
USDA Foodborne Illness Outbreak Detector

A Major Qualifying Project
submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE
In partial fulfillment of the requirements

for the Degree of Bachelor of Science

Submitted By:
Isabel Alvarado Blanco Uribe - Computer Science

John Carroll - Computer Science
David Leandres - Computer Science

Cole Noreika - Computer Science
Nick Vachon - Computer Science

Date:

2022-03-23

Report Submitted to:

Professor Elke Rundensteiner

Worcester Polytechnic Institute

Abstract

By collecting data from social media, news media, and government reports our project

aims to develop an analytic big data tool to mitigate food safety risk by leveraging machine

learning models to collect relevant data on foodborne illness outbreaks. Our application also

serves as a web-based visual analytics tool, allowing users to explore results for early warning

and discovery.

1

Executive Summary

This project dealt specifically with the identification, collection, and analysis of large

data sources in order to create a system that is capable of displaying relevant data pertaining to

foodborne illness. The eventual goal of this system is to provide a framework to potentially

predict such outbreaks using deep learning models and alert users within a certain area that

foodborne illness has been detected.

We began the project by addressing the requirements of such an application. We would

need to identify sources of relevant data, as well as determine whether we were able to collect

and use such data. We chose to utilize a web crawler to collect this data from two specific

sources to start, the USDA official website as well as iWasPoisoned.com, a page designated for

reporting food poisoning. We came to find that we would need specific permissions to use data

from both of these sources that extended the scope of this project, so we chose to look elsewhere

for data collection. Using our Twitter API key, we drafted multiple versions of Twitter scrapers

to collect Tweets relevant to food poisoning, as well as other relevant data attached to the Tweet

for analysis such as text, geolocation, and user id.

The next phase of this process was to design a database schema to hold all of our data.

After collecting our initial elements of data, we observed that our primary source of data was

going to be Tweets, and there would need to be a focus on geolocation data for these Tweets. For

this reason, our schema is structured around storing all of the attributes of each Tweet.

The final phase of this project was a method of presenting our data collection. We chose

to design the front end of our application through ReactJS and deploy it using Apache Web

Server on our WPI machine. Of the several data visualization tools that our application offered,

the tracker map relied on using the county of specific food poisoning instances in order to

2

display data on a choropleth map of the United States. Although county was not an attribute we

could scrape from Twitter, we did have access to a set of three bouncing coordinates, which

enabled us to average the coordinates for a centered latitude and longitude and use an API call to

convert these coordinates to counties for each piece of relevant data that would be displayed on

our map.

In the end, we have a thorough Twitter scraper and model to collect and analyze Tweets

to find relevant data for cases of foodborne illness. This data is stored within our database, which

is utilized by our website deployed at usda-foodpoisoning.wpi.edu. Our application features a

Timeline of historical instances of foodborne illness outbreaks, infographics that provide insight

into the size and common keywords found in our dataset, as well as a choropleth map of the

United States that will show the number of Tweets collected per county that have been identified

by our model to contain a relevant report of foodborne illness.

3

Table of Contents

Abstract 1

Executive Summary 2

Table of Contents 4

Introduction 6
1.1 Project Goal 6
1.2 Objectives 6

Background 7
2.1 Food Poisoning 7
2.2 Prior Work 8

2.2.1 iWasPoisoned.com 9
2.3 GeoTagging 11

Methodology 12
3.1 Database 12
3.2 Data Collection 16

3.2.1 Twitter API 19
3.2.2 Twitter API experiments 21

3.3 Geotagging 21
3.4 Data Processing 23

3.3.1 Preprocessing 23
3.3.2 Post Processing 24

3.5 Backend Pipeline Development 25
3.6 Front End 26

3.6.1 Tools 27
React JS 27
Bootstrap 4 28

3.6.2 Website Design 28
Home Page 29
Explore Page 32
About Page 32
Meet the Team 32
Our Partners 33
Project Breakdown 33
Tracker Page 33

4

3.6.3 Design Process 35
3.6.4 React Components 37

Navigation and Footer Bars 37
Home Page Widgets 37
Home Page Infographics and Not Available Icon 38
Word Cloud 39
Dropdown Buttons 40

3.6.5 Pages 41
Tracker Page 41
Admin Page 42
Home Page 43
Learn Page 44
About Page 44

3.6.6 Deployment 45
GitHub Pages 45
Apache Web Server 45

4. Findings 46
4.1 User Study 46

4.1.1 Use for User Study 46
4.1.2 Breakdown of Study Process 46
4.1.3 Results of the Study 50

Future Work 54
5.1 Map / Tracker Tool 54

Appendices 57
Appendix A: Figures 57
Appendix B: IRB Approval - IRB-22-0410 74
Appendix C: User Study Survey 75
Appendix D: User Study Relevant Responses 83
Appendix E: Repository 90
Appendix F: Graphs 91

5

1. Introduction

1.1 Project Goal

The goal of this project is to continue the development of an analytic big data tool to

mitigate food safety risks by leveraging machine learning models to make predictions. We

collect and analyze data collected from social media, news media, and government reports to

predict potential foodborne illness outbreaks before traditional outlets such as the Center for

Disease Control (CDC). This information is disseminated through our website and potentially

informs those at risk. Our website also serves as a web-based visual analytics tool, allowing

users to explore results for early foodborne illnesses outbreaks.

1.2 Objectives

The overall project objective is in the process of being constructed through multiple

stages. In the early stage, we explored how food borne illness outbreaks often start through

observing their symptoms, infection patterns, and common foods related to them. In addition, our

team worked on a machine learning modal that would identify social media posts related to food

borne illness, and collect it for later use.

Using identifiable keywords, our system was modified to better organize collected posts

into groups related to multiple categories. These include symptoms, foods, dining

establishments, and geographical locations. By uploading dissected versions of these posts to a

data server, our team was capable of accessing information about potential food borne outbreaks

on a daily basis.

6

Next, our team needed a platform to display, and visualize the data. Our team began

working on a website that would provide the tools necessary for a user to view our data. Through

this platform, they can also learn more about food poisoning, how it starts, and look at its history

through our interactive timeline tool. Included on the site are areas where we would provide the

next stage’s tools.

In the following stage, our team would create tools that would help visualize the daily

potential outbreak data. This would give the user a way of seeing current food borne illnesses,

and allow them to make their own educated assumptions about regions of dense outbreaks

through our heat map tool. In addition, we created a word cloud that would provide a fun, and

visual way of recognizing the relevance of certain locations, foods, and symptom keywords

throughout time.

In future stages, we hope that teams will take this framework, and use it to create a

system that can predict food borne illness outbreaks before they happen. We estimate this is

possible through social media post pattern recognition, as well as using concurrent outbreaks

patterns throughout history.

