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ABSTRACT

Based on current statistics conducted by the CDC, annual incidences of Lyme disease
have increased in Massachusetts since 2012 (CDC, 2015). This project used tick information
from the UMass Amherst database to determine surrogates of biodiversity that best explain
Lyme disease incidences in the state. Previous studies support the dilution effect, which
hypothesizes that a loss of biodiversity can increase infectious disease prevalence. To test the
dilution effect against indicators of biodiversity, we ran both correlation and Akaike Information
Criterion (AICc) analyses. Our results demonstrated that the number of people influenced the

percent of infected ticks and the dilution effect hypothesis was refuted.
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CHAPTER ONE: LITERATURE REVIEW

Problem Statement

Classified as an emerging infectious disease, reported incidences of positive Lyme
disease have increased in the United States since 2001 (CDC, 2014; Petnicki-Ocwieja &
Brissette, 2015). In 2015, approximately 95% of reported incidences of Lyme disease occurred in
fourteen states, a majority of which were located in the Northeastern territories (CDC, 2015;
Figure 1).

Reported Cases of Lyme Disease -- United States, 2001 Reported Cases of Lyme Disease -- United States, 2015

|

FIGURE 1: Reported cases of Lyme disease in the United States for 2001 & 2014 (CDC, 2015).

Although the Center of Disease Control (CDC) estimates that approximately 30,000 cases
of Lyme disease are reported annually, there is still some skepticism regarding the surveillance
of Lyme disease (CDC, 2015). According to several researchers, the statistical surveillance of
Lyme disease is severely understated (Ostfeld, 2011; Petnicki-Ocwieja & Brissette, 2015). This
can be due to the inaccuracy of the diagnostic tests and the difficulty diagnosing Lyme disease
from the broad variety of possible symptoms linked to the disease (Ostfeld, 2011). In 2015, the

state of Massachusetts reported 43 incidences of Lyme disease per every 100,000 individuals in



the state's’ population (CDC, 2015). Overall, Massachusetts accounted for 14.4% of the 25,359
total cases recorded and was ranked as the second highest state for reported Lyme disease cases
in 2014 (CDC, 2015). Figure 2 displays the incidence rates for the confirmed cases of Lyme

disease in Massachusetts from 2010 to 2014.

Antidence Rates (per 100,000 popadaton’ | for Confemed and Probabie Lyme Dinease
n Masaachusetts 2010 2014°

FIGURE 2: Incidence rates for population of confirmed reports for Lyme disease in Massachusetts from
2010- 2014 (MassGIS, 2016).

For this research project, our goal was to determine which abiotic and biotic indicators,

associated with biodiversity, best explain the prevalence of Lyme disease in Massachusetts.

Lyme disease

Lyme disease is a vector-borne disease linked to transmission of Borrelia burgdorferi, a
bacterium commonly carried by Ixodes scapularis ticks. Typically, ticks inhabit areas in the soil
where they are able to gather nutrients to maintain homeostasis. The B. burgdorferi bacterium
inhabits a tick as a vector which can transmit Lyme disease to a competent host. Pathogen
transmission is more likely to occur if the tick attaches and feeds on a competent host for longer

than twenty-four hours (Estrada-Pefia, 2015; Petnicki-Ocwieja & Brissette, 2015).



Behavior of ticks have an effect on the transmission of Lyme disease (Arsnoe et al, 2015;
Estrada-Pefia, 2015). After hatching from larvae, ticks cannot sustain themselves on soil
nutrients alone. They must travel out of the soil and leaf litter in search of a sustainable host for a
blood meal ( Estrada-Pefia, 2015). The action of traveling to find a host to feed on is known as
the questing period (Arsnoe et al, 2015; Estrada-Pefia, 2015). In a recent study, it was
hypothesized that the reason Lyme disease has become an epidemic is due to the differences in
questing behaviors of southern and northern ticks (Arsnoe et al, 2015). In epidemic Northeastern
regions, ticks are more likely to migrate out of leaf litter in search of a host, while in non-
epidemic Southern regions ticks are less likely to move above the protection of the leaf litter.
One source hypothesized that Southern ticks exhibit this behavior due to their ability to feed on
hosts, such as lizards, that remain within the leaf litter (Arsnoe et al, 2015). The movement of the
epidemic Northern ticks increases the probability of encountering a host that will increase
pathogen transmission (Arsnoe et al, 2015).

Once feeding ends, the tick detaches itself from the host and falls to the ground to molt.
Life stages of ticks include three parasitic stages: larva, nymph and adult tick (Figure 3). After
feeding on a host, a tick will drop off and moult into the next stage. This continues until the tick
becomes a mature adult tick and mates. Adult female ticks will fall off their hosts and instead of

moulting, proceed to lay eggs (Arsnoe et al, 2015; Estrada-Pefia, 2015).
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FIGURE 3: Tick life cycle (Estrada-Pefa, 2015).

Ticks can only transmit Lyme disease to a host during their nymphal and adult life stages
(Arsnoe et al, 2015; Estrada-Pefia, 2015). Lyme disease transmission to a host is also reliant on a
few additional variables including tick species, duration of attachment, and host competency.
Although two families of ticks exist, only the Ixodidae family of ticks is capable of transmitting
Lyme disease to a host due to their morphological features, namely their salivary glands
(Estrada-Pefia, 2015; Wilhelmsson et al, 2013). Ixodidae ticks secrete excess water derived from
the blood meal back into their host during attachment. This allows for the bacterium to be passed
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into the host’s blood stream (Estrada-Pefia, 2015). For pathogen transmission to occur, recent
studies have suggested that the tick must be attached for at least twenty-four hours (Estrada-
Pefia, 2015; Wilhelmsson et al, 2013).

Reservoir competence is the ability of an infected host to reproduce and transmit the
Lyme disease pathogen (Li et al, 2012; Wood et al, 2014). Although reservoir competence does
vary between species, Peromyscus leucopus (white-footed mice) have been identified as the most
competent hosts for B. burgdorferi transmission as shown in Figure 4 (LoGiudice et al, 2003;
Wood et al, 2014). Odocoileus virginianus (white-tailed deer) populations were characterized as

a secondary reservoir host for ticks during nymphal stage as well as raccoons and ground nesting

birds (LoGiudice et al, 2003; Figure 4).
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FIGURE 4: Reservoir competent hosts for Lyme disease pathogen vector with respect to nymphal infection
prevalence and mouse density (Legend: green diamonds = white-footed mouse; blue squares = white-tailed
deer; purple triangles = raccoons; blue circles = ground nesting birds) (LoGiudice et al, 2003).

