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Abstract 
 

Security is a very important concern in today’s society and is becoming even more 

prominent with the number of security breaches increasing rapidly. With each new encoding 

scheme that is developed to protect our information, an even more robust decryption scheme is 

also developed and is used to intercept sensitive information. While securing communications is 

difficult to accomplish in all mediums, securing wireless communications is the most difficult to 

achieve due to the broadcast nature of wireless communications and the randomness of wireless 

channels. Instead of viewing this as a disadvantage, recently developed physical layer security 

approaches argue that the channel randomness can be exploited and utilized to ensure secure 

communications. For example, the wireless channel between any two communicating users can be 

used to generate a secret key that only they will know, which will then be used to encrypt and 

decrypt messages. At the same time, it would be nearly impossible for any other user trying to 

eavesdrop on their communications, to generate this same key because of the inherent differences 

in channel properties. This approach for wireless key generation is thoroughly discussed in this 

project as well as implemented and tested using various scenarios to prove that the communication 

over the wireless medium is secure.  
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Executive Summary 
 

 Security is a major concern in regards to safety, identity theft, and communications. If 

systems are compromised, the consequences are serious. Due to this increasing concern, this 

project focuses on one of these major areas of security, communications, and tests an increasingly 

popular method that will secure communications over a wireless channel.   

There are two main ways to transmit information, over a wired connection or wirelessly. 

Of the two, wireless communications is becoming more popular because of the convenience 

brought by its mobility. Wireless connections are becoming more pronounced and more 

businesses, homes, and even some vehicles are supporting this advancement by supplying hotspots 

so wireless devices can always stay connected. While wireless communications have many 

positive attributes, there is one major concern. Out of the two kinds of ways to communicate, 

wireless communications is the more difficult to secure. This is because wireless signals are being 

transmitted across the air and can be intercepted by anyone in the communication range. 

In order to address this problem, in this project a fairly new method for securing wireless 

communications was explored. This method exploits the randomness of the wireless channel to 

generate a secret key between two users. This key would then be used to encrypt and decrypt 

messages at both ends of communications. The idea behind this method is that the channel between 

two communicating users is the same, however, the channel of a third user who is trying to 

intercept these messages is different because this user would be listening from a different location 

and hence a different channel. In this project it is assumed that the eavesdropper is passive (only 

receiving messages and not transmitting) as opposed to active (both transmitting and receiving 

messages). This premise is very important in this method of secret key generation because as long 

as the channel between the two active users, for example Alice and Bob, is the same, then 

theoretically when they communicate in order to establish their secret key, the key will also be 

generated similarly. If an eavesdropper, for example Eve, is listening on a different channel then 

the same key would not be able to be generated since the signals traveling across Eve’s channel 

will disperse differently than across Alice’s and Bob’s channel. In order to prove this theory 

multiple tests were conducted. 

In each of these tests, in order to ensure that the channel between Alice and Bob is different 

from the channel between Alice and Eve and Bob and Eve, messages were sent back and forth 

between Alice and Bob and a sequence of 100 RSSI (Received Signal Strength Indicator) values 

were collected. At this time, Eve was listening to their communications and also gathering 100 

raw RSSI values. All three sets of data were then quantized to a bit sequence of 1’s and 0’s based 

on their median value and compared to one another. In this comparison the similarities between 

the bit sequences would be observable. When comparing these sequences a similarity closer to 

100% or 0% would imply that the channel between the users was the same and a similarity closer 

to 50% meant the bit sequence was random and that the channel for communications was not the 

same. Where any bits differed between Alice and Bob’s sequence they could later be corrected 

with error correction coding. Multiple experiments would be conducted in order to observe this 

result.  

With these preliminary results, this method for key generation could be explored and any 

potential challenges with this method could be addressed. This method was implemented in order 
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to observe the correlation of the channels between Alice and Bob, Alice and Eve, and Bob and 

Eve. From this, it was shown that when Alice and Bob were communicating, their measurements 

exploited their channel similarities. When Eve was eavesdropping, her measurements exploited 

the differences in her channel compared to the channel between Alice and Bob. These results can 

be further explored as a method for securing wireless communications as more scenarios can be 

tested with Eve as an active user and with more nodes in the network.  
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1. Introduction 
 

1.1: Wireless Communications 
 

Wireless technology is the transmission of data via radio waves [1]. Various products and 

services in healthcare, defense, agriculture and other sectors heavily rely on wireless systems to 

operate. The wireless industry has benefited from the uptake and integration of technology and has 

grown in leaps and bounds since its inception in the 19th century. Figure 1 shows the results of a 

survey conducted by Cellular Telephone Industries Association (CTIA), an international non-

profit body made up of industry stakeholders such as wireless carriers, providers and 

manufacturers of wireless data services and products [2]. The data represents 97.8% of all 

estimated wireless subscriber connections in 2014 [3].  

 

Figure 1- Graph of Combined Wireless Service and Equipment Revenues 

Source: CTIA Survey 2014 

The results reflect the incremental growth of the industry. More and more products are 

being developed that leverage advances in wireless technology to improve commerce and 

communication. These systems are creating wireless ecosystems that keep increasing and 

expanding the industry. 

According to a survey conducted by Strategic Analytics in 2014, 451 million out of 690 

million households worldwide make use of wireless technology to connect networks [4]. This 

number is roughly 65% of the population surveyed in the study. This study was performed in 27 

countries and consisted of six global regions. If each of these households is assumed to have about 

three people, the data results in about 1.353 billion people using wireless technology. This 

information compared to the rest of the world's population, which was 7.2 Billion in 2014, shows 
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that approximately 19% of the world's population makes use of wireless communications [5]. As 

the ubiquity of smart telecommunication devices increases, this percentage is sure to also increase. 

The scale at which wireless technologies are being employed is exponential. As a result, the 

security of these systems is of interest to both well and ill meaning individuals and groups and is 

a topic worthy of further exploration. 

Security is at the heart of communication. Human civilizations have long since sought the 

ability to share messages whose meaning confounded any unwanted recipients. Decades of 

research and development has gone into making communication systems private and secure. With 

the advent of wireless communications, the need for security and privacy is even more evident and 

highly desirable. One difference between wired and wireless communication systems is the 

vulnerability to security breaches. Wired communication systems such as the Public Switch 

Telephone Network (PSTN) were much more difficult to tap because of the physicality of the 

network, making intrusion very visible and traceable. In the case of wireless communications, the 

medium of transmission is the air. This brings about more complexity in the support systems of 

the wireless communication and thus more avenues to breach the security of the system [6]. This 

mode of transmission also makes detection of attacks a more complex endeavor. Wireless 

communication security is thus very essential in modern communications.  

At the heart of wireless communication are wireless devices. Wireless devices are devices 

that "communicate by transmitting electromagnetic signals through the air" (American Heritage 

Dictionary). Wireless devices can be put together in various configurations and implementations 

to make up a Wireless Sensor Network (WSN). WSNs have been described as collections of 

wireless devices joined wirelessly together for sensing metrics of the physical world and passing 

the gathered information to a main location [7]. Wireless Sensor Networks have applications in 

the military, agriculture, healthcare and many other fields. As research and development has been 

going on in the area of WSNs to provide more robust, efficient and reliable wireless devices there 

has also been development in the area of the "Internet of Things" (IoT).   

The International Telecommunication Union defines the IoT as "[a] global infrastructure 

for the information society, enabling advanced services by interconnecting (physical and virtual) 

things based on existing and evolving interoperable information and communication technologies" 

[8]. Academia and the industry are developing functionality and protocols that make the everyday 

things in the environment more connected. There has been ongoing development of connected cars 

and connected homes in the area of connected thermostats, alarm systems, home lighting systems 

and the like [9]. In these areas, more and more traditionally offline systems and devices are going 

online with a major characteristic of being wireless. This advent of IoT makes the topic of secure 

wireless communication even more pertinent. We explore the importance of security in the context.  
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1.2: Importance of Securing Wireless Communications 
 

In communications there are two different types of networks that can be secured, wired and 

wireless networks. Securing a wireless network is much different than securing a wired network 

and also more difficult. The main difference between a wired and wireless network is that on a 

wired network the user's device has to be physically plugged in to an Ethernet cable, but on a 

wireless network no wires are necessary for connection. While there is more mobility on a wireless 

network, "[a]nyone can listen in, gather packets, and see what's [being sent] back and forth" across 

the network [18]. Therefore it can be seen that it is much more difficult to secure wireless networks 

where anyone can listen in on all communications. Wireless networking is becoming more and 

more popular with its desirable features such as mobility, and with this increase in demand, it is 

important to address the concern of wireless security. 

A popular example of wireless technology used in households and corporations is Wi-Fi. 

In 2014, there were about 2.4 billion Wi-Fi enabled devices shipped globally and a cumulative 

number of 10 billion Wi-Fi enabled devices shipped by early 2015 [10]. Wi-Fi is a wireless 

technology which is used in the connection to a local area network and based on the IEEE 802.11 

standard [11]. There are a number of ways to secure communications utilizing Wi-Fi. They are 

Wireless Encryption Protocol (WEP), Wi-Fi Protected Access (WPA) and Wi-Fi Protected Access 

2 (WPA2). A core part of the WEP is the sharing of a secret key (a 64/128/256-bit long 

combination of hexadecimal characters) among the users in the network [12]. This protocol has 

been proven by researchers to be breakable in less than 60 seconds [13]. WPA was introduced to 

address the vulnerability of WEP. It introduced user authentication as well as key scrambling 

techniques but has also been proven to be unsecure and breakable in about 12-15 minutes [14]. 

WPA2 is, at the writing of this paper, the most secure way to encrypt Wi-Fi communications. It is 

still possible to break a WPA2 protected system but that requires greater computing power, thus 

making it more secure than the other two options [15]. WPA2 has been strongly recommended by 

the Information Assurance Directorate, a group within the National Security Agency, as the best 

way out of the three methods to secure Wi-Fi communications so far [16]. With the booming global 

uptake of wireless devices, it is of great import to understand the uptake of wireless network 

security and the kind of encryption being used. 

The Wireless Geographic Logging Engine (WiGLE) is an on-line platform that gathers 

data on wireless networks around the world. As of November 2015, data from about 225 million 

wireless networks worldwide has been logged [17]. Of this number, 8.5% have no form of wireless 

encryption and 20% are using WEP or WPA encryption. The encryption of 19% of the networks 

was unknown. Table 1 reflects this information.  
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Table 1 - Breakdown of encryption utilized in a global wireless network sample population 

Encryption Type Number of Networks Percentage (%) 

WEP 27, 715, 606 12.33 
WPA 20, 805, 221 9.26 
WPA2 115, 097, 283 51.20 
Unknown 42, 497, 472 18.90 
None 19, 090, 113 8.49 
Total 225, 205, 695  

             https://wigle.net/stats#mainstats 

 

The data reveals the state of security in the wireless communications domain and the dire 

need for methods that guarantee long term security that is based not on computational methods 

that can be declared unreliable at any given time, but on a more reliable method. 

 

1.2.1: TJX Security Breach 

 

With wireless security breaches becoming more and more common, the larger companies 

are beginning to be targeted. One company that has become a victim of wireless hacking is TJX. 

In the years 2005 and 2006 "TJX, the parent company of T.J. Maxx, Marshalls, and other [well 

known] retailers" [19] was wirelessly hacked and had over 45 million of their customers’ credit 

and debit card numbers stolen over an 18-month period, making this the "largest customer data 

breach on record" [20]. One might wonder how the employees at TJX were not aware of this breach 

that was occurring for 18 months, however, in these days there are sophisticated ways of acquiring 

one's information wirelessly. This means that the person obtaining all of the information wouldn't 

have to step foot in one of the stores and could be as far as 45 miles away while hacking the 

company's information.  

TJX was known to have secured its wireless network using what's known as WEP, which 

is one of the weakest forms of security for wireless local area networks (LANs). The wireless 

hackers used a technique called wardriving to decrypt the WEP protocol and obtain access into 

TJX's system, enabling them to set up their own account while their software was able to acquire 

"transaction data, including credit card numbers, into approximately 100 large files" [21]. Using 

this technique, the attackers were able to find a "vulnerable store location while staking out a strip 

mall or shopping center from their car using a laptop, a telescope antenna, and an 802.11 wireless 

LAN adapter" [21]. All the attackers had to do was drive around and point their antenna at different 

stores, and the antenna would detect the wireless access points from miles away and see how they 

were configured. According to security researchers, "once the attacker is connected into the 

wireless network, they can sniff traffic to see what data's going where" [19]. This is how an attacker 

knows where all of the information is going and where to concentrate their efforts. With all of this 

information obtained, it is unknown where it might go next, as this information can be bought and 

sold across the world.  

Wardriving relies on the fact that the network has weak security. According to security 

researchers, "'when a company puts in wireless, they don't put it in securely ... [and] they forget 

that wireless is yet another way in" [19]. The TJX store was "using an outdated protocol that's 

notorious for allowing small amounts of data to leak from data packets flowing across a wireless 
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network" [19]. The inadequacies involved with WEP have been known for years and WEP has 

been known to forfeit over the encryption key when attacked. There are many unsecure networks 

and this example shows why it is important to secure wireless networks and communications to 

prevent leaking private information that could potentially be damaging.  

