
Cracks in Half Plane, Cracks in Discs

A Major Qualifying Project

submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial ful�llment of the requirements for the

Degree of Bachelor of Science

by

Will Owens

August 28, 2008

Professor Darko Volkov
Major Advisor

1



Abstract

This project starts from an eigenvalue problem of Steklov type which models displacement �elds occurring during
the destabilization of faults in elastic media. We introduce and study in details the functional space V , a generalized
solution space for this eigenvalue problem. The original formulation valid for half planes is then extended to problems
in disks by conformal mapping.
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1 Introduction

Understanding the dynamics of slow slip events on geological faults can be vitally important in seismology. By slow
event, we mean important slip taking place on an intermediate time scale (i.e. minutes to months). This is much
longer than seismic time scales (seconds) but much shorter than geological time scales (hundreds of years). Since
slow slip events are aseismic (i.e. there is no associated seismic wave), their detection is possible only by means
of modern GPS techniques which can resolve �less-than-cm� surface displacements. Two types of phenomena can
be related to slow slip events: silent earthquakes and nucleation (or initiation) phases for (ordinary) earthquakes.
Either phenomenon can be modeled using the same physics (slip weakening of friction force) in association with the
same mathematics which involve eigenvalue analysis [5] [6] [7].

Accounts of silent earthquakes in subduction zones near Japan, New Zealand, Alaska and Mexico were re-
cently reported in the literature. Silent earthquakes are rather large (6 ≤ Magnitude ≤ 8) and produce surface
displacements (range about 2-6 cm) that can be picked up by GPS techniques.

The earthquake nucleation (or initiation) phase, which precedes dynamic rupture, was uncovered by detailed
seismological observations and recognized in laboratory experiments. Important physical properties of the nucleation
phase (characteristic time, critical fault length, etc) are obtained through simple mathematical properties of unstable
evolution. Early detection of the nucleation phase from surface displacements has the potential to play a key role
in short time prediction of large earthquakes.

Unstable evolution can be modeled using linear stability analysis, which leads to a static eigenvalue problem.
We will denote EP this eigenvalue problem throughout the rest of this thesis. In order to provide a mathematical
study of eigenvalue problem EP, we introduce the functional space V , de�ned as the closure of all continuously
di�erentiable functions in R2 with compact support, with regard to the L2 norm of the gradient. The space V has
the following property: V contains strictly the Sobolev space H1(R2). We provide a rigorous proof this fact in this
thesis. We also give a striking example, with proof, of a function in V that tends uniformly to in�nity at in�nity.

Eigenvalue problem EP can also be de�ned in the lower half plane with Neumann boundary condition at the
surface. It then serves as a model for destabilization of strike slip (or sometimes called antiplane) faults. In order
to apply this destabilization model to the case of cracks in elastic rods, we use a conformal mapping from the lower
half plane to the unit disk, which we will denote Φ. We then turn our attention to the following related question:
what are all the di�eomorphisms Ψ that will map harmonic functions in a open set U of R2 to harmonic functions
in a open set V of R2? We prove that a necessary and su�cient condition on such mappings Ψ, is that on each
connected component of U , Ψ is associated to either a holomorphic function or to the conjugate of a holomorphic
function.

Assuming that a crack in the lower half plane has a linear shape, we study its image under the conformal
mapping Ψ. The image is a circular arc for which we determine the center, the radius, and angular span. If the
depth of the linear crack tends to in�nity, we show that its image under Ψ approaches the point (1, 0), and we
give asymptotic estimates of corresponding center, radius, and angular span. This of particular importance since
the crack inverse problem was entirely solved for linear cracks in half space in [1], under the assumption that these
cracks were far enough from the surface. We plan to �nd an analogous solution to the crack inverse problem in
elastic rods in some future work.
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2 Problem Statement

We denote by D the lower half plane D = {(x1, x2)|x2 < 0} in the non-dimensional coordinate system Ox1x2. Its
boundary, denoted by

Γobs := {(x1, x2)|x2 = 0}, (1)

is called the �surface observation� boundary. Let Γ be a bounded connected arc, called cut, crack or fault, included
in D, which will be assumed as a smooth oriented curve with no double points. Our problem is formulated in a
non-dimensional coordinate system, which means that we chose a characteristic length L. A natural choice for L
is provided by relating it to the physical length of the fault. In our coordinate system we decide to �x the length
of the fault, by imposing |Γ| = 2. Let (x1(v), x2(v)), v ε [−1, 1] be the arc length parametric equations for Γ. We
take the unit normal n to be indirectly perpendicular to the tangent vector. We denote Ω = Ω(Γ) the open set,
Ω := D/Γ : it has the fault Γ as an internal boundary.

Figure 1 shows a possible choice for Γ , a line segment of length 2 with angle of inclination α and depth d.

2.1 Direct Eigenvalue Problem (EP):

Let us start by de�ning the direct problem. We consider the following (Steklov type) eigenproblem involving the
Laplace operator: �nd Υ : Ω → R and β ε R such that

div(∇Υ) = 0 in Ω (2)

∂nΥ = 0 on Γobs (3)

[∂nΥ] = 0 on Γobs (4)

[∂nΥ] − β[Υ] = 0 on Ω (5)

where Υ satis�es some decay at in�nity, and where we have denoted using [ ] the jump across Γ (i.e. [w] = w+−w−,

where w+(x) = lim
t → 0+ w(x + tn(x)), w−(x) = lim

t → 0− w(x + tn(x))) and ∂n = ∇ • n the corresponding normal

derivative, with the unit normal n pointing towards the positive side. Let us remark that the above eigenvalue
problem, associated with the wave equation with a special boundary condition (i.e. Robin type with opposite sign),
depends only on the position and shape of Γ. All the physical properties (elasticity, friction, loads, etc) of the
system are concentrated in the non-dimensional parameter β and its associated eigenvector.

2.2 Physical Signi�cance of the Eigenvalue Problem

Let us now describe the static (or quasi-static) problem associated to this friction law. These processes correspond to
�slow slip events,� which characterize crustal displacements developing on intermediate time scales (days, month).
Compared to geological time scales, these phenomena are su�ciently rapid to have been referred to as �silent
earthquakes�, because at their time scale the crust is essentially behaving elastically, as for earthquakes. Note that
the time scale governing usual earthquakes is of the order of seconds: the process is then fully dynamic. Even if
the formulation is quite di�erent in that case, the same approach is valid during the �rst part of the initiation (or
nucleation) phase. The dynamical process is then quite slow and the same eigenvalue analysis is applicable.

Using the method of linear stability analysis, we interpret the function Υ as an approximation to the surface
displacements of the system for some relatively long period of time. In order to obtain a reasonable approximation,
we use the following constituitive relations. The equilibrium equation for this system yields (2). Since there is a
stress-free condition imposed on the surface of the earth, we have that (3) follows. On the interface Γ the shear
stress has no jumps and a frictional contact is supposed to act, implying (4).
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Figure 1: The fault Γ in the lower half plane.

3 The Functional Space V

We have that the solution of our eigenvalue problem to be in the functional space V (Ω) = H1
B(Ω) [1] [2], where

H1
B(Ω) is the space of functions in H1(Ω) with bounded support. We �rst consider a simpler space, termed V ,

de�ned as the closure of C∞
0 (R2) with the norm ‖u‖ = (

∫
R2 |∇u|2)1/2. The results which we obtain in V can be

generalized to V (Ω).
We have that u ε V if ∃un εC∞

0 (R2) such that ‖∇u −∇un‖L2 → 0 as n → ∞.
We �rst look at the various properties of V .

