

Project Number: MQP-BS2-0803

SRAM Characteristics as Physical Unclonable Functions

A Major Qualifying Project Report

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

Robyn Colopy

Jatin Chopra

Date: March 6, 2009

Sponsored by:

General Dynamic C4 Systems

Approved:

Professor Berk Sunar

-i-

Abstract

The purpose of this project is to determine whether the initial contents of SRAM, when

treated as a Physical Unclonable Function, are a reasonable choice for generating an

encryption key for an FPGA configuration bitstream. The idea of an SRAM PUF was

previously proposed by Gerardo et al and we verified his results with a different FPGA

family. We characterize the contents of SRAM on restart. Using MATLAB we

statistically analyze the data to determine how the contents vary with respect to the

multiple dimensions. Once the characterization is complete it will be possible to

determine whether a certain bit pattern is likely to have come from the given SRAM.

-ii-

Acknowledgements

We are extremely grateful for all of the people who have helped us in completing this

project. We could not have done it without the on-going support, advice and the guidance

of everyone involved.

We would like to thank Professor Berk Sunar, our advisor. We are appreciative of his

time and knowledge in helping us achieve our goals and overall success for this project.

We are also grateful for our on-site advisors, Evan Custodio, Brendon Chetwynd and

Gerardo Orlando. Their technical and administrative support has helped us in numerous

occasions and we are very appreciative of all their efforts.

We would also like to thank General Dynamics C4 Systems and Worcester Polytechnic

Institute for making this opportunity available to us and allowing us to take advantage of

this program.

-iii-

Table of Contents
Abstract .. i
Acknowledgements ... ii
Table of Contents ... iii
Table of Figures .. iv
Problem Statement .. 1
Literature Review .. 2

FPGA ... 2
SRAM .. 2
PUF .. 4
Tools .. 4

Virtex-5 Development Board .. 4
Xilinx ISE .. 5
MATLAB .. 6
IP Power 9258 ... 6

Goals .. 7
Implementation .. 7

Reading the Memory ... 7
Serial Out ... 9
Automating the Reset .. 11
Serial In ... 13

Results ... 18
Analysis ... 19

Uniformity ... 19
Stability ... 22
Spatial Correlation ... 26
Entropy Estimation .. 27
Across Boards .. 28

Future Considerations .. 30
Conclusion ... 31
References ... 32
Appendix A: MATLAB UART Receiver ... 33
Appendix B: MATLAB Main Program (per board) .. 35
Appendix C: MATLAB Single Set Analysis .. 37
Appendix D: MATLAB Board Uniformity Analysis .. 40
Appendix E: MATLAB Board Entropy Analysis ... 42
Appendix F: MATLAB Single Set Entropy Analysis ... 43
Appendix G: MATLAB Board Stability Analysis (Bitwise) .. 44
Appendix H: MATLAB Board Stability Analysis (Bytewise) .. 46
Appendix I: MATLAB Board Uniformity Analysis ... 47
Appendix J: MATLAB Join Board Samples ... 49
Appendix K: MATLAB Merge Data Sets ... 50
Appendix L: Comparing Memories ... 53
Appendix M: VHDL SRAM & UART ... 54
Appendix N: UCF File .. 58

-iv-

Table of Figures
Figure 1: Cloning Attack .. 1

Figure 2: Six transistor SRAM cell ... 3

Figure 3: Threshold Voltage and Noise .. 4

Figure 4: Virtex-5 family members .. 5

Figure 5: Automated Reset System ... 7

Figure 6: SRAM Read/Write State Machine .. 8

Figure 7: SRAM Reading State Machine ... 9

Figure 8: UART Protocol.. 9

Figure 9: UART Transmitter State Machine .. 10

Figure 10: Final UART State Machine ... 11

Figure 11: Commands to power cycle the power management device 12

Figure 12: Flow-chart outlining MATLAB function to automate the reset 13

Figure 13: MATLAB script to automate the reset .. 13

Figure 14: Simple MATLAB code for serial reception .. 14

Figure 15: MATLAB‟s data collecting and storing procedure ... 15

Figure 16: MATLAB commands that initiate the serial port .. 16

Figure 17: MATLAB commands that ensure that COM1 is available 16

Figure 18: MATLAB flow chart with added power-management feature 17

Figure 19: Measurements per Time Interval ... 19

Figure 20: Uniformity vs. Time Off ... 20

Figure 21: Percent Ones Distribution ... 21

Figure 22: Memory Map ... 22

Figure 23: Stability vs. Time Off .. 23

Figure 24: Stability vs. Samples ... 23

Figure 25: Distribution of Stable Bits ... 24

Figure 26: Distribution of Unstable Bits ... 25

Figure 27: Stability Histogram.. 25

Figure 28: Stable Bytes ... 26

Figure 29: Byte Occurrence .. 26

Figure 30: Zeros per byte .. 27

Figure 31: Entropy Equation ... 27

Figure 32: Entropy vs Time Off.. 28

Figure 33: Difference Between Boards 1 and 2 .. 29

-1-

Problem Statement

Many Intellectual Property (IP) vendors sell Field Programmable Gate Array (FPGA)

hardware designs to external parties. There is a concern that attackers may steal and clone

the designs without paying the original designer. This results in a loss of revenue to the

vendor.

A configuration bitstream, which represents an FPGA design, is stored in external, non-

volatile memory such as Programmable Read-Only Memory (PROM). When an FPGA is

powered up, the bitstream is used to automatically load the design. Because the bitstream

is stored external to the FPGA, it is possible to tap the line connecting them. This attack

allows copying and cloning, as seen in Figure 1 below. An attacker can illegally program

other FPGAs without paying licensing fees to the IP vendor.

Figure 1: Cloning Attack

-2-

One proposed solution to this problem is to encrypt the bitstream. This would prevent an

attacker from gaining meaningful information through tapping. But where is the

encryption key to be stored? One proposed method is to place the key on a non-volatile

ROM. Another is to use a volatile ROM with a backup battery. However, these solutions

have additional costs associated with them.

An alternative solution is to use an intrinsic Physical Unclonable Function (PUF) to

create a key without overhead. Static Random Access Memory (SRAM), which is

internal to many FPGAs, has been proposed as a source of this PUF [3]. We characterize

the startup state of two external, independent SRAMs in order to analyze their suitability

as the source of a PUF.

Literature Review

FPGA

An FPGA is a semiconductor device that can be programmed and configured after

manufacturing. FPGAs can be re-programmed many times after deployment, which is an

advantage over ASICs, whose designs must be completed prior to manufacture. FPGAs

are programmed through a source code which describes the logical function to be

implemented. One language commonly used in FPGA design is VHDL.

The typical FPGA architecture consists of an array of configurable logic blocks (CLBs),

rather than solely transistors. These logic blocks contain memory used to implement logic

functions and can be a composition of transistor pairs, multiplexers, basic small gates

such as two-input NAND gates, exclusive-OR gates or look-up tables (LUTs). These

logic blocks are then connected together with wire segments of varying length

interconnecting each other by electronically programmable switches which are

configured during the synthesis process via a computer. After the design is downloaded

onto the device, a routing architecture is created and implemented on the board [8].

SRAM

SRAM is a type of semiconductor memory consisting of CMOS transistors. Unlike

dynamic RAM (DRAM) which must be periodically refreshed, SRAM is based on a bi-

stable latch which will retain its value as long as the circuit is powered.

Each bit is made of 6 transistors, arranged as two cross-coupled inverters and two access

switches, as show in Figure 3 below. This bit has two stable states to represent either a

logic zero or a logic one. There are two additional transistors, labeled as „M5‟ and „M6‟

in the figure below, which are known as access transistors since they control the access to

the storage cell during write and read operations.

-3-

In order to read or write to the cell, the word line labeled as „WL‟ needs to be enabled.

This in-turn connects the two access transistors, the bit lines, labeled as BL and BLC, in

Figure 2. The presence of two access lines aids in reducing noise. [3]

Figure 2: Six transistor SRAM cell

Source: [10] (Creative Commons)

When the SRAM is off, the input to each inverter is 0. However, due to the function of an

inverter this is an unstable state which must change once the SRAM is turned on. The

two inputs must become either 01 or 10. Which state is taken on is dependent on the

characteristics of the transistors making up each cell [4].

Although ideally each transistor would be identical, in actuality they vary slightly due to

uncontrollable factors in the manufacturing process such as dopant concentrations.

Variations in the relative threshold voltages of the transistors cause each cell to tend

toward a 1 or a 0. The more closely matched the threshold voltages are, the more

influence noise will have over the initial state, possibly causing the bit to flip. These

variations can be seen in Figure 3.

http://upload.wikimedia.org/wikipedia/commons/3/31/SRAM_Cell_%286_Transistors%29.svg

-4-

Figure 3: Threshold Voltage and Noise

Source: Reproduced from [4] (Holcomb)

PUF

Physical Unclonable Functions are the result of random uncontrollable variables in the

manufacturing process. They are measurable but meaningless aspects of a physical

system, and are unique in each instance. A PUF can be used as a source of random but

reliable data for applications such as generating encryption keys.

An intrinsic PUF is one that is the result of a preexisting manufacturing process, and does

not require any additions, such as a coating, to be used. Since there is no overhead, an

intrinsic PUF is cost effective.

If a good PUF is considered as a challenge and a response, (i.e., if section A is measured,

result B is found), then one pair of challenges and responses should have no bearing on

another pair. Additionally, if one tries to “take apart” or tamper with a PUF, the PUF will

no longer function [3].

Tools

Virtex-5 Development Board

The Virtex-5 family consists of high end Xilinx FPGAs which contain up to 330,000

logic cells, 207,360 internal fabric flip-flops as well as 207,360 six-input look-up tables.

The Configurable Logic Block (CLB), which is the basic logic elements for FPGAs,

provides synchronous and combinatorial logic. The CLBs on the Virtex-5 differ from

previous generations because they are based on six-input look-up table technology which

provides a better performance [9].

-5-

The Virtex-5 LXT ML505 is the general purpose FPGA development board created by

Xilinx which we were using throughout this project.

This board, along with an on-board memory, has many capabilities such as industry

standard connectivity interfaces. The board has a 9 Mb Zero-Bus Turnaround (ZBT)

synchronous SRAM which communicates by using a 32-bit data bus with four parity bits.

Other features on this board include a JTAG configuration port and SPI FLASH. It also

has eight general purpose DIP switches, LEDs, pushbuttons and a rotary encoder.

Communications can be made to transmit and receive data from the board via an RS-232

serial port using Universal Asynchronous Receiver/Transmitter (UART) communication.

A USB interface chip with host is also available on the board [9].