 

1.2.2: Businesses Hacked by Wardriving Wi-Fi Networks 

 

In 2011 "three men were indicted...by a federal grand jury for hacking at least 13 Seattle-

area businesses' wireless networks to steal sensitive information" [22]. The attackers were able to 

steal "credit card numbers and payroll information via the businesses' wireless networks, enabling 

them to steal more than $750,000 in cash and computer equipment, among other items" [22]. In 

obtaining this information, the attackers used the technique known as wardriving where they were 

able to sit in their car along with antennas and other network tools to pick up on wireless networks 

to see if they were vulnerable. Again, as in the TJX hack, the attackers "target[ed] networks secured 

using Wired Equivalent Privacy (WEP), a 12-year old, outdated, and unsecure standard, which is 

still used by many Wi-Fi routers" [22]. Once the wireless network was able to be accessed, 

software to open ports on the server or host was run as well as software to recover passwords. The 

attackers could then gain access into the businesses' private information and records. With this, 

more than 45 million credit card numbers were obtained. One of the businesses' that was affected 

by this breach, Concur Technologies, had approximately 1,017 of their employees' names, 

addresses, dates of birth, and social security numbers stolen.  

With two major wireless security breaches taking advantage of the outdated and unsecure 

WEP network security, the question as to why companies are still using this method to secure their 

wireless networks arises. Security researchers advise companies, especially big companies, to use 

"more sensible, hardened encryption, if [they're] going to have wireless communications" [22]. 

This leaves room for advancement in this area, and if a reliable and secure approach can be 

established to encrypt wireless communications, companies would not have to fear that valuable 

information or their employees' identities would be stolen and instead can feel reassured that their 

wireless security will keep out attackers. 

 

1.3: Two Types of Security Approaches 

 

With many examples of companies' Wi-Fi networks being hacked, it is important to find 

ways of securing wireless communications to ensure that this does not happen. As previously 

mentioned, the companies that were targeted used WEP to secure their Wi-Fi networks, however, 

this security approach was not impenetrable. WEP uses a security algorithm to generate keys for 

encryption and decryption of messages. The ways in which these keys are determined in wireless 

communications plays a major role in how vulnerable they are to attackers. In wireless security 

there are two main types of techniques to generate these keys, computational security and 

information theoretic security, as each will be explained in more depth in the following sections.  
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1.3.1: Computational Security 

 

            Of the different types of securities, computational security uses concepts from 

cryptography to securely encrypt wireless devices [23]. Computational security involves 

developing complex mathematical algorithms where, ideally, it would take an attacker an 

unreasonable amount of time to decrypt the algorithm and maintain access to the communications 

between devices. While this method is not meant to indefinitely encrypt a device, the cryptographic 

method “incorporates an integer security parameter” which helps to ensure secure communications 

[24]. This security parameter is a key, and when an attacker is able to learn this key is when key 

recovery has taken place, and the attacker is then able to eavesdrop on all communications between 

the devices. This poses a problem for secure devices, and to ensure that this doesn’t happen, 

encryption should be secure against key recovery [25]. As an attempt to ensure this security 

between wireless devices, there are different types of key encryption techniques that are utilized 

in computational security. 

Two types of key encryption techniques are symmetric key-encryption and public-key (or 

asymmetric key) encryption. Symmetric key encryption is a method where the sender and the 

receiver share the same key or where their keys are slightly different, but mathematically related. 

The same key is used for both encrypting and decrypting messages, however the disadvantage of 

this method is that it is “difficult to securely establish a secret key between the two communicating 

devices when there does not already exist a secure channel for communications” [26]. Another 

type of key encryption technique is public-key (asymmetric key) encryption. In this method, the 

sender and receiver both develop two different keys, a public key and private key that are 

mathematically related. The public key is used to encrypt messages while the private key is used 

to decrypt messages. These two keys are generated so that, even though they are mathematically 

related, the private key cannot be determined from the public key [27].  

            While these computational algorithms and techniques may seem secure against attackers, 

they are not full-proof. Concerns arise with this encryption method because an attacker could 

decrypt the messages by solving the complex algorithm used to generate the keys. Once the 

attacker has solved this algorithm, it can eavesdrop on all communications. 

One major concern with the stability of computational security is the viability of quantum 

computing. In recent times, there has been much progress in the field of quantum computing. As 

quantum systems are made more practical and ubiquitous, they will strongly test the current 

security systems which rely heavily on unsolvable algorithms. Current research shows that for 

certain problems, quantum computers are much faster at finding solutions than personal computers 

[28]. The fact that quantum computers, which have recently just come out, can match and at times 

surpass, the computing power of personal computers, which have had years of architectural 

refinement and performance optimization, raises concerns about the standing power of 

computationally secure systems in the coming years [28]. It can therefore be concluded that in a 

few years, as more research is performed into quantum systems, our current systems may not stand 

strong against adversaries with quantum computing power. It is in this light that information 

theoretic security lends itself as a more secure approach to security. 
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1.3.2: Information Theoretic Security 

 

Information theoretic security is a form of securing a system using tools from information 

theory. The mathematician, Claude Shannon first introduced this approach in 1949. In 

computational security, a large portion of the security is based on an attacker’s inability to break 

down an algorithm due to its mathematical intractableness or an attacker’s inability to possess 

enough computing power to solve the complex mathematical algorithm. Information security on 

the other hand, ensures security of the system regardless of the attackers computing power and 

makes no assumptions on the intractableness of a mathematical algorithm [29].   

            An example of an information theoretically secure system is the “One-Time” pad [30]. In 

the One-Time pad, a random key, which is the length of the message that will be sent (plaintext), 

is chosen. The key is then used in a modular addition (xor) with the plaintext. The result is the 

message transmitted over the channel (cipher text). Both parties, Alice and Bob, for example, have 

access to the random key used for the encryption and can each decipher one other’s message 

provided the shared key is used to secure the message. The adversary, for example Eve, has no 

information before or after receiving the cipher text. The One-Time pad has been shown to provide 

perfect security provided no part of the key is used to encrypt a message again [30]. In such a 

system, an attacker’s access to unlimited computing power is not enough to break the system as 

he/she will still not have access to the key information. This approach has been used for diplomatic 

communications as it is a highly secure method [30]. 

            An essential component of a computationally secure system is the encryption key. 

Knowledge of this key by the attacker compromises the security of the system as such key 

generation and protection is of major concern. In information theoretic security, a key is also used 

to secure the system. The key however, is generated not through computational processes. One 

method of key generation is to observe the environment in which the communication between 

Alice and Bob is taking place and to leverage the changes of the communication signals introduced 

by the environment. The environment, in this sense, is referred to as the channel. A common 

phenomenon within wireless communications is changing signal strength from the transmitter to 

the receiver. This can cause signal drops during cell phone calls as well as low Wi-Fi signal 

strength. This phenomenon is due to the multiple paths a signal takes before reaching the receiver 

and can be due to interaction of moving components such as cars and human beings within the 

channel.  

Estimating the signal changes within the channel provides rich information that can be used 

to generate a secret key for securing the communications. As the channel between the 

communicating parties change, new secret keys can also be generated to encrypt messages. This 

ensures that a system with very low vulnerability to attacks can exploit key reuse. This approach 

for key generation is based solely on the information in the channel and not from computational 

processes thus devoid of the inherent weaknesses outlined in computational security methods.  
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1.4: Our Approach  

 

In our approach, the randomness of the channel gain between the communicating parties is 

exploited to generate a secret key. The randomness of the channel is observed by two users, Alice 

and Bob, where, through communications, will be able to accurately estimate the channel in which 

they are communicating. From this estimation, with high probability, the same key will be 

generated by both parties using tools from coding theory [31]. This key would then be used to 

decrypt and encrypt messages being sent back and forth. Since Alice and Bob are communicating 

through relatively the same channel there will be similarities that each party will be able to observe 

regarding the channel. An eavesdropper, Eve, will be trying to listen in on the communications 

between Alice and Bob, however, Eve will be listening on a different channel in some other 

location. This figure can be seen below with the orientation of each party.  

 

 
Figure 2 - Orientation of two communicating parties, Alice and Bob, and eavesdropper, Eve 

From this figure it can be seen that Eve will experience a different channel. This is expressed in 

Equations 1-3 where h, 𝑔1, and 𝑔2 correspond to the channels labelled in Figure 2, s is the signal 

being sent, n is the noise of the channel, and y is the signal that is seen at the receiver. 

 

 𝑦 = ℎ ∗ 𝑠 + 𝑛 (1) 
 𝑦 = 𝑔1 ∗ 𝑠 + 𝑛 (2) 
 𝑦 = 𝑔2 ∗ 𝑠 + 𝑛 (3) 
   
   

Due to the fact that the key was generated based on observations of a specific channel, this 

same observation will not be able to be replicated, and therefore the same key to decrypt the 

messages will not be able to be generated. Even with slight movements from either of the 

communicating parties, Alice or Bob, or with movements from objects between them, the channel, 

in response, will change. With this change the path of the signal as well as any scattering, noise 

and channel gains will also change and hence, the key will change. Alice and Bob will be 

constantly sending messages back and forth and from this constant communication they will be 
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able to estimate the new channel and with as high a probability that the channel was estimated 

with, they will be able to regenerate a key [31]. 

With the channel between Alice and Bob changing and with Eve on a different channel, 

this will make it nearly impossible for Eve to generate the same key as Alice and Bob to eavesdrop 

on their communications.   

The purpose of this project is to create a prototype testbed to implement the above 

mentioned idea. The remainder of the paper is organized as follows. In chapter 2, we present 

different transceiver options to use in this project and the criteria used to choose the final 

transceiver. In chapter 3, we discuss the sensor setup and software implementation. In chapter 4, 

we present the results that were gathered. Finally, chapter 5 summarizes the project and discusses 

possible future work and recommendations.  
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2. Transceiver Options 
 

 In this chapter, we provide details on how we choose the platform for implementation 

and how we select tools for the chosen platform.  

 

2.1: Received Signal Strength Indicator (RSSI) 
 

 Received signal strength indicator (RSSI) is a very important measurement in 

communications as it is the “measurement of the power present in a received radio signal” thus 

measuring the quality of the received signal [32] [33]. The received signal strength is measured at 

the receiving device as this measurement is usually taken at the intermediate frequency stage [32]. 

RSSI is oftentimes available to users via wireless networking cards or some other wireless network 

monitoring tool such as the Wireshark, Kismet, or Inssider [32]. With this information about the 

signal strength received at the end user, for example at a smartphone, it can be determined if the 

signal strength is strong (a high RSSI value) or if the signal strength is weak (a small RSSI value). 

These RSSI measurements are often recorded in milliwatts (mW) or decibel-milliwatts (dBm). 

When measuring the received signal strength in dBm, it is appropriate to conclude that the closer 

to 0 dBm the received signal strength is, the better the signal [33]. Depending on this information, 

wireless devices can determine if the energy is below a certain threshold and if the device is “clear 

to send” [32]. Once the device has deemed that it’s clear to send, the wireless device will then send 

its packet across the channel. 

Once the packet is transmitted, there are many different channels that the signal can be sent 

through, for example air or water, and depending on which medium the signal has been sent 

through, the measurement for RSSI can be greatly affected. One scenario where the RSSI may be 

affected is when there is multipath propagation where there are multiple paths from the transmitter 

to the receiver as well as obstacles in the way such as walls, buildings, cars, etc. that the signal can 

bounce off of, changing the signal's path and direction. From the RSSI measurement the distance 

between two communicating devices can be approximated, and the more multipath propagation 

that the signal endures, the longer the signal has to travel to get to the end user, therefore resulting 

in a lower RSSI value [34]. The information determined from the RSSI value is very valuable in 

wireless communications systems, and was also an important factor in this project.  

For this project the RSSI value would be used as the estimate of the channel gain, as this 

measurement is directly proportional to the channel gain. The RSSI measurement would reflect 

the quality of the channel, and as long as the two users received the same measurement, this meant 

that their channels were similar. The similarity in their channel gain is very important for 

successful key generation and because of this, ensuring that the transceiver could sense RSSI 

values was an important factor to consider when choosing a sensor. 
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2.2: Platform Selection  
 

For this project different platforms were researched to be used as the three transceivers, 

Alice, Bob, and Eve. There were many different criteria that these platforms had to meet in order 

to be considered, which will be discussed in more detail in the following sections. After extensive 

research, two different types of platforms were decided upon, Software-Defined Radios and 

sensors. These platforms were further narrowed down to determine which of the two would be 

best suited for communications in this project.  

 

2.2.1: Sensor Selection 

 

There are various sensors that could be selected to implement this project. The criteria for 

this selection becomes stringent when considering sensors  to create an indoor  wireless network. 

A few factors that were considered in the evaluation of sensors were as follows, in no  particular 

order of preference:   

  

 Physical unit (complete module or incomplete unit)  

 Operating frequency and wireless standard  

 Ability to measure RSSI  

 Presence of microcontroller (MCU)  

 Operating system and programming language of MCU  

 Development environment  

 Online support for MCU and programming language  

 Sensor costs  

 

The physical unit of the sensor played an important role in this choice. A sensor consisting of an 

antenna, microcontroller, serial interfaces (USB) and any other wireless network components all 

on a complete module-based platform was highly desirable. Such a modular sensor would remove 

the errors that could arise in the experiment from incompatibility of components.  

The operating frequency and wireless standard of the sensor was also of great importance. 

As the goal of the project was to secure wireless communications, the chosen sensor had to operate 

in the frequency bands used in common wireless sensor networks, ~2.4GHz and ~5GHz. Operating 

in this frequency range would make the results gathered reflective of practical everyday situations. 

The ability of the sensor to measure the RSSI was also a key factor in choosing an appropriate 

sensor. As discussed earlier, RSSI is representative of the power of the received signal. The 

accessibility of this value was greatly considered when deciding on a final sensor, as this value 

will be important in subsequent calculations of channel behavior estimation.  It was very essential 

that the sensor measured RSSI for the success of the project.  

The presence of a microcontroller unit (MCU) on the sensor platform was also considered. 