Host competence may be dependent on both host behavior and host immunological

response to the pathogen (Barron et al, 2015; Dizney & Dearing, 2016). After a host has been
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exposed to the B. burgdorferi pathogen, the host’s immune system will either be susceptible to
the pathogen or reject the pathogen. If the host is susceptible to the pathogen, then the organism
will support proliferation of the parasitic disease and will be infected with Lyme disease (Li et al,
2012). The duration of the infection can increase the probability of spreading the pathogen when
the infected organisms encounters other susceptible organisms, thus transmitting Lyme disease
(Barron et al, 2015). For vector-borne diseases such as Lyme disease, competent host population
density and susceptibility of infection play an important role in the continued transmission of the

disease (Wood et al, 2014).

Biodiversity

Recently, researchers proposed that an increase in the amount of biodiversity present in
an ecosystem can have adverse effects on pathogenic transmission of a disease (Johnson et al,
2015). For the purpose of this paper, biodiversity will be defined as all the species richness
present in a particular area or habitat. Species richness is inclusive of the number of different

species present in an ecosystem (Laurila-Pant et al, 2015).

Biodiversity can be measured both directly and indirectly (Johnson et al, 2015; Laurila-
Pant et al, 2015). Direct measurements of biodiversity include quantifying diversity measures by
using the Shannon diversity index (Laurila-Pant et al, 2015). Large measurements of biodiversity
are usually indicative of high species richness (Laurila-Pant et al, 2015). However, biodiversity
is difficult to quantify because of the multitude of variables needed to adequately determine it.
Although biodiversity is difficult to measure, indicators are used to estimate biodiversity
indirectly (Laurila-Pant et al, 2015). In one research article, researchers used a “top-down

taxonomic” method to estimate species richness and biodiversity (Williams & Gaston, 1994). A
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species of a higher taxonomic group was measured to predict the species richness of an organism
from a lower taxonomic level (Williams & Gaston, 1994). Other indicators of biodiversity can be
related to the area of habitat or specific land covers. A mixture of different types of land cover is

usually indicative of more biodiversity (Mittermeier et al, 1998).

The Dilution Effect Controversy

Interactions between abiotic and biotic factors can influence biodiversity present, which
may or may not have an effect on the transmission of Lyme disease. Several researchers have
hypothesized that loss of biodiversity in a habitat increases the risk of pathogen transmission
(LoGuidice et al, 2003; Ostfeld, 2011). This hypothesis, known as the dilution effect, is reliant
on three conditions: (1) the host species must differ in host reservoir competence, (2) low
competent hosts can disrupt vector distribution, and (3) competent hosts are not vulnerable to
species loss (Ostfeld, 2011). The dilution effect proposes that a decrease in biodiversity can be
responsible for an increase in pathogen transmission due to an increase in interactions between
the pathogen and competent hosts (Johnson et al, 2015).In addition, fragmented landscapes can
decrease biodiversity in a habitat, especially if the separated habitats are approximately two
hundred meters apart (Li et al, 2012; Zolnik et al, 2015). Thus, landscape fragmentation should

increase incidence of Lyme disease.

However, some research has discredited the dilution hypothesis showing that land
fragmentation has no effect on Lyme disease specifically (Zolnik et al, 2014). A counter
argument supports that Lyme disease prevalence does not follow the proposed conditions
outlined by the dilution effect (Wood et al, 2014; Zolnik et al, 2015). This theory, the

amplification effect, states that an increase in biodiversity would facilitate an increase in
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pathogen transmission of Lyme disease through the variability of competent hosts (Ogden &

Tsao, 2009; Wood et al, 2014; Zolnik et al, 2015).

Biotic Factors
Biotic factors such as deer populations, land cover, and leaf litter were examined as

possible indicators that may affect the prevalence of Lyme disease. In previous studies, white-
tailed deer were characterized as the second most common competent host for nymphal infection
prevalence (LoGiudice et al, 2003). Although the white-footed mouse is the most competent host
for spreading Lyme disease, it is often difficult to directly quantify their population density.
Larger species, such as the white-tailed deer, are easier to track and roughly estimate their
population size (LoGiudice et al, 2003). Massachusetts deer population data was gathered from
the Massachusetts Division of Fisheries & Wildlife to better determine if Lyme disease

prevalence is directly associated with deer density.

When evaluating land cover, it is important to quantify the amount of cover an area has,
as well as determine the type of forest cover. Types of forest cover, such as coniferous or
deciduous forest, and land cover can alter the biodiversity of the environment. Massachusetts has
a broad spectrum in both types of land cover and developed land (Defenders of Wildlife, 2016).
Grasslands consist of relatively low species richness when compared to other forest types, both
coniferous and deciduous (Guerra et al, 2002). Although coniferous forests have a higher species
richness than grasslands, deciduous forests have the greatest species richness and thus the largest
range of biodiversity (Guerra et al, 2002). Specifically, deciduous forests have supported several

different species including ticks, with a broad range of food supply (Ostfeld et al, 2006).

14



Land cover also plays a large role in the amount of biodiversity of an environment. Land
cover classifications include urban, suburban, and rural areas. Urban areas, such as large cities,
have a lower amount of biodiversity due to development of infrastructure and removal of
habitats. Urban areas often experience a shift in biodiversity from a large species richness to only
a few species with higher population densities (McKinney, 2002; Goddard et al, 2010). Suburban
areas are environments that have some infrastructure in place, but not to the extent of cities.
Suburban areas do experience loss of habitat and land fragmentation due to a lower rate of land
development, which could decrease the amount of biodiversity present (McKinney, 2002;
Goddard et al, 2010). In rural areas a majority of land is not developed which can lead to high
species richness and biodiversity (McKinney, 2002). Land cover varies throughout
Massachusetts; as land cover transitions from urban to suburban and suburban to rural, the

amount of biodiversity increases (McKinney, 2002).

Leaf litter, dying organic matter above the soil, is another biotic factor that can affect
biodiversity present in an ecosystem (Swan, 2012). As the organic matter of leaf litter breaks
down, the nutrients and minerals are reabsorbed into the environment through soil uptake. This
nutrient rich soil supports a broader range of diverse organisms (Swan, 2012). High amounts of
plant diversity can stimulate a high amount of organismal diversity (McKinney, 2002; Goddard
et al, 2010). In addition, leaf litter aids in water conservation in the soil which can influence tick

questing behavior (USDA, 2016).

