the

xmlrpc_c::rpcPtr object after the RPC has been executed. If the

isSuccessful() method of the instance of that object returns true, it means that the
RPC completed successfully, and a vector has been returned containing the relevant work
unit information. If that method returns false, then the server threw an exception,
meaning there were no work units in the project database. The process is simpler using
the Apache library. The return value of the RPC will initially be a

java.lang.Object. To determine whether that object is a vector, cast it to a

java.util.Vector inside a try block. If a

java.lang.ClassCastException was thrown as a result of the cast, then the
object was an exception. If the cast was successful, then the server did not throw an
exception, and it is now possible to access the individual elements in the vector.

If there were no work units in the database, the work unit generator should
generate one or more work units to be sent to the project server. The first time the work
unit generator is started, we recommend that several work units be generated so that there
will be enough in the system to distribute to clients when they begin connecting. After
generating these work units, the work unit generator should execute one of the

server.addWorkUnit RPCs on the project server. There are several variants of this
RPC, each accepting different combinations of parameters. These RPCs will be
explained shortly.

If the server did return a work unit, the work unit generator should inspect that
work unit to determine what part of the science data to partition next. In most cases, it
will only be necessary to inspect the data contained in the work unit, which is at index 1
in the vector. When the work unit generator has determined what data will be assigned to
the next work unit, there are two options for how to proceed. The first option is to query
the server to determine the number of ingress work units in the database. An ingress
work unit is a work unit that has never been sent to a volunteer to be processed.
Although ingress work units are not the only type of work unit that can be sent to a client,
there should always be ingress work units in the system to guarantee that whenever a
project client requests a work unit there will be one available. The number of ingress

work units can be queried by executing the server.getNumWorkUnits RPC. This
RPC does not require any parameters, and it returns an integer greater than or equal to
zero indicating the number of ingress work units in the project. The work unit generator
should decide whether the number of ingress work units the project has is sufficient, and
if not, it should generate some number of work units and send them to the project server

 89

via one of the server.addWorkUnit RPCs. The second option the work unit

generator has is to skip executing the server.getNumWorkUnits RPC, and instead
generate and send a single work unit to the server by executing one of the

server.addWorkUnit RPCs. These RPCs all return an integer indicating the
number of clients that are waiting for work units. A client is said to be waiting for a work
unit if it requested a work unit when the project server did not have any to distribute. The
existence of clients that are in a waiting state reduces the efficiency of a project because
instead of performing useful computations, these clients are instead in a sleeping state,
waiting to request a work unit from the server at a later time. After sending the newly
generated work unit to the project server, the work unit generator can decide whether the
number of clients waiting for work units is acceptable or not, and it may choose to
generate and send additional work units.

There are several variants of the server.addWorkUnit RPC to allow some
degree of control over the work units, if desired, while providing a simple interface for
projects that do not need the advanced control features. The version of this RPC that
allows for the most control over the work units takes five parameters:

Parameter Index Type Description

0 String The work unit ID to use. Must be unique.

1 Byte[] The work unit data.

2 Integer The priority of this work unit, where priority >= 0.

3 Integer The point value of this work unit, where points >= 0.

4 Double The number of seconds until the work unit should expire,
where seconds >= 0.

Recall that clients executing this RPC must add each of these parameters to a

vector in the order specified in the Parameter Index column, and then execute the RPC
by passing that vector to the XML-RPC library. All XML-RPC parameters must be
wrapped in a vector, even if only one parameter is required, so to be concise we will no
longer mention adding parameters to a vector before executing an XML-RPC.

The first parameter allows specification of the work unit ID. This ID is displayed
in the log files when the work unit is assigned and when results are returned for this work
unit. When extracting the results from the database using the extract_results script, a
directory is created for each work unit, and the name of each directory will be the work

unit ID. If one of the server.addWorkUnit variants that does not require a work
unit ID is executed, a work unit ID will be generated by the server. The second
parameter is the byte array representing the data to be stored in that work unit. The third
parameter is the priority of the work unit. A priority value of 0 indicates the lowest
priority, and higher values indicate higher priorities. Work units with higher priorities
are guaranteed to be distributed to clients before work units with lower priorities.
Priorities are relative, so if two work units have the same priority, the work units will be
distributed according to a first-in-first-out (FIFO) ordering. If one of the

server.addWorkUnit variants that does not require a priority is executed, the
default priority of 0 is used. The fourth parameter is the point value for the work unit.
Some work units may require more computations than others, so volunteers can be
rewarded differently depending on the difficulty of the work unit assigned to them. The