The type of MCU dictated the operating system (OS) of the sensor. The OS in turn, determined 

the kind of programming language and paradigm that was used. These specifications were used to 

determine the amount of online support for the sensor software, development environment, and 



21 
 

the programming language, which would help to become familiar with them if the team had limited 

knowledge of these platforms.  

Another main factor that was considered was the cost of the sensor. As in the set-up 

described in Figure 1.1, three sensors were needed for this project. The project team had a budget 

of $250.00, and because of this limited budget sensor costs had to be taken into account when 

deciding on a sensor.  

Research into previous projects in wireless networks was conducted to determine suitable 

sensors for this project. The most common sensors found to be used by researchers in this field 

were wireless cards with antennas such 802.11n Intel WiFi Link 5300 Wireless card [35] as well 

as standalone complete wireless modules such as MICAz [36] Tmote Sky built off TelosB platform 

[37] [38] and iMote2 [39].  

Tables 2 and 3 show various sensors that were compared and their respective 

specifications for the criteria considered.  

  
Table 2 - Comparison of sensors and their characteristics 

SENSOR/ 

CRITERIA 

Complete Module Operating 

Frequency (GHz) 

Measuring RSSI Wireless Standard 

MAX2410 No 0.8-2.4 No Cordless & PCS 

standards 

MAX2828 No 4.9-5.875 Yes 802.11a 

MAX2829 No 2.4-2.5 & 4.9-5.875 Yes 802.11a/b/g 

MICAz Yes 2.4-2.48 Yes 802.15.4 

TMote Sky 

(CM3000) 

Yes 2.4-2.483 Yes 802.15.4 

iMote2 Yes 2.4-2.483 YEs 802.15.4 

 
Table 3 - Continuation of table 2 

SENSOR/ 

CRITERIA 

Microcontroller Operating 

System 

Programming 

Language 

Development  

Environment 

Cost per 

Sensor 

MAX2410 N/A N/A N/A N/A Free 

sample 

MAX2828 N/A N/A MAX2828/29 

Control Software 

N/A Free 

sample 

MAX2829 N/A N/A MAX2828/29 

Control Software 

N/A Free 

sample 

MICAz Atmel ATmega 

128L 

MoteWorks, 

based on 

TinyOS 

nesC Eclipse (Yeti2 

plug-in), CCS, 

Linux 

$95-$150 

TMote Sky 

(CM3000) 

MSP430F1611 TinyOS 

Support 

nesC CCS $90.22 

iMote2 Intel PXA2771 

XScale Processor 

TinyOS, Linux 

and SOS 

nesC/C Eclipse (Yeti2 

plug-in), CCS, 

Linux 

$990 

(bundle) 

 

After carefully comparing each of the different sensors, the search was narrowed down 

further based on the importance of the criteria for this project. One important feature of the sensor 

that was necessary for this project was that the sensor came as a complete module; having a 

microcontroller connected to the transceiver and mounted on an evaluation board so that it could 

be easily programmable and the information could be easily processed. Another aspect that was of 
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importance was that the sensor could measure the receiver signal strength (RSS) and that this 

measurement could be easily accessible through a receiver signal strength indicator (RSSI). From 

the six sensors originally researched, only three met both of these criteria, the TMote Sky 

(CM3000), MICAz, and iMote2. These three sensors were then researched more in depth in order 

to decide on one of these sensors to be used for testing.    

With these three sensors in mind, they were then narrowed down further based on the 

microcontrollers that were implemented. In looking at the microcontrollers, the programming 

language as well as the development environment also had to be taken into consideration. The 

microprocessor, programming language, and development environment all had to have sufficient 

support for both interfacing with the sensor and for the language used in programming the 

microprocessor. With this, the learning curve couldn’t be too difficult so that, with limited 

background and knowledge on the programming language and development environment, the 

sensor could still be properly programmed and configured for the purpose of this project.   

The final criteria that had to be considered were the prices of each of the sensors. With a 

limited budget of $250.00 and the need for three sensors to properly implement this project, the 

price of the sensor was very important. The sensor had to be cheap enough so that three sensors 

could be purchased, but at the same time still fit the rest of the criteria that was previously 

mentioned. In researching the prices of the sensors, the cost of one sensor, the iMote2, could not 

be found and because of this, further inquiries were made to the developers. From these inquiries 

it was determined that this sensor was not currently being manufactured, and a new sensor that 

would replace the iMote2 was still in the research and development stages. Based on this news, 

the iMote2 was eliminated from the search.  

With these final requirements in mind one of the final two sensors, the MICAz and TMote 

Sky (CM35000), were chosen. Both modules were similar in regards to all of the criteria, except 

one, price. The MICAz was more expensive than the TMote Sky (CM35000), and with the limited 

budget, only two MICAz sensors would be able to be purchased when three were needed for this 

project. The TMote Sky (CM35000) sensors weren’t as expensive and because of this, three 

sensors could be purchased for this project. After careful consideration, the TMote Sky (CM3000) 

was chosen for testing secure wireless communications between two parties with a third party 

eavesdropping on this communication. The TMote Sky (CM3000) can be seen below with a USB 

adapter, the USB1000, connected to the Erni adapter.  

 

 
Figure 3 - TMote Sky (CM3000) sensor 

 

This sensor met all of the needs of this project and was further tested against the software-defined 

radio to determine which would be used in the final implementation.   
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2.2.2: Software Defined Radio Selection  

 

 As well as considering different sensors to utilize in this project, software-defined radios 

were also considered as an option to use as the transceiver. According to the SDR Forum in 

collaboration with the Institute of Electrical and Electronic Engineers (IEEE), a clear definition 

for software-defined radios have been established. Software-defined radios are “radio[s] in which 

some or all of the physical layer functions are software defined” [43]. Software-defined radios 

have the capability to transmit and receive messages over different frequencies depending on the 

daughter card that is used in the radio and is very desirable for use in high-frequency applications.  

Due to the fact that software-defined radios are very costly, only two radios, the USRP 2 

and USRP N210 were considered for use in this project because they were readily available. Both 

of these software-defined radios were created by Ettus Research and are also compatible with 

different software and software development tool kits such as MATLAB, Simulink, GNU Radio, 

and LabVIEW. This software can be used with different programming languages such C, C++, 

Java, etc. to aid in the development of applications to implement in conjunction with the software-

defined radios. Some of the applications where software-defined radios are used is in the 

development of adaptive radios and cognitive radios, and although SDRs are not necessary in these 

applications, SDRs “provide these types of radios with the flexibility necessary for them to achieve 

their full potential” [43].  

With the two SDR's available, it then had to be decided which one would be used in this 

project. Both the USRP 2 and the USRP N210 were compatible with all of the above mentioned 

software and software development tool kits. One difference, however, between the USRPs was 

that the USRP 2 utilized a graphic SD card, where each had to be individually burned and remain 

plugged into each of the USRP 2s while in use. This additional step was not necessary for the 

USRP N210. While this was the only main difference between the USRPs in reference to technical 

aspects, another difference was the availability of each of the USRPs. The USRP N210, the newer 

model of the two, was being widely used throughout the school. This meant that classes that ran 

during the course of this project would be using them the vast majority of the time, limiting their 

availability for this project. The USRP 2s, on the other hand, were not currently being used and 

thus were readily available. With these considerations, more research into the USRP 2 was 

conducted, both the files and software were found in order to flash each of the graphic SD cards 

for the USRP 2, and a final decision was made. In the end, time was the most important factor, and 

therefore it was decided to use the USRP 2. The USRP 2 software-defined radio can be seen in 

Figure 4.  

  



24 
 

 
Figure 4 - Software-defined radio (USRP 2) 

 

The USRP 2 was then further compared with the TelosB sensor to determine which platform would 

be the best fit for this project.   

 

2.2.3: Final Platform Selection 

 

The TMote Sky and USRP 2 were both capable sensors for the purposes of this project. A 

comparison of the hardware and software characteristics of both sensors against the goals of the 

project was explored. 

One major goal in this project was channel estimation. The ability to move the sensors was 

a very essential characteristic that the chosen sensor had to possess. The sensor would be placed 

in different physical locations and scenarios and the measurements of transmitted and received 

signals taken. The TMote Sky proved to be more mobile in nature and could also be deployed in 

the field with little to no dependence on a supporting computer setup.  

The ability to access and easily measure the RSSI value of the transmitted signal was 

another critical component of the sensor. It was more challenging for the team to access the RSSI 

value from the USRP2 and the supporting MATLAB software. The TMote Sky on the other hand 

provided easy access to the RSSI value via software commands. 

The TMote Sky sensor was programmed with the nesC language, which was a variant of 

the C language. Applications on the TelosB can have a Java layer. This allows access to the 

extensive libraries and support of the Java language. There is also a good online support system 

for TelosB sensors, TinyOS and the nesC language [44]. To use the USRP2 for essential 

measurements such as RSSI, a possible approach would be to program the USRP 2 in C++ via the 

GNU Radio method. Support for this approach was available via GNU Radio [44]. To learn and 

efficiently utilize this approach would take more time compared to the TelosB sensor's 

technologies as the project team was already well versed in the C language and Java. The TMote 

Sky (TelosB) was chosen as the sensor to implement the project as it had more desired hardware 

and software characteristics in comparison to the USRP2.                         
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2.3: Implementation Platform 
 

 In this section, we discuss the implementation platform of the chosen sensor. 

 

2.3.1: Operating System 

 

The TMote Sky uses the TinyOS operating system (OS). TinyOS, is an open source, 

component based OS targeted for low-power sensor motes typically used in sensor networks and 

ubiquitous computing among other applications [40]. TinyOS is written in the nesC language, a 

dialect of the popular C programming language. Applications in TinyOS can also be written in C 

[40]. TinyOS also allows for interfacing with Java and shell script programs [40]. One key benefit 

of TinyOS, is the abstraction layer it provides. It is able to represent device hardware as software 

abstractions making software development in TinyOS simple. An example is with a flash storage 

chip. TinyOS is able to represent this device as a circular log software abstraction that can be 

manipulated via software. In addition to being used for low-power sensor motes, TinyOS is also 

useful for microcontroller based devices with limited resources such as the MSP430-based sensors 

which run a small amount of memory [40]. 

 

Advantages of TinyOS 

 

TinyOS has other strong advantages as an OS for sensors. Currently, the OS can be 

installed on Linux, Mac OS X and Windows computers. It is also possible to use virtual machines 

to run the OS. The latter approach is much simpler than installing the OS onto a computer. TinyOS 

is able to run on various sensors such as the TelosB, IMote 2, Micaz, IRIS, Mica2, the Shimmer 

family, Epic, Mulle, tinynode and Span family of sensors [40]. TinyOS also supports various 

microcontrollers including the Texas Instruments (TI) MSP430 family, Atmel's Atmega128, 

Atmega128L, Atmega1281, and the Intel px27ax [40]. The OS also has support for radio chips 

including TI/ChipCon CC1000 and CC2420, Infineon TDA5250, the Atmel RF212 and RF230, 

and the Semtech XE1205 radio chips. User groups have also included support for the TI/ChipCon 

CC1100 and CC2500. TinyOS also provides support for two NOR flash chips, the Atmel AT45DB 

and STMicroelectronics STM25P chip. As such, there is a wide range of support for running the 

OS on the different sensors and radio chips [40]. The OS also has strong support for the CC2420, 

a popular 802.15.4/ZigBee radio chip. This is also the chip in the TMote Sky sensor used for this 

project. The OS has also been in use for over five years and has a strong and efficient code base 

[40]. It is a popular OS among researchers and commercial users. Some examples of commercial 

users are Motorola, Intel and Crossbow [40]. TinyOS is also a very good OS for networking and 

radio communications. By possessing low-power link layers, the OS supports low duty cycle 

operations. The OS accomplishes this by turning on the radio for certain periods of time to check 

if there is a packet to be received. As such, the radio appears to be always on and can still have 

sub-1% duty cycle [40]. The tradeoff with this method is that there is latency in communication 

applications.  
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Disadvantages of TinyOS 

 

There are significantly, two major weaknesses of TinyOS: the learning curve of the 

programming model and the difficulty in writing computationally-intensive applications. The 

Application Programming Interfaces (APIs) of TinyOS are split-phase or non-blocking. This is 

because, TinyOS runs on devices with small amounts of RAM. In a non-blocking procedure, 

threads are allowed to access shared resources without blocking the other threads. Also, the failure 

of a thread does not cause the failure of another thread [41]. An example is in the sending of a 

message in TinyOS. A send function is used in the sending of the message. When the function is 

called, it returns immediately before the message is sent. After some time, TinyOS calls sendDone, 

a callback on the procedure, telling it that the message has been sent. In order to have this non-

blocking behavior, TinyOS does not expect portions of code to run for long periods of time 

uninterrupted. If this happens, other events such as sendDone cannot access resources. This affects 

the performance of the OS and may lead to packet dropping and missed timeouts [40]. As most 

novice programmers are not familiar with this event-driven, non-blocking procedure, learning and 

applying the concept can take some time. 

Computationally intensive procedures also have to be structured differently as the structure 

of TinyOS does not tolerate pieces of code running for long uninterrupted periods of time. To be 

able to have such procedures, the program has to be broken into smaller pieces that are executed 

one at a time. For example, to implement a nested for loop which runs over NxN array, you can 

have N separate computations that each run over an array of length N [40]. A solution to the 

difficultly in understanding the programming model of the TinyOS is the usage of the large amount 

of tutorials and supporting documentation for the TinyOS. This can help novice programmers 

come up to speed with the OS and learn more efficient ways of writing applications. There is also 

a library in current versions of TinyOS that supports threaded applications. It enables programmers 

write threaded applications on top of the OS. The ability to have a blocking API and longer loops 

are part of the functionality the library offers. Applications built with this library can also be 

developed in the C language. As this language is more popular than nesC, it helps reduce the 

learning curve in building TinyOS applications. 

