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Abstract 
Precise regulation of gene expression controls cell fate determination, and deregulation of gene 

expression is seen in cancer. The Musashi family of RNA-binding proteins regulates the 

translation of mRNA targets in neural and epithelial stem and progenitor cells. In neural and 

epithelial tumors, Musashi1 (MSI1) expression levels are correlated with malignancy and 

proliferation, and knockdown of MSI1 by RNAi leads to tumor regression. Investigation into an 

inhibitor of MSI1 has revealed oleic acid as a potent inhibitor of RNA-binding activity, but the 

mechanism and biological significance are unknown. The current study investigates differences 

in RNA-binding and inhibition constants across five MSI1 homologs from diverse species.  

Although MSI1 homolog sequences are highly conserved, individual amino acid differences exist 

and were hypothesized to yield differences in activity and to point towards functional 

differences and the biological significance of oleic acid inhibition.  
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Introduction 
 

As the sophistication of scientific research progresses, alterations in signaling pathways are 

being discovered to have wide-spread implications in cancer development and tumor cell 

survival. Up-regulation of pathways promoting cellular proliferation, which are active in stem 

and progenitor cells, has been found to correlate with malignancy of tumors. Up-regulation of 

these pathways causes increased tumor cell proliferation; therefore, inhibition of these 

pathways is being investigated for future treatment. A more complete understanding of the 

mechanism and regulation of these pathways could lead to treatments for some of the 1.6 

million people diagnosed with cancer each year (American Cancer Society, 2012). 

As organisms develop, stem and progenitor cells first depend on these signaling pathways for 

survival. Cell populations are maintained throughout development by regulatory mechanisms 

that occur at the levels of transcription and translation. Post transcriptional regulation of target 

mRNA by RNA-binding proteins is known to regulate the translation of proteins involved in 

signaling pathways (Glisovic, Bachorik, Yong, & Dreyfuss, 2008). Musashi-1 (MSI1) is a member 

of the Musashi family of RNA-binding proteins, and is expressed in neural and epithelial stem 

and progenitor cells where it represses the translation of target mRNAs (Kaneko et al., 1999; 

Okano, Imai, & Okabe, 2002). MSI1 promotes cellular proliferation, and increased levels of MSI1 

have been shown to promote growth and division of tumor cells (Figure 1) (Kanemura et al., 

2001; Sanchez-Diaz, Burton, Burns, Hung, & Penalva, 2008; Seigel, Hackam, Ganguly, Mandell, 

& Gonzalez-Fernandez, 2007; Sureban et al., 2008; Wang et al., 2010). Knockdown of MSI1 



2 

leads to tumor cell death; therefore, inhibitors of MSI1 could lead to future treatments for 

tumors (Kanemura et al., 2001; Sanchez-Diaz et al., 2008; Seigel et al., 2007; Sureban et al., 

2008; Wang et al., 2010). The Ryder Lab at the University of Massachusetts Medical School has 

discovered a small-molecule metabolite, oleic acid, which inhibits the RNA-binding activity of 

Mus musculus Musashi1 (mouse MSI1) (Clingman et al., in review). This was found in a small 

molecule screen for inhibitors of MSI1, and was one of only four hits out of over 30,000 

compounds screened (Clingman et al., in review). In this study, four additional MSI1 homologs 

were tested for RNA-binding activity and inhibition by oleic acid in order to investigate possible 

future animal models and cell lines for testing the effect of oleic acid on tumor cells. 

 

Figure 1: Consequences of the expression of MSI1 (Kanemura et al., 2001; Muto et al., 2012; Sakakibara, 

Nakamura, Satoh, & Okano, 2001; Sanchez-Diaz et al., 2008; Seigel et al., 2007; Sureban et al., 2008; Wang et al., 

2008) 
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The Musashi RNA-binding protein family 
 

The Musashi family of RNA-binding proteins consists of Musashi1 (MSI1) and Musashi2 (MSI2) 

in humans (Kaneko et al., 1999; Sakakibara et al., 1996, 2001). The Musashi family is 

characterized by two N-terminal RNA-recognition motifs (RRMs) (Sakakibara et al., 1996, 2001). 

RRMs facilitate specific recognition of RNA sequences and have high RNA-binding affinity 

(Maris, Dominguez, & Allain, 2005). MSI2 expression is seen specifically in proliferating cells in 

the ventricular and subventricular zones of the brain, and hematopoietic stem cells (De Andrés-

Aguayo et al., 2011; Sakakibara et al., 2001). MSI1 is expressed in neural stem and progenitor 

cells, including committed oligodendrocyte progenitor cells and cells of the astrocyte lineage 

(Dobson, Zhou, Flint, & Armstrong, 2009; Kaneko et al., 1999; Sakakibara & Okano, 1997). MSI1 

expression is lost in differentiated mammalian neuronal and epithelial cells, suggesting its role 

in proliferation and differentiation of stem and progenitor cells (Sakakibara et al., 1996). In flies 

(Drosophila melanogaster), Msi plays a role specifically in asymmetrical division (Sakakibara et 

al., 1996). 

Fly Msi was the first Musashi protein to be identified (Sakakibara et al., 1996). Since, MSI1 

homologs have been identified in human (MSI1), mouse (Mus musculus, MSI1), nematode 

(Caenorhabditis elegans, MSI-1), zebrafish (Danio rerio, msi1) and fly (Rbp6), among others 

(Good et al., 1998; Okabe, Imai, Kurusu, Hiromi, & Okano, 2001; Sakakibara et al., 1996; Shibata 

et al., 2012; Siddall et al., 2012; Yoda, Sawa, & Okano, 2000). The fly MSI1 homolog Rbp6 shares 

more sequence similarity to human MSI1 than does fly Msi (Siddall et al., 2012). Sequence 

similarities of the full length proteins, and more importantly of the functional RRMs, classify 
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Musashi as an evolutionarily conserved RNA-binding protein. Table 1 lists sequence similarities 

of MSI1 homologs, where conservative differences in amino acids count as similar amino acids. 

There is dramatically higher sequence similarity between the two RRMs, highlighting their 

importance in the function of all homologs. 

Table 1: Sequence similarity of MSI1 homologs 

Organism Abbreviation Percent amino acid similarity to human MSI1 

Full length protein RRMs only 

Homo sapiens MSI1 - - 

Mus musculus MSI1 99.72% 99.35% 

Danio rerio msi1 73.93% 95.91% 

Caenorhabditis elegans MSI-1 12.81% 85.89% 

Drosophila melanogaster Rbp6 11.65% 85.89% 

Drosophila melanogaster Msi 7.42% 44.44% 

 

Musashi1 structure facilitates RNA-binding 

The functional domain of mouse MSI1 is within the first RRM (RRM1) (Sakakibara et al., 1996). 

This is suspected to be true of the MSI1 homologs in this study, based on the sequence 

similarities of the RRM domains (Table 1). Mouse MSI1 was previously used by the Ryder Lab, 

and is shown in Figure 2a to consist of 362 amino acids with RRM1 and RRM2 located at amino 

acids 21-100 and 110-189, respectively (Sakakibara et al., 1996). The N-terminal RRM (RRM1) 

has a higher binding affinity to the consensus RNA sequence than the C-terminal RRM (RRM2) 

(Miyanoiri et al., 2003). Figure 2b shows the RNA binding face of mouse MSI1 (left), which is 

composed of four beta-sheets (Miyanoiri et al., 2003). The positively charged beta-sheet of 

RRM1 allows for stronger interaction with the negative phosphate backbone of RNA than does 

the neutral beta-sheet of RRM2 (Miyanoiri et al., 2003). A difference in backbone dynamics of 
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the two beta-sheets makes RRM1’s beta-sheet more flexible and capable of facilitating an 

induced fit during RNA recognition (Miyanoiri et al., 2003).  

 

Figure 2: Mouse MSI1 structure; a) MSI1 RRMs; b) RRM1 only, right: RNA-binding face, left: hydrophobic cavity; c) 

MSI1 bound to RNA (5’-GUAGU-3’)  (Miyanoiri et al., 2003; Nagata et al., 1999; Ohyama et al., 2012) 

RRM2 demonstrates weak RNA binding when measured by NMR, but no binding in gel-

retardation experiments, suggesting the interference of salts and detergent with RNA binding 

(Nagata et al., 1999). When RRM2 is joined with RRM1, the RNA-binding affinity of RRM1 

increases compared to its affinity when isolated (Nagata et al., 1999). Figure 2b also shows the 

alpha-helical face of mouse MSI1 (right), which has a hydrophobic cavity when viewed as a 

space filling model (Miyanoiri et al., 2003; Nagata et al., 1999). This hydrophobic cavity is 

hypothesized to be the docking site of the hydrophobic hydrocarbon tail of oleic acid (Clingman 

et at., in review).  

   RRM1                RRM2 
21              100   110                189 

MSI1 

RRM1 

 

 

180˚ 

a) 

b) c) 
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The structure of mouse MSI1 in complex with the consensus RNA aptamer 5’-GUAGU-3’ has 

recently been solved by NMR (Ohyama et al., 2012). It reveals the roles of aromatic stacking 

interactions and hydrogen bonding in RNA recognition (Figure 2c) (Ohyama et al., 2012). 

