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ABSTRACT 

 Based on current statistics conducted by the CDC, annual incidences of Lyme disease 

have increased in Massachusetts since 2012 (CDC, 2015). This project used tick information 

from the UMass Amherst database to determine surrogates of biodiversity that best explain 

Lyme disease incidences in the state. Previous studies support the dilution effect, which 

hypothesizes that a loss of biodiversity can increase infectious disease prevalence. To test the 

dilution effect against indicators of biodiversity, we ran both correlation and Akaike Information 

Criterion (AICc) analyses. Our results demonstrated that the number of people influenced the 

percent of infected ticks and the dilution effect hypothesis was refuted. 
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CHAPTER ONE: LITERATURE REVIEW      

Problem Statement 

Classified as an emerging infectious disease, reported incidences of positive Lyme 

disease have increased in the United States since 2001 (CDC, 2014; Petnicki-Ocwieja & 

Brissette, 2015). In 2015, approximately 95% of reported incidences of Lyme disease occurred in 

fourteen states, a majority of which were located in the Northeastern territories (CDC, 2015; 

Figure 1). 

 

FIGURE 1: Reported cases of Lyme disease in the United States for 2001 & 2014 (CDC, 2015). 

 

Although the Center of Disease Control (CDC) estimates that approximately 30,000 cases 

of Lyme disease are reported annually, there is still some skepticism regarding the surveillance 

of Lyme disease (CDC, 2015). According to several researchers, the statistical surveillance of 

Lyme disease is severely understated (Ostfeld, 2011; Petnicki-Ocwieja & Brissette, 2015). This 

can be due to the inaccuracy of the diagnostic tests and the difficulty diagnosing Lyme disease 

from the broad variety of possible symptoms linked to the disease (Ostfeld, 2011). In 2015, the 

state of Massachusetts reported 43 incidences of Lyme disease per every 100,000 individuals in 
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the state's’ population (CDC, 2015). Overall, Massachusetts accounted for 14.4% of the 25,359 

total cases recorded and was ranked as the second highest state for reported Lyme disease cases 

in 2014 (CDC, 2015). Figure 2 displays the incidence rates for the confirmed cases of Lyme 

disease in Massachusetts from 2010 to 2014. 

 

FIGURE 2: Incidence rates for population of confirmed reports for Lyme disease in Massachusetts from 

2010- 2014 (MassGIS, 2016). 

 

For this research project, our goal was to determine which abiotic and biotic indicators, 

associated with biodiversity, best explain the prevalence of Lyme disease in Massachusetts. 

Lyme disease 

Lyme disease is a vector-borne disease linked to transmission of Borrelia burgdorferi, a 

bacterium commonly carried by Ixodes scapularis ticks. Typically, ticks inhabit areas in the soil 

where they are able to gather nutrients to maintain homeostasis. The B. burgdorferi bacterium 

inhabits a tick as a vector which can transmit Lyme disease to a competent host. Pathogen 

transmission is more likely to occur if the tick attaches and feeds on a competent host for longer 

than twenty-four hours (Estrada-Peña, 2015; Petnicki-Ocwieja & Brissette, 2015). 
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Behavior of ticks have an effect on the transmission of Lyme disease (Arsnoe et al, 2015; 

Estrada-Peña, 2015). After hatching from larvae, ticks cannot sustain themselves on soil 

nutrients alone. They must travel out of the soil and leaf litter in search of a sustainable host for a 

blood meal ( Estrada-Peña, 2015). The action of traveling to find a host to feed on is known as 

the questing period (Arsnoe et al, 2015; Estrada-Peña, 2015). In a recent study, it was 

hypothesized that the reason Lyme disease has become an epidemic is due to the differences in 

questing behaviors of southern and northern ticks (Arsnoe et al, 2015). In epidemic Northeastern 

regions, ticks are more likely to migrate out of leaf litter in search of a host, while in non-

epidemic Southern regions ticks are less likely to move above the protection of the leaf litter. 

One source hypothesized that Southern ticks exhibit this behavior due to their ability to feed on 

hosts, such as lizards, that remain within the leaf litter (Arsnoe et al, 2015). The movement of the 

epidemic Northern ticks increases the probability of encountering a host that will increase 

pathogen transmission (Arsnoe et al, 2015). 

Once feeding ends, the tick detaches itself from the host and falls to the ground to molt. 

Life stages of ticks include three parasitic stages: larva, nymph and adult tick (Figure 3). After 

feeding on a host, a tick will drop off and moult into the next stage. This continues until the tick 

becomes a mature adult tick and mates. Adult female ticks will fall off their hosts and instead of 

moulting, proceed to lay eggs (Arsnoe et al, 2015; Estrada-Peña, 2015). 
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FIGURE 3: Tick life cycle (Estrada-Peña, 2015). 

 

Ticks can only transmit Lyme disease to a host during their nymphal and adult life stages 

(Arsnoe et al, 2015; Estrada-Peña, 2015). Lyme disease transmission to a host is also reliant on a 

few additional variables including tick species, duration of attachment, and host competency. 

Although two families of ticks exist, only the Ixodidae family of ticks is capable of transmitting 

Lyme disease to a host due to their morphological features, namely their salivary glands 

(Estrada-Peña, 2015; Wilhelmsson et al, 2013). Ixodidae ticks secrete excess water derived from 

the blood meal back into their host during attachment. This allows for the bacterium to be passed 



11 

into the host’s blood stream (Estrada-Peña, 2015). For pathogen transmission to occur, recent 

studies have suggested that the tick must be attached for at least twenty-four hours (Estrada-

Peña, 2015; Wilhelmsson et al, 2013). 

Reservoir competence is the ability of an infected host to reproduce and transmit the 

Lyme disease pathogen (Li et al, 2012; Wood et al, 2014). Although reservoir competence does 

vary between species, Peromyscus leucopus (white-footed mice) have been identified as the most 

competent hosts for B. burgdorferi transmission as shown in Figure 4 (LoGiudice et al, 2003; 

Wood et al, 2014). Odocoileus virginianus (white-tailed deer) populations were characterized as 

a secondary reservoir host for ticks during nymphal stage as well as raccoons and ground nesting 

birds (LoGiudice et al, 2003; Figure 4). 

 

FIGURE 4: Reservoir competent hosts for Lyme disease pathogen vector with respect to nymphal infection 

prevalence and mouse density (Legend: green diamonds = white-footed mouse; blue squares = white-tailed 

deer; purple triangles = raccoons; blue circles = ground nesting birds) (LoGiudice et al, 2003). 

