R

NVIDIA.

NVIDIA MQP - C Term 2011

Tyler Berg
Patrick Dignan
Sunil Nagpal

March, 24 2011

Table of Contents

LI o] (= o}l 6o T) =] o1 £ TSP 2
[o) B = (U T PP PPPSP 3
Y o 1] 1 = Yot APPSR TPPPPP 4
EXECUTIVE SUMMIAIY .ottt e e e e e e e e e et e ettt et bbb e e e e e e e e e e eeeeeeeeeeeenesnnnnannas 5
ACKNOWIEAGEMENTS ...ttt e e e s st e e e e e s abbeeeeesesabbaeeessnnasnaeeeeean 8
O I [o} o o Yo [V Tt i o o [P PPPP 9
P 0 2T Tol = o T o T PP UPPRURTPPPPPRN 10
2.1 NVIDIA; AbOUt the COMPANY ...uuiiiiiiiiiiiiiiee et e e s e e e e s s sibae e e e e s sabaeeeeeens 10
2.2 BUSINESS BACKGIOUNGeiiiiiiiiiiieee ettt e e s s s e e e e e s abaeeeeeeas 10

P R =T ={ - 1 O T o 1= PO PPPR PP 11

P N @ o] 4 1= O PP UPPRTPPP 11
2.5 WIindows Performance TOOIS........cuiiiiiiiiiiiiiiiieee ettt eieee e e s siree e e e s s sabaeeeeeeas 11
2.5. 1 TASK IMAN@EET «..evvieieieiiiieee ettt e ettt e e st e e e s s st e e e s s sabte e e e e s s bbaaaeessnasstneeesssnnse 11
2.5.2 RESOUICE MONITON ... e e e e e e e e e e e ettt e e e e e e eas 12
2.5.3 Performance IMONITOrciiiiiiiiiee ettt et e e s e s bae e e e s ssabeaeeesenanes 13

2.6 Mac OS — Activity Monitor/Disk Utility — System Performance Toolsccccceevcveerneennee. 14
2.6. 1 ACHIVITY IMONTEON ...t e e e e e e e e e e e et e ee e e b e e e e e eas 14
2.6. 2 VMSTAL o e e et ettt e e e e e e e e e ettt et e et e e as 16
2.6.3 DiSK ULty . eeiiiiiiiiiee ettt ettt e e e s s e e e e s s s a e e e e e s sabtreeeeennanes 16

2.7 LinUX Performance TOOIS ..ccciiiiiiieee ittt sttt s st ee e e s s iaae e e e s e sabae e e e s e nabaaaeeeens 17
B RV 0 1 - | A OO P TP P PP 17

D 7 2 o T o F PP UPRRRRPPPPPPN 18

3.0 PrOCESS/RESUILS. . .vvveiieieeiieie ettt e e e et e e e e e et a e e e e e e aba et e e e e eebraeeeeesesaaseeeesennraeeeaeans 20
3.1 The Overarching Goal Of OUr ProjECtuuviiiiiiiiiiiec ettt 20
22 = T o | Yo OSSP PPRRP 21
3.3 Improving Build INFrastruCturecooviiiiieiie e 24
3.4 NFS (Network File SyStem) BOOT......cccceiciiiieeieeciieeee ettt e e e e e e e e areeeas 24
3.5 DHCP (Dynamic Host Configuration Protocol) Bootccccueeiiiiieiiniieecice e 29
3B AU DTS ettt e e e e e e e e et e et e e bbb e as 29
A= 1=1 011U o o TSP PPPR RPN 31
I3 VANV o TR PP PPRRP 33
O LT U | £ TP PPPPPN 35
oI 0 @o] s T [T (o o ISP PRPPPP 37
(T o O =T [PP PP PRPPPPN 38
A oY 1=] g Vo Tl TP PPPPP 40
AppendiX | = Project SChEAUIEcciiiiiiiee e s e e s 40
AppendiX [= NFS BOOt - HOWTO...cciiiiiiiiiiieiiiiiieee ettt et e e st e e s s siaae e e e s savaaeeessnnnes 42
Appendix Ill = NFS Boot with Autotest Enabled — HOWTOuvveviiiiiiiieeiiiiiiieee e 48
AppendiX IV — DHCP BOOt = HOWTOuuiiiiiiiiiiiiiieeeeeiiitee e esiiteee e st ee e s s sibrae e e e s sivaaeeessnnnes 49

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10
Figure 11
Figure 12

Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:

WiNAOWS TaSK IMANAEGET ...uveeiiiiiiiiieeeeeiiteee e ettt e e ettt e e e e ssae e e e e s ssabaeee e s sssaeaeeessnnnnes 12
RESOUICE MONITOr = FESIMON.EXE cuvuiiiiieiiiiieeeeeeiiiiee e e eetiere e e e eeabree e e eeattaeseeeaatsaeseeeeassannss 13
Performance Monitor - PerfmMON.EXEcocuuiieiiiiiiiiieee e e 13
ACHIVILY MONTLOT [8] coiiieieieiie et e e e e e e e e e e e e e s e e s ansereraeeeeeeeeas 14
(01 U 1Y/ o] oV (o] (U UUPTPPPPOt 15
2757 To [U UPURRURRRR 15
Terminal Run System Performance TOOoIS [7] .eeeeeieeeiee it 16
DiISK ULITLY [7] coeeeiiiiiiieeee et e e ettt e e e e e e e e e e e e e s e e s neesaraeeseeeeaaaaaaeeeseesaannnssnnes 17
AV 13 - | PP PPPPTPRN 17
TTOP TN ACTION e e e e e e e e ettt e et e s e e e e e e e e eeeeeeees 18
1 Buildbot Waterfall VIEW ...t e e e e e e e e e 23
- BUIlADOt CONSOIE VIBW ettt e e e e e e e e e e e e e e e eeeas 24
Setting UP NFS SEIVEI [17] .cci ittt ettt et e e e s e e s s saene e e s e snanes 25
Bind Mounting the ROOt FS [17] ..o e e e e e 25
Kernel ConfiUIatioN.......iiuiiiiiii i bare e e s e s aeeaes 26
NFS BOOT COMMANGAS ...uviiiiiiiiiiieeiee ettt e e e e e e e e e e e e e e e e naae b e e e e e eeeeeaaaaaeeeesenns 27
NFS BOOt CONSOIE QULPULeeiiiiiiiiiiiiiee ettt e e s s e e s s sbra e e e s s s aaaaeas 28
AULOLESt CONLIOL File oo e e e e e e e e e e e e naneees 31
FA 01 o o <T] o =T AP OUPTPPRPPPRE 31
Y= LY T 0T o' T =T U 33
L7 UL o T Ty o) U PPUURRP 34

Abstract

In the fast moving and high-tech world we live in, more and more systems are being automated
for the sake of increased efficiency, reliability, and production quality. The goal of our project
was to completely automate the building of new revisions to the source repository, the booting
of the entire operating system over the network in a dynamic fashion with software that is not
dependent on a specific version of the operating system, and the inclusion of performance and
functionality testing into the automatic test infrastructure.

Executive Summary

In the fast moving and high-tech world we live in, more and more systems are being automated
for the sake of increased efficiency, reliability, and production quality. The goal of our project
was to completely automate the building of new revisions to the source repository, the booting
of the entire operating system over the network in a dynamic fashion with software that is not
dependent on a specific version of the operating system, and the inclusion of performance and
functionality testing into the automatic test infrastructure.

In order to automate the building process, we used Buildbot, a popular tool to automate the
testing and building of software. Buildbot is a highly flexible software package, with built in
support for numerous source control systems, including subversion, concurrent versions
system, git, compilation, and running shell scripts. [13]

NVIDIA needs to make sure their hardware works well with the Chromium OS builds, versions of
the software made available in a consumable form. These builds come from compiling the
source from the source control system. Since maintaining a high level of quality is extremely
difficult, NVIDIA and Google have written a large number of tests for testing the functionality
and performance of the hardware and software using autotest to remove the human factor and
create consistent tests. However, autotest is not a complete solution, since it does not provide
a mechanism for automatically running tests when a new commit is made to the repositories.
That’s where buildbot comes in. Buildbot supports triggering from various sources, such as
periodic triggers, polling, source control commits, HTTP notifications, Gerrit notifications — the
system NVIDIA uses to manage code reviews, notifications through its TCP interface, and even
emails. The team’s implementation of buildbot currently allows for nightly build and test
images based on the state of the OS.

One issue that the team faced regarding builds was the the time required to build Chromium OS
images. As such, we were asked to build faster build computers, systems designated for
compiling the Chromium OS software. Two new computers were built and had the
development environment installed on them, while a third computer needed RAM before more
could be done with it. The fastest of these new computers cut the total build time from about
6 hours to about 3.5 hours, removing a huge bottleneck for the team. In addition, after the
completion of our MQP, these computers will serve as build computers for the development
team, since some of the current build computers take up to 12 hours to complete one build.
Building the computers was largely a process of debugging broken and incompatible parts as
well as locating appropriate hardware.

After automating the build process, we were tasked with finding a way to automate the rollout
of new filesystem images onto the test boards on a nightly basis. Typically, one would access
the local shares and load a nightly build/image onto a USB stick, and then mount this image

onto either the harmony or seaboard. By automating this process, we would eliminate the need
for this manual step.

We chose to use the “NFS root” method, which allows one’s target machine (the test board) to
use a NFS mount on your host Linux machine as its root filesystem (rootfs). This is a much faster
process than loading the changes onto a USB device and rebooting the target machine using
that filesystem. In addition, since the filesystem is stored on a remote host, space is rarely, if
ever, a concern, since it is simple to add more storage to a server or workstation. This is
particularly useful when working with debug images, which are typically much larger than
standard images. [17]

Enabling NFS boot to work with our host and target machines takes away the need to manually
load nightly images onto our test boards, and allows a developer to utilize the large amount of
disc space available on the host machines.

To further automate the process, we tested the use of DHCP (Dynamic Host Configuration
Protocol) Boot. DHCP Boot is very similar to NFS Boot because it uses a mounted root filesystem
that is not pre-loaded onto the test board. It further improves on NFS Boot as a means of
automation, though, because it loads the system kernel over a DHCP/TFTP server rather than
from a USB device attached to the test board. Using DHCP Boot allows a user to load both the
kernel and root filesystem over the network. [18]

The configuration for DHCP Boot does not require many more steps than NFS Boot. First a user
must set up a DHCP Server and a TFTP (Trivial File Transfer Protocol) Server. The DHCP Server is
used to provide IP addresses to targets on the network, and the TFTP Server is used to send the
kernel to U-Boot when it requests one. After setting up these servers, a user needs to define
some boot arguments such as the server IP addresses, specific bootfiles, and a path to the
kernel on the host machine. With this setup, a user can boot their test board with the kernel
and root filesystem completely loaded over a local network.

After automating the boot process, we worked on automating testing. NVIDIA currently has a
large suite of proprietary tests, called the nvtest suite, which are run on their development
boards to ensure the software is running properly. These proprietary tests are currently run
one-by-one by testers in NVIDIA’s Quality Assurance group. Our group was tasked with
automating these tests. Chromium OS uses a test harness called autotest to automatically run
its test suite. Autotest allows tests to be run on remote devices in a repeatable, parallelizable,
and efficient way. Automating these tests frees up Quality Assurance resources for better and
more in-depth testing. In addition, automating these tests allows developers to get more rapid
feedback to their changes. Faster feedback means that issues can be found before the
developer merges their changes with the main tree, preventing their bugs from propagating to
the rest of the developers.