2. Background

2.1 Food Poisoning

Throughout history, foodborne disease outbreaks have devastated thousands of

communities throughout the country. Contaminated fresh produce has led to illness incidents,

including sickness, hospitalizations, and even death (CDC, 2013). The appearances of these

outbreaks are often undetectable under normal circumstances, however, the rapid growth in

7

technology in recent years has made it possible to detect these outbreaks early enough to stop

them from worsening. Data analysis tools can observe social media posts related to foodborne

illness, and use them to catch potential outbreaks before they can happen. In addition, this

information can be organized and presented in a way that can be understood by the general

population, in order to inform them about the potential dangers of foodborne outbreaks.

2.2 Prior Work

Our goal is to communicate food poisoning outbreaks to the public before the CDC

officially reports them. To do so, the project is divided into five different objectives. The first

objective is to crawl social media, news media, and the CDC websites to collect real-time data on

food-borne illnesses. The second objective is to design a data model to process the collected

information and identify relevant information. The third objective is to analyze the data to

discover patterns of events related to food poisoning. The fourth objective is to design machine

learning models based on the data we analyzed. The final objective is to design and implement a

web-based visual analytics tool to communicate our findings and our data to the public. Further

information on the objectives can be seen in Figure 1.

8

Figure 1: Depicts the initial project scope and objectives defined by the previous groups

working on the project.

The machine learning model was developed prior to our team taking over the project.. It

utilizes RoBERTa, a model optimized for use with BERTs (Bidirectional Encoder

Representations from Transformers), which is a data structure made up of strings. The model’s

training was outsourced to a crowdsourcing website, allowing users to identify the food, location,

symptom, and foodborne illness keywords of tweets which were previously collected. Some

minor changes were made to the model to accomodate for dependency differences in the server

environment, but it was largely left unchanged.

2.2.1 iWasPoisoned.com

One site which was a great resource for our work was iWasPoisoned.com. On this site,

users can view and submit reports about food poisoning they have experienced. The simplicity of

9

the UI and report system along with the relevance of the stored data made iWasPoisoned useful

in multiple sections of our project development. One example is the map utility for displaying

reports, as seen in Figure 2. This map groups several reports in the same general area to display

hotspots, which is similar to the gradient map we plan on creating. The reports themselves were

also extremely useful to collect as data, as explained further in the Data Collection section.

Figure 2: This is a map from iWasPoisoned.com and serves to display reports aggregated

into hotspot zones across the United States.

10

2.3 GeoTagging

Former literature on the topic was split into two categories, text-based and

network-based. Text-based methods sought to find the location of the tweet by assuming that

language has a geographical bias and that by identifying it you can likely identify where the user

is. The issue is however that this method requires highly complex algorithms and it has been

found that the larger the data the worse the performance. In the researchers’ implementation,

they used a logistic regression model to predict the location, and features for each user were

weighted using tf-idf, followed by per-user l2 normalization (Rahimi 3). As for network-based

geolocation methods, these involve analyzing the user’s network of different tweets and

friends/followers online. Prior literature used only bi-directional @ mentions in tweets to signify

offline relationships, however, researchers found these to be too sparse so they used

unidirectional @ mentions in order to create edges in the graph/network (Rahimi 4). These

researchers found that the most accurate results came from hybridization of the two models,

where the more accurate methods hold higher weight in the prediction than less accurate methods

(Rahimi 5).

Other researchers sought to “automatically identify ‘location indicative words’ (LIWs),

that is words that implicitly or explicitly encode an association with a particular location” (Bo

1046). In order to create a map to base their geolocation, researchers opted to go with a

city-based representation as opposed to points or clustered grids. They acknowledged that it

makes their methodology insufficient for rural areas but argue that it is still better than points as

they’re too specific, and grids become too inaccurate in diverse densely populated cities. In

making their data set, researchers used langid.py to filter for English and Twitter tokenizers.

11

Then they removed all users with less than 10 tweets and any duplicate tweets by said users.

LIWs had the following properties: “1. High Term Frequency (TF): there should be a reasonable

expectation of observing it for a given user; 2. High Inverse City Frequency (ICF): the term

should occur in tweets associated with a relatively small number of cities” (Bo 1051). They used

Placemaker as a benchmark which was a geolocating software provided by Yahoo, however, it

seems to be depreciated. In conclusion, the researchers found that there was a trade-off between

geographical coverage and accuracy; the wider the area trying to be predicted was inversely

correlated with accuracy. In addition to this, it should be noted that only geotagged tweets were

used to make these predictions and there could be textual differences between geo and

non-geotagged tweets.

3. Methodology

3.1 Database

When deciding on a database program we were faced with several options. The first of

which was to decide between a relational and non-relational database. There are several different

factors to consider when choosing between the two models. The older, more common type of

database, is a relational database management system (RDBMS), also known as SQL databases.

For RDBMS databases, data is stored in rows and columns inside separate tables. Each table has

primary and foreign keys. Primary keys are unique identifiers in a particular table. Foreign keys

are the same data in another table that allow for relationships to be established and related data

from multiple tables to be queried. These established relationships ensure data integrity through

what is known as referential integrity. Any time a primary key is going to be deleted from a

12

primary table, reference constraints require that all related records are deleted. This is important

as it prevents records from being orphaned in secondary tables with no reference to them in the

primary table. Data is then accessed and modified using a structured query language (SQL),

which leverages the primary and foreign key relationship to relate data from several tables.

These databases have high transaction ability capabilities and excel in use cases where trends are

being extrapolated from the data.

Subsequently, there is another type of database known as a non-relational database, or a

no SQL database. These databases were initially invented to combat the issue of large data sets

and the lack of scalability present in RDBMS. However, there is not a single type of

non-relational database; multiple exist such as document databases, key-value databases,

column-oriented databases, and graph databases. Upon closer inspection, only column-oriented

and document databases were found to be relevant to our use case. Column-oriented databases

originally looked promising, as it is similar to RDBMS where data is stored in rows and

columns. However, there was a lack of consistency in writing to the database which could skew

our findings and predictions so it was disregarded. The other viable option is a document

database that stores data in documents like JSON, BSON, YAML, XML, and plain text. In

particular, document databases setup using MongoDB was of interest to us as their product is one

of the only ones to support ACID transactions. ACID stands for atomicity, consistency, isolation,

durability which are all standards of high data integrity. In addition to this MongoDB even has its

own proprietary query language called MQL, which offers much of the same capabilities as

normal SQL.

13

Given that MongoDB has almost parallel capabilities to the most common open-source

RDBMS PostgreSQL, we decided to first try MongoDB. It offered greater flexibility in how we

wanted to structure our data and horizontal scaling, unlike PostgreSQL. The first attempts to

implement MongoDB to create a non-relational document database were successful in

initializing a local database. However, when trying to set permissions for remote access there

were several issues that became apparent. The most pressing being authentication issues

stemming from obtaining a .pem file that contains both the TLS/SSL certificate and key. Given

these issues, we had to weigh if the added functionality was worth dealing with the issues.

Ultimately as a team, we decided that using PostgreSQL would be fine, as the data for the back

end of the website should all be structured prior to being added. In addition, storage size

constraint concerns were dampened as the data we will store will have undergone filtering

through machine learning models. Integration with a variety of analytics tools is also available as

PostgreSQL is one of the most widely used RDBMS. Lastly, it’s easier to maintain high data

integrity and consistency which is critical when making future outbreak predictions.