Figure 4 shows a number of Virtex-5 family members comparing different options such

as the number of the CLBs, block RAM, I/O Banks and Ethernet Media Access Control

(MAC) on different devices available from Xilinx. The one that we are using is the Xilinx

XC5VLX50T which is highlighted and has an adequate 120 x 30 array of CLBs and

2,160 Kb of total block RAM [9].

Figure 4: Virtex-5 family members

Source: Reproduced from [9] (Xilinx)

The development board we are using has a 9 Mb high-speed, low-power synchronous

SRAM designed by Integrated Silicon Solution Incorporated (ISSI). Designed to provide

a continuous or „burstable‟ read, it is a high-performance device for networking and

communications applications. The architecture consists of 256K words by 36 bits with

advanced CMOS technology. The device also incorporates a „no-wait‟ state, where wait

cycles are eliminated when switching between modes, such as read to write or write to

read operation [6].

Xilinx ISE

Xilinx Integrated Software Environment (ISE) is the software we used to implement our

design on our FPGA. It is a design software suite created by Xilinx which includes a

design environment for creating a top-level design using a Hardware Description

Device Configurable Logic Blocks (CLBs) DSP48E Block CMTs PowerPC Endpoint Ethernet Max RocketIO Total I/O Max User

Array Vertex-5 Max Distributed Slices Ram Blocks Processor Blocks for MACs Transceivers Banks I/O
 Slices RAM (kB) 18 kB 36 kB Max (kB) Blocks PCI Express GTP GTX

XC5VLX30 80x30 4,800 320 32 64 62 1,152 2 N/A N/A N/A N/A N/A 13 400

XC5VLX50 120x30 7,200 480 48 96 48 1,728 6 N/A N/A N/A N/A N/A 17 560

XC5VLX85 120x54 12,960 840 48 192 96 3,456 6 N/A N/A N/A N/A N/A 17 560

XC5VLX110 160x54 17,280 1,120 64 256 128 4,608 6 N/A N/A N/A N/A N/A 23 800

XC5VLX155 160x76 24,320 1,640 128 384 192 6,912 6 N/A N/A N/A N/A N/A 23 800

XC5VLX220 160x108 34,560 2,280 128 384 192 6,912 6 N/A N/A N/A N/A N/A 23 800

XC5VLX330 240x108 51,840 3,420 192 576 288 10,368 6 N/A N/A N/A N/A N/A 33 1,200

XC5VLX20T 60x26 3,12 210 24 52 26 936 1 1 2 4 4 N/A 7 172
XC5VLX30T 80x30 4,800 320 32 72 36 1,296 2 1 4 8 8 N/A 12 360

XC5VLX50T 120x30 7,200 480 48 120 60 2,160 6 1 4 12 12 N/A 15 480

XC5VLX85T 120x54 12,960 840 48 216 108 3,888 6 1 4 12 12 N/A 15 480

XC5VLX110T 160x54 17,280 1,120 64 296 148 5,328 6 1 4 16 16 N/A 20 680

XC5VLX155T 160x76 24,320 1,640 128 424 212 7,632 6 1 4 16 16 N/A 20 680

-6-

Language (HDL). We used VHDL to implement our design; however other languages

such as Verilog, ABEL and schematic layout are also supported by the software.

Using the software, code is written that describes the design or function to be performed

on the board. After the coding process, the software takes the created design and

optimizes it during synthesis. It also verifies functionality and timing restrictions through

its own simulations. The language design is then verified if it complies with Xilinx‟s

rules of syntax and if successful, it is converted into a corresponding netlist file.

This file is then converted into a physical file format known as a bitmap and is ready to

be downloaded onto the target device. After loading the design onto the FPGA, there are

a number of ways to debug the design if it does not function properly. One method is by

using an internal logic analyzer created by Xilinx known as ChipScope that can view

internal signals or nodes on the board for debugging purposes [11].

MATLAB

MATLAB is a high-performance language used for technical computing with many

applications including: data acquisition, math computation, data analysis, scientific and

engineering graphics. It is a high-level language that can perform computing problems

relatively faster compared with other languages because of its build-in functions and

commands [7].

MATLAB also has input/output communication capabilities to a serial port and can also

read and write to text-files or MATLAB‟s data format files with a .MAT extension. It

also performs data analysis, such as matrix manipulation, data plotting and build-in

functions that can perform common statistics [7].

IP Power 9258

Aviosys International Inc., developed IP Power 9258 which is an Ethernet-controlled

device used to manage power on a time schedule. With this device, a user can control or

query the power supply of up to four 120 V electrical outlets using pre-configured

commands. Communication is through an RJ-45 Ethernet cable via the PC. Other

capabilities of this device include an RS-232 port for debugging purposes and a manual

on-off switch. It also has LEDs to indicate power usage of the device connected to it [5].

The automated reset system is shown below in Figure 5:

-7-

Figure 5: Automated Reset System

Goals

Our overall technical goal was to determine whether the initial state of SRAM creates a

reasonable PUF for use as a cryptographic key. In order to meet this goal, we established

several milestones. These are outlined below:

 Read entire memory, initiated by power-on

 Import entire memory to PC

 Continuous automated full reads, full imports

 Batch process samples

 Interpret results

Implementation

Reading the Memory

Our first goal was to read an entire memory block on the Virtex-5 development board.

Initially, we intended to use the Block Random-Access Memory (BRAM), which is

inside the Virtex-5 FPGA chip itself. However after research and further investigation,

we discovered that in order to read values from the BRAM, we would first have to

instantiate them. This instantiation process clears the BRAM and sets all of its bits to

zero. This deletes the data which we are interested in. Therefore we instead decided to

read values from the external SRAM which had no such instantiation process. Our

development board has an external on-board SRAM which we used.

This on-board SRAM that we used is manufactured by Integrated Silicon Solution

Incorporated (ISSI) and is 9 Mb arranged as 256K x 36. After careful analysis of its data

sheet, we decided to implement a simple state machine which could both read from and

-8-

write to a user defined address. Both the write and read could be triggered by the user,

and the lower bits of the read data would be viewable on the board‟s LEDs. By both

reading and writing, we could verify that our SRAM interface was working correctly. To

accomplish this, we implemented the following state machine as shown in Figure 6:

Figure 6: SRAM Read/Write State Machine

Once we verified that our reading interface was correct, we removed the “write” portion,

and changed the address from user-selectable to a slow counter as shown in Figure 7.

With these changes, we could see that that data changed with the addresses.

-9-

Figure 7: SRAM Reading State Machine

In this configuration, this state machine is always reading from the SRAM. However, the

address that is being read will only change based on an external counter. As we began to

work with the serial communications, we determined that the best time to change the

address would be immediately after the “send” of the each address‟ data completed.

Serial Out

In order to save our reads of the SRAM, it was necessary to communicate with a PC.

After analyzing several options, we determined that an RS-232 UART connection would

be the easiest to implement.

A UART connection consists of one start bit, a set number of data bits, an optional parity

bit, and one stop bit, sent at a baud rate know to both the transmitter and receiver. We

chose to send 8 data bits at a time, at 115200 bits per second (bps), which is the fastest

common baud. As a result, we wanted our transmit line to appear as in the Figure 8

below:

Figure 8: UART Protocol

-10-

Additionally, we determined that it would not be necessary for our FPGA to receive any

data and only to transmit. Therefore we decided to implement our UART as a simple

state machine which controlled the TX line of our development board‟s RS-232 port. The

most basic form of this state machine is seen in Figure 9:

Figure 9: UART Transmitter State Machine

In order to tailor UART transmitter to our purposes, we made a few modifications. First,

since we needed to transmit 36 bits for each address, we added a loop to send 5 packets at

a time. Next, because the 100 MHz clock on our board does not divide down to exactly

115.2 kHz, we added an idle state after each word in which the clocks could

resynchronize. This was also the state in which the address incremented. Finally, because

our application requires the transmission to start immediately and accurately on power up

and cease transmission once the entire addresses have been sent, we added start and stop

states as shown in Figure 10.

-11-

Figure 10: Final UART State Machine

Since need this design to be immediately available on start up, we used Xilinx to create a

*.MCS file to be stored on the non-volatile PROM. This file automatically loads our

design onto the FPGA on power up.

Automating the Reset

In order to perform analysis on the data from the SRAM, it would be beneficial to get as

many multiple readings as possible. We initially performed a manual reset using the

standard power-switch on the board. However, in order to obtain numerous samples with

a time-precise rest period between readings, we researched a method to automate this

process of resetting the board.

-12-

After considering several options, we ordered the IP Power9258 which would serve as

our power management tool. Our motivations for this choice were a tradeoff between

price and ease of use. We communicated to it via an Ethernet cable by sending

commands through its IP address. The following commands shown in Figure 11

correspond to turning one outlet “on” and “off.”

Figure 11: Commands to power cycle the power management device

Our next task was to find a way to send these two commands automatically, time-

precisely and repeatedly. We also had to allow enough time for the board to boot-up

properly from PROM, extract the data and finally increment a variable rest period

between reads.

We decided to implement a simple MATLAB script. The command to turn the device on

was linked to a browser shortcut labeled as „on.url‟ and a similar command to turn the

device off was linked to another labeled, „off.url.‟ Once these shortcuts were created,

MATLAB was able to execute these shortcuts within its development environment by

opening a web-browser. We also configured it to close this web browser using the system

„task-kill‟ command. Between turning the board on and off, we also initiated a pause,

using the „pause‟ command. This pause was about 2 minutes, the time it takes to cycle

through the entire SRAM. We also added another pause as the “off time”. These

commands were placed within a for-loop so for multiple repetitions. The program

successfully automated the process of resetting the board. The flow-chart outlining this

procedure is as follows in Figure 12:

http://admin:12345678@192.168.1.207/Set.cmd?CMD=SetPower+P60=1

http://admin:12345678@192.168.1.207/Set.cmd?CMD=SetPower+P60=0

-13-

Figure 12: Flow-chart outlining MATLAB function to automate the reset

The script that was used to implement this is shown below in Figure 13:

Figure 13: MATLAB script to automate the reset

Serial In

Next, we dealt with receiving information from the board. In order to verify the

functionality of our UART design, we first used HyperTerminal, a communications

program included in Windows XP. Although HyperTerminal was helpful in determining

for i=1:1000
 !d:/on.url %Opens up a shortcut that turns
 sprintf('Webpage is on') %%power monitoring device on
 pause(1)
 system('taskkill /IM iexplore.exe') %Closes the shortcut
 pause(126) %Waits until board is done
 !d:/off.url %Opens up a shortcut that turns
 sprintf('Webpage is off') %%power monitoring device off
 pause(1)
 system('taskkill /IM iexplore.exe') %Closes the shortcut
 pause(300) %Provides a rest of 5 minutes
end

-14-

if data was being received, it was not capable of storing our data or displaying it as

individual bits.