 

2.3.2: Programming APIs in TinyOS 

 

In TinyOS, operations which can take a long time are split-phase. This means that they 

have completion call-backs. The first phase is the command which starts the operation and the 

second is the callback which signals the completion of the procedure. In most APIs, the function 

is bound at compile time and the callback is passed as a function pointer. In nesC both functions 

are bound at compile-time [40]. nesC is made up of nesC interfaces. These interfaces connect 

software components that make up the application to be run. For example, an application has 

component A and component B. There are calls from component A to B and from component B 

to A. These calls are specified by the interface. Some examples of interfaces are send/sendDone, 

for sending packets, start/fired, for starting timers, read/readDone, for sampling sensors and 

write/writeDone for storage [40]. In these examples, the functions with "Done" are the callbacks 

and the functions without "Done" are the starting functions.         
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2.3.3: nesC Language 

 

The nesC language is a dialect of the C language. It has the basic statements of the C 

language including for loops, variable declaration and assignments. nesC uses a component based 

programming module where the application is split into software components. These components 

join code with state and are only instantiated at compile time [40]. The language also has interfaces. 

These interfaces specify roles and services within the application. Interfaces are bi-directional in 

nature and allow for components to interact with each other. nesC also utilizes a concurrency based 

on that of TinyOS. The language is able to differentiate between code sections that cannot be acted 

on by interrupts and those that are not runnable in the context of interrupts [40]. 

 

2.3.4: Structure of a nesC Application 

 

A nesC application is made up of a one or more components that make up its application 

executable [45]. There are two kinds of components: configurations and modules. Both of the 

components provide and use interfaces [46]. Modules implement the interface(s) that make up the 

application. Modules contain the code that the application executes. Configurations “wire” 

together components by connecting the interfaces that the components use to those that are 

provided by others [42]. Code specified in the components are private and can only be accessed in 

those components. In order to name or access code in components directly, interfaces are used. 

[46]. 

 

2.3.5: nesC vs C Language 

 

There are two main reasons why nesC is used in programming TinyOS than the C language: 

the linguistic support that nesC provides and the strong code optimization [40]. An example of 

linguistic support is in the programming of events and tasks. In these areas, C uses macros which 

are susceptible to bugs. nesC on the other hand ensures the compiler checks the usage of tasks and 

events. This results in less bugs.  

Using nesC also allows the production of C code which can be better optimized by the 

compiler as compared to just using the C language. Function inlining is an example of this. Usage 

of inlining functions result in faster execution time and reduction in the code size of the application 

[42]. Some compilers of the C language such as gcc, only inline functions if they were already 

defined [40]. nesC has strong inlining characteristics and inlines smaller functions [42]. As 

application development in TinyOS makes use of small functions, this characteristic of nesC is 

very desirable. 
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3. Implementation  
 

 In this chapter, we discuss the details of our implementation. 

 

3.1: TinyOS Installation 
 

Before the sensors could communicate with each other, TinyOS needed to be setup on the 

computers. After much research on the TelosB (CM3000) sensor, it was decided that the sensor 

would work best running on a Linux-based operating system. Therefore, Ubuntu, an open source, 

Debian-based Linux operating system that is free for anyone to download [47], was installed on 

all of the computers that were used in this project. Once Ubuntu was installed, TinyOS was then 

able to be installed so the sensors could be used. 

 Using the Advanticsys online resources, the TinyOS Installation Guide was used to aid in 

the installation of TinyOS. This installation guide can be found in [48]. All of these steps were 

carried out in the terminal window. First, the command sudo –s was run in order to login as the 

root user, as this was needed to make the necessary changes required during installation. Next, 

under the “Ubuntu Linux Environment” section in the TinyOS Installation Guide, steps one 

through four were carried out. After step four was completed, a YouTube tutorial that was found 

online was used to finish the TinyOS installation. This video can be found in [49].The rest of the 

installation could be completed using the YouTube tutorial as a guide. These steps were well 

documented in a file with tips to make the installation run smoothly and to help with problems that 

could be encountered along the way. This document can be found in the appendix labeled "Steps 

for TinyOS Installation on Ubuntu". Once the installation of TinyOS was complete, the sensors 

were then able to communicate with the computers and with each other.  

 

3.2: Sensor Setup  
 

 In order to get accurate measurements, the sensor setup was very important. Overall, there 

were three sensors, Alice, Bob, and Eve. Alice and Bob were the two main communicating sensors 

and Eve was the eavesdropper, trying to listen in on communications between Alice and Bob. 

There were three different setups that were used for testing. 

One scenario just looked at communications between Alice and Bob where both sensors 

were stationary and each were plugged into the desktop computers. This sensor configuration can 

be seen in Figure 5. 
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Figure 5 - Sensor setup for testing between Alice and Bob 

The second configuration was where Bob was stationary and Alice was moving. To 

accomplish this, Alice was connected to a laptop and the distance from Alice to Bob was 

continuously increased as Alice moved further away from Bob. In doing this, the effects that 

distance had on the communications and key generation could be observed. This sensor setup can 

be seen in Figure 6 where Alice is connected to a laptop and Bob is connected to the desktop 

computer. 

 

 
Figure 6 - Sensor setup for Alice (laptop) moving and Bob fixed 

A final sensor configuration was considered where Alice and Bob remained at fixed 

positions (in this case connected to the desktop computers) and where Eve tried to listen in on their 

communications while connected to a laptop. In one setup Eve was located at a fixed position and 

in another setup Eve started out close to Alice and Bob and then moved further away. These 

different sensor configurations can be seen in Figure 7. 

 

Sensors 
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Figure 7 - Sensor setup for Alice and Bob fixed while Eve (laptop) is moving and trying to listen in on communications 

With these different configurations it can be seen that each sensor had a different channel 

for communicating every time the environment or sensor location was altered. With the sensors 

located at different positions multiple tests could be run in order to observe the similarities and 

differences in their channels and in the key that was generated.  

                                

3.3: Channel Estimation 
 

To generate the common key between Alice and Bob, they need to obtain an accurate 

estimate of the channel gain between them. To achieve this, Alice and Bob will take turns to send 

constant signals while the other terminal will obtain RSS, which will be used as an estimate of the 

channel gain. 

The Tmote Sky used in this project has a CC2420 chip. This chip has a built in Received 

Signal Strength Indicator which it is provides via an 8 bit register called the RSSI.RSSI_VAL 

register [50]. The RSSI value is calculated by averaging over 128us (8 symbol periods) in 

accordance with the IEEE specifications for Low Rate Wireless Personal Area Networks (LR-

WPANs) [51]. The register calculates the raw RSSI value for each symbol received. According to 

the CC2420 data sheet, the RSSI value in dBm can be referred to as the power of the received 

signal at the Radio Frequency (RF) pins by Equation (4): 

 

 𝑃 = 𝑅𝑆𝑆𝐼𝑣𝑎𝑙 + 𝑅𝑆𝑆𝐼𝑜𝑓𝑓𝑠𝑒𝑡  [𝑑𝐵𝑚], (4) 

 

where P is the power in dBm of the received signal at the Radio Frequency (RF) pins and 

𝑅𝑆𝑆𝐼𝑜𝑓𝑓𝑠𝑒𝑡 is the offset which the data sheet states to be -45 [50]. 

For example, if the RSSI value obtained from the register was -30, the RF power of the 

signal was -30–45 = -75dBm. This result after accounting for the offset is the RSSI value in dBm 

that is of interest to Bob. 
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Two applications were written in nesC for sending and receiving messages between Alice 

and Bob. A supporting Java file was used to retrieve the values of the RSSI in dBm from the 

sensor, observe the values in a Linux terminal, and log the values to a file for post-processing. The 

nesC and Java codes are the same at Alice and Bob's end. Each sensor is connected to a computer 

for the entire duration of the communication. The nesC portion of the project was built on top of 

tutorial code provided in the installed TinyOS package. This tutorial is called BlinkToRadio. It 

demonstrates back and forth communication between two sensors within range of each other. In 

this tutorial one sensor increments a count variable in software, creates a radio message containing 

the variable value and transmits the message over the air (radio). When the other radio receives 

the message, it obtains the payload and turns its LEDs on to display the least three significant bits 

of the received variable value. After displaying the values, the sensor transmits its count variable 

to the other sensor.  

When one of the sensor's communication was halted or switched off, the other sensor 

displayed the last three LED values it received from the transmitting sensor. These LED values of 

the receiving sensor match the LED values of the transmitting sensor, further proving back and 

forth communication between the sensors. The application for this project was built on top of the 

code for the BlinkToRadio tutorial. Functionality was added to read RSSI values from the CC2420 

chip, perform radio to serial operations and light LEDs to show transmission and reception modes. 

No supporting Java application was used in the TinyOS tutorial package however, this project 

made use of a tutorial Java application called RssiDemo. 

RssiDemo is a tutorial which demonstrates the usage of a Java application to observe RSSI 

values of received radio signals. In the tutorial, the RssiDemo.java class implements the 

MessageListener interface. This interface specifies a method called messageReceived which 

signals the reception of a TinyOS message from serial. The RssiDemo class has a private field 

called moteIF of type MoteIF. MoteIF provides a java interface that enables the reception and 

sending of messages via the serial port, a TCP connection or another means of connectivity [52]. 

It is normally used by creating an instance of it and registering a MessageListener object that is 

summoned when a message arrives [52]. The constructor of the RssiDemo class creates an instance 

of a MoteIF and registers a listener. The listener is listening for an RssiMsg. An RssiMsg is a class 

that extends the Message class and has methods that give provide details on the rssi properties of 

the message received. The Message class is the base class for encoding and decoding tinyos 

messages [53]. When the message is received from serial, the messageReceived method is 

invoked. In the method, the message is cast again to an RssiMsg type. The source of the RssiMsg 

message is retrieved from the message header via getter functions. The RSSI value is also retrieved 

from the RssiMsg and printed to the terminal. Functionality was added to read in 100 messages, 

calculate their rssi values in dBm, by subtracting 45 [50] and log each RSSI value into a file for 

post processing.  

For this project, Alice and Bob send a BlinkToRadio Message between themselves. This 

message is a struct data type containing a 16 bit variable. The data type of the variable was 

nx_int16_t. The nx data types ensures interoperability between sensors which are of different 

endianness [54]. The application used in this project had two components: BlinkToRadioAppC.nc 

and BlinkToRadioC.nc. BlinkToRadioAppC.nc contained the configuration part of the application 

and BlinkToRadioC.nc the module portion of the application. Each sensor had components such 
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as BaseStationC in the configuration file that enabled it receive and send messages. A header file 

called BlinktoRadio.h contained the BlinkToRadio message and enumerated values for timer 

duration and Active Message type [55] which were used in the configuration and module files. In 

the module file, a timer was set that fired for the duration specified in the header file. After the 

timer fired, a BlinkToRadio message was created to be sent over the radio. The send function was 

called. The OS sent the message and the callback event, sendDone returned after the message was 

sent. The green LED was programmed to light up if the sendDone function returned. 

The other sensor at this time was listening for a message. The RssiMsgIntercept.forward 

function intercepted the message that was transmitted over the radio by the other sensor. This 

function retrieves the payload of the received message which is the BlinkToRadioMsg that was 

transmitted. It casts the payload into a new BlinkToRadioMsg. The RSSI value of the received 

message is then obtained using the getRssi function and put into the 16 bit RSSI variable that is in 

the payload of the casted BlinkToRadioMsg. The getRssi function calls another getter method on 

the CC2420Packet. The CC2420Packet is a nesC interface that provides asynchronous getter and 

setter methods for packets received or to be sent by the chip [56]. The getRssi function in the 

interface, gets the RSSI value when a packet is being received. It also provides the RSSI value of 

an acknowledgement if an acknowledgement was received for a packet that has to be sent. The 

latter functionality was not utilized in this project [56]. After the RSSI value has been obtained 

from the chip, the function forwards the contents of the message from radio to serial, that is from 

the radio buffer to the serial buffer of the sensor. The red LED was programmed to light when the 

forward function runs signaling that the message was received. After the function ends, the sensor 

also transmits a message back to the other sensor. The back and forth communication cycle ensues 

with the LEDs displaying green and red representing transmission and reception. 

In order to view the messages and log the data, the RssiDemo Java application must also 

be run. After the sensors are programmed to run the nesC code, the java program is run in the 

terminal on each computer at about the same time. On each computer, the program displays the 

RSSI values of the received messages. 

Alice and Bob each transmit a message after their respective timers have fired. If this 

duration was too long, the communication channel could change significantly and create more 

errors in the received sequence at each other's end. The transmission time also affected the key 

rate, which is calculated by dividing the total number of bits transmitted by the duration of 

transmission. The duration for transmission of a hundred messages between Alice and Bob was 

measured to determine the actual transmission time. The measurements were done in the 

RssiDemo application. As the application had a method called messageReceived that was invoked 

whenever a message was received, it was simple to record the time the first and last messages were 

received. Time for first message reception was subtracted from time for last message reception. 

The difference was the total transmission time. The test was performed three times at Alice's and 

Bob's end and the results averaged.  

For a better understanding of the transmission and reception process see Figures 8 and 9. 
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Figure 8 - State diagram of message transmission 

 

 
Figure 9 - State diagram of message reception 

 

3.4: RSSI Quantization 
 

Once the sensors were able to communicate back and forth while both continuously 

transmitting a message and receiving the RSSI measurements from the received signal, the next 

step was to take these RSSI measurements and quantize them. This was done so that it could be 

determined how similar the received bits were for both parties. If the bits were similar, with only 

a few errors, then this would prove that the channel the parties were communicating on was also 

similar, and the channel estimation could be used to generate a secret key that would only be 

known to the two communicating parties. Further channel coding and decoding could then be 

implemented in order to correct these erroneous bits at the receiving end to enhance the channel 

estimation. If the bits were not similar then this meant that the channel the parties were 

communicating on was not similar and therefore the channel estimation would not be able to be 

used for key generation. 