3.1 Equivalence Classes in V

Let u be a constant c. Then we have that setting un = 0 satis�es the above requirements, so V does contain
constants. However, since V is a Banach Space, the ‖u‖ = 0 i� u = 0. Therefore we have that constants are
equivalent to 0 in V .

Then for any function u ε V and c ε R we have that u ∼= u + c in V .

3.2 Is Either H1(R2) or V Included in the Other?

3.2.1 Theorem 1: V is not a Subset of H1(R2)

Proof: To show V * H1(R2), we consider functions of the form f(r, θ) = 1
(1+r2)α .

We �rst notice that
∫

(
∫ ∞
0

|f(r, θ|2 rdr)dθ = 2π
∫ ∞
0

|f(r, θ)|2 rdr since f(r, θ) is only a function of r.

Then we have that

2π

∫ ∞

0

|f(r, θ)|2 rdr = 2π

∫ ∞

0

r

(1 + r2)2α
dr (6)

Since r is nonnegative, then (1 + r2)2α≥r4α so that
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2π

∫ ∞

0

r

(1 + r2)2α
dr ≤ 2π

∫ ∞

1

r

r4α
dr + c = 2π

∫ ∞

1

1
r4α−1

dr + c (7)

where c is the value of the �rst integral from 0 to 1.

By the p-test, this integral in convergent when 4α − 1 > 1, or α > 1
2 .

Then f(r, θ) ε L2((R2) for α > 1/2.

Taking the gradient of f(r, θ) we have that∇f(r, θ) = ( −2αr
(1+r2)α+1 , 0).

Then the L2norm of ∇f(r, θ) is given by

2π

∫ ∞

0

|∇f(r, θ)|2 rdr = 2π

∫ ∞

0

4α2r2

(1 + r2)2α+2
rdr ≤ 8πα2

∫ ∞

1

r3

r4α+4
dr + c = 8πα2

∫ ∞

1

1
r4α+1

dr + c

(8)

where c is the value of the second integral from 0 to 1.

This converges by the p-test when 4α + 1 > 1, or α > 0.

Therefore, f(r, θ) /∈ H1(R2) when 0 < α ≤ 1
2 , and if α > 1

2 , then f(r, θ) ∈ H1(R2) .

From now on, let 0 < α ≤ 1
2 .

De�ne p(r) as the plateau function which is 1 when |r| ≤ 1, 0 for |r| ≥ 2, and decreasing inbetween.

We have that p(r/n) is C∞
0 (R2), so that the product f(r, θ)p(r/n) εC∞

0 (R2) ∀n.

We now consider the integral
lim

n → ∞
∫ ∞
0

|∇f(r, θ) −∇(f(r, θ)p(r/n))|2 rdr.

By expansion, ∇(f(r, θ)p(r/n)) = (∇f(r, θ))p(r/n) + f(r, θ)(∇p(r/n)).

On the interval [0, n], this simpli�es to ∇f(r, θ) since p(r/n) = 1 and ∇p(r/n) = 0.

Then our integral on [0, n] is 0.

We then consider the interval [2n,∞].

Since p(r/n) = 0, we are left with computing
lim

n → ∞
∫ ∞
2n

|∇f(r, θ)|2 rdr.

From (8) we obtain

lim
n → ∞

∞∫
2n

|∇f(r, θ)|2 rdr ≤ lim
n → ∞

∞∫
2n

4α2

r4α+1
dr =

lim
n → ∞

α

(2n)4α
= 0 (9)

Now we are left with the interval [n, 2n]. We can write this as

lim
n → ∞

2n∫
n

|∇f(r, θ)(1 − p(r/n)) − f(r, θ)∇p(r/n)|2 rdr (10)

De�ning ∇p(r/n)) = p′(r/n)
n , and using the fact that p(r/n) is inifnitely di�erentiable,

we can bound |p′(r/n)| in [n, 2n] by some q < ∞.

Since 1 − p(r/n) ≤ 1, we can rewrite (10) as

≤ lim
n → ∞

2n∫
n

(|∇f(r, θ)| + q

n
|f(r, θ)|)2rdr (11)
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=
lim

n → ∞

2n∫
n

(|∇f(r, θ)|2 +
2q

n
|f(r, θ)| |∇f(r, θ)| + q2

n2
|f(r, θ)|2)rdr (12)

We �rst examine
lim

n → ∞
∫ 2n

n
q2

n2 |f(r, θ)|2 rdr.

From (8) we obtain
lim

n → ∞
∫ 2n

n
q2

n2 |f(r, θ)|2 rdr ≤ lim
n → ∞

q2

n2

∫ 2n

n
1

r4α−1 dr.

For α ≥ 1/4, we have 4α − 1 ≥ 0, so that 1
r4α−1 ≤ 1, so

lim
n → ∞

q2

n2

2n∫
n

1
r4α−1

dr ≤ lim
n → ∞

q2

n2

2n∫
n

1dr =
lim

n → ∞
q2

n
= 0 (13)

For 0 < α < 1/4 , we have that 1
r4α−1 = rβ , for some β < 1. Therefore 1

r4α−1 ≤ (2n)β < 2nβ .

Then

lim
n → ∞

q2

n2

2n∫
n

1
r4α−1

dr <
lim

n → ∞
q2

n2
(2n − n)(2nβ) =

lim
n → ∞

2q2

n1−β
= 0 (14)

We now examine
lim

n → ∞
∫ 2n

n
|∇f(r, θ)|2 rdr.

From (79) we obtain

lim
n → ∞

2n∫
n

|∇f(r, θ)|2 rdr ≤ lim
n → ∞

2n∫
n

4α2

r4α+1
dr =

lim
n → ∞

−α

(2n)4α
+

α

(n)4α
= 0 (15)

We only have
lim

n → ∞
∫ 2n

n
2q
n |f(r, θ)| |∇f(r, θ)| rdr to examine.

Then

lim
n → ∞

2n∫
n

2q

n
|f(r, θ)| |∇f(r, θ)| rdr = lim

n → ∞

2n∫
n

2q

n
(

1
(1 + r2)α

)(
2αr2

(1 + r2)α+1
)dr (16)

=
lim

n → ∞
4qα

n

2n∫
n

r2

(1 + r2)2α+1
dr ≤ lim

n → ∞
4qα

n

2n∫
n

1
r4α

dr (17)

Since 1
r4α ≤ 1

n4α , (17) becomes

≤ lim
n → ∞

4qα

n

2n∫
n

1
n4α

dr ≤ lim
n → ∞

4qα

n4α
= 0 (18)

Therefore de�ning fn = f(r, θ)p(r/n), we see that f ε V, f /∈ H1(R2) for these values of α.
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3.2.2 Theorem 2: H1(R2) is a Proper Subset of V

We will now show H1(R2) ⊂ V .

Let u εH1(R2). Then u εL2(R2) and ∇u εL2(R2). De�ne un = u(r, θ)p(r/n).

Then we wish to show ‖∇u −∇un‖L2 → 0 as n → ∞.

We have
lim

n → ∞ ‖∇u −∇un‖L2 =
lim

n → ∞
∫ ∞
0

|∇u(r, θ) −∇(u(r, θ)p(r/n))|2 rdr.

As before, the integral on [0, n] is clearly 0, and on the interval [2n,∞] we are left with
∫ ∞
2n

|∇u(r, θ)|2 rdr.

Let ε > 0 be chosen arbitrarily small.