 

Host competence may be dependent on both host behavior and host immunological 

response to the pathogen (Barron et al, 2015; Dizney & Dearing, 2016). After a host has been 
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exposed to the B. burgdorferi pathogen, the host’s immune system will either be susceptible to 

the pathogen or reject the pathogen. If the host is susceptible to the pathogen, then the organism 

will support proliferation of the parasitic disease and will be infected with Lyme disease (Li et al, 

2012). The duration of the infection can increase the probability of spreading the pathogen when 

the infected organisms encounters other susceptible organisms, thus transmitting Lyme disease 

(Barron et al, 2015). For vector-borne diseases such as Lyme disease, competent host population 

density and susceptibility of infection play an important role in the continued transmission of the 

disease (Wood et al, 2014). 

Biodiversity 

Recently, researchers proposed that an increase in the amount of biodiversity present in 

an ecosystem can have adverse effects on pathogenic transmission of a disease (Johnson et al, 

2015). For the purpose of this paper, biodiversity will be defined as all the species richness 

present in a particular area or habitat. Species richness is inclusive of the number of different 

species present in an ecosystem (Laurila-Pant et al, 2015).  

Biodiversity can be measured both directly and indirectly (Johnson et al, 2015; Laurila-

Pant et al, 2015). Direct measurements of biodiversity include quantifying diversity measures by 

using the Shannon diversity index (Laurila-Pant et al, 2015). Large measurements of biodiversity 

are usually indicative of high species richness (Laurila-Pant et al, 2015). However, biodiversity 

is difficult to quantify because of the multitude of variables needed to adequately determine it. 

Although biodiversity is difficult to measure, indicators are used to estimate biodiversity 

indirectly (Laurila-Pant et al, 2015). In one research article, researchers used a “top-down 

taxonomic” method to estimate species richness and biodiversity (Williams & Gaston, 1994). A 
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species of a higher taxonomic group was measured to predict the species richness of an organism 

from a lower taxonomic level (Williams & Gaston, 1994). Other indicators of biodiversity can be 

related to the area of habitat or specific land covers. A mixture of different types of land cover is 

usually indicative of more biodiversity (Mittermeier et al, 1998).  

The Dilution Effect Controversy 

Interactions between abiotic and biotic factors can influence biodiversity present, which 

may or may not have an effect on the transmission of Lyme disease. Several researchers have 

hypothesized that loss of biodiversity in a habitat increases the risk of pathogen transmission 

(LoGuidice et al, 2003; Ostfeld, 2011). This hypothesis, known as the dilution effect, is reliant 

on three conditions: (1) the host species must differ in host reservoir competence, (2) low 

competent hosts can disrupt vector distribution, and (3) competent hosts are not vulnerable to 

species loss (Ostfeld, 2011). The dilution effect proposes that a decrease in biodiversity can be 

responsible for an increase in pathogen transmission due to an increase in interactions between 

the pathogen and competent hosts (Johnson et al, 2015).In addition, fragmented landscapes can 

decrease biodiversity in a habitat, especially if the separated habitats are approximately two 

hundred meters apart (Li et al, 2012; Zolnik et al, 2015). Thus, landscape fragmentation should 

increase incidence of Lyme disease.  

However, some research has discredited the dilution hypothesis showing that land 

fragmentation has no effect on Lyme disease specifically (Zolnik et al, 2014).  A counter 

argument supports that Lyme disease prevalence does not follow the proposed conditions 

outlined by the dilution effect (Wood et al, 2014; Zolnik et al, 2015). This theory, the 

amplification effect, states that an increase in biodiversity would facilitate an increase in 
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pathogen transmission of Lyme disease through the variability of competent hosts (Ogden & 

Tsao, 2009; Wood et al, 2014; Zolnik et al, 2015).  

Biotic Factors 

Biotic factors such as deer populations, land cover, and leaf litter were examined as 

possible indicators that may affect the prevalence of Lyme disease. In previous studies, white-

tailed deer were characterized as the second most common competent host for nymphal infection 

prevalence (LoGiudice et al, 2003). Although the white-footed mouse is the most competent host 

for spreading Lyme disease, it is often difficult to directly quantify their population density. 

Larger species, such as the white-tailed deer, are easier to track and roughly estimate their 

population size (LoGiudice et al, 2003). Massachusetts deer population data was gathered from 

the Massachusetts Division of Fisheries & Wildlife to better determine if Lyme disease 

prevalence is directly associated with deer density.  

When evaluating land cover, it is important to quantify the amount of cover an area has, 

as well as determine the type of forest cover. Types of forest cover, such as coniferous or 

deciduous forest, and land cover can alter the biodiversity of the environment. Massachusetts has 

a broad spectrum in both types of land cover and developed land (Defenders of Wildlife, 2016). 

Grasslands consist of relatively low species richness when compared to other forest types, both 

coniferous and deciduous (Guerra et al, 2002). Although coniferous forests have a higher species 

richness than grasslands, deciduous forests have the greatest species richness and thus the largest 

range of biodiversity (Guerra et al, 2002). Specifically, deciduous forests have supported several 

different species including ticks, with a broad range of food supply (Ostfeld et al, 2006).  
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Land cover also plays a large role in the amount of biodiversity of an environment. Land 

cover classifications include urban, suburban, and rural areas. Urban areas, such as large cities, 

have a lower amount of biodiversity due to development of infrastructure and removal of 

habitats. Urban areas often experience a shift in biodiversity from a large species richness to only 

a few species with higher population densities (McKinney, 2002; Goddard et al, 2010). Suburban 

areas are environments that have some infrastructure in place, but not to the extent of cities. 

Suburban areas do experience loss of habitat and land fragmentation due to a lower rate of land 

development, which could decrease the amount of biodiversity present (McKinney, 2002; 

Goddard et al, 2010). In rural areas a majority of land is not developed which can lead to high 

species richness and biodiversity (McKinney, 2002). Land cover varies throughout 

Massachusetts; as land cover transitions from urban to suburban and suburban to rural, the 

amount of biodiversity increases (McKinney, 2002). 

Leaf litter, dying organic matter above the soil, is another biotic factor that can affect 

biodiversity present in an ecosystem (Swan, 2012). As the organic matter of leaf litter breaks 

down, the nutrients and minerals are reabsorbed into the environment through soil uptake. This 

nutrient rich soil supports a broader range of diverse organisms (Swan, 2012). High amounts of 

plant diversity can stimulate a high amount of organismal diversity (McKinney, 2002; Goddard 

et al, 2010). In addition, leaf litter aids in water conservation in the soil which can influence tick 

questing behavior (USDA, 2016).  