First we had to figure out how to run NVIDIA’s proprietary tests, and then write the adaptor
that allows these tests to be run by autotest. Once we figured out how to run a few tests, it

6

became clear that automating creation of the adaptors would benefit the team greatly. In
order to accomplish our deliverable of having a working nvtest running through autotest, the
team created a program that generates the adaptor. The generator was created successfully
and allowed the team to rapidly port NVIDIA’s proprietary tests to autotest.

Autotest allows tests to be run on computers connected over the network. In this regard,
autotest has a client-server architecture. There is a target board, which is the hardware upon
which the tests are to be run, and a test server, typically a developer’s computer which sends
the tests over the network to the target board. We realized that this architecture required that
the target board be online to run the nvtests through autotest, so that the test server could
access the target board. After this was done the team used the scripts nvidia has written for
using autotest to run the autotests we had created. This works correctly and now testing can be
done from several computers onto one board simultaneously.

Acknowledgements

We would like to acknowledge those who have helped us in the successful completion of our
project. First and foremost, we appreciate the efforts of Professor Finkel, who enabled us to
have an excellent project to work on in the first place through his diligence. Further, Professor
Finkel has been a guiding force throughout the entirety of our project, providing useful critiques
as the project passed. Next we would like to thank Larry Robinson, Allen Martin, and Matt
Pedro, without whom we would not have had a project. They have provided great oversight of
our project, and enabled us to quickly integrate into NVIDIA so that we were able to get our
work done. We would like to thank the rest of the team for welcoming us into the team,
helping us when we ran into roadblocks in our project, and making our time at NVIDIA
enjoyable. WPI has our eternal gratitude for providing us with the education we needed to
complete the work on our project and setting up the MQP program. Finally, we would like to
thank Simon Glass, from Google, who provided expert insight into several issues the team ran
into, and for showing us around Google.

1.0 Introduction

When we began doing research for our project in November of 2010, we found that our project
description was not very specific. We were unsure what topics to research because we were
only told that we would be working on performance measuring, Google’s Chrome OS, and the
Tegra Chipset. The focus of the project, being somewhat opaque, led us to look in depth at the
topics presented above. As such, our Background chapter includes our research on the Tegra
chipset, Chrome OS, and several performance-monitoring tools on various operating systems.

When we arrived at NVIDIA in January of 2011, though, the focus of our project became much
clearer. We determined that the goal of our project would be to completely automate the
building of new revisions to the source repository, the booting of the entire operating system
over the network in a dynamic fashion with software that is not dependent on a specific version
of the operating system, and the inclusion of performance and functionality testing into the
automatic test infrastructure.

Our project was focused around Chromium OS, Google’s open source project which aims to
develop a browser-based operating system. Since Chromium OS is open source and still under
development, there are new versions of the operating system put out almost daily. We were
tasked with keeping NVIDIA’s builds of Chromium OS up to date with Google’s by automating
the build phase. Next we were tasked with being able to provide a reliable method for loading
the operating system over a network rather than off of test system hardware in order to speed
up debugging time and maximize the disk space available to a test machine. Finally, we worked
on including several performance and functionality testing capabilities into the automatic test
infrastructure.

After nine weeks of work, we successfully completed our project. All goals were met and
additional work was done besides what was planned at the offset of the project in January.

2.0 Background
2.1 NVIDIA; About the Company

NVIDIA was founded in January 1993 by Jen-Hsun Huang, former director of coreware at LSI
Logic Corp, Chris Malachosky, and Curtis Priem. Beginning as a company fueled by just
intellectual property, NVIDIA has grown to be a leader in everything including graphics
processing units, integrated circuits, and chipsets. One dynamic that makes NVIDIA unique from
its competitors is its range of platforms on which the company’s products not only survive, but
thrive. NVIDIA has their products in computers, gaming consoles, phones, and tablets. In 2007,
NVIDIA was named Company of the Year by Forbes magazine. [1]

2.2 Business Background

In 1995 NVIDIA released its first product known as the NV1, a multimedia PCl card.
Manufactured by NVIDIA's first acquisition, SGS-THOMSON Microelectronics, the card received
mixed reviews in that it was expensive for its quality and the quadratic rendering was different
from the mainstream polygon rendering. Not rendering polygons meant that the card did not
support Direct3D but in 1997 NVIDIA created the RIVA 128, a card meant to push Direct3d to its
furthest capabilities. With the release of the RIVA 128, NVIDIA started to push its way out of the
shadows of competitors and into multimedia fame. Two years later the company went public
and sold its ten millionth graphics processor. A year after that the company absorbed one of
the largest graphics companies of the 90’s. That same year Microsoft offered NVIDIA a contract
to supply GPUs for their next generation gaming console, the X-Box. NVIDIA has since
discontinued their service to Microsoft gaming consoles, and is to this date supplying Sony
GPU’s for the PlayStation 3. NVIDIA also makes integrated circuits for mobile devices called
System-on-a-chip which contains a CPU, GPU, northbridge, southbridge, memory controller,
and the ARM architecture. NVIDIA calls this series TEGRA. [2]

10

2.3 Tegra Chipset

NVIDIA’s Tegra series chipsets contains some of the world’s most powerful mobile processors
to date. [5] The Tegra chipset contains an ARM architecture processor CPU, GPU, northbridge,
southbridge, and memory controller. The northbridge is used for memory controlling while the
southbridge controls input and output logic. Tegra chips range from 600 MHz to 1 GHz
processing speed, and use low power DDR and DDR2 memory. The Tegra chipset is used today
in smart phones and tablet PC’s. [4]

2.4 Chrome 0OS

Chrome OS is Google’s challenge to enter the operating system market. Based on Linux, the
primary goals and features are improved boot speeds, better security, more simplicity, and
integration with web services. They plan to achieve this by making the browser the only
program to run on the computer. In addition to this, modified firmware would allow Chrome
OS to have certain security features that are not present in other operating systems, such as
firmware, which can verify the integrity of the operating system kernel, which can then verify
the rest of the operating system. Google also plans to streamline hardware detection using the
special firmware. [3]

Chrome OS is a rebranded version of an open source project, Chromium OS. This is a parallel to
the relationship between Google’s Chrome web browser and the Chromium project. Chrome
OS will require specific hardware in order to take advantage of Google’s optimizations for
performance and security.

2.5 Windows Performance Tools

2.5.1 Task Manager

Task Manager is Windows’ most widely known performance tool. It allows the user to examine
and control processes and services as well as monitor the performance and networking
connections associated with the system. Although it is a powerful tool, and even given a
shortcut key command in Windows, it is still very limited in its scope. It presents individual
process information only for the timeframe that the user is viewing task manager. Figure 1
shows Windows Task Manager and the memory and the CPU usage of some of the processes.

11

13 Windows Task Manager [o][@]| =]
File Options View Help
Applications ‘ Processes l Services I Performance | Users
Image Name User Name CPU Memory (... Description -
firefox.exe *32 Tyler 00 90,200K Firefox
OUTLOOK.EX... Tyler 00 69,524K Microsoft Outlook
mspaint.exe Tyler 00 55,840K Paint
explorer.exe Tyler 00 43,996 K Windows Explorer
aim.exe *32 Tyler 00 38,108K AOL Instant Messenger
Vid.exe *32 Tyler 00 36,520K Logitech Vid
WINWORD.E... Tyler 00 32,748K Microsoft Word =
vic.exe *32 Tyler 00 19,344K VLC media player B
WINWORD.E... Tyler 00 14,764K Microsoft Word
CameraHelper... Tyler 00 13,464K Webcam Controller
CCC.exe Tyler 00 12,780K Catalyst Control Centre: Host application
csrss.exe SYSTEM 00 11,016K Client Server Runtime Process
Pen_Tablet.exe SYSTEM 00 10,368 K Tablet Service for consumer driver
plugin-contain... Tyler 00 9,552K Plugin Container for Firefox
MOM.exe Tyler 00 6,772K Catalyst Control Center: Monitoring program
LWS.exe *32 Tyler 00 5,528K Logitech Webcam Software
wisptis.exe Tyler 00 5,240K Microsoft Pen and Touch Input Component
qttask.exe *32 Tyler 00 5,204K qttask.exe
TabTip.exe Tyler 00 4,472K Tablet PC Input Panel Accessory
LogitechUpda... Tyler 00 4,416 K Logitech Updater
wisptis.exe SYSTEM 00 3,952K Microsoft Pen and Touch Input Component
taskmar.exe Tyler 01 3,488K Windows Task Manager
DTlite.exe *32 Tyler 00 3,244K DAEMON Tools Lite
AdobeARM.e... Tyler 00 3,140K Adobe Reader and Acrobat Manager v,
[7] show processes from all users
Processes: 80 CPU Usage: 1% Physical Memory: 44%

2.5.2 Resource Monitor

The Resmon tool, which is present in all Windows OS’s since Windows Vista, is used to monitor
computers’ resources. Like Windows Task Manager, Resmon is able to look at, pause, and end
applications and their associated processes. It can also evaluate and present data about each of
the processes from how much memory the process is using to how many threads the process
contains. Unlike Windows Task Manager, Resmon can calculate the average CPU that each
process uses, and can even show processes that have already been terminated. Resmon’s scope
includes CPU, memory, disk, and network usage information. [6] Figure 2 shows the resmon.exe
application. On the top are five tabs (Overview, CPU, Memory, Disk, Network) that display

Figure 1: Windows Task Manager

information about that piece of hardware and how it is being utilized.

12

@ Resource Monitor E]
File Monitor Help
[Overview [cPu_ [Memory {[Disk | Network|
Processes [433 Used Physical Memory N EINO) [Views Iv]
[7] 1mage PID Hard Faults.. Commit (KE) WorkingS... Shareable (.. Private * Used Physical Memory ~ 100%
[] firefox.exe 3080 0 129,580 127,184 36,984 90
[T svchost.exe (Local 932 0 89,160 97,872 11,85 86
[7] OUTLOOK.EXE 4304 0 83,264 140,388 70,904 69
[T svchost.exe (secsves) 2496 0 71,69 26,200 7672 18 60 Seconds
[] aim.exe 072 0 71,552 64,408 26,276 38 Commit Charge
[explorer.exe 2960 0 69,100 83,164 37,652 45«
< [0 | »
Physical Memory ™ 1781 MB In Use ™ 2246 MB Available (~)
Hard Faults/sec 100
[2] Hardware Reserved [l In Use [Modified M Stendby [Free
9MB 1781 MB 60 MB 1828 MB 418 MB 0J
Available 2246 MB
Cached 1833 MB
Total 4087 MB
Installed 4096 MB

Figure 2: Resource Monitor - resmon.exe

2.5.3 Performance Monitor

Perfmon.exe is a performance-monitoring tool in the more recent versions of Windows. It
differs from Windows Task Manager and Resmon in that it does not have control of specific
processes. It does however, have the ability to measure performance over several hundred
metrics. Perfmon also allows the saving and comparison of these metrics over any time period.
Figure 3 shows tracking of several processing metrics over the time of about two minutes.
Perfmon also displays the average, maximum, and minimum of the selected metric, or metrics.

@ Performance Monitor
() File Action View Window Help

e nEE=HE

=mE=n)|

—[#][x]

® Performance HEra-|&X 2 c0EQ MM A

B& Performance Monitor .