Since ∇u εL2(R2), we have that ∃n1 s.t. ∀n > n1

∫ ∞
2n

|∇u(r, θ)|2 rdr < ε.

Therefore the integral on [2n,∞] is bounded by ε .

The integral on [n, 2n] reduces to lim
n → ∞

∫ 2n

n
|∇u(r, θ)(1 − p(r/n)) − u(r, θ)∇p(r/n)|2 rdr.

Applying Minkowski's Inequality we are left with showing that

lim
n → ∞

∫ 2n

n
|∇u(r, θ)|2 rdr → 0 and

lim
n → ∞

∫ 2n

n
q2

n2 |u(r, θ)|2 rdr → 0.

For our �rst integral, we have that ∀ ε > 0 and ∀n > 2n1, then
∫ 2n

n
|∇u(r, θ)|2 rdr < ε.

For the second integral, since u εL2(R2), then ∃n2 s.t. ∀n > n2

∫ 2n

n
q2

n2 |u(r, θ)|2 rdr < ε.

Then we our left with
lim

n → ∞ ‖∇u −∇un‖L2 < 3ε, and since ε was arbitrary, we let ε → 0 and u ε V .

3.3 Special Functions in V

From the previous section, we constructed a family of functions that converges to 0 at ∞ in V .

We now construct a function which converges uniformly to in�nity at ∞, and is still in V .

Proposition: Show the function f(r, θ) = ln(ln(2 + r2)) is in V but not in H1.

We have 2π
∫ ∞
0

|f(r, θ)|2 rdr diverges since f(r, θ) tends to ∞ as r tends to ∞, so f(r, θ) is not in H1.

We now de�ne fn = (ln(ln(2 + r2)) − ln(ln(n)) − ln2)p(r/n).

Then we wish to show that

lim
n → ∞

∞∫
0

|∇f(r, θ)(1 − p(r/n)) − (f(r, θ) − ln(ln(n)) − ln2)∇p(r/n)|2 rdr = 0 (19)

The integral is 0 on the interval [0, n] for the same reasoning as in (9), and on the interval [2n,∞) we

are left with
lim

n → ∞
∫ ∞
2n

|∇f(r, θ)|2 rdr, where ∇f(r, θ) = 2r
(2+r2)(ln(2+r2)) .

Then we can rewrite our integral above as

lim
n → ∞

∞∫
2n

4r3

(2 + r2)2(ln(2 + r2))2
dr (20)

Since (2 + r2)2 ≥ r4, we have that (20) is ≤ lim
n → ∞

∫ ∞
2n

4
r(ln(2+r2))2 dr .
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Then applying (ln(2 + r2))2 ≥ (ln(r2))2 = (2ln(r))2 = 4(ln(r))2,

we have that (20) is ≤ lim
n → ∞

∫ ∞
2n

1
r(ln(r))2 dr =

lim
n → ∞

−1
ln(r) |∞2n=

lim
n → ∞

1
ln(2n) = 0.

Therefore (19) reduces to (12) .

We �rst consider
lim

n → ∞
∫ 2n

n
|(f(r, θ) − ln(ln(n)) − ln2)∇p(r/n)|2 rdr.

We apply that |∇p(r/n)| ≤ q
n , r ≤ 2n.

Then the integral above is ≤ lim
n → ∞

q2

n2 (2n − n)(2n) Max
rε[n,2n] |f(r, θ) − ln(ln(n)) − ln2|2.

To calculate this maxima, we �rst notice that ln(ln(2 + n2)) > ln(ln(n2)) = ln2 + ln(ln(n)),

so that f(r, θ) − ln(ln(n)) − ln2 > 0 in our interval.

We now remove the absolute values and take the gradient to obtain 4r(ln(ln(2+r2))−ln(ln(n))−ln2)
(2+r2)(ln(2+r2)) .

In our interval it follows that this expression is always positive, so the maximum is taken at r = 2n,

so that Max
rε[n,2n] |f(r, θ) − ln(ln(n)) − ln2|2 = ((ln(ln(2 + (2n)2)) − ln(ln(n)) − ln2)2.

Since ln(ln(2 + (2n)2)) − ln(ln(n)) − ln2 = ln ln(2+4n2)
2ln(n) < ln ln(5n2)

2ln(n) = ln ln5+2ln(n)
2ln(n) , assuming n >

√
2.

Then Max
rε[n,2n] |f(r, θ) − ln(ln(n)) − ln2|2 < (ln(1 + ln5

2ln(n) ))
2 .

Therefore
lim

n → ∞
q2

n2 (2n − n)(2n) Max
rε[n,2n] |f(r, θ) − ln(ln(n)) − ln2|2 = 0.

We now examine
lim

n → ∞
∫ 2n

n
|∇f(r, θ)|2 rdr =

lim
n → ∞

∫ 2n

n
4r3

(2+r2)2(ln(2+r2))2 dr

From above, this is ≤ lim
n → ∞

∫ 2n

n
1

r(ln(r))2 dr =
lim

n → ∞
−1

ln(2n) + 1
ln(n) = 0.

Next, we observe
lim

n → ∞
∫ 2n

n
2q
n |f(r, θ) − ln(ln(n)) − ln2| |∇f(r, θ)| rdr.

Applying that f(r, θ) − ln(ln(n)) − ln2 < f(r, θ),

our limit becomes
lim

n → ∞
∫ 2n

n
2q
n

2r2ln(ln(2+r2))
(2+r2)(ln(2+r2))dr <

lim
n → ∞

∫ 2n

n
2q
n

2ln(ln(2+r2))
ln(2+r2) dr,

and using ln(2 + r2) ≈ 2ln(r) , we have ≈ lim
n → ∞

∫ 2n

n
2q
n

ln(2ln(r))
ln(r) dr,

and this simpli�es to ≈ lim
n → ∞

∫ 2n

n
2q
n

ln(ln(r))
ln(r) dr ≤ lim

n → ∞
2q
n (2n − n) ln(ln(n))

ln(n) .

By L'Hopital's rule,
lim

n → ∞
ln(ln(n))

ln(n) =
lim

n → ∞
1

ln(n)
1
n

1
n

=
lim

n → ∞
1

ln(n) = 0.

Then (19) tends to 0 as n tends to ∞.

Therefore de�ning fn = (ln(ln(2 + r2)) − ln(ln(n)) − ln2)p(r/n), we see that f ε V, f /∈ H1.
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4 Mapping the Problem 2.1 into the Unit Disk

Eigenvalue formulation may be used in the study of other crack problems, such as cracks in an elastic cylindrical
rod, assuming we can measure the surface displacements as well. However for this problem, we seek a suitable
geometry, such as the Unit Disk.

We introduce the following conformal map Φ(z) = z+i
z−i , see Appendix 10.1 for our choice of notations.

4.1 Properties of the Mapping Φ(z) = z+i
z−i

4.1.1 Φ(z) is a Bijection from Ω to U/{(1, 0)}

Injection: Assume for z1, z2 ∈ Ω that Φ(z1) = Φ(z2).

Then

z1 + i

z1 − i
=

z2 + i

z2 − i
⇒ (z1 + i)(z2 − i) = (z1 − i)(z2 + i) ⇒ z1z2 + i(z2 − z1) = z1z2 + i(z1 − z2) (21)

which implies z1 − z2 = z2 − z1, therefore z1 = z2 and Φ(z) is an injection.

Surjection: We must show Φ : Ω → U/{(1, 0)}, where U denotes the closed unit disk.