Abiotic Factors

Abiotic factors, such as temperature and precipitation, affect species richness and the

amount of biodiversity present in an environment (Costanza et al, 2007; Wang et al, 2009). Both
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temperature and precipitation influence the vegetation and organisms that can be supported in a
particular environment. For example, organisms that inhabit ecosystems such as deserts and
rainforests vary (Costanza et al, 2007). In this study, both indicators of seasonal temperature and
seasonal precipitation were evaluated to determine if either of these factors indirectly have a

positive or negative correlation to tick database research.

Environments with extremely high or extremely low temperatures rarely contain an
abundant amount of biodiversity since species must adapt to survive in these conditions (Wang et
al, 2009). Overall, higher temperatures are conducive to an increase in species richness until an
upper limit in temperature is reached (Wang et al, 2009). Recent studies found a direct
correlation between temperature and questing duration of ticks (Greenfield, 2011). A tick will
not search for a blood meal when temperatures are below 42 degrees Fahrenheit (Greenfield,
2011). As the temperature increases, the amount of time a tick spends questing also increases,
which leads to a higher probability of Lyme disease transmission (Greenfield, 2011). Seasonal
temperatures in Massachusetts can affect tick behavior patterns. High temperatures in the spring
and summer months can promote an increase in tick questing, while low temperatures during fall
and winter decrease the probability of pathogen transmission and tick activity (Greenfield, 2011).
In addition, during the colder temperatures, general biodiversity loss occurs (Shimadzu et al
2013). During winter months, available vegetation decreases and several species of animals
hibernate which further decreases the likelihood of transmitting Lyme disease (Shimadzu et al

2013).

Precipitation can also influence the amount of biodiversity present in an ecosystem. From

research presented, environments with greater amounts of precipitation and humidity typically
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exhibit higher abundances of biodiversity (Costanza et al, 2007). Water is an essential nutrient
living organisms need to survive and encourage growth (Greenfield, 2011). With respect to tick
behavior, soil moisture may be an important factor because ticks reside in the soil before and
after questing (Gilbert, 2014). Unfortunately, for our research purposes, it was difficult to
quantify soil moisture. Instead, we decided to use precipitation to estimate moisture that may be
available in the soil and thus promote an increase in tick populations. Ticks’ survival increases in
areas where there is higher humidity and soil moisture that allows ticks to store water while

questing for a host (Gilbert, 2014).

Ethical Considerations

For the scope of this study, we researched ethical considerations surrounding animal
rights and human health. Our first ethical consideration is on the topic of animal rights since
opposition has arisen revolving around the use of live organisms for the purpose of research
(Mika, 2006). Tick specimens were submitted to the surveillance database where they were
tested for B. burgdorferi, and other infectious diseases (University of Massachusetts, Amherst,
2016). Although ticks were submitted directly to the University of Massachusetts, Amherst Tick-
borne Diseases Passive Surveillance Database, it should still be considered whether using these
species for testing outweighed the cost of the organism’s life (UMass, Amherst, 2016). Tick
samples were individually removed and presumably killed during the removal process before

being sent to the database, therefore ticks were not killed specifically for scientific purposes.

Our second ethical consideration is the scientist's’ obligation to inform the public of the
risks of infectious diseases. The prevalence of Lyme disease has been debated over the past

several years (Ostfeld, 2011). Questions have arisen as to whether disease surveillance is
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increasing or overestimated due to difficulties in diagnosis (Auwaerter et al., 2011; Johnson et
al., 2010). Data from the UMass Amherst database supports that the number of infected Lyme
disease ticks did increase in the last several years (CDC, 2014; University of Massachusetts,
Amherst, 2016). From this inquiry, research surrounding this topic has recently spiked due to an
increase in the number of ticks submitted and, of those ticks submitted, an increase in the number
of ticks tested positive for Lyme disease (CDC, 2014; UMass Amherst, 2016). Given the risk to
human health, there is an argument as to whether or not researchers are obligated to share
information pertaining to Lyme disease (Nelson & Vucetich, 2009). From our ethical standpoint,
we support that scientists should clearly communicate information that has been thoroughly

researched to the public (Halliday, 2009).

As additional information is collected, new testing strategies allow for more analysis on
predicting the risk and prevalence associated with Lyme disease (Ozdenerol, 2015). The
Geographic Information Systems (GIS) can be used to test new variables, such as soil
composition, predator populations, humidity, or other disease incidences and their correlations to

gather more information about Lyme disease risk (Ozdenerol, 2015).

Akaike Information Criterion (AIC)

Akaike Information Criterion (AIC) is a type of analysis that allows for ranking of
models from a given data set. Although there are several different models of statistical analysis
that can be used, AIC modeling compares output of each model and then determines which
model best explains the data closest to the true relationship (Posada et al, 2004).

The analysis can determine which variables best represent the relationship between an

indicator and one of two response variables: percent infected ticks and number of ticks
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submitted. Corrected AIC (AICc) scores take small sample size into account and correct the
relationship or correlation based on the expected data for a larger sample size. AIC weighting
was used to determine which data set, out of each indicator being tested, would have the greatest
likelihood of being the best model from the set. Delta AIC determines the difference between the

likelihood of each indicator being the best model with the best fit data (Posada et al, 2004).
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CHAPTER TWO: BIOTIC & ABIOTIC INDICATORS OF BIODIVERSITY
AND THEIR CORRELATION TO LYME DISEASE TRANSMISSION

Abstract

Incidences of Lyme disease have increased steadily in Massachusetts since 2012. The
University of Massachusetts has used a self-submission based tick testing database to document
the number of ticks submitted and the number of infected ticks tested positive for tick-borne
diseases. This project’s goal was to determine which potential surrogates of biodiversity best
explain the incidence of Lyme disease in Massachusetts. Loss of biodiversity across landscapes
may play an important role in the increased spread of infectious diseases. Based on the dilution
effect high levels of biodiversity can reduce the spread of diseases. Using correlation and AIC.
analyses, we examined the influences of forest cover, number of people, deer density, seasonal
temperature, and seasonal precipitation have on tick submissions and infection of ticks. Our
results demonstrated that the number of people best explained the percent of infected ticks and
was negatively correlated. The dilution effect was not supported by these analyses. However,
based on our findings that number of people influences percent infected ticks, awareness efforts

can be implemented to curb pathogen transmission.

Introduction

Lyme disease is a vector-borne disease transmitted by an Ixodidae scapularis tick that is
infected with the pathogenic bacterium Borrelia burgdorferi (Estrada-Pefia, 2015). During a
blood meal, B. burgdorferi is passed from the tick to a competent reservoir host such as the
Peromyscus leucopus (white-footed mice) or Odocoileus virginianus (white-tailed deer). These
species allow maintenance of the parasitic bacterium to thus increase transmission of the disease

(Fiset et al, 2015). Although ticks may encounter an incompetent host, a host that cannot support
20



the B. burgdorferi pathogen, these species facilitate tick survival throughout their larvae, nymph,
and adult life stages by providing a blood meal (Estrada-Pefia, 2015).