 90

point value of a work unit is added to a volunteer’s score after the volunteer returns a
result for that work unit. If the result is later found to be invalid, the volunteer’s score is

decreased by the point value of the work unit. If one of the server.addWorkUnit
variants that does not require a point value is executed, the default point value of 1 is
used. The last parameter is the work unit’s expiration time. This parameter is used to
impose a limit on the amount of time a work unit has between being added to the project
and being retired. The transitioner optimistically assumes that all clients will return
results promptly. It will therefore only assign a work unit a certain number of times.
That number is the minimum number of results that is required for each work unit,
defined in the project configuration. However, if a client is assigned a work unit, and
then never returns a result, that work unit might never be retired. The purpose of the
expiration time is to prevent this from happening by limiting the amount of time a work
unit can spend in the system. If a work unit is not retired before its expiration time, that
work unit can be assigned to other volunteers. The expiration time is specified in
seconds. Note that if the expiration time is shorter than the average time required for a
client to complete a work unit, many work units will expire unnecessarily, resulting in
wasted work because those work units will be assigned to additional volunteers. If one of

the server.addWorkUnit variants that does not require an expiration time is
executed, the default expiration time of one day is used.
 Different projects may have different needs for the level of control over work

units, so there are several variants of the server.addWorkUnit RPC, each allowing
different combinations of parameters to be used. All of these variants are presented in

 91

Appendix D: XML-RPC Interface Specification.

Result Validator

 The result validator decides whether each individual result returned by a client is
valid, decides whether a client has passed a spot-check, and selects a canonical result
from the set of all results returned for a particular work unit. The canonical result is the
result that is accepted as the final result for a work unit; all other results for that work unit
are deleted. Implementing the result validator is optional because the framework
provides a default validator. The default validator marks all results as valid, marks all
spot-checks as passed, and selects the first result received as the canonical result. If a
custom result validator is implemented, the project developers can also choose to use the
default behavior for one or more functions of the validator. For example, if a project only
needs the spot-checking functionality of the result validator, the validator can be made to
always mark normal results valid and to select the first result returned as the canonical
result. The use of a default behavior for a particular function will be referred to as
subbing that function. If a custom result validator is implemented, all three functions
must be implemented, but any number of them may be stubbed. Figure 25 shows an
overview of the result validator’s control flow.

 92

Figure 25: Result Validator Control Flow

 93

 The first step taken by the result validator is to execute the

server.getResultForValidation RPC on the project server. This RPC does
not take any parameters. This RPC will return an exception if there are no results that
need to be validated. If this is the case, the validator should sleep for some amount of
time and then execute the RPC again. If there is a result to validate, the server returns a
vector in one of three formats. The first element (index 0) of the vector will always be an
integer, which indicates the type validation that the validator needs to perform. A value
of 0 indicates that the vector contains a single result to be validated. In this case, the
vector will contain two other elements. The element at index 1 will be a string
representing the ID of the result to be validated. The element at index 2 will be the data
from that result. The result validator should decide whether the result returned by the
project server is valid or not. If the result is valid, or this function is a stub, the result

validator should execute the server.markResultValid RPC on the project server.

Otherwise, the validator should execute the server.markResultInvalid RPC.
Both of these RPCs take a single parameter, the ID of the result to mark valid or invalid.
If the result was successfully marked valid or invalid, the return value of the RPC will be
true. If the return value is false, it indicates that the given result ID could not be found.
 If the first element of the vector is 1, it signifies that the validator needs to select a
canonical result. In this case, the element at index 1 indicates the number of results that
are contained in the vector. Each result is comprised of two separate elements in the
vector. The first element is the result ID, and the second is the data for that result. For
example, if the element at index 1 is the integer 2, it means that there are four more
elements in the vector. The element at index 2 is the result ID of the first result, and the
element at index 3 is the data for the first result. The element at index 4 is the result ID
of the second result, and the element at index 5 is the data for the second result. The
composition of the vector is presented as a table in