Let z0 ∈ U/{1}, then we claim z0 = z+i
z−i for some z ∈ Ω.

Then

z0(z − i) = z + i ⇒ z(z0 − 1) = i(z0 + 1) ⇒ z =
i(z0 + 1)
z0 − 1

(22)

We must now show that z ∈ Ω. Let z0 = x0 + iy0.

Then

z =
i(x0 + iy0 + 1)
x0 + iy0 − 1

=
−y0 + i(x0 + 1)

x0 − 1 + iy0
=

(−y0 + i(x0 + 1))(x0 − 1 − iy0)
(x0 − 1)2 + y2

0

(23)

For z = x + iy to be in Ω, y ≤ 0 must follow. Then (x0 − 1)(x0 + 1) + y2
0 ≤ 0 must be true.

Then x2
0 + y2

0 ≤ 1, which is obvious since z0 ∈ U/{(1, 0)}.
Therefore Φ(z) is surjective.

4.1.2 Orientation of the Boundary of the Unit Disk

Consider z ∈ Ω, where z = x + iy.

Then

|Φ(z)| =
∣∣∣∣z + i

z − i

∣∣∣∣ =

√
(x + i(y + 1))(x − i(y + 1))
(x + i(y − 1))(x − i(y − 1))

=

√
x2 + (y + 1)2

x2 + (y − 1)2
(24)

We have that |Φ(z)| < 1 for y < 0 and |Φ(z)| = 1 for y = 0.

This implies that Φ : R → ∂U/{(1, 0)} = ∂Φ(Ω).

We now consider the function Φ(x) = x+i
x−i for x ∈ R.

Then

Φ(x) =
(x + i)(x + i)
(x + i)(x − i)

=
x2 + 2ix − 1

x2 + 1
= (

x2 − 1
x2 + 1

,
2x

x2 + 1
) = (Φ1(x), Φ2(x)) (25)
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We have that Φ1 is decreasing on (-∞, 0] and increasing on [0,∞).

Likewise, Φ2 is decreasing on (−∞,−1] ∪ [1,∞) and increasing on [−1, 1].

It follows that
lim

x → ±∞ Φ1(x) = 1,
lim

x → ±∞ Φ2(x) = 0, Φ1(0) = −1 = Φ2(−1), and Φ2(1) = 1.

Then by continuity of Φ on R, the fact that Φ(x) is valued on the boundary, and the previous statements,

we conclude that the boundary has a counter-clockwise rotation about the origin.
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5 Transformations Preserving Harmonic Functions

Let U and V be open subsets of R2. Given any harmonic function u(x1, x2) in U , and for some bijective C1

transformation Ψ : V → U , we wish to determine all necessary and su�cient conditions on Ψ such that u(Ψ(x1, x2))
is harmonic in V . Refer to 10.1 for the homogeneous �rst order linear case.

To determine these conditions we consider various harmonic functions.

5.1 Three Simple Examples of Harmonic Functions

Harmonic Polynomials: All holomorphic functions are expressable by power series, and since the real

and imaginary parts of P (x + iy) form a power series, we have that ReP (x + iy) and ImP (x + iy) are

harmonic for any polynomial P .

Radial Functions: We have that

1
r

∂

∂r
(r

∂f(r)
∂r

) +
1
r2

∂2f(r)
∂θ2

= 0 ⇒ ∂

∂r
(r

∂f(r)
∂r

) = 0 ⇒ r
∂f(r)

∂r
= a ⇒ f(r) = aln(r) + b (26)

where a, b ∈ R.

Angular functions: From (21), we see

1
r2

∂2f(θ)
∂θ2

= 0 ⇒ f(θ) = aθ + b (27)

where a, b ∈ R.

Exponential Functions:
e(b1x1+b2x2) (28)

where b1, b2 ∈ C , b2
1 = −b2

2.

5.2 Conditions to Preserve Harmonicity

Given that ∆u = 0 in U , �nd ∆ũ in V , where Ψ(x1, x2) = (Ψ1(x1, x2), Ψ2(x1, x2)), y1 = Ψ1(x1, x2),

y2 = Ψ2(x1, x2), and ũ(x1, x2) = u(Ψ(x1, x2)).

Since ũ(y1, y2) = u(x1, x2), we have that

∆xu(x1, x2) = ∆xũ(y1, y2) = 0 (29)

To reach this conclusion using an alternate method, see 10.3.

We �rst calculate all partial derivatives for ũ.

∂ũ

∂x1
=

∂ũ

∂y1

∂Ψ1

∂x1
+

∂ũ

∂y2

∂Ψ2

∂x1
(30)

∂ũ

∂x2
=

∂ũ

∂y1

∂Ψ1

∂x2
+

∂ũ

∂y2

∂Ψ2

∂x2
(31)

∂2ũ

∂x2
1

=
∂2ũ

∂y2
1

(
∂Ψ1

∂x1
)2 + 2

∂2ũ

∂y1∂y2

∂Ψ1

∂x1

∂Ψ2

∂x1
+

∂2ũ

∂y2
2

(
∂Ψ2

∂x1
)2 +

∂ũ

∂y1

∂2Ψ1

∂x2
1

+
∂ũ

∂y2

∂2Ψ2

∂x2
1

(32)

∂2ũ

∂x2
2

=
∂2ũ

∂y2
1

(
∂Ψ1

∂x2
)2 + 2

∂2ũ

∂y1∂y2

∂Ψ1

∂x2

∂Ψ2

∂x2
+

∂2ũ

∂y2
2

(
∂Ψ2

∂x2
)2 +

∂ũ

∂y1

∂2Ψ1

∂x2
2

+
∂ũ

∂y2

∂2Ψ2

∂x2
2

(33)
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Now we have from (62) that

∆xũ(y1, y2) =
∂2ũ

∂x2
1

+
∂2ũ

∂x2
2

= (34)

∂2ũ

∂y2
1

((
∂Ψ1

∂x1
)2 + (

∂Ψ1

∂x2
)2) + 2

∂2ũ

∂y1∂y2
(
∂Ψ1

∂x1

∂Ψ2

∂x1
+

∂Ψ1

∂x2

∂Ψ2

∂x2
) +

∂2ũ

∂y2
2

((
∂Ψ2

∂x1
)2 + (

∂Ψ2

∂x2
)2) (35)

+
∂ũ

∂y1
(
∂2Ψ1

∂x2
1

+
∂2Ψ1

∂x2
2

) +
∂ũ

∂y2
(
∂2Ψ2

∂x2
1

+
∂2Ψ2

∂x2
2

) = 0 (36)

Or equivalently,

∂2ũ

∂y2
1

|∇xΨ1|2 + 2
∂2ũ

∂y1∂y2
(∇xΨ1 • ∇xΨ2) +

∂2ũ

∂y2
2

|∇xΨ2|2 +
∂ũ

∂y1
∆xΨ1 +

∂ũ

∂y2
∆xΨ2 = 0 (37)

Find necessary and su�cient conditions on Ψ1, Ψ2 so that ∆yũ(y1, y2) = 0.

Let u(x1, x2) = x1 , then all partial derivative terms are 0 except ∂ũ
∂y1

, and we see that this

implies ∆xΨ1 = 0. Similarly, if we let u(x1, x2) = x2, we obtain ∆xΨ2 = 0.

We now let u(x1, x2) = e(x1+ix2). Then ∂2ũ
∂y2

1
= e(y1+iy2), ∂2ũ

∂y1∂y2
= ie(y1+iy2), ∂2ũ

∂y2
2

= −e(y1+iy2).