Biodiversity, or abundance of different species present in a designated area, can influence
the transmission and maintenance of pathogens (Ostfeld, 2011; Li et al, 2012). A proposed
hypothesis, called the dilution effect, suggests that a decrease in host species diversity will result
in an increase in the prevalence of Lyme disease (Ostfeld, 2011; Li et al, 2012). In addition to the
host species diversity present, the hypothesis states that three other conditions have an effect on
the infection rate. The three conditions include that (1) host species differ in reservoir
competence of the disease, (2) a low number of competent hosts disrupt the distribution of the
pathogen, and (3) competent hosts are not susceptible to species loss (Ostfeld, 2011). Well
known competent hosts for maintaining and transmitting Lyme disease include the white-footed
mouse and the white-tailed deer. Humans are affected by Lyme disease as low competence hosts
(LoGuidice et al, 2003; Ostfeld, 2011). Overall, the dilution effect suggests that a general loss in
biodiversity would increase the risk of pathogen transmission (LoGuidice et al, 2003; Ostfeld,
2011). Alternative research using simulation data challenges that the dilution effect is not
plausible (Zolnik et al, 2015).

Climate, soil moisture, and land cover can have an effect on the species diversity that is
present in a habitat, which in turn may affect pathogen transmission (Costanza et al, 2007;
Greenfield, 2011; Wang et al, 2009). Areas with high temperatures and high precipitation have
been known to have the greatest amount of biodiversity because of the diverse species richness
in the environment (Costanza et al, 2007; Wang et al, 2009). Soil moisture influences tick
behavior that may lead to an increase in the number of ticks that can infect a competent host
(Greenfield, 2011; Gilbert, 2014). Moreover, areas of land that are well developed may lead to a
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decrease in biodiversity present (McKinney, 2002). This paper will examine the role of these
biodiversity indicators and their influence on the prevalence of Lyme disease in areas across

Massachusetts.

Goals & Hypotheses
The goal of our research was to determine which indicators of biodiversity best explain

the prevalence of Lyme disease in Massachusetts. This project used data compiled from the
University of Massachusetts, Amherst Tick-borne Diseases Passive Surveillance Database in
conjunction with data pertaining to number of people, land use, and seasonal weather to
determine if these identified indicators have a positive or negative correlation to the prevalence
of Lyme disease in selected study areas of the state. From our research, we hypothesized that
deer density, average seasonal temperature, number of people, and percent composition of forest
cover would significantly affect the prevalence of Lyme disease. We predicted that the first three
indicators (deer density, average seasonal temperature, and number of people) would show a
positive correlation to Lyme disease prevalence, while percent composition forest cover would
have a negative correlation relationship.

In previous research, white-tailed deer are competent hosts that can maintain and transmit
the B. burgdorferi pathogen (Ostfeld et al, 2006; Ostfeld, 2011; Fiset, 2015). It was proposed
that an area with high deer populations will result in a higher percentage of recorded positive
cases of Lyme disease due to high host competency (Ostfeld, 2011; Fiset, 2015). Average
seasonal temperature was also hypothesized to exhibit a positive relationship in Lyme disease
prevalence. We hypothesize that higher average summer and winter temperatures would result in
an increase in percent infected Lyme disease cases (Ostfeld et al, 2006; Greenfield, 2011; Levi,

2016). Tick survival decreases in colder temperatures since questing behavior is reduced
22



(Estrada-Pefia, 2015). Warmer temperatures increase the amount of ticks questing which may
increase the prevalence of Lyme disease if an infected tick feeds on a competent host and spreads
the disease (Estrada-Pefia, 2015; Greenfield, 2011). Number of people was hypothesized to have
a positive correlation relationship with Lyme disease prevalence. Urban areas with high numbers
of people are usually indicative of less forest cover (Johnson et al, 2015). By coupling number of
people and land cover data with the dilution effect, we propose that Lyme disease is expected to
be greatest in urban areas and lowest in rural areas due to the amount of biodiversity present in
each area (Johnson et al, 2015). Based on prior research, it was hypothesized that higher percent
composition of forest cover may negatively affect the prevalence of Lyme disease (Dobson,
2012; Estrada-Pefia, 2015; Levi, 2016). This infers that high forest cover and high quantities of
biodiversity are usually directly related, and will have a direct correlation to the decrease in
pathogen transmission as proposed by the dilution effect (Dobson, 2012; Ostfeld, 2011; Levi,

2016).

Methods

Study Areas in Massachusetts

ArcMap 10.4.1 (ESRI, 2011) was used to determine ten or twelve spatially independent
study areas. Study areas are defined as an individual zip code or an aggregation of zip codes. Zip
codes were categorized based on the 2010 human population census. The number of people
from the census ranged from 0 people per square mile (depicted by the dark green color) to
620,000 people per square mile (depicted by the dark red regions; Figure 5). After separating zip
codes by population, zip codes were selected based on classification of rural or urban regions.

Three towns were selected from urban, highly populated regions and four towns were selected
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from rural, sparsely populated regions. The remainder (n = 12) of selected zip codes were chosen
based on distribution of population densities in between the extremes. Furthermore, zip code
areas in square miles were collected to ensure the sizes for each location were relatively
comparable. If a selected study area was determined to have an inadequate area, localized zip
codes were aggregated together to increase the area being tested. We obtained the total number
of ticks submitted for each study area in Massachusetts from the University of Massachusetts,
Ambherst Tick-borne Diseases Passive Surveillance public database (LMZ, 2016). The
information for the total number of ticks submitted for each zip code in Massachusetts were
compiled for ticks submitted for testing from January 1%, 2006 until November 8", 2016.
Inadequate number of ticks submitted to the database restricted some zip codes from being

selected for our research. Final study areas were distributed across the state (Figure 6).

FIGURE 5: Visual representation of number of people from the 2010 census across Massachusetts.
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FIGURE 6: Distribution of study areas in Massachusetts.

Land Cover
MassGIS Land Use 2005 datalayer (MassGIS, 2016) was clipped to selected study areas

in ArcMap 10.4.1 to quantify land use and land cover. The aspects of use and cover examined for
this project’s purposes were forest (combined coniferous and deciduous), open land,
brushland/successional, powerline/utility, transitional, commercial, population density, and
water. For our statistical analysis, we combined powerline/utility with brushland/successional to
limit the variables tested. We calculated the percentage of each land cover type for each selected

study area in ArcMap (Figure 7).
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FIGURE 7: Land use for the Nantucket study area.