Stacking interactions between evolutionarily conserved tryptophan (W29) and phenylalanine 

(F23, F63, F65 and F96) residues of MSI1 and the aromatic bases and ribose rings of the RNA 

aptamer contribute to target recognition within RRM1 (Ohyama et al., 2012). Hydrogen bonds 

involving K88, K93, D91, V94 and K21 also contribute to RNA-binding (Ohyama et al., 2012). 

These specific residues facilitate binding of MSI1 to consensus binding sites found in the 3-

prime untranslated region (3’-UTR) of mRNA. It has been proposed by the Ryder Lab that 

binding of oleic acid shifts specific residues important in RNA recognition to allosterically inhibit 

RNA-binding (Clingman et al., in review). 

MSI1 binds the 3’-UTR of target mRNA 

The structure of MSI1 facilitates sequence specific binding to the 3’-UTR of mRNA transcripts 

involved in cell cycle regulation. The consensus sequence for MSI1 binding is (G/A)U1-3AGU, 

where the first nucleotide can be either of the purines guanine or adenine (Imai et al., 2001).  

There is evidence that binding may be context dependent, specifically dependent on the 

formation of a stem-loop secondary structure in the target mRNA (Imai et al., 2001). MSI1 

consensus sequences were found in most cases to be on the loop of a stem-loop structure, 

possibly facilitating recognition by MSI1 (Imai et al., 2001).  After MSI1 binds the 3’-UTR of its 

target mRNA, it prevents the 80S ribosomal complex from forming and translating the mRNA 

into protein (Kawahara et al., 2008). 
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The mechanism for post transcriptional regulation of mRNA by MSI1 occurs through the 

inhibition of 80S ribosomal complex formation, which is necessary for translation in eukaryotes 

(Kawahara et al., 2008). In the absence of MSI1 (Figure 3a), poly(A) binding protein (PABP) binds 

the poly-A tail of the 3’-UTR in a target mRNA transcript (Kawahara et al., 2008). The eukaryotic 

initiation factor 4G (eIF4G) binds PABP to associate the mRNA with the 40S/eIF complex 

(Kawahara et al., 2008). This is followed by recognition of the start codon and binding of the 

60S ribosomal subunit to form the 80S ribosomal complex. Translation of the mRNA then 

proceeds (Kawahara et al., 2008). 

 

Figure 3: Binding of MSI1 inhibits formation of 80S ribosomal complex (a) Absence of MSI1: eIF4G recognizes PABP, 

80S ribosomal complex formed; translation is initiated (b) Presence of MSI1: MSI1 blocks eIF4G recognition of 

PABP; translation is inhibited (figure adapted from Kawahara et al., 2008). 
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When MSI1 is present in the soma of the cell, MSI1 binds the 3’-UTR of the target mRNA and 

competes with eIF4G for interaction with PABP. Binding of MSI1 to PABP prevents binding of 

the 60S ribosomal subunit and translation of the target mRNA is inhibited (Figure 1b) 

(Kawahara et al., 2008). This mechanism allows MSI1 to repress translation of target mRNA. 

Musashi1 promotes proliferation through translational repression 

MSI1 may use the mechanism above to alter signaling pathways that lead to increased cellular 

proliferation, although this has not yet been directly linked. MSI1 may also inhibit translation by 

different mechanisms which have not been investigated. MSI1 consensus binding sequences 

are found on mRNAs encoding regulators of several signaling pathways, and more are expected 

to be discovered. For example, MSI1 represses the translation of numb, which is an inhibitor of 

the Notch and Hedgehog signaling pathways, which both promote cellular proliferation (Di 

Marcotullio et al., 2006; Imai et al., 2001). MSI1 represses the translation of p21WAF1, leading to 

decreases in G2/M arrest and apoptosis (Battelli, Nikopoulos, Mitchell, & Verdi, 2006; Sureban 

et al., 2008). MSI1 also inhibits translation of Dickkopf-3 (DKK3), an inhibitor of the Wnt 

pathway, also leading to cellular proliferation (Wang et al., 2008). The net effect of MSI1 on 

these signaling pathways is an increase in stem and progenitor cell proliferation. This is vital 

during development for maintaining populations of undifferentiated cells, but when 

unregulated, MSI1 promotes tumor cell proliferation. MSI1’s involvement in the Notch signaling 

pathway has been implicated in tumor cell growth (Muto et al., 2012).  

Musashi activates the Notch signaling pathway 

One of the most well characterized pathways regulated by MSI1 is the Notch signaling pathway 

(Figure 4). MSI1 inhibits the translation of numb, an inhibitor of Notch cleavage (Imai et al., 
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2001). Notch is a transmembrane protein that requires association with neighboring cell surface 

proteins (Delta or Jagged) for intracellular cleavage (Imai et al., 2001). After association, Notch 

is cleaved and binds RBP-Jκ. This complex enters the nucleus and activates genes including 

HES1, HEY2 and NOTCH2, which are genes known to increase cellular proliferation and inhibit 

differentiation (Imai et al., 2001). Therefore, MSI1 activates the Notch signaling pathway and 

promotes cellular proliferation.  

 

Figure 4: Activation of the Notch signaling pathway by MSI1. MSI1 represses translation of numb, preventing Numb 

from inhibiting Notch cleavage. Cleaved Notch combines with RBP-Jκ to enter the nucleus and activate genes to 

increase cellular proliferation and inhibit differentiation (adapted from Colaluca et al., 2008; Imai et al., 2001; 

Sanchez-Diaz et al., 2008). 

Numb has also been shown to inhibit degradation of the cell cycle inhibitor p53 (Figure 4) 

(Colaluca et al., 2008). In the presence of MSI1, Numb expression is decreased, leading to 

increased degradation of p53 (Sanchez-Diaz et al., 2008). Decreased levels of p53 have been 

correlated with cancer cell growth. Together, the activity of MSI1 has been linked to numerous 
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cancers arising from neural and epithelial stem and progenitor cells. Removal or inhibition of 

MSI1 from these signaling pathways would stop the activation of genes promoting cellular 

proliferation. Therefore, it is interesting to investigate inhibitors of MSI1, which could lead to a 

novel drug for decreasing tumor cell proliferation. 

Up-regulation of MSI1 in tumor growth 

As cells differentiate, MSI1 expression is depleted (Sakakibara et al., 1996). Increased levels of 

MSI1 were first correlated with tumor cell malignancy and proliferative activity in human 

gliomas (Kanemura et al., 2001). Elevated levels of MSI1 have since been discovered in 

astrocytomas, retinoblastomas, medulloblastomas, breast cancer, and colon adenocarcinoma 

(Figure 1) (Kanemura et al., 2001; Sanchez-Diaz et al., 2008; Seigel et al., 2007; Sureban et al., 

2008; Wang et al., 2010). Depletion of MSI1 in gliomas, medulloblastomas, breast cancer and 

colon adenocarcenomas results in decreased proliferation and increased cell death of 

cancerous tissue (Muto et al., 2012; Sanchez-Diaz et al., 2008; Sureban et al., 2008; Wang et al., 

2010). 

MSI1’s involvement in different types of tumors is still being characterized. Two of the most 

thoroughly characterized cancers involving MSI1 are glial cell tumors and colorectal tumors 

(Kanemura et al., 2001; Muto et al., 2012). Thirty percent of all brain tumors are characterized 

as gliomas, arising from the supportive glial cells of the brain. As of 2012, approximately 

206,429 people in the United States alone were living with a diagnosed glial brain tumor. Brain 

tumors are the second leading cause of cancer-related death in children under 20, and the 

second and fifth leading cause of cancer-related death in males and females over 20, 

respectively (American Brain Tumor Association, 2013). The number of newly diagnosed adults 
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with colorectal cancer in 2011 in the United States was 141,210. Also in 2011, 49, 380 patients 

died of colorectal cancer in the United States alone (American Cancer Society, 2011).  

Safer and more effective drug options are constantly being sought to inhibit tumor cell growth, 

many which target cellular growth and proliferation pathways. A small molecule inhibitor of 

MSI1 could alter these pathways and lead to decreased proliferation and increased death of 

cancerous tissue. The Ryder Lab in the Department of Biochemistry and Molecular 

Pharmacology at the University of Massachusetts Medical School has identified a small 

molecule metabolite, oleic acid, as an inhibitor of mouse MSI1 through a small molecule screen 

(Clingman et al., n.d.). Oleic acid is an omega-9 (ω-9) monounsaturated fatty acid that is absent 

in early development, and becomes enriched in postnatal human brains, an expression pattern 

opposite to MSI1 (Martínez & Mougan, 1998).   

To investigate the conservation of RNA-binding affinity and inhibition of MSI1, a total of five 

MSI1 homologues from diverse species were cloned, expressed, purified and assayed. These 

proteins have varying percent similarities to human MSI1, with the greatest similarity present in 

the RNA-recognition motifs (RRMs) (Table 1). By studying the evolutionary conservation of 

binding and inhibition, this study aimed to provide insight into mechanistic properties of MSI1. 

It also aimed to investigate the possibility of different MSI1 homolog species that could serve as 

new models to explore the biological significance of MSI1 inhibition by oleic acid. For example, 

if fly Msi1 is inhibited by oleic acid in vitro, flies overexpressing Msi1 could be used as a model 

organism in which to test the effects of oleic acid on tumor cell growth. 