Dividing by e(y1+iy2), applying that ∆xΨ1 = ∆xΨ2 = 0, and setting the real and imaginary parts

equal to 0, we obtain that ∇xΨ1 • ∇xΨ2 = 0 and |∇xΨ1|2 − |∇xΨ2|2 = 0.

Therefore we have that Ψ1, Ψ2 must satisfy

∆xΨ1 = ∆xΨ2 = 0 (38)

∇xΨ1 • ∇xΨ2 = 0 (39)

|∇xΨ1| = |∇xΨ2| (40)

Assuming these conditions hold on Ψ(x1 + ix2) = Ψ1(x1, x2) + iΨ2(x1, x2), we show that on each

connected component Vj of V , Ψ or its conjugate is holomorphic.

We have that the gradients are orthogonal, and are of equivalent norm,

so ∂Ψ1
∂x1

= ∂Ψ2
∂x2

, ∂Ψ1
∂x2

= −∂Ψ2
∂x1

or ∂Ψ1
∂x1

= ∂Ψ2
∂x2

, ∂Ψ1
∂x2

= ∂Ψ2
∂x1

.

Denote Aj = {(x1, x2) ε V : ∂Ψ1
∂x1

= ∂Ψ2
∂x2

}. Aj is closed by de�nition of continuous functions.

However, the complement of Aj in Vj ({(x1, x2) ε Vj : ∂Ψ1
∂x1

= −∂Ψ2
∂x2

}) is closed by the same reasoning.

As Vj is connected, and Aj is both open and closed, we have that Aj = Vj or Aj = ∅.
We proved the following theorem, where, as previously, for ease of notations, we give the two functions

(x1, x2) → (Ψ1(x1, x2),Ψ2(x1, x2)), x1 + ix2 → Ψ1(x1, x2) + iΨ2(x1, x2) the same name Ψ.
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5.2.1 Theorem 3

Let U and V be open subsets of R2, and Ψ : V → U some bijective C1 transformation.

The following properties are equivalent:

(i) For any harmonic function u de�ned on U , u ◦ Ψ is harmonic on V .

(ii) On each connected component of V , Ψ or its conjugate Ψ is holomorphic.
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6 How is Eigenvalue Problem (EP) Transformed Under Φ(z) = z+i
z−i?

We have from the previous section necessary and su�cient conditions to preserve harmonic functions.

We now determine the normal derivative after transformation, and simplify using the previous conditions.

6.1 Preserving Normal Derivatives

We have that ∂n = n • ∇xfor u(x1, x2). Find a relation between ∂nu and ∂ñũ, where ∂ñ = ñ • ∇y.

We have that

∇xu(x1, x2) = (
∂u

∂x1
,

∂u

∂x2
) = (

∂ũ

∂y1

∂Ψ1

∂x1
+

∂ũ

∂y2

∂Ψ2

∂x1
,

∂ũ

∂y1

∂Ψ1

∂x2
+

∂ũ

∂y2

∂Ψ2

∂x2
) (41)

This last expression can be written as JT∇yũ(y1, y2), where JT is the transpose of the Jacobian Matrix.

The unit outward normal n can be expressed as n = ∇xF
‖∇xF‖ , where F (x1, x2) = 0 on U .

By the derivation above, we have that this becomes ñ = JT ∇yF̃ (y1,y2)
‖JT ∇yũ(y1,y2)‖ .

Therefore we see that

∂nu =
JT∇yF̃ (y1, y2)∥∥∥JT∇yF̃ (y1, y2)

∥∥∥ • JT∇yũ(y1, y2) (42)

We now assume that Ψ1, Ψ2 satisfy all su�cient conditions from 5.2.

These conditions express that J is the multiple of an isometry, more precisely JJT = |∇xΨ1|2 I2.

We �rst calculate JT∇yF̃ (y1, y2)•JT∇yũ(y1, y2), which can be written as ∇yF̃ (y1, y2)•JJT∇yũ(y1, y2).

Therefore JT∇yF̃ (y1, y2) • JT∇yũ(y1, y2) = ((∇yũ) • (∇yF̃ )) ‖∇xΨ1‖.
Also, we have that∥∥∥JT∇yF̃ (y1, y2)

∥∥∥2

= JT∇yF̃ (y1, y2)•JT∇yF̃ (y1, y2) = ∇yF̃ (y1, y2)•JJT∇yF̃ (y1, y2) = ‖∇xΨ1‖2
∥∥∥∇yF̃

∥∥∥2

(43)

Then ∂nu = ((∇yũ)•(∇yF̃ ))‖∇xΨ1‖
‖∇yF̃‖‖∇xΨ1‖

= (∇yũ)•(∇yF̃ )

‖∇yF̃‖ = ∂ñũ.

6.2 Problem Statement in the Unit Disk

We notice from above that letting Φ(z) = z+i
z−i = Ψ : Ω → U/{(1, 0)}, then since Φ is a conformal map, it satis�es

all of the necessary and su�cient conditions. To see this, we have that Φ is holomorphic, so that Φ satis�es the
Cauchy-Riemann equations, and it is trivial to see that these equations satisfy our conditions. We de�ne Υ̃ = Υ(Φ),
and since Φ preserves normal derivatives, we have ∂nΥ = ∂ñΥ̃. We also de�ne Γ̃obs as the set Φ(Γobs) .

Then we have that 2.1 reduces to the following:

div(∇Υ̃) = 0 in U/{(1, 0)} (44)

∂ñΥ̃ = 0 on Γ̃obs (45)

[∂ñΥ̃] = 0 on Γ̃obs (46)

[∂ñΥ̃] − β[Υ̃] = 0 on U/{(1, 0)} (47)

We now look at various properties of the crack Γ after transformation by Φ.
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7 Mapping Line Segments into the Unit Disk

We now determine the set Φ(Γ).

7.1 Explicit Equations for Images of Segments Under Φ(z) = z+i
z−i

.

Let x(t) = (cosα)t + a and y(t) = (sinα)t + b be our line segment Γ,

for 0 ≤ t ≤ p , where p must be determined.

Since Γ has length 2, we have that
∫ p

0

√
(dx

dt )2 + (dy
dt )2dt = 2.

Since dx
dt = cosα and dy

dt = sinα, we have that

p∫
0

√
(
dx

dt
)2 + (

dy

dt
)2dt =

p∫
0

√
(cosα)2 + (sinα)2dt =

p∫
0

1dt = p = 2 (48)

We will now calculate Φ(z(t)), where z(t) = x(t) + iy(t).

Then it follows from (89) that

Φ(z(t)) = 1 +
2i

cosαt + a + (sinαt + b − 1)i
(49)

for 0 ≤ t ≤ 2.

An example of such a line segment can be seen in Figure 1.

7.2 Φ Maps Line Segments into Circular Arcs

It is a classical result from complex analysis that our conformal map Φ transforms lines into circles, and therefore
line segments to circular arcs by compactness and connectedness under a continuous transformation. However, we
approach the problem assuming no knowledge of complex analysis, in order to obtain analytic expressions for the
curvature, angular span, radius, etc.

We �rst begin with a classical result from calculus.

7.2.1 Circles and Constant Curvature

We wish to show that if a curve de�ned by the parametric equations f(t) = (f1(t), f2(t)) has a constant

curvature k > 0 , then the curve de�ned by f(t) is a circle.

We have that v×a
|v|3 = k , where |v| = 1 by arc length parametrization.