Abiotic Factors 

Abiotic factors, such as temperature and precipitation, affect species richness and the 

amount of biodiversity present in an environment (Costanza et al, 2007; Wang et al, 2009). Both 
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temperature and precipitation influence the vegetation and organisms that can be supported in a 

particular environment. For example, organisms that inhabit ecosystems such as deserts and 

rainforests vary (Costanza et al, 2007). In this study, both indicators of seasonal temperature and 

seasonal precipitation were evaluated to determine if either of these factors indirectly have a 

positive or negative correlation to tick database research. 

Environments with extremely high or extremely low temperatures rarely contain an 

abundant amount of biodiversity since species must adapt to survive in these conditions (Wang et 

al, 2009). Overall, higher temperatures are conducive to an increase in species richness until an 

upper limit in temperature is reached (Wang et al, 2009). Recent studies found a direct 

correlation between temperature and questing duration of ticks (Greenfield, 2011). A tick will 

not search for a blood meal when temperatures are below 42 degrees Fahrenheit (Greenfield, 

2011). As the temperature increases, the amount of time a tick spends questing also increases, 

which leads to a higher probability of Lyme disease transmission (Greenfield, 2011).  Seasonal 

temperatures in Massachusetts can affect tick behavior patterns. High temperatures in the spring 

and summer months can promote an increase in tick questing, while low temperatures during fall 

and winter decrease the probability of pathogen transmission and tick activity (Greenfield, 2011). 

In addition, during the colder temperatures, general biodiversity loss occurs (Shimadzu et al 

2013). During winter months, available vegetation decreases and several species of animals 

hibernate which further decreases the likelihood of transmitting Lyme disease (Shimadzu et al 

2013). 

Precipitation can also influence the amount of biodiversity present in an ecosystem. From 

research presented, environments with greater amounts of precipitation and humidity typically 
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exhibit higher abundances of biodiversity (Costanza et al, 2007). Water is an essential nutrient 

living organisms need to survive and encourage growth (Greenfield, 2011). With respect to tick 

behavior, soil moisture may be an important factor because ticks reside in the soil before and 

after questing (Gilbert, 2014). Unfortunately, for our research purposes, it was difficult to 

quantify soil moisture. Instead, we decided to use precipitation to estimate moisture that may be 

available in the soil and thus promote an increase in tick populations. Ticks’ survival increases in 

areas where there is higher humidity and soil moisture that allows ticks to store water while 

questing for a host (Gilbert, 2014). 

Ethical Considerations 

For the scope of this study, we researched ethical considerations surrounding animal 

rights and human health. Our first ethical consideration is on the topic of animal rights since 

opposition has arisen revolving around the use of live organisms for the purpose of research 

(Mika, 2006). Tick specimens were submitted to the surveillance database where they were 

tested for B. burgdorferi, and other infectious diseases (University of Massachusetts, Amherst, 

2016). Although ticks were submitted directly to the University of Massachusetts, Amherst Tick-

borne Diseases Passive Surveillance Database, it should still be considered whether using these 

species for testing outweighed the cost of the organism’s life (UMass, Amherst, 2016). Tick 

samples were individually removed and presumably killed during the removal process before 

being sent to the database, therefore ticks were not killed specifically for scientific purposes. 

Our second ethical consideration is the scientist's’ obligation to inform the public of the 

risks of infectious diseases. The prevalence of Lyme disease has been debated over the past 

several years (Ostfeld, 2011). Questions have arisen as to whether disease surveillance is 
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increasing or overestimated due to difficulties in diagnosis (Auwaerter et al., 2011; Johnson et 

al., 2010). Data from the UMass Amherst database supports that the number of infected Lyme 

disease ticks did increase in the last several years (CDC, 2014; University of Massachusetts, 

Amherst, 2016). From this inquiry, research surrounding this topic has recently spiked due to an 

increase in the number of ticks submitted and, of those ticks submitted, an increase in the number 

of ticks tested positive for Lyme disease (CDC, 2014; UMass Amherst, 2016). Given the risk to 

human health, there is an argument as to whether or not researchers are obligated to share 

information pertaining to Lyme disease (Nelson & Vucetich, 2009). From our ethical standpoint, 

we support that scientists should clearly communicate information that has been thoroughly 

researched to the public (Halliday, 2009). 

As additional information is collected, new testing strategies allow for more analysis on 

predicting the risk and prevalence associated with Lyme disease (Ozdenerol, 2015). The 

Geographic Information Systems (GIS) can be used to test new variables, such as soil 

composition, predator populations, humidity, or other disease incidences and their correlations to 

gather more information about Lyme disease risk (Ozdenerol, 2015). 

Akaike Information Criterion (AIC) 

Akaike Information Criterion (AIC) is a type of analysis that allows for ranking of 

models from a given data set. Although there are several different models of statistical analysis 

that can be used, AIC modeling compares output of each model and then determines which 

model best explains the data closest to the true relationship (Posada et al, 2004). 

  The analysis can determine which variables best represent the relationship between an 

indicator and one of two response variables: percent infected ticks and number of ticks 
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submitted. Corrected AIC (AICc) scores take small sample size into account and correct the 

relationship or correlation based on the expected data for a larger sample size. AIC weighting 

was used to determine which data set, out of each indicator being tested, would have the greatest 

likelihood of being the best model from the set. Delta AIC determines the difference between the 

likelihood of each indicator being the best model with the best fit data (Posada et al, 2004).  
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CHAPTER TWO: BIOTIC & ABIOTIC INDICATORS OF BIODIVERSITY 

AND THEIR CORRELATION TO LYME DISEASE TRANSMISSION 

Abstract 

Incidences of Lyme disease have increased steadily in Massachusetts since 2012. The 

University of Massachusetts has used a self-submission based tick testing database to document 

the number of ticks submitted and the number of infected ticks tested positive for tick-borne 

diseases. This project’s goal was to determine which potential surrogates of biodiversity best 

explain the incidence of Lyme disease in Massachusetts. Loss of biodiversity across landscapes 

may play an important role in the increased spread of infectious diseases. Based on the dilution 

effect high levels of biodiversity can reduce the spread of diseases. Using correlation and AICc 

analyses, we examined the influences of forest cover, number of people, deer density, seasonal 

temperature, and seasonal precipitation have on tick submissions and infection of ticks. Our 

results demonstrated that the number of people best explained the percent of infected ticks and 

was negatively correlated. The dilution effect was not supported by these analyses. However, 

based on our findings that number of people influences percent infected ticks, awareness efforts 

can be implemented to curb pathogen transmission.  