Once we verified that our design worked and communication was possible from the

board, our next task was to read, save and separate the data from the SRAM. After

researching several options, we found that MATLAB can complete all of these tasks and

since we were planning on using it for analysis, it was perfect for our application.

After reading several help and example files related to MATLAB‟s serial

communications capabilities, we some simple commands to read some values from the

serial port, one that simply defines the serial port and another that opens the

communication to it. This script is shown below in Figure 14:

Figure 14: Simple MATLAB code for serial reception

After verifying that MATLAB could successfully communicate with the serial port, we

modified our code to detect the end of a send, save the data with a timestamp and to

maintain a list of all of the saved files. A block diagram of MATLAB‟s data collecting

and storing procedure is as follows in Figure 15:

s = serial('COM1'); %setups the serial port to open COM1

fopen(s); %opens the serial port connection

-15-

Figure 15: MATLAB’s data collecting and storing procedure

MATLAB is able to communicate through the serial port at various baud rates. The

maximum baud rate that MATLAB can read data is 115,200 baud. In order to initiate

communication, we used MATLAB‟s „serial‟ command to define the baud rate, the input

buffer size, timeout length, port number, and whether to read asynchronously or

synchronously. We chose 115,200 bits per second since this allowed for the fastest data

transfer possible and an asynchronous read operation since we were not sending out any

data through the UART or writing to the SRAM. The input buffer size was calculated

based on the available space within the SRAM on the FPGA, which was 262144 words

*40 bits = 1,310,720 bits. The timeout was defined as 500,000 seconds which allowed

MATLAB to continuously have the serial port open and gather data for several days.

Once these initial values were defined, MATLAB‟s „fopen‟ command permitted

MATLAB to access this port. The MATLAB script which brings all of these tools

together is as follows in Figure 16:

-16-

Figure 16: MATLAB commands that initiate the serial port

Once the initial communication was established, MATLAB‟s „fread‟ command was used

to start reading data and storing it to a temporary variable, labeled „out‟. It read 8 bits at a

time to eventually fill an allocated 5 x 262144 space for doubles. Each reading was

saved as a .MAT file only after the Input Buffer was filled. The filename contained the

date, time, and off-time for the reading. This information was gathered using MATLAB‟s

„clock‟ and „tic toc‟ commands. Saving the time was helpful during the analysis, ensuring

us that the readings were well-timed and that there was no erroneous data.

Along with saving the data from the SRAM to MATLAB‟s data format files, it was also

important to log what files were actually saved to retrieve them for future analysis. We

saved the names of all of the files that were generated into another data format file which

created a log of everything saved. This allowed us to streamline analysis by loading this

log of all of the files generated, extracting each individual time-stamped data and

performing analysis on each batch.

We initially had some difficulties getting MATLAB to automatically close the serial port

after completing a read. Trying to open a serial port already in use resulted in an error

which halted the program. To combat this, we took additional steps to ensure that the port

closed before attempting to open a new one as shown in Figure 17.

Figure 17: MATLAB commands that ensure that COM1 is available

This MATLAB code was created to be left overnight and over the weekends in order to

gather as much data as possible. Due to this all of the MATLAB code was placed within

a forever-while loop which was always running, ready to receive data whenever the board

is ready to transmit.

We later combined the two MATLAB scripts that can both perform the automation of

resetting the board and data collection and storage script. The finished script‟s procedure

is illustrated below in Figure 18:

d = instrfind('Port', 'COM1'); %lists used COM1 ports
 if length(d) ~= 0 %if the port is in use
 fclose(d); %closes the port
 delete(d); %deletes those devices
 end

 %setup the serial port

s = serial('COM1', 'InputBufferSize', 1310720, ...

'BaudRate', 115200, ...
'Timeout', 500000, 'ReadAsyncMode', 'continuous');

fopen(s) %opens the serial port connection

-17-

Figure 18: MATLAB flow chart with added power-management feature

Minor modifications can be made to this code to allow for sequential data gathering, i.e.,

gather 30 samples at 20 seconds off, then 20 samples and 30 seconds off.

-18-

Results

We took numerous samples varying the time-interval between resetting the board. We

initially read from one board and later switched to a similar but independent, Virtex-5

LXT ML505 development board near the end of the project and compared the results.

For most of the time periods we took 30 samples. However for a few we took slightly less

or more. Additionally for two time periods we took a much greater number of samples.

For one of the time-intervals, at a 300-second wait period, we took two batches of

samples for the first board. One of these batches totaled 30 readings altogether and

another batch totaled 500. We decided to keep both batches of data and perform analysis

on them.

At the lowest intervals of 1 and 5 seconds, we encountered some instability in our

MATLAB retriveal software and as a result gained fewer samples. We believe the reason

for this instability was that the hardware did not have time to fully power down.

After we switched to the second board, we attempted to get as many readings as possible;

however we were subject to time constraints. We also later discovered that a reading of a

300 wait period for the second board was erroneous and decided to delete the readings for

this particular time interval. We did not get a chance to replace the readings for this

particular time-interval of 300 seconds for the second board.

After all of the data was gathered, we created MATLAB scripts that interpreted the data

to process the analysis in the most efficient way. The results were plotted using a number

of visual graphs such as histogram, logarithmic and semi-logarithmic graphs.

Figure 19 shows how many measurements were taken for each board for a corresponding

time-interval:

-19-

Time Off Time Off Board # 1 Board # 2

(seconds) #Samples #Samples

1 18 13

5 30 19

10 30 30

20 30 25

30 30 23

40 30 15

50 20 17

60 1 minute 400 30

75 12 28

90 30 18

120 2 minutes 30 19

300 5 minutes 30 and 500 0

900 15 minutes 150 18

1800 half an hour 30 13

10800 3 hours 7 0

Figure 19: Measurements per Time Interval

The tests detailed below were all executed using MATLAB scripts included in the

appendices.

Analysis

Uniformity

First, we attempted to find the uniformity of the memory. We wanted to know if the

memory was composed of mostly ones, mostly zeros, or if it was about equal. In order to

accomplish this, we took the sum of the bitmap and divided it by the total number of bits

to obtain what percent of bits were one.

We found the uniformity of every sample we took, and plotted them together against the

time the board was off. This is shown below in Figure 20. Red circles are data points

from board 1, while the blue are from board 2.

-20-

Figure 20: Uniformity vs. Time Off

All of the data points range from 47.5% to 49.5%, so there are slightly more zero bits

than one bits. One percent represents about 100,000 bits.

A number of other trends are also visible in the figure. Both boards followed the same

basic shape, but the second board (blue) tends to have lower values than the first.

The memory becomes more uniform as the time off increases, although there are a

number of outliers. After examining our data, we found that these outliers occurred at the

beginning of each data set, which implies there may be a residual affect from the previous

reading. Since it is known that outside temperature can affect initial SRAM values,

perhaps this is an artifact of the heat generated by constantly reading the memory at

different rates. However, this would need further tests to verify.

It also seems like the range of values may decrease at longer intervals. It would be

necessary to gather more samples to verify this, since we have very few samples at longer

intervals.

-21-

Figure 21 shows the distribution of the uniformity for one of the larger datasets. It has a

Gaussian distribution with a range of about .01% (10,000 bits).

Figure 21: Percent Ones Distribution

Memory Map

Our next goal was to produce a map of the memory to see if any clear visual patterns

appeared. For example, were there any large sections of all ones? To do this, we first

translated our data, which came in as 8 bit integers arranged as 5x266144, into single bits

arranged as 36x262144. We then used MATLAB‟s „imagesc‟ command to create a

simple visual representation. We did not see any noticeable patterns in this image.

By stacking several of these bitmaps on top of each other and taking the average of each

bit, we were able to determine which bits changed or stayed the same over time. Figure

22 below shows the first hundred addresses of data. Those bits which were always the

same are pure white or black. Those that showed a tendency toward a certain value are

gray. The bits that changed most often are in red.

-22-

Figure 22: Memory Map

(Black = Always 1, White = Always 0, Red = Unstable)

This map shows that most bits remain constant, while relatively few are constantly

changing. We also see that the proportion of ones to zeros appears about equal. We see

that some blocks of values occur, but there are no tendencies over of the entire memory:

for example, there are no rows or columns that are all ones.

Stability

Next, we wondered how many of the bits were stable, and whether the uniformity data

we found still held when it was broken down further. For example, were stable bits more

likely to be ones? Did bits that flipped take on a certain value more often?

We define „stable‟ as a bit which does not change in any trial.

To accomplish this, we found the stability of each data set and plotted it against a number

of variables. In Figure 23, we see that there does not appear to be a relationship between

the number of stable bits and the length of time the board is off.

-23-

Figure 23: Stability vs. Time Off

In Figure 24 however, we see that those data sets with more samples had much greater

instability. We do not mean to imply that taking the samples affects the stability of the

bits; rather, many bits have the potential to flip and the more samples that are taken, the

more likely it is that this flip will occur.

With only a few samples, we see 92% stability, however when the number of samples is

much greater, 500, there is only 79% stability. It would be useful to gather data over a

larger range of samples to see if there is a lower bound on the stability, and to see if the

data truly follows the implied curve.

Figure 24: Stability vs. Samples

-24-

Next we wondered how the stable bits were distributed. Figure 25 shows that the stable

bits follow that same uniformity trend as the overall data. Stable bits are not more likely

to be a certain value.

Figure 25: Distribution of Stable Bits

Next we wondered how the unstable bits were distributed. Figure 26 below shows that of

those bits that are classified as unstable, about 37% tend to 1 (in ¾ of cases), 37% tend to

0, and 25% are unclassifiable. However, this data would benefit from a greater number of

samples.

-25-

Figure 26: Distribution of Unstable Bits

Finally, Figure 27 shows a histogram of the values of each bit. We see that a large

number of bits are completely stable. A small amount has a marked tendency one way or

the other, and bits which have less than a 90% tendency toward one side or the other

occur with equal low frequency. This is an inverse Gaussian distribution with very steep

sides.

Figure 27: Stability Histogram

-26-

Bytewise stability can also be considered. Figure 28 below shows the location in memory

of all bytes (red) which were completely stable for all 1,400 or so reads of the first board.

Completely stable bytes account for 7.96% of all bytes on the first board.

Figure 28: Stable Bytes

Spatial Correlation

We also looked for spatial correlation. We found that there was no linkage between

adjacent bits of different addresses. These were found to be completely random. However

we did find that the words had some dependencies. Figure 29 below is a histogram of the

integer values of each byte over one dataset. While there is a base line, there are also

significant peaks in several locations.