12 

Materials and Methods 
 

Generation of expression constructs 

Constructs containing genes for MSI1 homologs were created using restriction enzyme 

digestion followed by ligation. Restriction enzyme sites were inserted flanking the gene of 

interest by PCR using primers with restriction sites (Table 2). Following PCR, both target vector 

and gene of interest were digested with two restriction enzymes, followed by ligation of the 

gene of interest into the target vector. This created constructs that could be replicated in DH5α 

E. coli and contained an inducible protein expression system, allowing protein expression in 

BL21 E. coli.  

Insertion of restriction sites and amplification of insert using PCR 

All inserts containing MSI1 homologs were generated from the commercially available cDNA 

clones listed in Table 2. To produce the truncated protein, primers (Table 2) were designed to 

insert restriction sites 42 base pairs upstream of RRM1 and 48 base pairs downstream of RRM2. 

Primer sets were designed to insert coding sequences in-frame. PCR reactions were done in 

50μL [1x buffer (NEB), 10mM dNTPs, 100ng each of 3′ and 5′ primer, 40ng clone, 1μL PfuTurbo 

DNA polymerase (Stratagene)]. Product size was checked by gel electrophoresis and samples 

containing insert were purified using phenol/chloroform extraction followed by ethanol 

precipitation. Truncated expression constructs were designed with D. rerio msi1, C. elegans 

MSI-1, D. melanogaster Msi and D. melanogaster Rbp6. Mouse MSI1 protein containing only 

the two RRMs was provided by Carina Clingman. Constructs were abbreviated according to 

their scientific name, abbreviation and length (T=truncated). For example, D. rerio (zebrafish) 
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msi1 protein containing only the two RRMs is abbreviated Dr_msi1_T. Proteins also follow this 

naming scheme. 

Restriction digestion of inserts and vector 

Restriction digestions of inserts and vector (pET-22HT) were done in 20μL using the appropriate 

enzyme-optimized 10x buffer (NEB), 500ng of DNA, 1μL of each restriction enzyme and 0.1 

mg/mL BSA. For inserts and vectors with EcoR1 and Sal1 restriction sites, 10x EcoR1 buffer 

(NEB) was used. For inserts and vectors with Sac1 and Sal1 restriction sites, restriction digestion 

was done in two steps. Digestion with Sac1 was done in 10x buffer 1 (NEB). Reactions were 

then purified using phenol/chloroform extraction followed by ethanol precipitation. This was 

followed by digestion with Sal1 in 10x buffer 3 (NEB). Reactions were incubated at 37˚C for one 

hour to allow for complete digestion. Product size was checked on an agarose gel.  

The vector (pET-22HT) was subjected to restriction digestion with the same restriction enzyme 

pairs (EcoR1/Sal1 and Sal1/Sac1). Musashi inserts were ligated into the pET-22HT vector (Figure 

5a) which contains a lac promoter, T7 polymerase promoter, lac operator, f1 origin of 

replication, ampicillin resistance gene, ColE1 origin of replication, and a polylinker containing 

restriction enzyme sites. This vector allowed for plasmid replication and expression of 

recombinant protein in different bacterial systems. The pET-22HT plasmid contains a 5′-

histidine6-glycine tag (His6/Gly, and TEV protease site. The His6-tag is essential for protein 

purification. 

In-gel ligation  

In-gel ligation was used to avoid extracting DNA from gels. Restriction digested products were 

run on 1% low melting point agarose gels and bands were cut from the gel. In-gel ligation 
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reactions were done in 20μL [3μL of vector gel slice, 6μL of insert gel slice, 2μL of T4 DNA ligase 

(NEB) and 1x buffer with ATP (NEB)] and incubated overnight at room temperature (RT). To 

check for insertion of the Musashi1 gene homolog into pET-22HT, 100μL of E. coli (DH5α) were 

transformed with 5μL of in-gel ligation product using the following steps. After gentle mixing, 

cells with in-gel ligation product were set on ice for 10 minutes; heat shocked for 1 minute and 

45 seconds at 37˚C, and then put on ice. Cells were added to 1mL of LB and shaken at 37˚C for 1 

hour to allow expression of the AmpR gene. 200μL of transformed cells were plated on LB agar 

plates with 100μg/mL ampicillin and stored at 37˚C overnight for growth. Single colonies were 

picked and grown overnight in 4mL of LB/Amp at 37˚C to allow replication of the recombinant 

plasmid, which was isolated from cultures using a QIAprep Spin Miniprep Kit (Qiagen). Products 

were subjected to restriction digestion with restriction enzyme sets previously stated and 

analyzed by electrophoresis. Products were also sent to Elim Biopharmaceuticals for 

sequencing. Samples containing both vector and insert of the correct size without mutations 

were transformed into E. coli BL21 (DE3) cells for protein expression. 

Transformation of E. coli BL21 cells, growth and induction 

Test inductions 

Rubidium chloride competent E. coli strain BL21 (DE3) cells were transformed with successful 

in-gel ligation products as described above for DH5α E. coli. Test inductions were performed to 

confirm ability to induce protein expression and protein solubility. One colony was picked and 

grown in 5mL of LB with 100μg/mL ampicillin for one hour with shaking at 37˚C. 1mL of starter 

culture was added to 50mL of LB with 100μg/mL ampicillin and grown to an OD of 0.5. Protein 

expression was induced with isopropyl-β-D-thiogalactoside (IPTG) at a final concentration of 
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1mM. IPTG displaces the lac repressor from the lac operator, first allowing expression of T7 

polymerase from the host genome. T7 polymerase then can bind the T7 promoter on pET-22HT 

and transcribe the gene inserted into the polylinker site. Shaking at 37˚C for an additional 3 

hours allowed protein expression. Cells were pelleted by centrifugation at 5000xg for 30 

minutes and stored at -20˚C until use. Cells were lysed in Sample Buffer [100mM Tris-Cl (pH 

6.8), 4% SDS, 0.2% bromophenol blue, 20% glycerol, 200mM β-mercaptoethanol (BME)]. 

Samples were run on an SDS-page gel to determine ability to induce protein expression and to 

determine solubility.  

Protein expression from constructs 

To prepare for expression of protein, one colony of BL21 E. coli containing the expression 

construct was picked and grown in a starter culture of 5mL of LB with 100μg/mL ampicillin for 

one hour with shaking at 37˚C. 1mL of starter culture was added to 50mL of LB with 100μg/mL 

ampicillin and grown overnight with shaking at 37˚C. 5mL were transferred to each of 2 1L 

flasks of LB with 100μg/mL ampicillin and grown at 37˚C with shaking until cells reached the 

mid-log growth phase, determined by an OD reading between 0.6-0.8 at 600nm. Cultures were 

induced with 1mM IPTG and shaken at 37˚C for 3 hours. Cells were pelleted as above and dry 

pellet was stored at -80˚C until use. Samples from pre- and post-induction were saved to be run 

on a later SDS-page gel. 

Protein purification 

Recombinant MSI1 homologs were expressed and purified as previously described for His6-

tagged Mouse MSI1 (Clingman et al., in review). Purification consisted of the three affinity 

columns described below. 
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Cell lysis and Ni-NTA column purification 

Pelleted cells containing the recombinant MSI1 homolog proteins were thawed and 

resuspended in lysis buffer [300mM NaCl, 50mM NaH2PO4, 20mM Imidazole, 5mM β-

mercaptoethanol (BME), cOmplete Mini EDTA-free protease inhibitor cocktail tablet (Roche)]. 

Cells were lysed using a microfluidizer. After lysis, soluble lysate was bound to a nickel-

nitrilotriacetic acid (Ni-NTA) column (Thermo Scientific). This column selectively binds the His6-

tag on protein. The column was washed with wash buffer (300mM NaCl, 50mM NaH2PO4, 

50mM Imidazole, 5mM BME), and protein was eluted in 5mL fractions with elution buffer 

(300mM NaCl, 50mM NaH2PO4, 300mM Imidazole, 5mM BME). Samples were spotted on to 

Whatman paper and stained with Coomasie Brilliant Blue dye to determine the fractions 

containing protein (What-blot). Samples were further analyzed on an SDS-page gel to check the 

size and purity of the protein. Protein-containing fractions were combined and dialyzed 

overnight into MOPS buffer (pH 6.0) for a HiTrap SP cation exchange column (50mM MOPS pH 

6.0, 20mM NaCl, 2mM DTT; GE Healthcare).  

HiTrap SP cation exchange column 

Dialyzed protein was bound to a HiTrap SP cation exchange column (S-column; GE Healthcare). 

The column was washed with low salt S buffer (50mM MOPS pH 6.0, 20mM NaCl, 2mM DTT). 

Protein was eluted by washing with an increasing concentration of salt over 2 hours in 8mL 

fractions by mixing low salt S buffer with increasing amounts of high salt S buffer (50mM MOPS 

pH 6.0, 2M NaCl, 2mM DTT). Presence of protein in fractions was determined using a What-

blot. Fractions containing protein were combined and dialyzed overnight into buffer for a 

HiTrap Q anion exchange column (50mM Tris pH 8.8, 20mM NaCl, 2mM DTT; GE Healthcare).  
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HiTrap QP anion exchange column and concentration 

The HiTrap QP column was run the same as the S column, using low salt Q buffer (50mM Tris pH 

8.8, 20mM NaCl, 2mM DTT) and high salt Q buffer (50mM Tris pH 8.8, 2M NaCl, 2mM DTT). 