With the sensors communicating back and forth the RSSI measurements would then be 

saved so they could be processed after the sensors were finished communicating. The 

measurements from both sensors could then be put on one computer and uploaded into a computing 

software, in this case MATLAB, and the median value for both data sets could be found and used 

as a threshold. This threshold would then be used to quantize each RSSI value into bits 1 or 0. Any 

values lying on or below the threshold would be quantized as a 0 and any values lying above the 

threshold would be quantized as a 1. After both sets of data were quantized, bit sequences for each 

party would be generated and could be compared. 
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To compare the bit sequences, the percentage of bits that were different and the percentage 

of bits that were the same could then be calculated. The closer this percentage was to 100% or 0%, 

the more the channels were similar and the closer the percentage was to 50%, the more random 

the channels were. Once these calculations were conducted, a vague idea about the channel 

randomness could be concluded and further processing to correct bit errors could be completed.                                                                                                                                             

 

3.5: Error Correction  

 

After Alice and Bob have both transmitted their sequences to the other and quantized their 

received bits, it is then important to compare the two sequences to see how similar they are. This 

is done because, in order to properly generate a secret key using the random channel between Alice 

and Bob, it is crucial that the sequences both Alice and Bob received are the same. If the sequences 

are not the same, it is important to see how different they are, for example what percentage are the 

two sequences different. By performing error correction on one of the set of bit sequences, for the 

most part, will correct the erroneous bits. How much the error correction will actually correct the 

sequence depends on how different the two sequences are and how robust the coding and decoding 

schemes are. Once both users have the same bit sequence, it can then be used as the secret key 

between them. This key will be robust to eavesdropping since it was generated based on the 

randomness of the channel between Alice and Bob, and therefore, any other channel that is used 

to try and generate this same key will differ and thus so will the secret key.   

 

3.5.1: (5, 2) Binary Linear Block Channel Coding and Encoding     

 

Channel coding is the introduction of redundancy into the transmitted signal to enable error 

detection and subsequent correction [57]. The type of coding employed in this project is Linear 

Block Coding. Linear codes are easy to design and implement. This was a major reason why this 

coding technique was utilized. A linear code takes the form (n, k) with n and k as integer values 

and n greater than k. To perform linear coding, sets of k symbols are used to generate sets of n 

bits. These sets of n bits make up the coded sequence to be transmitted over the air. A generator 

matrix of size k x n is used to produce the n bits that make up the new coded sequence [57]. In this 

project a (5, 2) linear code was used on Alice's quantized data. The approach was to apply this 

coding scheme to generate a new set of 150 bits that would be sent to Bob. He would use this new 

sequence to detect and correct errors in his quantized values. A 2x5 generator matrix is used in 

creating the sequence. The generator matrix G is 

 

 𝐺 = [
1 0 1 0 1
0 1 0 1 1

]. (5) 

 

The standard form of this matrix is 

 

 𝐺 = [𝐼𝑘|𝑃], (6) 
 

where 𝐼𝑘 is the k by k identity matrix and P is an arbitrary k by r matrix. For example, with the 

above generator matrix G, 𝐼𝑘 and P are defined as 
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 𝐼𝑘 = [
1 0
0 1

], (7) 

 

 𝑃 = [
1 0 1
0 1 1

]. (8) 

 

r is the number of redundant bits that are added into the sequence and is found by subtracting k 

from n. For a better understanding, this coding scheme can be seen below. 

 

Alice’s Original Quantized Sequence (100 bits) 

 

 

 

01 * G  = 01011 

 

 

 

 

New Generated Coded Sequence (150 bits) 

 

To apply this encoding scheme, a simple loop in MATLAB was used to get two bits from 

Alice's quantized sequence to perform a modulo 2 multiplication with the Generator matrix. The 

result of the modulo arithmetic was a 5 bit value. The last 3 bits of the result were stored in a new 

sequence to be transmitted to Bob. The operation was repeated for every two bits until the end of 

Alice’s sequence was reached. At this point, a new sequence of 150 bits was generated. This 

sequence was to be transmitted to Bob. 

The sequence used for error correction could not be sent in the form it was in as no data 

structure in nesC was able to contain its size. An approach was developed to break the bits into 

small sequences and then send that sequence over the radio to Bob. In order to break the bits into 

sequences of equal length, the sequence was zero padded to 160 bits. The 160 bit sequence was 

divided into ten smaller sequences with 16 bits in each sequence. While testing this approach, it 

was noted that Bob truncated the 16 bits and took only the last four bits. A solution was to convert 

each 16 bit to hexadecimal and have four hex values in place of each sequence. Therefore, Alice 

would transmit 10 sequences each containing 4 hex values. The BlinkToRadioMsg struct for both 

Alice and Bob was modified to have 10 nx_int16_t variables named bits1a, bit1b, bits 2a, bits2b, 

all the way to bits5a, and bits5b. The 10 hexadecimal values to be transmitted were coded into the 

enumerated type declaration in the BlinkToRadio.h header file. They were named BITS1a, 

BITS1b, BITS2a, BITS2b all the way BITS5a, and BITS5b. In Alice's BlinkToRadioC file, when 

the timer was fired, the BlinkToRadio message was created and its values were set to the 

enumerated type values mentioned above. BIT1a's value was put into the bit1a field of the 

BlinkToRadioMsg continuing through until BIT5b's value was put into the bit5b field. The 

BlinkToRadioMsg was then transmitted to Bob. Once the bits were defined, Alice began 

transmitting the 10 error correction bit sequences while Bob was listening for these sequences and 

only transmitting bit sequences initialized to 0x0000. 

010101110001110100011111101101110 

011011011110000011110011… 
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3.5.2: (5, 2) Binary Linear Block Channel Decoding    

 

 Once the new sequence of bits were coded and Alice transmitted these additional bits to 

Bob, they were then used to correct Bob’s original quantized bit sequence to try and match Alice’s 

bit sequence 100%. The 150 additional bits were received at Bob’s end and logged as decimal 

values in a text file so it could be accessed once the sensors were finished communicating. To 

correct Bob’s original bit sequence, the file that was saved with the decimal values would then be 

loaded into MATLAB so that the post processing could be completed. First all of the decimal 

values were converted into their binary equivalents. Since 160 bits had to be sent in order to receive 

the correct information and only 150 bits were needed, the new bit sequence was indexed so that 

there were only 150 bits in the sequence. With these 150 bits, the sequence was then indexed so 

that three bits at a time were taken and appended to the two bits that were indexed from Bob's 

original sequence to create a new sequence of 250 bits [57]. An example of this can be seen below.  

 

Original Quantized Sequence (100 bits)         Additional Bits for Error Correcting (150 bits) 

 

 

                                                     

 

  

New Bit Sequence (250 bits) 

 

From this new sequence every 5 bits, a 1x5 array, was taken and multiplied by the parity-

check matrix [57], where the parity check matrix is 

 

𝐻𝑇 =

[
 
 
 
 
1 0 1
0 1 1
1 0 0
0 1 0
 0 0 1]

 
 
 
 

. 

(9) 

 

The standard form of this matrix is 

 

 𝐻𝑇 = [−𝑃𝑇|𝐼𝑛−𝑘]
𝑇, (10) 

 

where 𝐼𝑛−𝑘 is the n-k by n-k identity matrix and 𝑃𝑇 is the transpose of P. For example, with the 

above parity-check matrix 𝐻𝑇, 𝐼𝑛−𝑘 and 𝑃𝑇are  

 

 
𝐼𝑛−𝑘 = [

1 0 0
0 1 0
0 0 1

], 
(11) 

   

010011011011100010101101011011011

10 

101101110000001110101111… 

01101001011111001000100011111010101 
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𝑃𝑇 = [

1 0
0 1
1 1

]. 
(12) 

 

This multiplication was conducted using mod(𝑥1 ∗ 𝐻𝑇 ,2), which, in MATLAB, is equivalent to 

performing binary multiplication, resulting in a 1x3 array. This result is "Syndrome e𝐻𝑇", and 

each of these arrays, once computed, were stored in a larger array that contained all values of e𝐻𝑇 

[57]. Every three bits of this array were then taken and compared to the "Syndrome e𝐻𝑇" column 

in the Syndrome Table below. 
 
Table 4 - Syndrome table [57] 

Syndrome e𝐻𝑇 Most likely error e 

000 00000 

001 00001 

010 00010 

011 01000 

100 00100 

101 10000 

110 11000 

111 10010 

 

Once the bits were matched up to the "Syndrome e𝐻𝑇" column, depending on which 

sequence occurred, the most likely bit error was able to be determined. Wherever there was a one 

in the five-bit sequence under the “Most likely error e” column in the syndrome table, is where a 

bit error had most likely occurred. In this case, only the first two bits were important in order to 

determine bit errors, therefore, only the first two bits out of the five bits that were indexed, needed 

to be corrected. As can be seen from the table above, if the syndrome e𝐻𝑇 was the sequence 000, 

001, 010 or 100 then no errors had occurred in the first two bits, which meant no bits had to be 

corrected. If the bit sequence was 011 then a bit error had occurred in the second bit. To correct 

the error this same bit sequence of two had to be indexed from Bob's original quantized sequence 

and the second bit had to be flipped. If the bit sequence was 101 or 111 then a bit error had occurred 

in the first bit, where to correct this bit, the two-bit sequence from Bob's original sequence had to 

be indexed and the first bit had to be flipped. Finally, if the sequence was 110 then an error had 

occurred in both of the first two bits. To correct this, again, the same two-bit sequence from Bob's 

original sequence had to be indexed and both bits had to be flipped. Once all of the syndrome e𝐻𝑇 

sequences were compared to the syndrome table and the appropriate bits were corrected, Bob now 

had a new bit sequence with a length of 100 bits. With Bob’s new corrected sequence it was again 

compared against Alice’s sequence to ensure that the two were the same. 
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4. Results and Discussion  
 

 This chapter discusses the results that were obtained for the various scenarios tested. These 

scenarios were when Alice and Bob were both stationary, Alice moving and Bob stationary, Alice, 

Bob, and Eve stationary, and Alice and Bob stationary with Eve moving. For each of these 

scenarios the raw RSSI values for each sensor were gathered, quantized, and compared. The 

quantized data was then corrected using linear coding and the results were plotted and compared. 

  

4.1: Scenario 1: Alice and Bob Remain Stationary 

 

4.1.1: Raw RSSI Measurements 

 

 After communications between Alice and Bob was complete, both users had a set of 100 

RSSI values that were measured from their received messages. These RSSI values ranged from -

41 dBm to -32 dBm. This range did not vary greatly because neither of the users were moving, 

thus their channels were not changing and instead remained approximately constant. To observe 

the variations in the data, Alice and Bob’s measurements were overlaid in the plot below. Alice’s 

measurements are represented using the solid blue line and Bob’s measurements are represented 

using the purple line.  

 

 
Figure 10 - Received RSSI values at Alice and Bob before quantization 

 

From this graph it can be seen that both sets of data follow the same general curve. This result is 

promising because it shows that the channel between Alice and Bob share the same characteristics 

for both directions of communication.  
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 Once the RSSI measurements were plotted, a threshold was set for both Alice and Bob 

using the median of their sets of data. Each of these thresholds would then be used to quantize the 

raw RSSI values into a bit sequence consisting of 1’s and 0’s. Alice’s threshold is represented 

using the black dashed line while Bob’s threshold is represented using the orange dashed line. 

Once each user had their quantized bits sequences, they were then compared.  

 

4.1.2: RSSI Quantization 

 

Each user now had a bit sequence of 100 bits that were then plotted and compared. The 

graph below shows Alice and Bob’s quantized bit sequences overlaid, where Alice’s sequence is 

represented using the solid blue line and Bob’s sequence is represented using the purple dashed 

line.  

 

 
Figure 11 - Quantized RSSI values at Alice and Bob 

 

As can be seen from Figure 11, the quantized bit sequences were fairly similar, but had some 

differences. Due to these noticeable differences, the sequences were further compared by 

subtracting the two bit sequences, bit-by-bit respectively, to see for which bits the sequences 

differed. The absolute value of this result was then plotted and can be seen in Figure 12. 
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Figure 12 - Difference between Alice and Bob's quantized sequences 

 

From this plot, it can be seen that where peaks occurred at the value 1 was where the sequences 

were different and where the value was 0 was where the sequences were the same. From this result, 

the average number of 0’s was found to determine the percentage of bits that were the same 

between the sequences.  

It was found that 84 bits were the same between the two sequences and 16 bits were 

different. This resulted in an 84% similarity between the two sequences. This meant that the two 

sequences were more deterministic as opposed to random, and thus, the channel between the two 

users were similar. To further improve the similarity of the sequences, error correcting was then 

performed and the results were observed. 
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4.1.3: Bit Sequence after Coding  

 

The MATLAB code (Appendix A) was used on Alice's data to perform a (5,2) Linear Block 

Coding. 150 bits were generated from the error coding and zero padded to 160 bits. The 160 bits 

were then converted to hexadecimal. The hexadecimal values transmitted to Bob were 

0x0D8C0000, 0x00000050, 0x3002801E, 0xDB6DB6DB, 0x60000000. Each set was broken into 

two parts and transmitted independently. The format is below: 

 

BITS1a = 0x0D8C 

BITS1b = 0x0000 

BITS2a = 0x0000 

BITS2b = 0x0050 

BITS3a = 0x3002 

BITS3b = 0x801E 

  BITS4a = 0xDB6D 

  BITS4b = 0xB6DB 

BITS5a = 0x6000 

BITS5b = 0x0000 

 

4.1.4: Bit Sequence after Decoding  

 

After reception of the transmitted error coding sequence, Bob used MATLAB code 

(Appendix A) to convert the received sequence to binary, remove the zero padding and correct his 

bit sequence to match that of Alice. The result of Bob's corrected 100 bit sequence was overlaid 

with Alice's for comparison. The comparison can be seen in Figure 13. Alice's sequence and Bob's 

corrected sequence fit correctly over each other. 