Figure 29: Byte Occurrence

Compare Figure 29 to Figure 30 below. Figure 30 shows how many zeros appear in the

binary representation of each 8 bit integer. The peaks in Figure 31 correspond to those

values with the most zeros. Consecutive zeros are more likely to appear than consecutive

ones. For example in the extreme case, a byte with a value of zero (all zeros) occurs twice

as often as a byte with the value of 255 (all ones).

-27-

Figure 30: Zeros per byte

Entropy Estimation

Shannon entropy is a measure of the unpredictability of a message x taken from the

distribution X. By taking a large number of samples from the distribution, we can form a

probablity distribution function from which we can estimate the Shannon Entropy as

follows in Figure 31:

𝑯 𝑿 = −𝑲 𝒑𝒊

𝒏

𝒊=𝟏

𝒍𝒐𝒈 𝒑𝒊

Figure 31: Entropy Equation

In this case, our K was equal to 1. „N‟ is 256, since that is the number of values which

can be represented with 8 bits. Pi is percent occurrences of each byte value. Since a byte

is 8 bits, an entropy value of 8 indicates that the distribution is completely uniform.

Entropy was plotted with respect to time in Figure 32. The entropy follows the same

trend as the uniformity graph seen in Figure 20, with values ranging from 7.97 to 7.99.

-28-

Figure 32: Entropy vs Time Off

Across Boards

Finally, it was necessary to determine whether there was any correlation between the two

boards. We used the average reading of each bit over all readings to create a “correct”

memory map for each board. We then XORed the two maps to find how many of the

corresponding bits were different. We found that 49.42% of bits were different. This

suggests that there is no noticable correlation between the two memories. However, two

memories is very small sample size and this test should be repeated with more data across

many boards.

Figure 33 below shows a portion of the XORed memory map. The red bits are those

which are different across the two memories.

-29-

Figure 33: Difference Between Boards 1 and 2

-30-

Future Considerations

Due to the noisy nature of PUF responses and the fact that the responses are not

uniformly distributed, a fuzzy extractor or helper data algorithm is typically implemented

to extract the secure keys from the PUF responses. For instance we observed a noise level

of between 10% and 20%. Within this fuzzy extractor, error correction is implemented to

compensate for noisy measurements. Privacy amplification is also implemented which

guarantees a uniform distribution of the final secret. We were interpreting the results

from the SRAM without the use of this block and for future considerations; this fuzzy

extractor or helper data algorithm can be implemented to extract a secure key [3].

We attempted to get as many reads from the SRAM as possible. However, when we

increased the time duration between reads, we could only obtain a certain number of

samples within a restricted time period. We did leave the board on over-night and over

the weekend to try to get as many samples. For future considerations, more readings from

the boards would be benefit the analysis and we would get more accurate plots.

With this particular FPGA, Virtex-5 LXT ML505, reading from the initial or start-up

values of the Block RAM (BRAM) was not possible. Although originally we were

attempting to read and perform analysis on the BRAM, we soon realized that in order to

read the contents, for this particular chip, we first had to initialize the contents. This

initialization process outlined by Xilinx set all of the bits of the BRAM equal to zero.

This would destroy the original contents and defeat our purposes of characterizing a chip

that can be used to authenticate a particular board based on a key. However for future

considerations, with an FPGA chip whose capabilities allow the reading of the BRAM

without destroying the original contents, an implementation of this similar project can be

done to characterize the BRAM. Similar analysis can be performed to conclude if an

encryption key can then be generated from this characterization.

We only had two boards to work with, but for future consideration more boards would

benefit the analysis. For example, it can support the fact that a PUF circuit is unique and

prove that it can be distinguishable among all boards.

It seems from some of our analysis that temperature has a significant effect. It would be

useful to gather quantitative data regarding this effect, perhaps through the use of a

temperature chamber or onboard monitoring device.

-31-

Conclusion

We successfully implemented a design to read the initial state of SRAM. We gathered

and characterized data in hope of showing that SRAM‟s initial state is a Physical

Unclonable Function which may be used to create an intrinsic cryptographic key for

identification and IP protection.

All of the goals set forth at the beginning of the project were met. The complete

development environment and production flow used to achieve the final PUF are fully

documented to allow future designs to implement a similar SRAM characterization and

analysis. We also include considerations for future expandability and reusability to assist

in any future implementations based on this research and work performed in this project.

The first goal was to implement a read of the entire memory which was initiated as soon

as the board powered on. We first started by reading from one address and then setting up

a counter to cycle through all of the addresses. We were able to successfully verify that

all of the addresses were being read by using the LEDs on the board to represent the

hexadecimal equivalent of the address.

Following the completion of reading the entire memory, the next main goal was to import

the contents of the memory to the PC for analysis. This was successfully achieved via an

RS-232 connection. We were able to view the data from HyperTerminal confirming that

bits were being sent and then turned to MATLAB to process the data in batch-form more

efficiently. We were successfully able to import the data, store it and place a time-stamp

on it for analysis.

The final portion of the project involved implementing a continuous automated reads and

imports. This included automating the reset of the board and allowing MATLAB to wait

until data was sent from the board. We used MATLAB‟s build-in pause command and

incremented the duration of time between reads to notice any interesting changes to the

analysis. We were able to leave the board over-night and over the weekend to

continuously read and extract data from the SRAM.

After all of the data was gathered, we used MATLAB‟s analysis tools to plot our data and

interpret the results. These results showed that as time-interval increases so does the

number of one‟s in the data. Also, the amount of time the SRAM is unpowered does not

have an effect on the stability of the bits. About 80% of bits are stable, and 50% change

between different memory chips of the same type. Using these guidelines, it should be

possible to generate a key.

-32-

References

[1] ChipDesignMag.

http://www.chipdesignmag.com/display.php?articleId=434&issueId=16.

Accessed February 20, 2009.

[2] ChipDesignMag. http://www.chipdesignmag.com/display.php?articleId=2899.

Accessed March 7, 2009.

[3] Guajardo, Jorge, Kumar Sandeep, Schrijen, Geert-Jan, Tuyls. FPGA Intrinsic

PUFs and Their Use for IP Protection. In Information and System Security Group,

pages 63-80, 2000.

[4] Holcomb, David E., Wayne P. Burleson, and Kevin Fu, “Initial SRAM state as a

fingerprint and source of true random numbers for RFID tags,” Proceedings of the

Conference on RFID Security, July 2007.

http://prisms.cs.umass.edu/~kevinfu/papers/holcomb-FERNS-RFIDSec07.pdf

[5] “IP Power 9258 User Manual,” Aviosys International Inc., February, 2002,

http://www.jeffcosoho.com/docs/ippower9258.pdf.

[6] “IS61NLP2563A,” Integrated Silicon Solution, Inc., May, 2005,

http://www.xilinx.com/products/boards/ml505/datasheets/61NLP_NVP25636A_5

1218A.pdf .

[7] “Introduction to MATLAB,” Mathworks, February, 2008.

http://www.mathworks.com/moler/intro.pdf.

[8] Rose, Jonathan, Abbas El Gamal, Alberto Sangiovanni-Vincentelli, “Architecture

of Field-Programmable Gate Arrays,” Proceedings of the IEEE, vol. 81, no. 7, pp.

1013-1029, July 1993.

[9] "Virtex-5 Family Overview," Xilinx, February, 2009,

http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf.

[10] Creative Commons .

http://en.wikipedia.org/wiki/File:SRAM_Cell_(6_Transistors).svg. Accessed

March 17, 2009.

[11] Xilinx. http://www.xilinx.com/itp/xilinx10/isehelp/isehelp_start.htm. Accessed

February 18, 2009.

-33-

Appendix A: MATLAB UART Receiver

% Worcester Polytechnic Institute

% General Dynamics C4 Systems MQP

% Robyn Colopy

% Jatin Chopra

% C Term 2009

% SRAM PUF

%

%filename: my_serial_simple.m

%

%This code opens the communication with the serial port and reads in %data

clear %Clears all local variables

tic %Initiate the start of clock

while(1) %Always run

 a = datestr(clock, 'mm_dd__HH_MM_SS'); %defines the format stamp

 fprintf(1,'Starting now. %s\n', a) %Display on command prompt

 load('file_list'); %load previously logged

 %files

d = instrfind('Port', 'COM1'); %lists all available ports

 if length(d) ~= 0 %if the port is not available

 fclose(d); %closes those devices that

 %are using COM1

 delete(d); %deletes those devices

 end
 %setups the serial port

 s = serial('COM1', 'InputBufferSize', 1310720, 'BaudRate', 115200, ...

 'Timeout', 500000, 'ReadAsyncMode', 'continuous');

 fopen(s) %opens the serial port connection

 a = datestr(clock, 'mm_dd__HH_MM_SS'); %defines the format stamp

 fprintf(1,'Waiting for input. %s\n', a) %displays the time

 readasync(s) %asynchronous read mode

 %Turn board on

 !d:/on.url

 a = datestr(clock, 'mm_dd__HH_MM_SS__');

 fprintf(1,'Turning ON. %s\n', a)

 pause(1)

 system('taskkill /IM iexplore.exe')

 while s.BytesAvailable == 0 %waits within this loop until %data

is available to be read

 end

 a = datestr(clock, 'mm_dd__HH_MM_SS__');

 filename = ['data/', a];

 fprintf(1,'Data received. %s\n', a)

 out = fread(s,[5, 262144],'uint8'); %data is read and placed in

 %„out‟

 b = toc; %initiates the time stamp

 c = num2str(b, '%04.0f'); %time stamp is converted to

 %a string

 filename = [filename, c]; %filename gets the value of

 %the timestamp

 tic %calculates the difference

-34-

 %of time

 save(filename, 'out'); %saves „out‟ as the time

 %stamp

 %generates a log of all of

 %the filenames

 all_my_files = [all_my_files; {filename}];

 save('file_list', 'all_my_files'); %logs all of the files

 %generated

 file_count = length(all_my_files);

 fprintf(1,'File count: %1.0f\n', file_count)

 %Turn board off

 !d:/off.url

 a = datestr(clock, 'mm_dd__HH_MM_SS__');

 fprintf(1,'Turning OFF. %s\n', a)

 pause(1)

 system('taskkill /IM iexplore.exe')

 fprintf(1,'.\n')

 pause(10);

 fprintf(1,'.\n')

 pause(900) %Wait 900 seconds before next

 %read

 end

-35-

Appendix B: MATLAB Main Program (per board)