Location of protein in fractions was determined by spotting samples onto Whatman paper and 

staining with Coomassie Brilliant Blue dye. Protein was dialyzed overnight into storage buffer 

(50mM Tris pH 8.0, 20mM NaCl, 2mM DTT). All saved samples were run on a 12% SDS-page. 

Proteins were concentrated using VIVASPIN 20 10,000 MW cut-off spin concentrators (Sartorius 

Stedim Biotech). Concentration (c) was determined using Beer’s law (A280 = ε*l*c). Absorbance 

at 280nm was read using a Cary 50 Bio UV-Visible Spectrophotometer (Varian) with a path 

length (l) of 1cm. Extinction coefficients (ε) of recombinant proteins were calculated using the 

ProtParam tool available online from ExPASy. Purified proteins were stored at 4˚C until use. 

Determination of binding constants via direct titration assays 

Direct titration to determine dissociation constant 

Fluorescence polarization 

Fluorescence polarization (FP) was used to quantify the binding affinity of the four recombinant 

Musashi1 proteins to RNA aptamers. This assay shines polarized light into samples and reads 

sample emission. Free RNA tumbles quickly in solution and emits depolarized light. RNA bound 

to protein tumbles more slowly and emits polarized light. RNA used for FP assays contained the 

MSI1 consensus binding site. The 12nt RNA aptamer “nrzr005” (UUUAUAGUUUUU-FI) contains 

a 3′ fluorescein tag and was ordered pre-labeled from IDT and obtained from Dr. N. Ruth 

Zearfoss.  This RNA aptimer contains one MSI1 binding site (underlined).  

The FP assay was conducted as previously described (Pagano, Clingman, & Ryder, 2011). Assay 

conditions were modified following suggestions from Dr. Phil Zamore. Original assay conditions 
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used 1x EMSA buffer (50mM Tris pH 8.0, 100mM NaCl, 0.01mg/mL tRNA, 0.01% Igepal CA-630) 

to dilute RNA to a 2nM final concentration, while protein dilution series were made with water 

(final high protein concentration 2μM). Modified assay conditions used 1x EMSA buffer plus 

bovine gamma globulin (BGG; 0.1mg/mL BGG) to dilute RNA and protein to the same 

concentrations. Protein samples consisted of 23 points of a two-thirds dilution series plus a 

control sample without protein. The reactions were incubated covered in a 96-well plate for 2 

hours. All experiments were done in triplicate. 

Samples were read for fluorescence polarization using a Victor 3 plate reader (Perkin Elmer; 

emission filter: 535±40, excitation filter: 480±31, measurement time: 1.0s). Each well was read 

5 times. The data was analyzed by fitting the resulting polarization versus concentration graph 

to the Hill equation (equation 1). Equation 1 includes fluorescence polarization ( ), base (b), 

max (m) and high protein concentration (Pt). This equation is used to determine the dissociation 

constant (Kd) and the Hill coefficient (n, proportional to the slope of the sigmoid curve) for RNA 

aptimers containing one MSI1 binding site. 

    (   )(
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 )                  (1) 

Fluorescence-electrophoretic mobility shift assay 

Samples from the FP assay were analyzed by fluorescence electrophoretic mobility shift assay 

(F-EMSA) after FP was read. Bromocresol green loading dye (1x concentration: 6% glycerol, 

0.03% bromocresol green) was added to each sample. Samples were run on a 5% native 

polyacrylamide gel for 75 minutes at 120V in chilled 1x TBE buffer. Gels were imaged with a 

Typhoon FLA 9000 Biomolecular imager (GE Healthcare) (laser: 473nm, long-pass cut-off filter: 
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510nm). ImageGuage software (Fujifilm) was used to determine the fraction of RNA bound to 

protein. The intensity of the upper (bound) and lower (free) bands were quantified relative to 

background to determine the fraction of recombinant protein bound to RNA. Data were 

graphed as fraction bound versus protein concentration. Curves were fit to the Hill equation as 

previously described using equation 1 where   is fraction bound (Ryder, Recht, & Williamson, 

2008). 

Stoichiometric binding assay 

To confirm the stoichiometry of protein-RNA binding, a two-thirds dilution series of protein was 

made in 1x EMSA buffer with 15 points, plus a negative control without protein. The high 

protein concentration was 24μM. RNA was added to protein with a final concentration of 4μM 

unlabeled RNA and 2nM fluorescein-labeled RNA. All dilutions were made with 1x EMSA buffer. 

Protein-RNA mixtures were equilibrated for 3 hours at room temperature and quantified by FP 

and F-EMSA as previously described. Data was graphed as fluorescence polarization or fraction 

bound versus molar equivalents (RNA:MSI1). Data was fit to both a piecewise function, which 

fits data to two straight lines and finds the intersection point, and to  equation 2, which 

describes protein-RNA complex formation (Rambo & Doudna, 2004).   is fluorescence 

polarization or fraction bound, r is the ratio RNA:protein, and n is the stoichiometric 

equivalence point. 

   
       √(      )

     

  
                 (2) 

Dose response assays with omega-9 fatty acids 

Dose response assays were used to determine the inhibition of RNA-binding by MSI1 homologs 

with omega-9 (ω-9) monounsaturated fatty acids, as previously discovered by the Ryder Lab in 
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a small molecule screen with mouse MSI1. Experiments were performed using a modified FP 

and F-EMSA protocol. A two thirds dilution series of compound (oleic or eliadic acid) was 

prepared in DMSO, and then brought to a final high concentration of 384μM of compound 

using 1x EMSA buffer without BGG. The concentration at which the protein was 80% bound in 

the FP direct titration assay was used and held constant in all wells. The final concentration of 

fluorescein-labeled RNA was 2nM in all wells. The mixture equilibrated at room temperature for 

1 hour. FP and F-EMSA data were collected as described above in direct titration assays. The 

half maximal inhibitory concentration (IC50) was calculated using equation 3, including 

polarization or fraction bound ( ), base (b), max (m), protein concentration (P) and Hill 

coefficient (n).  

    (   )(
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The Lin and Riggs conversion was used to correct for the Kd of the specific Musashi1 protein and 

for the concentration of RNA and protein used in the experiment. Equation 4 was used to 

calculate the apparent inhibition constant (Ki, app) and includes the protein-specific dissociation 

constant (Kd), concentration of protein (P) and concentration of RNA (R) (Lin & Riggs, 1972; 

Ryder & Williamson, 2004)).   

       
 (  )(    )

        
          (4) 
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Results 

Cloning of MSI1 homologs 

To investigate the binding and inhibition of MSI1 homologs, recombinant proteins first had to 

be cloned, expressed and purified. To clone MSI1 homolog genes into the expression vector, 

the primers listed in Table 2 were used to add restriction sites flanking the two RRMs. Next, 

both the MSI1 homolog gene and the target vector (pET-22HT) were cut with restriction 

enzymes and MSI1 homolog genes were successfully ligated into the target vector (data not 

shown). Figure 5a shows details about the pET-22HT vector used. This vector allowed for the 

addition of an N-terminal His6-tag (Figure 5b) to the MSI1 homolog protein, which was 

essential during protein purification. Figure 5c shows that overall cloning scheme used for 

generation of expression constructs. 

Purification of recombinant Musashi homologs 

After cloning, MSI1 homolog protein was successfully expressed through induction with IPTG, 

which used the lac repressible system shown on the pET-22HT plasmid in Figure 5a.  MSI1 

homologs were then purified away from all cellular components for use in assays. Expression 

levels and purification efficiency varied between proteins. Truncated proteins containing the 

two RRMs were all soluble, and were successfully expressed and purified using three affinity 

columns. 

Location of protein during purification was monitored closely, as the four MSI1 homologs had 

not been previously purified by the Ryder Lab. Figure 6 shows an example SDS-PAGE gel with 

samples of truncated His6-tagged zebrafish msi1 (Dr_msi1_T, 22 kD) throughout stages of 

purification. In Figure 6a, the presence of protein was detected three hours post-induction with 
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IPTG. The Ni-NTA spin column bound the His6-tag of the recombinant protein, but loss of about 

50% of protein in the flow-through could indicate that some protein did not contain a His6-tag 

or that the column did not have a large enough capacity to bind all recombinant protein.  

After Ni-NTA column purification, protein was run over an S cation exchange column to remove 

contaminating proteins. In Figure 6b, the presence of Dr_msi1_T after dialysis against MOPS 

buffer (pH 6.0) is seen, which is the buffer necessary for use with the S column. This column is 

negatively charged at pH 6.0. Proteins were expected to be positively charged at pH 6.0 based 

on their theoretical isoelectric point (pI), causing them to stick to the column until eluted with a 

high salt buffer. Protein eluted from the S column in fractions 8-14, and was undetectable in the 

wash and flow-through when spotted onto Whatman paper and stained with Coomassie 

Brilliant Blue dye (not shown). The S column successfully removed the 15 kD band present in 

fractions 1 and 2 of the Ni-NTA spin column.  