 94

Appendix D: XML-RPC Interface Specification; the table format might be easier to
understand. After all of the results have been examined, the validator should select one
to be the canonical result. It should then call the

server.selectCanonicalResult RPC on the project server. This RPC takes
one parameter, the ID of the canonical result selected by the validator. It returns a
boolean indicating whether the RPC was successful. A value of true indicates that the
canonical result was successfully selected, and a value of false means that the given result
ID could not be found.
 If the first element of the vector is 2, the result that is being validated is a spot-
check. There will be three other elements in the vector. The element at index 1 will be
the ID of the result. The element at index 2 will be the spot-check result data returned by
the client. The element at index 3 will be the accepted spot-check result data that was
computed by the server. The validator should compare these two results to determine
whether the result submitted by the client is close enough to the accepted result. If the
validator decides that the client passed the spot-check, it should execute the the

server.markResultValid RPC, passing the result ID as the parameter. If the
client did not pass the spot-check, the validator should instead execute the

server.markResultInvalid RPC.
 After each result validation, the validator should sleep for some amount of time,

and then execute the server.getResultForValidation RPC again.

Science Application

The purpose of the science application is to execute a project-specific algorithm
on a work unit in order to produce result data that can later be analyzed by the project.
The science application is unique because it can be used in two different ways. The
primary use of the science application is to execute a project’s science algorithm on each
volunteer’s computer. The project client acts as a proxy between the project server and
the science application. The project client requests work units from the project server,
starts the science application, and sends it the work unit. The client then waits to receive
the result, which it returns to the project server. The client instructs the science
application to compute the result for a work unit by executing an XML-RPC on the
science application. For this reason, the science application must implement an XML-
RPC server. The work unit generator and result validator do not need an XML-RPC
server because they regularly poll the project server instead of being contacted by the
server. This polling method is not possible with the science application for two reasons.
In the event that the science application crashed while computing the result for a work
unit, the project client would not be able to detect the crash if it were simply waiting for
the science application to send a result. However, if the project client initiated a
connection with the science application by executing a synchronous XML-RPC, the
project client would be notified by a Java Exception that the connection was reset,
indicating a problem with the science application. The client could then restart the
science application. The second reason why polling was not the best choice is related to
the second use for the science application, which is to compute the accepted spot-check
results on the computer where the project server is running. If the project uses spot-
checks, the project server will start the science application and instruct it to compute the
results for one or more work units, which will then become the spot-check work units and

 95

results. Figure 26 shows an overview of the science application’s control flow for both of
its uses.

 96

Figure 26: Science Application Control Flow

 97

When the science application is started, it should immediately initialize its XML-
RPC server and begin listening for XML-RPCs. Example code for creating an XML-
RPC server can be found at the beginning of this appendix and also in the example
directory of the latest framework release. There are three RPC handlers that the science
application must implement. Before explaining the implementation of these RPCs, it is
necessary to discuss an important feature of SLINC: check-pointing. If the science
application is shut down before completing a computation and returning a result, the
computation would normally have to be started from the beginning the next time the
science application was started. This process is inefficient if more than a few minutes are
required to compute the result for a work unit. Check-pointing addresses this problem by
allowing the science application to periodically save its state and to retrieve this state
information the next time it is started. This state information is referred to as a check-
point. By periodically saving check-points, the science application can resume a
previously started computation by retrieving the last check-point and initializing the
science algorithm to begin at the appropriate point in the work unit data. Check-points
could be saved by writing a file to disk and retrieved by reading that file, but the project
client provides an RPC that performs those functions so that the science application does
not need to perform disk I/O itself.

To save a check-point, the science application should execute the

client.saveCheckpoint RPC on the project client, which always listens for
connections on the localhost, or 127.0.0.1, address. This RPC takes a single byte array as
its parameter, which is the data to be saved in the check-point. To retrieve a previously

saved check-point, the science application can execute the client.getCheckpoint
RPC on the project client, which does not take any parameters. This RPC returns a
vector containing a byte array. If the byte array has length 0, the project-client did not
find a previously saved check-point. Otherwise, the array contains the data from the last
check-point that was saved.

There are two RPCs for computing results that the science application must

implement. One of them is called sciapp.computeResult, and is executed by the
project client when it has a new work unit for which a result must be computed. The

other is called sciapp.computeSpotCheckResult, which is executed by the
project server to compute spot-check results, if spot-checking is used by the project.
These two RPCs perform exactly the same function; the reason for having the project
client and project server call separate RPCs is that the check-pointing functionality is
only present in the project client, not in the project server. When the

sciapp.computeSpotCheckResult RPC is executed, the science application
should therefore disable spot-checking, if it is used.