% Worcester Polytechnic Institute

% General Dynamics C4 Systems MQP

% Robyn Colopy

% Jatin Chopra

% C Term 2009

% SRAM PUF

%

%file name: main_prog.m

%

%

%This program opens up the saved data which is stored in folders and %performs all of the

analysis. It saves the figures

clear

tic

mkdir('..\fig');

status = 1

join_files

files = length(new_my_files);

out = zeros(5, 262144);

no_parity = zeros(4, 262144);

all_bits = 36*262144;

status = 2

%file_data

for j = 1:files

 file_name = new_my_files(j);

 b = char(file_name);

 c = b(10:14);

 time(j) = str2num(c);

 c = b(1);

 board(j) = str2num(c);

 c = b(6:8);

 trials(j) = str2num(c);

 c = b(3:4);

 order(j) = str2num(c);

end

clear b c file_name j out

status = 3

all_ent

status = 4

all_uniform

status = 5

all_stable_bits

status = 6

all_stable_bytes

status = 7

folders = max(order);

start = zeros(folders,1);

stop = start;

i = 1;

start(i) = order(i);

for j = 1:files-1

-36-

 a = order(j);

 b = order(j+1);

 if a ~= b

 stop(i) = j;

 i = i + 1;

 start(i) = j+1;

 end

end

stop(folders) = files;

stats = zeros(folders, 17);

status = 8

for CURR_FOLDER = 1:folders

 hold off;

 status = 100+CURR_FOLDER

 some_files = new_my_files(start(CURR_FOLDER):stop(CURR_FOLDER));

 save('folder_files', 'some_files');

 %programs which run on one folder only

 entropy_graph

 uniform_stable_corr

end

save('all_stats', 'stats');

status = 9

for CURR_FOLDER = 1:folders

 some_files = new_my_files(start(CURR_FOLDER):stop(CURR_FOLDER));

 file_name = some_files(1);

 b = char(file_name);

 c = b(10:14);

 time_set(CURR_FOLDER) = str2num(c);

 c = b(1);

 board_set(CURR_FOLDER) = str2num(c);

 c = b(6:8);

 trials_set(CURR_FOLDER) = str2num(c);

 c = b(3:4);

 order_set(CURR_FOLDER) = str2num(c);

end

hold off;

x = time_set;

y = stats(:,3);

save('..\fig\st_ones', 'x', 'y');

x = time_set;

y = stats(:,12);

y2 = stats(:,13);

save('..\fig\row', 'x', 'y', 'y2');

x = trials_set;

y = stats(:, 5);

y2 = stats(:,6);

y3 = stats(:, 7);

save('..\fig\unstable_dist', 'x', 'y', 'y2', 'y3');

x = trials_set;

y = stats(:, 2);

save('..\fig\unstable_tot', 'x', 'y');

toc

-37-

Appendix C: MATLAB Single Set Analysis

% Worcester Polytechnic Institute

% General Dynamics C4 Systems MQP

% Robyn Colopy

% Jatin Chopra

% C Term 2009

% SRAM PUF

%

%file name: uniform_stable_corr.m

%

%This codes generates a graph of total ones, finds stability, does %spatial correlation

%both column-wise and row-wise to see if three %bits are the same

load('folder_files');

files = length(some_files);

total_mem_map = zeros(36, 262144);

total_mem_map_sort = zeros(36, 262144);

total_mem_map_percent = zeros(36, 262144);

mem_map = zeros(40, 262144);

mem_map_short = zeros(36, 262144);

one_byte = zeros(8,1);

out = zeros(5, 262144);

all_bits = 36*262144;

totals_one = zeros(files,1);

totals_zero = zeros(files,1);

for j = 1:files

 file = char(some_files(j));

 load(file);

 for addr = 1:262144

 for byte = 1:5

 choose_byte = (8*(byte-1));

 temp = out(byte,addr);

 if temp >= 128

 one_byte(1) = 1; temp = temp - 128;

 else one_byte(1) = 0; end

 if temp >= 64

 one_byte(2) = 1; temp = temp - 64;

 else one_byte(2) = 0; end

 if temp >= 32

 one_byte(3) = 1; temp = temp - 32;

 else one_byte(3) = 0; end

 if temp >= 16

 one_byte(4) = 1; temp = temp - 16;

 else one_byte(4) = 0; end

 if temp >= 8

 one_byte(5) = 1; temp = temp - 8;

 else one_byte(5) = 0; end

 if temp >= 4

 one_byte(6) = 1; temp = temp - 4;

 else one_byte(6) = 0; end

 if temp >= 2

 one_byte(7) = 1; temp = temp - 2;

 else one_byte(7) = 0; end

 if temp >= 1

 one_byte(8) = 1; temp = temp - 1;

 else one_byte(8) = 0; end

 for i = 1:8

 bit_loc = choose_byte + i;

 mem_map(bit_loc, addr) = one_byte(i);

 end

 end

 end

 mem_map_short = mem_map(5:40,:);

 total_mem_map = total_mem_map + mem_map_short;

-38-

 col_sum = sum(mem_map_short);

 total_sum = sum(col_sum);

 totals_one(j,1) = total_sum/all_bits;

end

tot_ones = mean(totals_one);

stats(CURR_FOLDER, 1) = tot_ones;

hist(totals_one,files);

name = ['..\fig\ones', num2str(CURR_FOLDER)];

saveas(h, name, 'fig')

%stability

B = reshape(total_mem_map,[],1);

B = B/files;

figure(2); hist(B,50);

total_mem_map_percent = total_mem_map/files;

stable_o = 0;

stable_z = 0;

high = 0;

low = 0;

mid = 0;

for bit = 1:36

 for addr2 = 1:262144

 if total_mem_map_percent(bit, addr2) == 1

 stable_o = stable_o + 1;

 total_mem_map_sort(bit, addr2) = 5;

 elseif total_mem_map_percent(bit, addr2) >=.75

 high = high + 1;

 total_mem_map_sort(bit, addr2) = 4;

 elseif total_mem_map_percent(bit, addr2) == 0

 stable_z = stable_z + 1;

 total_mem_map_sort(bit, addr2) = 1;

 elseif total_mem_map_percent(bit, addr2) <=.25

 low = low + 1;

 total_mem_map_sort(bit, addr2) = 2;

 else

 mid = mid + 1;

 total_mem_map_sort(bit, addr2) = 3;

 end

 end

end

%uniformity

stable_tot = stable_o + stable_z;

st_ones = stable_o/stable_tot;

st_zeros = stable_z/stable_tot;

unstable = (all_bits - stable_tot);

a_stables_tot = stable_tot/all_bits;

a_unstables_tot = unstable/all_bits;

un_highs = high/unstable;

un_lows = low/unstable;

un_mids = mid/unstable;

stats(CURR_FOLDER, 2) = a_stables_tot;

stats(CURR_FOLDER, 3) = st_ones;

-39-

stats(CURR_FOLDER, 4) = st_zeros;

stats(CURR_FOLDER, 5) = un_highs;

stats(CURR_FOLDER, 6) = un_lows;

stats(CURR_FOLDER, 7) = un_mids;

%spatial correlation

col = zeros(262144,1);

row = zeros(36,1);

for m=2:35

 for addr = 2:length(mem_map_short)-1

 if (mem_map_short(m,addr)==0 && (mem_map_short(m,addr+1) ==0 ||

mem_map_short(m,addr-1)==0))

 x1=0;

 elseif (mem_map_short(m,addr)==1 && (mem_map_short(m,addr+1) ==1 ||

mem_map_short(m,addr-1)==1))

 x1=0;

 else

 x1=1;

 end

 if x1==0

 col(addr)=col(addr)+1;

 end

 end

end

perc_col = col(2:262143)/36;

cmin_col=min(perc_col);

cmax_col=max(perc_col);

cmean_col=mean(perc_col);

cstd_col=std(perc_col);

stats(CURR_FOLDER, 8) = cmin_col;

stats(CURR_FOLDER, 9) = cmax_col;

stats(CURR_FOLDER, 10) = cmean_col;

stats(CURR_FOLDER, 11) = cstd_col;

%row

for m=2:35

 for addr = 2:length(mem_map_short)-1

 if (mem_map_short(m,addr)==0 && (mem_map_short(m+1,addr)==0 || mem_map_short(m-

1,addr)==0))

 x1=0;

 elseif (mem_map_short(m,addr)==1 && (mem_map_short(m+1,addr)==1 ||

mem_map_short(m-1,addr)==1))

 x1=0;

 else

 x1=1;

 end

 if x1==0

 row(m)=row(m)+1;

 end

 end

end

perc_row = row(2:35)/262144;

rmin_row=min(perc_row);

rmax_row=max(perc_row);

rmean_row=mean(perc_row);

rstd_row=std(perc_row);

stats(CURR_FOLDER, 12) = rmin_row;

stats(CURR_FOLDER, 13) = rmax_row;

-40-

Appendix D: MATLAB Board Uniformity Analysis

% Worcester Polytechnic Institute

% General Dynamics C4 Systems MQP

% Robyn Colopy

% Jatin Chopra

% C Term 2009

% SRAM PUF

%

%file name: all_uniform.m

%

%

%This code converts the mem_map for all the samples and converts it to %bytes. It then

calculates and generates a plot of how many ones are %present in all of the samples from

one particular board. It saves this %figure.

%

%It also generates a plot of an inverse Gaussian and saves this figure.

%as well

total_mem_map = zeros(36, 262144);

mem_map = zeros(40, 262144);

mem_map_short = zeros(36, 262144);

one_byte = zeros(8,1);

totals_one = zeros(files,1);

for j = 1:files

 file = char(new_my_files(j));

 load(file);

 for addr = 1:262144

 for byte = 1:5

 choose_byte = (8*(byte-1));

 temp = out(byte,addr);

 if temp >= 128

 one_byte(1) = 1; temp = temp - 128;

 else one_byte(1) = 0; end

 if temp >= 64

 one_byte(2) = 1; temp = temp - 64;

 else one_byte(2) = 0; end

 if temp >= 32

 one_byte(3) = 1; temp = temp - 32;

 else one_byte(3) = 0; end

 if temp >= 16

 one_byte(4) = 1; temp = temp - 16;

 else one_byte(4) = 0; end

 if temp >= 8

 one_byte(5) = 1; temp = temp - 8;

 else one_byte(5) = 0; end

 if temp >= 4

 one_byte(6) = 1; temp = temp - 4;

 else one_byte(6) = 0; end

 if temp >= 2

 one_byte(7) = 1; temp = temp - 2;

 else one_byte(7) = 0; end

 if temp >= 1

 one_byte(8) = 1; temp = temp - 1;

 else one_byte(8) = 0; end

 for i = 1:8

 bit_loc = choose_byte + i;

 mem_map(bit_loc, addr) = one_byte(i);

 end

 end

 end

 mem_map_short = mem_map(5:40,:);

 total_mem_map = total_mem_map + mem_map_short;

 col_sum = sum(mem_map_short);

 total_sum = sum(col_sum);

-41-

 totals_one(j,1) = total_sum/all_bits;

end

save('..\fig\all_ones', 'time', 'totals_one');

save('all_the_data', 'total_mem_map');