The final column used was a Q anion exchange column, which removed RNA bound to protein 

and free RNA. After the S column, the protein was then dialyzed against Tris pH 8.8 buffer in 

preparation for purification with the Q column, as shown in Figure 6b. The Q column is 

positively charged at pH 8.8, and the MSI1 homologs were calculated to be negatively charged 

at pH 8.8 based on their predicted pI. Protein eluted from the Q column in fractions 6-11 with 

the addition of a high salt buffer. A large amount of protein was also observed in the flow-

through; therefore, both flow-through and fractions 6-11 from Dr_msi1_T purification were 

saved and tested for activity. 
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Due to differences in predicted pIs of the MSI1 homologs, proteins varied in their affinity for 

the different ion exchange columns. Ce_MSI-1_T and Dm_Rbp6_T bound to both the S and Q 

columns and were able to be eluted in fractions, which contained active protein. Drosophila Msi 

and zebrafish MSI1 bound to the S column, but did not bind tightly to the positively charged Q 

column. This is due to the high predicted pI of the two proteins calculated using ProtParam 

available online from ExPASy.  The pH of Q column buffers could ideally be adjusted to give the 

proteins a negative overall charge. The pH must be above the pI of the protein for this to be 

achieved. However, the Q column buffers were already pH 8.8 and could not be raised without 

danger of denaturing the protein in the basic conditions. Therefore both fractions and flow-

through from the Q column were tested by FP and F-EMSA to determine the active fraction, 

data from which will be shown later.  

Recombinant proteins bind RNA aptimer with varying affinity 

It was necessary to determine the affinity of the MSI1 homologs for their target RNA by 

examining the apparent dissociation constants of the interactions (Kd). This was done using an 

assay called direct titration in which protein is titrated into a constant concentration of RNA, 

which is present in trace amounts. Samples from this assay were analyzed in two different 

ways. Fluorescence polarization (FP) and fluorescence-electrophoretic mobility shift assay (F-

EMSA) were used and are explained in detail in Figure 7. FP quantifies the amount of free RNA 

in solution by reading the polarization of emitted light. F-EMSA quantifies the fraction of bound 

RNA based on the principal that RNA bound to protein will migrate slower though a native gel 

matrix than free RNA. Both methods yielded a value for the dissociation constant (Kd) for RNA-
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binding of protein. Before collecting data using these methods, assay conditions had to be 

optimized. 

Assay optimization for Hill coefficient reduction 

It was observed that using original assay conditions yielded a steep transition on the binding 

curves for both FP and F-EMSA, like the plot of Dr_msi1_T in Figure 8a. A steep transition is 

quantified by a high Hill coefficient. This steep transition suggested that at least one of two 

events was occurring: 1) cooperative binding, or 2) loss of protein at low concentrations. A 

stoichiometric binding assay was used to investigate the first possible event.    

The Hill coefficient (n) gives a value for the steepness of the binding curve. This coefficient 

indicates the number of ligand binding sites present on the protein. Hill coefficients above 1 

indicate binding cooperativity, where the protein consists of more than one binding site and 

binding at the first site facilitates binding at the second (Weiss, 1997). MSI1 has been previously 

shown to contain only one RNA-binding site. With original assay conditions, a Hill coefficient of 

2 or greater was obtained for all MSI1 homologs, which is contradictory to previous data for 

mouse MSI1.  To determine the stoichiometry of MSI1 binding to RNA, a stoichiometric binding 

assay was used. Data for Mm_MSI1_T indicate a 1:1 ratio by both FP and F-EMSA when fit to a 

piecewise function and equation 2 describing RNA-protein complex formation (Figure 9). This 

lead to the investigation of the effect of assay conditions on the Hill coefficient. 

BGG prevents protein loss at low concentrations 

Loss of protein at low concentrations due to protein binding to the assay plate was suggested 

by Dr. Phil Zamore of UMass Medical School. This event would shift the sigmoid binding curve 

to the right at low protein concentrations, increasing the curve steepness and consequently 
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increasing the Hill coefficient. The addition of the protein BGG to buffer reduced the Hill 

coefficient in all proteins tested. For example, Dr_msi1_T experienced a decrease from n = 2.01 

to n = 1.17 for one FP replicate after the addition of BGG to buffer (Figure 8a, b). It is thought 

that BGG acts to coat the plate wells and prevent loss of MSI1 homologs at low protein 

concentrations. After optimization of assay conditions, all four MSI1 homologs, plus mouse 

MSI1, were tested for RNA-binding activity and inhibition of activity by ω-9 monounsaturated 

fatty acids.  The binding properties of all proteins were tested with a 12 nucleotide fluorescein-

labeled RNA containing one MSI1 binding site (5’-UUUAUAGUUUUU-3’). Direct titration was 

performed first, followed by dose response, and both were analyzed by FP and F-EMSA. 

The dissociation constants were found in order to be able to compare the RNA-binding 

properties of the different MSI1 homologs. An example of an active protein binding to RNA is 

shown in Figure 8b with Dr_msi1_T collected from the flow-through of the Q column. The Kd for 

this replicate was 31.1nM. The FP data for Dr_msi1_T protein that eluted in fractions 6-11 of 

the Q column is shown in Figure 8c. This protein showed weaker binding (61.4nM) and may 

have been insoluble or aggregated at high concentrations, resulting in a decrease in RNA 

binding signified by a decrease in polarization of emitted light. Dr_msi1_T protein from the Q 

column flow-through was therefore used for all subsequent experiments. Data from all direct 

titration FP experiments done with the addition of BGG can be seen in Table 3.  

F-EMSA was also used to calculate the Kd of recombinant proteins based on quantification of 

bound and free RNA. F-EMSA results can be seen in Table 3. The Kd found by F-EMSA is 

generally weaker (larger) than the Kd found by FP. This is most likely due to dissociation of the 
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RNA-protein complex during the running of the gel. Figure 10a shows a F-EMSA gel done with 

truncated C. elegans MSI-1 (Ce_MSI-1_T). The amount of bound RNA increases with increasing 

protein concentration. Data was analyzed as above and fit to the Hill equation (equation 1). This 

yielded a value for the Kd and a Hill coefficient. Kd values in Table 3 are the means of three 

independent replicates with standard deviations. Dm_Msi_T (Kd, FP = 360 ± 12.8nM) showed 14-

fold weaker binding to the one-site RNA aptimer than Mm_MSI1_T (Kd, F-EMSA = 26.0 ± 1.06nM) 

when tested by FP. Dm_Msi_T (Kd, F-EMSA = 313 ± 13.0nM) showed 10-fold weaker binding than 

Mm_MSI1_T (Kd, F-EMSA = 28.4 ± 5.30nM) when tested by F-EMSA.  Dm_Rbp6_T (Kd, FP = 20.8 ± 

1.36nM), Mm_MSI1_T (Kd, FP = 26.0 ± 1.06nM) and Dr_msi1_T (Kd, FP = 26.2 ± 1.42nM) all 

showed similar Kd values of around 26nM when tested by FP. The Ce_MSI-1_T (Kd, FP = 61.7 ± 

4.24nM) showed 2-fold weaker binding by FP and 3-fold weaker binding by F-EMSA than 

Mm_MSI1_T. Data from direct titration assays was then used to determine the conditions for 

dose response assays.  

Binding of MSI1 homologs to RNA is inhibited by oleic acid 

Dose response assays were performed to determine the strength of oleic acid inhibition of 

RNA-binding in order to compare the inhibition of all MSI1 homologs. Direct titration data was 

used to determine the concentration of a specific protein at which it was 80% bound to RNA, 

and this concentration was held constant in dose response assays. RNA concentration was also 

held constant, while fatty acid was titrated into samples.  

Dose response experiments were analyzed similarly to direct titration experiments using FP and 

F-EMSA data with a modified Hill equation (equation 3). Hill equations for dose response 

experiments included a term for the half maximal inhibitory concentration (IC50), which is the 
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concentration of inhibitor required for 50% inhibition of RNA-protein complex formation. Figure 

11a shows the FP data with a constant concentration of Dm_Rbp6_T and one-site RNA, and 

titrated oleic acid. Oleic acid inhibited binding of Rbp6 to RNA with an IC50 of 9.32μM in this 

specific replicate. The apparent inhibition coefficient (Ki, app) for Rbp6 was 5.08μM, which takes 

into consideration the previously measured Kd of the specific protein using the Lin and Riggs 

conversion (equation 4). Quantification of the gel in Figure 11b is shown in Figure 11c. An 

increase in curve steepness is apparent between FP and F-EMSA data. Table 4 summarizes all 

dose response data from both FP and F-EMSA experiments. Dm_Msi_T (IC50, FP = 29.9 ± 1.68μM; 

IC50, F-EMSA = 19.2 ± 1.24μM) had a 2-fold weaker mean IC50 compared to Mm_MSI1_T (IC50, FP = 

16.0 ± 0.94μM: IC50, F-EMSA = 7.19 ± 0.25μM) by both FP and F-EMSA.  A 3-fold weaker mean Ki, app 

for Dm_Msi_T (Ki, app, FP = 33.6 ± 1.88μM) was seen compared to Mm_MSI1_T (Ki, app, FP = 9.69 ± 

0.57μM) by FP. A 5-fold weaker Ki, app was seen in Dm_Msi_T (Ki, app, F-EMSA = 21.5 ± 1.39μM) than 

Mm_MSI1_T (Ki, app, F-EMSA = 4.35 ± 0.15μM) by F-EMSA. No significant differences were seen 

between other homologs. This data suggests differences in the effectiveness of oleic acid 

inhibition of RNA-binding specifically with Dm_Msi_T. 

All MSI1 homologs were also tested with eliadic acid, another ω-9 monounsaturated fatty acid. 