Introduction 

Lyme disease is a vector-borne disease transmitted by an Ixodidae scapularis tick that is 

infected with the pathogenic bacterium Borrelia burgdorferi (Estrada-Peña, 2015). During a 

blood meal, B. burgdorferi is passed from the tick to a competent reservoir host such as the 

Peromyscus leucopus (white-footed mice) or Odocoileus virginianus (white-tailed deer). These 

species allow maintenance of the parasitic bacterium to thus increase transmission of the disease 

(Fiset et al, 2015). Although ticks may encounter an incompetent host, a host that cannot support 
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the B. burgdorferi pathogen, these species facilitate tick survival throughout their larvae, nymph, 

and adult life stages by providing a blood meal (Estrada-Peña, 2015). 

Biodiversity, or abundance of different species present in a designated area, can influence 

the transmission and maintenance of pathogens (Ostfeld, 2011; Li et al, 2012). A proposed 

hypothesis, called the dilution effect, suggests that a decrease in host species diversity will result 

in an increase in the prevalence of Lyme disease (Ostfeld, 2011; Li et al, 2012). In addition to the 

host species diversity present, the hypothesis states that three other conditions have an effect on 

the infection rate. The three conditions include that (1) host species differ in reservoir 

competence of the disease, (2) a low number of competent hosts disrupt the distribution of the 

pathogen, and (3) competent hosts are not susceptible to species loss (Ostfeld, 2011). Well 

known competent hosts for maintaining and transmitting Lyme disease include the white-footed 

mouse and the white-tailed deer. Humans are affected by Lyme disease as low competence hosts 

(LoGuidice et al, 2003; Ostfeld, 2011). Overall, the dilution effect suggests that a general loss in 

biodiversity would increase the risk of pathogen transmission (LoGuidice et al, 2003; Ostfeld, 

2011). Alternative research using simulation data challenges that the dilution effect is not 

plausible (Zolnik et al, 2015). 

Climate, soil moisture, and land cover can have an effect on the species diversity that is 

present in a habitat, which in turn may affect pathogen transmission (Costanza et al, 2007; 

Greenfield, 2011; Wang et al, 2009). Areas with high temperatures and high precipitation have 

been known to have the greatest amount of biodiversity because of the diverse species richness 

in the environment (Costanza et al, 2007; Wang et al, 2009). Soil moisture influences tick 

behavior that may lead to an increase in the number of ticks that can infect a competent host 

(Greenfield, 2011; Gilbert, 2014). Moreover, areas of land that are well developed may lead to a 
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decrease in biodiversity present (McKinney, 2002). This paper will examine the role of these 

biodiversity indicators and their influence on the prevalence of Lyme disease in areas across 

Massachusetts. 

Goals & Hypotheses 

The goal of our research was to determine which indicators of biodiversity best explain 

the prevalence of Lyme disease in Massachusetts. This project used data compiled from the 

University of Massachusetts, Amherst Tick-borne Diseases Passive Surveillance Database in 

conjunction with data pertaining to number of people, land use, and seasonal weather to 

determine if these identified indicators have a positive or negative correlation to the prevalence 

of Lyme disease in selected study areas of the state. From our research, we hypothesized that 

deer density, average seasonal temperature, number of people, and percent composition of forest 

cover would significantly affect the prevalence of Lyme disease. We predicted that the first three 

indicators (deer density, average seasonal temperature, and number of people) would show a 

positive correlation to Lyme disease prevalence, while percent composition forest cover would 

have a negative correlation relationship.  

In previous research, white-tailed deer are competent hosts that can maintain and transmit 

the B. burgdorferi pathogen (Ostfeld et al, 2006; Ostfeld, 2011; Fiset, 2015).  It was proposed 

that an area with high deer populations will result in a higher percentage of recorded positive 

cases of Lyme disease due to high host competency (Ostfeld, 2011; Fiset, 2015). Average 

seasonal temperature was also hypothesized to exhibit a positive relationship in Lyme disease 

prevalence. We hypothesize that higher average summer and winter temperatures would result in 

an increase in percent infected Lyme disease cases (Ostfeld et al, 2006; Greenfield, 2011; Levi, 

2016). Tick survival decreases in colder temperatures since questing behavior is reduced 
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(Estrada-Peña, 2015). Warmer temperatures increase the amount of ticks questing which may 

increase the prevalence of Lyme disease if an infected tick feeds on a competent host and spreads 

the disease (Estrada-Peña, 2015; Greenfield, 2011). Number of people was hypothesized to have 

a positive correlation relationship with Lyme disease prevalence. Urban areas with high numbers 

of people are usually indicative of less forest cover (Johnson et al, 2015). By coupling number of 

people and land cover data with the dilution effect, we propose that Lyme disease is expected to 

be greatest in urban areas and lowest in rural areas due to the amount of biodiversity present in 

each area (Johnson et al, 2015). Based on prior research, it was hypothesized that higher percent 

composition of forest cover may negatively affect the prevalence of Lyme disease (Dobson, 

2012; Estrada-Peña, 2015; Levi, 2016). This infers that high forest cover and high quantities of 

biodiversity are usually directly related, and will have a direct correlation to the decrease in 

pathogen transmission as proposed by the dilution effect (Dobson, 2012; Ostfeld, 2011; Levi, 

2016).  

Methods 

Study Areas in Massachusetts  

ArcMap 10.4.1 (ESRI, 2011) was used to determine ten or twelve spatially independent 

study areas. Study areas are defined as an individual zip code or an aggregation of zip codes. Zip 

codes were categorized based on the 2010 human population census. The number of people  

from the census ranged from 0 people per square mile (depicted by the dark green color) to 

620,000 people per square mile (depicted by the dark red regions; Figure 5). After separating zip 

codes by population, zip codes were selected based on classification of rural or urban regions. 

Three towns were selected from urban, highly populated regions and four towns were selected 
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from rural, sparsely populated regions. The remainder (n = 12) of selected zip codes were chosen 

based on distribution of population densities in between the extremes. Furthermore, zip code 

areas in square miles were collected to ensure the sizes for each location were relatively 

comparable. If a selected study area was determined to have an inadequate area, localized zip 

codes were aggregated together to increase the area being tested. We obtained the total number 

of ticks submitted for each study area in Massachusetts from the University of Massachusetts, 

Amherst Tick-borne Diseases Passive Surveillance public database (LMZ, 2016). The 

information for the total number of ticks submitted for each zip code in Massachusetts were 

compiled for ticks submitted for testing from January 1st, 2006 until November 8th, 2016. 

Inadequate number of ticks submitted to the database restricted some zip codes from being 

selected for our research. Final study areas were distributed across the state (Figure 6). 

 

FIGURE 5: Visual representation of number of people from the 2010 census across Massachusetts. 
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FIGURE 6: Distribution of study areas in Massachusetts. 