In the interest of retaining as much information as possible, we decided to keep all the

columns from the prior collected data as a basis for our table. From there additional columns

were added to store the additional data our work on the project produces. Specifically, we built a

geo-tagging tool for the tweets that necessitated a profile location, state, street address, zip code,

and county code columns as seen in figure 3. Additionally, our data pipeline parses out the

individual food and symptom tokens, so these received their own columns as well. As for the

front end, we decided it would be best to connect them to views as they update dynamically from

the main tweets table. These views for the website data visualization tools are also depicted in

figure 3.

14

Figure 3: This diagram depicts the database schema design.

15

3.2 Data Collection

The main focus of our work this term was collecting and incorporating data from

sites other than Twitter. This was done by creating a web-crawling program that was capable of

locating food illness outbreak-related data on different websites, and understanding how to

divide that data into predetermined properties to export as a CSV. To choose the websites for the

crawler, we had to think about data other than tweets that could be useful for us. Because we

plan to both have a live map of reports and display predictions based on historical data, it was

important to find sources of data that were either rapidly updated or preserved data over a long

period of time.

For the first criteria, a source of rapid and up-to-date data, we found the perfect

answer in the form of iWasPoisoned.com. This site allows visitors to submit reports about food

poisoning they have experienced. The report format is simple and collects for symptoms,

locations, specific foods or ingredients, and a description. Reports are listed in the reverse order

they arrive, so newer ones are always present on the home page. Configuring the crawler to work

with iWasPoisoned was fairly straightforward; the basic logic involved locating the HTML

element containing the reports and iterating through each of the reports (also HTML elements)

contained within to extract the report elements. The page number in the URL is then incremented

and reloaded, repeating this process on the second, third, and so on, pages. On iWasPoisoned, the

time of reports is given as “X hours ago,” or “Y days ago.” The crawler had a function that

would iterate through these strings and convert the time to seconds, which could then be

subtracted from the current time to get a timestamp. This can be seen in the below example.

16

TIMEFRAME_TO_MULTIPLIER = {"hour": 3600,

"hours": 3600,

"day": 86400,

"days": 86400}

Extract the age of the report (x hours ago, y minutes ago, etc), grab current time, determine time report

was posted

currTime = datetime.now().timestamp()

age = report.find_element_by_xpath("div[@class='float-left report-title']/h3[@class='h6 card-subtitle

mb-2 text-muted']").text.split()

delta, timeframe = age[0], age[1]

deltaSeconds = int(delta) * TIMEFRAME_TO_MULTIPLIER[timeframe]

timestamp = datetime.fromtimestamp(currTime - deltaSeconds)

Figure 4: Crawler Iteration Code

Our second goal, an accurate source of historical food outbreak data, was found on the

CDC website. The data on this site was officially reported food-related outbreaks, from the CDC

themselves. This data was tab-separated by time frame and was archived back to 2006. The

crawler configuration for this data was a bit more complicated. It begins by locating the HTML

element containing links to the reports, then iterating and storing said links. We initially were not

aware that there was a page specifically for foodborne outbreaks, so we had to program the

crawler to differentiate between them and other unrelated outbreaks. To do this, the crawler

would search for a banner image that is present on every report page. This banner was differently

titled on each type of outbreak, and we could use this to filter out the non-foodborne reports.

17

type = crawler.find_element_by_xpath("//img[contains(@ title, 'Banner')]").get_attribute("title")

if type == FOOD_SAFETY_BANNER_STRING:

container = crawler.find_element_by_xpath("//main[@aria-label='Main Content Area']")

title =

container.find_element_by_xpath("div[@class='row']/div/div[@class='syndicate']/h1").get_attribute("innerHTML

")

date =

crawler.find_element_by_xpath("/html/body/div[6]/main/div[3]/div/div[3]/div[1]/div/div[2]/div/p").get_attribute(

"innerHTML")

reportSummaries.append([title, date])

Figure 5: Differentiation Code

While this method was effective, upon finding the correct page we were able to make a

few changes to have the crawler simply iterate through the tabs to collect all the reports, much

quicker than with the image-checking.

After the crawler was up and running, we needed a way to represent both types of data

within a CSV or the database schema. We attempted to make it as simple as possible, with both

reports being stored together to make it easier to move to the database later. The first attribute

was source type, with 1 being an iWasPoisoned report and 2 being a CDC outbreak. The next

two attributes are the relevant foods or ingredients the data is about, and any relevant text in the

18

data (i.e. report description). The location of the report is also stored, as well as the time the

report was made.

3.2.1 Twitter API

On the data collection end, one of the very useful tools that we have access to is the use

of the Twitter API, used to scrape for Tweets that fulfill certain keywords and time periods.

Using this data, we can apply the models to scrape through all tweets containing relevant

keywords and filter them to find data that shows discovery or prediction of reported foodborne

illness outbreaks. There are two primary parts of the code that are utilized in the collection of our

data. Below is the code that is used to collect all of the data from each Tweet. We are collecting

account IDs, time of posting, geotagging, Tweet ID, language, as well as metrics, and text. All of

these different properties can be used to sort, filter, and apply learning models to our dataset.

1. Author ID

author_id = tweet['author_id']

2. Time created

created_at = dateutil.parser.parse(tweet['created_at'])

3. Geolocation

if ('geo' in tweet):

geo = tweet['geo']['place_id']

else:

geo = " "

19

4. Tweet ID

tweet_id = tweet['id']

5. Language

lang = tweet['lang']

6. Tweet metrics

retweet_count = tweet['public_metrics']['retweet_count']

reply_count = tweet['public_metrics']['reply_count']

like_count = tweet['public_metrics']['like_count']

quote_count = tweet['public_metrics']['quote_count']

7. source

source = tweet['source']

8. Tweet text

text = tweet['text']

Figure 6: Tweet parts Code

Next, we move on to the filtering portion of the code. Here, we take a set of exclusive

keywords that must be contained within the tweet, as well as a time range to select the tweets

between. The maximum number of tweets currently supported by the API is 500 per call, so we

have set that to the maximum value in order to collect as much data as possible.

keyword = '(egg OR hard boiled OR #egg OR #hardboiled) lang:en -is:retweet' #has:geo

20

start_list = ['2020-01-01T17:00:43.000Z'] #ISO8

'2021-03-21T00:00:00.000Z']

end_list = ['2020-06-01T23:00:00.000Z']

'2021-03-31T00:00:00.000Z']

max_results = 500

Figure 7: Keyword Code

3.2.2 Twitter API experiments

The next step of using the Twitter API was to begin running experiments to learn more

about the datasets being collected and how we could modify our collection methods to produce

the most meaningful dataset. To begin, we started by working with known food-bourne illness

outbreaks that had extreme numbers of cases (close to or over 1000 reported cases). From this,

we set the range of collected tweets from 10 days prior to the first reported case up until the date

of the final reported case. Lastly, we looked through the data reported on the CDC website about

the outbreak and used that accordingly to generate keywords that would provide the most data.