When one of the computeResult RPCs is executed, the science application
should convert the given byte array into useful values that can be passed to the science
algorithm. It should then spawn a new thread in which to execute the science algorithm;
we will refer to this thread as the compute thread. This thread should have the lowest
possible priority so that the science algorithm will only use processor time when there are
no higher priority threads that require it. Using a higher priority thread may disrupt the
volunteers’ use of their own computers, which may reduce volunteer participation.
Before executing the science algorithm, the compute thread should first execute the

client.getCheckpoint RPC on the project client to determine whether the science

 98

algorithm should resume a previously started computation. If the project client returns a
check-point, the science algorithm should be initialized to resume the previous
computation. Otherwise, the science application should be executed, starting at the
beginning of the work unit. During its execution, the science algorithm may periodically

call the client.saveCheckpoint RPC on the project client, passing it a byte array
containing state information so that the computation can be resumed if the science
application were shut down before the completion of the current computation. When the
science algorithm has finished computing the result for its assigned work unit, the
compute thread should terminate. The science application should then encode the result
into a byte array, wrap it in a vector, and send it to the project client via the return

statement of the computeResult RPC that was executed.
 It is very important to write a script called run_sci_app that will start the science
application. This script is executed by the project client to start the science application.
If the science application is designed to run on Windows platforms, this script should be
called run_sci_app.bat; if it is designed to run on UNIX-like platforms, the script should
be called run_sci_app.sh. If it is designed to run on both platforms, both scripts will be
needed. The science application detects what platform it is running on and executes the
appropriate script for that platform. If the run_sci_app.sh script is used, it is very
important that all users have read and execute permissions on the script, for example 755.
Inside each subdirectory of the example directory in the framework there are example
run_sci_app scripts for both Windows and UNIX.

 99

Appendix D: XML-RPC Interface Specification
 This appendix contains information about all XML-RPCs that can be executed by
project components or which project components must implement. For each RPC there is
a description of its function, a description of each parameter it accepts, information about
any exceptions it throws, and the specification of its return value.

XML-RPCs Available to Project Components

server.getLastWorkUnit()

Description: Used by the work unit generator, this RPC returns information about the
last work unit that was generated. This information is useful for determining where in the
science data to resume partitioning after the work unit generator has been restarted. If no
work units have ever been added to the project, this call throws an exception.
Parameters: 0
Throws Exception: If the project has zero work units.
Returns: vector

Vector Index Type Description

0 String The work unit ID.

1 byte[] The work unit data.

2 Date The creation date of the work unit.

3 Integer The point value of the work unit.

4 Integer The priority of the work unit.

server.getNumWorkUnits()

Description: Returns the number of ingress work units in the project
database/transitioner.
Parameters: 0
Throws Exception: Never.
Returns: integer >= 0, the number of users waiting for work units

 100

server.addWorkUnit(String, byte[], int, int, double)

Description: Adds a work unit to the database/transitioner, and returns the number of
clients that are blocked, waiting for a work unit.
Parameters: 5

Vector Index Type Description

0 String The work unit ID to use. Must be unique.

1 byte[] The work unit data.

2 Integer The priority of this work unit, where priority >= 0.

3 Integer The point value of this work unit, where points >= 0.

4 Double The number of seconds until the work unit should expire,
where seconds >= 0.

Throws Exception: If the given work unit ID is already in use by another work unit or
result.
Returns: integer >= 0, the number of users waiting for work units

server.addWorkUnit(String, byte[], int, int)

Description: Adds a work unit to the database/transitioner, and returns the number of
clients that are blocked, waiting for a work unit.
Parameters: 4

Vector Index Type Description

0 String The work unit ID to use. Must be unique.

1 byte[] The work unit data.

2 Integer The priority of this work unit, where priority >= 0.

3 Integer The point value of this work unit, where points >= 0.

Throws Exception: If the given work unit ID is already in use by another work unit or
result.
Returns: integer >= 0, the number of users waiting for work units

server.addWorkUnit(byte[], int, int, double)

Description: Adds a work unit to the database/transitioner, and returns the number of
clients that are blocked, waiting for a work unit.
Parameters: 4

Vector Index Type Description

0 byte[] The work unit data.

1 Integer The priority of this work unit, where priority >= 0.

2 Integer The point value of this work unit, where points >= 0.

3 Double The number of seconds until the work unit should expire,
where seconds >= 0.

Throws Exception: Never.
Returns: integer >= 0, the number of users waiting for work units

 101

server.addWorkUnit(byte[], int, int)

Description: Adds a work unit to the database/transitioner, and returns the number of
clients that are blocked, waiting for a work unit.
Parameters: 3

Vector Index Type Description

0 byte[] The work unit data.