Then

|v × a| = k =

∣∣∣∣∣∣
i j k

df1
dt

df2
dt 0

d2f1
dt2

d2f2
dt2 0

∣∣∣∣∣∣ =
df1

dt

d2f2

dt2
− df2

dt

d2f1

dt2
(50)

Since v has a constant magnitude, we have that

(
df1

dt
)2 + (

df2

dt
)2 = 1. (51)

Di�erentiating both sides of (51) w.r.t. t we see that

2
df1

dt

d2f1

dt2
+ 2

df2

dt

d2f2

dt2
= 0 ⇒ −df1

dt

d2f1

dt2
=

df2

dt

d2f2

dt2
(52)
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To utilize this expression, we multiply (50) by df1
dt to obtain

(
df1

dt
)2

d2f2

dt2
− df2

dt

df1

dt

d2f1

dt2
= k

df1

dt
(53)

By substituting (52) into (53) we have

(
df1

dt
)2

d2f2

dt2
+ (

df2

dt
)2

d2f2

dt2
= k

df1

dt
⇒ ((

df1

dt
)2 + (

df2

dt
)2)

d2f2

dt2
=

d2f2

dt2
= k

df1

dt
(54)

We now obtain the simple di�erential equation

d2f2

dt2
= k

df1

dt
. (55)

Integrating both sides of (55) w.r.t t gives

df2

dt
= kf1(t) + b (56)

Repeating this process, except now multiplying (50) by df2
dt , we obtain

d2f1

dt2
= −k

df2

dt
⇒ df1

dt
= −kf2(t) + c (57)

Substitution from (56) yields

d2f1

dt2
= −k(kf1(t) + b) = −k2f1(t) − kb (58)

The homogeneous solution to (58) is clearly seen to be h(t) = Asin(kt) + Bcos(kt),

and the particular solution is p(t) = −b
k .

Then

f1(t) = h(t) + p(t) = Asin(kt) + Bcos(kt) − b

k
(59)

From (57) and (59) it follows that

f2(t) = −Acos(kt) + Bsin(kt) +
c

k
(60)

By (51) we have that

(kAcos(kt) − kBsin(kt))2 + (kAsin(kt) + kBcos(kt))2 = 1 ⇒ A2 + B2 =
1
k2

(61)

so that B = ±
√

1
k2 − A2.

Then we have that

(f1(t) +
b

k
)2 + (f2(t) −

c

k
)2 =

1
k2

(62)

f1(t) = Asin(kt) ±
√

1
k2

− A2cos(kt) − b

k
(63)

f2(t) = −Acos(kt) ±
√

1
k2

− A2sin(kt) +
c

k
(64)
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7.2.2 The Curve De�ned by Φ(z(t)) has Constant Curvature

From the previous result, and all we need to prove is that the map of Γ under Φ has constant curvature.

Let x(t) = (cosα)t+a and y(t) = (sinα)t+ b for 0 ≤ t ≤ 2. Then this is a line segment of length 2 in Ω.

We �rst calculate the magnitude of dΦ
dt . To do this we calculate dΦ1

dt and dΦ2
dt .

To understand where the following equations are obtained, we refer to 10.1.

From (91) we have that

dΦ1

dt
=

2dy
dt

x2 + y2 − 2y + 1
−

2(y − 1)(2xdx
dt + 2y dy

dt − 2dy
dt )

(x2 + y2 − 2y + 1)2
(65)

.

From (92) we have that

dΦ2

dt
=

2dx
dt

x2 + y2 − 2y + 1
−

2x(2xdx
dt + 2y dy

dt − 2dy
dt )

(x2 + y2 − 2y + 1)2
(66)

We now calculate ∣∣∣∣dΦ
dt

∣∣∣∣2 = (
dΦ1

dt
)2 + (

dΦ2

dt
)2 (67)

(
dΦ1

dt
)2 =

4
(x2 + y2 − 2y + 1)2

((
dy

dt
)2−

2(y − 1)dy
dt (2xdx

dt + 2(y − 1)dy
dt )

x2 + y2 − 2y + 1
+

(y − 1)2(2xdx
dt + 2(y − 1)dy

dt )2

(x2 + y2 − 2y + 1)2
(68)

(
dΦ2

dt
)2 =

4
(x2 + y2 − 2y + 1)2

((
dx

dt
)2 −

2xdx
dt (2xdx

dt + 2(y − 1)dy
dt )

x2 + y2 − 2y + 1
+

x2(2xdx
dt + 2(y − 1)dy

dt )2

(x2 + y2 − 2y + 1)2
) (69)

Since (dx
dt )2 + (dy

dt )2 = 1, we have from (67) that

∣∣∣∣dΦ
dt

∣∣∣∣2 =
4

(x2 + y2 − 2y + 1)2
(1+

−(2xdx
dt + 2dy

dt (y − 1))(2xdx
dt + 2(y − 1)dy

dt ) + (2xdx
dt + 2(y − 1)dy

dt )2

x2 + y2 − 2y + 1
)

(70)

Upon simpli�cation we obtain

∣∣∣∣dΦ
dt

∣∣∣∣2 =
4

(x2 + y2 − 2y + 1)2
=

4
(t2 + 2(acosα + (b − 1)sinα)t + a2 + b2 − 2b + 1)2

(71)

∣∣∣∣dΦ
dt

∣∣∣∣ =
2

t2 + 2(acosα + (b − 1)sinα)t + a2 + b2 − 2b + 1
(72)

To calculate the curvature k we apply

∣∣∣ dΦ
dt × d2Φ

dt2

∣∣∣
| dΦ

dt |3
= k.

We've already calculated
∣∣dΦ

dt

∣∣, so we now calculate

∣∣∣∣dΦ
dt

× d2Φ
dt2

∣∣∣∣ =

∣∣∣∣∣∣
i j k

dΦ1
dt

dΦ2
dt 0

d2Φ1
dt2

d2Φ2
dt2 0

∣∣∣∣∣∣ =
dΦ1

dt

d2Φ2

dt2
− dΦ2

dt

d2Φ1

dt2
(73)
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Since this calculation is quite messy, I employed the assistance of Maxima and obtained∣∣∣∣dΦ
dt

× d2Φ
dt2

∣∣∣∣ =
−8(asinα − bcosα + cosα)

(t2 + 2(sinα(b − 1) + acosα)t + a2 + b2 − 2b + 1)3
(74)

Then

k =

∣∣∣dΦ
dt × d2Φ

dt2

∣∣∣∣∣dΦ
dt

∣∣3 =
−8(asinα−bcosα+cosα)

(t2+2(sinα(b−1)+acosα)t+a2+b2−2b+1)3

( 2
t2+2(acosα+(b−1)sinα)t+a2+b2−2b+1 )3

= (b − 1)cosα − asinα (75)

Notice that k = 0 when (b − 1)cosα = asinα. This condition signi�es that the line supporting

the line segment Γ passes through the point (0,1), the singluar point of Φ.

We have that the radius of the circle supporting the circular arc Φ(Γ) is given by

r =
1
|k|

=
1

|(1 − b)cosα + asinα|
(76)

To see that Φ(z) indeed maps line segments to circular arcs, see Figure 2.

7.2.3 Arclength and Angular Span

We utilize the fact that s = rθ to �nd an analytic equation for s and θ.