 

Land Cover 

MassGIS Land Use 2005 datalayer (MassGIS, 2016) was clipped to selected study areas 

in ArcMap 10.4.1 to quantify land use and land cover. The aspects of use and cover examined for 

this project’s purposes were forest (combined coniferous and deciduous), open land, 

brushland/successional, powerline/utility, transitional, commercial, population density, and 

water. For our statistical analysis, we combined powerline/utility with brushland/successional to 

limit the variables tested. We calculated the percentage of each land cover type for each selected 

study area in ArcMap (Figure 7).  
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FIGURE 7: Land use for the Nantucket study area. 

 

Temperature and Precipitation 

Temperature and precipitation records from 2005 to 2016 for each of the sample study 

areas were obtained through the use of Weather Underground, an online weather station 

(Weather Underground, 2016). For each study area selected in Massachusetts, the monthly 

average temperature and amount of precipitation were collected. Based on the monthly average 

records, the seasonal temperature and amount of precipitation were also determined. Seasonal 

temperature was calculated by averaging the recorded data for the months of each season as 

follows: Winter (December, January, and February), Spring (March, April, and May), Summer 
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(June, July, and August), and Fall (September, October, and November). The recorded monthly 

and seasonal temperatures and amounts of precipitation are found in Appendix C. 

Deer Population 

High and low estimated deer population densities were acquired through the Deer and 

Moose Project Leader, David Stainbrook, at the Massachusetts Division of Fisheries and 

Wildlife (MassWildlife) for each of the selected study area. Deer population densities were then 

calculated by multiplying the density recorded by the square miles of forest present (Stainbrook, 

personal communication, 2016). MassWildlife determines the deer population estimates by 

surveying areas during hunting seasons (Stainbrook, personal communication, 2016).We used 

this upper deer density limit calculation to run our statistical and correlation data.  
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Study Area  
(Town Name) 

Lower Limit Deer Density 

(deer/sq. mile) 
Upper Limit Deer Density 

(deer/sq. mile) 
Calculated Deer 

Population 

Boston 0 80 268 

Andover, N 

Andover & 

Lawrence 

20 50 1309 

Springfield & West 

Springfield 
12 25 308 

Bedford 30 60 268 

Brewster 15 30 411 

Ipswich 30 60 681 

Nantucket 30 60 237 

Northborough 15 30 252 

Conway 10 20 608 

Chilmark 30 60 954 

Stockbridge/West 

Stockbridge 
12 25 602 

Sandwich 15 30 264 

TABLE 1: Deer density and deer population estimates 

 

Data Analysis 

To remove redundancy and reduce the number of predictor variables, we used a 

correlation analysis (SAS version 9.4; SAS, 2013). For any pairs of variables that were highly 

correlated (p-value 0.05) we retained variables that were of greatest interest in terms of 

management. We tested for correlation in the following variables: high deer density, low deer 

density, average winter temperature, average fall temperature, average spring temperature, 

average summer temperature, average winter precipitation, average fall precipitation, average 

spring precipitation, average summer precipitation, percent successional/brushland cover, 

percent open land cover, percent forest cover, percent very low density residential cover, percent 
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high density residential cover, percent commercial cover, percent transitional cover, and number 

of people from 2010 census.  

Additionally, we ran two Akaike’s Information Criterion (AIC) analyses to determine 

explanatory variables that would best represent each response variable. We developed a set of 

models to examine the relationship between environmental predictor variables (deer density, 

human population number, land cover, average seasonal temperature, average seasonal 

rrecipitation) and response variables (percent of infected ticks & number of ticks submitted; see 

Tables 4 & 5 for all models). A null model with no predictor variables and a full model with all 

predictor values were included in analyses. 

 We used AICc analyses to compare and rank eleven models while correcting for small 

sample size. K is the number of indicators used in running the model including the intercept. 

Delta AICc is the difference between the model’s AICc value and the model with the smallest 

AICc value. Ex is the expectancy of the model having a direct impact on the response variable. 

The model weight is listed under Akaike weight, which explains which indicator is the most 

important in determining which factor may affect the percent infected ticks and the number of 

ticks submitted. Lastly, the log likelihood value for each model is based on generalized linear 

mixed models. We then graphed relationships between response and explanatory variables from 

top-ranked models.  

Results  

The UMass Amherst database recorded information for each individual tick submitted to 

the database from 2006 to 2016. The number of ticks tested specifically in Massachusetts steeply 

increased from 2013 to 2014 and then remains relatively consistent from 2014 to 2016 (Figure 
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8). The number of ticks tested annually in Massachusetts ranged from 1-3792 and averaged 

1049 (462.22SE). This was inclusive of ticks that carry Lyme disease (B. burgdorferi sensu 

lato) and generic ticks (Borrelia general species) (UMass, 2016).  

 

FIGURE 8: Number of ticks tested in Massachusetts state from 2006-2016 (UMass, 2016). The number of 

ticks submitted to the database drastically increased in 2014. Dark blue represents the number of ticks the 

UMass database tested, while the light blue accounts for the number of ticks tested positive for Lyme disease. 

 

 We compiled 1,021 entries of ticks from 12 spatially independent study areas throughout 

Massachusetts from 2006-2016 from the UMass Amherst database. Study areas were defined by 

the town name and zip code or aggregation of zip codes (shown in Table 2). We classified study 

areas into rural, suburban or urban locations based on the number of people present and land 
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cover. The number of ticks tested for our study areas ranged from 14-284 and averaged 85 ( 

23.14SE). The lowest recorded percent infected ticks was 7.14% for Boston, while the highest 

recorded  percent infected ticks was 38.89% for Northborough.  

Study Area 

(Town Name) 
Zip Code(s) Square 

Miles 
# 

Ticks 
Percentage of 

Positive 

Ticks 

Classification 

of Area (Rural, 

suburban, 

urban) 

Number of People 

(Census 2010)  

Boston Aggregated 

List 
20.64 14 7.14% Urban 617,594 

Andover, N. 

Andover & 

Lawrence 

Aggregated 

List 
66.83 94 23.40% Urban 137,930 

Springfield & 

W. Springfield 
Aggregated 

List 
47.83 14 21.40% Urban 181,451 

Bedford 1730 13.85 138 28.99% Suburban 13,320 

Brewster 2631 24.85 284 32.04% Suburban 9,820 

Ipswich 1938 30.07 26 19.23% Suburban 13,175 

Nantucket 2554 44.42 108 32.41% Suburban 10,172 

Northborough 1532 18.71 36 38.89% Suburban 14,155 

Conway 1341 36.47 156 30.77% Rural 1,897 

Chilmark 2535 28.21 32 21.88% Rural 866 

Stockbridge/W. 