3.3 Geotagging

Another feature of the Twitter API is that you can collect and filter tweets by those that

contain Geotagging information. One of the goals for our final website is to display a saturation

map of the United States that would report on data regarding food-borne illness. Unfortunately,

only about 5% of tweets collected through the API contain Geolocation information, so we have

been looking into other methods of collecting location information. Initially, we had intentions of

21

using an open-source tool called Carmen, however, there were issues in attempting to implement

Carmen into the data pipeline. Carmen was created a few years ago and was originally created to

work with version 1 of the Twitter API, and updating it to work with the new version two of the

Twitter API proved to be tedious. The way data is structured when it is queried has changed from

one API version to the next, the geotag for tweets is no longer stored in the same JSON object as

other Tweet attributes. Additionally, there are other profile attributes, like profile location or

description/biography, that Carmen would leverage that have also been moved. Documentation

for Carmen was sparse as well so modifying the tool seemed unfeasible and reformatting the data

into the correct JSON format did not seem reasonable. The data needed for Carmen would

require two separate queries and 3 different JSON files.

We decided to do a literature review of researchers attempting to do similar work in

geo-locating social media posts. In doing so we identified several alternative methods to be able

to geotag a tweet, and ordered them by the most likely to be accurate. Currently, the first

alternative to a Tweet-specific geotag is to run a second Twitter API query in order to get the

user profile data. Then we check if there is a profile location and if there is we use that as the

location of the Tweet. Then we check the profile description to try and tokenize the description,

checking each token to see if it is a location indicative word. In particular, our geolocating

program looks for street addresses, state names and abbreviations, and for zip codes.

We then had intentions to do the following; however, with the rate limit imposed by the

Twitter API, it just became unrealistic as we were limited to 300 queries per 15 minutes.

Subsequently, check the users’ other tweets and see if they happen to have a geotag. If they have

10 geotagged tweets then we consider using them as a location alternative if multiple of them are

in the same location. Lastly, we check the profile location of the specific user’s mentions because

22

we assume that typically people only mention people they know in their tweets. We account for

Tweet mentions of people they don’t know by excluding Twitter users that are verified or have

large followings as these are likely to be public figures.

3.4 Data Processing

3.3.1 Preprocessing

We also added a few additional preprocessing functions to the data collection. One of

these functions handled the conversion of the JSON geo-tag data returned from the Twitter API

into the equivalent latitude/longitude pair. We did not immediately realize that this should be

done in preprocessing because the coordinate-lookup dictionary is stored apart from the

individual tweets in the API response. Once we discovered this data we were able to add code to

look up the “place” value in the coordinate dictionary and save the values in their own

parameters in the database.

This was further expanded upon with the development of a geolocation predictor. Once

the coordinates are gathered for the already geotagged tweets, the author IDs of the remaining

tweets are collected. From here, additional API calls are performed to get the author’s profile

information. As discussed previously in the report a variety of methods are used to try and

predict a user’s location, such as substring search in their biography or inspection of their set

location.

23

Figure 8: This is the data pipeline that shows how data collected from sources like

Twitter is processed and geo-tagged before being added to the database. The sections in yellow

were removed due to rate limit restrictions on the API, however, would still be beneficial in the

future.

3.3.2 Post Processing

Additional post-processing was added to the model as well. For starters, we included the

prediction confidence in the model output, allowing for the related tweets to be easily isolated

24

even as we experimented with different cutoffs for the confidence value. Functionality to parse

and divide the token predictions into their own database fields was also added. This division

allows for the tweets pertaining to specific foods or symptoms to be easily queried from the

database, which is essential in creating dynamic data visualizations for the front-end. At this

point, we discovered that the token prediction was case-sensitive, and would also sometimes

include non-alphabetic characters. This caused issues with query counts being artificially

inflated, as well as some queries not returning all instances of the desired token if there were

unusual characters. However, this was easily remedied by filtering the token predictions to

alphabetic characters, converting them all to lowercase, and removing any duplicates present

afterward.

For the final processing, the code to inspect the authors’ accounts, as discussed in the

Data Sources / Collection section, is run on the data, adding its prediction on the account type to

each entry. This is crucial as it allows us to distinguish between tweets which we should use to

make predictions about foodborne illness outbreaks, and tweets that we should use to verify past

predictions, and display as statistics in our front-end visualizations.

3.5 Backend Pipeline Development

Developing the server-sided pipeline was a major focus throughout this term. This

process began by simply consolidating all the project code files into a single environment, and

ensuring that they could run in conjunction with one another. This turned out to be a pretty

painless process, only requiring a few changes to dependency versions and function inputs and

outputs between files. With everything finally working synchronously, we decided it would also

25

be an ideal time to clean up the codebase: function descriptions were added, confusing code was

commented, and any obvious optimizations were made. These changes all contributed to making

the backend more understandable for all group members, as well as allowing for potential future

groups to easily continue the project's work from where we left off.

The pipeline additionally includes automation functionality. A config file was created,

containing values for all the input parameters. This includes the list of keywords to use in the

Twitter API, the timestamp of the latest collected tweet, batch and epoch sizes for the prediction

model, etc. Crucially, this config file also contains a value called “collection_rate,” which

indicates how long the server should wait in between collecting data for Twitter. After

concluding processing and storage on a set of collected Twitter data, the server will set up a

Linux “cron” command using the collection_rate value and the intro pipeline function. This

command schedules a job to run the pipeline, after the specified number of seconds. Because it is

a scheduled job, and not hanging the program such as with a sleep call, the server is able to

handle any calls from people using the website without issue.

Lastly, we set up a barebones command-line interface for interacting with the server.

From this CLI you are able to alter the config values, immediately run the entire model, or run

individual components and inspect the outcomes.

3.6 Front End

26

3.6.1 Tools

React JS

When designing an application of this scale that contains so many components that will

need to work seamlessly together, we decided that building this application on the ReactJS

framework would be in our best interest. There are several reasons for this decision, many of

which had to do with the efficiency and flexibility of the framework. To begin, React JS is a

JavaScript library that was created and maintained by Facebook, or now Meta. It enables users to

build easily scalable front-ends for web applications with a flexible and completely open-source

JavaScript library. ReactJS is also one of the most popular front-end frameworks used by Fortune

500 companies, so it would also serve as a great learning experience to apply our prior

knowledge and learn this framework. It is important to break down all of the benefits that this

framework made to our project, and how it can continue to support the future of this project as

well. To begin, the flexibility of ReactJS was one of the very attractive features of the

framework. It is modular in structure and comes very familiar to students like us that have a

strong background in object-oriented programming. In addition to this, a project that has several

individually operating components translates easily to such a framework. The next benefit that

we observed was the speed. React allows users to run individual components of the application

on both client-side and server-side in real-time, which significantly decreases the development

time needed for a front-end application. In addition to this, components are all built individually,

meaning that flaws to one component will not break the entire application. This makes both

debugging and development a much smoother process. Performance is another huge benefit to

ReactJS. The virtual DOM and server-side rendering is done by react-enabled applications,

regardless of their complexity, to compile very quickly. To add to this, ReactJS is very

27

user-friendly and offers countless benefits to both the developer and end-user from a usability

standpoint. Another benefit to React that we appreciated but did not get to fully take advantage

of for our project was its flexibility for mobile app development. Despite the little focus we put

on mobile development, our application runs fairly well on mobile due to the flexibility provided

right out of the box from ReactJS.