Temperature and Precipitation
Temperature and precipitation records from 2005 to 2016 for each of the sample study

areas were obtained through the use of Weather Underground, an online weather station
(Weather Underground, 2016). For each study area selected in Massachusetts, the monthly
average temperature and amount of precipitation were collected. Based on the monthly average
records, the seasonal temperature and amount of precipitation were also determined. Seasonal
temperature was calculated by averaging the recorded data for the months of each season as

follows: Winter (December, January, and February), Spring (March, April, and May), Summer
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(June, July, and August), and Fall (September, October, and November). The recorded monthly

and seasonal temperatures and amounts of precipitation are found in Appendix C.

Deer Population
High and low estimated deer population densities were acquired through the Deer and

Moose Project Leader, David Stainbrook, at the Massachusetts Division of Fisheries and
Wildlife (MassWildlife) for each of the selected study area. Deer population densities were then
calculated by multiplying the density recorded by the square miles of forest present (Stainbrook,
personal communication, 2016). MassWildlife determines the deer population estimates by
surveying areas during hunting seasons (Stainbrook, personal communication, 2016).We used

this upper deer density limit calculation to run our statistical and correlation data.
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Boston 0 80 268
Andover, N 20 50 1309
Andover &

Lawrence
Springfield & West 12 25 308

Springfield
Bedford 30 60 268
Brewster 15 30 411
Ipswich 30 60 681
Nantucket 30 60 237
Northborough 15 30 252
Conway 10 20 608
Chilmark 30 60 954
Stockbridge/West 12 25 602

Stockbridge
Sandwich 15 30 264

TABLE 1: Deer density and deer population estimates

Data Analysis
To remove redundancy and reduce the number of predictor variables, we used a

correlation analysis (SAS version 9.4; SAS, 2013). For any pairs of variables that were highly
correlated (p-value 0.05) we retained variables that were of greatest interest in terms of
management. We tested for correlation in the following variables: high deer density, low deer
density, average winter temperature, average fall temperature, average spring temperature,
average summer temperature, average winter precipitation, average fall precipitation, average
spring precipitation, average summer precipitation, percent successional/brushland cover,

percent open land cover, percent forest cover, percent very low density residential cover, percent
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high density residential cover, percent commercial cover, percent transitional cover, and number
of people from 2010 census.

Additionally, we ran two Akaike’s Information Criterion (AIC) analyses to determine
explanatory variables that would best represent each response variable. We developed a set of
models to examine the relationship between environmental predictor variables (deer density,
human population number, land cover, average seasonal temperature, average seasonal
rrecipitation) and response variables (percent of infected ticks & number of ticks submitted; see
Tables 4 & 5 for all models). A null model with no predictor variables and a full model with all
predictor values were included in analyses.

We used AIC. analyses to compare and rank eleven models while correcting for small
sample size. K is the number of indicators used in running the model including the intercept.
Delta AIC. is the difference between the model’s AIC. value and the model with the smallest
AIC. value. Ex is the expectancy of the model having a direct impact on the response variable.
The model weight is listed under Akaike weight, which explains which indicator is the most
important in determining which factor may affect the percent infected ticks and the number of
ticks submitted. Lastly, the log likelihood value for each model is based on generalized linear
mixed models. We then graphed relationships between response and explanatory variables from

top-ranked models.

Results

The UMass Amherst database recorded information for each individual tick submitted to
the database from 2006 to 2016. The number of ticks tested specifically in Massachusetts steeply

increased from 2013 to 2014 and then remains relatively consistent from 2014 to 2016 (Figure
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8). The number of ticks tested annually in Massachusetts ranged from 1-3792 and averaged

1049 (+462.22SE). This was inclusive of ticks that carry Lyme disease (B. burgdorferi sensu

lato) and generic ticks (Borrelia general species) (UMass, 2016).
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FIGURE 8: Number of ticks tested in Massachusetts state from 2006-2016 (UMass, 2016). The number of
ticks submitted to the database drastically increased in 2014. Dark blue represents the number of ticks the
UMass database tested, while the light blue accounts for the number of ticks tested positive for Lyme disease.

We compiled 1,021 entries of ticks from 12 spatially independent study areas throughout
Massachusetts from 2006-2016 from the UMass Amherst database. Study areas were defined by
the town name and zip code or aggregation of zip codes (shown in Table 2). We classified study

areas into rural, suburban or urban locations based on the number of people present and land
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cover. The number of ticks tested for our study areas ranged from 14-284 and averaged 85 (+

23.14SE). The lowest recorded percent infected ticks was 7.14% for Boston, while the highest

recorded percent infected ticks was 38.89% for Northborough.

Boston Aggregated  20.64 14 7.14% Urban 617,594
List
Andover, N. Aggregated  66.83 94 23.40% Urban 137,930
Andover & List
Lawrence
Springfield & Aggregated  47.83 14 21.40% Urban 181,451
W. Springfield List
Bedford 1730 13.85 138 28.99% Suburban 13,320
Brewster 2631 24.85 284 32.04% Suburban 9,820
Ipswich 1938 30.07 26 19.23% Suburban 13,175
Nantucket 2554 44.42 108 32.41% Suburban 10,172
Northborough 1532 18.71 36 38.89% Suburban 14,155
Conway 1341 36.47 156 30.77% Rural 1,897
Chilmark 2535 28.21 32 21.88% Rural 866
Stockbridge/W. 01262, 37.77 24 20.83% Rural 3,523
Stockbridge 01266
Sandwich 2563 43.79 95 28.42% Suburban 20,675

TABLE 2: Summary table of each of the selected study areas with associated town name, zip code, number of
ticks submitted, area, and the number of people.

Data Analysis Results
Based on the correlation analysis results for our explanatory variables, we retained seven

variables: high deer density, average winter temperature, average spring precipitation, percent

successional/brushland cover, percent forest cover, percent very low residential cover, and
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number of people from 2010 census. The correlation table with p-values (0.05) for our original
indicators is located in Appendix D. Variables were excluded from the retained indicators if they

were highly correlated to the other indicators measured (shown in Table 3).

