
RVC-2401

Coupled Sensor Configuration and Planning
with Unmanned Aerial Vehicles

A Major Qualifying Project Report

submitted to the Faculty of the

WORCESTER POLYTECHNIC INSTITUTE

in Partial Fulfilment of the Requirements of the

Bachelor of Science Degree

in Aerospace Engineering

by

Alexandra Ballentine Joseph Calomo Jarrett Gulden

Peter Korfuzi Jake Letourneau Marina Nelson

Approved by: Raghvendra V. Cowlagi, Advisor

in Aerospace Engineering and Computer Science

by

Thomas Lamar

Approved by: Raghvendra V. Cowlagi, Advisor

Carlo Pinciroli, Advisor

AlexandraBallentine

Fair Use Disclaimer: This document may contain copyrighted material, such as photographs and diagrams,

the use of which may not always have been specifically authorized by the copyright owner. The use of

copyrighted material in this document is in accordance with the “fair use doctrine” as incorporated in Title

17 USC §107 of the United States Copyright Act of 1976.

WPI Required Statement on Undergraduate Works: This report represents the work of one or more WPI

undergraduate students submitted to the faculty as evidence of completion of a degree requirement. WPI

routinely publishes these reports on the web without editorial or peer review.

i

Abstract

The goal of this project is to create an indoor laboratory environment for the collection of multi-

modal datasets which may be used to validate path planning and sensor algorithms. The environment

should include various sensors and sensor types, multiple robotic vehicles, and should use a motion capture

system for localization. The main outcome of this MQP is a software framework capable of autonomously

controlling the robotic vehicles, collecting data, and for wireless and wired communication between relevant

entities in the experiment. The environment is relatively easy to operate for novice users, including PhD

students in the advisor’s lab and is modular to allow for a wide variety of experiments. Data gathered from

the MQP should be relevant in validation of coupled sensor configuration and planning algorithms, which

means that path planning occurs simultaneously with sensor configuration.

Multiple robotic vehicles are developed—specifically wheeled vehicles and unmanned aerial vehicles

(UAVs). The wheeled vehicles are solely coded to allow for proper navigation in the lab environment. The

UAV is built, tested, and coded by the team. In the final environment, these robotic vehicles, multiple sensor

types, and indoor localization are integrated into a software framework which can handle all communication,

control, and data collection. A series of unit tests are conducted to validate the environment, code, and

software framework. Successful tests demonstrate the feasibility of the software, the accuracy of the

implemented control algorithms, and the validity of the UAV design.

ii

Contents

1 Project Overview 1

1.1 Introduction . 1

1.2 Project Objectives and Tasks . 2

1.3 Literature Review . 4

1.4 Design Requirements, Constraints, and Other Considerations 6

1.5 Project Management . 6

1.6 Tasks and Timetables . 7

1.6.1 A-Term . 7

1.6.2 Execution . 8

1.6.3 B-Term . 8

1.6.4 C-Term . 9

1.7 Relevant Engineering Standards . 10

1.8 Methods . 11

1.9 Broader Impacts . 11

2 System Design 13

2.1 Project Objectives . 13

2.1.1 Experiment 1: Computer Vision and UAV Flight 13

2.1.2 Experiment 2: UGV Navigation . 14

2.1.3 Experiment 3: Multi-modal Sensors in a Dynamic Environment 14

2.2 Final UAV Design . 15

2.2.1 Final Components . 15

2.2.2 Wiring Diagrams . 16

2.3 Wind Tunnel Test Design . 17

2.4 Final UGV Design . 17

2.5 Final Sensor Suite . 18

2.6 Software . 18

2.6.1 Modular Experiment Software System . 18

iii

2.6.2 Software System Integration . 21

2.7 Lab Setup . 22

2.7.1 VICON Motion Capture System Setup . 22

2.7.2 Experimental Field Setup . 23

3 Design Process and Analysis 25

3.1 UAV Selection and Development . 25

3.1.1 Troubleshooting . 25

3.1.2 Battery . 25

3.1.3 Power Module and Power Distribution Board . 28

3.1.4 Motors and Propellers . 28

3.1.5 Electronic Speed Controllers (ESCs) . 29

3.1.6 Frame . 30

3.1.7 3D Printed Mounts . 32

3.1.8 Flight Controller and Autopilot Software . 33

3.1.9 Ground Station . 34

3.1.10 Micro-Controller . 35

3.1.11 Wi-Fi Board . 36

3.1.12 Modularity . 36

3.1.13 Safety . 36

3.1.14 Electrical Diagram . 37

3.2 Wind Tunnel Testing . 38

3.2.1 Mathematical Modeling . 38

3.2.2 Wind Tunnel Setup . 40

3.2.3 Data Collection . 41

3.3 UGV Selection and Development . 42

3.3.1 AWS DeepRacer . 42

3.3.2 TurtleBot3 Burger and Waffle Pi . 42

3.4 Sensing Suite . 46

3.4.1 Design Requirements . 46

3.4.2 Sensor Evaluation and Selection . 47

3.5 Software . 49

iv

3.5.1 Modular Experimental Software System (MESS) 49

3.5.2 Robot Operating System (ROS) Integration . 56

3.5.3 Software System Integration . 58

3.5.4 UAV Computer Vision . 60

3.6 Experimental Lab Set . 65

3.6.1 Hardware . 65

4 Results 69

4.1 Experiment 1 Results . 69

4.1.1 Threat Mapping with Ideal Conditions . 69

4.1.2 Threat Mapping with Non-Ideal Conditions . 71

4.2 Experiment 2 Results . 72

4.2.1 UGV Vertex Navigation using OpenCR1.0 Odometry 72

4.2.2 UGV Line Following in the VICON Environment 73

4.2.3 UGV Vertex Navigation in the VICON Environment 74

4.2.4 Multi-UGV Vertex Navigation in the VICON Environment 76

4.3 Experiment 3 Results . 77

4.3.1 Experiment Setup . 77

4.3.2 Sensor Data . 77

4.4 UAV Flight Testing . 79

4.4.1 Indoor Flight . 79

4.4.2 Autonomous flight (in SITL) . 79

4.5 Wind Tunnel Results . 80

4.5.1 Data Processing . 80

4.5.2 Data Analysis . 83

4.5.3 Conclusions and Future Work . 84

5 Conclusions 85

5.1 Conclusions . 85

5.2 Future Work . 85

A Raspberry Pi and Sensor Configuration 90

B Raspberry Pi and Flight Controller Configuration 95

v

Acknowledgements

The team would like to thank our advisors and a few key people. Professor Cowlagi guided us throughout

the project and provided key feedback and advice when we reached roadblocks. Professor Pinciroli provided

useful feedback on ROS as the software implementation. Prakash Poudel and Jeffrey DesRoches helped us

realize the desired outcomes for this MQP and the immediate use cases. Keval Shah taught the team how to

calibrate and use the VICON motion capture system. Michael Beskid allowed the team to use the network

from his research during initial testing. Finally, Professor Olinger provided invaluable help to realize wind

tunnel testing of the UAV.

vi

Table of Authorship

Section Project Work Primary Author Editor

1.1 Introduction - AB JL, MN, PK

1.2 Project Objectives - AB JL, MN, PK

1.3 Literature Review All AB, PK JL, MN

1.4 Design Requirements, Constraints,

& Considerations

- AB

1.5 Project Management All AB JL, MN

1.6 Tasks and Timetables All AB JL, MN

1.7 Relevant Engineering Standards - AB, MN

1.8 Methods - AB

1.9 Broader Impacts - PK

2.1 Project Objectives All All PK, AB

2.2 Final UAV Design AB, JG, JL AB, JG, JL

2.3 Wind Tunnel Test Design JC JC

2.4 Final UGV Design MN MN

2.5 Final Sensor Suite PK AB

2.6 Software TL TL

2.7 Lab Setup JC, JG, PK JG, PK

3.1 UAV Selection and Development AB, JG, JL AB, JL JC, JG

3.2 Wind Tunnel Testing AB, JC, JG, JL JC

3.3 UGV Selection and Development MN MN

3.4 Sensing Suite PK, MN PK

3.4 Software TL TL, MN

3.5 Experimental Lab Setup JC, JG JC, JG

4.1 Experiment 1 Results MN MN

4.2 Experiment 2 Results MN MN

4.3 Experiment 3 Results ALL TL

vii

4.4 UAV Flight Testing AB, JG, JL AB, JL

4.5 Wind Tunnel Results JC JC

5.1 Conclusions - AB, TL, JG

5.2 Future Work - JG, TL

LaTeX Formatting - All AB

viii

1 Project Overview

1.1 Introduction

Unmanned aerial vehicles (UAVs) have benefits in many civilian and military applications including

search and rescue operations, natural disaster and climate monitoring, and surveillance. UAVs can reach

remote and inaccessible areas, making them suitable for tasks that may be difficult or impossible from the

ground. For instance, UAVs may be used to determine the severity of flooding and map safe routes for

emergency vehicles. These vehicles may operate at various levels of autonomy, ranging from fully tele-

operated to fully autonomous. The primary function of autonomy is to remove or decrease the need for

remote piloting. An onboard system may correct a path to minimize the risk of a collision or even determine

the best route to a predetermined destination [1].

A key component of autonomy is path planning, which refers to finding the “best” route to a destination.

Potential criteria to identify the best path include distance, duration, obstacle avoidance, and threat

avoidance. Another critical aspect is remote sensing, which refers to acquiring data via sensor readings.

Some quantities of interest may be images, chemical composition of air, and terrain topography. Remote

sensing may have the sole purpose of gathering data for future use, such as climate monitoring. However,

remote sensing may also provide the necessary information for path planning [2].

A recent innovation in this field, coupled sensor configuration and path planning (CSCP), allows for

faster and more accurate path planning. Generally, path planning and sensor configuration are uncoupled,

meaning that gathered sensor data is collected and then passed to a path planning algorithm. In two-

dimensional path planning, the challenge of a robotic vehicle navigating from a starting location to a

destination models this process. The vehicle might first map all the obstacles between its location and

its desired location. After doing so, it determines the best possible path. In CSCP, sensor positioning and

path planning occur simultaneously. The control algorithm determines the most relevant information and

directs the sensors accordingly, making decisions while it learns about the environment. Consequently, the

vehicle only gathers the most applicable information, which decreases processing requirements for sensor

data.

This project aims to create a modular experimental system to verify coupled sensor configuration

and autonomous path planning theory and algorithms. Once completed, the developed lab set-up will be

invaluable to future researchers, including PhD students at the university. While algorithms may originate

1

from simulations, real-world experimentation provides critical validation. Therefore, our experimental

setup can become invaluable to future users. We focus on configurability to allow users to add or replace

sensors, change the number of active vehicles, and adjust the experimental scenario with minimum software

development.

1.2 Project Objectives and Tasks

This project aims to design and run a set of experiments that demonstrate the modular, configurable

capabilities of the lab and software infrastructure that we design and develop. The purpose of this experiment

is to verify CSCP theory and algorithms, upon other applications, and will involve the integration of various

sensors and vehicles according to a desired experimental scenario. To that end, the expected outcomes

encompass the creation of individual vehicles as well as holistic integration. The following list details the

expectations:

1. Flight demonstration of at least one UAV, which is capable of multiple sensor payloads, indoor flight,

and communication with a ground station to relay sensor data.

2. Identification of aerodynamic and flight mechanical models of the UAV, followed by validation

through flight testing.

3. Demonstration of a fleet of 2 UAVs with the above capabilities.

4. Demonstration of autonomous flight of at least one UAV, including obstacle avoidance.

5. Development of on-board path planning for at least one wheeled robotic vehicle.

6. Design and implementation of at least one experimental set-up that is capable of satisfying the project

goals, including the installation of multi-modal sensors and multiple robotic vehicles.

7. Demonstration of a software framework that can do the following: collect and store data, facilitate

wired and wireless communication between entities, and control wheeled vehicles and UAVs.

Based on these expectations and stakeholder interviews with our faculty advisor and PhD student

advisors in the Autonomy, Controls, and Estimation (ACE) Lab, we formulate a statement of purpose for

the project. The project aims to create and demonstrate a modular lab set-up to test CSCP theory and

algorithms. This imposes two main guidelines on our work: to develop all necessary vehicles, sensors,

and communications; and to create a set of scenarios that will allow us to integrate multiple vehicles and

multi-modal sensors. To address this first goal, we develop two UAVs, UGVs, and infrastructure to gather

2

data from multi-modal sensors. Additionally, we create a software package that can coordinate actions and

data collection between all involved vehicles and sensors. In conjunction with these overarching goals, we

also flight-test a UAV in a wind tunnel to describe its aerodynamic characteristics. Advisor and stakeholder

feedback allow us to identify two key scenarios. The first critical scenario is that of mapping a threat field.