Bootstrap 4

As seen in all of the design and front-end prototyping of our project, our proposed

website is very detailed and dynamic. Due to this, developing the website from scratch would

take an unreasonable amount of time, and we would need to utilize many of the modern

JavaScript frameworks and libraries to assist us in our development process. For this reason, we

looked into Bootstrap 4, a free and open-source tool collection that is used to build dynamic and

responsive websites and web apps. This framework is commonly utilized for making mobile

websites and having diverse browser compatibility. Bootstrap also supports a variety of

visualization libraries, such as D3, and would significantly improve the development of our

website (Kumar, 2021).

3.6.2 Website Design

In order to visualize our results in the most effective way, our team conducted research on

how to best design the website application. Our goal was for the user to observe, understand, and

learn from our data in the most intuitive way possible. Therefore, we decided to divide our

website into four different sections: the home page, the about page, the dashboard, and the

explore page.

28

https://auth.geeksforgeeks.org/user/Dharmendra_Kumar/articles

Home Page

Our goal for the home page is to inform the user on what our project is, what we have

done, and why it matters. Therefore, we decided to have a data visualization on the home page

displaying the data we have analyzed and a section that features the different sections of our

website. The visualization that we display is dependent on the Twitter data that we collect. If the

data collection allows for us to display geographical location, we would like to have a saturated

graph on the home page. If not, we plan on having a timeline that will provide a glimpse into

what our Twitter data offers in terms of food poisoning outbreaks throughout time.

The timeline is unique in that it is capable of showing the element of time within our

research. We achieved this by displaying a box containing the outbreak, and the duration of the

outbreak over time determines the box's width. The outbreak’s location on the timeline is

determined by its starting date, as seen in Figure 5 below.

Figure 9 - Timeline example obtained from our live MQP Site.

Hovering over an event on the timeline will display a pop-up with a breakdown of the

event. If a breakdown is not available, the function should instead display the news article or

tweet that is related to this outbreak or event. Lastly, clicking an event will cause its information

to slide onto the top of the screen above the timeline, allowing the user to observe more data than

what is provided in the popup.

29

Figure 10: Timeline slide in information example obtained from our live MQP Site.

Another visualization that we want to display on the home page is infographics. We plan

on designing and programming two dynamic infographics on the home page. The first one

addresses how much twitter data we have collected. The second one visualizes the relevancy of

food poisoning displayed by the number of recent food poisoning outbreaks in the United States.

We would gather this data from our database and from crawling the CDC website. Further down

on the home page, we plan on displaying static informative infographics about food poisoning.

We would display three different types of static infographics, one addressing what food

poisoning is, another displaying the different severities of food poisoning symptoms, and another

one advising different steps to take to prevent food poisoning. All this information would be

gathered from reliable sources such as the Mayo Clinic and CDC websites.

30

The use of infographics would allow users to quickly process the information, since

people process visuals all at once, unlike written text which is processed in a linear way

(Smiciklas). With the constant shortening of peoples’ attention spans, especially in younger

generations, displaying information that is quickly processed is one of our top priorities. For the

first infographic, we will show the progression of where food poisoning comes from to someone

experiencing symptoms of food poisoning. For the second infographic, we want to display the

spectrum of food poisoning symptoms using a color spectrum of yellow to red. We picked two

colors instead of a rainbow spectrum because rainbow maps are known for being bad for

accurately visualizing data (Moreland). For the third infographic, we want to display, in steps,

what people can do to prevent food poisoning. The steps would be shown in progressive order of

someone getting to a restaurant to return home with leftovers.

On the home page, we would also be directing users to the different features the website

has to offer, such as the about page, the tracker, and the explore page. The buttons with action

items will incentivize users to keep on exploring the website, as displayed in Figure 7.

Figure 11: Buttons that lead to the different pages on our home page.

31

Explore Page

Another section of our website is the explore page. The goal for this section is to allow

users to explore the data that we have made available to them through visualizations. In order to

do so, we have decided to include a word cloud where users are able to pick the food poisoning

outbreak they want to explore and see the most common words that were used on Twitter. Below

the word cloud, users can learn more about what food poisoning is through infographics. These

visualizations would be more informative than the ones on the home page, where we could

inform users of interesting findings that we have found while working on this project and the

relationship between Twitter and food poisoning outbreaks.

About Page

The About page originally displayed information directly related to foodborne illnesses,

alongside historical facts and symptom data. However, the Home page already achieved this, and

so we assigned the About page to another task. Information regarding our team, the timeline of

work progression, and sponsor/partner descriptions were important to include. The recreation of

the About page is now divided into three sections.

Meet the Team

This section is an area where the user can see the faces of those who contributed to the

project. Under each name, the user can find the degree, major, and university of the individual.

Project contributors come from three main groups, being the undergraduate MQP team, graduate

students alongside the project advisor, and UIUC representatives.

32

Our Partners

This section is dedicated to informing the user of the project sponsor, and our UIUC

partner’s involvement in the project.

Project Breakdown

Lastly, it was important to provide a means of explaining the progress of our project, and

how it worked. This section provides an image and a breakdown of the different elements in the

project. Also included, is a flow of how everything works together to accomplish the task of the

assignment.

Tracker Page

The remaining tools will appear on the Tracker Page. Here, the user is able to observe the

tracked data from our sources. This is the page where maps, charts, and outbreak descriptions

will go. The tracker’s main purpose is to help the viewer visualize outbreak information, using

our heat map tool. This tool will display a saturation map. The darker an area on the map, the

more cases that have been detected by our system in that area.

A saturation map is a tool that utilizes location data in collected sources and uses to

visualize occurrences by location. Since people by default have a dark-is-more bias, where

darker colors are perceived to have higher quantities in data, the darker areas in the map

represent densely populated areas of interest (Sibrel). The “interest” can be determined by the

currently observed dataset the user is viewing. In our map, a viewer can click a county in the

United States. Then, an event window will pop up, displaying the location, and the number of

outbreak cases in that country.

33

Figure 12: Heat map of user cases found by our system based on tweet information.

Some other ideas of tools that can be implemented on this page came up during

development. In future stages, the following could be great additions that would allow users to

have more flexibility when observing data.

1. Time manipulation: The user can change the time span in which they wish to observe

collected data. The visualizations should change as the time period changes. This

functionality is to be built into the searching feature within the tracker page.

2. Prediction model (May or may not be implemented): The user will be able to observe our

system’s predictions with this tool. The prediction should use the keyword to calculate

its prediction.