1 Integer The priority of this work unit, where priority >= 0.

2 Integer The point value of this work unit, where points >= 0.

Throws Exception: Never.
Returns: integer >= 0, the number of users waiting for work units

server.addWorkUnit(byte[])

Description: Adds a work unit to the database/transitioner, and returns the number of
clients that are blocked, waiting for a work unit.
Parameters: 1

Vector Index Type Description

0 byte[] The work unit data.

Throws Exception: Never.
Returns: integer >= 0, the number of users waiting for work units

 102

server.getResultForValidation()

Description:
Parameters: 0
Throws Exception: If there are no results to be validated.
Returns: vector (3 possibilities)

Return Type 0: Vector containing a single result to be validated.

Vector Index Type Description

0 Integer Enumeration indicating the format of the rest of the vector.
For return type 0, this value is 0.

1 String The result ID.

2 byte[] The result data.

Return Type 1: Vector containing several results from which a canonical result must be
selected.

Vector Index Type Description

0 Integer Enumeration indicating the format of the rest of the vector.
For return type 1, this value is 1.

1 Integer The number of results in this vector, n.

2 String The ID of result 0.

3 byte[] The data from result 0.

4 String The ID of result 1.

5 byte[] The data from result 1.

… … …

2n + 1 String The ID of result n, where n = the value of vector index 1.

2n + 2 byte[] The data from result n.

Note: There are 2n+3 elements in the entire array.

Return Type 2: Vector containing a spot-check result to be validated.

Vector Index Type Description

0 Integer Enumeration indicating the format of the rest of the vector.
For return type 2, this value is 2.

1 String The ID of the result returned by the client.

2 byte[] The data from the result returned by the client.

3 byte[] The data from the accepted spot-check result.

 103

server.getAssociatedWorkUnit()

Description: This is an optional RPC that can be used by the result validator. The

server.getResultForValidation() RPC only returns the result data, so if the

validator needs to examine the work unit data from which that result was computed, it

can use the server.getAssociatedWorkUnit() RPC.

Parameters: 1

Vector Index Type Description

0 String The ID of the result for which to find the associated work unit
data.

Throws Exception: If no result with the given ID was found.
Returns: vector

Vector Index Type Description

0 Byte[] The work unit data associated with the given result.

server.markResultValid(String)

Description: Marks a result as valid.
Parameters: 1

Vector Index Type Description

0 String The ID of the result to mark valid.

Throws Exception: Never.
Returns: boolean: true if the result was successfully marked valid, false if the given
result ID was not found.

server.markResultInvalid(String)

Description: Marks a result as invalid.
Parameters: 1

Vector Index Type Description

0 String The ID of the result to mark invalid.

Throws Exception: Never.
Returns: boolean: true if the result was successfully marked invalid, false if the given
result ID was not found.

server.selectCanonicalResult(String)

Description: Selects a result to be the canonical result for a work unit.
Parameters: 1

Vector Index Type Description

0 String The ID of the canonical result.

Throws Exception: Never.
Returns: boolean: true if the result was successfully selected to be the canonical result,
false if the given result ID was not found.

 104

client.saveCheckpoint(byte[])

Description: Saves a work unit to disk for later retrieval using the

client.getCheckpoint RPC. Only one check-point is saved, so subsequent
executions of the RPC will overwrite the previous check-point.
Parameters: 1

Vector Index Type Description

0 byte[] The check-point data.

Throws Exception: Never.
Returns: boolean: true if the check-point was successfully saved to disk, false if any
error occurred, such as insufficient permissions to create the file.

client.getCheckpoint()

Description: Saves a work unit to disk for later retrieval using the

client.getCheckpoint RPC.
Parameters: 0
Throws Exception: Never.
Returns: vector

Vector Index Type Description

0 byte[] The last check-point data that was saved. If no check-
point was found, the array will have length = 0.
Otherwise, it will contain the saved check-point data.

XML-RPC Handlers to be Implemented by the Science Application

sciapp.computeResult(byte[])

Description: Computes the result for the given work unit.
Parameters: 1, byte[]: the work unit data
Throws Exception: Never.
Returns: vector

Vector Index Type Description

0 byte[] The result data.

sciapp.computeSpotCheckResult(byte[])

Description: Computes the spot-check result for the given spot-check work unit.
Parameters: 1, byte[]: the work unit data.
Throws Exception: Never.
Returns: vector

Vector Index Type Description

0 byte[] The result data.