We realize our second scenario should mimic ESCAPE, which is discussed in more detail in the literature

review. To obtain these goals, we propose five high-level tasks to be completed over three terms.

The overarching tasks are as follows: design the experiment, orient ourselves in the lab, develop a

quadcopter and aerial fleet, select and familiarize ourselves with a model of ground vehicle, and develop a

modular software framework. The first task lays out the steps to understand the project and its final goals.

In this process, we meet with the PhD student advisors–Jeffrey DesRoches and Prakash Poudel, determine

experiment design criteria, determine necessary sensor types, and finally propose the experimental design.

To accomplish the second task, we familiarize ourselves with the provided equipment, specifically the

VICON motion capture cameras. We mount and calibrate these cameras for future use with the experiments.

The third task leads us to the analysis and troubleshooting of prior MQP UAVs. We achieve stable

flight, and then use the developed quadcopter to advance our project. This quadcopter becomes capable

of waypoint following and obstacle avoidance. We then build a second quadcopter and determine the

aerodynamic coefficients of these UAVs. In parallel with this task, we evaluate and configure different

ground vehicles. These vehicles are attached to VICON for use as an indoor positioning system and

to demonstrate autonomous path planning. Further, the ground vehicles selected are retrofitted with any

necessary sensors. Finally, we develop a modular software framework that can communicate with all

necessary vehicles, interface with sensors, manage data, and implement necessary controllers.

We then develop a task schedule—shown in Table 1.1—that describes milestones throughout our MQP.

Table 1.1: Main project tasks and milestones

Task A-Term B-Term C-Term
Task #1:
Design

Experiment

Meet with
stakeholders; Design

experiment
Task #2:
VICON

Calibration

Familiar ourselves
with lab space; Begin

mounting cameras

Mount and calibrate
all cameras

3

Task #3:
Quadcopter &

Fleet
Development

Analyze existing
UAVs Achieve stable flight

Develop waypoint
following and

obstacle avoidance;
Build a second UAV;

Determine
aerodynamic
coefficients

Task #4:
Ground
Vehicles

Determine ground
vehicle type

Select one ground
vehicle and develop

basic motion control;
Use VICON as

indoor positioning

Demonstrate
autonomous path

planning

Task #5: Sensor
Integration

Determine options
for a complete sensor

suite

Determine
communication

protocol for sensors

Conduct sensor
research and develop

code to analyze
sensor outputs

Task #6:
Modular
Software

Outline software
requirements,

framework, and
useful libraries

Finish determining
software structure
and begin writing
and testing code

Complete software
code and integrate

software and
components

1.3 Literature Review

As UAV technology continues to evolve, the demand for new algorithms and data processing methods

has grown. Today, UAVs have been incorporated into more and more applications, such as search and rescue,

remote surveying, and industry. CSCP presents a novel method of handling large amounts of possible

sensor data. We investigate prior work regarding sensor data collection and analysis to orient the reader

regarding current technology and limitations. Key topics include sensor fusion, dynamic sensor activation,

simultaneous localization and mapping (SLAM), and autonomous path planning algorithms. In the last

category, we consider interactive planning and sensing (IPAS), and prior work done regarding CSCP. Finally,

we consider experiments conducted to validate sensor and path-planning algorithms.

Sensor fusion is the process of combining measurements and data taken from multiple sensors. These

sensors may be of different types and often have different characteristics—sampling rate, accuracy, and data

type. Typical sensor types include inertial measurement units (IMUs), visual cameras, LiDAR, and radar.

An example of sensor fusion may be an experiment that considers three sensors, each of which varies in

characteristics. The challenge of sensor fusion is weighing the relevance and accuracy of these independent

measurements [3]. However, there are generally processing limitations that restrict data collection and

analysis. Yin and Lafortune [4] proposed a policy that will turn on and off sensors to accomplish a goal, for

4

instance, to control a system. Ideally, this sensor activation policy should optimize sensor input with respect

to system characteristics. While the details of this policy are not relevant to this paper, it is important to note

the need for a rule that limits energy and bandwidth consumption.

Once acquired, sensor data may be used in many different ways, such as SLAM. In SLAM, the vehicle

does not know its surroundings, so it must map them while navigating the environment. Previously, there

have been many iterations of SLAM using various sensors, including sonar sensors, IR sensors, laser

scanners, and visual cameras. SLAM algorithms track identified features to both create a map and localize

the vehicle within its known map. This technique is often used as a complement to autonomous path

planning. Further, it can help eliminate error sources since the vehicle is constantly updating its position and

recognizes when it has returned to a previously visited location [5]. Recently, SLAM has been adopted for

UAVs, especially in GPS-denied environments. Onboard a UAV, it is computationally expensive to store a

predetermined map of the environment. Instead, UAVs can rely on SLAM to maintain a local map, including

only relevant landmarks. SLAM creates opportunities for further applications, including applications when

GPS may be unavailable or unreliable and instances in dynamic environments [6].

Algorithms that extend SLAM’s capabilities are IPAS and CSCP. SLAM restricts itself to localization

and mapping. Both IPAS and CSCP develop an understanding of the surrounding environment for path

planning. In IPAS, the algorithm places a finite number of point-wise sensors to provide the best information

for path planning. Before moving into the environment, a few sensors might be placed according to the

algorithm, and the vehicle would analyze the results. A use case for this might be in a threat field, where the

vehicle tries to navigate with minimum exposure. IPAS has been shown to reduce the computational cost of

path planning while converging closer to the absolute best path [7]. CSCP couples these two steps. In IPAS,

the sensor measurements are taken first, while in CSCP, the sensor measurements are taken simultaneously

with the path planning algorithm. This allows the algorithm to request new information during a mission as

needed [8].

Recent advancements in sensor fusion require data sets for experimental validation. The Air Force

Research Laboratory conducted an experiment to test and validate multi-modal sensor and data fusion

methods. From this experiment, they released a data set–Experiments, Scenarios, Concept of Operations,

and Prototype Engineering (ESCAPE)–that brings together six sources of data over various outdoor

scenarios. The ESCAPE data set focuses on vehicle tracking while including typical outdoor disturbances

[9]. In this MQP, we aim to provide an indoor dataset for similar research purposes. The goal of autonomous

path planning is generally to do more–create more efficient navigation plans–with less data. This demand

comes from limitations on real-time processing information and bandwidth. This MQP will provide a small-

5

scale experimental set-up that can be used for the validation of algorithms that will advance autonomous path

planning in the future.

1.4 Design Requirements, Constraints, and Other Considerations

A few primary design requirements constraint the outcome of the MQP. Of those, the most important are

the requirements outlined in Section 1.2. The final configuration of the experiment should the needs of ACE

Lab graduate researchers. This imposes the requirement of being able to collect sensor data and configure

and run multiple vehicles.

On the subsystem level, each actor vehicle, sensor, and software component are subject to their own

constraints. Both the UAV and UGV must send and receive wireless communications without significant

network delays and must navigate consistently and reliably. The UAV must support a variety of sensors and

a Raspberry Pi to send and receive sensor data. Regarding sensors, these must either be suitable for a fixed

location or be small and light enough to install on the UAV. Each sensor must send and receive data in such

a way that is compatible with the developed software system.

The software system must be self-sufficient and takes a minimum number of user inputs. These inputs

must be enough that the software can run a variety of different experiments, but they must be sufficiently

limited that the software is easy to use. We assumed ease of use to follow these parameters: someone with

limited coding knowledge can configure and run an experiment. This does not mean that there must be no

coding involved: simply there should be as little as possible. In practicality, the user will likely input a

JSON file with specifications, but they will not have to open and modify aspects of the code (for a typical

use case).

Since the lab requires key card access, the only safety concerns pertain to authorized, educated users.

As a result, only the UAV is considered as a potential threat. The secondary lab setup concern entails the

integrity of the VICON cameras. These cameras must be mounted securely on the wall, out of reach of

tampering by an incautious user (reducing the potential for damage or accidental miscalibration), and must

be sufficiently protected from all actor vehicles in the experiment.

1.5 Project Management

We divided tasks among team members as much as possible. Through the first part of the project, we

worked mostly synchronously to plan our experimental scenarios and to understand the complete scope of

the project. Once this was accomplished, we began to split into specialized sub-teams:

We split into sub-teams to allow members of the MQP to specialize in areas and therefore provide

6

Table 1.2: Team member responsibilities for each part of the project

Task A-Term B-Term C-Term
Task #1: Design

Experiment
ALL - -

Task #2: VICON
Calibration

JC, JG JC, JG -

Task #3: Quadcopter &
Fleet Development

AB, PK, JL,
MN

AB, JG, JL AB, JC, JG, JL

Task #4: Ground Vehicles MN MN MN
Task #5: Sensor

Integration
PK PK PK, MN

Task #6: Modular
Software

TL AB, JC, TL JC, TL, MN

targeted efforts. Within each sub-team, the members coordinated times to work on their parts of the project

and to make progress. We met as a whole team twice weekly for most of A-term with our advisors. We also

held weekly team meetings for the first half of the term to discuss our proposed outcomes for the project. In

B- and C-term, we met once weekly with our advisors. We held all team meetings periodically, specifically

when we needed to meet before a deadline or to make a major decision. Outside of these times working

together, we used text messaging as our primary internal communication method. To communicate with our

advisors and store important team documents, we used Microsoft Teams and Microsoft SharePoint.

1.6 Tasks and Timetables

At the beginning of each term, we set out a proposed timetable for what we wanted to accomplish. In

this report, we show our actual timeline and comment on the differences between our desired and actual

timelines.

1.6.1 A-Term

The Table 1.3 shows a weekly breakdown of our goals in A-Term. Originally, we wanted to have the

VICON cameras fully mounted and the UAV flying by the end of A-term. Due to delays and unforeseen

circumstances, we set less ambitious goals. In the lab, we found that we needed to wait for materials to arrive

and that some of our original plans were not optimal. For instance, the studs in the lab are made of metal,

meaning that we had to shift to drywall mountings for the cameras. Additionally, we were expecting that we

could easily connect the UAV and begin working where the 2022 MQP had left off. However, we had issues

consistently connecting the UAV from Mission Planner and QGroundControl, two well-known software

options for UAV flight control. Once we were able to connect, we found new problems not mentioned in the

2022 MQP report.

7

Table 1.3: A-term actual timeline

Week
Task #1:
Design

Experiment

Task #2:
VICON

Calibration

Task #3:
Quadcopter
Development

Task #4:
Ground
Vehicles

Task #6:
Modular
Software

Week 1 Propose tasks
and outcomes.

Week 2 Refine tasks
and outcomes.

Week 3
Design

experimental
scenarios

Determine a
system to

wall-mount the
VICON

cameras and
manage cables

Define software
requirements
and outcomes

Week 4
Refine

experimental
scenarios

Connect to the
UAV and begin

flight testing
Establish a

framework for
communication

with vehicle
controllers and

sensorsWeek 5
Acquire parts
and measure

the lab

Troubleshoot
the UAV

Week 6

Mount VICON
cameras

Research
necessary

integration with
existing
softwareWeek 7

Acquire an
AWS

DeepRacer to
determine if it

is suitable

1.6.2 Execution

1.6.3 B-Term

Table 1.4 shows our progress throughout B-Term. Overall, we met most of our goals and exceeded some.

We successfully on-boarded a UGV and performed a wall-following experiment. Further, we demonstrated

the sensing capabilities and data collection of a Raspberry Pi camera. Originally, we hoped to finish the

UAV this term and begin our experiments. Our main roadblock wit the UAV was achieving stable flight.

Without stable flight, we could not substantially advance any of the outcomes requiring the UAV. Aside from

this setback, we accomplished our goals.

8

Table 1.4: B-term actual timeline

Week
Task #2:
VICON

Calibration

Task #3:
Quadcopter
Development

Task #4:
Ground
Vehicles

Task #5:
Sensor

Integration

Task #6:
Modular
Software

Week 1
Mount VICON

cameras

Check UAV
components

and order new
parts

Determine if
AWS

DeepRacer is
suitable.

Acquire a
Raspberry Pi
and camera

Installation of
necessary
external
software

Week 2 Conduct thrust
stand testing

and analyze the
UAV frame

Connect RPi
and camera and

begin unit
testing

Week 3
Calibrate
VICON
cameras

Setup ground
station desktop.

Determine how
to communicate

Establish
MESS use
cases and

system needs

Week 4

Rewire UAV
onto new parts
and test new
configuration

Develop
waypoint

navigation ROS
package for
TurtleBot3.