34

3. Line Graph: The line graph tool will show change over time. The user is able to switch

between case count/outbreak count over the span of time they selected.

4. Bar graph: This is meant to show data in relation to other schema types. For example,

one may be able to observe the number of cases with salmonella caused by chicken.

3.6.3 Design Process

Before designing, we explored existing visualization options and analyzed how effective

they were. The main websites that we referred to were the CDC website and

http://matters.mhtc.org. When analyzing the examples, we referred to Steven’s Psychological

Power Law and Cleveland & McGill’s experiment results. Steven’s Psychological Power Law

indicated that people perceive saturation and length better than area and depth. This led to us

picking a timeline and a saturation map for our main visualizations. Cleveland & McGill’s

experiment ranked the visualizations where people were able to compare quantities the best. The

best visualization to do so was the bar graph, which we decided to incorporate into our website.

We pointed out the elements that we thought were effective and ineffective, as can be seen in

Figure 8.

35

Figure 13: Drawing board for website visualizations.

When deciding on which tools we were going to use to design the website, we explored

Figma (figma.com) and Axure (axure.com). Figma’s tools allowed us to quickly put ideas

together, which proved to be helpful during our team and advisor meetings. However, becoming

an expert in Figma is very time-consuming and we would not be able to make a mockup of a

professional website with the time that we had. In terms of expense, Figma is free for university

students, which was very important for us.

Axure is a tool that allows us to make real prototypes that can be connected to a backend.

This would be incredibly useful for testing how receptive people are to our designs with real

data. However, the learning curve is steeper than Figma’s, and we would have to pay 25 dollars a

month to use the software. Therefore, the team decided to use Figma to make the initial designs

of the website. Then, we will attempt to start developing the website with visualizations.

36

3.6.4 React Components

As previously discussed, one of the several benefits to using ReactJS is that the developer

can separate out the pieces of their application into individual, reusable components. This saves

time, prevents repetitive code, and allows for easier collaboration when developing the website.

Our project used several components, each of which served a unique purpose in the usability of

our application.

Navigation and Footer Bars

Our first two components are the Navbar and Footer bars, which were reused across all

the pages and served as the primary navigation tools around the application. Both of these

elements utilized a reactive, easily understandable design that allows the user to navigate

between pages from either the top of the screen or the bottom, adding to the overall usability of

the page.

Figure 14: The navigation bar (above) and bottom banner (below) from the website.

Home Page Widgets

Another component that we included on our home page was three different reactive

widgets that gave a brief explanation of the different pages that our application offered, as well

37

as a navigation link. By including images in the widgets, users are able to get a quick grasp of

what the website offers and what features the user can interact with on the different pages.

Figure 15: Three widgets located on the home page.

Home Page Infographics and Not Available Icon

Another component that we included on our home page was the two infographics that

feature quick facts about our project. On the left hand side, we have an infographic that shows

how many tweets have been analyzed by our machine learning model to identify food poisoning

outbreaks. Currently, this infographic is connected to the backend, running a count query to the

database to see how many tweets are currently stored in our tweets table.

On the right hand side, the infographic shows how many current food poisoning

outbreaks have been identified by the CDC. The right infographic is not connected to CDC data

right now, thus featuring an icon that the user can hover over it that will display a “This feature is

currently not available” message. The component consists of an image, a number that visibly

goes up to the provided number, and text explaining the number. If the data is not available, it

will display the Not Available component.

38

The Not Available component is there to inform users that the information that they are

seeing is not connected to our database. This indicates the features of our website that would be

recommended for future work. It uses the MUI Tooltip and Icon Button React libraries. We

decided to use an external information icon to incentivise users to hover over it.

Figure 16: The two infographics located on the home page featuring the Not Available

component.

Word Cloud

The word cloud that is in the website is meant to allow users to explore the data in a

different way. They can see which are the most common symptoms, locations, and ingredients

from the tweets that were collected. The user would be able to select what type of data they want

to see by using a dropdown menu. Since we are collecting a large magnitude of tweets, we need

to set a timeframe and a limit of what tweets we are going to count and display on the screen.

Currently, the word cloud is connected to a local server that connects to the database.

There is filtering and modifications that are done on the front end to make the data usable for the

word cloud.

39

Figure 17: A sample of the word cloud.

Dropdown Buttons

Lastly, there is a dropdown component that is added to the Navbar when the width of the

page is not wide enough to house all of the different buttons. This provides a dropdown for the

user to select a page and also contributes to the functionality of our application on mobile as

well. These four components work together to provide optimal ease of access to the user while

also providing a description of each page so that the user is able to navigate to the correct place.

Figure 18: The dropdown buttons, displaying what it looks like when you click on them

40

3.6.5 Pages

Tracker Page

The tracker page of our application utilizes a visually appealing and interactive method to

display the data that was collected and curated on the back end. To begin, the map is generated

using a JavaScript library called react-simple-maps. This library allowed for many modifications

to the data being provided, although it had limited customization for the map itself. The data was

then pipelined from our database into a format that could be read by the map. This map broke up

the United States based on county, so we needed to have data on the total cases and specific

Tweets that are written from a given county. After this, a gradient is set to determine the darkness

of the color for each county based on the data provided. At first a linear gradient was used, and

the map looked much more concerning than the reality of the number of cases that were reported.

To alleviate this potential concern to the user, we chose to utilize a gradient that is exponential

and leans towards the lighter colors, and counties will only display a deep color if there is a

significant increase in reported cases over the other counties. The map features zooming and

panning functionality, and a dynamic bar on the top that will display county-specific data when

the user clicks on a county. Unfortunately, the functionality of this map was limited by the

capabilities of the JavaScript library, and a new map framework was drafted and discussed in the

Future Work section.

41

Figure 19: The map from the tracker page on our website.

Admin Page

The admin page is where the collaborators developing the website can have direct control

of specific elements within the backend of the site.

Figure 20: The admin page from our website.

42

Home Page

The home page consists of many components. The most noticeable one is the Timeline

visualization, and right below are the two infographics that display quick facts about food

poisoning and the project. Then, there are three main infographics to teach the user more about

food poisoning. These are made with components but they are not reused throughout the website.

For the layout of the components, the flex command was used in CSS, which adapts for different

screen sizes.

Figure 21: Food Poisoning infographic #1

Figure 22: Food Poisoning infographic #2

43

Figure 23: Food Poisoning infographic #3

Learn Page

The learn page consists of multiple components. It has four dropdown components and

one WordCloud component. In the Learn.js file, the useEffect() function is used to update the

information provided to the WordCloud component when the selection from one of the

dropdown components changes. This file also fetched information from the remote Node.js

server hosted on DigitalOcean that makes API calls to the database. It is also in this file that the

words fetched from the database are filtered, counted, and scaled. In order to scale the words, the

maximum count is preserved and then each count is divided by the maximum value. If a word’s

count divided by the maximum value is less than 0.0007 then the word is not included in the

word cloud to prevent word crowding.