 

 
Figure 13 - Quantized RSSI values at Alice and Bob after error correction 



42 
 

The difference of both sequences was then calculated and the result also plotted. Figure 14 

represents this difference. It can be observed that there are no peaks for all the bits plotted as 

compared to Figure 12. 

 
Figure 14 - Difference between Alice and Bob's quantized sequence after error correction 

 

The sum of the difference in Alice's sequence and Bob's corrected sequence was also 

calculated and seen to be 0. The mathematical and graphical results show that Bob had accurately 

corrected his bit sequence and removed the 16% disparity between his and Alice's original 

sequences. 

 

4.2: Scenario 2: Alice moving and Bob Stationary 
 

4.2.1: Raw RSSI Measurements 

 

 The raw RSSI measurements were gathered for the next scenario where Alice was moving 

and Bob was stationary. As can be seen from the graph below, the RSSI measurements were quite 

different than those gathered from the first test.  
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Figure 15 - Received RSSI values at Alice and Bob before quantization 

 

The measurements ranged from about -95 dBm to -40 dBm, which was a much larger range than 

for the first test. It can also be seen that the RSSI values started off strong and then began to 

decrease in power. This was because during testing, Alice started off close to Bob and then moved 

away as communications continued. Both Alice and Bob shared these same characteristics in their 

RSSI measurements, as this was expected because they were communicating across the same 

channel. 

 With the measurements plotted the median values of each of their sets of data was 

determined in MATLAB. Alice’s threshold is represented using the black dashed line and Bob’s 

threshold is represented using the orange dashed line in the graph above. These values were then 

used as a threshold to quantize Alice and Bob’s raw RSSI measurements into bit sequences of 1’s 

and 0’s. Once each user had their quantized bit sequences, they were then compared. 

 

4.2.2: RSSI Quantization 

 

 Once each set of RSSI measurements were quantized based on the threshold for each user, 

the bit sequences were then plotted to observe any differences. Both Alice and Bob’s bit sequences 

were overlaid in the plot below, where Alice’s bit sequences is represented using the solid blue 

line and Bob’s bit sequence is represented using the purple dashed line.  
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Figure 16 - Quantized RSSI values at Alice and Bob 

 

From this plot it can be seen that the bit sequences did not match up exactly. There were some 

ambiguities in the quantized sequences that needed to be corrected. To find out how similar the 

two sequences were, they were subtracted bit-by-bit, respectively, and plotted. This result can be 

seen in Figure 17. 

 

 
Figure 17 - Difference between Alice and Bob's quantized sequences 
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From this graph it can be seen that where the peaks formed at a value 1 was where the bit sequences 

differed, and where the values were 0 was where the bit sequences were the same. Using this result, 

the percentage of bits that were the same between the two sequences was determined by finding 

the average number of 0’s in this new bit sequence. 

 In doing this, the bit sequences were found to be 85% similar. This result concluded that, 

even when the channel is changing between Alice and Bob, they still share a similarity where their 

bit sequences can be determined from one another. While Alice and Bob’s sequences did not 

match-up 100%, this result proved hopeful that once the sequences were cleaned up they would 

be the same, thus also concluding that the same channels were used during communications 

between them. In order to achieve this, error correcting was then performed in order to clean up 

Bob’s sequence. These results were again compared with Alice’s original sequence to observe 

their similarities.    

 

4.2.3: Bit Sequence after Coding 

 

After quantization, the (5,2) linear code was used on Alice's sequence to generate the error 

correction sequence that would be transmitted to Bob. A 150 bit error correction sequence was 

generated. This was zero padded to 160 bits and then split into 5, 32 bit sequences. Each of the 5 

sequences was converted to their corresponding hexadecimal values. Each of the 5 sequences had 

8 hexadecimal values. Each hexadecimal value was split into two before transmission to Bob. The 

sequence transmitted to Bob was as follows: 

 

BITS1a = 0xD765 

  BITS1b = 0xB6DB 

  BITS2a = 0x6DB6 

  BITS2b = 0xCF6D 

  BITS3a = 0xB00E 

  BITS3b = 0xDA28 

BITS4a = 0x0000 

BITS4b = 0x0000 

BITS5a = 0x0000 

BITS5b = 0x0000 

 

BITS4a to BITS5b are all zeros. This was because Alice at that period of time was quite 

far from Bob. This resulted in very low RSSI values. After quantization, these low values were all 

below the median mark and were therefore zeros. As such, generating an error sequence for that 

section resulted in zeros. 
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4.2.4: Bit Sequence after Decoding  

 

After reception of the error correction sequence from Alice, Bob used the MATLAB code 

(Appendix A) to convert the sequence to binary, remove the zero padding and correct his sequence 

of bits. The results of his corrected sequence were plotted against Alice's original sequence. Figure 

18 represents the comparison. It can be seen in Figure 18 that Alice and Bob's bits overlap exactly, 

suggesting 100% similarity. 

 

 
Figure 18 - Quantized RSSI values at Alice and Bob after error correction 

 

 Alice’s original and Bob’s corrected sequence were subtracted bit-by-bit from each other 

and the result was plotted. The plot in Figure 19 shows this result. It can be seen that there were 

no spikes which would represent a discrepancy at those corresponding bits. The mathematical 

result of the subtraction came out to 0. 
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Figure 19 - Difference between Alice and Bob's quantized sequence after error correction 

 

The graphical and mathematical result of the comparison shows that Bob had accurately 

corrected the 15% discrepancy in his and Alice's original sequences. 

 

4.3: Scenario 3: Alice, Bob, and Eve Remain Stationary 

 

4.3.1: Raw RSSI Measurements 

 

 The next test was conducted where Alice and Bob communicated while Eve was 

eavesdropping on their communications. In this scenario, Alice and Bob both transmitted and 

received their sequences while Eve remained passive, just listening. All three users remained 

stationary for these communications. The raw RSSI measurements were gathered at Alice, Bob, 

and Eve’s end and plotted below. Alice’s measurements are represented using the solid blue line, 

Bob’s measurements are represented using the solid purple line, and Eve’s measurements are 

represented using the solid green line. 
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Figure 20 - Received RSSI values at Alice, Bob, and Eve before quantization 

 

As can be seen from Figure 20, for Alice and Bob’s measurements, the values ranged from about 

-32 to -48 dBm while Eve’s measurements ranged from about -45 to -80 dBm. From these 

measurements it can also be seen that Eve’s RSSI values were not on the same scale as Alice and 

Bob’s measurements. This is because Eve was placed in a different location as opposed to Alice 

and Bob, and although Eve still had line-of-sight for each of the users, the channel she was 

communicating on was different.  

 Once the data was plotted, the thresholds were determined based on these raw 

measurements. The median value for each user’s set of data was used as the threshold. In the above 

graph, Alice’s threshold is represented using the orange dashed line, Bob’s threshold is represented 

using the black dashed line and Eve’s threshold is represented using the red dashed line. Their 

RSSI values were then quantized to either 1’s or 0’s based on this threshold. 
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4.3.2: RSSI Quantization 

 

 With each user’s set of data quantized, they were then overlaid in Figure 21 to observe 

similarities and differences in their sequences. Alice’s bit sequence was represented using the solid 

blue line while Bob and Eve’s sequences were represented using the purple and green dashed lines, 

respectively.   

 

 
Figure 21 - Quantized RSSI values at Alice, Bob, and Eve 

 

From this graph it can be seen that Eve’s bit sequence quantized differently than Alice and Bob’s 

sequences. Eve’s sequence also was seen to vary more, changing from 1 to 0 more often than Alice 

and Bob’s sequences. Once these sequences were observed, they were further compared by 

determining how different each sequence was to one another. To do this each combination of 

sequences were taken and subtracted from their paired sequence bit by bit, respectively. 

First, Alice and Bob’s sequences were subtracted from one another to determine how 

similar they were. Where peaks occurred was where the sequences differed and where zeros 

occurred was where the sequences were the same. This result can be seen in Figure 22. 
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Figure 22 - Difference between Alice and Bob's quantized sequences 

 

Alice and Bob’s sequences were proven to be 74% similar. This showed that the sequences were 

close to being the same, and after error correcting was performed, the sequences would have a 

good chance of matching up 100%, thus concluding that the same channel was used in 

communications.  

 Next, Alice and Eve’s bit sequences were compared. They were subtracted bit by bit, 

respectively and the absolute value of the result was plotted. Each bit that resulted in a one was 

where the sequences differed and each bit that resulted in a zero was where each sequence was the 

same. This can be seen in Figure 23. 
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Figure 23 - Difference between Alice and Eve's quantized sequences 

 

From this graph it can be seen that there were many peaks that resulted as opposed to previous 

comparisons. This is because Alice and Eve’s sequences were only 50% similar, which means that 

the sequence that Eve observed was random in regards to Alice’s sequence and that the same 

channel was not used for communications. 

Finally Bob and Eve’s sequence was compared and subtracted bit by bit. The resulting 

sequence was plotted below where, again, peaks represented where the sequences were different 

and zeros represented where the sequences were the same for that bit. This can be seen in Figure 

24. 

 



52 
 

 
Figure 24 - Difference between Bob and Eve's quantized sequences 

 

From this graph it can be seen that, just as with the comparison between Alice and Eve, the 

comparison between Bob and Eve’s sequence was also very different, only resulting in a 58% 

similarity. This too meant that the sequence Eve observed was independent of the sequence that 

Bob observed on his channel. Since the sequences were random, this proved that different channels 

were used during communications.  

 With these results, the next step was to perform error correction on Bob’s sequence in order 

to clean up the 26% erroneous bits at his end. This would lead to Alice and Bob both having the 

same sequence as they would then be able to use this sequence as a secret key for secure 

communications. 
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4.3.3: Bit Sequence after Coding  

 

In order to correct the 26% error in the original bits of Alice and Bob, the (5,2) linear code 

was used on Alice's bit sequence. The resulting 150 bit sequence was zero padded to 160 bits. 

These bit were split into 5, 32 bits and converted to 5, 8 hexadecimal values. Each of the 

hexadecimal values was split into two before transmission to Bob. 10 sequences were then 

transmitted to Bob. The error correction sequence transmitted to Bob was as follows 

BITS1a = 0x003A 

BITS1b = 0x0002 

  BITS2a = 0xBA05 

 BITS2b = 0xC050 

BITS3a = 0x0302 

BITS3b = 0x8628 

BITS4a = 0x0000 

BITS4b = 0x0302 

BITS5a = 0x8000 

 BITS5b = 0x0C00 

 

4.3.4: Bit Sequence after Decoding  

 

After reception of the corrected sequence from Alice, Bob used MATLAB Code (Appendix 

A) to convert the sequence to binary, remove the zero padding and correct his sequence of bits. 

The results of Bob's corrected sequence was plotted against Alice's original sequence and can be 

seen in Figure 25. 

 
Figure 25 - Quantized RSSI values at Alice and Bob after error correction 
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The plot shows that Alice's original and Bob's corrected sequence exactly overlay over 

each other. The difference between both sequences was calculated bit-by-bit and the result plotted. 

The plot can be seen in Figure 26. 

 

 
Figure 26 - Difference between Alice and Bob's quantized sequences 

 

The result of the difference between the two sequences came out to be zero. The plot also 

shows no peaks, suggesting 100% similarity between the two sequences. From the mathematical 

and graphical result, it can be seen that Bob accurately corrected the 26% error in his original 

sequence. 

 

4.4: Scenario 4: Alice and Bob Remain Stationary While Eve is Moving 
 

4.4.1: Raw RSSI Measurements  

 

 The last test was conducted where Alice and Bob again communicated across a stationary 

channel while Eve was listening to their communications on a varying channel. While Eve was 

gathering her set of RSSI measurements she remained passive and was moving away from Alice 

and Bob. Alice and Bob also gathered their own set of raw RSSI measurements from one another 

while remaining stationary. All three sets of data can be seen in Figure 27 where Alice’s data is 

represented using the solid blue line, Bob’s data is represented using the solid purple line, and 

Eve’s data is represented using the solid green line.  
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Figure 27 - Received RSSI values at Alice, Bob, and Eve before quantization 

 

From this graph it can be seen that Alice and Bob’s measurements ranged from about -30 to -55 

dBm while Eve’s measurements ranged from about -45 to -95 dBm, a 25 dBm difference compared 

to a 50 dBm difference. This is because Eve’s channel was moving as she was collecting her data, 

meaning that Eve did not share the same channel that Alice and Bob shared.  

With the raw data compared, a threshold was then set for each user based on the median 

value of their set of data. This threshold was then used to quantize the raw RSSI measurements 

into 1’s or 0’s in order to form a unique bit sequence for each user. Alice’s threshold is represented 

using the orange dashed line, Bob’s threshold is represented using the black dashed line, and Eve’s 

threshold was represented using the red dashed line in Figure 27. Using these thresholds, each of 

their bit sequences were formed and further compared. 