Set up ROS
environment

Complete
MESS software

architecture
planningWeek 5

Determine the
reason for

unstable flightWeek 6

Gather
necessary
external
libraries

Week 7 Develop
line-following
ROS package
for TurtleBot3

and collect
experimental

data using
VICON
feedback

Implement
VICON Bridge

Week 8

Code software
solution that
implements

planned
software

architecture

1.6.4 C-Term

Table 1.5 shows our accomplishments each week of C-Term. By the end of the term, we met most of

our project goals. We succeeded in running multiple experiments to validate our configuration and coding.

However, we were unable to connect the flight controller to mavros for autonomous flight.

9

Table 1.5: C-term actual timeline

Week
Task #1:

Implement
Experiment

Task #3:
Quadcopter
Development

Task #4:
Ground
Vehicles

Task #5:
Sensor

Integration

Task #6:
Modular
Software

Week 1

Assemble UAV
with new

components;
simulate a UAV

mission with
ArduPilot

Add code to
calibrate
TurtleBot

sensors for
occulsion from

VICON

Create a basic
GUI; test class

structure

Week 2 Construct a lab
environment

Fully develop
code to model a
simple mission
in simulation

Test TurtleBot
code in the lab
environment

Map recorded
images to lower

resolution

Implement
basic mission

planning
capabilities

Week 3

Finish
assembly and
calibrate both

UAVs

Fix calibration
issues and
improve
logging

capabilities

Connect
multiple images
together; begin
using RPi NoIR

camera

Create
functionality

for user to save
and load

experiments

Week 4

Calibrate UAV;
connect the

flight controller
to mavros;
begin wind

tunnel testing

Implement
launch files to

allow for
vehicle

differentiation

Map visual
images to threat

intensity
readings

Add support for
custom

messages and
creating launch

files

Week 5
Improve lab
environment;

conduct
Experiment 1

trials

Troubleshoot
UAV; Complete

wind tunnel
testing

Build and
configure new

ground vehicles

Improve vision
mapping

Improve
functionality to

launch ROS
and collect dataWeek 6

Week 7 Conduct
Experiment 3

Obtain stable
flight;

troubleshoot
connection to

mavros

Use software to
run experiment

1.7 Relevant Engineering Standards

Robot Operating System (ROS) is an open-source framework standard used for control and

communication management in robotic applications. A ROS environment consists of nodes that serve

different operational purposes. Each node publishes and subscribes to topics that communicate data as

10

ROS messages. We use the ROS Noetic distribution to control vehicles and communicate data between a

ground station, vehicles, and sensors.

PX4 and QGroundControl are open-source UAV software. PX4 is a flight controller software that we

upload to the UAVs for onboard stabilization and mission planning. QGroundControl is a software that we

use as a ground station to handle UAV calibration and testing.

1.8 Methods

Table 1.6: Sections of the project and corresponding methods

Subsystem Process Method

UAV Creating secure wiring
connections Soldering

UAV Designing and printing
frame mounts

SOLIDWORKS and 3D
printing

UAV Analyzing wind tunnel
data MATLAB

UGV Analyzing performance
and paths MATLAB

Sensors Image processing MATLAB

1.9 Broader Impacts

The development and advancement of UAV technology and navigation techniques lead to several

impacts over economic, environmental, and social contexts. As innovations in autonomy progresses,

UAVs will become more prevalent in societies and will disrupt many sectors of industry. This growing

market carries with it noticeable social impact: increased search and rescue capabilities, rural access

to basic needs [10], autonomous infrastructure inspections [11], and many more. In 2023, Zipline, an

autonomous UAV-based company operating an expansive logistics and delivery system, released a health

impact report highlighting how its fixed-wing, autonomous UAVs have delivered 1.5 million vaccines in

parts of Nigeria with high rates of zero-dose children and contributed to a 67% reduction of blood products

wasted in their Rwandan operating regions [12]. Whether it is delivery, monitoring, or communication

systems, autonomous UAVs play key roles in driving social impact. However, socioeconomic concerns

exist as well. Mohammed Yagot and Brenno Menezes suggest that autonomous UAV capabilities render

tasks once difficult to standardize now able to be standardized, resulting in a new level of automation.

Similar to the industrial revolution, this can result in a loss of jobs or migration of labor markets [13].

Admittedly, while autonomous UAV technologies can augment human jobs as much as replace them, there

11

is still the issue of income disparity as low-skilled worker incomes stagnate or decrease in a booming

economy enabled by highly-skilled workers that develop and leverage these innovations [13]. Ultimately,

disruptive technologies like autonomous UAVs introduce both benefits—such as improved safety—and

drawbacks—such as exacerbated economic disparities. Mitigation efforts are active talking points in the

literature as policies, regulations, and best practices emerge and evolve with the evolution of this technology.

12

2 System Design

2.1 Project Objectives

Through information gathered from stakeholders, we design experiments to both allow for incremental

testing and integration and to satisfy the required outcomes. We prioritize phased testing to manage the

complexity of the deliverable. In this section, we present the three experiments that guide the system design

of this project, including component selection.

2.1.1 Experiment 1: Computer Vision and UAV Flight

In the first experiment, we demonstrate a UAV’s flight capability and a visual sensor by recording a threat

field. We define this threat field as a grid arrangement of differently colored squares. This phase requires a

single UAV equipped with a visual-light camera. The vehicle should photograph the testing environment—a

grid of construction paper. From this experiment, we measure a grid of RGB values to recreate a threat field.

For details regarding the actual implementation of this experiment, refer to Section 4.1.

Figure 2.1: Experiment to validate the threat field identification capabilities of the UAVs.

13

2.1.2 Experiment 2: UGV Navigation

We design the second experiment to demonstrate the autonomous path-planning ability of an unmanned

ground vehicle (UGV) in an obstacle field. This phase ensures familiarity with the UGV and can operate

independently of the first phase. The obstacle field should consist of three-dimensional objects, such as

cardboard boxes, set on the ground in a discrete grid arrangement. Rather than sensing the obstacle field,

the UGV knows the location of all obstacles. We design this phase with future criteria in mind, such as data

streaming a UAV-sensed obstacle field to a UGV and capabilities for a UGV to reach a dynamic target. For

details regarding the implementation of this experiment, refer to Section 4.2.

Figure 2.2: Experiment to verify the ability of a ground vehicle to autonomously navigate through an obstacle field.

2.1.3 Experiment 3: Multi-modal Sensors in a Dynamic Environment

Our final experiment aims to combine the previous two phases. This phase has multiple ground vehicles

navigating on pre-determined paths. We equip one UGV with a heating element to give it a unique heat

signature. Two UAVs fly within the environment, one equipped with an infrared camera and another with

a visible light camera. We also use a static visual light camera to collect video. For details regarding the

implementation of this experiment, refer to Section 4.3.

14

Figure 2.3: Experiment to validate our software system, robotic vehicles, and lab environment

2.2 Final UAV Design

2.2.1 Final Components

The final UAV should be capable of multiple sensor payloads, a reasonable flight time, and stable flight.

For more details of the selection of components, refer to Section 3.1. Table 2.1 details the final components

we choose.

Table 2.1: Final UAV Components

Components Specification

Frame 250MM Quadcopter QAV250 Drone Frame
(Carbon Fiber)

Frame Standoffs 35 mm M3 Female Threaded Hex Standoffs

Fasteners

M3x16x16 mm
M3x19x19 mm
M3x20x20 mm

M3x30.5x30.5 mm
Propellers 5 inch diameter, 3 inch pitch, 3 blades

15

3D Printed Mounts For power distribution board, power module,
microcontroller, and flight controller

Bullet Plugs 2 mm male and female

Heat Shrink Heat shrink tubing kit of various diameters as
well as 3/8 inch tubing

Flight Controller ARKV6X, with bus
Microcontroller Raspberry Pi
Power Module ARK PAB Power Module

Battery Zeee 5200mAh 50C 11.1V RC Lipo Battery
Power Distribution Module Matek PDB-XT60

Motors T-MOTOR MN2206 KV2000 Brushless
Electric Motors

Electronic Speed Controllers (ESCs) Hobbypower Brushless 20A BLheli-S ESC
Oneshot125

ESC Wires 20AWG Silicone wire
Servo Adapter Servo Adapter: ARK Electronics

Extension Cable
2 Pairs ShareGoo 10cm 100mm XT60 Male

Female Connector Plug RC with 12AWG
Silicon Cable Wire

Battery to Module Adapter Deans T Plugs to XT60 Adapter Connector
Male Female for RC Lipo Battery Charger

2.2.2 Wiring Diagrams

Figures 2.4 and 2.5 show the wiring diagram for our UAV. Figure 2.4 shows the proper wiring for the

power module, power distribution board, and the motors. Figure 2.5 shows the proper connection between

the flight controller, servo adaptor, and the on-board Raspberry Pi 3. Note that the data-streaming connection

between the flight controller and Raspberry Pi is correct according to documentation, but we are unable to

experimentally validate this connection. For more information, see Section 4.4.2.

Figure 2.4: UAV Wiring Diagram for Power Distribution

16

Figure 2.5: UAV Wiring Diagram for Flight Controller and Raspberry Pi

2.3 Wind Tunnel Test Design

Figure 2.6 illustrates the configuration of the UAV in the wind tunnel. We elect to mount the UAV on

a thrust stand and install this setup in the wind tunnel. By operating the wind tunnel at different airspeeds,

we gather data regarding the generated force and torque of the UAV. For more detail on our mathematical

model, testing process, analysis, and results, see Sections 3.2 and 4.5

Figure 2.6: Final Wind Tunnel Setup

2.4 Final UGV Design

The final UGV selection consists of one TurtleBot3 Burger and four TurtleBot3 Waffle Pi. The UGV

should be capable of supporting multiple sensor payloads and navigating between vertices in a relatively flat

17

environment. Table 2.2 details the final components of the TurtleBot3 Burger and Table 2.3 details the final

components of the TurtleBot3 Waffle Pis.

Table 2.2: Final TurtleBot3 Burger Components

Components Specification
Battery Zeee 2200mAh 35C 11.1V RC Lipo Battery

Microcontroller Raspberry Pi 3 Model B
Sensors 360 Laser Distance Sensor LDS-01

Table 2.3: Final TurtleBot3 Waffle Pi Components

Components Specification
Battery 1800mAh 11.1V Lipo Battery

Microcontroller Raspberry Pi 4 Model B/4GB

Payload 2x Plate Support M3x35mm
12V 12W Flexible Polyimide Heater Plate

Sensors 360 Laser Distance Sensor LDS-02
Raspberry Pi Camera Module 2

The full parts list is found in ROBOTIS’s TurtleBot3 e-Manual [14]. Two of the four TurtleBot3 Waffle

Pis house the payload suite. The remaining two TurtleBot3 Waffle Pis utilize the Raspberry Pi Camera

Module 2 Noir.

2.5 Final Sensor Suite

Table 2.4 shows our final sensor suite. For more details on our selection criteria, sensor considerations,

and justifications regarding these choices, refer to Section 3.4.

Table 2.4: Final Sensor Selection

Sensor Type Sensor Model
Visual Light Raspberry Pi Camera Module V2

Infrared Raspberry Pi Camera Module NoIR V2
Radio Transmitter Ettus Research USRP B200mini

Radio Receiver ADALM-Pluto SDR

2.6 Software

2.6.1 Modular Experiment Software System

We aim to create a custom software to assist in running the experiments. The software must be

a centralized application to plan experiments, collect data, and command vehicles. To provide future

18

Figure 2.7: MESS Input and Output Diagram

versatility, the software should be modular to allow a user to easily set up and perform experiments

with different vehicles and sensors. Due to its modular nature, we named this application the Modular

Experimental Software System (MESS).

2.6.1.1 Design Requirements

The software design must take into account three system requirements: mission planning, centralized data

collection, and vehicle command.

Mission Planning The first and primary goal of the MESS is to serve as a centralized location to plan and

run experiments while minimizing the need for the user to write new code. To achieve this, certain inputs

are required from the user. We decide the user should provide information on the UAVs, UGVs, sensors,

and mission plan. This is visualized in Fig. 2.7.

A mission plan consists of tasks and times to perform those tasks. A task is an action to be performed

by a sensor or a vehicle. Having a UAV takeoff, a UGV navigate to a way point, or a camera take a picture

are all examples of a task.

Centralized Data Collection The MESS serves as a centralized location for data collection. Because

experiments involve multiple vehicles and sensors, pulling and synchronizing data from each source

separately would be time-intensive and cumbersome. The MESS solves this problem by accumulating all

19

Figure 2.8: MESS Class Diagram

data in a central location. This data can be then post-processed in a program of the user’s choice.