{3, User Defined

4 [System
¥ System Diagnostics; 80
I System Performanc

B

4 [} Data Collector Sets i } l - l

() Event Trace Sessions

. Startup Event Trace Ses 60
4 [Reports
8, User Defined
4 {& System
" System Diagnostics, 407
[System Performanc
20
A\
WA in 1)
o SlEA RSN AL e A TS AN S A R SN =R
9:18:03 PM 9:18:15PM 9:16:45PM 9:16:55PM 9:17:05PM 9:17:15PM 9:17:25PM 9:17:35PM 9:17:45PM 9:18:02 PM
2895 Average | 6077 Minimum | 0555 Maximum | 18104 Duration 140
Color Counter Parent

Scale Instance Object

K I - Pre r 3
10 % User Time

A< ¢ | §
S

_Total --- Processor
10 % Privileged Time _Total --- Processor
0.01 Interrupts/sec _Total — Processor
10 % DPC Time _Total --- Processor
10 % Interrupt Time _Total --- Processor
10 DPCs Queued/sec _Total --- Processor

Computer s
e

A\TYI
TV
\\TYLER-PC
\\TYLER-PC
\\TYLER-PC
\\TYLER-PC
\\TYLER-PC
\\TYLER-PC 2

m
< i | >

Figure 3: Performance Monitor - perfmon.exe

13

2.6 Mac OS - Activity Monitor/Disk Utility - System Performance Tools

2.6.1 Activity Monitor

In the Mac OS, a user can observe their system performance using the built-in Activity Monitor.
The Activity Monitor can be used to check the memory usage, CPU usage, disk activity, battery
health and many other metrics of system performance. When a user opens the Activity
Monitor, the window appears as in Figure 4. [7][8]

(CHON &) Activity Monitor (=)
@ 6 A 8 [All Processes 4 Q- Fil
Quit Process Inspect Sample Process Show Filter
Process Name PID CPU CPU Time '# Real Memory| Virtual Memory User # Threads
m (null) 92842 0.8 2:44.37 2.15GB 3.64 GB lloyd 26
@ Capture NX 2 99017 0.0 54.48 640.62 MB 1.59 GB lloyd 23
WindowServer 179 3.0 13:13.75 494,51 MB 1.49 GB _windowse! 10
kernel_task 0 2.1 25:43.34 435.43 MB 2.48 GB root 69
. Digital Photo Professional 99239 0.0 20.62 314.29 MB 1.25 GB lloyd 12
@ Safari 69153 0.0 2:26.21 238.71 MB 1.24 GB lloyd 10
m Dreamweaver 91137 0.4 5:59.12 205.03 MB 1.33 GB lloyd 23
mds 31 0.5 5:38.49 156.94 MB 921.41 MB root 18
3:) ViewNX 99235 0.0 02.97 125.19 MB 1.08 GB lloyd 17
& Mail 88451 0.1 1:58.25 119.11 MB 1.07 GB lloyd 28
& Finder 325 0.7 6:24.21 48.70 MB 1,004.20 MB lloyd 15
java 74 0.0 26.57 43.19 MB 1.77 GB _appserver 14
coreservicesd 57 0.0 16.78 43.16 MB 639.10 MB root 4
W SpamSieve 88461 0.0 02.02 41.05 MB 984.56 MB lloyd 9
backupd 99946 28.8 40.61 28.43 MB 630.60 MB root 2
! Activity Monitor 364 1.4 10:18.95 26.31 MB 1,016.22 MB lloyd 10 23
[CPU | System Memory = Disk Activity Disk Usage Network |
Free: 838G8 |H| VM size: 61.48 GB
Wired: 101G |H| Pageins: 1.12GB
Active: =1 Page outs: 0 Bytes
Inactive: 1.77 CB | | i Swap used: 0 Bytes
X 16.00 GB
Used: 7.61CB

Figure 4: Activity Monitor [8]

This main window allows one to view all active processes, as well as the available and used CPU,
system memory, and disk resources. Each item is accessible through the tabs in the lower
portion of the window. By navigating through each tab, a user can learn about how the
computer’s resources are being used. Figure 5 shows how one can monitor the recent CPU
usage. This is a helpful feature because it provides a live graph that differentiates between
user-run and system-run processes, with each indicated by a different color. [7]

14

- el CPU Monitor

Figure 5: CPU Monitor

In addition, one has the ability to analyze any individual process in more detail. A user can open
an information panel for a process, as shown below in Figure 6, which details the number of
active threads, ports, faults, system calls, etc. If desired, a user can dock the monitoring graphs
on their desktop while doing other work. The easy access to system performance tools is a
helpful feature that enables multitasking while observing the system resources. [8]

8BEait (399

Parent Process: Dock (279) User: gilestur (501)
Process Group ID: wheel (0)
% CPU 0.00 Recent hangs: 0

Memory Statistics Open Files and Ports

Threads E Page Ins 1406

Ports: 112 Mach Messages In 276993

CPU Time 2:15.33 Mach Messages Out: 395652

Context Switches: 392231 Mach System Calls 1404045

Faults 68227 Unix System Calls: 145471
" Sample Quit

Figure 6: BBedit

15

2.6.2 Vmstat

An experienced user, however, might prefer the command-line interface that is also available in
the Mac OS. The Linux based vm_stat command, when run in a Terminal (command prompt),
lets a user view the same system information in a simple table, as shown in Figure 7. [8]

‘®00 vm_stat — 91x75 — 381

11cMP:MACPERFORMANCE_GUIDE_MASTER 1loyd$ vm_stat
Mach Virtual Memory Statistics: (page size of 4096 bytes)
Pages free: 6466534
Pages active: 1154252,
Pages inactive: 462269.
Pages wired down: 304074.
"Translation faults": 78955447,
Pages copy-on-write: 344346.
Pages zero filled: 68835842.
Pages reactivated: 635625.
Pageins: 205613.
Pageouts: 815411.
Object cache: 201333 hits of 310122 lookups (64% hit rate)
11cMP:MACPERFORMANCE_GUIDE_MASTER lloyd$ vm_stat 5
Mach Virtual Memory Statistics: (page size of 4096 bytes, cache hits 64%)
free active inac wire faults copy zerofill reactive pageins pageout
6466371 1154241 462269 304074 78958778 344399 68837560 635625 205613 815411
6468122 1152724 462269 304074 3104 62 1608 0 0 0
6467697 1152723 462269 304074 1972 4 1051 0 0 0
6465741 1154866 462264 303977 9121 234 6504 0 0 0
6466090 1154864 462264 303977 2517) 1257 0 0 Q

Figure 7: Terminal Run System Performance Tools [7]

Each of these tools is helpful in providing a user with live system performance information
without using up much of the system resources themselves.

2.6.3 Disk Utility

Another tool that enables a Mac user to monitor their system resources and performance is the
Disk Utility. The Utility allows a user to mount disks (both hard disks and virtual images),
format disk drives, analyze the health of active disks and provide repairs if necessary, as well as
several other features. The Disk Utility, which can also be accessed by the Terminal commands
diskutil and hdiutil, is shown in Figure 8. [7]

16

)

®e0o Dingy
409 0 9 BB E —

Verify Info Burn Unmount Eject Enable journaling Newlmage Convert Resize Image Log

f———
21465.8 GB ST3500641AS Q FirstAid = Erase RAID Restore

) Evolution If you're having trouble with the selected disk:
|71 465.8 GB Other World Com « Click Repair Disk. If the repair fails, back up and erase the disk.
« If Repair Disk is unavailable, click Verify Disk. If the disk needs repairs, start up from
your Mac OS X installation disc, and then choose Utilities > Disk Utility.
MATSHITA DVD-R UJ-85)
If you have a permissions problem with a file installed by the Mac OS X installer, click
Repair Permissions.

™ Show details

(_verify Disk)

(Repair Disk)

,7 \ Mount Point: /Volumes/Dingy. Capacity : 465.4 GB (499,763,888,128 Bytes)

Format : Mac OS Extended (Journaled) Available : 243.3 GB (261,219,999,744 Bytes)

Owners Enabled : Yes Used : 222.2 GB (238,543,888,384 Bytes)
Number of Folders : 185,923 Number of Files: 911,785

@

Figure 8: Disk Utility [7]

2.7 Linux Performance Tools

2.7.1 Vmstat

Due to Linux’s fragmented nature, there are myriad performance tools. For the sake of this
paper, vmstat will be discussed. Vmstat provides performance information regarding memory
and CPU usage. Unlike some of the other monitoring tools mentioned, vmstat is not capable of
interfering with processes or memory; it only displays information about them. The main
advantage to vmstat is the simplicity of the interface. For example, disk information can be
viewed simply by typing the vmstat -d command. This will tell the user information including
the number of past read/writes as well as current |0 information. Further, the user can drill
down into specific partitions using the vmstat -d <partition> command [9]. In running vmstat,
the user can view information regarding RAM, swap, 10, system, and CPU usage.

procs --

r b
0] 1

Figure 9: Vmstat

Figure 9 shows the output of running the vmstat command without any parameters. The top
row shows the general headings, procs for processes and io for input and output. The second
row tells what specific metric is in the third row. The r column says how many processes are
waiting for runtime, and the b column says how many processes are in an uninterrupted sleep
state. The swpd column says how much virtual memory is used, the free column says how
much is idle, the buff column says how much is in use as buffers, while the cache column shows
how much memory is in use as cache. For the swap column, si and so show how much memory

17

is swapped in from the disk per second and how much memory is swapped out to the disk per
second, respectively. In the io column, the bi and bo columns show how many blocks are
swapped in and out of the disks per second. The system column shows the number of
interrupts per second and the number of context switches per second in the in and c¢s columns,
respectively. The last column contains relevant CPU information. There are 5 columns,
representing different categories of CPU usage as percentages. The us column shows how
much time is used by user processes, the sy column shows how much time is used by the
kernel, the id column shows the amount of CPU spends idle, the wa column shows the amount
of time spent waiting for |0 systems, and the st column shows the amount of time stolen from
a virtual machine. [10]

2.7.2Top

Another important performance monitoring tool in Linux is the top command. Top is one of the
first commands a new user of the Linux command line learns. By running top, the user gets a list
of the active processes sorted by usage that is updated constantly until the user exits by
pressing “q”. Having several criteria on which to be sorted, the top command is considered by
some, to be very flexible. In addition, top has a summary of CPU, process, and RAM information
at the top of the display. Top is useful for identifying processes that use large chunks of CPU as
well as for revealing the id’s of those processes. This in turn can be used to shut those

processes down.

.60, 0,59, 0,59
: 0 zombie
Cpu(s): B, s [%
Mem: 3799344k total,
S ¢ 1048572k total,

+ COMMAND

qemu 04 gemu-kwvm

dignan
root

> root
3 root

The screenshot in Figure 10 shows the top command running on a Fedora 14 server. The top
row tells the time, the uptime of the computer, the number of users active, and the load
average. The load numbers indicate processor usage averages over 1, 5, and 15 minute
periods, respectively. The load represents the percentage of a CPU that the processes are
using. For example, the 0.60 indicates that the load is enough to use 60% of one of the
processors on the computer. Fortunately, this computer has 4 cores, so that means the load is
only enough to saturate 60% of one of the four cores. [11]

18

The next line in Figure 10 shows the number of processes and some other straightforward
information regarding their state. The CPU line should look familiar from vmstat’s output, and
the next two lines are fairly self-explanatory. The more interesting functionality provided by
top is in the table below the header. The first column is the PID, the process ID number which
is a unique identifying number assigned to a process that can be used to end it, trace it, and
many other things. The user column shows which user is executing the task, while the PR
column shows what the processes priority is. The NI column is similar to the PR column, but
tells what the nice value is. Nice allows the user to change the priority of a process. The VIRT
column shows how much virtual memory is used by the task. The RES column tells how much
unswapped physical memory the task is using. The SHR column shows how much memory is
used that could potentially be shared with other processes. The S column shows what the state
of the task is, the D means uninterruptible sleep, the R means running, the S means sleeping,
the T means traced or stopped, and the Z means zombie. The last three columns are fairly self-
explanatory as well. [12]

19

3.0 Process/Results

3.1 The Overarching Goal of our Project

The overarching goal of our project was to completely automate the build- the creation of a
consumable form of Chromium OS, booting from a remote server, and finally testing the build.
The work we did on the build system will allow NVIDIA to automatically create builds, compiled
versions of the Chromium OS software, for new revisions to the source repository, the server
that hosts the version controlled software source code. In order to test the build that was
automatically generated, it needs to be installed onto hardware for performance and
functionality testing. Currently, the performance and functionality tests need to be done
manually, but we have tested and documented a process for booting the entire operating
system over the network in a dynamic fashion with software that is not dependent on a specific
version of the operating system, since the operating system is constantly under development,
and there are new versions all the time.