Eliadic acid has a trans double bond, and oleic acid has a cis double bond. Figure 11d shows the 

gel from Dm_Rbp6 with titrated eliadic acid. No inhibition of RNA-binding activity is seen. 

Interestingly Ce_MSI-1_T was inhibited by both oleic acid (Ki, app, F-EMSA = 3.82 ± 0.14μM) and 

eliadic acid (Ki, app, F-EMSA = 40.9 ± 14.9μM) by F-EMSA (Figure 11e, f). However, inhibition of 

Ce_MSI-1_T by oleic acid was not seen by FP. This 10-fold difference in inhibition by eliadic acid 

could be tested further to determine if it is biologically relevant. 



28 

Evolutionary conservation of MSI1 homologs 

After seeing differences in RNA-binding and inhibition of the MSI1 homologs, protein sequences 

were aligned and examined to find differences in amino acid sequence which could contribute 

to these differences in activity. Figure 12 shows the sequence alignment for mouse MSI1 and 

the four MSI1 homologs. Amino acids known to participate in aromatic stacking interactions 

with RNA were written in green (Ohyama et al., 2012). The residues in purple represent amino 

acids known to participate in hydrogen-bonding with RNA (Ohyama et al., 2012). All of these 

residues are highly conserved within RRM1, which is the RNA-recognition motif that interacts 

with high affinity to RNAs. Two amino acid differences were seen in Dm_Msi_T, which are 

boxed in red. Dm_Msi_T contains a histidine instead of a valine (V94H) which can no longer 

participate in hydrogen bonding with RNA. Dm_Msi_T also contains a threonine instead of a 

phenylalanine (F96T), which cannot participate in aromatic stacking interactions. These 

differences are hypothesized to cause variability in RNA affinity and may suggest different 

mRNA targets for Dm_Msi_T in vivo. 

The Ryder Lab has predicted five amino acids to be involved in oleic acid inhibition of mouse 

MSI1. These residues are highlighted in yellow in Figure 12. Arginine 61, glycine 64 and 

phenylalanines 63 and 65 are seen to be conserved in all MSI1 homologs. In both fly MSI1 

homologs (Msi and Rbp6), arginine 53 is changed to lysine (R53K), but this does not correlate 

with observed differences in inhibition. Arginine and lysine are both positively charged amines 

and may have similar function in MSI1 homologs. Since all MSI1 homologs showed inhibition by 

oleic acid, it will be possible to use these homologs for further study of this activity in vivo.  
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Discussion 
The RNA-binding protein MSI1 is overexpressed in cancers arising from neural and epithelial 

stem and progenitor cells. It has been shown that knocking down MSI1 by RNAi causes tumor 

cell regression. Alternatively, it is hypothesized that an inhibitor of MSI1 could have the same 

effect on tumor cells. An inhibitor of MSI1 could provide a future treatment to inhibit tumor cell 

proliferation and lead to tumor regression. The Ryder Lab at the University of Massachusetts 

Medical School has found oleic acid to be a strong inhibitor of mouse MSI1 in vitro. This study 

has shown that MSI1 homologs from diverse species are also inhibited by oleic acid in vitro. It 

was also shown that MSI1 homologs have different RNA-binding and inhibition constants.  

Differences in RNA-binding of MSI1 homologs were seen and highlight the importance of 

specific amino acids. Fly Msi exhibited the weakest RNA-binding activity and includes the amino 

acid differences V94H and F96T when compared to the other MSI1 homologs tested (Figure 12). 

All other residues known to be involved in RNA-binding were conserved in fly Msi. The 

variations observed in the RNA-binding affinity, specifically in fly Msi, suggest that mRNA 

targets may differ. To investigate the possibility of increased affinity of fly Msi for different RNA 

sequences, Dr. Ruthie Zearfoss of the Ryder Lab has recently tested fly Msi‘s affinity for slightly 

different RNA sequences. This has shown that fly Msi exhibits higher affinity for an RNA 

aptamer of different sequence, suggesting that fly Msi may have different mRNA targets 

(unpublished data). It would be interesting to further investigate this difference. Experiments 

could be performed to investigate the effects of amino acid sequence on the specificity of RNA 

binding in MSI1 homologs. Mutation of the amino acids H94 and T96 in fly Msi to the 
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evolutionarily conserved valine and phenylalanine residues, respectively, could be done to 

determine if binding to the specific RNA used in this study is improved.  

The observed conservation of oleic acid inhibition across the diverse species of MSI1 homologs 

tested may provide new models to explore its biological significance in the future. Conservation 

of amino acids (R61, F63, G64 and F65) across the five MSI1 homologs tested strengthens the 

hypothesis proposed by the Ryder Lab about their involvement in RNA-binding inhibition. 

Further study into the mechanism of inhibition of MSI1 by oleic acid can be directed towards 

these amino acids. To determine the importance of the individual residues, mutant proteins of 

any of the MSI1 homologs tested could be created in which these residues are mutated to 

functionally different residues. Significantly different inhibition constant values would indicate 

the specific residue’s importance in recognition and binding of oleic acid. This could help to 

elucidate the mechanism of oleic acid inhibition of MSI1. 

The next step for assessing the significance of oleic acid inhibition of MSI1 RNA-binding activity 

is to investigate the effect of oleic acid in vivo. Since all MSI1 homologs tested exhibited 

inhibition by oleic acid, a model organism expressing any of these homologs of MSI1 could be 

created to test the effect of oleic acid. For example, zebrafish could be used as a model 

organism. If tumor cell development could be induced in neural or epithelial cells in the 

zebrafish, then the tumors could be treated with oleic acid to investigate oleic acid’s ability to 

inhibit tumor cell proliferation. Alternatively, cell lines expressing one of the MSI1 homologs 

could be cultured and treated with oleic acid, and proliferation rates could be monitored. This 

experiment could be done in D. melanogaster Schneider 2 (S2) cells, which express fly Msi1. 
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Proliferation rates could be compared between treatment with oleic acid, eliadic acid and RNAi 

Msi knockdown in both cell lines and animal models. Additionally, Western blots to determine 

the expression of proteins like Numb could be performed on cell extracts before and after 

treatment with oleic acid, eliadic acid and RNAi. MSI1 would normally inhibit the translation of 

numb mRNA into Numb protein. If oleic acid is inhibiting MSI1 in vivo, proteins like Numb would 

still be expressed.   

Further investigation into the inhibition of tumor cell proliferation with oleic acid in cell lines or 

animal models expressing MSI1 homologs from this study could yield a treatment for cellular 

proliferation in tumors. MSI1 has been shown to be upregulated in many cancers arising from 

neural and epithelial stem and progenitor cells. Therefore, inhibition of MSI1 with oleic acid 

could be a potential treatment for any cancer arising from these tissues. The preservation of 

oleic acid inhibition of RNA-binding activity across evolutionarily diverse MSI1 homologs 

discovered in this study provides a foundation for future research into the biological relevance 

of this conserved property.  

 

  



32 

Works Cited 

Battelli, C., Nikopoulos, G. N., Mitchell, J. G., & Verdi, J. M. (2006). The RNA-binding protein 

Musashi-1 regulates neural development through the translational repression of p21WAF-1. 

Molecular and cellular neurosciences, 31(1), 85–96. doi:10.1016/j.mcn.2005.09.003 

Clingman, C. C., Deveau, L. M., Hay, S. A., Genga, R. M., Shandilya, M. D., Massi, F., & 

Ryder, S. P. (n.d.). Allosteric inhibition of a stem cell RNA-binding protein by an 

intermediary metabolite. 

Colaluca, I. N., Tosoni, D., Nuciforo, P., Senic-Matuglia, F., Galimberti, V., Viale, G., Pece, S., 

et al. (2008). NUMB controls p53 tumour suppressor activity. Nature, 451(7174), 76–80. 

doi:10.1038/nature06412 

De Andrés-Aguayo, L., Varas, F., Kallin, E. M., Infante, J. F., Wurst, W., Floss, T., & Graf, T. 

(2011). Musashi 2 is a regulator of the HSC compartment identified by a retroviral insertion 

screen and knockout mice. Blood, 118(3), 554–64. doi:10.1182/blood-2010-12-322081 

Di Marcotullio, L., Ferretti, E., Greco, A., De Smaele, E., Po, A., Sico, M. A., Alimandi, M., et 

al. (2006). Numb is a suppressor of Hedgehog signalling and targets Gli1 for Itch-dependent 

ubiquitination. Nature cell biology, 8(12), 1415–23. doi:10.1038/ncb1510 

Dobson, N. R., Zhou, Y., Flint, N. C., & Armstrong, R. C. (2009). Musashi1 RNA-binding 

protein regulates oligodendrocyte lineage cell differentiation and survival. Glia, 56(3), 318–

330. doi:10.1002/glia.20615.Musashi1 

Glisovic, T., Bachorik, J. L., Yong, J., & Dreyfuss, G. (2008). RNA-binding proteins and post-

transcriptional gene regulation. FEBS letters, 582(14), 1977–86. 

doi:10.1016/j.febslet.2008.03.004 

Good, P., Yoda, a, Sakakibara, S., Yamamoto, a, Imai, T., Sawa, H., Ikeuchi, T., et al. (1998). 