Vehicle Command Vehicle command is the ability of the MESS to control the positions of the UAVs and

UGVs. This is necessary for the MESS to be able to execute missions.

2.6.1.2 Mission Planning Implementation

The MESS is a desktop application programmed in Python. In order to achieve the needs outlined in the

previous the section need to be satisfied within a code framework. Figure 2.8 shows the class diagram for

the MESS that meets the design requirements.

Experiment The Experiment Class is the central class of the MESS software. It consists of a mission to

perform, vehicles used in the experiment, and sensors used in the experiment that are not on a vehicle.

Vehicle The vehicle class corresponds to physical vehicles used in experiments. It holds each vehicle’s

sensors, IP address—for ROS communication, and name used in the VICON environment.

Sensor The sensor class corresponds to sensors used in the experiment. It holds a string for each sensor

that represents the path to its ROS topic. This allows the MESS to access the data published by the sensor.

Mission A mission is a collection of tasks to be performed within the experiment. It consists of multiple

vehicle missions, which are aggregated to create a master collection of tasks.

Vehicle Mission A vehicle mission is a collection of tasks to be performed by a specific vehicle.

20

Task A task consists of an action and a time to perform that action. Actions are represented as a string

that corresponds to a ROS message. The task also tracks where and when it needs to send the message.

Task Handler A task handler is the piece of code that executes the tasks. It connects to a ROS node to

either publish or subscribe to a topic. If publishing to a topic

2.6.2 Software System Integration

In order to execute experiments, our software systems integrates with many pre-existing external

software programs through established communication protocols. Figure 2.9 shows a graphical

representation of the different software components we use within our system.

Figure 2.9: Software System Integration

PX4 PX4 is an open-source flight control software that operates on many different vehicle controllers. We

initially opted to use ArduPilot due to its versatility of being supported on many different flight controllers

as well as ample documentation when compared to PX4, but we only achieved stable flight when using the

PX4 software.

Gazebo Gazebo is a simulation tool used to test the MESS in a virtual environment. It can simulate both

ground and aerial vehicles and interfaces with ROS. When given commands to a ROS node, it is able to

simulate the movement of a turtle bot. Since MESS interfaces with ROS nodes, a Gazebo simulation can

provide proof that the MESS interface is successful in integrating the environments, independent of any

hardware complications that may interfere.

MAVLink MAVLink is a communication protocol for sending data to UAVs and systems that control

UAVs. It is designed to be lightweight and is widely used in industry.

VICON The VICON system is a motion capture system that utilizes multiple high speed cameras to

provide positioning data for vehicles that operate in the lab environment. See Section 3.6.1.

21

VICON Tracker VICON Tracker is proprietary software released by Vicon Motion Systems that is used

for tracking objects within the VICON environment.

ROS Master ROS Master is a centralized location that has access to all the ROS nodes and can publish

and subscribe to every topic from a centralized location.

ROS Nodes ROS Nodes are instances of the ROS environment that can publish and subscribe to different

topics. Nodes on UGVs allow for commands to be sent to the vehicle controller. ROS Nodes also allow for

sensor data to be transmitted from the Raspberry Pis to ROS Master.

2.7 Lab Setup

2.7.1 VICON Motion Capture System Setup

The available lab space is a 34 x 24 foot room with roughly 10 feet of usable air space. The room

has inherent obstacles including five support pillars, which are blind spots for the VICON cameras. This

helps simulate an outdoor environment where natural obstacles are present, such as trees or buildings. In

addition to the pillars, parts of the room contain low hanging vents and pipes which also create a non-ideal

environment. The lab has three solid walls and a fourth open “wall” where we define the edge of the usable

floor space. Figure 2.10 provides a detailed top view of the lab space, where the dotted line represents the

open wall.

Figure 2.10: Lab environment setup

The final lab setup features a VICON motion capture system with mountings designed and constructed

22

by the team. It features ten wall mounted VICON Valkyrie motion tracking cameras evenly spaced around

the room. We clamped each camera onto 4-foot long, 1-inch diameter aluminum pipe mounted through

stainless steel wall/ceiling brackets. The connecting wires run through a wall mounted wire sleeve to the

ground station switch box to avoid floor clutter. Excess wiring is coiled and hung beneath each camera on

wall mounted j-hooks, which maintains open floor space.

The ground station consists of two computers, one exclusively for running the VICON Tracker software

and the second for running all other software regarding communication with UAVs or UGVs.

2.7.2 Experimental Field Setup

The experimental field lies within the 5.8 x 4.3 m rectangular space on the floor and is free of obstacles.

This is an adequate space to construct an experimental field. A key aspect of the field is that it contains

four independent circuits that the UGVs traverse without collision (Figure 2.11). These roadways for UGVs

are linear with perpendicular intersections, apart from a two-lane roadway which is at a 45 degree angle.

One- and two-lane roads are approximately 0.6 and 0.9 m wide, respectively. A Turtlebot3 Waffle, with

dimensions less than 0.3 m x 0.3 m, is thus able to traverse the roadways with adequate clearance.

Figure 2.11: Experimental field setup floorplan.

Obstacles use small, black cardboard mailer boxes as corner posts. Duct tape wraps around the perimeter

to form a barrier that is in line with the Turtlebot3’s LiDAR sensing plane for navigation purposes (Figure

2.12). Additional mailer boxes are internally aligned with the duct tape perimeter to prevent sagging and

deterioration of the obstacle formations. Taller obstacles are constructed from black foam core boards to

provide visual interference with VICON motion capture system. One tunnel achieves almost complete visual

23

interference with the VICON cameras for testing purposes. This experimental field is satisfactory for the

scope of this MQP, enabling a modular and configurable experimental setup. However, it cost approximately

$100 in materials and is subject to gradual deterioration.

Figure 2.12: Constructed experimental field environment.

A more robust, modular approach could utilize wooden posts—such as a square end baluster—that are

connected to a wooden base with wood glue. These posts can be cut to various sizes to adjust the maximum

wall height. The base could be secured via heavy duty mounting tape to the lab floor. This setup would be

more resistant to forces inducing tipping or rotation. These forces stem primarily from any tight perimeter

wrapping around the wooden posts. Typical materials are duct tape or a nonadhesive tape-like material. This

wrapping may contain more than three tiers, and may support vertical foam core panels which create high

standing walls and barriers to the VICON field of view.

24

3 Design Process and Analysis

3.1 UAV Selection and Development

To start the MQP, we have three UAV options: use one created by the 2022 MQP, one created by the

2018 MQP, or create a new design. The 2018 UAV uses Pozyx as its positioning system, a Raspberry Pi,

and a PixHawk Pixracer flight controller. The 2022 UAV attempted to integrate with the VICON motion

capture system and uses an ODROID and a PixHawk 4 Mini flight controller. Given our objectives we will

reuse the 2022 MQP’s UAVs since it provides a convenient starting point and was already designed with the

intention of integrating with the VICON system.

3.1.1 Troubleshooting

According to the report and videos from the 2022 MQP, the UAV was never capable of prolonged stable

flight. The UAV was able to lift off and fly briefly, but quickly became unstable and needed to land before

crashing. The first task is to determine the cause of any instabilities. We first consider the mass distribution,

however, when we try to test fly the UAV, it is unable to lift off and nearly flips over. This leads us to believe

that the issue is likely more fundamental than the mass distribution given that the flight controller should

compensate for reasonable mass imbalances. Consequently, we investigate the hardware and software to

pinpoint any issues. We then look into the power distribution board, analyze the ESC outputs, as well as

the motor capabilities. Ultimately, we conclude that the entire setup is faulty. The batteries do not have

their full capabilities, the flight controller is broken due to a crash from the previous users, and ESCs do

not communicate well with the flight controller. We decide to replace these components, and flash a new

firmware onto the flight controller. We start by using ArduPilot but switch to PX4. With these changes we

achieve stable flight.

3.1.2 Battery

The 2022 MQP selected a 4500 mAh 3s (11.1 V) lithium polymer (LiPo) battery manufactured by

HOOVO. They selected their battery based on 15 minutes of flight time. Following several failed flight

tests and discovering the batteries have exceeded their life expectancy, we decide to order two new batteries

with similar specifications but a slightly higher capacity. The batteries we choose are 5200 mAh lithium-ion

polymer battery manufactured by Zeee. These are approximately the same size and shape as the HOOVO

battery, meaning that they also fit well on the UAV frame.

When first charging the batteries, we improperly connect them to the charger, which we later realize

25

led to many of our thrust and motor issues. Improper charging led to unbalanced and depleted batteries,

which cause a variety of power issues. This is reflected in the motor outputs, which are shown in Figure 3.1

and Figure 3.2. Figure 3.1 shows the pulse width modulation (PWM) signal of the motors, a quantity that

is directly linked to the RPM of the motors and therefore the thrust of the motors. In the test, we evenly

increase the throttle until maximum power. However, the PWM signals begin to diverge quickly. Only one

motor outputs full power, while two output slightly lower values, and the last motor quickly drops to the

minimum PWM value that corresponds to spinning.

Figure 3.1: PWM Motor Outputs with Depleted Battery

Figure 3.2 shows substantially improved motor outputs while using the new and fully charged batteries.

While the PWM outputs are not uniform, they are approximately the same value, can sustain maximum

power (arbitrarily cut off at 1800 µs after watching the peak output of the motors through various trials),

and the noise in PWM outputs is small enough to be easily processed by the flight controller.

While there are other hardware issues with the initial UAV besides improper battery charging, correctly

charging and maintaining the LiPo batteries initially poses a major roadblock. All motors receive equal

power with fully charged LiPo batteries, making the flight substantially more stable.

26

Figure 3.2: PWM Motor Outputs with Fully Charged Battery

3.1.2.1 Battery Charging

When charging the battery it is important to understand proper charging and discharging techniques. For

the project we use 5200 mAh, 3 cell batteries. When charging, these batteries plug into the charge balance

side—at the 3 cell port, and the power wire plugs into the paired cable for the positive and negative terminals.

These cables are labeled in Figure 3.3 With the cables correctly attached, the battery should charge at a rate

of 5200/1000, or at a current of 5.2 A. When checking the voltage of each cell, it is important to note that full

capacity is 4.2 V. When using the battery or discharging the battery the voltage per cell should remain above

3.8 V. When storing, the cells must be equally charged to 3.8V, as this is the most stable state. The battery

should be left at storage voltage if it is idle for more than 12 hours. If not properly stored, the battery will

fill with gas and swell, increasing the chance of fire and explosion.

Figure 3.3: UAV Battery, with Important Components Labeled

27

3.1.3 Power Module and Power Distribution Board

For the power distribution board, we use the Matek PDB-XT60, which is the same as the 2022 MQP’s

board. The board has a female XT60 connector to receive power from the power module. The function of

the power distribution board is to evenly provide power to the motors. The distribution board is powered by

the power module, which connects directly to the battery with a female XT60 connector. The power module

powers the flight controller and regulates the current drawn from the battery. At first, we use the Pixhawk

power module 5.3V BEC XT60; however, after switching to the ARKV6X flight controller, we use the ARK

PAB Power Module to ensure compatibility.

While flight testing one UAV, we notice sometimes the motors shut off prematurely and none of the

motors spin at full power. We find one cause of the problem is a faulty connection to the power distribution

module. There are two red LED lights that turn on when the power distribution module has a good

connection to the battery. Sometimes, these lights do not appear, and other times only one light illuminates.

We determine the cause is a loose connection between the power cable and the board. After re-soldering

this connection, the motors began spinning more evenly and no longer shut off during flight.

Since this significantly improved flight performance, we choose re-solder all the connections. In doing

this, we learn the connections from the power board to the ESCs were faulty and some even burned out.

Re-soldering all wires helped provide correct power to the different components, allowing the UAV to fly

properly. For the second UAV, we successfully replicate the process from the first UAV.

3.1.4 Motors and Propellers

The motors on the 2022 UAV are T-Motor 2206 KV2000 brushless motors with 5-inch diameter, 3-inch

pitch, 2-blade propellers. These motors are designed for multi-motor small vehicles. We first check each of

the motors individually and find that one is broken. It does not spin under full power and the only motion is

a slight twitching of the propellers. We switch the motor with a working one to see if it is an issue with the

motor or the ESC. After switching the motors, we determine that the motor is the issue.

Before ordering a replacement motor, we need to verify the size of the motors using a thrust stand. We

connect one of our motors to the Tyto Robotics 1520 thrust stand, using the provided battery and ESC. We

use these instead of our own ESC to minimize error. We test our motor at low, medium, and high inputs,

e.g. 50%, 75%, and 100% thrust.