At the outset of the project, the automation of testing was somewhat haphazard. Functionality
tests had been made into a form such that they could be run from the command line, but had
no way to fit into the existing infrastructure and were run by hand. NVIDIA uses buildbot [13],
an automation platform, for their testing infrastructure. Performance testing was not
automated at all, and was performed by going to websites and manually running the tests. Our
project automated the browser-based performance tests, such as Sunspider and Page Cycler,
which test JavaScript execution speed and page rendering speed, and fit both the performance
and functionality testing into the automatic test infrastructure. Functionality testing includes
things such as ensuring that the video player works on the test hardware. Using the
aforementioned build and boot techniques and combining them with the automated testing
provides a powerfully automated development framework that will improve code and shorten
the feedback cycle for NVIDIA's developers when they are developing Chromium OS.

20

3.2 Buildbot

One of the most important aspects of working on a large software project is automation.
Testing needs to be automated, building needs to be automated, and anything that can possibly
be automated should be. Buildbot is a popular tool to automate the testing and building of
software. Buildbot is a highly flexible software package, with built in support for numerous
source control systems, including subversion, concurrent versions system, git, compilation, and
running shell scripts. [13]

Chromium OS is a complicated software project. NVIDIA needs to make sure their hardware
works well with the Chromium OS builds, versions of the software made available in a
consumable form. These builds come from compiling the source from the source control
system. Builds are available from the chromium.org buildbot or internally at NVIDIA from a
shared network drive. Since maintaining a high level of quality is extremely difficult, NVIDIA
and Google have written a large number of tests for testing the functionality and performance
of the hardware and software using autotest to remove the human factor and create consistent
tests. However, autotest is not a complete solution, since it does not provide a mechanism for
automatically running tests when a new commit is made to the repositories. A commit is a set
of code submitted to a repository, the version-controlled area where code is stored. That's
where buildbot comes in. Buildbot supports triggering from various sources, such as periodic
triggers, polling, source control commits, HTTP notifications, Gerrit notifications — the system
NVIDIA uses to manage code reviews, notifications through its TCP interface, and even emails.
The mobile team’s buildbot instance currently builds and tests nightly images based on the
state of the OS.

Buildbot is broken into two major components which essentially makes up a client-server
architecture. There is a master which controls scheduling, interfacing with the web, and
listening for changes from the various change sources mentioned before. The second
component part is the slave. Slaves are the components that actually execute the instructions
for which the instance is configured. The client-server architecture employed by buildbot allows
for a many to one relationship of slaves to masters. As a technical side-note: you can actually
have backup masters.

Buildbot configuration is very straightforward. Thanks to buildbots decision to use the
programming language Python, a language designed for readability, in its configuration files.
This keeps the configuration powerful and simple. Configuration of slaves is mostly done by
creating a folder and running the buildslave script:

21

buildslave create-slave BASEDIR MASTERHOST:PORT SLAVENAME PASSWORD

BASEDIR should be whatever directory you want the buildslave to be based out of, while
MASTERHOST:PORT is the address of the master instance. SLAVENAME and PASSWORD are
arbitrary values used to restrict access to the buildslave. After the command is run, the
buildslave script will tell you to configure two files, one with a description of the slave, and one
with the name and email address of the server admin.

Configuration of the master instance is a bit more complicated. The master configuration
includes the configuration of how the builds will be done, as well as configuration of the web
interface and the change source configuration. The change source determines how buildbot
knows when something has changed. Even with all these options, the master configuration is
relatively simple, basically only as complex as you need it to be. For the most part, the defaults
work. To get started with the default configuration run the buildbot script with the correct
arguments:

buildbot create-master -r BASEDIR

This will create the default configuration in BASEDIR. The first thing to do is to set up the
builders, the code that performs the actions desired by the user, so that they do what they are
supposed to. This is accomplished by creating builder factories, the Python objects which
generate new builders, which are used to generate builders whenever a build is needed. The
factories are specified in terms of steps that are needed to create the builds. Each step is a
python class that is part of the buildbot codebase or may be written by the user. Steps are
added to the factory in the sequence in which they are to occur. Builders are associated with
the factories, and then the schedulers so that when the scheduled event is triggered it knows
which builder to use. The web interface is somewhat configurable, but only permissions and
whether or not to show buttons to control slave and master instances can be changed. The
scheduler allows configuration of what triggers builds, using any of the methods mentioned
before as well as custom-made change sources.

22

Tree is closed (bad bot script checked in)

Builds: continuous | symbols | status

perf | memory | sizes | coverage |
flakiness | stats Reliability

Chromium
Chromium: Sources | reviews | bugs | dev | 76390 : 76390)
support Webkit
aarya, rdsmith, pinkerton,
Sheriffs: tonyg(WebKit), 0 / 40359 URLs Bt
stuartmorgan(Memory) 1 / 7240 Ul Ops
Official Memory
about | customize | try | 76385
experimental | waterfall | failures |
console | memory | chromiumos
Chromium
last build
building building building building building
ETAIn ETAin ETAIn ETAIn ETA in

current activity ~ 31 mins idle idle ~ 13 mins ~ 15 mins idle idle ~ 3 mins ~ 8 mins

at 12:08 at 11:49 at 11:52 at 11:40 at 11:44

3 pending 3 pending 3 pending 2 pending 1 pending

time changes Win win Mac Linux Linux x64 Arm Win Builder XP Tests (1) XP Tests (2) Vista Tes!
(PST) changes = Reliability ==¢ = e xes A
compiling running running running browser_tests running ui_tests
stdio browser_tests browser_tests stdio stdio
stdio stdio

11:36:22

11:36:11

Figure 11: Buildbot Waterfall View

The buildbot web interface in Figure 11 is the main point of interaction most users have.
Buildbot has several views for analyzing the output and status of various builds. The one that
Google focuses on is the Waterfall view, which shows all the build configurations and their
status’, as well as any changes to the source. This view is good for quickly gleaning the overall
status of the project. In fact, Google uses the Waterfall view as one of the primary information
points as to whether they should close the source tree to changes. Another popular view is the
console view, which presents a more change focused version of the status. It displays each
commit on a separate line along with the status of the build it triggered, which can be clicked to
see the waterfall view in a popup, shown in Figure 12.

23

Chromium Legend: Running No data GCo

full windows mac linux chromiumos
O X 0O O = o0 BES O g i i 0

76408 rginda@chromium.org

* Mac : complile falled. [stdio]
e Arm : compile falled. [stdio]
¢ Mac Builder : compile failed. [stdio]

¢ Linux Builder x64 : compile falled.
¢ Linux Builder (dbg) : compile fai
* Linux Builder (dbg-shlib) : compl [
* Linux Clang (dbg) : complile falled. [stdio] Mac
Build 2371

Initial landing of file_manager component extension (not yet enabled) This s the Initial landing of a component extension to handle file open, save-as, and file management user interfaces. This is just the basic plumbing, minus any
useful functionality. I've tested this by building with... $ export GYP_DEFINES="file_manager_extension=1' $ make chrome -j16 Then launch the result and visit chrome-extension://hhaomjibdihmijegdhdafkilkbggdgoj/main.html, and
verify that the <h1> tab is blue, and the document contains "Hello World". BUG=chromium-o0s:11988 TEST= Review URL: http://codereview.chromium.orq/6588053

76407 tburkard@chromium.org ‘:‘ ‘:‘ : [‘ [‘

* Mac : compile falled. [stdio]

Figure 12 - Buildbot Console View

3.3 Improving Build Infrastructure

The time required to build Chromium OS images quickly became an issue for the team. As such,
we were asked to build faster build computers, systems designated for compiling the Chromium
OS software. While not technically a deliverable for the week, it was necessary for the team’s
overall success as well as a goal for the project. Two new computers were built and had the
development environment installed on them, while a third computer needed RAM before more
could be done with it. The fastest of these new computers cut the total build time from about
6 hours to about 3.5 hours, removing a huge bottleneck for the team. In addition, after the
completion of our MQP, these computers will serve as build computers for the development
team, since some of the current build computers take up to 12 hours to complete one build.
Building the computers was largely a process of debugging broken and incompatible parts as
well as locating appropriate hardware. The hardware was spread throughout the office from
boxes next to the mentors’ desks to the server room. In addition, one computer in particular
which should have been fast was inexplicably slow despite its capable hardware. Although
some time was spent trying to debug the issue there, the results were inconclusive.

3.4 NFS (Network File System) Boot

In order to improve the process of testing new images on our test boards, we were tasked with
finding a way to automate the rollout of new filesystem images onto the test boards on a
nightly basis. Typically, one would access the local shares and load a nightly build/image onto a
USB stick, and then mount this image onto a test board. By automating this process, we would
eliminate the need for this manual step.

We chose to use the “NFS root” method, which allows one’s target machine (the test board) to
use a NFS mount on your host Linux machine as its root filesystem (rootfs). While the NFS root
process requires a lengthy setup and causes the target machine to have longer round trip times
to the rootfs, it has several advantages as well. Using an NFS share as the rootfs allows changes
to be made to the rootfs more easily. Only the filesystem on the NFS share needs to be edited
and the changes will be propagated to the target machine. This is a much faster process than

24

loading the changes onto a USB device and rebooting the target machine using that filesystem.
In addition, since the filesystem is stored on a remote host, space is rarely, if ever, a concern,
since it is simple to add more storage to a server or workstation. This is particularly useful
when working with debug images, which are typically much larger than standard images. [17]

Setting up a development board to use an NFS share as its rootfs is non-trivial. The first thing
we had to do was set up an NFS server on our host. This was simply done with the commands
shown in Figure 13, which enabled the NFS server built into our kernel with several new
modules (including nfds, exporfs, lockd, etc.) and then set the base for our NFS exports. Note
that the Internet Protocol (IP) address and subnet reflect the IP range that has access to the
NFS share. This means that the target machine must be within the 172.17.151.0 to
172.17.151.255 IP range in order to be able to access the NFS share.

sudo apt-get install nfs-kernel-server
/export 172.17.151.0/255.255.255.0(rw,fsid=0,no_subtree check,async)

/export/nfsroot
172.17.151.0/255.255.255.0(rw,nohide,no_subtree check,async,no_root_ squash)

Figure 13: Setting up NFS Server

The second export command makes our nfsroot directory (which will contain our root
filesystem) accessible as an export, with several options configured. In order to make the rootfs
appear in “/export/nfsroot”, we used a bind mount to paste the true location with the following
set of commands. This is shown in Figure 14.

go to the directory with the latest build
cd chromiumos/chromiumos.git/src/build/images/tegra2 seaboard/latest

mount it into /tmp/m
chromiumos/chromiumos.git /src/scripts/mount gpt image.sh -f . -i

chromiumos test image.bin

copy out the contents of the image
sudo cp -a /tmp/m nfsroot

unmount the image from /tmp/m
chromiumos/chromiumos.git /src/scripts/mount gpt image.sh —u

chromiumos/chromiumos.git/src/build/images/tegra2 seaboard/latest/nfsroot
/export/nfsroot none bind 00

$ sudo mount /export/nfsroot
$ 1ls /export/nfsroot/

bin dev home lost+found mnt postinst root share tmp usr
boot etc 1lib media opt proc sbin sys u-boot var

Figure 14: Bind Mounting the Root FS

25

After restarting the NFS kernel server and disabling the standard firewall in Chromium OS, we
were able to successfully set up our NFS server.