About Page

The About Page provides the user with a place to better understand the ins and outs of

project development, as well as team/sponsor information. The flow of the page inspires the user

to explore it as they please, by providing buttons that transit the user to the desired section.

44

3.6.6 Deployment

As with every web application, there needs to be a method of deployment so that the

application is visible on a URL and can be viewed by any user on the internet. To start the

development of our project before we had any allocated server space or URL we thought that

utilizing GitHub and GitHub pages would be our best option.

GitHub Pages

Github Pages allows a Git repository to have a main (master) branch that is published

with a live URL. Github also supports HTTPS, custom page URLs, 404 pages, as well as various

other visibility settings. Having a shared, personalized repository allows us to develop the

website on our local machines and have a live branch that we can utilize for development

purposes at all times. It also provides access to all of the source code for when we publish the

website and move its contents to the server. Privacy was also a concern that was looked into, as

some of the data we may be storing and utilizing may need to be kept private. Since our Git

repository is currently set to private, only the developers will have access to the source code of

the website, and we will need to ensure that we are using the proper privacy and visibility

settings on our published page. GitHub pages also worked flawlessly with React, and by adding

a few scripts to our package.json file we could run npm scripts straight from our development

console that would deploy our current branch onto the ‘github-pages’ branch and be visible on

our live URL.

Apache Web Server

Of course, GitHub Pages would not serve as a permanent home to host this application.

Once we were able to set up our WPI server and move our project code to this machine, it was

45

time for a new method of deployment. We were given the url usda-foodpoisoning.wpi.edu, and

using Apache Web Server we were able to host a build of our application on this link. Within our

project repository on the server, the user can run ‘npm build’ to compile and build our app,

which will be housed within a build folder in the repository. This is where Apache Web Server

pulls from, and the live link will be updated.

4. Findings

4.1 User Study

4.1.1 Use for User Study

Our user study was designed with the intent of collecting user feedback on our website.

This feedback will help our team understand how to better design tools in our website for ease of

access and usability. Information provided in both short answer responses, as well as

multiple-choice questions, will help our team find the elements of our project that need

additional work before its final release.

4.1.2 Breakdown of Study Process

The users will be expected to navigate our website in the order provided on our survey

form. First, the user will be expected to navigate through the “Home” page of our site. They are

first asked if they used the Timeline tool at the top of the page, and any suggestions they may

have towards this tool.

46

Figure 24: Timeline Tool

Next, the user is asked to proceed through the Home page and is asked about our infographics.

Figure 25: Tweet and Outbreak counters.

47

Figure 26: Infographics on food poisoning facts.

The user is then guided to the next page, the “About” page. Here they are asked if they

tried using the tabs to navigate this page and if they learned additional info that they were

looking for in regards to the website.

Figure 27: Meet the team section from our website.

48

Figure 28: Partner Descriptions

Then, the user is guided to the next page, the “Learn” page. Here they are asked to

interact with our Word Cloud tool. The user is expected to provide information about the

usability of the tool, visualizations they liked/disliked, etc…

Figure 29: Example of the Word Cloud tool found on the Learn page.

Lastly, and most importantly is the final page, the “Tracker” page. Here the user is

expected to interact with our heat map tool. They are asked questions regarding the

49

visualizations of the data, usability of the tool, and to report any confusion they may have when

using the tool.

Figure 30: Example of the Map Tool found on the Tracker page.

In general, this user study is a straightforward, website walkthrough, that will help our

team gain valuable insight towards improving our project.

4.1.3 Results of the Study

The study ended its collection of data after only five users were able to fill it out. While

the study consisted of a minimal quantity of users, the information gathered greatly helped in the

advancements of the project. The Consent Form as well as individual user responses can be

found in Appendices C and D for reference.

50

Going in order through the form, we start with questions regarding the Home Page. The

first set of responses were aimed towards the Timeline. The users were prompted if there was

anything that would make the tool better, and in general, the majority of users were happy with

the Timeline. Only minor remarks on small visuals were made, and our team decided it was

good enough to keep our focus on other elements. Next were comments about the infographics

on the home page, seen below.

Graph 1: Infographics results.

In summary, it seems the infographics did not provide substantial information to the user.

Many seemed to feel the information was common knowledge, with some even commenting

further that the information provided was incorrect. These graphics were not changed before the

final submission, but should be a focus point in future stages.

Next, the form shifts to questions regarding the About Page. The first question here

refers to the navigation tabs specific to this page and whether they used them to navigate the

page.

51

Graph 2: Tab results.

It seems the majority did use the tabs to navigate the page. One comment stating

“Make the tab buttons turn a certain color when hovering over them. It'll make it feel like htey do

something.”, was a good comment. We proceeded by fulfilling this easy change, and found it

added a sense of use to the buttons. They now highlight red when hovering over. Lastly,

comments regarding the page as a whole revealed a complaint about the description of the

project. It was originally a copy and paste of the original project description, and one of our local

tests suggested we write our own, so that was also changed as a result of the study.

Next is the Learn Page. From the data we can see that all users think the Word Cloud is a

fun, interactive tool to explore and play around with.

52

Graph 3: Learn results.

Suggestions regarding the Word Cloud were given however. This form was filled out by

many of the users before the tool was fully implemented. As a result, many of the suggestions

were about adding more to the tabs, and data as a whole. Luckily, as the tool approached its final

stage, we can say we have fulfilled those requests. The tool properly functions with more data,

and tab items.

Lastly, we asked about the Tracker Page, and more specifically about our Map Tool. It

seemed evident from the data that the users were pleased with this tool, proven by the results of

the first question.

Does the Tracker Page provide an easy way to identify areas of potential food
borne illness outbreaks?

5 responses

YEs the map is very interactive

yes

Yes!

Yes.

53

Yes! Very cool!

In further questions, we received great feedback on how the visibility and usability of the

tool could be improved from the following comments.

Could anything be improved to the design and/or usability of the map?

5 responses

Just that a legend with what the color codes mean

add number of cases when one moves to a specific area

I feel it's a little odd that clicking on an area displays the results at the top, so perhaps a window with

the results would work better?

No

Move the results of each area somewhere more readable.

These were wonderful results for this tool. In the weeks following these responses, our

back end team worked on a new Beta version of the map tool. This new tool, which can be

implemented in future stages, can be found in the future work section below. It covers all of the

comments above, and more, thereby fulfilling the study requirements.

Overall, our team was pleased to see that the overall goal and functionality of our pages

and tools were met. The suggestions given provided us with an important reminder that external

feedback is crucial towards the perfection and finalization of these projects.

5. Future Work

5.1 Map / Tracker Tool

One of the limitations that we faced during this project was the expandability and utility

that the tracker map was able to provide. Although it had plenty of features for displaying data,

54

there was little utility to customize the map itself and improve the user experience. The majority

of these limitations came from the JavaScript library that was originally used for the map,

react-simple-maps. For this reason, towards the end of our development process we decided to

draft a new map tool using MapBoxGL, a far more flexible mapping library that runs on

OpenGL and provides fluid, feature rich mapping tools. Although this portion of the project was

not developed to a point where it could replace the original map, the beta code for this

component is included in the repository under the directory ‘/src/components/map-beta’.