High Deer Density Low Deer Density
Average Winter Average Fall Temperature &
Temperature Average Summer Precipitation
Average Spring Average Winter Precipitation
Precipitation
Percent Percent Open Land Cover
Successional/Brushland
Cover
Percent Forest Cover Percent Transitional Cover

Percent Very Low Density Percent High Density Residential
Residential Cover Cover

Number of People (2010 Percent Commercial Cover, Percent
Census) High Density Residential Cover,

Average Summer Temperature &
Average Spring Temperature

TABLE 3: Retained explanatory indicators determined for response variables from correlation data analysis.
The correlation between indicators was used to determine which indicators would be used to run AlCc
analysis against the number of ticks submitted and the percent of infected ticks.

Percent Infected Ticks Predicting Factors
Results from AIC: modeling demonstrated that number of people best explained variation

in the percent infected ticks that tested positive for Lyme disease (Table 4). Number of people
was shown to be negatively related to percent infected ticks based on the 95% confidence
interval that is significant since the range is not inclusive of zero (Table 5; Figure 9). The top
model with number of people was 20.8x more supported than the next model that did not contain
this explanatory variable. Although the number of people predictor variable best explains the

percent infected ticks response, the second model (number of people + high deer population) was
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ranked with a delta AIC. less than 2 (Table 4).. However, we suggested that the number of

people variable is the most important. This was especially true since the 95% confidence interval

for high deer population was not significant and included zero (Table 5).

NumofPeople 2

NumofPeople + 3
HighDeerPop

Null 1

Forest 2
Successional 2
HighDeerPop 2
VeryLowResDen 2
SpringPrec 2
AveWinter 2
Forest + Successional 3
Full Model 8

-27.4301

-25.5888

-21.3764

-18.5749

-18.3493

-18.2371

-17.9211

-17.7779

-17.7457

-15.6512

60.7652

0.000

1.842

6.054

8.855

9.081

9.193

9.509

9.652

9.685

11.779

88.196

1.000

0.398

0.048

0.012

0.011

0.010

0.009

0.008

0.008

0.003

0.000

1.507

0.664

0.264

0.032

0.008

0.007

0.007

0.006

0.005

0.005

0.002

0.000

1.000

TABLE 4: Models run in Akaike’s Information Criterion response to percent infected ticks. The delta AICc
explains the model that best explains percent infected ticks. The models that best explain percent infected
ticks were number of people and combined number of people and high deer density.
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NumofPeople 0.0000 0.0000 0.0000 0.0000

HighDeerDen -0.0001 0.0001 -0.0002 0.0001

TABLE 5: Parameter estimates and 95% Confidence intervals of number of people and high deer density.

We used graphs to visually display the relationships between top ranked models for the percent
infected ticks response variable. As shown in Figure 9, the relationship between percent of
infected ticks and number of people was negative (R? = 0.551). Additionally, the relationship
between second ranked model (high deer density and percent infected ticks) was graphed to

show the variability between the 12 study areas (R? = 0.0438; Figure 10).
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Figure 9: Graph of the relationship between the percent infected ticks and number of people. The data of
infected ticks and number of people were retrieved from 12 sample locations.
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FIGURE 10: Graph of the relationship between percent infected ticks and the high deer density in a sample
area. The data for each variable was collected in 12 study areas.

Number of Ticks Submitted Predicting Factors
Results from the AIC: modeling demonstrated that the null model best explained the

variation in the number of ticks submitted to the UMass Amherst database (Table 6). The null
model was 2.9x more supported than the next model. The second ranked model (the number of
people indicator) was not ranked with a delta AICc less than 2 and therefore was not considered
important. In addition, the 95% confidence interval for the number of people was not significant

because it included zero (Table 7).
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Null 1 143.5557 0.000 1.000 0.366
NumofPeople 2 145.699 2.143 0.342 0.125
AveWinter 2 146.0267 2471 0.291 0.106
SpringPrec 2 146.1493 2.594 0.273 0.100
VeryLowResDen 2 146.3653 2.810 0.245 0.090
Forest 2 146.8232 3.268 0.195 0.071
HighDeerPop 2 147.1703 3.615 0.164 0.060
Successional 2 147.1842 3.629 0.163 0.060
NumofPeople + 3 150.2409 6.685 0.035 0.013

HighDeerPop
Forest + Successional 3 151.2995 7.744 0.021 0.008
Full Model 8 230.9502 87.395 0.000 0.000
2.730 1.000

TABLE 6: Models run in Akaike’s Information Criterion response to number of ticks submitted. The delta
AlCc and Akaike weight shows the models that best explain the number of ticks submitted. The resulting
models that best explain the number of ticks submitted was the null.

Null (Intercept Only) 85.0833 22.1508 41.6685 128.4982

NumofPeople -0.0002 0.0001 -0.0004 0.0001

TABLE 7: 95% Confidence interval of null and number of people models for number of ticks submitted
response variable.

The model that best represents the number of ticks submitted is the null model. The null
model predicts that the variables that we explored did not influence the prediction of the number
of ticks submitted. The second best model to predict the number of ticks submitted was the

number of people model (Figure 11). However, the R? value (0.1192) and the 95% confidence
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interval suggested that the relationship between the number of people and the number of ticks

submitted was not important.
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FIGURE 11: Graph of the relationship between the number of ticks submitted to the number of people for
each sample location. The R? value was 0.1192, indicating this is not as strong as a relationship compared to
the previous response model.

Discussion

Percent Infected Ticks
Surprisingly, we found that the number of people model was negatively correlated to the

the percent of infected ticks response variable. Thus, our results do not support the dilution effect
hypothesis. The dilution effect proposes that a higher number of species richness would lower
the chance of an individual coming into contact with an infected tick and decrease the incidence
of Lyme disease. Although the larger number of people influences the percent of infected ticks,
this is not indicative of species richness in a study area. Therefore, we cannot conclude that the

dilution effect would be supported.
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In addition, our hypothesis for number of people was refuted. Originally, we
hypothesized the opposite effect would occur because a higher number of people should lower
the percent forest cover through urbanization that can lead to a decrease biodiversity in an area
studied, thus increasing Lyme disease incidence rates (McKinney, 2002; Goddard et al, 2010;
Guerra et al, 2002). However, from our collected data we realize that number of people ranging
from approximately 200,000 to 600,000 were not tested (shown in Figure 9). If we considered
data points within this range, our results may change. Other indicators that had a high correlation
to number of people were percent commercial cover and percent high density residential cover
(shown in Table 4). It could be inferred that high numbers of people and high percent
commercial composition could result in a low percent of infected ticks because of decreased
amount of forest habitat present (Guerra et al, 2002). Insufficient amount of forest habitat could
decrease species richness supported in an area and thus decrease the amount of ticks that inhabit
the area (Guerra et al, 2002; Ostfeld, 2011). Previous studies investigated that land fragmentation
caused by urbanization had no effect on infection rates and thus did not support the dilution
effect hypothesis (Zolink et al, 2015). In addition, research supports that a negative relationship
exists between tick infection prevalence and species richness in fragmented habitats (LoGiudice
et al, 2008; Zolink et al, 2015).