Next, we had to make sure we were building a suitable kernel. This required making sure that a
suitable network driver was compiled in, and that all the necessary network filesystem options
were enabled. The table below shows a few of the important options and what they mean.

e CONFIG_USB_USBNET = enables the USB network subsystem
CONFIG_NET_AX8817X = enables the particular USB driver
CONFIG_NETWORK_FILESYSTEMS = enables network filesystem support
CONFIG_NFS_COMMON, CONFIG_NFS_FS = enables the NFS client in the kernel

CONFIG_ROOT_NFS = enables the NFS root function

To enable the options, we simply had to edit a configuration file with the following options
(Figure 15).

chromeos/config/armel/config.flavour.chromeos-tegra2:
CONFIG USB NET AX8817X=y

chromeos/config/config.common.chromeos:
+CONFIG_DNOTIFY=y

+CONFIG DNS_RESOLVER=y
+CONFIG_LOCKD=y
+CONFIG_LOCKD Vé=y
+CONFIG_NETWORK FILESYSTEMS=y
+CONFIG NFSD=m
+CONFIG NFSD V3=y
+CONFIG NFSD V4=y
+CONFIG_NFS_COMMON=y

+CONFIG NFS_FS=y

+CONFIG _NFS_USE KERNEL DNS=y
+CONFIG NFS_V3=y

+CONFIG NFS_V4=y

+CONFIG_ROOT NFS=y
+CONFIG_RPCSEC GSS_KRB5=y
+CONFIG_SUNRPC=y
+CONFIG_SUNRPC GSS=y
+CONFIG_USB_USBNET=y

Figure 15: Kernel Configuration

The final step in getting an NFS boot to work on a target machine was to create a boot
command with the necessary environment variables. On ARM systems, like the systems we are
working with, U-passes the kernel parameters to the kernel. Normally, U-Boot would use NAND
or eMMC (Embedded Multimedia Card — flash memory storage located in the seaboard) as the
root filesystem however, for our task that needed to be changed. We had to change the root
option and add two new options, nfsroot and ip. The boot command, as entered on the

26

seaboard, loads the kernel from the USB and then boots it with the rootfs that is provided
through the NFS server, our boot command is shown in Figure 16 below.

Tegra2 (SeaBoard) # setenv myargs=setenv bootargs ${mem} video=${videospec}
console=${console} usbcore.old scheme first=1 tegraboot=${tegraboot} ${1lp0_vec}
tegrap earlyprintk root=/dev/nfs4 nfsroot=172.17.151.39:/exoirt.nfsroot ip=dhcp
rw rootwait

Tegra2 (SeaBoard) # setenv myboot=usb start \; ext2load usb 0:3 ${loadaddr}
/boot/${bootfile} \; run myargs; bootm ${loadaddr}

Tegra2 (SeaBoard) # print myboot
myboot=usb start; ext2load usb 0:3 ${loadaddr} /boot/${bootfile}; run myargs;
bootm ${loadaddr}

Figure 16: NFS Boot Commands

Enabling NFS boot to work with our host and target machines, as shown below with a partial
boot trace, takes away the need to manually load nightly images onto our test boards, and
allows a developer to make use of the large amount of disc space available on the host
machines.

Booting kernel from Legacy Image at 00408000

Image Name: Linux-2.6.36
Image Type: ARM Linux Kernel Image (uncompressed)
Data Size: 3514264 Bytes = 3.4 MiB

Load Address: 00008000

Entry Point: 00008000

Verifying Checksum ... OK

Loading Kernel Image ... OK
OK

Starting kernel

Uncompressing Linux... done, booting the kernel.

[0.000000] Initializing cgroup subsys cpuset

[0.000000] Initializing cgroup subsys cpu

[0.000000] Linux version 2.6.36 (sjg@kiwi.mtv.corp.google.com) (gcc version
4.4.3 (Gentoo Hardened 4.4.3-r4 pl.2, pie-0.4.1)) #27 SMP PREEMPT Thu Dec 23
14:05:05 PST 2010

[0.000000] CPU: ARMv7 Processor [411fc090] revision 0 (ARMv7), cr=10c53c7f
[0.000000] CPU: VIPT nonaliasing data cache, VIPT nonaliasing instruction

cache

[0.000000] Machine: seaboard

[0.000000] Ignoring unrecognised tag 0x54410008

[0.000000] Memory policy: ECC disabled, Data cache writealloc

[0.000000] PERCPU: Embedded 8 pages/cpu @c0fcd000 s9312 r8192 d15264 u65536
[0.000000] pcpu-alloc: s9312 r8192 d15264 u65536 alloc=16%*4096

[0.000000] pcpu-alloc: [0] O [0] 1

[0.000000] Built 1 zonelists in Zone order, mobility grouping on. Total

pages: 227328

[0.000000] Kernel command line: mem=384MQ@OM nvmem=128ME@384M mem=512M@512M
video=tegrafb console=ttyS0,115200n8 tegraboot=nand
tegrapart=system:3680:2bc0:800 smp root=/dev/nfs4
nfsroot=172.17.151.39:/export/nfsroot ip=dhcp rw rootwait

[0.000000] PID hash table entries: 4096 (order: 2, 16384 bytes)

[0.000000] Dentry cache hash table entries: 131072 (order: 7, 524288 bytes)
[0.000000] Inode-cache hash table entries: 65536 (order: 6, 262144 bytes)

27

[20.793312]
[20.800425]
SerialNumber=3
[20.807928]
[20.812182]
SM 0 on

[20.819913]
[20.825096]
[21.715416]

usb 1-1.1: New USB device found, idVendor=0b95, idProduct=7720
usb 1-1.1: New USB device strings: Mfr=1, Product=2,

usb 1-1.1: Product: AX88x72A
regulator_ init complete: incomplete constraints, leaving REG-

usb 1-1.1: Manufacturer: ASIX Elec. Corp.
usb 1-1.1: SerialNumber: 000001
asix 1-1.1:1.0: ethO: register 'asix' at usb-tegra-ehci.2-1.1,

ASIX AX88772 USB 2.0 Ethernet, 68:7f:74:9f:f6:£f2

23.
23.
25.
25.
.16.
25.
25.
w=172
25.
25.
25.
25.
25.
25.
25.
25.

~
\S]

L B B e B e B e B B B o B B B e R e B]

.377062]

513408]
517802
420077]
450201
2.2

462474
465579]

.16.2.1,

473686
482878]
492066
532272]
565966
605134]
608453
629564

ADDRCONF (NETDEV_UP): ethO: link is not ready

ADDRCONF (NETDEV_CHANGE) : eth0O: link becomes ready

ethO: link up, 100Mbps, full-duplex, lpa 0xCDEl

., OK

IP-Config: Got DHCP answer from 172.16.2.3, my address is

IP-Config: Complete:
device=eth0, addr=172.16.2.2, mask=255.255.255.0,

host=seaboard0, domain=mydomain.com, nis-domain=(none),
bootserver=172.16.2.3 rootserver=172.16.2.3, rootpath=

Looking up port of RPC 100003/2 on 172.16.2.3

Looking up port of RPC 100005/1 on 172.16.2.3

VFS: Mounted root (nfs filesystem) on device 0:16.

devtmpfs: mounted

Freeing init memory: 216K

Not activating Mandatory Access Control now since /sbin/tomoyo-

init doesn't exist.
Developer Console

To return to the browser, press:

[Ctrl] and [Alt] af 30.996904] unknown ioctl code

nd [F1

]

To use this console[31.000639] NvRmIoctls NvRmFbControl: deprecated
, the developer mode switch must be engaged.
Doing so will destroy any saved data on the system.

In developer mode, it is possible to

- login and sudo as user 'chronos'

- require a password for sudo and login(*)

- disable power management behavior (screen dimming):
sudo initctl stop powerd

- install your own operating system image!

* To set a password for 'chronos', run the following as root:

echo "chronos:$(openssl passwd -1)" >
/mnt/stateful partition/etc/devmode.passwd

Have fun and send patches!

localhost login:

Figure 17: NFS Boot Console Output

28

A complete HowTo for NFS Boot can be seen in Appendices Il and Ill.

3.5 DHCP (Dynamic Host Configuration Protocol) Boot

DHCP is an auto configuration protocol that is used on IP (Internet Protocol) networks. Any
computer that is connected to an IP network must be set up with an “address” before it can
communicate with other computers on the network. DHCP allows a computer to be set up
automatically while keeping track of all of the computers actively using the network and
preventing two computers from accidentally using the same IP address. DHCP Boot, which uses
a DHCP server to automatically assign an IP address to the target board, is very similar to NFS
Boot because it uses a mounted root filesystem that is not pre-loaded onto the test board. It
further improves on NFS Boot as a means of automation, though, because it loads the system
kernel over a TFTP (Trivial File Transfer Protocol) server rather than from a USB device attached
to the test board as with NFS Boot. TFTP is a file transfer method that is commonly used for the
transfer of boot or configuration files over a network. TFTP can be implemented without using
much memory, and is still reliable. For this reason, TFTP was our choice for transferring the
kernel over the network. Using DHCP Boot with a TFTP server allows a user to load both the
kernel and root filesystem over the network. [18]

The configuration for DHCP Boot does not require many more steps than NFS Boot. First a user
must set up a DHCP Server and a TFTP Server. The DHCP Server is used to provide IP addresses
to targets on the network, and the TFTP Server is used to send the kernel to U-Boot (the
bootloader) when it requests one. After setting up these servers, a user needs to define some
boot arguments such as the server IP addresses, specific bootfiles, and a path to the kernel on
the host machine. With this setup, a user can boot their test board with the kernel and root
filesystem completely loaded over a local network.

A complete HowTo for DHCP Boot can be seen in Appendix IV.

3.6 Autotest

NVIDIA currently has a large suite of proprietary tests, called the NVtest suite, that are run on
their development boards to ensure the software is running properly. These proprietary tests
are currently run one-by-one by testers in NVIDIA’s Quality Assurance group. Our group was
tasked with automating these tests. Chromium OS uses a test harness called Autotest to
automatically run its test suite. Autotest allows tests to be run on remote devices in a
repeatable, parallelizable, and efficient way [14]. Automating these tests frees up Quality
Assurance resources for better and more in-depth testing. In addition, automating these tests
allows developers to get more rapid feedback to their changes. Faster feedback means that
issues can be found before the developer merges their changes with the main tree, preventing
their bugs from propagating to the rest of the developers.

There were two parts to this deliverable: figuring out how to run NVIDIA’s proprietary tests,
and writing the adaptor that allows these tests to be run by Autotest. Once we figured out how
to run a few tests, it became clear that automating creation of the adaptors would benefit the
team greatly. In order to accomplish our deliverable of having a working NVtest running
through Autotest, the team created a program that generates the adaptor. The generator was

29

created successfully and allowed the team to rapidly port NVIDIA’s proprietary tests to
Autotest.

To learn how to run the tests, the group looked through documented bug reports from the
NVidia Quality Assurance team to see if information on running each test was available. The
group then looked at the source code of each test to see what was required to run it in the case
that the test required parameters to be included. To the disappointment of the team, only sixty
five percent of the tests were able to be catalogued based on the aforementioned methods, so
a letter was drafted and sent to the NVidia Quality Assurance team to ask them how to run the
remaining NVtests on the Seaboard.