 105

sciapp.shutdown()

Description: Shuts down the science application.
Parameters: 0
Throws Exception: Never.
Returns: boolean: always returns true because all RPCs must have a return value.

 106

Appendix E: Example Project
 We created an example project for our public resource computing framework
primarily for two reasons. The first reason was that we needed an actual project to
perform our functional testing. The example project was useful throughout the
development process for finding faults and determining whether our XML-RPC based
IPC was working correctly. The second reason we created an example project was to
provide future users of SLINC with a working example to use as a reference as they
developed their own projects.
 The problem our example project solves is finding prime numbers. Searching for
prime numbers was one of the original applications for public resource computing. In
1995 a project called the Great Internet Mersenne Prime Search (GIMPS)35 was founded.
The purpose of GIMPS was to find previously undiscovered Mersenne primes. Our
example project is less ambitious. It simply finds all prime numbers within an assigned
range.
 The example project is comprised of three components: the work unit generator,
the science application, and the result validator. The work unit generator generates fixed-
length ranges of integers that should be searched for prime numbers. Each work unit
contains a range of one million integers. The first work unit contains the range [2,
1,000,002], the second contains the range [1,000,003, 2,000,004], and so on.

The science application is started by the project client, which runs on each
volunteer’s computer. The science application is responsible for executing the prime
finding algorithm on the ranges contained in each work unit. The algorithm it uses to
find prime numbers is fairly simple:

FindPrimes(startRange, endRange) {

 foundPrimes ← Ø
 for (currentTest ← startRange to endRange) do {
 isPrime ← true
 for (divisor ← 2 to tcurrentTes) do {

 if (currentTest % divisor = 0) then {

 isPrime ← false
 exit innermost loop
 }
 }
 if (isPrime = true) then {

 foundPrimes ← foundPrimes ∪∪∪∪ currentTest
 }
 }

 return foundPrimes
}

Figure 27: Prime Finding Algorithm

 107

This algorithm tests a number for primality by dividing it by every number between two
and the square root of the number being tested. If the remainder of any of those division
operations was zero, then the number being tested was not prime. Note that the operator

used for modulo division in Figure 27 is %, the modulo operator from the C programming
language. The number of division operations required to test whether a number is prime
grows with the square root of the number being tested. Therefore, the time complexity of

this algorithm expressed in big-Ο notation is Ο(n). Since the work units generated by
the work unit generator all contain ranges of the same length, as more work units are
generated the number of operations required to compute their results will grow.

However, Ο(n) growth is fairly slow, so even using the primitive algorithm from
Figure 27, distributed computing is an effective method for finding prime numbers.
 The result validator for the example project is very simple. It simply marks all
results as valid and selects the first result that was returned for a work unit as the
canonical result for that work unit. The reason our validator is so simple is that we did
not need any validation during the testing of SLINC. For the usability tests, it sufficed to
show that the XML-RPC interface that the validator used was working correctly. We
were in complete control of the performance tests, which were running on our private
cluster, so we did not need to validate any of the work units. For demonstration
purposes, this simple example validator shows enough about the structure of the validator
to be useful as a reference for those developing validators.

 108

References

1 Foster, Ian, C. Kesselman, S. Tuecke. “What is the Grid? A Three Point Checklist,” Grid Today, (2002).
2 “Berkeley Open Infrastructure for Network Computing,” http://boinc.berkeley.edu,

(accessed September 5, 2005).
3 Anderson, David P., Eric Korpela, and Rom Walton. “High-Performance Task Distribution for Volunteer

Computing,” Proceedings of the First IEEE International Conference on e-Science and Grid
Technologies, (December 5-8, 2005, Melbourne, Australia).

4 Sarmenta, Louis F. G. “Volunteer Computing,” Ph.D. dissertation, Department of Electrical Engineering
and Computer Science, Massachusetts Institute of Technology, (June 2001).