From (72) we have that

s =

2∫
0

∣∣∣∣dΦ
dt

∣∣∣∣ dt =

2∫
0

∣∣∣∣ 2
t2 + 2(acosα + (b − 1)sinα)t + a2 + b2 − 2b + 1

∣∣∣∣ dt (77)

Using quadratic formula on the bottom we see that

t =
−2(acosα + (b − 1)sinα) ± 2

√
(acosα + (b − 1)sinα)2 − (a2 + b2 − 2b + 1)

2
(78)

Since
(acosα + (b − 1)sinα)2 = a2cos2α + (b − 1)2sin2α + 2a(b − 1)sin(2α) (79)

it follows that the discrminant is

−a2sin2α − (b − 1)2cos2α + 2a(b − 1)sin(2α) = −(asinα − (b − 1)cosα)2 (80)

Then applying (78) with (80) we have that

t = −(acosα + (b − 1)sinα) ± i(asinα − (b − 1)cosα). (81)

It follows that these roots are never real since that would imply asinα = (b−1)cosα, which is impossible.

Now we have that

s =

2∫
0

2
t2 + 2(acosα + (b − 1)sinα)t + a2 + b2 − 2b + 1

dt (82)
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Figure 2: The line segment generated by paramgraph(1,3,-3,2), see algorithm 1, in the lower half plane.
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Figure 3: This is the image of the previous segment under Φ.
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Figure 4: The circular extension of the arc in the previous image through (1, 0)
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Since t = 0 yields a2 + (b − 1)2 > 0, we apply the following integral formula∫
dx

x2 + cx + d
=

2√
4d − c2

tan−1(
2x + c√
4d − c2

) (83)

noting that
√

4b − a2 =|asinα − (b − 1)cosα|, so that

s =
2

|asinα − (b − 1)cosα|
(tan−1(

4 + 2(acosα + (b − 1)sinα)
|asinα − (b − 1)cosα|

) − tan−1(
2(acosα + (b − 1)sinα)
|asinα − (b − 1)cosα|

))

(84)

Then

θ = 2(tan−1(
4 + 2(acosα + (b − 1)sinα)

|asinα − (b − 1)cosα|
) − tan−1(

2(acosα + (b − 1)sinα)
|asinα − (b − 1)cosα|

)) (85)

7.2.4 Analysis of our Symmetric Solution φd as d Approaches ∞ .

Every ray in Ω− is mapped to a circle by Φ(x, y), so the point at in�nity is mapped to (1, 0).

Then every circle in U passes through (1, 0) (see Figure 4). Since d is the depth of Γ, we have that d

corresponds to the parameter b of the arc. Then letting d tend to ∞ implies that b must tend to −∞.

From (76) we have that r = 1
|(1−b)cosα+asinα| , as b approaches −∞, r tends to 0 provided cosα 6= 0.

If cosα = 0 , then sinα = ±1, and r = 1
|a| . If a = 0, we have that k = 0.

Therefore if cosα 6= 0, r approaches 0, and Γ is mapped to the point (1, 0).

In the case that Γ is a vertical segment, then Φ(Γ) is invariant under vertical displacement.

The importance of d after mapping Γ by Φ is equivalent to the distance between Φ(Γ) and

the point (1, 0), assuming Γ is not vertical. In the vertical case, the value of d does not matter.

We �rst consider if Φ(Γ) crosses the y axis.

We de�ne θ1 as the angle between the x axis and the line segment connecting (1, 0) and the

endpoint of Φ(Γ) above the x axis, while θ2 is the angle below x axis.

From (92) we have Φ2(x, y) = 0 implies x = 0.

Since x(t) = cosαt + a, then t1 = −a
cosα is the time when Φ2(x, y) = 0.

Let 0 < t1 < 2, we �rst look at the distance from (1, 0) to Φ(Γ), for certain values of t.

At t = 0, we have (Φ1, Φ2) = (1 + 2(b−1)
a2+b2−2b+1 , 2a

a2+b2−2b+1 ).

At t = t1, we have (Φ1,Φ2) = (1 + 2(−atanα+b−1)
(−atanα+b)2−2(−atanα+b)+1 , 0).

At t = 2, we have (Φ1,Φ2) = (1+ 2(2sinα+b−1)
(2cosα+a)2+(2sinα+b)2−2(2sinα+b)+1 , 2(2cosα+a)

(2cosα+a)2+(2sinα+b)2−2(2sinα+b)+1 ).

We now apply Law of Cosines to calculate θ1, θ2.

Using Maxima, we obtain that

cos(θ1) =
(b − 1) (−atanα+b−1)

|−atanα+b−1|
|a2tan2α−2a(b+1)tanα+b2−2b+1|
a2tan2α−2a(b+1)tanα+b2−2b+1)√

a2 + b2 − 2b + 1
(86)

so that cos(θ1) = 1−b√
a2+b2−2b+1

for b ¿ 0, which tends to 1 as b tends to −∞, so that θ1 tends to 0.

Maxima also gives that

cos(θ2) =
(2sinα + b − 1) (−atanα+b−1)

|−atanα+b−1|
|a2tan2α−2a(b+1)tanα+b2−2b+1|
a2tan2α−2a(b+1)tanα+b2−2b+1)√

4(b − 1)sinα + 4acosα + a2 + b2 − 2b + 5
(87)
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so that cos(θ2) = −(2sinα+b−1)√
4(b−1)sinα+4acosα+a2+b2−2b+5

for b ¿ 0, which tends to 1 as b tends to −∞,

so θ2 tends to 0. If t1 /∈ (0, 2), Φ(Γ) does not cross the y-axis, so that the arc is contained on one side.

We de�ne θ as the angle formed by the two endpoints of Φ(Γ) and the point (1, 0).

We use the Law of Cosines again to calculate the value of cos(θ), which is given by

cos(θ) =
(2(b − 1)sinα + 2acosα + b2 − 2b + a2 + 1)√

a2 + b2 − 2b + 1
√

4(b − 1)sinα + 4acosα + a2 + b2 − 2b + 5
(88)

Letting b tend to −∞, we see that again cos(θ) tends to 1, so that θ tends to 0.
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8 Plans for Future Work

Ionescu and Volkov studied the inverse problem attached to eigenvalue problem 2.1. More precisely, they sought
methods for reconstructing the fault or cut Γ from readings of Υ on the surface x2 = 0 of the lower half plane.
Their proposed reconstruction method involved the derivation of asymptotic formulas for Υ and related quantities
as the depth of the fault Γ becomes large. Since the dominant part of the asymptotic formula involved relatively
simple closed form terms, a reconstruction algorithm was designed based on the computation of moments of Υ. In
light of this work for the half plane geometry, we will focus in our future work on three questions pertaining to the
case of a disk:

- What does one obtain by mapping the reconstruction algorithm obtained by Ionescu and Volkov to the unit
disk?

- If the particular conformal mapping Φ is used, a uniform grid of points on the line x2 = 0 is transformed
into a grid of points on the boundary of the unit disk U that accumulates near (1, 0). What does that imply for
reconstructing cracks in disks? Is it advantageous in some situations to compose Φ with a suitable rotation?

- Can we obtain a useful asymptotic formula in the case of disks solely based on the assumption that the crack
is small with regard to the size of the unit disk?