Autotest allows tests to be run on computers connected over the network. In this regard,
Autotest has a client-server architecture. There is a target board, which is the hardware upon
which the tests are to be run, and a test server, typically a developer’s computer which sends
the tests over the network to the target board. We realized that this architecture required that
the target board be online to run the NVtests through Autotest, so that the test server could
access the target board. After this was done the team used the scripts NVidia has written for
using Autotest to run the Autotests we had created. This works correctly and now testing can
be done from several computers onto one board simultaneously.

Autotests consist of two different files; a control file [Figure 18], and a command file[Figure
19][14]. The control file specifies which command files will be run as well as any other
execution commands that are required to execute the command files, such as commands to
reboot the target machine. Information required in the control file includes the author,
documentation, test name, time, test class, test category, and test type. Author should include
contact information for the writer of the command files and control file. Doc is a description of
the test, including the arguments that can be passed to it. The name variable is just the name of
the test, while the time variable is how long the test should take to run. Short is less than
fifteen minutes, medium is less than four hours, and long is more than four hours. Test_class
describes where the test belongs. In our case we made it general, but more specific cases might
be kernel, or even hardware tests. Test_category tells if the test is for stress, functionality or
otherwise. Test_type indicates if it is a client, server, or multi-client test. The last line of Figure
18 shows a command to execute a job. There are two types of jobs; simple jobs, and phased
jobs. Simple jobs are sets of straightforward commands directed at driving execution of tests,
while phased jobs are used in cases such as where the system needs to be rebooted in between
each test case.

AUTHOR = “name namel@yahoo.com”
TIME = “SHORT”

NAME = ‘HelloWorld’

poc = “"”

Runs the HelloWorld test

o

TEST TYPE = ‘CLIENT’
TEST CLASS = ‘General’
TEST CATEGORY = ‘Functional’

30

Job.run test(’HelloWorld’)

Figure 18: Autotest Control File

The actual command files contain commands that are sent to and run on the target machine.
There are several types of tests and among those we used functional and performance Autotest
tests. When Autotest runs a functional test the test files parse the output to see if the test
either passed or failed. In the case of performance tests, the output can be parsed for
information such as performance data. Figure 19 shows the code for automating a hello world
test. There are four built in functions when running: initialize, setup, run_once, and
postprocess_iteration. Initialize is run every time the test is executed. Setup is only utilized on
the first run of the test, and if compilation is needed, this is where it would be called.

Run_once, despite what the name implies, is actually run for however many iterations that are
specified, but carries the bulk of commands that will be used to test the client machine.
Postprocess_iteration handles much of the output back to the server on how the test did. In our
case, due to the simplicities of the tests we were automating, we only needed the use of the
run_once function. Figure 2 shows an example of an Autotest test, and the format we would
use. The command subprocess.Popen() executes the command on the target machine. In the
case of NVtest suite, the line ‘echo’, ‘HelloWorld!” would be replaced with the command and
the command arguments being passed to it.

from autotest lib.client.bin import test

import subprocess

from subprocess import CalledProcessError

from autotest lib.client.common lib import error

class HelloWorld(test.test):
version = 1

def check for failure(self, output):
if output.find(‘ALL TESTS PASSED’) == -1:
print “Found error”
raise error.TestFail(‘Test Failed’)

def run once(self):

proc = subprocess.Popen([‘echo’, ‘HellowWorld!’],
stdout=subprocess.PIPE, stderr=subprocess.PIPE)

out, err = proc.communicate()

ret = proc.poll()

self.check for failure(err)

return ret
Figure 19: Autotest Test

3.7 Selenium

31

The performance tests that the Quality Assurance team had been running were located on
several webpages that were run individually by hand. This results in a problem that too much
time is being used to run and wait for performance test metrics to be returned. Part of our
project was to help automate this process. To automate this process we would need a tool that
allowed us to open the browser, navigate to a webpage, depending on the webpage click a
button, wait for the performance test to finish running, and then grab the performance metrics.
The first program we found was a tool called Selenium. Selenium is a command line driven
application that uses several tools to run browser tests remotely [15]. There are two parts to
the test; a server which acts as an HTTP proxy for web requests, and the client library which
sends commands to the server. The library specifies information such as which browser the
tests will be run on, and what will be tested. Appropriate browsers include Internet Explorer,
Firefox, Safari, and Chrome. Figure 20 shows the code for a test that starts up Google Chrome
and travels to http://www.google.com [Figure 20; Note 1]. It then types in “hello world!”
[Figure 20; Note 2] and when the search is executed asserts that the title of the webpage is
“hello world! — Google Search” [Figure 20; Note 3]. If a test fails, the name of the test along
with why the test failed is printed out. If the test passes than only the test name and the word
‘Ok’ are printed.

from selenium import selenium
import unittest, time

class TestHelloWorld(unittest.TestCase):
def setup(self):
self.selenium = selenium(“localhost”, \
4444, “*googlechrome”, “http://www.google.com”)
self.selenium.start()

def test helloworld(self):
sel = self.selenium
sel.open(“http://www.google.com”) # [Note 1]
time.sleep(1)

sel.type(“q”, “hello world!”) # [Note 2]
sel.submit (“f")

for i in range(30):
try:
if sel.is element present(“resultStats”):
break
else:
time.sleep(1)
except:
self.fail(”Except: Could not search for element”)
else:
self.fail(“Timeout: 30 seconds”)

self.assertEqual(”hello world! — Google Search”, sel.get title())
[Note 3]

def teardown(self):
self.selenium.stop()

if name == “ main_ "

32

unittest.main()

Figure 20: Selenium Test

Selenium requires Java to run the Selenium-Server, and since Java had not yet been ported over
for ARM architecture we could not actually use Selenium in our final implementation of
performance testing. We started looking for other web testing frameworks to help automate
performance tests. Three solutions we came across were to port Java over for use on ARM, use
Selenium-Webdriver, or use a program called PyAuto. Since porting Java over was somewhat
impossible to fit into the scope of the project, we decided to explore the other two options.
Selenium-Webdriver is a program that would effectively do the same thing that selenium did
and the reason we looked into it was because it promised similar functionality to selenium
while changing the underlying framework. We initially thought that changing the framework
might have meant using something other than Java but to our dismay we realized that it too
needed the use of Java on the target platform. Our final solution was to use PyAuto, a python
driven program that would allow us to do much that selenium could do.

3.8 PyAuto

PyAuto is a python interface to Chromium's automation framework [16]. It can be used, much
like Selenium, to test browser functionally and performance. We decided to use PyAuto for out
testing framework because of the obvious benefits it gives. First, since PyAuto uses python, we
wouldn’t need to port over any major languages. Second, the chromium team had also already
done extensive work in getting PyAuto to work with Chromium, meaning that all we would
need to do is change a few of the build scripts and then rebuild for our platform. Initially we
had problems figuring out what we needed to change in the build script, but after extensive
trial an error we got PyAuto to build into Chromium. Those changes were eventually sent
upstream to Google allow PyAuto to be built not only for x86 architecture but for ARM
architecture as well. Finally, since we used python tests in Selenium, it would be easy to port
over the selenium tests we previously wrote.

Below, in Figure 21, we show an example test which first navigates to http://www.google.com
[Figure 21; Note 1] and then asserts if the title of the page equals “Google”[Figure 21: Note 2].
This is of course a very simplified case of what PyAuto is capable of. When we implemented our
tests we actually needed to run JavaScript on the page, or grab text to send to Autotest; For this
we used the command self.GetDOMValue(‘command’). The ‘command’ would be in JavaScript,
for example, to get data from a performance test that had already run and was included in an
element that was identifiable (having id= ‘something’), the command
‘document.getElementByld(‘identifier’).textContent would be acceptable for retrieving that
information.

import unittest
import pyauto

33

class MyTest (pyauto.PyUITest):
def testNavigation(self):
self.NavigateToURL("http://www.google.com") #[Note 1]
self.assertEqual("Google", self.GetActiveTabTitle()) #[Note 2]

if name == ' main_ ':
pyauto.Main()

Figure 21: Pyauto Test [16]

One of the only issues we had with PyAuto is the way in which it traverses and returns elements
from the DOM (Document Object Model). We believe that PyAuto is finicky using JavaScript
when there are multiple elements returned from a query. For example, when there is no
identifier in an element holding data that is meant to be retrieved we would need to call
self.GetDOMValue(“document.getElementsByTagName(‘DIV’).item(3).textContent”). This
command is meant to look at the document and get all the elements with DIV tags. From that
array it grabs the third element and the returns the containing text of that element. To our
dismay, PyAuto would only return a blank string even when the command would be applicable.
We hope that as Chromium automation improves, later versions of PyAuto will work
consistently.

34

4.0 Results

Our project was very successful. We were able to successfully build and set up four new build
computers for NVIDIA. One of these computers completed a build in about two hours, which
compares favorably to the existing build machines, some of which take up to twelve hours. This
will allow NVIDIA to perform more builds as well as get faster feedback. This allows them to
improve the testing coverage as well as more quickly identify regressions in a commit. These
build machines are currently deployed in the team’s buildbot farm.

One of the other key goals was to enable NVIDIA to replicate Google’s builds. We successfully
created a script that is capable of downloading the repo manifest file from Google’s buildbot
instance, and deployed that script within a buildbot environment. We documented this process
for NVIDIA in their internal wiki. They will be deploying the script and new buildbot
configuration after we finish our project.

At the offset of our project, PyAuto was not building for the ARM architecture, which the Tegra
chips all run. This was due to Chromium OS being released initially on the x86 architecture; so
many times things are not as well tested on the ARM architecture as they are on x86. We fixed
this and sent the patch for the fix upstream to Google, to be included in future development.

In order to automate running the nvtest suite, we needed to wrap each test in autotest-
compatible Python code. Since this code is extremely repetitive, we created a script to
generate the files based on input from a text file that contained the command line arguments
to run each test. This script was given to our mentor and the tests generated have entered a
review process in order to be upstreamed to Google so that it can be made available to Google
and NVIDIA’s other partners.

Another goal of our project was automating the boot process. NFS Boot and DHCP Boot were
the methods tested, and directions on how to run these processes were posted on NVIDIA’s
internal wiki at the conclusion of our project. By following these steps, an NVIDIA employee can
fully boot a test machine over the network, without having the kernel or root filesystem pre-
loaded onto the test machine.

One of our final deliverables was to catalog and understand how to run all of the tests in the
Nvtest suite. Nvtest suite is a set of proprietary tests that test system functionality. We
completed this objective and had documented 100% of the tests about if they could run and if
so, how to run them. Unfortunately this information will probably not be used because the
Quality Assurance team has a website that displays tests and how to run them. We were also
asked to write Autotest wrappers to run these tests from the host machine. We also completed
this goal as well as put it into an ebuild and sent it upstream to Google. We are not exactly sure
if these wrappers will be used, but we are under the impression that the wrappers will at least

35

provide a way for future testing groups to be able to use information as a resource to write
their own.

We were also asked to come up with a performance test tar-ball including some PyAuto tests
that navigate to websites and retrieve performance metrics as well as the Autotest wrappers to
run these tests. We completed this goal and created a tar-ball which would be used to make an
ebuild and sent upstream. Again, we are not sure if these tests will actually be used, but we
believe that they may be used as a resource in future cases where automation is required to
physically go to a website and grab information from it.

Overall, we completed each goal that was initially set out for us, as well as more. The work we
did has helped NVIDIA to automate their building, booting, and testing processes, and has
opened the door to further automation of these systems. We, as well as our sponsors at
NVIDIA, believe this project was a great success.