 

4.4.2: RSSI Quantization 

 

 Once each user had their own bit sequences, they were then overlaid for comparison. This 

can be seen in Figure 28 where Alice’s sequence is represented using the solid blue line, Bob’s 

sequence is represented using the purple dashed line, and Eve’s sequence is represented using the 

green dashed line. 
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Figure 28 - Quantized RSSI values at Alice, Bob, and Eve 

 

From the above figure it can be seen that all three quantized bit sequences differed, however, there 

were also some areas where all three sequences were the same. For example, in the beginning, the 

sequences seemed to differ more so than towards the end of the sequence, where, at around bit 60 

to bit 82 the sequences were all the same. This was unexpected because Eve started out being able 

to see Alice and Bob, similar to Eve’s location in the previous test, and then moved away from 

them as communications continued. Nevertheless, to determine exactly how each bit sequence 

differed from one another each combination of sequences were compared by subtracting each of 

their sequences bit by bit, respectively with one another.  

 Alice and Bob’s sequence was first compared. Their bit sequences were subtracted and the 

absolute value of this result was then plotted. Peaks of one meant that the sequences were different 

for that particular bit and values of zero resulted when the sequences were the same. This can be 

seen in Figure 29. 
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Figure 29 - Difference between Alice and Bob's quantized sequences 

 

From this figure it can be seen that there were not many differences in the two sequences, but when 

there were variations among the two sequences, it occurred in the first half of the bit sequence. 

The second half of the bit sequences were the same between them. This resulted in the Alice and 

Bob’s sequences being 79% similar, which meant that, since their bits were similar their channel 

was also similar, and after error correction their channel would most likely be 100% similar. 

 Next, Alice and Eve’s bits were compared in the same fashion. The result was plotted in 

Figure 30 to observe the differences amongst their bits.  
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Figure 30 - Difference between Alice and Eve's quantized sequences 

 

From this figure it can be seen that there were many differences between Alice and Eve’s 

sequences, while most of these bits were different in the first half of the sequence. Towards the 

end of the sequence their bits were very similar, except for two instances were peaks of one 

occurred at bits 83 and 95. Again, this was unexpected since the distance between Alice and Eve 

was greater as the communications progressed and the channel was changing more rapidly. These 

bit sequences were 69% similar, which was a higher percentage as opposed to the previous test. 

The reason for this higher percentage can clearly be seen in the last half of the bit sequence where 

these bits were very similar as opposed to previous tests.  

 Lastly, Bob and Eve’s bit sequences were then compared. Once the bits were subtracted 

respectively, they were plotted to see how the two sequences differed. This plot can be seen in 

Figure 31. 
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Figure 31 - Difference between Bob and Eve's quantized sequences 

 

As can be seen above, this plot shared a striking resemblance to the comparison between Alice and 

Eve’s bit sequences. Just as in Figure 30, the bits differed more in the first half of the sequence 

and were the same in the last half of the sequence. While this was unexpected, it can be confirmed 

by looking at Figure 28 that the sequences were in fact similar in the last 40 or so bits. With this 

observation, it was found that Bob and Eve’s sequence was 66% similar.  

 While Eve’s sequence was more similar to Alice and Bob’s sequence in this set of tests as 

opposed to in the previous set of tests where the users were stationary, the similarity between them 

was still more random and could be concluded that Alice and Bob most likely shared the same 

channel due to their 79% similarity while Eve did not share this same channel. This higher 

percentage of similarity may have been due to the fact that Eve’s channel was not as constant as 

in the third testing scenario, thus, resulting in this ambiguity. Error correction was then performed 

on Bob’s sequence of bits in order to generate the same sequence at both Alice and Bob’s end, 

cleaning up the 21% of bits that were different.  
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4.4.3: Bit Sequence after Coding  

 

To correct the 21% disparity between Alice's and Bob's original sequence, the (5,2) linear 

code was used on Alice's original sequence. The resulting 150 bits was zero padded to 160 bits. 

The 160 bits were split into 5 sequences, each 32 bits long. Each sequence was converted to 

hexadecimal. The result was 5 sequences, each having 8 hexadecimal digits. Each hexadecimal 

sequence was split into two before transmission. The transmitted digits are below 

BITS1a = 0xAF6D 

BITS1b = 0xB50F 

BITS2a = 0x0180 

 BITS2b = 0x01BB 

BITS3a = 0xB574 

BITS3b = 0x0000 

BITS4a = 0x0000 

BITS4b = 0x0000 

BITS5a = 0x0000 

BITS5b = 0x0000 

 

4.4.4: Bit Sequence after Decoding 

 

After reception of the error correction sequence from Alice, Bob used the MATLAB code 

(Appendix A) to convert the bits to binary, remove the zero padding and correct his bits. The 

results of his corrected sequence was plotted against Alice's original sequence. The result can be 

seen in Figure 32. 

 
Figure 32 - Quantized RSSI values at Alice and Bob after error correction 
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It can be observed that both figures overlapped perfectly. Alice's original sequence was 

subtracted from Bob's corrected sequence bit by bit. This was done to determine if there was any 

discrepancy between the sequences. The result was found to be 0 and the plot can be seen in Figure 

33. The absence of peaks show that both sequences are similar. 

 
Figure 33 - Difference between Alice and Bob's quantized sequences 

 

The mathematical and graphical results show that Bob was able to accurately correct the 

21% disparity in his original sequence compared to Alice's original sequence. 

 

4.5: Testing Error Correction on Eve’s Sequence 

 

The same set of bits that Bob received to correct his sequence was then used to try and 

correct Eve’s sequence. The same decoding procedure was also used with Eve’s original quantized 

sequence in order to correct it. Ideally, when this error correction was performed on Eve’s 

sequence, it should not be able to correct her bit sequence, however, for both scenarios, where Eve 

was stationary and where Eve was moving, the error correction corrected Eve’s sequence 100% to 

match Alice’s sequence. This was surprising because for each scenario Eve’s sequence only 

matched up to Alice’s sequence 50% and 69%, respectively. This coding scheme corrected a 

sequence that was random, which meant that the coding scheme was too robust. Since Bob’s 

sequence was still more similar to Alice’s sequence compared to Eve’s sequence, as was expected, 

this meant that the coding scheme could be less robust and would still be able to correct Bob’s 

sequence, but not Eve’s. While at first the fact that Eve’s sequence was corrected is alarming, this 

is actually good because this means that the coding scheme can be less robust and therefore not 

take up as much of the channel bandwidth as the current coding scheme.   
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4.6: Transmission Duration and Key Rate 
 

The duration of transmission affects the key rate. For example, if it takes 2 seconds to send 

1 bit, then 100 bits would take 200 seconds to send. The key rate would be the number of bits 

transmitted divided by the total duration for transmission. In this example, the key rate would be 

0.5 bits/second. For this project, the actual transmission time at Alice's and Bob's end was 

calculated and can be seen in Table 5. 

 
Table 5 - Duration of transmission times for each set of 100 messages and the average between the three tests 

  Test 1 (s) Test 2 (s) Test 3 (s) Average (s) 

Alice 21.114 21.199 21.965 21.426 

Bob 24.346 24.289 24.937 24.524 

 

In the BlinkToRadio.h file for Alice and Bob, the timer is set to fire every 250ms. This 

results in 25s for transmission of 100 messages. The averaged results for Bob match this value but 

those of Alice show that she transmitted signals much faster. This may be explained by different 

CPU cycles of the computers representing Alice as compared to that of Bob's. 

Using the timer value, the estimated key rate for this project was 100 bits / 25second = 

4bits/second. The actual key rate at Alice's end was 100 bits / 21.426second = 4.667 approximately 

5 bits/second. The actual key rate at Bob's end was 100 bits / 24.524second =  4.077 approximately 

4 bits/second. 
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5. Conclusion and Future Work 
 

The results obtained for the different scenarios reinforced the fact that communication 

security based on information theoretic approaches was feasible. After error correction, Alice and 

Bob had the same sequence, providing a common key to secure their communication. This 

common key is noticeably different from a key generated at Eve's end. Various modifications and 

tests were formulated over the course of the project but time constraints hindered their 

implementation. These tests can be done in future work to reinforce and improve upon the results 

obtained in the project. They are further discussed below. 

 In Scenario 4, the high similarity between Eve's sequence and Alice's and Bob's compared 

to results from Scenario 3, is a phenomenon which should be explored more. When Eve is moving 

away from Alice and Bob the percentage of similar bit values should be much lower compared to 

when Eve is stationary. This phenomenon was reflected and justified in Scenario's 1 and 2 where 

similarity in Alice's and Bob's sequence in Scenario 1 was higher than in Scenario 2. More testing 

with Eve moving can provide insights into the unusual results obtained for Scenario 4. For Scenario 

3 and 4, Eve was introduced into the environment as a passive observer. Future work can include 

Eve as an active participant, sending out malicious signals to disrupt effective communications 

between Alice and Bob. 

The various scenarios were set up in an indoors environment. Future tests can also be 

performed in an outdoor environment. This would introduce new factors that were not anticipated 

in this project. For example, more distortion in channel estimation testing due to moving objects 

such as vehicles, human beings and animals. As this technology has applications in 

communications, this change in testing environment would strongly simulate actual usage and 

real-life application of the technology. Tests can also be conducted in different weather conditions. 

A scenario where Alice and Bob are members of a network of sensors can also be tested. The 

effects of other sensors in the network on the generation of a unique secret key between Alice and 

Bob can also be explored. Different scenarios can be tested to observe how multiple 

communications in the network affect the channel estimation between Alice and Bob. The strength 

of the (5,2) linear code can also be tested on the different scenarios that have been outlined. 

During testing, the error correction sequence was applied to Eve's quantized bits in 

Scenario 3 and 4. It was observed that Eve successfully corrected her bits and produced a sequence 

that was 100% similar to Alice's original sequence and Bob's corrected sequence. These results 

show that the (5,2) linear code used for error correction was very robust and contained more 

information than was necessary. Future tests can have a less robust linear code that produces a 

sequence that successfully corrects Bob's bits but is unsuccessful for Eve's bits in the event that 

she obtains the error correction sequence. Such a code is one where less n bits are generated for 

every k bits. For example, a (3,2) linear code, where n = 3 bits are produced for every k = 2 bits as 

compared to n = 5 bits produced for every k = 2 bits in a (5,2) linear code. 

The duration of transmission can also be reduced to increase the key rate. Different timer 

values can be used to manipulate the transmission time to obtain larger key rates.  

TelosB sensors were used to implement functionality for Alice, Bob and Eve. Future work 

can use USRPs in place of the TelosB sensors. USRPs would provide more control over the 
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specifications for the entire communication process as compared to TelosB sensors which already 

provide such functionality. 
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Appendix A 
 

All MATLAB code can be found in the MATLAB folder. 

 

Alice:  

This code can be found in the Alice folder inside the MATLAB folder. 

 

quantizeBits_Alice.m (Same code is used for Bob and Eve where the names are replaced.) 

 
% Quantize Alice's bits to get sequence of 100 bits 
%% Load RSSI Values Collected from Sending and Receiving Messages 
RssiVals_Alice = load('RawRssiVals_Alice_Scenario3.txt'); 
%% Perform Quantization of Bits 
n = 1:100; % number of collected RSSI values 
% find median value of RSSI values, to be used as threshold for quantization 
medAlice = median(RssiVals_Alice); 
% create empty array to store quantized bits (1 or 0) 
quantizedRssiVal_Alice = zeros(length(n),1); 
% perform quantization, if RSSI value lies below or on threshold then it 
% will be quantized as 0 and if it lies above threshold it will be 
% quantized as a 1 
for numSameQuantVal=1:length(n) 

if RssiVals_Alice(numSameQuantVal,1) <= medAlice 
quantizedRssiVal_Alice(numSameQuantVal,1) = 0; 

else 
quantizedRssiVal_Alice(numSameQuantVal,1) = 1; 

end 
end 
 

genBits.m 

 
% Generate sequence of bits for (5,2) block coding  
%% Run quantizeBits_Alice 
% run quantizeBits_Alice to get Alice's bit sequence after sending 100 
% messages back and forth. Alice's sequence will be used to generate the 
% additional 150 bits for coding to send back to Bob in order to correct 
% his original quantized bits. 
quantizeBits_Alice; 
quantizedRssiVal_Alice = quantizedRssiVal_Alice'; % uses Alice's quantized bits for 

coding  
%% Generate error correction sequence with Alice's original sequence 
G = [1 0 1 0 1; 0 1 0 1 1]; % generator matrix 
% create empty matrices to store coded bits  
coded150bits = []; 
for i = 1:2:length(quantizedRssiVal_Alice); 

% index through quantized bits  
% grabs 2 bits every time and uses these bits to generate new coded  
% sequence of 5 bits 
tempBitSeq = quantizedRssiVal_Alice(i:i+1);  
% uses the 2 bits and performs binary arithmetic to generate new 5 bits 
tempNewSeq = mod(tempBitSeq*G,2); 
% creates matrix of newly generated sequence of 150 bits to send to Bob 
coded150bits = [coded150bits tempNewSeq(3:5)]; 

end 
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% zero pad sequence for transmission to Bob 
% these are the 160 bits that Alice will send to Bob to correct his sequence 
coded160bits = [coded150bits zeros(1,10)]  

 

Bob: 

This code can be found in the Bob folder inside the MATLAB folder. 

 

decodeBits_Bob.m (The same code was used to try and decode Eve’s sequence as well where the 

names were replaced.) 