The human Musashi homolog 1 (MSI1) gene encoding the homologue of Musashi/Nrp-1, a 

neural RNA-binding protein putatively expressed in CNS stem cells and neural progenitor 

cells. Genomics, 52(3), 382–4. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/9790759 

Imai, T., Tokunaga, A., Yoshida, T., Hashimoto, M., Mikoshiba, K., Weinmaster, G., & 

Nakafuku, M. (2001). The Neural RNA-Binding Protein Musashi1 Translationally 

Regulates Mammalian numb Gene Expression by Interacting with Its mRNA. Molecular 

Cell Biology, 21(12), 3888–3900. doi:10.1128/MCB.21.12.3888 

Kaneko, Y., Sakakibara, S., Imai, T., Suzuki, A., Nakamura, Y., Sawamoto, K., Ogawa, Y., et al. 

(1999). Musashi1: an evolutionally conserved marker for CNS progenitor cells including 

neural stem cells. Developmental neuroscience, 22, 139–53. doi:17435 



33 

Kanemura, Y., Mori, K., Sakakibara, S., Fujikawa, H., Hayashi, H., Nakano, A., Matsumoto, T., 

et al. (2001). Musashi1, an evolutionarily conserved neural RNA-binding protein, is a 

versatile marker of human glioma cells in determining their cellular origin, malignancy, and 

proliferative activity. Differentiation, 68, 141–52. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/11686236 

Kawahara, H., Imai, T., Imataka, H., Tsujimoto, M., Matsumoto, K., & Okano, H. (2008). Neural 

RNA-binding protein Musashi1 inhibits translation initiation by competing with eIF4G for 

PABP. The Journal of cell biology, 181(4), 639–53. doi:10.1083/jcb.200708004 

Lin, S.-Y., & Riggs, A. D. (1972). Zac Repressor binding to Non-operator DNA : Detailed 

Studies and a Comparison of Equilibrium and Rate Competition Methods. Journal of 

Molecular Biology, 72, 671–690. 

Maris, C., Dominguez, C., & Allain, F. H.-T. (2005). The RNA recognition motif, a plastic 

RNA-binding platform to regulate post-transcriptional gene expression. The FEBS journal, 

272(9), 2118–31. doi:10.1111/j.1742-4658.2005.04653.x 

Martínez, M., & Mougan, I. (1998). Fatty acid composition of human brain phospholipids during 

normal development. Journal of neurochemistry, 71(6), 2528–33. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/9832152 

Miyanoiri, Y., Kobayashi, H., Imai, T., Watanabe, M., Nagata, T., Uesugi, S., Okano, H., et al. 

(2003). Origin of higher affinity to RNA of the N-terminal RNA-binding domain than that 

of the C-terminal one of a mouse neural protein, musashi1, as revealed by comparison of 

their structures, modes of interaction, surface electrostatic potentials, and backbone . The 

Journal of biological chemistry, 278(42), 41309–15. doi:10.1074/jbc.M306210200 

Muto, J., Imai, T., Ogawa, D., Nishimoto, Y., Okada, Y., Mabuchi, Y., Kawase, T., et al. (2012). 

RNA-binding protein Musashi1 modulates glioma cell growth through the post-

transcriptional regulation of Notch and PI3 kinase/Akt signaling pathways. POS One, 7(3), 

e33431. doi:10.1371/journal.pone.0033431 

Nagata, T., Kanno, R., Kurihara, Y., Uesugi, S., Imai, T., Sakakibara, S., Okano, H., et al. 

(1999). Structure , Backbone Dynamics and Interactions with RNA of the C-terminal RNA-

binding Domain of a Mouse Neural RNA-binding Protein , Musashi1. Journal of Molecular 

Biology, 287, 315–330. 

Ohyama, T., Nagata, T., Tsuda, K., Kobayashi, N., Imai, T., Okano, H., Yamazaki, T., et al. 

(2012). Structure of Musashi1 in a complex with target RNA: the role of aromatic stacking 

interactions. Nucleic acids research, 40(7), 3218–31. doi:10.1093/nar/gkr1139 

Okabe, M., Imai, T., Kurusu, M., Hiromi, Y., & Okano, H. (2001). Translational repression 

determines a neuronal potential in Drosophila asymmetric cell division. Nature, 411(6833), 

94–8. doi:10.1038/35075094 



34 

Okano, H., Imai, T., & Okabe, M. (2002). Musashi: a translational regulator of cell fate. Journal 

of cell science, 115(7), 1355–9. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/11896183 

Pagano, J. M., Clingman, C. C., & Ryder, S. P. (2011). Quantitative approaches to monitor 

protein – nucleic acid interactions using fluorescent probes. RNA, 17(1), 14–20. 

doi:10.1261/rna.2428111.readout 

Rambo, R. P., & Doudna, J. a. (2004). Assembly of an active group II intron-maturase complex 

by protein dimerization. Biochemistry, 43(21), 6486–97. doi:10.1021/bi049912u 

Ryder, S. P., Recht, M. I., & Williamson, J. R. (2008). Quantitative analysis of protein-RNA 

interactions by gel mobility shift. Methods in molecular biology (Clifton, N.J.), 488, 99–

115. doi:10.1007/978-1-60327-475-3_7 

Ryder, S. P., & Williamson, J. R. (2004). Specificity of the STAR / GSG domain protein Qk1 : 

Implications for the regulation of myelination. RNA, 10(9), 1449–1458. 

doi:10.1261/rna.7780504.cross 

Sakakibara, S., Imai, T., Hamaguchi, K., Okabe, M., Aruga, J., Nakajima, K., Yasutomi, D., et 

al. (1996). Mouse-Musashi-1, a neural RNA-binding protein highly enriched in the 

mammalian CNS stem cell. Developmental biology, 176(2), 230–42. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/8660864 

Sakakibara, S., Nakamura, Y., Satoh, H., & Okano, H. (2001). Rna-binding protein Musashi2: 

developmentally regulated expression in neural precursor cells and subpopulations of 

neurons in mammalian CNS. The Journal of neuroscience, 21(20), 8091–107. Retrieved 

from http://www.ncbi.nlm.nih.gov/pubmed/11588182 

Sakakibara, S., & Okano, H. (1997). Expression of neural RNA-binding proteins in the postnatal 

CNS: implications of their roles in neuronal and glial cell development. The Journal of 

neuroscience : the official journal of the Society for Neuroscience, 17(21), 8300–12. 

Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9334405 

Sanchez-Diaz, P. C., Burton, T. L., Burns, S. C., Hung, J. Y., & Penalva, L. O. F. (2008). 

Musashi1 modulates cell proliferation genes in the medulloblastoma cell line Daoy. BMC 

cancer, 8(280). doi:10.1186/1471-2407-8-280 

Seigel, G. M., Hackam, A. S., Ganguly, A., Mandell, L. M., & Gonzalez-Fernandez, F. (2007). 

Human embryonic and neuronal stem cell markers in retinoblastoma. Molecular vision, 

13(May), 823–32. Retrieved from 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2768758&tool=pmcentrez&ren

dertype=abstract 



35 

Shibata, S., Umei, M., Kawahara, H., Yano, M., Makino, S., & Okano, H. (2012). 

Characterization of the RNA-binding protein Musashi1 in zebrafish. Brain Research, 1462, 

162–73. doi:10.1016/j.brainres.2012.01.068 

Siddall, N. a, Kalcina, M., Johanson, T. M., Monk, A. C., Casagranda, F., Been, R. P., 

McLaughlin, E. a, et al. (2012). Drosophila Rbp6 is an orthologue of vertebrate Msi-1 and 

Msi-2, but does not function redundantly with dMsi to regulate germline stem cell 

behaviour. PLOS one, 7(11). doi:10.1371/journal.pone.0049810 

Sureban, S. M., May, R., George, R. J., Dieckgraefe, B. K., McLeod, H. L., Ramalingam, S., 

Bishnupuri, K. S., et al. (2008). Knockdown of RNA binding protein musashi-1 leads to 

tumor regression in vivo. Gastroenterology, 134(5), 1448–58. 

doi:10.1053/j.gastro.2008.02.057 

Wang, X.-Y., Penalva, L. O., Yuan, H., Linnoila, R. I., Lu, J., Okano, H., & Glazer, R. I. (2010). 

Musashi1 regulates breast tumor cell proliferation and is a prognostic indicator of poor 

survival. Molecular cancer, 9, 221. doi:10.1186/1476-4598-9-221 

Wang, X.-Y., Yin, Y., Yuan, H., Sakamaki, T., Okano, H., & Glazer, R. I. (2008). Musashi1 

modulates mammary progenitor cell expansion through proliferin-mediated activation of the 

Wnt and Notch pathways. Molecular and cellular biology, 28(11), 3589–99. 

doi:10.1128/MCB.00040-08 

Weiss, J. N. (1997). The Hill equation revisited: uses and misuses. FASEB, 11, 835–841. 