According to the manufacturer’s specifications, a singular motor should be able to lift approximately

195g at half power and 340 g at full power using 5-inch diameter propellers with a 3-inch pitch. This

configuration matches the configuration of our motors. We test the motor using cutoffs to ensure that we do

not damage the motor, especially since we are working with an unfamiliar battery and ESC. At low power,

28

Figure 3.4: Thrust (g) vs. Power (W) plot for a single motor

approximately 7 W, we find that the motor generates 42 g of thrust. At high power, approximately 35 W, the

motor generates approximately 140 g of thrust. Figure 3.4 shows a visual of our generated thrust versus the

manufacturer’s specifications.

While our generated thrust values are lower than those of the manufacturer, even at similar power, this is

likely due to an inherent error in our setup. When we first use the thrust stand, we do not center the motor on

the back-plate. This leads to exceedingly low thrust values. When moving the motor toward the center, we

find higher thrust values for the same power inputs. Since we visually center the motor using one screw, this

measurement may still be slightly off-center. Other sources of error may be the motor or configuration of the

thrust stand. If we are not running the motor at exactly ideal conditions, we may be generating a lower thrust

due to imperfections in provided power, wear on the motor, or different environmental conditions. Since

140 g of thrust at half power is sufficient to lift the quadrotor, we were not concerned with the inconsistency.

3.1.5 Electronic Speed Controllers (ESCs)

The ESCs chosen by the 2022 UAV did not output useful data. The original flight controller, the

PixHawk, can communicate with the ESCs; however, they do not log data or output the correct power.

We perform a series of voltage tests to ensure that the power distribution board and ESCs receive the correct

29

voltage. The power distribution board and two of the ESCs output the correct voltage, but two of the ESCs

do not. We test this by spinning the motors up to full throttle. At this point, the ESCs should output 11.1V

to the motors, but the faulty ESCs do not.

Instead of continuing to troubleshoot these ESCs, we order new ones from a different manufacturer, but

ensure they have the same voltage rating and software. The new model is the Hobbypower Brushless 20A

BLheli-S ESC Oneshot125. These ESCs have the BL-Heli-S software so that they log PWM data. When

testing the new ESCs, we are able to track the PWM signal of the motors, which allows us to diagnose

problems with individual motors quickly.

When setting up the new ESCs we must solder three wires to each one. Because we are already taking

time to solder wires to the ESCs, we decide to also purchase bullet plugs which we can solder to the other

end of the wires. This makes motor configuration far easier than the previous UAV, where the motors were

soldered directly to the ESCs. Having motors directly soldered makes it difficult to change out motors

because we would have to cut the wires and re-solder each connection again. Using bullet plugs makes

changing motors as simple as unplugging and plugging back in.

3.1.6 Frame

The frame of the 2022 UAV is a 3D-printed PLA frame with 3 mm thick arms. One of the notes on

the previous MQPs final design is that a PLA frame is insufficient for the UAV, namely its strength is not

sufficient to prevent bending under motor thrust. We perform calculations and basic observations of the

UAV to justify the cost of a carbon fiber frame.

First, we calculate how much the frame would deform under various loads. We approximate the problem

using beam bending equations for a point load applied near the end of a beam:

δ =
WL3

3EIz
(3.1)

The arms vary in width, so we calculate the deflection using the smallest width (17 mm) to determine an

estimate for deflection. The force applied by the motor occurs at 7.5 mm away from where the arm connects

to the body. The deflection at this location is the deflection we care about, as it represents the change in

force direction as the power to the motor changes. The modulus of elasticity varies based on the material,

so we referenced common values for PLA and carbon fiber.

PLA has an elastic modulus of approximately 3500 MPa. From these calculations, we know that the

PLA frame will deflect about 2 mm at half power (195 g of thrust) and 3.5 mm at full power (340 g of

thrust). A carbon fiber frame with an elastic modulus of 228 GPa of similar dimensions will only deflect a

30

maximum of 0.03 mm and 0.07 mm under the same loading conditions. These results are summarized in

Table 3.1.

Table 3.1: Deflection table for PLA and carbon fiber UAV frames

Material Elastic
Modulus

Deformation
at 195 g [mm]

Deformation
at 340 g [mm]

PLA 3500 MPa 2 mm 3.5 mm
Carbon Fiber 228 GPa 0.03 mm 0.05 mm

We verify the deflection of the arms by taking a video of an arm with the motor at full power. The arm

visibly deflects upward when the motor is at half power, and deflects a larger amount when the motor is

at full power. The video is taken with an iPhone camera propped stationary on a table to make sure the

camera angle does not shift. We hold the UAV in place while spinning only one of the motors. By taking

a screenshot of the video at an instance when the motor is at full power and comparing that to an instance

when the motors are not receiving power, we can approximate the magnitude of the deflection, as is shown

in Figure 3.5.

Figure 3.5: Deflection of the PLA frame under full power

Using the width of the frame (3 mm) as a reference, we determine the deflection of the frame (identified

by the deflection of the top of the motor) to be approximately 3 mm, which matches our theoretical

calculations. It also indicates that the PLA frame is not strong enough. Since the arms bend upward as

the motors provide more thrust, this likely causes some interference with the flight controller, potentially

a reason why the quadrotor can’t attain stable flight. Since the flight controller relies on constant gains, it

likely is not equipped to handle a continuously changing direction of normal force.

We order a carbon fiber frame based on Holybro’s QAV250 quadcopter. The new carbon fiber frame

provides stability and sturdiness to the UAV. We repeat the same test with the new frame and achieve much

better results. Figure 3.6 shows the deflection of the carbon fiber frame with one motor at high power. The

arm barely flexes upward. In Figure 3.6, the lower red line represents the height of the motor when the

31

Figure 3.6: Deflection of the carbon fiber frame under high power

propellers are at rest. The higher line represents the height of the motor if the arm were to deflect by 3 mm

(by once again using the width of the frame as a reference). When throttle the motor further, the UAV begins

to physically lift off the table, so we elect to maintain the test at this value instead of at full throttle. Note

that the increase in thrust of the motors with a properly charged battery and the increased rigidity of the

carbon fiber frame leads the motor to exert much more upward force than in the first test.

3.1.7 3D Printed Mounts

Following the first assembly of the UAV on the new carbon fiber frame, we find that the frame heats up

and smokes slightly when powering on the drone. Upon inspection, we realize that the power cable between

the power module and the power distribution module has exposed solder on the underside of the boards.

Consequently, the carbon fiber frame completes the circuit between the positive and negative terminals,

causing a short circuit. None of the components fail, but the frame has a small mark burned into it. As a

result, we decide to create small 3D-printed PLA mounts for these two components.

Figure 3.7: Image of the UAV without the Raspberry Pi

We also print mounts for the flight controller and the Raspberry Pi so we can attach those components

nicely to the frame. Neither the controller nor the Raspberry Pi align with holes in the frame so the mounts

32

will provide a much more secure connection as opposed to the zip ties we had used. Figure 3.7 shows the

assembled UAV with the new mounts (colored blue) for the power module and distribution module as well

as the flight controller.

To create these mounts, we began by finding a similar 3D model from GrabCAD of the ZMR250 frame.

We measure the spacing between holes on the top of the frame, and compare those dimensions to the frame

we purchased and find that the CAD model is a good representation of our physical frame. We then model

basic frames based on the size of the components and aligned screw holes to connect to the frame. When

necessary, we use M2 thread inserts. Figure 3.8 shows the CAD models of the four mounts that we created.

The mounts have elevated corners for the flight controller and Raspberry Pi to allow for the solder and

ports underneath those boards. Similarly, the top of the mount for the power distribution module is slightly

recessed to allow for the connection between the wire plug and the circuit board. The power module mount

has an elevated left side to clear a screw on the right side, and a solid bar along the right edge to hold the

power module in place.

Figure 3.8: 3D Printed PLA Mounts for UAV Components

3.1.8 Flight Controller and Autopilot Software

To begin the project, we use the PixHawk 4 Mini from the 2022 MQP. We first flash ArduPilot software

onto the flight controller. ArduPilot is an open-source flight controller software with constant community

support and updates. ArduPilot also has documentation on using the VICON motion capture system as an

indoor GPS. In the first flight test with the PixHawk, the UAV is unable to achieve a stable flight. Later,

we will realize that the PixHawk’s internal sensors may be damaged. Inevitably, the Pixhawk proves to be

problematic and we need to purchase a new flight controller. We select the ARKV6X as it is well-reviewed,

and is an American company. Holybro, the main competitor we consider, ships from China and requires us

to wait for customs to receive the new flight controller. Choosing the ARK makes shipping much faster and

33

still provides a high-quality controller.

We again flash ArduPilot onto the ARK board as we did for the old PixHawk. Once we properly

configure the board and change basic parameters [15], we successfully connect to the motors and begin

flight testing. Unfortunately, we notice that the UAV is still very unstable. Despite checking all the motors

and re-calibrating the onboard sensors, the UAV quickly experiences oscillations and uneven flight after

taking off. In an attempt to solve this problem, we flash PX4 software onto the flight controller. With

the new software, we are quickly able to fly. Following online PX4 documentation [16], we configure the

sensors, ESCs, and other relevant parameters and complete our first successful flight.

The main difference between ArduPilot and PX4 is the addition of a few key parameters. With PX4,

we can set the ESC type and monitor the battery voltage. Consequently, we believe the PWM signal to

the motors is more reliable and the flight controller has accurate information regarding the voltage to each

motor at any time. Some additional parameters are unique to PX4, however, voltage monitoring should be

available with ArduPilot. Since the board is designed off the PX4 standards, it may be that it is simply more

compatible with PX4 than with ArduPilot.

3.1.9 Ground Station

We use QGroundControl as the command software to communicate with the UAVs. QGroundControl

and MissionPlanner are the two main ground station software options. QGroundControl can command

multiple UAVs, which we want to maintain as an option until we finalize communication protocols.

Further, QGroundControl is compatible with MacOS, Windows, and Linux; while Mission Planner is only

compatible with Windows and Linux. Aside from these differences, QGroundControl and Mission Planner

provide approximately the same functionality, especially for basic use cases.

We use QGroundControl to calibrate our flight controllers, perform indoor flight testing, and

troubleshoot any issues. QGroundControl is compatible with both ArduPilot and PX4, making our decision

to switch autopilot software trivial. It allows the user to flash either software onto any known flight

controller. Further, it walks the user through all basic calibrations and configurations; however, the

user will most likely require documentation from the relevant autopilot software to fully configure the

vehicle. While QGroundControl makes configuration easy, some steps are not apparent within the software.

QGroundControl uses MAVLink communication protocols and allows the user to download .bin log data

from the flight controller. These log files contain the vehicle’s understanding of its location, relevant

commands, and motor data.

34

3.1.10 Micro-Controller

After our first successful flight tests with manual control, we use a Raspberry Pi 3 (RPi) to remotely

control the UAV. The Raspberry Pi runs ROS and mavros. Mavros is a robotics software specifically

designed to communicate with UAVs. It relies on the MAVLink communication protocol, which both

ArduPilot and PX4 use. By creating simple scripts in Python, we can send and receive commands and

information. We first test our scripts in simulation. We perform testing using ArduPilot. Since the software

is open source, we install it on a Linux virtual machine running Ubuntu 20.04 and also install ROS and

mavros. We then create simple Python scripts that can command a virtual UAV launched through ArduPilot’s

Software in the Loop (SITL) functionality. Figure 3.9 shows the virtual UAV moving to a waypoint after

taking off. The small pink arrow indicates the direction of motion.

Figure 3.9: Simulated UAV Mission

To test our software, we connect the RPi to the flight controller using the Rx and Tx pins on each

board (the Tx pins connect to Rx). We also connect 5V and ground to power the RPi. We first create

a ROS launch file that would launch mavros and identify the port on the RPi that connects to the flight

controller. Assuming that that connect uses pins 8 and 10 on the RPi, the port is “/dev/ttyAMA0” on the RPi

3, given that Bluetooth is disabled. Since we need a high baud rate to communicate with mavros, we disable

Bluetooth to free the PL011 port, which allows greater processing power. If Bluetooth is not disabled, the

appropriate port is “/dev/ttyS0,” which is the miniUART also used for serial port communications.

With the flight controller and RPi connected, we set the baud rate on both the flight controller and

35

in the ROS launch file. Ideally, the baud rate should be 921,600 B/s, which must be set for MAVLink

communication on the flight controller, for the port on the flight controller, and in the ROS launch file on the

RPi. If the wrong baud rate is set for any of these components, the flight controller and RPi will be unable

to communicate. With these components connected, we monitor the status of the flight controller from the

ground station via ROS. To execute commands, we either use the command line on the desktop or run a

Python script.