B = reshape(total_mem_map,[],1);

B = B/files;

save('..\fig\inverse_gauss', 'B', 'files');

clear B addr bit_loc byte choose_byte col_sum file h i j ...

 mem_map mem_map_short one_byte out temp total_sum totals_one

-42-

Appendix E: MATLAB Board Entropy Analysis

% Worcester Polytechnic Institute

% General Dynamics C4 Systems MQP

% Robyn Colopy

% Jatin Chopra

% C Term 2009

% SRAM PUF

%

%file name: all_ent.m

%

%

%This code performs the entropy of all of the samples from one %particular board and

plots them together on a log graph

%(entropy vs. time)

B = zeros(1048576, 1);

a = zeros(1, 256);

ent = zeros(1, files);

%iterates through all of the time- %intervals from

one board

for j = 1:files

 file = char(new_my_files(j));

 load(file);

 no_parity = out(2:5, 1:262144);

 B = reshape(no_parity,[],1);

 a = hist(B,256);

 ent(j) = 0;

 %Performs the entropy

 for i = 1:256

 p(i) = a(i)/sum(a);

 ent(j) = ent(j) + (p(i)*log2(p(i)));

 end

 ent(j) = -ent(j);

end

 %Saves the figure

save('..\fig\all_ent', 'time', 'ent');

 %Clears variables

clear B a ent file h i j out p

-43-

Appendix F: MATLAB Single Set Entropy Analysis

% Worcester Polytechnic Institute

% General Dynamics C4 Systems MQP

% Robyn Colopy

% Jatin Chopra

% C Term 2009

% SRAM PUF

%

%file name: entropy_graph.m

%

%

%This code generates a histogram for each time-interval that represents %the bits in the

SRAM from 0 to 255

load('folder_files');

files = length(some_files);

out = zeros(5, 262144);

no_parity = zeros(4, 262144);

B = zeros(1048576, 1);

C = zeros(1048576, 1);

a = zeros(1, 256);

 %iterates through all of the time-

 %intervals from one board

for j = 1:files

 file = char(some_files(j));

 load(file);

 no_parity = out(2:5, 1:262144);

 B = reshape(no_parity,[],1);

 %Generates the histogram

 a = hist(B,256);

 figure(1);hist(B,256)

 hold on;

 %Performs the entropy

 ent(j) = 0;

 for i = 1:256

 p(i) = a(i)/sum(a);

 ent(j) = ent(j) + (p(i)*log2(p(i)));

 end

 ent(j) = -ent(j);

end

stats(CURR_FOLDER, 14) = min(ent);

stats(CURR_FOLDER, 15) = max(ent);

stats(CURR_FOLDER, 16) = mean(ent);

stats(CURR_FOLDER, 17) = std(ent);

h = findobj(gca,'Type','patch');

set(h,'FaceColor','w','EdgeColor','r')

h = gcf;

%Saves the figure for each

%individual time-interval

name = ['..\fig\ent', num2str(CURR_FOLDER)];

saveas(h, name, 'fig')

hold off;

-44-

Appendix G: MATLAB Board Stability Analysis (Bitwise)

% Worcester Polytechnic Institute

% General Dynamics C4 Systems MQP

% Robyn Colopy

% Jatin Chopra

% C Term 2009

% SRAM PUF

%

%file name: all_stable_bits.m

%

%

%This code goes through all the bit_map and calculates the stables ones %and the stables

zeros in the data. It then plots a sorted map where it %shows the stable ones and the

stable zeros and the distribution in %between with colors

load('colors');

load('colors2');

total_mem_map_percent = zeros(36, 262144);

total_mem_map_sort = zeros(36, 262144);

%stability

total_mem_map_percent = total_mem_map/length(new_my_files);

stable_o = 0;

stable_z = 0;

high = 0;

low = 0;

mid = 0;

for bit = 1:36

 for addr2 = 1:262144

 if total_mem_map_percent(bit, addr2) == 1

 stable_o = stable_o + 1;

 total_mem_map_sort(bit, addr2) = 5;

 elseif total_mem_map_percent(bit, addr2) >=.75

 high = high + 1;

 total_mem_map_sort(bit, addr2) = 4;

 elseif total_mem_map_percent(bit, addr2) == 0

 stable_z = stable_z + 1;

 total_mem_map_sort(bit, addr2) = 1;

 elseif total_mem_map_percent(bit, addr2) <=.25

 low = low + 1;

 total_mem_map_sort(bit, addr2) = 2;

 else

 mid = mid + 1;

 total_mem_map_sort(bit, addr2) = 3;

 end

 end

end

%uniformity

stable_tot = stable_o + stable_z;

st_ones = stable_o/stable_tot;

st_zeros = stable_z/stable_tot;

unstable = (all_bits - stable_tot);

a_stables_tot = stable_tot/all_bits;

a_unstables_tot = unstable/all_bits;

un_highs = high/unstable;

un_lows = low/unstable;

un_mids = mid/unstable;

-45-

total_mem_map_percent2 = total_mem_map_percent(1:36,1:100);

total_mem_map_sort2 = total_mem_map_sort(1:36,1:100);

imagesc(total_mem_map_sort2, [1 5]); colormap(my_color); colorbar;

h = gcf;

saveas(h, '..\fig\sorted_map', 'fig')

imagesc(total_mem_map_percent2, [0 1]); colormap(grayscale); colorbar;

h = gcf;

saveas(h, '..\fig\gradiant_map', 'fig')

clear a_* addr2 bit h high low mid my_color st_* stab* total_mem_map_* un*

-46-

Appendix H: MATLAB Board Stability Analysis (Bytewise)

% Worcester Polytechnic Institute

% General Dynamics C4 Systems MQP

% Robyn Colopy

% Jatin Chopra

% C Term 2009

% SRAM PUF

%

%file name: all_stable_bytes.m

%

%

%This code goes through all the bit_map and calculates the stables and %unstable bytes

stable_b = zeros(4, 262144);

for j = 1:files

 file = char(new_my_files(j));

 load(file);

 no_parity = out(2:5, 1:262144);

 if j == 1

 stable_b = no_parity;

 else

 for addr = 1:262144

 for byte = 1:4

 if (no_parity(byte, addr) ~= stable_b(byte, addr))

 stable_b(byte, addr) = 300;

 end

 end

 end

 end

end

stable_list = zeros(1048576,3);

total = 0;

unstables = 0;

m = 1;

for byte = 1:4

 for addr = 1:262144

 total = total + 1;

 if stable_b(byte, addr) == 300

 unstables = unstables + 1;

 stable_b(byte, addr) = 0;

 else

 stable_list(m, 1) = byte;

 stable_list(m, 2) = addr;

 stable_list(m, 3) = stable_b(byte, addr);

 m = m + 1;

 stable_b(byte, addr) = 1;

 end

 end

end

stable = total - unstables;

stable_list = stable_list(1:stable);

save('list_stables', 'stable_list');

hold off;

imagesc(stable_b, [0 1]); colormap(grayscale); colorbar;

h = gcf;

saveas(h, '..\fig\all_stable', 'fig')

perc_stables = (total-unstables)/total;

clear addr ans byte file graysacle h h1 h2 j k m n one_byte...

 ones_array out stable stable_b stable_list...

 temp total total_mem_map unstables xout

-47-

Appendix I: MATLAB Board Uniformity Analysis

% Worcester Polytechnic Institute

% General Dynamics C4 Systems MQP

% Robyn Colopy

% Jatin Chopra

% C Term 2009

% SRAM PUF

%

%file name: all_uniform.m

%

%

%This program generates a plot of total ones vs time

total_mem_map = zeros(36, 262144);

mem_map = zeros(40, 262144);

mem_map_short = zeros(36, 262144);

one_byte = zeros(8,1);

totals_one = zeros(files,1);

for j = 1:files

 file = char(new_my_files(j));

 load(file);

 for addr = 1:262144

 for byte = 1:5

 choose_byte = (8*(byte-1));

 temp = out(byte,addr);

 if temp >= 128

 one_byte(1) = 1; temp = temp - 128;

 else one_byte(1) = 0; end

 if temp >= 64

 one_byte(2) = 1; temp = temp - 64;

 else one_byte(2) = 0; end

 if temp >= 32

 one_byte(3) = 1; temp = temp - 32;

 else one_byte(3) = 0; end

 if temp >= 16

 one_byte(4) = 1; temp = temp - 16;

 else one_byte(4) = 0; end

 if temp >= 8

 one_byte(5) = 1; temp = temp - 8;

 else one_byte(5) = 0; end

 if temp >= 4

 one_byte(6) = 1; temp = temp - 4;

 else one_byte(6) = 0; end

 if temp >= 2

 one_byte(7) = 1; temp = temp - 2;

 else one_byte(7) = 0; end

 if temp >= 1

 one_byte(8) = 1; temp = temp - 1;

 else one_byte(8) = 0; end

 for i = 1:8

 bit_loc = choose_byte + i;

 mem_map(bit_loc, addr) = one_byte(i);

 end

 end

 end

 mem_map_short = mem_map(5:40,:);

 total_mem_map = total_mem_map + mem_map_short;

 col_sum = sum(mem_map_short);

 total_sum = sum(col_sum);

 totals_one(j,1) = total_sum/all_bits;

end

save('..\fig\all_ones', 'time', 'totals_one');

save('all_the_data', 'total_mem_map');

-48-

B = reshape(total_mem_map,[],1);

B = B/files;

save('..\fig\inverse_gauss', 'B', 'files');

clear B addr bit_loc byte choose_byte col_sum file h i j ...