 
% Decode bits at Bob's end 
%% Decoding of transnmitted error-correcting sequence of bits 
quantizeBits_Bob; % get Bob's quantized values 
toBinary; % converts transmitted hex values to binary and stores them as a string 
% at Bob's end, he can just load file that he receives from sensor 
bitSequence160 = binArray160; % array from toBinary script 
bitSequence150 = bitSequence160(1:150); % removing the zero padding 
BobsSeq250bits = []; 
quantizedRssiVal_Bob = num2str(quantizedRssiVal_Bob)'; % changes quantized array to 

string to match the data type of result from toBinary 
quantizedRssiVal_Bob(isspace(quantizedRssiVal_Bob)) = []; % removes empty spaces 
%% BITS ARE STRING SO CHANGE FROM HERE DOWN 
j=1; 
for i = 1:2:length(quantizedRssiVal_Bob); 

% Bob will take every 3 bits from the trasnmitted sequence and append to  
% every 2 bits from his original quantized sequence.  
BobsSeq250bits = [BobsSeq250bits quantizedRssiVal_Bob(i:i+1) 

bitSequence150(j:j+2)];  
j = j + 3; 

end 
%% Run Decoding on Received Bits at Bob's End 
Ht = [1 0 1; 0 1 1; 1 0 0; 0 1 0; 0 0 1]; % parity-check matrix 
e_Ht_array = [];  
for i = 1:5:length(BobsSeq250bits) 

tempBits = BobsSeq250bits(i:i+4); % index every 5 bits from Bob's sequence 
e_Ht_temp = mod(tempBits*Ht,2); % Syndrome eHt (3 bits) 
e_Ht_array = [e_Ht_array e_Ht_temp]; % all of the eHt's 

end 
e_Ht_array; 
% Syndrome_Table 
% 000 00000 
% 001 00001  
% 010 00010 
% 011 01000 
% 100 00100 
% 101 10000 
% 110 11000 
% 111 10010 
BobInd = 0; % used to index through Bob's original quantized sequence 
for j = 1:3:length(e_Ht_array) 

e_Ht = e_Ht_array(j:j+2); % index each e_Ht (3 bits) 
% comparing e_Ht to Syndrome eHt and then flipping bit where there is  
% an error. Only comparing the first 2 bits of "most likely error e", in 
% Syndrome table. Where bit is 1 is where error has most likely  
% occurred. 
if (e_Ht == [0 0 0]) 
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% no error in first 2 bits 
elseif(e_Ht == [0 0 1]) 

% no error in first 2 bits 
elseif(e_Ht == [0 1 0]) 

% no error in first 2 bits 
elseif(e_Ht == [0 1 1]) 

% error in 2nd bit 
quantizedRssiVal_Bob(j-BobInd+1) = 

num2str(mod(char(quantizedRssiVal_Bob(j-BobInd+1)+1),2)); 
elseif(e_Ht == [1 0 0]) 

% no error in first 2 bits 
elseif(e_Ht == [1 0 1]) 

% error in 1st bit 
quantizedRssiVal_Bob(j-BobInd) = num2str(mod(char(quantizedRssiVal_Bob(j-

BobInd)+1),2)); 
elseif(e_Ht == [1 1 0]) 

% error in both bits 
quantizedRssiVal_Bob(j-BobInd+1) = 

num2str(mod(char(quantizedRssiVal_Bob(j-BobInd+1)+1),2)); 
quantizedRssiVal_Bob(j-BobInd) = num2str(mod(char(quantizedRssiVal_Bob(j-

BobInd)+1),2)); 
elseif(e_Ht == [1 1 1]) 

% error in 1st bit 
quantizedRssiVal_Bob(j-BobInd) = num2str(mod(char(quantizedRssiVal_Bob(j-

BobInd)+1),2)); 
end  
BobInd = BobInd + 1; % update index 

end 
% print out these values to command window 
quantizedRssiVal_Bob  

 

toBinary.m 

 
% Open file and read contents. Then convert to binary 
% open text file with hex values stored in it 
fileId = fopen('AliceCoded3Bits_Scenario3.txt'); 
binArray160 = []; % array will hold binary conversion of hex values 
for i = 1:5 

file = fgetl(fileId);            % get lines of file 
% if end of file then exit while loop and close file 
if file == -1 

fclose(fileId);  
break 

elseif strcmp(file,' ')          % empty line 
fclose(fileId); 
break 

end 
bin = hex2bin2(upper(file));     % convert hex value to binary 
binArray160 = [binArray160 bin]; % store in array of binary values 

end 
fclose(fileId);  
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hex2bin2.m (This was code was open source and found at this website: 

http://matlaboratory.blogspot.co.uk/2015/05/converting-hexadecimal-to-binary.html) 

 
% converts a value from hex to binary 
% code obtained from http://matlaboratory.blogspot.co.uk/2015/05/converting-

hexadecimal-to-binary.html 
function bin = hex2bin2(hex) 

% Make sure input is an uppercase string 
hex = upper(num2str(hex)); 
if exist('strrep', 'builtin')  

hex = strrep(hex, '0x', ''); 
else 

% Strrep not available 
if strcmp(hex(1:2), '0x'); 

hex(1:2)=''; 
end 

end 
% Separate each digit 
hex = cellstr(hex'); 
% Define lookup table 
% (:,1)=dec, (:,2)=hex, (:,3)=bin 
dhbT= {... 
'0', '0', '0000'; ... 
'1', '1', '0001'; ... 
'2', '2', '0010'; ... 
'3', '3', '0011'; ... 
'4', '4', '0100'; ... 
'5', '5', '0101'; ... 
'6', '6', '0110'; ... 
'7', '7', '0111'; ... 
'8', '8', '1000'; ... 
'9', '9', '1001'; ... 
'10', 'A', '1010'; ... 
'11', 'B', '1011'; ... 
'12', 'C', '1100'; ... 
'13', 'D', '1101'; ... 
'14', 'E', '1110'; ... 
'15', 'F', '1111'; ... 
}; 
% For each digit 
for h = 1:length(hex) 

% Find matching row in hex column (2) 
row = strcmp(hex{h}, dhbT(:,2)); 
% Replace hex value with bin value 
hex{h} = dhbT{row, 3}; 

end 
% Recombine digits 
bin = cell2mat(hex'); 

 

Other files in this folder include quantizeBits_Bob.m.  

 

  

http://matlaboratory.blogspot.co.uk/2015/05/converting-hexadecimal-to-binary.html
http://matlaboratory.blogspot.co.uk/2015/05/converting-hexadecimal-to-binary.html
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Eve: 

Eve’s code can be found in the Eve folder inside the MATLAB folder. These files includes 

quantizeBits_Eve.m and decodeBits_Eve.m. 

 

Results and Plots: 

This code can be found in the Results and Plots folder inside the MATLAB folder. 

 

errorCorrectionCheck.m 

 
%% to check that Alice and Bob have the same bits after error correction 
quantizeBits_Alice; % get Alice's quantized bits 
decodeBits_Bob;     % get's Bob's corrected bits 
% decodeBits_Eve;   % get's Eve's corrected bits 
% converting Bob's or Eve's corrected bits from string to int 
quantizedIntRssiVal_Bob = zeros(1,length(quantizedRssiVal_Bob)); 
% quantizedIntRssiVal_Eve = zeros(1,length(quantizedRssiVal_Eve)); 
for i = 1:length(quantizedRssiVal_Bob) 

quantizedIntRssiVal_Bob(i) = str2num(quantizedRssiVal_Bob(i));  
% quantizedIntRssiVal_Eve(i) = str2num(quantizedRssiVal_Eve(i));  

end 
quantizedRssiVal_Alice = quantizedRssiVal_Alice'; % changing to row vector 
difference_AB = sum(quantizedIntRssiVal_Bob - quantizedRssiVal_Alice)   % show 

differences in Alice and Bob 
% difference_AE = sum(quantizedIntRssiVal_Eve - quantizedRssiVal_Alice) % show 

differences in Alice and Eve 

 

plotsOriginalRssiValues.m: Plots raw RSSI data as well as original quantized sequences for 

Alice, Bob, and Eve.  

 

plotsCorrectedRssiValues.m: Plots the quantized bit sequences after Bob’s sequence has been 

corrected for Alice and Bob. There are sections commented out that if uncommented will plot 

Eve’s data as well.  
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Appendix B 
 

Steps for TinyOS Installation on Ubuntu: 
 

 Open terminal 

 Go to the website below and complete Step 1 under “Ubuntu Linux Environment”: 

http://www.advanticsys.com/wiki/index.php?title=TinyOS_Installation_Guide 

 Run "sudo -s" and login in as "root" user simply by typing your password after running 

“sudo -s” command in terminal 

 Continue with the rest of part 2 and 3 in website 

 In part 4, navigate to “tinyos-main” folder, or whatever you named your main folder with 

the TinyOS code and type the command “sudo gedit tinyos.sh” and this will open a blank 

template for you.  

o If you cannot create a new file in a certain directory, it most likely means some of 

the folders are locked. In this case navigate to the directory right outside that 

folder and type the command “chmod 777 <folder name>” where <folder name> 

is replaced with the name of the folder you want to unlock. Same works for 

unlocking files. 

o Inside the empty template, copy and paste the following code below, where 

<local-tinyos-path> is replaced with the complete path to your main TinyOS 

folder. 

# Here we setup the environment 

# variables needed by the tinyos 

# make system 

 

export TOSROOT="<local-tinyos-path>" 

export TOSDIR="$TOSROOT/tos" 

export 

CLASSPATH=$CLASSPATH:$TOSROOT/support/sdk/java:$TOSROOT/support/sdk/java/tinyo

s.jar:. 

export MAKERULES="$TOSROOT/support/make/Makerules" 

export PYTHONPATH=$PYTHONPATH:$TOSROOT/support/sdk/python 

 

echo "setting up TinyOS on source path $TOSROOT" 

 

o For example replace <local-tinyos-path> with /home/user/Desktop/tinyos-main 

 Make sure this is the full path  

 At this stage, switch to the YouTube video and continue from time 9:15. The "tinyos.sh" 

file you have just created is used at this point. 

o Link to YouTube video: https://www.youtube.com/watch?v=AJYjy4bSaHw  

http://www.advanticsys.com/wiki/index.php?title=TinyOS_Installation_Guide
https://www.youtube.com/watch?v=AJYjy4bSaHw
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 At time 11:52, if you have issues with running the command "sudo tos-install-jni", it may 

be that you have not installed some tools. Run, "apt-get install tinyos-tools" and then try 

running "sudo tos-install-jni" again. 

o If this still does not work make sure you have java installed and then try running 

the command “sudo apt-get update”. 

 Finish through with the video 

 If you ever get out of terminal and go back in, ALWAYS RUN “sudo -s” to make you the 

root user. 

 

First Transmission of 100 Bits: 

 

Alice: 

1. Go to this directory: tinyos-main-Alice → apps → tutorials → BlinkToRadio → 

BlinkToRadio2 

2. Follow the steps below: 

 In this directory run make telosb install, 2 

 This code initially transmits the 100 messages to Bob to come up with a secret key. 

3. Next go to this directory: tinyos-main-Alice → apps → tutorials → BlinkToRadio → 

java 

4. Follow the steps below: 

 In this directory run java RssiDemo -comm serial@/dev/ttyUSBX:telosb where the X 

is replaced with the USB port your sensor is plugged into. If you run motelist in the 

terminal you can see this. 

 This code receives the 100 messages that Bob is sending to Alice, prints them to the 

terminal, and stores them in a text file to access later. 

 

Bob: 

5. Go to this directory: tinyos-main-Bob → apps → tutorials → BlinkToRadio → 

BlinkToRadio2 

6. Follow the steps below: 

 In this directory run make telosb install, 1 

 This code initially transmits the 100 messages to Alice to come up with a secret key. 

7. Next go to this directory: tinyos-main-Bob → apps → tutorials → BlinkToRadio → java 

8. Follow the steps below: 

 In this directory run java RssiDemo -comm serial@/dev/ttyUSBX:telosb where the X 

is replaced with the USB port your sensor is plugged into. If you run motelist in the 

terminal you can see this. 

 This code receives the 100 messages that Alice is sending to Bob, prints them to the 

terminal, and stores them in a text file to access later. 

 

Eve: 

9. Go to this directory: tinyos-main-Eve → apps → tutorials → RssiDemo → RssiBase 

10. Follow the steps below: 

 In this directory run make telosb install, 3 

 This code only receives messages, doesn't transmit anything. 
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11. Next go to this directory: tinyos-main-Eve → apps → tutorials → RssiDemo → java 

12. Follow the steps below: 

 In this directory run java RssiDemo -comm serial@/dev/ttyUSBX:telosb where the X 

is replaced with the port your sensor is plugged into. If you run motelist in the 

terminal you can see this. 

 This code receives 100 messages that are transmitted between Alice and Bob, prints 

them to the terminal, and stores them in a text file to access later. 

 

Error Correcting: 
 

Alice: 

1. Go to this directory: tinyos-main-Alice → apps → tutorials → ErrorCoding → 

ErrorCoding2 

2. Follow the steps below: 

 In this directory run make telosb install, 2 

 This code transmits the 10 hex values (160 bits) for error correction to Bob. 

 Don't need to run the java file for this because Alice is only transmitting this 

sequence, not receiving anything. 

 

Bob: 

3. Go to this directory: tinyos-main-Bob → apps → tutorials → ErrorCoding → 

ErrorCoding2 

4. Follow the steps below: 

 In this directory run make telosb install, 1 

 This code sends all 0s to Alice and receives the sequence that she is sending. 

5. Then go to this directory: tinyos-main-Bob → apps → tutorials → ErrorCoding → java 

6. Follow the steps below: 

 In this directory run run java RssiDemo -comm serial@/dev/ttyUSBX:telosb where 

the X is replaced with the USB port your sensor is plugged into. If you run motelist in 

the terminal you can see this. 

 This code receives the 10 hex values (160 bits) for error correction that Alice is 

sending, prints them to the terminal, and stores them in a text file to access later. 

 
 