3.1.11 Wi-Fi Board

To start we consider using ESP-32 Wi-Fi boards to communicate telemetry data. Wi-Fi telemetry allows

for easier command of multiple vehicles when compared to radio telemetry. The ESP-32 Wi-Fi boards allow

the UAV to be controlled from a computer connected to the same Wi-Fi network without needing a radio

transmitter. After we switch to mavros, however, we simply use the Wi-Fi chip on the Raspberry Pi instead

of the Wi-Fi boards.

3.1.12 Modularity

One of the primary goals of the team is to create an environment where every component is easily

replaceable as a whole, as well as in parts. For the UAV, we want to be able to interchange the motors easily

as well as change their directions. This is all done on the hardware side, so to achieve this, we soldered

bullet plugs to the ESCs, and we ordered motors that already come with bullet plugs. On the 2022 UAV, as

mentioned previously, they did not have the bullet plugs, and instead soldered those connections, making it

a hassle to change out motors and even switch their directions. Another piece that we believe is important in

making the UAVs modular, is to build them with the exact same components, and exact same layout. This is

easier said than done because it is just as easy to want to reuse parts from other UAVs to minimize the cost.

3.1.13 Safety

Figure 3.10: Tethered UAV for Flight Tests

36

Flying UAVs can be dangerous if not done properly. This is one thing we do not want to learn from

experience, so we take some important precautions. On the electrical side of the UAVs, they carry 11.1 V

throughout the whole structure. To minimize any chances of getting electrocuted, we utilize heat shrink to

cover all electrical connections, solder joints, and ESCs. This leaves no exposed wires and little chance of

any wires becoming exposed over time and is a significantly safer than electrical tape. In terms of the flight

testing, we always make sure to tether the UAV before flying. This ensures the UAV can’t fly erratically and

injure teammates. The tether system we use can be seen in Figure 3.10.

3.1.14 Electrical Diagram

One goal, as mentioned previously, is to create an environment where every component is replaceable

and where anybody can repeat our experiments. One aspect that is crucial to the experiment is the UAV.

We face many hurdles throughout the project while building the UAV, so we made an electrical drawing to

help future teams understand how the UAV is powered and where each component communicates to each

other. Below in Figure 3.10, is the diagram displaying the power distribution across the UAV, and Figure

3.11 shows the input/output communication connections.

Figure 3.11: UAV Power Distribution

The power distribution diagram displayed above provides the connections from the 11.1V battery to

the power module. The power module then powers the power distribution board and the flight controller

(ARKV6X). The diagram also includes several soldered components. Every wire attached to the distribution

board is soldered, as well as the end of the ESCs that connect to the motors. There is also an extension wire

from the power module to the distribution board that is soldered and heat shrunk in the middle. This is

displayed with the plug symbol. We have the option to use bullet plugs for this connection, however, it is not

37

Figure 3.12: UAV I/O Connections

going to need to be unplugged ever so we decided it best to splice the two wires and solder them. All of the

source wires in the power distribution diagram correlate to the respective wire numbers on the I/O diagram.

The input/output diagram above displays the connections that control the UAV’s movement. These

connections involve the flight controller, ESCs, and Raspberry Pi. These connections involve wires that

plug into JST connectors, which then plug into the respected location which can be seen in the diagram. The

wires that are connected to the connectors (ex. the vertical component on the bottom of the diagram) are

custom made for the needs of the UAV. An important kit to purchase for this portion of the UAV is called a

JST to Dupont kit. It provides the necessary wires and plug in connections to make the flight controller and

Raspberry Pi compatible.

3.2 Wind Tunnel Testing

3.2.1 Mathematical Modeling

To determine the typical aerodynamic flight parameters for the UAV, we begin by selecting a

mathematical model for our UAV. Selecting this allows us to determine which aerodynamic coefficients we

need. We choose a simple model that captures the forces and moments acting on the body-fixed Cartesian

coordinate system shown in Figure 3.13

Based on this coordinate system, a mathematical model for the UAVs moment M b and force Fb

dynamics can be written as follows in Equations (3.2) and (3.3), where Fi is the thrust due to motor i,

Mi is the torque due to motor i and L is the distance from UAV center of gravity to each motor. Note that

we assume L remains constant.

38

Figure 3.13: UAV body fixed Cartesian coordinate system

Fb =


0

0

−(F1 + F2 + F3 + F4)

 (3.2)

M b =


−F2L+ F4L

F1L− F3L

M1 −M2 +M3 −M4

 (3.3)

To quantify the forces Fi and moments Mi, we determine the variation in these parameters with motor

spin rate, the quantity we control via the flight controller. To simplify the model, we assume that the forces

and moments generated by a given motor are quadratically related to its spin rate with a constant gain. The

Equations (3.4) and (3.5) govern this relationship, where Ωi is the motor spin rate in rpm and kF and kM

are experimentally determined constants.

Fi = kFΩ
2
i (3.4)

Mi = kMΩ2
i (3.5)

The forces and moments generated by each motor depend on many parameters—such as atmospheric

density, UAV flight speed, and room temperature. To use the simplified model, we test our UAV at multiple

flight conditions and measure the forces and moments acting on the vehicle to estimate kF and kM . We

conduct a wind tunnel test using facilities on the WPI campus.

39

3.2.2 Wind Tunnel Setup

We use a Series 1585 Thrust Stand to collect required thrust and torque data. The Series 1585 was

designed mainly to test UAV motor and propeller combinations; however, it is ideal for our purposes as it

can measure both thrust and torque. To conduct the test, we bolt the UAV to the Series 1585—as seen in

Figure 3.14—to reduce the risk of accidents occurring during testing. We also zip tie the UAV to the stand

to reduce yawing motions.

Figure 3.14: UAV mounted to Series 1585 Thrust Stand

The Series 1585 setup includes a steel wire mesh surrounding the thrust stand to catch any stray debris

in the event of a failure. We remove this protective mesh to reduce turbulence and to ease the process of

mounting the apparatus in the wind tunnel. Although we remove the protective layer, wind tunnel has clear

polymer walls that protect bystanders from stray debris.

We mount the entire Series 1585 thrust stand in the wind tunnel using duct tape as seen in Figure 3.15.

In this figure the airflow in the wind tunnel flows from right to left. We intentionally orient the thrust stand

downstream the UAV to minimize any negative impacts of the structure. We feed control cables through the

underside of the wind tunnel to collect data from both the thrust stand and UAV.

The follow steps outline the process to collect relevant data:

40

https://www.tytorobotics.com/pages/series-1580-1585

Figure 3.15: Side view of wind tunnel setup with thrust stand mounted

1. Tare the thrust stand data stream to zero thrust and torque sensor readings

2. Plug the UAV battery onto the UAV and spin up motors to initiate data logging.

3. After the motors are spinning as slowly as possible, spin up the wind tunnel.

4. Once the wind tunnel reaches steady state, ensure the thrust stand is streaming data.

5. Ramp the UAV motors up from the armed steady-state rpm to maximum rpm.

6. Collect sufficient data then decrease the rpm of the motors and turn off the wind tunnel.

7. Disconnect the UAV the battery

8. If desired, repeat the process at a different airspeed.

3.2.3 Data Collection

Before conducting the wind tunnel test, we decide which test conditions to run. Originally, we plan to

conduct a series of tests at wind speeds ranging from 0 m/s to 2.5 m/s to cover the typical conditions of

indoor flight. However, we did not realize this plan due to limitations of the wind tunnel itself. The facility

at WPI cannot support wind speeds less than 5 m/s; thus our final test conditions only involve speeds greater

than 5 m/s.

41

The final flight envelope consists of 9 wind speeds ranging from 5.0 m/s to 25.0 m/s at 2.5 m/s intervals.

We also conduct a tenth test at 0 m/s to include hovering conditions. Since our UAVs will always fly at sea

level atmospheric conditions, we will vary the flight speed and disregard air density variation. Therefore,

these 10 wind speeds give the team sufficient data to characterize the relationship between motor rpm and

UAV body forces and moments.

3.3 UGV Selection and Development

We consider two options for UGV hardware: an AWS DeepRacer and TurtleBot3s. The AWS

DeepRacer is a four-wheel drive vehicle with forward facing cameras and is upgradable to include a LiDAR

sensor. TurtleBot3s are differential drive vehicles equipped with an OpenCR1.0 controller, a Raspberry Pi

3B, and a LiDAR sensor. Both vehicle options allow for a versatile sensor suite and can operate using ROS,

increasing the modularity of this project. We initially decide to investigate both options since either vehicle

can use onboard path-planning to navigate between vertices.

3.3.1 AWS DeepRacer

We first evaluate the suitability of the AWS DeepRacer. Although the vehicle’s primary use case is racing

with reinforcement learning models, the hardware supports ROS functionality. The AWS DeepRacer that

we borrow from the Novel Engineering of Swarm Technologies (NEST) Lab is an older model preinstalled

with Ubuntu 16.04. We attempt to follow the NEST Lab’s setup instructions for the vehicle using a desktop

machine with Ubuntu 16.04 natively installed, but we are unable to access the vehicle console [17]. We

consider flashing Ubuntu 20.04 onto the AWS DeepRacer and installing the ROS Noetic distribution that

we use for this project; however, because of the setup issues, the need for a slower vehicle, and the lack of

official ROS Noetic support for AWS DeepRacers, we decide not to use the AWS DeepRacer.

3.3.2 TurtleBot3 Burger and Waffle Pi

We switch our focus to using TurtleBot3s because they have well documented ROS support and

differential drive vehicles have simple dynamical system models.

3.3.2.1 Vehicle Setup

We follow ROBOTIS’s TurtleBot3 Quick Start Guide to set up the vehicle [14]. We modify the

onboard .bashrc file to include two additional lines: ”export TURTLEBOT3 MODEL=burger” and ”export

LDS MODEL=LDS-01”. The addition of these lines eliminates the need for a user to manually specify

the model arguments. The model arguments are now automatically sourced, eliminating the need for a user

to manually export these arguments whenever a new terminal is opened. The argument values ”burger”

and ”LDS-01” are hardware-dependent. With the setup complete, we test the vehicle’s functionality. We

42

successfully control the TurtleBot remotely using ROBOTIS’s turtlebot3 teleop package and WASDX inputs

on the keyboard connected to the ground station desktop.

3.3.2.2 System Model and Control

We initially use the onboard OpenCR1.0 odometry to test the navigation node while we configure the

VICON environment. These tests include virtual Gazebo simulations and physical experiments using the

hardware. To model the system, we define three coordinate frames (shown in Figure 3.16): a global frame

from the VICON environment, a local frame used during translations between vertices, and a body-fixed

frame used for the control of the TurtleBot3. During each transition, we redefine the origin and x-axis of the

local frame as the starting point in the global frame and the unit vector from the starting point to the target

vertex in the global frame, respectively.

Figure 3.16: TurtleBot3 coordinate frames

In the global frame, we define the TurtleBot3 system model as:

x =


Tx

Ty

Rz

 , ẋ =


Vlin cos(Rz)

Vlin sin(Rz)

Vang

 , u =

Vlin
Vang

 (3.6)

43

where Tx and Ty are the TurtleBot3’s x and y-positions, Rz is the TurtleBot3’s z-rotation, and Vlin and

Vang are the TurtleBot3’s control input linear and angular velocities. We implement a time-optimal control

framework to transition the TurtleBot3 between vertices. In this framework, we define vertices as unique

states of the TurtleBot3 in the global frame. Transitions consist of either 1) a rotation, 2) a rotation and a

translation, or 3) a rotation, a translation, and a rotation [18]. We implement this framework by defining a

custom ROS message type and defining functions within our navigation node that handle pure rotation and

pure translation. While the node is running, users publish a MessToUGV message containing a state and

an operation index. The operation indices correspond to the three possible transitions. After receiving a

MessToUGV message, the TurtleBot3 rotates and translates to the new state within user-defined tolerances.

After completing each transition, the TurtleBot3 waits for a new state and operation index.

In initial tests, we experimentally determine that the TurtleBot3 rotates to within 0.01 radians of a target

vertex. For translations that occur after rotations, the initial z-rotation error causes the TurtleBot3 to miss

the target vertex. The TurtleBot3 also exhibits slight lateral motion during translations without an initial

rotation, likely due to sensor drift. To remedy these sources of error, we define a line-following system

model in the local frame.

x =

e
ψ

 , u =
[
Vang

]
(3.7)

where e equals the local y-position error and ψ equals the local z-rotation error. We design a proportional-

derivative (PD) controller for the angular velocity control input in the translation phase of the vertex

transition. We assume a control input of the form:

Vang = −eKe − ψKψ (3.8)

We create a simulation of the system in MATLAB and obtain gains using pidtool. A controller with gains

Ke = 9.5116 and Kψ = 17.5623 works in Gazebo simulations; however, these gains are too large for the

real hardware. We experimentally decrease the gains to Ke = 2.6779 and Kψ = 7.6092. We calculate

the local y-position and z-rotation errors by projecting the vector from the initial vertex to the TurtleBot3’s

current position onto the vector from the initial vertex to the target vertex, both in the global frame. As these

errors approach zero, the TurtleBot3 converges to the local x-axis and translates towards the target vertex.