 mem_map mem_map_short one_byte out temp total_sum totals_one

-49-

Appendix J: MATLAB Join Board Samples

% Worcester Polytechnic Institute

% General Dynamics C4 Systems MQP

% Robyn Colopy

% Jatin Chopra

% C Term 2009

% SRAM PUF

%

%file name: join_files.m

%

%

%This program joins the files so that analysis can be performed for %each time interval

new_my_files = {};

folder_list = dir;

a = ls;

a = cellstr(a);

c = length(a)-1;

b = a(3:length(a)-1);

c = length(b);

for i = 1:c

 if folder_list(i+2).isdir == 1

 folder = char(b(i));

 str_file_list = [char(b(i)), '\file_list'];

 load(str_file_list);

 files = length(all_my_files);

 for j = 1:files

 a = char(all_my_files(j));

 new_name = [folder, '/', a];

 new_my_files = [new_my_files; {new_name}];

 end

 end

end

save('all_files', 'new_my_files');

clear a b c all_my_files files folder folder_list i j new_name str_file_list

-50-

Appendix K: MATLAB Merge Data Sets

% Worcester Polytechnic Institute

% General Dynamics C4 Systems MQP

% Robyn Colopy

% Jatin Chopra

% C Term 2009

% SRAM PUF

%

%file name: merge.m

%

%

%This program both boards to be plotted on the same graph

clear

mkdir('fig');

a = '.\board1\fig\';

b = '.\board2\fig\';

c(1) = {'all_ent.mat'};

c(2) = {'all_ones.mat'};

c(3) = {'inverse_gauss.mat'};

c(4) = {'st_ones.mat'};

c(5) = {'unstable_dist.mat'};

c(6) = {'unstable_tot.mat'};

c(7) = {'row.mat'};

one = c;

two = c;

for j = 1:length(c);

 m = char(c(j));

 p = [a, m];

 n = cellstr(p);

 one(j) = n;

 p = [b, m];

 n = cellstr(p);

 two(j) = n;

end

j = 1;

clear a b;

a = char(one(j));

b = char(two(j));

load(a);

semilogx(time, ent, 'or')

hold on;

load(b);

semilogx(time, ent, 'ob')

hold off;

h = gcf;

saveas(h, '.\fig\all_ent', 'fig')

j = 2;

clear a b;

a = char(one(j));

b = char(two(j));

load(a);

semilogx(time, totals_one, 'or')

hold on;

load(b);

semilogx(time, totals_one, 'ob')

hold off;

h = gcf;

saveas(h, '.\fig\totals_one', 'fig')

-51-

j = 3;

clear a b;

a = char(one(j));

b = char(two(j));

load(a);

hist(B, 100)

hold on;

load(b);

hist(B, 100)

hold off;

h = gcf;

saveas(h, '.\fig\inverse_gauss', 'fig')

j = 4;

clear a b;

a = char(one(j));

b = char(two(j));

load(a);

semilogx(x, y, 'or')

time_set1 = x;

hold on;

load(b);

semilogx(x, y, 'ob')

time_set2 = x;

hold off;

h = gcf;

saveas(h, '.\fig\st_ones', 'fig')

j = 5;

clear a b;

a = char(one(j));

b = char(two(j));

load(a);

plot(x, y, 'og', x, y2, 'ob', x, y3, 'or')

hold on;

load(b);

plot(x, y, 'squareb', x, y2, 'squareb', x, y3, 'squareb')

hold off;

h = gcf;

saveas(h, '.\fig\unstable_dist', 'fig')

j = 6;

clear a b;

a = char(one(j));

b = char(two(j));

load(a);

semilogx(time_set1, y, 'or')

hold on;

load(b);

semilogx(time_set2, y, 'squareb')

hold off;

h = gcf;

saveas(h, '.\fig\unstable_tot1', 'fig')

j = 6;

clear a b;

a = char(one(j));

b = char(two(j));

load(a);

plot(x, y, 'or')

hold on;

load(b);

plot(x, y, 'squareb')

hold off;

saveas(h, '.\fig\unstable_tot2', 'fig')

j = 7;

clear a b;

a = char(one(j));

-52-

b = char(two(j));

load(a);

semilogx(x, y, 'or', x, y2, 'or')

hold on;

load(b);

semilogx(x, y, 'squareb', x, y2, 'squareb')

hold off;

saveas(h, '.\fig\row', 'fig')

-53-

Appendix L: Comparing Memories

% Worcester Polytechnic Institute

% General Dynamics C4 Systems MQP

% Robyn Colopy

% Jatin Chopra

% C Term 2009

% SRAM PUF

%

%This program creates two “average” maps and compares them

load('.\board1\old_data\all_the_data')

load('.\board1\old_data\file_num')

b_one = total_mem_map;

f_one = files;

load('.\board2\old_data\all_the_data')

load('.\board2\old_data\file_num')

b_two = total_mem_map;

f_two = files;

clear total_mem_map

b_one_p = b_one/f_one;

b_two_p = b_two/f_two;

a = round(b_one_p);

b = round(b_two_p);

c = xor(a,b);

d = sum(c);

e = sum(d);

total_bits = 36*262144;

perc_dif = e/total_bits;

c = c(1:36,1:100);

imagesc(c, [0 1]); colorbar;

h = gcf;

xlabel('Address 1 to 100','FontSize',16)

ylabel('Word','FontSize',16)

title('\it{XORed Memories}','FontSize',16)

set(gcf,'PaperPositionMode','auto')

print -dpng C:\MQP_final\jpg\changes

-54-

Appendix M: VHDL SRAM & UART

-- Worcester Polytechnic Institute

-- General Dynamics C4 Systems MQP

-- Robyn Colopy

-- Jatin Chopra

-- C Term 2009

-- SRAM PUF

-- Filename: sram_top.vhd

--This file is designed to read from the SRAM

-- It cycles through all of the address, and sends the contents

--of the SRAM through the UART port

--The main clock is converted down to the clock frequency

--of the UART which is 115200 Hz

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity sram_top is

Port (

 GPIO_LED : out std_logic_vector(7 downto 0);

 GPIO_LED_C : out std_logic;

 GPIO_LED_E : out std_logic;

 GPIO_LED_N : out std_logic;

 GPIO_LED_S : out std_logic;

 GPIO_LED_W : out std_logic;

 GPIO_SW_N : in std_logic;

 USER_CLK : in std_logic;

 SRAM_A : out std_logic_vector(21 downto 0);

 SRAM_D : inout std_logic_vector(31 downto 0);

 SRAM_DQP : inout std_logic_vector(3 downto 0);

 SRAM_BW : out std_logic_vector(3 downto 0);

 SRAM_MODE : out std_logic;

 SRAM_OE_B : out std_logic;

 SRAM_WE_B : out std_logic;

 SRAM_ADV_LD_B : out std_logic;

 SRAM_CLK : out std_logic;

 SRAM_CS_B : out std_logic;

 uart_out : out std_logic

);

end sram_top;

architecture Behavioral of sram_top is

 type STATE_TYPE is (S0, S1, S2);

 type UART_STATE_TYPE is (U0, U1, U2, U3, U4, U5, U6, U7, U8, U9, U10, U11, U12);

 signal UCURR_STATE : UART_STATE_TYPE;

 signal UNEXT_STATE : UART_STATE_TYPE;

 signal CURR_STATE : STATE_TYPE;

 signal NEXT_STATE : STATE_TYPE;

 signal addr : std_logic_vector(21 downto 0);

 signal data : std_logic_vector(31 downto 0);

 signal buff : std_logic_vector(39 downto 0);

 signal data_p : std_logic_vector(3 downto 0);

 signal bwx : std_logic_vector(3 downto 0);

 signal oe : std_logic;

 signal we : std_logic;

 signal adv : std_logic;

 signal ce : std_logic;

-55-

 signal count_addr : std_logic_vector(19 downto 1);

 signal UART_CLK : std_logic;

 signal uart_data : std_logic;

 signal send_five : integer range 0 to 4;

 signal choose_bit : integer range 0 to 7;

 signal buff_index : integer range 0 to 39;

 signal inc_sends, rst_sends, inc_addr, RESET, inc_buff : std_logic;

begin

uart_out <= uart_data;

SRAM_CLK <= USER_CLK;

SRAM_D <= data;

SRAM_DQP <= data_p;

SRAM_BW <= bwx;

SRAM_MODE <= '0';

SRAM_OE_B <= oe;

SRAM_WE_B <= we;

SRAM_ADV_LD_B <= adv;

SRAM_CS_B <= ce;

SRAM_A <= addr;

bwx <= X"0";

adv <= '0';

RESET <= GPIO_SW_N;

--high impedance

data <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";

data_p <= "ZZZZ";

we <= '1';

addr <= "00" & count_addr & '0';

counter: process(USER_CLK)

variable COUNTER : integer range 0 to 434;

begin

 if rising_edge(USER_CLK) then

 COUNTER := COUNTER + 1;

 if COUNTER = 434 then

 UART_CLK <= not UART_CLK;

 COUNTER := 0;

 end if;

 end if;

end process counter;

buff(39 downto 36) <= "1000";

state_memory: process(USER_CLK)

begin

 if rising_edge(USER_CLK) then

 if RESET = '1' then

 CURR_STATE <= S0;

 else

 if inc_buff = '1' then buff(35 downto 0) <= data_p & data;

 else buff(35 downto 0) <= buff(35 downto 0);

 end if;

 CURR_STATE <= NEXT_STATE;

 end if;

 end if;

end process state_memory;

next_state_logic: process(CURR_STATE)

begin

 case CURR_STATE is

 when S0 => NEXT_STATE <= S1; ---load address for read

 when S1 => NEXT_STATE <= S2; ---data available

 when S2 => NEXT_STATE <= S0; ---show state

-56-

 end case;

end process next_state_logic;

 with CURR_STATE select

 oe <= '1' when S0,

 '1' when S1,

 '0' when S2,

 '1' when others;

 with CURR_STATE select

 ce <= '0' when S0,

 '1' when S1,

 '1' when S2,

 '1' when others;

 with CURR_STATE select

 inc_buff <= '1' when S1,

 '0' when others;

 GPIO_LED <= count_addr(19 downto 12);

uart_state_memory: process(UART_CLK, inc_sends, rst_sends)

begin

 if rising_edge(UART_CLK) then

 if RESET = '1' then

 send_five <= 0;

 count_addr <= "0000000000000000000";

 UCURR_STATE <= U0;

 else

 if inc_sends = '1' then

 send_five <= send_five + 1;

 elsif rst_sends = '1' then

 send_five <= 0;

 else send_five <= send_five;

 end if;

 if inc_addr = '1' then

 count_addr <= count_addr + '1';

 else count_addr <= count_addr;

 end if;