The second explanation for the percent infected ticks response variable was the combined
number of people and high deer density indicators (delta AICc = 1.842). Although this combined
result showed a high AIC. value (-25.5888), we did not believe the number of people + high deer
density was an appropriate explanation on its own. From our analysis, it was suggested that the
number of people indicator may have influenced the AIC. value when in combination with high
deer density. This may be especially true since the high deer density indicator alone did not have
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a high AIC. value or a well-represented 95% confidence interval (shown in Table 6 & Table 7).
Since this interval included zero, the interval is not significant, therefore deer density is not a
representative model for percent infected ticks. High deer density was strongly correlated with
low deer density. This was expected because we received ranges from the Massachusetts
Division of Fisheries and Wildlife (MassWildlife), which predicted the density based on square
forest mile (Stainbrook, personal communication). We omitted low deer density because, for
some study areas the low estimate was zero, which may not have been appropriate representation
of the deer density present.

The data retrieved from the MassWildlife on deer population densities limited our results.
After conversing with a project leader at this organization, we recognized that deer densities vary
greatly even within a two-mile radius due to deer movement (Stainbrook, personal
communication). Thus, it is challenging to estimate the population of deer within a specific study
area. In addition, deer population estimates are calculated during hunting seasons which may
overestimate or underestimate the population size (Stainbrook, personal communication, 2016).
Therefore, both low and high deer population estimates were recorded for the range the
MassWildlife provided (Stainbrook, personal communication, 2016). Other research further
suggests that deer populations exhibit variable and weak interactions with ticks (Ostfeld et al,
2006). Observed interactions between ticks and deer did not effect nymphal abundance in

subsequent seasons regardless of the deer population size (Ostfeld et al, 2006).

Number of Ticks Submitted
Based on the analysis, the null hypothesis was the best explanation for the response

variable number of ticks submitted (delta AIC: = 0.000). None of the models containing the

explanatory variables we chose explained the number of ticks submitted. However, we expected
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this result because the number of ticks submitted to the UMass Amherst database should not be
dependent on any biodiversity indicator tested. From our data collection, we relied heavily on
self-submitted ticks to the UMass Amherst database which may not have been an appropriate
representation of tick populations in Massachusetts. We inferred that distance from the tick
submission laboratory and low amount of tick submissions could have affected our data.
Therefore, we did not include Amherst in our study area to eliminate any potential bias. In

addition, study ares were selected based on the number of ticks submitted.

Limitations
Due to the scale and scope of our project, we would like to address some additional

limitations that are evident in this report. These limitations include potential biasing due to
selection of our sample study areas, sample size, and available datalayers.

Hand-picking the Sample

When determining the selection of potential areas for our study, we were unableto
perform a random sampling method to counteract biases due to limitations in data submitted to
the tick database. To establish a control for our project, selected study areas were within similar
land sizes, spatially separated, contained a broad range in human population size, and were from
different quantifications of land development. Since random sampling did not occur, potential

sample biasing may have occurred.

Small Sample Size

Our sample size consisted of 12 study areas. A small sample size runs the risk of bias,
especially since we hand-picked our sample. In addition, 12 study areas may not be

representative of the entirety of Massachusetts. A larger sample size would negate the potential
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bias from selected study areas and would be more representative of Massachusetts state as a

whole.

Land Cover

Although we were able to separate different types of land cover in each of the selected
study areas, we encountered a limitation within the Land Cover datalayer from MassGIS. Forest
cover could not be filtered into different forest types: deciduous and coniferous covers. This
differentiation of forest types could allow for specificity in type of forest cover that best
correlates with Lyme disease prevalence (Guerra et al, 2002; Ostfeld et al, 2006). In addition, a
secondary limitation occurred with the MassGIS Land Cover datalayer. The land cover datalayer
used for this analysis was collected in 2005. This datalayer may not have been representative of
the land cover present during the submission of ticks to the database, which were recorded from

2005 through 2016.

Future Recommendations
In future studies, additional indicators, such as elevation, soil moisture, and leaf litter

should be tested against our response variables. Due to global increases in temperature, some
ticks are able to move to higher elevations that they were not previously able to survive
(Brownstein et al, 2005). Changes in suitable habitats for ticks may affect the prevalence of
Lyme disease in new habitats (Brownstein et al, 2005). Previous research hypothesized that the
amount of leaf litter and moisture in the soil could have a positive effect on tick survival (Guerra
et al., 2005). However, we could not collect quantitative data for the amount of moisture in the
soil or the amount of leaf litter in any selected study area to use in our analysis. In previous

studies soil moisture was quantified from data collected on daily temperature and humidity
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readings (Medlock et al, 2008). We hypothesize that soil moisture and degree of leaf litter in a
study area are indicators of Lyme disease prevalence in Massachusetts due to their association

with temperature and humidity (Estrada-Pefia, 2015; Greenfield, 2011; Fiset, 2015).

In summary, our research suggested that human population numbers, a potential indicator
of biodiversity, best explained the percent of infected ticks in Massachusetts. Incidences of Lyme
disease may be correlated to the proportion of ticks that are infected, however this would require
additional experimentation. From our research, the number of people was also positively
correlated with percent high density residential cover, percent commercial cover, average spring
temperature, and average summer temperature. Although there is no definitive explanation for
incidences of Lyme disease, public awareness of biotic and abiotic influences in general could

help to curb pathogen transmission.
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Appendices

Appendix A: Steps taken in ArcMap 10.4.1 with Datalayers

Layer: Zip Code (5-digit codes)

1.

N

ok w

MassGIS Datalayers (http://www.mass.gov/anf/research-and-tech/it-serv-and-
support/application-serv/office-of-geographic-information-
massgis/datalayers/layerslist.html)
Find Datalayer ‘ZIP Codes (5-Digit) from HERE’ under the Political/ Administrative
Boundaries Section.
Download the shapefile and save in a specified folder.
Open ArcMap 10.4.1 and open a blank map.
Navigate to Add Data.
In the Add Data window, select Connect to Folder and find the folder the files are saved
in. Select Okay.
Once again, in the Add Data window, select the shapefile for the data and select Add.
The shapefile will be added as a layer in the Table of Contents window.
Select the zip codes needed.

a. Select the Zip code layer under Table of Contents

b. Select Open Attribute Table

c. The Table will open and select the City_Town heading. Click Sort Ascending.

d. Select the zip codes and towns being used for the study.

i.  While holding the Control key on the keyboard, click on each zip code/
town to be displayed.
ii.  The selected zip codes/ towns will be displayed after exiting the attribute
table.
iii.  Make selected zip codes/ towns layer.