5 “SETI@home,” http://setiathome.berkeley.edu, University of California, (accessed September 9, 2005).
6 “distributed.net,” http://distributed.net, (accessed September 9, 2005).
7 “Applets,” http://java.sun.com/applets, Sun Developer Network, (accessed October 8, 2005).
8 “Applet Security FAQ,” http://java.sun.com/sfaq/, Sun Developer Network, (accessed September 9,

2005).
9 Sarmenta, Louis F.G. “Studying Sabotage-Tolerance Mechanisms through Web-based Parallel

Parametric Analysis and Monte Carlo Simulation,” 2nd International Conference on Internet
Computing, in conjunction with PDPTA 2001, (Las Vegas, Nevada, June 25-28, 2001).

10 Jamie Carlson, David Esposito, and Nate Springer. “Java Distriblets.” Technical Report MQP-DXF-
9802, Worcester Polytechnic Institute, Spring 1999.

11 Li La Moon, Yue Shen, and Keiji Oenoki. “Distriblet Applications.” Technical Report MQP-CEW-
9901,Worcester Polytechnic Institute, Spring 2000.

12 Gabriel R. Boys, Michael DiCicco, and Thomas A. Plunkett. “Distriblet IV.” Technical Report MQP-
DXF-0001, Worcester Polytechnic Institute, Spring 2001.

13 Anderson, David P. “BOINC: A System for Public-Resource Computing and Storage,” Proceedings of
the Fifth IEEE/ACM International Workshop on Grid Computing, (November 8, 2004, Pittsburgh,
USA).

14 Buck, Paul D. “Unofficial BOINC Wiki: Overview of Daemons,” http://boinc-doc.net/boinc-
wiki/index.php?title=Overview_of_Daemons, (accessed October 9, 2005).

15 “MySQL AB: The World’s Most Popular Open Source Database,” http://www.mysql.com, MySQL AB,
(accessed October 8, 2005).

16 “XML-RPC Home Page,” http://www.xmlrpc.org, UserLand Software, (accessed October 8, 2005).
17 “World Wide Web Consortium,” http://www.w3c.org, W3C, (accessed January 7, 2006).
18 “HSQLDB,” http://www.hsqldb.org, The hsqldb Development Group, (accessed January 7, 2005).
19 “PostgreSQL: The world’s most advanced open source database,” http://www.postgresql.org,

PostgreSQL Global Development Group, (accessed January 7, 2006).
20 “Oracle Corporation,” http://www.oracle.com, Oracle, (accessed January 8, 2006).
21 “Microsoft SQL Server Home,” http://www.microsoft.com/sql, Microsoft Corporation, (accessed January

8, 2005).
22 “SourceForge.net: Welcome to SourceForge.net,” http://www.sourceforge.net, Open Source Technology

Group (OSTG), (accessed January 14, 2006).
23 “Eclipse.org home,” http://www.eclipse.org, The Eclipse Foundation, (accessed January 14, 2006).
24 “JUnit, Testing Resources for Extreme Programming,” http://www.junit.org, Object Mentor,

Incorporated, (accessed January 14, 2006).
25 “abeille: Abeille Forms Designer,” https://abeille.dev.java.net, (accessed January 19, 2006).
26 “JGoodies: Java User Interface Design”, http://www.jgoodies.com, JGoodies, (accessed January 19,

2006).
27 “Apache Ant – Welcome,” http://ant.apache.org, The Apache Software Foundation, (accessed January

21, 2006).
28 “Apache XML-RPC,” http://ws.apache.org/xmlrpc, The Apache Software Foundation, (accessed October

8, 2005).
29 “XML-RPC for C and C++: Overview,” http://xmlrpc-c.sourceforge.net, Eric Kidd, (accessed October 8,

2005).
30 “hibernate.org – Hibernate,” http://hibernate.org, JBoss, Inc, (accessed October 22, 2005).

 109

31 Grecu, Dan L. and Lee A. Becker. “Coactive Learning for Distributed Data.” Computer Science

Department, Worcester Polytechnic Institute. Worcester, MA, 1998.
32 Sarmenta, Luis F. G. “Studying Sabotage-Tolerance Mechanisms through Web-based Parallel Parametric

Analysis and Monte Carlo Simulation.” Massachusetts Institute of Technology. Cambridge, MA,
2001.

33 “OSCAR: Open Source Cluster Application Resources,” http://oscar.openclustergroup.org, Open Cluster
Group, (accessed February 3, 2006).

34 Silberschatz, Abraham, Peter Baer Galvin, and Greg Gagne. “Operating System Concepts.” 6th ed.
Hoboken, NJ: John Wiley & Sons, Inc., 2003.

35 “Mersenne Prime Search,” http://www.mersenne.org, (accessed February 25, 2006).