 UCURR_STATE <= UNEXT_STATE;

 end if;

 end if;

end process uart_state_memory;

uart_next_state_logic: process(UCURR_STATE, send_five, count_addr)

begin

 case UCURR_STATE is

 when U0 => --idle = 1 --- initializing state

 UNEXT_STATE <= U1;

 when U1 => UNEXT_STATE <= U2; --start = 0

 when U2 => UNEXT_STATE <= U3; --lsb

 when U3 => UNEXT_STATE <= U4;

 when U4 => UNEXT_STATE <= U5;

 when U5 => UNEXT_STATE <= U6;

 when U6 => UNEXT_STATE <= U7;

 when U7 => UNEXT_STATE <= U8;

 when U8 => UNEXT_STATE <= U9;

 when U9 => UNEXT_STATE <= U10; --msb

 when U10 => --stop = 1

 if send_five = 4 then UNEXT_STATE <= U11;

 else UNEXT_STATE <= U1;

 end if;

 when U11 => --idle = 1

-57-

if count_addr = "1000000000000000000" then UNEXT_STATE <= U12;

 else UNEXT_STATE <= U1;

 end if;

 when U12 => UNEXT_STATE <= UCURR_STATE;

 end case;

end process uart_next_state_logic;

 with UCURR_STATE select

 inc_addr <= '1' when U11,

 '0' when others;

 with UCURR_STATE select

 inc_sends <= '1' when U10,

 '0' when others;

 with UCURR_STATE select

 rst_sends <= '1' when U0,

 '1' when U11,

 '0' when others;

 with UCURR_STATE select

 choose_bit <= 0 when U2,

 1 when U3,

 2 when U4,

 3 when U5,

 4 when U6,

 5 when U7,

 6 when U8,

 7 when U9,

 0 when others;

 with send_five select --- send MSBs first

 buff_index <= 32 + choose_bit when 0,

 24 + choose_bit when 1,

 16 + choose_bit when 2,

 8 + choose_bit when 3,

 0 + choose_bit when 4,

 0 when others;

 with UCURR_STATE select

 uart_data <= '1' when U0,

 '0' when U1,

 '1' when U10,

 '1' when U11,

 '1' when U12,

 buff(buff_index) when others;

 with UCURR_STATE select

 GPIO_LED_S <= '1' when U12,

 '0' when others;

 with UCURR_STATE select

 GPIO_LED_E <= '1' when U12,

 '0' when others;

 with UCURR_STATE select

 GPIO_LED_W <= '1' when U12,

 '0' when others;

 with UCURR_STATE select

 GPIO_LED_C <= '1' when U12,

 '0' when others;

 with UCURR_STATE select

 GPIO_LED_N <= '1' when U12,

 '0' when others;

end Behavioral;

-58-

Appendix N: UCF File

Worcester Polytechnic Institute

General Dynamics C4 Systems MQP

Robyn Colopy

Jatin Chopra

C Term 2009

SRAM PUF

Filename: sram_top.ucf

NET GPIO_LED(0) LOC="H18"; # Bank 3, Vcco=2.5V, No DCI

NET GPIO_LED(1) LOC="L18"; # Bank 3, Vcco=2.5V, No DCI

NET GPIO_LED(2) LOC="G15"; # Bank 3, Vcco=2.5V, No DCI

NET GPIO_LED(3) LOC="AD26"; # Bank 21, Vcco=1.8V, DCI using 49.9 ohm resistors

NET GPIO_LED(4) LOC="G16"; # Bank 3, Vcco=2.5V, No DCI

NET GPIO_LED(5) LOC="AD25"; # Bank 21, Vcco=1.8V, DCI using 49.9 ohm resistors

NET GPIO_LED(6) LOC="AD24"; # Bank 21, Vcco=1.8V, DCI using 49.9 ohm resistors

NET GPIO_LED(7) LOC="AE24"; # Bank 21, Vcco=1.8V, DCI using 49.9 ohm resistors

NET GPIO_LED_C LOC="E8"; # Bank 20, Vcco=3.3V, DCI using 49.9 ohm resistors

NET GPIO_LED_E LOC="AG23"; # Bank 2, Vcco=3.3V

NET GPIO_LED_N LOC="AF13"; # Bank 2, Vcco=3.3V

NET GPIO_LED_S LOC="AG12"; # Bank 2, Vcco=3.3V

NET GPIO_LED_W LOC="AF23"; # Bank 2, Vcco=3.3V

NET GPIO_SW_N LOC="U8"; # Bank 18, Vcco=3.3V, No DCI

NET USER_CLK LOC="AH15"; # Bank 4, Vcco=3.3V, No DCI

NET SRAM_A(0) LOC="K12"; # Bank 1, Vcco=3.3V

NET SRAM_A(1) LOC="K13"; # Bank 1, Vcco=3.3V

NET SRAM_A(2) LOC="H23"; # Bank 1, Vcco=3.3V

NET SRAM_A(3) LOC="G23"; # Bank 1, Vcco=3.3V

NET SRAM_A(4) LOC="H12"; # Bank 1, Vcco=3.3V

NET SRAM_A(5) LOC="J12"; # Bank 1, Vcco=3.3V

NET SRAM_A(6) LOC="K22"; # Bank 1, Vcco=3.3V

NET SRAM_A(7) LOC="K23"; # Bank 1, Vcco=3.3V

NET SRAM_A(8) LOC="K14"; # Bank 1, Vcco=3.3V

NET SRAM_A(9) LOC="L14"; # Bank 1, Vcco=3.3V

NET SRAM_A(10) LOC="H22"; # Bank 1, Vcco=3.3V

NET SRAM_A(11) LOC="G22"; # Bank 1, Vcco=3.3V

NET SRAM_A(12) LOC="J15"; # Bank 1, Vcco=3.3V

NET SRAM_A(13) LOC="K16"; # Bank 1, Vcco=3.3V

NET SRAM_A(14) LOC="K21"; # Bank 1, Vcco=3.3V

NET SRAM_A(15) LOC="J22"; # Bank 1, Vcco=3.3V

NET SRAM_A(16) LOC="L16"; # Bank 1, Vcco=3.3V

NET SRAM_A(17) LOC="L15"; # Bank 1, Vcco=3.3V

NET SRAM_A(18) LOC="L20"; # Bank 1, Vcco=3.3V

NET SRAM_A(19) LOC="L21"; # Bank 1, Vcco=3.3V

NET SRAM_A(20) LOC="AE23"; # Bank 2, Vcco=3.3V

NET SRAM_A(21) LOC="AE22"; # Bank 2, Vcco=3.3V

NET SRAM_D(0) LOC="AD19"; # Bank 2, Vcco=3.3V

NET SRAM_D(1) LOC="AE19"; # Bank 2, Vcco=3.3V

NET SRAM_D(2) LOC="AE17"; # Bank 2, Vcco=3.3V

NET SRAM_D(3) LOC="AF16"; # Bank 2, Vcco=3.3V

NET SRAM_D(4) LOC="AD20"; # Bank 2, Vcco=3.3V

NET SRAM_D(5) LOC="AE21"; # Bank 2, Vcco=3.3V

NET SRAM_D(6) LOC="AE16"; # Bank 2, Vcco=3.3V

NET SRAM_D(7) LOC="AF15"; # Bank 2, Vcco=3.3V

NET SRAM_D(8) LOC="AH13"; # Bank 4, Vcco=3.3V, No DCI

NET SRAM_D(9) LOC="AH14"; # Bank 4, Vcco=3.3V, No DCI

NET SRAM_D(10) LOC="AH19"; # Bank 4, Vcco=3.3V, No DCI

NET SRAM_D(11) LOC="AH20"; # Bank 4, Vcco=3.3V, No DCI

NET SRAM_D(12) LOC="AG13"; # Bank 4, Vcco=3.3V, No DCI

NET SRAM_D(13) LOC="AH12"; # Bank 4, Vcco=3.3V, No DCI

NET SRAM_D(14) LOC="AH22"; # Bank 4, Vcco=3.3V, No DCI

NET SRAM_D(15) LOC="AG22"; # Bank 4, Vcco=3.3V, No DCI

NET SRAM_D(16) LOC="N10"; # Bank 20, Vcco=3.3V, DCI using 49.9 ohm resistors

NET SRAM_D(17) LOC="E13"; # Bank 20, Vcco=3.3V, DCI using 49.9 ohm resistors

NET SRAM_D(18) LOC="E12"; # Bank 20, Vcco=3.3V, DCI using 49.9 ohm resistors

NET SRAM_D(19) LOC="L9"; # Bank 20, Vcco=3.3V, DCI using 49.9 ohm resistors

-59-

NET SRAM_D(20) LOC="M10"; # Bank 20, Vcco=3.3V, DCI using 49.9 ohm resistors

NET SRAM_D(21) LOC="E11"; # Bank 20, Vcco=3.3V, DCI using 49.9 ohm resistors

NET SRAM_D(22) LOC="F11"; # Bank 20, Vcco=3.3V, DCI using 49.9 ohm resistors

NET SRAM_D(23) LOC="L8"; # Bank 20, Vcco=3.3V, DCI using 49.9 ohm resistors

NET SRAM_D(24) LOC="M8"; # Bank 20, Vcco=3.3V, DCI using 49.9 ohm resistors

NET SRAM_D(25) LOC="G12"; # Bank 20, Vcco=3.3V, DCI using 49.9 ohm resistors

NET SRAM_D(26) LOC="G11"; # Bank 20, Vcco=3.3V, DCI using 49.9 ohm resistors

NET SRAM_D(27) LOC="C13"; # Bank 20, Vcco=3.3V, DCI using 49.9 ohm resistors

NET SRAM_D(28) LOC="B13"; # Bank 20, Vcco=3.3V, DCI using 49.9 ohm resistors

NET SRAM_D(29) LOC="K9"; # Bank 20, Vcco=3.3V, DCI using 49.9 ohm resistors

NET SRAM_D(30) LOC="K8"; # Bank 20, Vcco=3.3V, DCI using 49.9 ohm resistors

NET SRAM_D(31) LOC="J9"; # Bank 20, Vcco=3.3V, DCI using 49.9 ohm resistors

NET SRAM_DQP(0) LOC="D12"; # Bank 20, Vcco=3.3V, DCI using 49.9 ohm resistors

NET SRAM_DQP(1) LOC="C12"; # Bank 20, Vcco=3.3V, DCI using 49.9 ohm resistors

NET SRAM_DQP(2) LOC="H10"; # Bank 20, Vcco=3.3V, DCI using 49.9 ohm resistors

NET SRAM_DQP(3) LOC="H9"; # Bank 20, Vcco=3.3V, DCI using 49.9 ohm resistors

NET SRAM_MODE LOC="A13"; # Bank 20, Vcco=3.3V, DCI using 49.9 ohm resistors

NET SRAM_OE_B LOC="B12"; # Bank 20, Vcco=3.3V, DCI using 49.9 ohm resistors

NET SRAM_WE_B LOC="AF20"; # Bank 2, Vcco=3.3V

NET SRAM_ADV_LD_B LOC="H8"; # Bank 20, Vcco=3.3V, DCI using 49.9 ohm resistors

NET SRAM_BW(0) LOC="D10"; # Bank 20, Vcco=3.3V, DCI using 49.9 ohm resistors

NET SRAM_BW(1) LOC="D11"; # Bank 20, Vcco=3.3V, DCI using 49.9 ohm resistors

NET SRAM_BW(2) LOC="J11"; # Bank 20, Vcco=3.3V, DCI using 49.9 ohm resistors

NET SRAM_BW(3) LOC="K11"; # Bank 20, Vcco=3.3V, DCI using 49.9 ohm resistors

NET SRAM_CLK LOC="AG21"; # Bank 4, Vcco=3.3V, No DCI

NET SRAM_CS_B LOC="J10"; # Bank 20, Vcco=3.3V, DCI using 49.9 ohm resistors

NET uart_out LOC="AG20";