3.3.2.3 Navigation in the VICON Environment

We modify the navigation node for use in the VICON environment after establishing communication

between VICON Tracker and ROS [19]. We place five VICON pearl markers on the TurtleBot3 and create an

44

object for the vehicle in VICON Tracker. The orientation of this object in VICON Tracker is not aligned to

the body-fixed frame, so we add a calibration to the navigation node where the TurtleBot3 translates for one

second. We assume that any drift that occurs in this one second is negligible. The onboard computer stores

the TurtleBot3’s initial and final position during this translation, then updates four calibration parameters,

C1 and C2. We define C1 as the initial z-rotation of the object in VICON Tracker and C2 as the angle of

the vector from the initial to final position in the global frame. C3 and C4 are the initial x-position and

y-position in the global frame at bringup.

RVz = atan2(2QVwQ
V
z + 2QVxQ

V
y , (Q

V
w)

2 + (QVx)
2 − (QVy)

2 − (QVz)
2) (3.9)


C1

C2

C3

C4

 =


RVz1

atan2(T Vy2 − T Vy1, T
V
x2 − T Vx1)

T Vx1

T Vy1

 (3.10)

The onboard computer calibrates subsequent VICON callbacks by subtracting C1 to zero the orientation and

then adding C2 to obtain the true orientation.

RGVz = RVz − C1 + C2, −π ≤ RGVz ≤ π (3.11)

Although the navigation node primarily utilizes VICON localization, there are cases where VICON

localization may be unavailable. Users may want to intentionally simulate interference where VICON

localization is either entirely unavailable or callback data is distorted. Additionally, VICON localization may

be unavailable due to interference from obstacles and tunnels. During these periods, the TurtleBot3s rely

on their onboard odometry to estimate their states. The onboard computer calibrates subsequent odometry

callbacks by rotating the measurements by C2 and then translating the position measurements by C3 and

C4.

TGOx = C3 + TOx cos (C2)− TOy sin (C2) (3.12)

TGOy = C4 + TOx sin (C2) + TOy cos (C2) (3.13)

RGOz = C2 +ROz , −π ≤ RGOz ≤ π (3.14)

To ensure the odometry is correctly calibrated, the TurtleBot3 bringup must be fully launched before the

navigation package, and the TurtleBot3 cannot move between bringup and the launching of the navigation

45

package. To account for further sensor drift, an additional calibration is applied to odometry callbacks. After

each VICON callback, a function calculates the difference between the VICON state measurements and the

odometry state measurements. When the onboard computer determines it should switch to the odometry

state measurements, it begins applying a new transformation to correct the drifted odometry frame.


C5

C6

C7

 =


TGVx − TGOx

TGVy − TGOy

RGVz −RGOz

 (3.15)

TGO∗
x = C5 + TGOx cos (C7)− TGOy sin (C7) (3.16)

TGO∗
y = C6 + TGOx sin (C7) + TGOy cos (C7) (3.17)

RGO∗
z = C7 +RGOz , −π ≤ RGO∗

z ≤ π (3.18)

3.4 Sensing Suite

Sensing suite design and development consider both lab- and vehicle-fixed, active and passive sensors.

A selection of multi-modal sensors is vital to enable a variety of experimental applications for CSCP,

particularly for unknown or dynamic lab environments. Through our design and development process,

we achieve substantial modularity and configurability.

The sensing suite consists of three sensing types: visual light, infrared light, and radio frequency. We

select these types to enable collection of a multi-modal sensed dataset while remaining within the scope of

this project. Within each type, we research and evaluate sensing products according to design requirements

outlined in Section 3.4.1.

3.4.1 Design Requirements

The design requirements guiding the selection of sensor products for each sensing mode are as follows:

use case satisfaction, system integration compatibility, and ease of integration. Simply stated, does it address

the needs of our experiment? Can it be integrated into our current work? And, how easy is it to integrate?

3.4.1.1 Use Case Satisfaction

Overall, the use case requirement evaluates whether the identified products are applicable to the current

experimental goals while remaining useful in diverse experimental scenarios. Considering that the project

will be leveraged for CSCP applications, this requirement will enable a user to specify desired sensor types

and parameters and therefore gather the most relevant information. Accuracy, precision, cost, scalability,

46

and configurability of each sensor product is critical. Each chosen sensor must output reliable data, be cost

effective within its category, and should allow for future expansion of experimental scenarios. We consider

broad and configurable functionality to select sensors that can collect data in diverse experimental scenarios.

3.4.1.2 System Integration Compatibility

It is imperative that the sensor products we identify and evaluate are compatible with the MESS and

ROS infrastructures. Specifically, for vehicle-fixed sensors, we research existing software libraries

and application programming interfaces (APIs) that are compatible with the ROS 1 Noetic distribution

environment. This eliminates the need for a custom software package to connect the sensor software to the

MESS, which would divert software development focus from other aspects of the project.

3.4.1.3 Ease of Integration

It is possible that a compatible sensor product may require an elaborate hardware system or discontinued (no

longer supported) software packages. We look for an active support and software development community

for issue tracking, consulting, feature expansion, and optimization over time. Robust documentation

which addresses the platforms and applications specific to our systems is sought as well. Other relevant

characteristics are the sensor product’s power requirements, interface versatility, and software maturity and

interoperability.

3.4.2 Sensor Evaluation and Selection

Given the design requirements, we develop the following sensing suite.

3.4.2.1 Visual Light Cameras

We select the Raspberry Pi Camera Module V2 as a vehicle-fixed visual light camera. We affix these cameras

to one UAV, which already host a Raspberry Pi. We select this camera due to its proven record of satisfying

design requirements in past MQP work. Further, it is easy to integrate into the MESS. Ubiquity Robotics

has a robust, open-source library for sending captured images and videos through publisher/subscriber

communication channels in the ROS Noetic distribution.

3.4.2.2 Forward-looking Infrared Cameras

We select the Teledyne Forward-Looking Infrared (FLIR) A50/A70 series cameras as a lab-fixed infrared

sensor. These cameras leverage a software development kit, Spinnaker SDK (SSDK), which serves as

an API. Further, it is one of the only product lines with a robust and supported ROS Noetic code base

with a package, flir camera driver, that bridges the ROS distribution with SSDK, which is compatible with

our system. Note that integration requires creating a mounting system and an on-boarding period for lab

47

members to gain familiarity with its features and use.

However, given that this product is a significant investment, it does not become available to our team

during the course of our MQP. We thus resort to the Raspberry Pi Camera Module NoIR V2. Similar to the

Raspberry Pi visual light camera, we mount this camera on one of the UAVs. However, it lacks the broad

and configurable functionality of the FLIR A50/70 series, making it a second choice.

3.4.2.3 Software-Defined Radio

Due to Federal Communications Commission (FCC) regulations, we are limited to broadcasting signals

in ISM bands–unless a lab member holds a HAM Radio License. ISM bands are a portion of the radio

frequency (RF) spectrum specifically reserved for industrial, scientific and medical (ISM) applications.

Standard ISM frequency bands available in the U.S. are 902-928 MHz and 2.4 - 2.48 GHz. We recommend

the latter frequency band range as it allows for higher data transfer rates. If considerably large distances

exist between transmitters and receivers, then the former frequency band range would be more suitable, but

this is not applicable in the lab space.

Given this, we select the Ettus Research USRP B200mini as a single software-defined radio (SDR)

receiver. It serves as a full duplex (transmitter and receiver) with a 56 MHz bandwidth for high data transfer

rates. With a frequency range of 70 MHz - 6 GHz, it follows the ISM band broadcast regulations as imposed

by the FCC. We pair the B200mini with the Ettus Research VERT2450 Antenna. If set to transmit, the

VERT2450 Antenna only broadcasts in the 2.4 - 2.5 and 4.9 - 5.9 GHz bands. Consequently, it enables ISM

band transmission if the B200mini is the transmitter.

However, we did not select The B200mini as a transmitter. Instead, as we select two Analog Devices’

ADALM-Pluto SDR as transmitters. A primary factor was cost with the B200mini and ADALM-Pluto

costing approximately $1,323 and $291.36, respectively. The ADALM-Pluto satisfies our requirements,

serving as a half or full duplex with a 20 MHz bandwidth for less but still adequate data rate transfer.

Given the transmitters feasibly only need to broadcast frequency tones 1 MHz apart for unique detection,

the product specifications are acceptable. Its frequency range also lies within the ISM band at 325 MHZ -

3.8 GHz.

While the B200mini and ADALM-Pluto do not contain any integration support for our existing

infrastructure, they can be interfaced with SDR software such as GNU Radio and MATLAB/Simulink.

Therefore, they are potentially a standalone sensing system and would require a different automation process

to integrate into the MESS. Given that this sensing system does not become available to our team during

this MQP, we do not conduct testing or software exploration. It should be noted that WPI hosts a Wireless

48

Innovation Laboratory on campus that conducts extensive work with SDRs, a resource we use to orient

ourselves to the SDR landscape.

3.5 Software

A substantial part of ensuring successful experiments is the software system. This encompasses both the

creation of new custom software and substantial integration of pre-existing software frameworks. We detail

the creation of an experiment management software and all necessary integration in this section.

3.5.1 Modular Experimental Software System (MESS)

We aim to create a custom software to assist in running experiments. The software should be one

centralized application that can plan experiments, collect data, and command vehicles. To provide future

versatility, the software should to be modular to allow a user to easily configure and conduct experiments

with different vehicles and sensors. Due to its modular nature, we name this application the Modular

Experimental Software System (MESS).

3.5.1.1 Design Requirements

While designing the software, we design for three system needs: mission planning, centralized data

collection, and vehicle command.

Mission Planning The first and primary goal of the MESS is to serve as a central place to plan and run

experiments while minimizing the need for the user to write new code. To achieve this, certain inputs

are required from the user. We decide user should provide information on the UAVs, UGVs, sensors, and

mission plan. This is visualized in Figure 3.17.

A mission plan consists of tasks and times to perform those tasks. A task is an action to be performed

by a sensor or a vehicle. Having a UAV takeoff, a UGV navigate to a way point, or a camera take a picture

are all examples of a task.

Centralized Data Collection The MESS serves as a centralized location for data collection. Because

experiments involve multiple vehicles and sensors, pulling and synchronizing data from each source

separately would be time-intensive and cumbersome. The MESS solves this problem by accumulating data

in a central location. This data can be then post-processed in a program of the user’s choice.

Vehicle Command Vehicle command is the ability of the MESS to control the positions of the UAVs and

UGVs. This is necessary for the MESS to execute missions.

49

Figure 3.17: MESS Input and Output Diagram

3.5.1.2 Mission Planning Implementation

The MESS is a desktop application programmed in Python. To achieve the needs outlined in Section 3.5.1.1,

we must use a code framework. Figure 3.18 shows the initial class diagram for the MESS that meets the

design requirements, and 3.19 shows the final implemented class diagram.

Experiment The experiment class is the central class of the MESS software. It consists of a mission,

relevant vehicles, stationary sensors, and an obstacle map to represent the environment.

Vehicle The vehicle class corresponds to the physical vehicles used in experiments. It holds all equipped

sensors and the name used within the VICON environment VICON.

Sensor The sensor class holds all the sensors used in the experiment. It stores ROS topic to which each

sensor publishes so that MESS can access this data.

Mission A mission is a collection of tasks to be performed within the experiment. It consists of multiple

vehicle missions, which it aggregates to create the master collection of tasks to be performed.

Vehicle Mission A vehicle mission is a collection of tasks to be performed by a specific vehicle.

Task A task consists of an action and a time to perform that action. Actions are represented as a string

that corresponds to a ROS message. The task also tracks where and when it needs to send the message.

50

Figure 3.18: Initial MESS Class Diagram

Task Handler A task handler is the piece of code that executes the tasks. It connects to a ROS node to

send a message to the relevant vehicle or sensor to have it perform that action.

Figure 3.19 shows the final implemented MESS class structure. The two changes are the removal of the

UAV and UGV sub-classes and the removal of the Obstacle Map class.

We remove the UAV and UGV classes after we opt to use MAVROS for UAV communication. Since the

UAVs integrate into the ROS network, it is irrelevant if a vehicle is a UAV or UGV as the communication

protocol is the same for both vehicle types. This allowed the UAV and UGV classes to be combined into

their parent class, Vehicle.