Layer: Selected Zip Codes/ Towns

1.

okrwn

Zip codes/ towns were selected and highlighted from the selected zip codes/ towns from
Layer: Zip Codes, #8, d.

Right click on the Zipcodes layer.

Click Selection.

Select ‘Create Layer From Selected Features’

A new layer will be produced with only the selected zip codes/ towns. Rename the layer
Selected Zip Codes.

Layer: Datalayers from the 2010 U. S. Census

1.

w

MassGIS Datalayers (http://www.mass.gov/anf/research-and-tech/it-serv-and-
support/application-serv/office-of-geographic-information-
massgis/datalayers/layerslist.html)
Find Datalayer ‘Datalayers from the 2010 U. S. Census’ under the Census/Demographic
Data
Find the category Other Geography. Download the Census 2010 Town data Shapefile.
Copy the files to your own folder.
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In ArcMap 10.4.1, navigate to Add Data.

In the Add Data window, select Connect to Folder and find the folder the files are saved
in. Select Okay.

Once again, in the Add Data window, select the shapefile for the data and select Add.
The shapefile will be added as a layer in the Table of Contents window.

To view the population data visually, select the variables and the color ramp.

Right click on the CENSUS2010TOWNS_POLY layer

Select Properties

Select the Symbology tab

Select Categories under the ‘Show:’ box on the left hand side of the tab

Select Unique values, many fields

Under Value Fields, select POP2010.

Select the green to red color ramp

Add All Values.

Select Okay

The attributes for population will be shown under the Census 2010 layer in the
Table of Contents.

o Se@mo a0 o

Layer: Land Use (2005)

1.

N

©asw

MassGIS Datalayers (http://www.mass.gov/anf/research-and-tech/it-serv-and-
support/application-serv/office-of-geographic-information-
massgis/datalayers/layerslist.html)
Find Datalayer “Land Use (2005)” under Physical Resources: Land Use/Land Cover,
Geological/Geophysical, Atmospheric
Download the shapefile.
Copy the downloaded files into specified folder
In ArcMap 10.4.1, navigate to Add Data.
In the Add Data window, select Connect to Folder and find the folder the files are saved
in. Select Okay.
Once again, in the Add Data window, select the shapefile for the data and select Add.
The shapefile will be added as a layer in the Table of Contents window.
Select attributes to be displayed to show and change the data being examined.
Right click on the layer
Select Properties
Select the Symbology tab
Select Categories on the left hand window under ‘Show’.
Select Unique values, many fields
Select the data to be shown in the Value Field required box. In this case, it is
(LUO5_DESC).
Select Add All Values, which will extract the data
Select Okay
i. Change the colors of the layers:
i.  The attributes will be displayed under the layer in the Table of Contents
window.

,0 o0 o

Q@
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ii.  Right click the color block next to the attribute and select the color wanted
for each attribute.

iii.  Ifattribute is not wanted to be examined, color the attribute grey.

iv.  All unwanted attributes will be the same color so the wanted attributes can
be examined based on their color.

v.  Select Okay.

Indicators of Land Use selected in Layer: Land Use (2005), steps f-i:

Transitional and Commercial (Combined)

Power lines and Brush/Successional (Combined)

Densities (Low and High — the two extremes or comparison)
Forest

Open Land

Water

Land Use and Zip Codes Clipped Data:

1.

Nookrwd

Using Land Use 2005 layer and the Selected Zip Codes layer, the two layers can be
clipped together so land use data will only show for the selected zip codes.
Select ‘Selected Zip Codes’
Select Geoprocessing
Select Clip
In Input Features, add the Selected Zip Codes file.
In Clip Features, add the Land Use 2005 file.
In Output Feature Class, label the clipped file specifically.
a. Example: LandUse_SelectedZips_Clipped.
Select Okay. A new layer will appear with the clipped Land Use and Selected Zip Code
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Appendix B: Summary Table of Weather for Selected Study Areas

Boston
Amdover, N
Andover &

Lawrence

Springficld &
‘West Springfield
Bedford
Brewster
[pswich
Manmcket
Maorthborough
Coraray
Chilmark
StockbridgeWes
t Smckbridge
Sandwich

3297

29.94

2789
2852
35.28
30.11
35.33
2797
25.86
34.05

25.45
3253

44522

47.89
47.28
446,36
46,56
45.92
446,89

45.7
46,53

44.78
46.42

T2.25

T0.97

TO.36
G997
G829
&0.17
6,89
el

GE.6
GR.28

G692
GR.92

56.05

53.61

5211
52.08
55.33
5292
55.72
5217
5011
54,30

4445
53.75

0138

.08

0.093
0097
0128
0.109
0.099
0156
0.099
0.101

0113
0128

0129

0110

0.103
0108
0113
0123
099
0143
.09z
0103

0.107
0.097

0123

0.115

0144
0114
0093
0117
LRI
0163
0127
LERIET

0.153
0LO8E

0126

0117

0115
0118
0.130
0126
0160
0161
0.132
0,130

LERE
0100
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Appendix C: Summary Table of Land Cover for Selected Study Areas

Boston 04 10.84 0.39 7.92 1.79 12.96 0.06 247
Andover, N
Andover &
Lawrence 0.15 0.5 2.56 0.29 39.18 1.09 4.56 1.12 5.12
Springficld &

West Springficld 0.01 0.23 7 0.23 34.47 1.09 2286 0.24 3.8

Bedford 0.04 2.7 0.39 4.58 0.88 1.97 0.46 0.12
Brewster 0.08 0.65 0.75 0.13 55.07 0.47 0.48 1.28 9.08
Ipswich 0.14 0.05 0.67 0.09 37.74 0.98 1.68 347 1.91
Mantucket 36.03 0.65 0.16 8.9 11.21 2.52 2.98 3.23
Narthborough 0.08 0.33 1.76 0.36 44.92 1.15 0.46 3.15 1.26
Conway 0.08 0.48 0.03 0 §3.33 1.03 0.03 1.72 0.94
Chilmark 5.51 0.17 0.03 56.34 3.96 0 6.76 9.24

Stockbridge West

Stockbridge 0.05 0.3% 0.36 0.06 63.8 2.43 0.05 3.1 3.04
Sandwich 0.04 0.94 1.64 0.12 53.16 0.93 2.05 1.03 1.89
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Appendix D: Correlation Analysis for P-values <0.05
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