Stockbridge 
01262, 

01266 
37.77 24 20.83% Rural 3,523 

Sandwich 2563 43.79 95 28.42% Suburban 20,675 

TABLE 2: Summary table of each of the selected study areas with associated town name, zip code, number of 

ticks submitted, area, and the number of people. 

 

Data Analysis Results 

Based on the correlation analysis results for our explanatory variables, we retained seven 

variables: high deer density, average winter temperature, average spring precipitation, percent 

successional/brushland cover, percent forest cover, percent very low residential cover, and 
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number of people from 2010 census. The correlation table with p-values (0.05) for our original 

indicators is located in Appendix D. Variables were excluded from the retained indicators if they 

were highly correlated to the other indicators measured (shown in Table 3).  

Retained Indicators Highly Correlated Indicators 

High Deer Density Low Deer Density 

Average Winter 

Temperature 
Average Fall Temperature & 

Average Summer Precipitation 

Average Spring 

Precipitation 
Average Winter Precipitation 

Percent 

Successional/Brushland 

Cover 

Percent Open Land Cover 

Percent Forest Cover Percent Transitional Cover 

Percent Very Low Density 

Residential Cover 
Percent High Density Residential 

Cover 

Number of People (2010 

Census) 
Percent Commercial Cover, Percent 

High Density Residential Cover, 

Average Summer Temperature & 

Average Spring Temperature 

TABLE 3: Retained explanatory indicators determined for response variables from correlation data analysis.  

The correlation between indicators was used to determine which indicators would be used to run AICc 

analysis against the number of ticks submitted and the percent of infected ticks. 

 

Percent Infected Ticks Predicting Factors 

Results from AICc modeling demonstrated that number of people best explained variation 

in the percent infected ticks that tested positive for Lyme disease (Table 4). Number of people 

was shown to be negatively related to percent infected ticks based on the 95% confidence 

interval that is significant since the range is not inclusive of zero (Table 5; Figure 9). The top 

model with number of people was 20.8x more supported than the next model that did not contain 

this explanatory variable.  Although the number of people predictor variable best explains the 

percent infected ticks response, the second model (number of people + high deer population) was 
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ranked with a delta AICc less than 2 (Table 4).. However, we suggested that the number of 

people variable is the most important. This was especially true since the 95% confidence interval 

for high deer population was not significant and included zero (Table 5).  

Model K AICc  delta AICc  Ex Akaike Weight 

NumofPeople 2 -27.4301 0.000 1.000 0.664 

NumofPeople + 

HighDeerPop 
3 -25.5888 1.842 0.398 0.264 

Null 1 -21.3764 6.054 0.048 0.032 

Forest 2 -18.5749 8.855 0.012 0.008 

Successional 2 -18.3493 9.081 0.011 0.007 

HighDeerPop 2 -18.2371 9.193 0.010 0.007 

VeryLowResDen 2 -17.9211 9.509 0.009 0.006 

SpringPrec 2 -17.7779 9.652 0.008 0.005 

AveWinter 2 -17.7457 9.685 0.008 0.005 

Forest + Successional 3 -15.6512 11.779 0.003 0.002 

Full Model 8 60.7652 88.196 0.000 0.000 

    1.507 1.000 

TABLE 4: Models run in Akaike’s Information Criterion response to percent infected ticks. The delta AICc 

explains the model that best explains percent infected ticks. The models that best explain percent infected 

ticks were number of people and combined number of people and high deer density.  
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Explanatory Variable Estimate Standard Error 95% Confidence 

Interval Lower Limit 
95% Confidence 

Interval Upper Limit 

NumofPeople 0.0000 0.0000 0.0000 0.0000 

HighDeerDen -0.0001 0.0001 -0.0002 0.0001 

TABLE 5: Parameter estimates and 95% Confidence intervals of number of people and high deer density. 

 

We used graphs to visually display the relationships between top ranked models for the percent 

infected ticks response variable. As shown in Figure 9, the relationship between percent of 

infected ticks and number of people was negative (R2 = 0.551). Additionally, the relationship 

between second ranked model (high deer density and percent infected ticks) was graphed to 

show the variability between the 12 study areas (R2 = 0.0438; Figure 10). 

 

Figure 9: Graph of the relationship between the percent infected ticks and number of people. The data of 

infected ticks and number of people were retrieved from 12 sample locations. 
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FIGURE 10: Graph of the relationship between percent infected ticks and the high deer density in a sample 

area. The data for each variable was collected in 12 study areas. 

 

Number of Ticks Submitted Predicting Factors 

 Results from the AICc modeling demonstrated that the null model best explained the 

variation in the number of ticks submitted to the UMass Amherst database (Table 6). The null 

model was 2.9x more supported than the next model. The second ranked model (the number of 

people indicator) was not ranked with a delta AICc less than 2 and therefore was not considered 

important. In addition, the 95% confidence interval for the number of people was not significant 

because it included zero (Table 7).  
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Model K AICc  delta AICc  Ex Akaike Weight 

Null 1 143.5557 0.000 1.000 0.366 

NumofPeople 2 145.699 2.143 0.342 0.125 

AveWinter 2 146.0267 2.471 0.291 0.106 

SpringPrec 2 146.1493 2.594 0.273 0.100 

VeryLowResDen 2 146.3653 2.810 0.245 0.090 

Forest 2 146.8232 3.268 0.195 0.071 

HighDeerPop 2 147.1703 3.615 0.164 0.060 

Successional 2 147.1842 3.629 0.163 0.060 

NumofPeople + 

HighDeerPop 
3 150.2409 6.685 0.035 0.013 

Forest + Successional 3 151.2995 7.744 0.021 0.008 

Full Model 8 230.9502 87.395 0.000 0.000 

    2.730 1.000 

TABLE 6: Models run in Akaike’s Information Criterion response to number of ticks submitted. The delta 

AICc and Akaike weight shows the models that best explain the number of ticks submitted. The resulting 

models that best explain the number of ticks submitted was the null. 

 

Explanatory Variable Estimate Standard Error 95% Confidence 

Interval Lower Limit 
95% Confidence 

Interval Upper Limit 

Null (Intercept Only) 85.0833 22.1508 41.6685 128.4982 

NumofPeople -0.0002 0.0001 -0.0004 0.0001 

TABLE 7: 95% Confidence interval of null and number of people models for number of ticks submitted 

response variable. 

 

The model that best represents the number of ticks submitted is the null model. The null 

model predicts that the variables that we explored did not influence the prediction of the number 

of ticks submitted. The second best model to predict the number of ticks submitted was the 

number of people model (Figure 11). However, the R2 value (0.1192) and the 95% confidence 
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interval suggested that the relationship between the number of people and the number of ticks 

submitted was not important. 