Figure 31: Example of the Map Tool we think could be easily implemented in the future.

55

Figure 32: Another example of the Map Tool we think could be easily implemented in the future.

Figure 33: Example of the future Map Tool display feature.

56

6. Appendices

Appendix A: Figures

Figure 1: Depicts the initial project scope and objectives defined by the previous groups

working on the project.

Figure 2: This is a map from iWasPoisoned.com and serves to display reports aggregated

into hotspot zones across the United States.

57

Figure 3: This diagram depicts the database schema design.

TIMEFRAME_TO_MULTIPLIER = {"hour": 3600,

"hours": 3600,

"day": 86400,

"days": 86400}

Extract the age of the report (x hours ago, y minutes ago, etc), grab current time, determine time report

was posted

currTime = datetime.now().timestamp()

age = report.find_element_by_xpath("div[@class='float-left report-title']/h3[@class='h6 card-subtitle

mb-2 text-muted']").text.split()

58

delta, timeframe = age[0], age[1]

deltaSeconds = int(delta) * TIMEFRAME_TO_MULTIPLIER[timeframe]

timestamp = datetime.fromtimestamp(currTime - deltaSeconds)

Figure 4: Crawler Iteration Code

type = crawler.find_element_by_xpath("//img[contains(@ title, 'Banner')]").get_attribute("title")

if type == FOOD_SAFETY_BANNER_STRING:

container = crawler.find_element_by_xpath("//main[@aria-label='Main Content Area']")

title =

container.find_element_by_xpath("div[@class='row']/div/div[@class='syndicate']/h1").get_attribute("innerHTML

")

date =

crawler.find_element_by_xpath("/html/body/div[6]/main/div[3]/div/div[3]/div[1]/div/div[2]/div/p").get_attribute(

"innerHTML")

59

reportSummaries.append([title, date])

Figure 5: Differentiation Code

1. Author ID

author_id = tweet['author_id']

2. Time created

created_at = dateutil.parser.parse(tweet['created_at'])

3. Geolocation

if ('geo' in tweet):

geo = tweet['geo']['place_id']

else:

geo = " "

60

4. Tweet ID

tweet_id = tweet['id']

5. Language

lang = tweet['lang']

6. Tweet metrics

retweet_count = tweet['public_metrics']['retweet_count']

reply_count = tweet['public_metrics']['reply_count']

like_count = tweet['public_metrics']['like_count']

quote_count = tweet['public_metrics']['quote_count']

7. source

source = tweet['source']

8. Tweet text

text = tweet['text']

Figure 6: Tweet parts Code

keyword = '(egg OR hard boiled OR #egg OR #hardboiled) lang:en -is:retweet' #has:geo

start_list = ['2020-01-01T17:00:43.000Z'] #ISO8

'2021-03-21T00:00:00.000Z']

61

end_list = ['2020-06-01T23:00:00.000Z']

'2021-03-31T00:00:00.000Z']

max_results = 500

Figure 7: Keyword Code

Figure 8: This is the data pipeline that shows how data collected from sources like

Twitter is processed and geo-tagged before being added to the database. The sections in yellow

were removed due to rate limit restrictions on the API, however, would still be beneficial in the

future.

Figure 9 - Timeline example obtained from our live MQP Site.

62

Figure 10: Timeline slide in information example obtained from our live MQP Site.

Figure 11: Buttons that lead to the different pages on our home page.

63

Figure 12: Heat map of user cases found by our system based on tweet information.

Figure 13: Drawing board for website visualizations.

Figure 14: The navigation bar (above) and bottom banner (below) from the website.

64

Figure 15: Three widgets located on the home page.

Figure 16: The two infographics located on the home page featuring the Not Available

component.

65

Figure 17: A sample of the word cloud.

Figure 18: The dropdown buttons, displaying what it looks like when you click on them.

Figure 19: The map from the tracker page on our website.

66

Figure 20: The admin page from our website.

Figure 21: Food Poisoning infographic #1

67

Figure 22: Food Poisoning infographic #2

Figure 23: Food Poisoning infographic #3

Figure 24: Timeline Tool

68

Figure 25: Tweet and Outbreak counters.

Figure 26: Infographics on food poisoning facts.

69

Figure 27: Meet the team section from our website.

Figure 28: Partner Descriptions

70

Figure 29: Example of the Word Cloud tool found on the Learn page.

Figure 30: Example of the Map Tool found on the Tracker page.

71

Figure 31: Example of the Map Tool we think could be easily implemented in the future.

Figure 32: Another example of the Map Tool we think could be easily implemented in the future.

72

Figure 33: Example of the future Map Tool display feature.

73

Appendix B: IRB Approval - IRB-22-0410

74

Appendix C: User Study Survey

75

76

77

78

79

80

81

82

Appendix D: User Study Relevant Responses
User 1:

83

User 2:

84

85

User 3:

86

87

User 4:

88

User 5:

89

Appendix E: Repository
For access to the repository, please download it from the following Drive link.

90

https://drive.google.com/file/d/1ikBZ6Nxc5orTUEX-8vnjdf8duZdS222e/view?usp=sharin

g

The results of the code can be accessed at the following domain.

https://usda-foodpoisoning.wpi.edu/

Appendix F: Graphs

Graph 1: Infographics results.

91

https://drive.google.com/file/d/1ikBZ6Nxc5orTUEX-8vnjdf8duZdS222e/view?usp=sharing
https://drive.google.com/file/d/1ikBZ6Nxc5orTUEX-8vnjdf8duZdS222e/view?usp=sharing
https://usda-foodpoisoning.wpi.edu/

Graph 2: Tab results.

Graph 3: Learn results.

92

References

Rahimi, A., Vu, D., Cohn, T., & Baldwin, T. (2015). Exploiting text and network context for

geolocation of social media users. Proceedings of the 2015 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technologies.

https://doi.org/10.3115/v1/n15-1153

Bo, Han, et al. “Geolocation Prediction in Social Media Data by Finding Location

Indicative Words.” Proceedings of COLING 2012: Technical Papers, 2012, pp. 1045–1062.,

https://aclanthology.org/C12-1064.pdf.

Moreland, K. (2016). Why we use bad color maps and what you can do about it.

Electronic Imaging, 2016(16), 1-6.

Sibrel, S. C., Rathore, R., Lessard, L., & Schloss, K. B. (2020). The relation between

color and spatial structure for interpreting colormap data visualizations. Journal of vision,

20(12), 7-7.

Smiciklas, M. (2014). Infographics. Communication and influence through images. Saint

Petersburg, Piter Publ.

Dharmendra Kumar (06 Oct 2021). Bootstrap 4 |Introduction.

https://www.geeksforgeeks.org/bootstrap-4-introduction/

93

https://auth.geeksforgeeks.org/user/Dharmendra_Kumar/articles
https://www.geeksforgeeks.org/bootstrap-4-introduction/