Yoda, A., Sawa, H., & Okano, H. (2000). MSI-1, a neural RNA-binding protein, is involved in 

male mating behaviour in Caenorhabditis elegans. Genes to cells, 5(11), 885–895. Retrieved 

from http://www.ncbi.nlm.nih.gov/pubmed/11122376 

 

  



36 

Figures 

 

Figure 5: Cloning scheme used for generation of expression constructs containing MSI1 homologs: a) The pET-22HT 

plasmid used as cloning vector. Contains a lacI gene and lac operon (lacO) for inducible expression, a T7 RNA 

polymerase promoter, bacterial f1 origin for expression of the ampicillin resistance gene (Amp
R
), origin of 

replication (ori), N-terminal histidine6/glycine tag with TEV protease site and a polylinker containing multiple 

restriction enzyme sites for insertion of a gene of interest; b) His6/Gly-tag and polylinker region of pET-22HT 

showing available restriction sites. EcoR1 and Sac1 were used as 5’ restriction sites to insert genes of interest in 

frame; c) Primers designed with restriction sites were used in PCR to insert two restriction sites flanking the RRMs 

of the MSI1 homolog gene. Both vector pET-22HT and MSI1 homolog were subjected to restriction digestion, then 

ligated together to produce expression constructs. 
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Figure 6: Theory of assays used: a) Fluorescence polarization quantifies the amount of polarized light emitted from 

samples. Light is passed through a polarization filter into samples from a direct titration with varying ratios of RNA 

and protein. If an individual RNA is not bound to protein, it tumbles rapidly in solution and will emit depolarized 

light. If an individual RNA is bound to protein, it tumbles slowly in solution and will emit polarized light. This allows 

for the quantification of the relative amount of bound versus free RNA in solution; b) Fluorescence-eletrophoretic-

mobility shift assay (F-EMSA) quantifies the amount of free versus bound RNA in a sample. The direct titration 

experiment titrates protein into a fixed concentration of RNA. Gels contain a “no protein” control sample to verify 

position of the free RNA band; c)F-EMSA was used to analyze dose response assays in which compound was 

titrated into a fixed amount of RNA and protein.  An “RNA only” control verifies position of free RNA band and a 

“No compound” control verifies position of bound RNA. 
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Figure 7: Example of purification of D. rerio msi1 (Dr_msi1_T): a) induced expression of Dr_msi1_T; presence in 

clarified lysate indicates solubility; presence in flow-through and wash of Ni-NTA spin column indicates protein 

loss; protein elutes in fractions 1-3 of Ni-NTA spin column with 15kD band, b) Dr_msi1_T present after dialysis 

against MOPS (pH 6.0) buffer in preparation for HiTrap SP cation exchange column (S column); S column removes 

15kD band. Presence in Tris (pH 8.8) buffer in preparation for HiTrap Q anion exchange column (Q column). 

Dr_msi1_T present in both flow-through and fractions 6-11 of Q column. Concentration of protein assures no 

contamination not seen in more dilute samples is present.  
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Figure 8: Examples of fluorescence polarization plots with Dr_msi1_T: a) flow-through from Q column without 

bovine gamma globulin (BGG) [Kd = 83.6 ± 2.88nM, Hill = 2.01]; b) flow-through from Q column in 1x buffer plus 

BGG [Kd = 31.1 ± 1.53nM, Hill = 1.17]; c) fractions from Q column in 1x buffer plus BGG; decrease in polarization at 

high concentrations suggests loss of protein due to insolubility; therefore, Dr_msi1_T collected from fractions was 

not used in further assays. 
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Figure 9: Stoichiometric binding of truncated mouse MSI1 (Mm_MSI1_T) reveals 1:1 binding to RNA: a) Piecewise 

fit of FP fits data to two straight lines and takes the intercept to be the stoichiometric binding coefficient (n) (n = 

1.08 ± 0.07); b) Equation 3 fit of FP  (n = 1.23 ± 0.10); c) Piecewise fit of F-EMSA (n = 1.05 ± 0.04); d) Equation 3 fit 

of F-EMSA (n = 1.14 ± 0.06). 
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Figure 10: F-EMSA with C. elegans MSI-1 (Ce_MSI-1_T): a) Acrylamide gel shows distinction between bound and 

free RNA; b) Quantification of gel in (a) as a plot of fraction bound (RNA) versus protein concentration (M) (Kd = 

56.1 ± 2.17nM; Hill coefficient = 2.01). 
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Figure 11: Dose response by FP with D. melanogaster Rbp6 (Dm_Rbp6_T) showed no inhibition, while weak 

inhibition was seen with C. elegans MSI-1 (Ce_MSI-1_T): a) Fluorescence polarization versus oleic acid 

concentration of Dm_Rbp6_T (IC50 = 9.3μM, Ki, app = 5.08 μM, Shape = 2.9); b) F-EMSA 5% acrylamide gel with oleic 

acid and Dm_Rbp6_T; c) Quantification of gel in (b) (IC50 = 4.37 μM, Ki, app = 5.18 μM, Shape = 4.6); d) F-EMSA 5% 

acrylamide  gel with eliadic acid and Dm_Rbp6_T (no inhibition); e) F-EMSA 5% acrylamide gel with elaidic acid and 

Ce_MSI-1_T; f) Quantification of gel in (e) (IC50 = 37.0 μM, Ki, app = 40.9 μM, Shape = 0.88). 
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Figure 12: Alignment of amino acid sequences of MSI1 homolog RRM1. Green residues participate in aromatic 

stacking interactions with RNA, purple residues participate in hydrogen-bonding with RNA, residues in red boxes 

highlight amino acid differences in fly Msi (Dm_Msi), and residues highlighted in yellow are predicted by the Ryder 

Lab to contribute to oleic acid inhibition. Weaker binding of Dm_Msi_T to RNA was observed and may be due to 

amino acid differences boxed in red. 

 



44 

Tables 
Table 2: Clones, primers and restriction sites used in creation of MSI1 homolog expression constructs. Primer sequences were designed to insert restriction 

sites flanking the RRMs of MSI1 homolog genes and to insert stop codons 16 amino acids after RRM2. 

Species Construct 
Abbreviation 

Clone containing insert N-terminal 
restriction site 

C-terminal 
restriction site 

Included amino 
acids 

D. rerio Dr_msi1_T pME185-FL3 EcoR1 Sal1 32-217 
C. elegans Ce_MSI-1_T pDONR201 EcoR1 Sal1 7-192 
D. melanogaster  Dm_Msi_T LD31631 Sac1 Sal1 162-346 
D. melanogaster  Dm_Rbp6_T RE25373 EcoR1 Sal1 16-201 
M. musculus Mm_MSI1_T Obtained from C. Clingman 7-192 
 

Construct 
Abbreviation 

Primer sequence 

Dr_msi1_T Forward GGGG GAATTC CAAAGTAACCTGTCCTCC 

 Reverse GGGG GTCGAC UU CTA TGGTGACATCACTTCCTT 

Ce_MSI-1_T Forward GGGG GAATTC GCTGATTCCGATGACGGG 

 Reverse GGGG GTCGAC UU CTA CGGAAGCATGACCTCCTT 

Dm_Msi_T Forward GGGG GAGCTC CCCAGCCTGAGCGGAGGC 

 Reverse GGGG GTCGAC UU CTA CGGTGTGACTGCTTCCTT  

Dm_Rbp6_T Forward GGGG GAATTC CTGGGACCCTGTTCCCCC 

 Reverse GGGG GTCGAC UU CTA CGGCAGCATCACTTCCTT 

Mm_MSI1_T Obtained from C. Clingman 
 

 



Table 3: Direct titration FP and F-EMSA data for mouse MSI1 and MSI1 homologs. Kd is the binding constant at 

which protein is 50% bound to RNA and was determined from fitting FP and F-EMSA data to equation 1. 

Protein FP F-EMSA 

 Mean Kd Mean Hill Mean Kd Mean Hill 

Dm_Rbp6_T 20.8 ± 1.36nM  1.42 32.4 ± 5.25nM  1.77 

Mm_MSI1 26.0 ± 1.06nM  1.35 28.4 ± 5.30nM  1.44 

Dr_msi1_T 26.2 ± 1.42nM  1.32 24.7 ± 3.73nM  1.72 

Ce_MSI-1_T 61.7 ± 4.24nM  1.32 94.0 ± 2.00nM  1.98 

Dm_Msi_T 360 ± 12.8nM  2.16 313 ± 13.0nM  4.37 

 

Table 4: Dose response FP and f-EMSA data for MSI1 and MSI1 homologs with the ω-9 monounsaturated fatty 

acid: oleic acid.  

Protein Compound Method Mean IC50 Mean Ki, app Mean Shape 

Dm_Rbp66_T Oleic Acid FP 16.4 ± 0.33μM 8.91 ± 0.18μM 2.50 

Dm_Rbp6_T Oleic Acid F-EMSA 7.39 ± 0.21μM 9.00 ± 0.26μM 3.90 

Mm_MSI1 Oleic Acid FP 16.0 ± 0.94μM 9.69 ± 0.57μM 2.42 

Mm_MSI1 Oleic Acid F-EMSA 7.19 ± 0.25μM 4.35 ± 0.15μM 4.40 

Dr_msi1_T Oleic Acid FP 14.3 ± 0.51μM 3.87 ± 0.16μM 2.38 

Dr_msi1_T Oleic Acid F-EMSA 7.52 ± 0.12μM 2.02 ± 1.23μM 4.51 

Ce_MSI-1_T Oleic Acid FP 6.40 ± 0.49μM 3.37 ± 2.55μM 5.67 

Ce_MSI-1_T Oleic Acid F-EMSA 3.45 ± 0.13μM 3.82 ± 0.14μM 4.98 

Dm_Msi_T Oleic Acid FP 29.9 ± 1.68μM 33.6 ± 1.88μM 2.28 

Dm_Msi_T Oleic Acid F-EMSA 19.2 ± 1.24μM 21.5 ± 1.39μM 2.67 

 

 