 

FIGURE 11: Graph of the relationship between the number of ticks submitted to the number of people for 

each sample location. The R2 value was 0.1192, indicating this is not as strong as a relationship compared to 

the previous response model. 

 

Discussion  

Percent Infected Ticks  

Surprisingly, we found that the number of people model was negatively correlated to the 

the percent of infected ticks response variable. Thus, our results do not support the dilution effect 

hypothesis. The dilution effect proposes that a higher number of species richness would lower 

the chance of an individual coming into contact with an infected tick and decrease the incidence 

of Lyme disease. Although the larger number of people influences the percent of infected ticks, 

this is not indicative of species richness in a study area. Therefore, we cannot conclude that the 

dilution effect would be supported. 
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In addition, our hypothesis for number of people was refuted. Originally, we 

hypothesized the opposite effect would occur because a higher number of people should lower 

the percent forest cover through urbanization that can lead to a decrease biodiversity in an area 

studied, thus increasing Lyme disease incidence rates (McKinney, 2002; Goddard et al, 2010; 

Guerra et al, 2002). However, from our collected data we realize that number of people ranging 

from approximately 200,000 to 600,000 were not tested (shown in Figure 9). If we considered 

data points within this range, our results may change. Other indicators that had a high correlation 

to number of people were percent commercial cover and percent high density residential cover 

(shown in Table 4). It could be inferred that high numbers of people and high percent 

commercial composition could result in a low percent of infected ticks because of decreased 

amount of forest habitat present (Guerra et al, 2002). Insufficient amount of forest habitat could 

decrease species richness supported in an area and thus decrease the amount of ticks that inhabit 

the area (Guerra et al, 2002; Ostfeld, 2011). Previous studies investigated that land fragmentation 

caused by urbanization had no effect on infection rates and thus did not support the dilution 

effect hypothesis (Zolink et al, 2015). In addition, research supports that a negative relationship 

exists between tick infection prevalence and species richness in fragmented habitats (LoGiudice 

et al, 2008; Zolink et al, 2015).  

The second explanation for the percent infected ticks response variable was the combined 

number of people and high deer density indicators (delta AICc = 1.842). Although this combined 

result showed a high AICc value (-25.5888), we did not believe the number of people + high deer 

density was an appropriate explanation on its own. From our analysis, it was suggested that the 

number of people indicator may have influenced the AICc value when in combination with high 

deer density. This may be especially true since the high deer density indicator alone did not have 
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a high AICc value or a well-represented 95% confidence interval (shown in Table 6 & Table 7). 

Since this interval included zero, the interval is not significant, therefore deer density is not a 

representative model for percent infected ticks. High deer density was strongly correlated with 

low deer density. This was expected because we received ranges from the Massachusetts 

Division of Fisheries and Wildlife (MassWildlife), which predicted the density based on square 

forest mile (Stainbrook, personal communication). We omitted low deer density because, for 

some study areas the low estimate was zero, which may not have been appropriate representation 

of the deer density present.  

The data retrieved from the MassWildlife on deer population densities limited our results. 

After conversing with a project leader at this organization, we recognized that deer densities vary 

greatly even within a two-mile radius due to deer movement (Stainbrook, personal 

communication). Thus, it is challenging to estimate the population of deer within a specific study 

area. In addition, deer population estimates are calculated during hunting seasons which may 

overestimate or underestimate the population size (Stainbrook, personal communication, 2016). 

Therefore, both low and high deer population estimates were recorded for the range the 

MassWildlife provided (Stainbrook, personal communication, 2016). Other research further 

suggests that deer populations exhibit variable and weak interactions with ticks (Ostfeld et al, 

2006). Observed interactions between ticks and deer did not effect nymphal abundance in 

subsequent seasons regardless of the deer population size (Ostfeld et al, 2006).  

Number of Ticks Submitted  

Based on the analysis, the null hypothesis was the best explanation for the response 

variable number of ticks submitted (delta AICc = 0.000). None of the models containing the 

explanatory variables we chose explained the number of ticks submitted. However, we expected 
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this result because the number of ticks submitted to the UMass Amherst database should not be 

dependent on any biodiversity indicator tested. From our data collection, we relied heavily on 

self-submitted ticks to the UMass Amherst database which may not have been an appropriate 

representation of tick populations in Massachusetts. We inferred that distance from the tick 

submission laboratory and low amount of tick submissions could have affected our data. 

Therefore, we did not include Amherst in our study area to eliminate any potential bias. In 

addition, study ares were selected based on the number of ticks submitted.  

Limitations 

Due to the scale and scope of our project, we would like to address some additional 

limitations that are evident in this report. These limitations include potential biasing due to 

selection of our sample study areas, sample size, and available datalayers.  

Hand-picking the Sample 

When determining the selection of potential areas for our study, we were unableto  

perform a random sampling method to counteract biases due to limitations in data submitted to 

the tick database. To establish a control for our project, selected study areas were within similar 

land sizes, spatially separated, contained a broad range in human population size, and were from 

different quantifications of land development. Since random sampling did not occur, potential 

sample biasing may have occurred.  

Small Sample Size 

Our sample size consisted of 12 study areas. A small sample size runs the risk of bias, 

especially since we hand-picked our sample. In addition, 12 study areas may not be 

representative of the entirety of Massachusetts. A larger sample size would negate the potential 
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bias from selected study areas and would be more representative of Massachusetts state as a 

whole.  

Land Cover 

Although we were able to separate different types of land cover in each of the selected 

study areas, we encountered a limitation within the Land Cover datalayer from MassGIS. Forest 

cover could not be filtered into different forest types: deciduous and coniferous covers. This 

differentiation of forest types could allow for specificity in type of forest cover that best 

correlates with Lyme disease prevalence (Guerra et al, 2002; Ostfeld et al, 2006). In addition, a 

secondary limitation occurred with the MassGIS Land Cover datalayer. The land cover datalayer 

used for this analysis was collected in 2005. This datalayer may not have been representative of 

the land cover present during the submission of ticks to the database, which were recorded from 

2005 through 2016. 

Future Recommendations  

In future studies, additional indicators, such as elevation, soil moisture, and leaf litter 

should be tested against our response variables. Due to global increases in temperature, some 

ticks are able to move to higher elevations that they were not previously able to survive 

(Brownstein et al, 2005). Changes in suitable habitats for ticks may affect the prevalence of 

Lyme disease in new habitats (Brownstein et al, 2005). Previous research hypothesized that the 

amount of leaf litter and moisture in the soil could have a positive effect on tick survival (Guerra 

et al., 2005). However, we could not collect quantitative data for the amount of moisture in the 

soil or the amount of leaf litter in any selected study area to use in our analysis. In previous 

studies soil moisture was quantified from data collected on daily temperature and humidity 
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readings (Medlock et al, 2008). We hypothesize that soil moisture and degree of leaf litter in a 

study area are indicators of Lyme disease prevalence in Massachusetts due to their association 

with temperature and humidity (Estrada-Peña, 2015; Greenfield, 2011; Fiset, 2015). 