29



9 References

[1] I. R. Ionescu and D. Volkov, An inverse problem for the recovery of active faults from surface
observations, Inverse Problems, Vol. 22 (2006), 2103-2121

[2] I. R. Ionescu and D. Volkov, Earth surface e�ects on active faults: depth eigenvalue analysis, J.
Appl. Comput. Math., Vol. 220, Issues 1-1, 15 October 2008, pg. 143-162

[3] M. Campillo and I. R. Ionescu, Initiation of antiplane shear instability under slip dependent
friction, J. of Geophys. Res., No. B9 (1997)

[4] C. Dascalu and I. R. Ionescu, Slip weakening friction instabilities: eigenvalue analysis , Mathe-

matical Models and Methods in Applied Sciences, No. 3 (2004)

[5] C. Dascalu, I. R. Ionescu and M. Campillo, Fault �niteness and initiation of dynamic shear
instability, Earth and Planetary Science Letters, 177 (2000)

[6] I. R. Ionescu and M. Campillo, The in�uence of the shape of the friction law and fault �niteness
on the duration of initiation, Journal of Geophysical Research, No. B2 (1999)

[7] I. R. Ionescu and J-C. Paumier, On the contact problem with slip dependent friction in elasto-
statics, Int. J. Eng. Sci., 34(4) (1996)

[8] I. R. Ionescu and S. Wolf, Interaction of faults under slip dependent friction. Non-linear eigenvalue
analysis, Mathematical Models and Methods in Applied Sciences, Vol. 28 (2005)

30



10 Appendix

10.1 Di�erent Ways of Expressing the Mapping Φ

Recall how Φ is de�ned, Φ : C/{i} → C. For ease of notation, we also denote Φ by

the mapping Φ : R2/(0, 1) → R2 de�ned by (x, y) 7→ (ReΦ(x + iy), ImΦ(x + iy)).

Φ(z) =
z + i

z − i
= 1 +

2i

z − i
= 1 +

2i(z + i)
(z − i)(z + i)

= 1 +
2i(z + i)

|z|2 + iz − iz + 1
(89)

For z = x + iy, we see that

Φ(x, y) = 1 +
2i(x − i(y − 1))

x2 + y2 + i(x + iy) − i(x − iy) + 1
= 1 +

2(y − 1) + 2ix

x2 + y2 − 2y + 1
(90)

We therefore have that Φ(x, y) = Φ1(x, y) + Φ2(x, y)i, where

Φ1(x, y) = 1 +
2(y − 1)

x2 + y2 − 2y + 1
(91)

Φ2(x, y) =
2x

x2 + y2 − 2y + 1
. (92)

From (22) we have that

Φ−1(w) =
i(w + 1)
w − 1

= i +
2i

w − 1
= i +

2i(w − 1)
(w − 1)(w − 1)

= i +
2i(w − 1)

|w|2 − w − w + 1
(93)

When w = x + iy, we have that

Φ−1(x, y) = i +
2i(x − iy − 1)

x2 + y2 − 2x + 1
= i +

2y + 2i(x − 1)
x2 + y2 − 2x + 1

(94)

Then Φ−1(x, y) = Φ−1
1 (x, y) + Φ−1

2 (x, y)i , where

Φ−1
1 (x, y) =

2y

x2 + y2 − 2x + 1
(95)

Φ−1
2 (x, y) = 1 +

2(x − 1)
x2 + y2 − 2x + 1

(96)

10.2 Composition of Harmonic and Holomorphic Functions

In Section 6.2, we use the fact that Φ satis�es the Cauchy-Riemann equations, and then trivially satis�es

all conditions to be a harmonic preserving transformation.

However, we can use the following result to also make the argument that Φ preserves harmonicity.

For a harmonic function f : Ω → R and a holomorphic function g : U/{1} → Ω,

show that ∆(f ◦ g) = 0 in Ω.

We �rst utilize the fact that f(z) can be extended locally to a holomorphic function denoted by u(z)

such that u(z) = f(z) + ih(z) ∀ z ∈ Ω. Since composition of holomorphic functions is holomorphic,

we have that u(g(z)) = f(g(z)) + ih(g(z)) is holomorphic. Since the real and imaginary part of a

holomorphic function are harmonic, we have f(g(z)) is harmonic, and therefore ∆(f ◦ g) = 0 in Ω.
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10.3 Transforming Homogeneous First Order Linear PDE's

Let u satisfy in U ⊂ R2 the PDE

a1(x1, x2)
∂

∂x1
u(x1, x2) + a2(x1, x2)

∂

∂x2
u(x1, x2) + b(x1, x2)u(x1, x2) = 0 (97)

Let ũ(v1, v2) = u(Ψ−1(v1, v2)), where Ψ : U → V ⊂ R2, Ψ ∈ C1(U), Ψ−1 ∈ C1(V ) , and Ψ is a bijection.

Find the PDE for ũ.

We want to �nd T : U → V , such that Ψ−1(T (x1, x2)) =(x1, x2). Let T = Ψ.

Then
ũ(Ψ(x1, x2)) = u(x1, x2) (98)

Since Ψ is valued on V , Ψ is a vector in R2, we can assume the form

Ψ(x1, x2) = (Ψ1(x1, x2), Ψ2(x1, x2)) = (y1, y2) (99)

Resubstituting these two results above yields

ã1(
∂ũ

∂y1

∂Ψ1

∂x1
+

∂ũ

∂y2

∂Ψ2

∂x1
) + ã2(

∂ũ

∂y1

∂Ψ1

∂x2
+

∂ũ

∂y2

∂Ψ2

∂x2
) + b̃ũ = 0 (100)

as our new PDE, where ũ, ã1, ã2, b̃ are functions of (y1, y2), and Ψ1, Ψ2 are functions of (x1, x2).

32



Algorithm 1 Paramgraph.m

function paramgraph(a,h,k,L)
if nargin ~= 4,
error('Need four arguments');
end
t=0:1/1000:L;
x = cos(a) .* t + h;
y = sin(a) .* t + k;
theta=0:0.01:2*pi;
function changeGraph_Callback(source,eventdata)
switch(get(source,'String'));
case 'map to unit circle'
q1=1+(2.*(y-1))./(x.^2+y.^2-2.*y+1);
q2=(2.*x)./(x.^2+y.^2-2.*y+1);
plot(cos(theta),sin(theta),':',q1,q2);
set(source,'String','extend to circle');
case 'extend to circle'
q1=1+(2.*(y-1))./(x.^2+y.^2-2.*y+1);
q2=(2.*x)./(x.^2+y.^2-2.*y+1);
tn=-1000:1/1000:0;
tp=L:1/1000:1000;
cxn = cos(a) .* tn + h;
cyn = sin(a) .* tn + k;
cxp = cos(a) .* tp + h;
cyp = sin(a) .* tp + k;
q1n=1+(2.*(cyn-1))./(cxn.^2+cyn.^2-2.*cyn+1);
q2n=(2.*cxn)./(cxn.^2+cyn.^2-2.*cyn+1);
q1p=1+(2.*(cyp-1))./(cxp.^2+cyp.^2-2.*cyp+1);
q2p=(2.*cxp)./(cxp.^2+cyp.^2-2.*cyp+1);
plot(cos(theta),sin(theta),':',q1,q2,'r',q1n,q2n,'b',q1p,q2p,'b');
axis([-1.2 1.2 -1.2 1.2]);
set(source,'String','go back to line segment plot');
case 'go back to line segment plot' plot(0:10:10,-24:24:0,'w',x,y);
set(source,'String','map to unit circle');
end
end
�gure('Visible','on','Position',[360,500,470,510]);
haxes = axes('Units','Pixels','Position',[50,70,400,400]);
plot(haxes,0:10:10,-24:24:0,'w',x,y);
hbutton = uicontrol('Style','pushbutton','Position',[150,5,150,25],'Callback',@changeGraph_Callback,'String','map
to unit circle');
align(hbutton,'Center','None');
end

33