36

5.0 Conclusion

The main goal of our project was to automate the test infrastructure across several builds and
revisions of those builds while being able to completely boot an entire operating system over
the network. Although we faced many problems throughout the project, we overcame all of
these adversities in one way or another and completed all the goals we were originally given as
well as the goals we were given at other points in the project. As such, the project should be
considered a success. We hope to see our project work help the Quality Assurance team at
NVIDIA in their workload as well as the speed at which they can construct helpful reports on the
quality of their product. Hopefully, the test infrastructure that we helped create will be built
upon and added to in future years as better and faster technologies are deployed.

37

Works Cited

[1] Dang, Alan. "History of NVIDIA." FiringSquad: Home of the Hardcore Gamer - Games,
Hardware, Reviews and News. 9 Feb. 2001. Web. 18 Nov. 2010.
<http://www.firingsquad.com/features/nvidiahistory/>.

[2] Anonymous "NVIDIA Corporation -- Company History." Find Funding with Banks, Investors,
and Other Funding Sources | FundingUniverse. Web. 18 Nov. 2010.
<http://www.fundinguniverse.com/company-histories/NVIDIA-Corporation-Company-
History.html>.

[3] "Chromium OS." The Chromium Projects. Web. 18 Nov. 2010.
<http://www.chromium.org/chromium-os>.

[4] Anonymous "Mobile." Welcome to NVIDIA - World Leader in Visual Computing Technologies.
Web. 30 Nov. 2010. <http://www.nvidia.com/object/tegra.html>.

[5] Anonymous. "Making Sense of Smartphone Processors: The Mobile CPU/GPU Guide." Web
log post. TechAutos. Web. 06 Dec. 2010.
<http://www.techautos.com/2010/03/14/smartphone-processor-guide/>.

[6] Anonymous. "What's New in Performance and Reliability Monitoring in Windows Server
2008 R2 and Windows 7." Microsoft TechNet: Resources for IT Professionals. Web. 06 Dec.
2010. <http://technet.microsoft.com/en-us/library/ee731897(WS.10).aspx>.

[7] Turnbull, Giles. "What Is Activity Monitor (or How to Take Your Mac's Pulse) - O'Reilly
Media." MacDevCenter.com-- Macintosh Development, Open Source Development. Web. 02
Dec. 2010. <http://macdevcenter.com/pub/a/mac/2005/10/04/activity-monitor.html>.

[8] Anonymous "MPG - Mac Performance 101: Cores, Processes, Memory - Observing System
Performance with Activity Monitor." Macintosh Performance Guide Blog. Web. 02 Dec. 2010.
<http://macperformanceguide.com/Mac-MonitoringTips.htmI>.

[9] Brian K. Tanaka, “Monitoring Virtual Memory with vmstat.” Linux Journal, Web. 02 Dec.
2010. <http://www.linuxjournal.com/article/8178>.

[10] Henry Ware <al172@vyfn.ysu.edu>, Fabian Frédérick ffrederick@users.sourceforge.net,
“vmstat.” vmstat manual page, Web. 02 Dec. 2010.

[11] Andre Lewis, “Understanding Linux CPU Load — when should you be worried?” Scout, Web.
06 Dec. 2010. http://blog.scoutapp.com/articles/2009/07/31/understanding-load-averages

38

[12] Jim/James C. Warner <warnerjc@worldnet.att.net>, “top.” top manual page, Web. 02 Dec.
2010.

[13] “Buildbot Manual — 0.8.3.” Buildbot. Web. 15 Mar. 2011.
<http://buildbot.net/buildbot/docs/current/>.

[14] Software., Edgewall. Autotest — Trac. Web. 28 Jan. 2011. <http://autotest.kernel.org/wiki>.

[15] "Selenium Remote-Control." Selenium Web Application Testing System. Web. 28 Jan. 2011.
<http://seleniumhq.org/projects/remote-control/>.

[16] "PyAuto: Python Interface to Automation." The Chromium Projects. Web. 27 Feb. 2011.
<http://www.chromium.org/developers/testing/pyauto>.

[17] "NFS-Root Mini-HOWTO." Internet FAQ Archives - Online Education - Fags.org. Web. 01
Mar. 2011. <http://www.fags.org/docs/Linux-mini/NFS-Root.html>.

[18] "DHCP FAQ." The DHCP Handbook. Web. 01 Mar. 2011. <http://www.dhcp-
handbook.com/dhcp_faq.html>.

39

Appendices

Appendix I - Project Schedule

Week of 1/3
* Get the machines setup — Completed
« Do a ChromiumOS build. - Completed
* Beable to load that build onto the seaboard. — Completed
« Loading a nightly image (both normal and autotest images). — Completed

Week of 1/10 (Deliverable 1 on Friday)
* NFS Boot to eMMC — Completed
* Run an autotest test — Completed
* Improve performance of build infrastructure — Completed
* (Catalogue and understand each of the NV tests - Completed
* Get autotest with some type of dummy autotest or 'hello world' autotest test running —
Completed
* Get one of the NV specific test run through autotest. - Completed
* Get a list of performance tests we care about from the chromiumos team and start
cataloging them. — Completed
Week 1/17
* Convert nvtest suite to autotest - Completed
* Begin performance testing using autotest - Completed
* Continue bringing up new build systems - Completed
Week 1/24
* Grok buildbot system - Completed
* Work on autotest performance testing - Completed
* Continue bringing up new build systems - Completed
Week 1/31 (Deliverable 2 on Friday)
* Complete autotest performance tests - Completed
* Finish bringing up new build systems - Completed
* Work on build bot system - Completed
Week 2/7
* Work on build bot system — Completed
* Get PyAuto browser tests working - Completed
Week 2/14
* Have a working buildbot repo manifest file - Completed
* Automate repo manifest file with nVidia buildbot - Completed
Week 2/21 (Deliverable 3 on Friday) ** LAST DELIVERABLE **
* Investigate and implement the possibility of using distcc for builds - Completed
* Have all deliverables ready to demonstrate — Completed

40

* Get DHCP boot working - Completed
Week 2/28

* Write project report - Completed

* Finish up loose ends - Completed

41

Appendix II - NFS Boot - HowTo

Modified from Google instructions at: http://www.chromium.org/chromium-os/how-tos-and-
troubleshooting/debugging-tips/host-file-access

1) Start with a chromium tree with a working ChromiumOS build.

2) Verify that this build image boots correctly on your test board before making the following
changes, else re-build.

3) Set up an NFS server on your Linux host machine

First, install the NFS server package (these instructions are for Ubuntu 10.04 Lucid). This
enables the NFS server built into your kernel. When it starts you may notice that a number of
new modules have been loaded into your kernel (nfsd, exportfs, lockd, etc.)

$ sudo apt-get install nfs-kernel-server

4) The server needs to know which directories you want to 'export' for clients. This is specified
in the /etc/exports file. Modify to look somewhat like this:

$ /export 172.16.0.0/16 (rw, £sid=0,no_subtree check, async)
$ /export/nfsroot
172.16.0.0/16 (rw,nohide,no_subtree check,async,no_root squash)

The first entry sets the base of the NFS exports. The second entry is the nfsroot directory which
will contain your root filesystem. This is the directory that the client will see when it mounts the
NFS root. The IP address should be changed to match your local setup.

A number of options are provided, briefly:

* rw - the target will have both read and write access. You can also use ro for readonly but
the system will not boot with a read-only root filesystem (without a bit of work!)

» fsid=0 - tells NFS that this is the root of all exported filesystems

* no_subtree_check disables checking for accesses outside the exported portion of a
filesystem. This speeds up and simplifies things for the client and server.

* async - requests are acknowledged before data is actually written. For example if the
client writes to a file, the server will respond that the write has completed, and then
continue in the background to actually do the write, perhaps to a disc drive. This
improves performance.

* no_root_squash - the target can access files as root, with full unrestricted permissions.
This is important for the root filesystem because the kernel would otherwise not have
access to devices in /dev, log files in /var/log, etc.

42

* nohide - tells the NFS server to show the contents of a directory even if it is mounted
from elsewhere

5) Next we need to make the root filesystem appear in /export/nfsroot. The following steps
guide us through bind mounting the true location onto /export/nfsroot. First we need to
unpack a suitable image.

Let's assume that you have your Chromium trunk directory as ~/chromiumos/chromiumos.git
and you are using a tegra2_seaboard build:

go to the directory with the latest build

cd ${TREE _ROOT}/src/build/images/tegra2 seaboard/latest

mount it into /tmp/m

$S{TREE_ROOT}/src/scripts/mount gpt image.sh -f . -i chromiumos image.bin
copy out the contents of the image

sudo cp -a /tmp/m nfsroot

unmount the image from /tmp/m
${TREE_ROOT}/src/scripts/mount gpt image.sh -u

0 = A Y AN 3

This will put a full copy of the build image root disc into
~/chromiumos/chromiumos.git/src/build/images/tegra2_seaboard/latest/nfsroot

6) Now we need to make it appear in /export/nfsroot. Edit your /etc/fstab file with the full
path:

$ S$TREE ROOT/src/build/images/tegra2 seaboard/latest/nfsroot
/export/nfsroot none bind 00

Note this must appear all on one line and you can use tabs or spaces between fields. This will be
activated automatically when your server reboots, but since it is already running, ask it to
mount this now. After the mount you will see that the root filesystem has appeared at
/export/nfsroot as desired.

$ sudo mount $TREE ROOT/src/build/images/tegra2 seaboard/latest/nfsroot
$ 1s /export/nfsroot/

bin dev home lost+found mnt postinst root share tmp usr
boot etc 1lib media opt proc sbin sys u-boot var

7) Verify that /etc/idmapd.conf is correct, as follows.

[General]

Verbosity = 0

Pipefs-Directory = /var/lib/nfs/rpc pipefs
Domain = local.domain.edu

[Mapping]

Nobody-User = nobody
Nobody-Group = nogroup

43

Restart the NFS kernel server.

$ sudo /etc/init.d/nfs-kernel-server restart

* Stopping NFS kernel daemon [
OK]

* Unexporting directories for NFS kernel daemon... [
OK]

* Exporting directories for NFS kernel daemon... [
OK]

* Starting NFS kernel daemon [
OK]

8) Finally, the standard firewall setup in Chromium OS does not permit NFS. You may wish to
simply disable the firewall - the /export/nfsroot/etc/init/iptables.conf file should be changed to
do this. At the top, change the start on line to start on never. If you don't do this you will likely
boot to a login prompt, but then you will see 'NFS server not responding' messages once the
firewall kicks in.

9) Build a suitable kernel

There are quite a few options that you need to enable in the kernel to support NFS root. First
you need to make sure that a suitable network driver is compiled in, and secondly you need to
enable all the network filesystem options. It is very important to verify that your network driver
is set with the “=y” option in your configuration files, otherwise you will not be able to mount
the rootfs when you try to boot. The following list for a USB network adapter setup gives you an
idea of what is required. Some of the important options are:

* CONFIG_USB_USBNET - enables the USB network subsystem

* CONFIG_NETWORK_FILESYSTEMS - enables network filesystem support
* CONFIG_NFS_COMMON, CONFIG_NFS_FS - enable NFS client in kernel
* CONFIG_ROOT_NFS - enable NFS root function

Note: some of the options below are required for NFS root, some for NFS mounting and some
for NFS serving. Enter the chroot and run:

emerge-tegra2 seaboard kernel-next

Then edit the config files as follows:

chromeos/config/armel/config.flavour.chromeos-tegral:
CONFIG USB _NET AX8817X=y
chromeos/config/config.common.chromeos:

+CONFIG DNOTIFY=y

+CONFIG DNS RESOLVER=y

+CONFIG_LOCKD=y

+CONFIG LOCKD V4=y

+CONFIG NETWORK FILESYSTEMS=y

+CONFIG NFSD=m

+CONFIG_NFSD_V3=y

44

+CONFIG_NFSD Vi=y
+CONFIG_NFS_COMMON=y
+CONFIG_NFS_FS=y
+CONFIG_NFS USE_KERNEL DNS=y
+CONFIG_NFS V3=y
+CONFIG_NFS Vi=y
+CONFIG_ROOT NFS=y
+CONFIG_RPCSEC_GSS_KRB5=y
+CONFIG_SUNRPC=y
+CONFIG_SUNRPC_GSS=y
+CONFIG_USB_USBNET=y

Run the following sequence of unmerging/merging

emerge-tegra?2 seaboard kernel-next --unmerge
emerge-tegra2 seaboard kernel-next

10) Re-build your image with the modifications (make_image step).