 In summary, our research suggested that human population numbers, a potential indicator 

of biodiversity, best explained the percent of infected ticks in Massachusetts. Incidences of Lyme 

disease may be correlated to the proportion of ticks that are infected, however this would require 

additional experimentation. From our research, the number of people was also positively 

correlated with percent high density residential cover, percent commercial cover, average spring 

temperature, and average summer temperature. Although there is no definitive explanation for 

incidences of Lyme disease, public awareness of biotic and abiotic influences in general could 

help to curb pathogen transmission.  
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Appendices 

Appendix A: Steps taken in ArcMap 10.4.1 with Datalayers 

Layer: Zip Code (5-digit codes) 

1. MassGIS Datalayers (http://www.mass.gov/anf/research-and-tech/it-serv-and-

support/application-serv/office-of-geographic-information-

massgis/datalayers/layerslist.html) 

2. Find Datalayer ‘ZIP Codes (5-Digit) from HERE’ under the Political/Administrative 

Boundaries Section. 

3. Download the shapefile and save in a specified folder. 

4. Open ArcMap 10.4.1 and open a blank map.  

5. Navigate to Add Data. 

6. In the Add Data window, select Connect to Folder and find the folder the files are saved 

in. Select Okay. 

7. Once again, in the Add Data window, select the shapefile for the data and select Add. 

The shapefile will be added as a layer in the Table of Contents window.  

8. Select the zip codes needed. 

a. Select the Zip code layer under Table of Contents 

b. Select Open Attribute Table 

c. The Table will open and select the City_Town heading. Click Sort Ascending. 

d. Select the zip codes and towns being used for the study. 

i. While holding the Control key on the keyboard, click on each zip code/ 

town to be displayed. 

ii. The selected zip codes/ towns will be displayed after exiting the attribute 

table. 

iii. Make selected zip codes/ towns layer. 

 

Layer: Selected Zip Codes/ Towns 

1. Zip codes/ towns were selected and highlighted from the selected zip codes/ towns from 

Layer: Zip Codes, #8, d.  

2. Right click on the Zipcodes layer. 

3. Click Selection. 

4. Select ‘Create Layer From Selected Features’ 

5. A new layer will be produced with only the selected zip codes/ towns. Rename the layer 

Selected Zip Codes. 

 

Layer: Datalayers from the 2010 U. S. Census 

 

1. MassGIS Datalayers (http://www.mass.gov/anf/research-and-tech/it-serv-and-

support/application-serv/office-of-geographic-information-

massgis/datalayers/layerslist.html) 

2. Find Datalayer ‘Datalayers from the 2010 U. S. Census’ under the Census/Demographic 

Data 

3. Find the category Other Geography. Download the Census 2010 Town data Shapefile. 

4. Copy the files to your own folder. 

http://www/
http://www/
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5. In ArcMap 10.4.1, navigate to Add Data. 

6. In the Add Data window, select Connect to Folder and find the folder the files are saved 

in. Select Okay. 

7. Once again, in the Add Data window, select the shapefile for the data and select Add. 

The shapefile will be added as a layer in the Table of Contents window.  

8. To view the population data visually, select the variables and the color ramp. 

a. Right click on the CENSUS2010TOWNS_POLY layer 

b. Select Properties 

c. Select the Symbology tab 

d. Select Categories under the ‘Show:’ box on the left hand side of the tab 

e. Select Unique values, many fields 

f. Under Value Fields, select POP2010.  

g. Select the green to red color ramp 

h. Add All Values.  

i. Select Okay 

j. The attributes for population will be shown under the Census 2010 layer in the 

Table of Contents. 

 

Layer: Land Use (2005) 

 

1. MassGIS Datalayers (http://www.mass.gov/anf/research-and-tech/it-serv-and-

support/application-serv/office-of-geographic-information-

massgis/datalayers/layerslist.html) 

2. Find Datalayer “Land Use (2005)” under Physical Resources: Land Use/Land Cover, 

Geological/Geophysical, Atmospheric 

3. Download the shapefile.  

4. Copy the downloaded files into specified folder 

5. In ArcMap 10.4.1, navigate to Add Data. 

6. In the Add Data window, select Connect to Folder and find the folder the files are saved 

in. Select Okay. 

7. Once again, in the Add Data window, select the shapefile for the data and select Add. 

The shapefile will be added as a layer in the Table of Contents window.  

8. Select attributes to be displayed to show and change the data being examined. 

a. Right click on the layer 

b. Select Properties 

c. Select the Symbology tab 

d. Select Categories on the left hand window under ‘Show’. 

e. Select Unique values, many fields 

f. Select the data to be shown in the Value Field required box. In this case, it is 

(LU05_DESC). 

g. Select Add All Values, which will extract the data 

h. Select Okay 

i. Change the colors of the layers: 

i. The attributes will be displayed under the layer in the Table of Contents 

window.  

http://www/
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ii. Right click the color block next to the attribute and select the color wanted 

for each attribute.  

iii. If attribute is not wanted to be examined, color the attribute grey. 

iv. All unwanted attributes will be the same color so the wanted attributes can 

be examined based on their color. 

v. Select Okay. 

 

Indicators of Land Use selected in Layer: Land Use (2005), steps f-i:  

● Transitional and Commercial (Combined) 

● Power lines and Brush/Successional (Combined) 

● Densities (Low and High → the two extremes or comparison) 

● Forest 

● Open Land 

● Water 

 

Land Use and Zip Codes Clipped Data: 

1. Using Land Use 2005 layer and the Selected Zip Codes layer, the two layers can be 

clipped together so land use data will only show for the selected zip codes. 

2. Select ‘Selected Zip Codes’ 

3. Select Geoprocessing 

4. Select Clip 

5. In Input Features, add the Selected Zip Codes file. 

6. In Clip Features, add the Land Use 2005 file. 

7. In Output Feature Class, label the clipped file specifically. 

a. Example: LandUse_SelectedZips_Clipped. 

8. Select Okay. A new layer will appear with the clipped Land Use and Selected Zip Code 
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Appendix B: Summary Table of Weather for Selected Study Areas 
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Appendix C: Summary Table of Land Cover for Selected Study Areas 
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Appendix D: Correlation Analysis for P-values <0.05 
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