11) Load that build onto the USB device and follow the steps at
https://wiki.nvidia.com/wmpwiki/index.php/WMP ap20/ChromeOS/Build#Manually Updating
the Kernel so that the kernel on the 3rd partition is used.

12) (OPTIONAL): Clean the 3rd partition out except for the /boot folder to ensure that you
really are booting off of NFS.

13) Set up the Boot Loader

On ARM systems, U-Boot is responsible for passing the kernel parameters to the kernel.
Normally, U-Boot will use NAND or eMMC as the root filesystem, so this needs to be changed.
Since Chrome OS does not presently make use of an environment save area, the easiest
approach is to rebuild U-Boot with this new environment. But first you can test it. Start U-Boot
with a suitable image on a USB stick and press a key to break in before it boots Linux. Then look
at a few environment variables (these may differ depending on your board/configuration):

It is starting up USB, loading a kernel into memory, then setting the bootargs (kernel
parameters), then booting the kernel with bootm.

You can create your own boot command with something like:

Tegra?2 (SeaBoard) # setenv myargs setenv bootargs mem=384M@OM
nvmem=128M@384M mem=512M@512M video=tegrafb console=ttyS0,115200n8
usbcore.old scheme first=1 tegraboot=nand ${1lp0 vec} tegrap earlyprintk
root=/dev/nfs nfsroot=<host-ip-address>:/export/nfsroot ip=dhcp rw rootwait

Tegra?2 (SeaBoard) # setenv myboot usb start \; ext2load usb 0:3 ${loadaddr}
/boot/vmlinux.uimg \; run myargs \; bootm ${loadaddr}

Note that we have changed the root option and added two new options (nfsroot and ip). The IP

45

address of your server needs to go after nfsroot= and you will need a DHCP server running also.
Note: it is possible for NFS to get the server details from your DHCP server (exercise for reader);
going the other way, it is also possible to specify a fixed IP address and not need a DHCP server.

The “bootfile” for tegra2_seaboard is vmlinux.uimg

Now try booting it:

Tegra2 (SeaBoard) # run myboot

With a bit of luck it will load the kernel from USB, then boot it with your NFS server providing
the root.

In order to make the above automatic, you can edit the default scripts in U-Boot to add your
changes. For example, for SeaBoard the appropriate file is include/config/tegra2_common.h.
Then rebuild U-Boot and update it on your board.

A partial boot trace is shown below to show the sequence of events:

Cr0OS> setenv myargs setenv bootargs mem=384M@O0M nvmem=128MW@384M
mem=512M@512M video=tegrafb console=ttyS0,115200n8

usbcore.old scheme first=1 tegraboot=nand ${1lp0 vec} tegrap earlyprintk
root=/dev/nfs nfsroot=172.17.149.151:/export/nfsroot

ip=dhcp rw rootwait

CrOS> setenv myboot usb start \; ext2load usb 0:3 ${loadaddr}
/boot/vmlinux.uimg \; run myargs \; bootm ${loadaddr}

CrOS> run myboot

USB: Tegra ehci init hccr ¢5008100 and hcor c¢c5008140 hc_ length 64

Register 10011 NbrPorts 1

USB EHCI 1.00

scanning bus for devices... 6 USB Device(s) found

scanning bus for storage devices... 1 Storage Device(s) found

Loading file "/boot/vmlinux.uimg" from usb device 0:3 (gpt3)

3568840 bytes read

Booting kernel from Legacy Image at 0040c000

Image Name: kernel
Image Type: ARM Linux Kernel Image (uncompressed)
Data Size: 3568776 Bytes = 3.4 MiB

Load Address: 10008000
Entry Point: 10008000

Verifying Checksum ... OK

Loading Kernel Image ... OK

OK

Starting kernel

Uncompressing Linux... done, booting the kernel.

[0.000000] Initializing cgroup subsys cpuset

[0.000000] Initializing cgroup subsys cpu

[0.000000] Linux version 2.6.37 (snagpal@snagpal) (gcc version 4.4.3
(Gentoo Hardened 4.4.3-r4 pl.2, pie-0.4.1)) #1 SMP

PREEMPT Fri Jan 28 15:41:16 PST 2011

[0.000000] CPU: ARMv7 Processor [411fc090] revision 0 (ARMvV7),
cr=10c53c7f

46

[0.000000]
cache

[.000000]
[.000000]
[.000000]
[.000000]
.000000]

O O O o o

[
u32768

[0.000000]

CPU: VIPT nonaliasing data cache, VIPT aliasing instruction

Machine: seaboard

Ignoring unrecognised tag 0x54410008

bootconsole [earlycon0O] enabled

Memory policy: ECC disabled, Data cache writealloc
PERCPU: Embedded 7 pages/cpu @c0£94000 s7264 r8192 dl13216

Built 1 zonelists in Zone order, mobility grouping on.

Total pages: 227328

[0.000000]

Kernel command line: mem=384M nvmem=128M@384M mem=512M@512M

video=tegrafb console=ttyS0,115200n8
usbcore.old scheme first=1 tegraboot=nand tegrap earlyprintk root=/dev/nfs
nfsroot=172.17.149.151:/export/nfsroot ip=dhcp rw

rootwait

[151.3502009]

[151.353280]
gw=172.17.148.1,

[151.361127]
domain= (none),

[151.368004]
rootpath=

[151.480331]

[151.486738]

IP-Config: Complete:
device=eth0, addr=172.17.150.74, mask=255.255.252.0,

host=172.17.150.74, domain=nvidia.com, nis-
bootserver=0.0.0.0, rootserver=172.17.149.151,

VEFS: Mounted root (nfs filesystem) on device 0:16.
devtmpfs: mounted

47

Appendix III - NFS Boot with Autotest Enabled - HowTo

1) Make sure you have an autotest enable build (--autotest flagged throughout the build
process).

2) Depending on whether you are modifying a nightly to NFS Boot or you are using your own
build, you may have to run the ./mod_image_for_test.sh script to get it working. If so, enter the
chroot and move to the ~/trunk/src/scripts. If you just run ./mod_image_for_test.sh it will
modify your latest build, else you can flag the board type and specific image with the “-b” and
“-i” flags, respectively.

3) Once you make the modifications as described above, you can boot using the same boot
commands and should see a similar boot console output.

4) Login using the username “chronos” and the password “test0000”.
5) Make sure that sshd is running and you have an open ssh-server.

6) To run any tests, follow the instructions on
https://wiki.nvidia.com/wmpwiki/index.php/Chromium Seaboard sqa wiki#Autotest test set

up

48

Appendix IV - DHCP Boot - HowTo

1) In order to run DHCP Boot you must flash the developer version of U-Boot on the test board.
The newest version of U-Boot has DHCP/NFS options configured into the developer version so
you must first use the nvbuild script to build the package "u-boot-next".

2) You will now have updated versions of U-Boot in your chroot. Flash the developer version of
U-Boot to your test board (follow the build steps on how to flash U-Boot to the bootloader).
You may need to modify the flashing script to strictly specify "u-boot-developer.bin".

The file you want is "./trunk/chroot/build/tegra2_seaboard/u-boot/u-boot-developer.bin"

3) Follow the above NFS Boot directions through step 9. Make sure you have easy access to
your vmlinux.uimg kernel file (with all of the nfs steps configured) because you will need it
soon.

4) Set up a DHCP Server on your host machine. This DHCP Server will provide IP addresses to
targets on your network.

$ sudo apt-get install dhcp3-server

Edit /etc/dhcp3/dhcpd.conf and add details about your subnet, including the range of IP
addresses you want to give out and any fixed IP addresses you want to allocate for your targets:

subnet 192.168.4.0 netmask 255.255.255.0 {
range 192.168.4.20 192.168.4.50;

option routers 192.168.4.1;

}

host seaboard {
hardware ethernet 00:23:7d:09:80:0e;
fixed-address seaboard0;

}

U O r U ¥ A 0y A

(you may want to put seaboard0 in your /etc/hosts file in this example, or you can use a
numeric address)

Then start up the server:

$ /etc/init.d/dhcp3-server restart

5) Test your DHCP Setup as follows:

$ CrOS> usb start

$ (Re)start USB...

$ USB: Tegra ehci init hccr ¢5008100 and hcor c¢5008140 hc length 64
$ Register 10011 NbrPorts 1

49

$ USB EHCI 1.00

$ scanning bus for devices... 5 USB Device(s) found

$ scanning bus for storage devices... 1 Storage Device(s) found

$ scanning bus for ethernet devices... 1 Ethernet Device(s) found
$ CrOS> bootp

$ Waiting for Ethernet connection... done.

$ BOOTP broadcast 1

$ DHCP client bound to address 172.22.73.81

6) Set up a TFTP server on your host. The TFTP server will send a kernel to U-Boot when it asks.

$ sudo apt-get install tftpd-hpa

Edit /etc/default/tftpd-hpa like this, replacing the username with your own username (echo
SUSER):

TFTP_USERNAME="nvidia"
TFTP_DIRECTORY="/tftpboot"
TFTP_ADDRESS="0.0.0.0:69"
TFTP_OPTIONS="-v"

U Uy Ur

Now we must copy our modified kernel from the NFS Boot steps into the tftpboot directory so
the target can easily read it. Replace the filename with your user, board and serial:

$ sudo mkdir /tftpboot

$ cd /tftpboot

$ sudo cp *path to your modified kernel file as mentioned in step 1 -
vmlinux.uimg* ulImage-nvidia-seaboard-26

$ sudo restart tftpd-hpa

Test your TFTP server. Ensure that you have an IP address (as shown in the DHCP section
above). Then this should read in the kernel:

$ CrOS> tftpboot ${loadaddr} ${tftpserverip}:/tftpboot/ulmage-nvidia-
seaboard-26
Waiting for Ethernet connection... done.
Using asx0 device
TEFTP from server 172.22.73.60; our IP address is 172.22.73.81
Filename 'uImage-nvidia-seaboard-26"'.
Load address: 0x40c000
Loading:
SR
S i
S i
S i
done
Bytes transferred = 3545596 (3619fc hex)

##

U Uy 0 Uy ¥ FHF= A 0y A 0 Uy

7) Next, you must set your board up for full network booting. Replace the IP addresses with the
address of your server.

$ setenv serverip 172.22.73.60

50

setenv tftpserverip 172.22.73.60
setenv nfsserverip 172.22.73.60
setenv board seaboard

setenv serial# 26

setenv user nvidia

U Uy Ur r

Certain variables must also be edited from the default boot commands.

setenv bootfile ulmage-${user}-${board}-S${serial#}

setenv tftppath ulmage-${user}-${board}-S${seriali}

setenv dhcp setup setenv tftppath ulImage-${user}=${board}-S{serial#}
$ setenv regen net bootargs setenv bootdev bootargs dev=/dev/nfs rw

nfsroot=${nfsserverip}:${rootpath} ip=dhcp; run regen all

Uy Ur

8) Boot the system by running the following command:

$ Cr0S> boot

If succesful, you will see a console output similar to the NFS Boot console output shown above.

51