We remove the obstacle class map since we never implement it. As the project scope decreases, we

abandon the idea of centralized tracking of multiple ground and aerial vehicles for obstacle avoidance.

The last key component of the MESS is that it can save and load experimental setups. To achieve this,

the MESS saves configuration as a JSON file using Python’s json.dumps command from the built in JSON

package. We create a custom JSON decoder to convert the JSON object into an experiment class object.

3.5.1.3 Centralized Data Collection

Since we have limited bandwidth in the lab, we opt to store sensor data onboard each individual vehicle

during each experiment. At the conclusion of the experiment, we transfer the stored data into the MESS. In

51

Figure 3.19: MESS Class Diagram

the event that data needs to be transferred live during the experiment, a Task in MESS could subscribe to the

ROS topic to which the sensor publishes.

To collect the data, we equip each vehicle with a log directory where it can save data. This directory

is identical across all vehicles, which is necessary for MESS to access the same folder regardless of the

vehicle identification. MESS uses secure copy protocol (SCP) to copy the contents of the log folder from

the vehicle to a location chosen by the user. Each experiment logs its contents in a single folder named by

the experiment title and timestamp. Within this folder, each vehicle has a sub-folder. 3.20 shows an example

of the structure of the collected data.

Figure 3.20: Collected Data File Format

Since each sensor is unique, the user must write a logger script to collect data for each sensor.

52

3.5.1.4 Vehicle Command Implementation

We design the MESS to use ROS for all vehicle communications. Due to difficulties obtaining stable flight

and implementing mavros with the UAVs, MESS vehicle command has only been tested with UGVs.

Launch Files We use a ROS launch file to initialize all the topics for each node. Each vehicle hosts a ROS

node and, as such, needs a launch file to initialize all relevant ROS topics. Furthermore, these topics must

be unique across the experiment to allow for independent operations of UAVs and UGVs. For this reason

each vehicle must have its own launch file, so it can create uniquely named topics.

To achieve unique naming, each UGV has a base set of topics that we rename. The launch file

appends a prefix—based on the name of the vehicle—to each topic. The MESS creates this launch file

and automatically adds the vehicle prefix.

The launch file must run on each vehicle before an experiment. To do this, MESS utilizes SCP to place

the launch file in the src (source) folder of the ROS workspace of each vehicle. Then MESS uses a secure

shell (SSH) connection to execute the launch command on each vehicle.

Waypoint Navigation MESS uses ROS messages to publish waypoint coordinates to each vehicle. Since

future users are likely interested in path planning algorithms, the user can choose how the vehicle should

move to each waypoint by modified that vehicle’s code. Section 3.3 describes how we implement path

planning on the UGVs.

Figure 3.21: Way Point Entry in MESS

Figure 3.21 shows the input screen MESS utilizes to collect waypoint information from the user. Tx is

the desired x-coordinate in the VICON frame, Ty is the y-coordinate, Rz is a value in radians for in-place

rotations, Op is a value corresponding with travel mode (0 for rotation only, 1 for translation only, and 2 to

translate and then rotate), and order dictates the sequence of waypoints.

53

3.5.1.5 MESS Development

For MESS to gain access to the rospy library, we develop it in a Python virtual environment launched from

a ROS catkin workspace. We use the PyCharm IDE. The source code for MESS and a tutorial for setting up

the development environment can be found at https://github.com/TommyLamar/MESS PY.

3.5.1.6 MESS Example Demonstration

The following shows how to utilize MESS to command a UGV to navigate in a triangular loop. Figure 3.22

shows the launch window of MESS. Here a user can create new experiment or load a previous experiment

setup.

Figure 3.22: MESS Launch Window

Once an experiment has been created or loaded, the user is greeted with the experiment window, as seen

in Figure 3.23.

Figure 3.23: MESS Experiment Window

The ”Add Vehicle” button brings the user to the screen seen in Figure 3.24, where they enter the vehicle

54

name and IP.

Figure 3.24: MESS Vehicle Info

After the vehicle is added, using the ”Add Task,” button and selecting ”Way Point,” the user is able to

enter a way point command as seen in Figure 3.25. Tx and Ty are the coordinates in the VICON frame to

translate to. Rz is the heading to rotate to. The op command can have the values 1, 2, or 3, with 1 being a

rotation to heading Rz, 2 being a translation to position Tx and Ty, and 3 being a translation to Tx and Ty

followed by a rotation to heading Rz. The order command is what order this way point should be executed.

A way point command is needed for each translation.

Figure 3.25: MESS Waypoint Navigation

Figure 3.26 shows the results of hitting the ”Compile Mission” button after entering in all the way points.

Figure 3.26: MESS Mission Overview

55

3.5.2 Robot Operating System (ROS) Integration

We use ROS packages to enable communication between the ground station desktop and the TurtleBot3s,

Raspberry Pi cameras, VICON Tracker, and other sensors. Nodes launched in the ROS environment transfer

data by publishing and subscribing to specific topics. MESS publishes and subscribes to several topics in

the ROS environment to coordinate experiments.

Figure 3.27: Interactions between ROS Nodes and MESS

3.5.2.1 ROS Installation

We flash Ubuntu 20.04 onto the ground station desktop. To install ROS, we follow the documented

instructions for an Ubuntu install of ROS Noetic. After the install is complete, we create a catkin workspace

to house all ROS packages used in this project.

3.5.2.2 raspicam node

We use Ubiquity Robotics’s raspicam node package to receive visual-light images from a Raspberry Pi

Camera Module 2 in the ROS environment [20]. Although there is ROS Noetic support for raspicam node,

we follow our own procedure to add missing files before the node can be launched (see Appendix A).

3.5.2.3 turtlebot3 bringup

The turtlebot3 bringup package by ROBOTIS initiates a subscriber for the linear and angular velocities

control inputs and publishers for the onboard IMU data, the OpenCR1.0 odometry, and the joint states of

each wheel [21]. Control inputs received by the TurtleBot3 are transformed to pulse-width modulation

56

(PWM) signals that control the motors, enabling motion. To launch the node, we establish a Secure

Shell (SSH) connection with the TurtleBot3 from the ground station desktop and execute “roslaunch

turtlebot3 bringup turtlebot3 robot.launch” in the terminal.

3.5.2.4 turtlebot3 logger

We create a package that logs all data onboard the TurtleBot3 to .csv files. We install the package

by executing “git clone https://github.com/marinarasauced/turtlebot3 logger.git” in a terminal on the

TurtleBot3 to download the package to the ”src” directory in the catkin workspace. We establish a

connection with the TurtleBot3 using SSH protocol and execute “rosrun turtlebot3 logger logger” in the

terminal. We shut the node down by publishing a Bool message type to the “/turtlebot3/logger” topic. After

the message is received, five log files are created in the current directory of the terminal. We download

the directory containing the log files from the TurtleBot3 to the ground station desktop using Secure Copy

Protocol (SCP) and analyze the log files using MATLAB.

3.5.2.5 turtlebot3 messop

We develop a package that transitions the TurtleBot3 between two vertices. We install

the package to the ”src” directory in the catkin workspace by executing “git clone

https://github.com/marinarasauced/turtlebot3 messop.git” in a terminal on the TurtleBot3. We launch

the node by establishing an SSH connection with the TurtleBot3 and executing “rosrun turtlebot3 messop

messop” in the terminal. Once the node is launched, it performs a calibration and the TurtleBot3 waits for

a new vertex to be published. The TurtleBot3 then performs one of three operations, specified by the user

as part of the vertex input: 1. rotate towards a heading; 2. rotate towards a heading and then translate to a

point; 3. rotate towards a heading, translate to a point, and rotate towards another heading. Although we

only utilize the second of these three operations in this project, the package provides future users with a

high degree of flexibility.

3.5.2.6 vicon bridge

Using the vicon bridge package by ETH Zürich’s Autonomous Systems Lab, we receive data from VICON

Tracker in the ROS environment [19]. Position and orientation data of all tracked objects are passed from

VICON Tracker through the Datastream SDK to the vicon bridge node using C++ and a local area network

(LAN) connection between the two desktops. Before launching the node for the first time, we configure

the launch file in the vicon bridge package to receive data from the VICON desktop’s static IP address. We

launch the node by executing “roslaunch vicon bridge vicon.launch” in a terminal on the ground station

57

desktop.

3.5.3 Software System Integration

To execute experiments, our software systems integrates with many pre-existing external software

programs through established communication protocols. Over the course of the project, the integration

changes and simplifies. Figures 3.28, 3.29, and 3.30 show a graphical representation of the different software

components we use within our system.

Figure 3.28: Software System Integrations

Figure 3.28 shows the first plan for software integration. We initially have two communication systems,

one for the UAVs and a separate one for the ROS network (for the UGVs and sensors). In this case, the MESS

would harmonize the two communication methods. Below we have a summary of the relevant software and

connection protocols.

ArduPilot ArduPilot is an open source flight control software that operates on many flight controllers. We

select ArduPilot due to its versatility and ample documentation.

QGroundControl QGroundControl (QGC) is a ground station software used for UAV command and

control. It communicates with any flight controller running ArduPilot. QGC is equipped with several flight

modes that handle tasks like taking off, landing, stabilizing flight, and waypoint navigation. It also allows

for easy calibration of the flight controller. Due to its powerful built in functions and ease of use, we select

it as the main ground station software for the UAVs.

Gazebo Gazebo is a simulation tool used to test the MESS in a virtual environment. It can simulate both

ground and aerial vehicles and interfaces with ROS. When given commands to a ROS node, it is able to

simulate the movement of a turtle bot. Since MESS interfaces with ROS nodes, a Gazebo simulation can

provide proof that the MESS interface is successful in integrating the environments, independent of any

hardware complications that may interfere.

58

MAVLink MAVLink is a communication protocol for sending data to UAVs and systems that control

UAVs. It is designed to be lightweight and is widely used in industry.

MAVSDK MAVSDK is an application program interface (API) used to communicate QGC commands

from a C++ or Python application. The MAVSDK API allows the MESS to send commands to QGC.

VICON The VICON system is a motion capture system that utilizes multiple high speed cameras to

provide positioning data for vehicles that operate in the lab environment. See Section 3.6.1.

VICON Bridge Vicon Bridge is a ROS Package that allows for the easy transmission of object data from

VICON Tracker to a ROS node. More information can be found in Section 3.5.2.6.

VICON Module Vicon Module is an add on to MAVProxy that allows MAVProxy to receive data from

the VICON System.

ROS Master ROS Master is a centralized location that has access to all the ROS nodes and can publish

and subscribe to every topic from a centralized location.

ROS Nodes ROS Nodes are instances of the ROS environment that can publish and subscribe to different

topics. Nodes on UGVs allow for commands to be sent to the vehicle controller. ROS Nodes also allow for

sensor data to be transmitted from the Raspberry Pis to ROS Master.

Figure 3.29: Software System Integrations

Figure 3.29 shows the necessary integration after we opt to use mavros. Mavros is a ROS package that

interfaces with UAVs using the MAVLINK protocol. This eases the communication methods needed by

MESS as all communications are now done through the ROS network.

The switch to mavros simplifies the integration by removing the need to use both MAVProxy and QGC.

MAVROS enables MESS to communicate directly with the UAVs. Additionally, since we are not using

QGC, we do not need MAVProxy for multi-vehicle flight.

At this point, we investigate the feasibility of using a TurtleBot4. The TurtleBot4 is designed for use

59

with ROS 2 with no easy way of running ROS 1 on the hardware. Since the TurtleBot3s and mavros both

depend on ROS 1, we would need to use ros1 bridge, which translates ROS 1 messages to ROS 2 and

vice versa. However, due to the necessity of having both ROS 1 and ROS 2 on the same computer, added

complexity, and the larger size of the TurtleBot4, we choose not to use the TurtleBot4s.

Figure 3.30: Software System Integrations

3.30 shows the final state of software integration. The two notable changes from the prior iteration are

the removal of ROS 2 Master and the ROS 2 node of the TurtleBot4—we remove this functionality when

we decide against the TurtleBot4—and the swap from ArduPilot to PX4.

Like ArduPilot, PX4 is an open-source flight control software that operates on many flight controllers.

While we initially opt not to use PX4 due to its perceived smaller documentation and active community

compared to ArduPilot, we obtain yields stable using PX4 and uncontrolled flight with ArduPilot. We are

unsure why PX4 creates such a large change.

3.5.4 UAV Computer Vision

To estimate the threat of the laboratory environment, sensors must measure information about the

environment. ROS compatible Raspberry Pi cameras mounted on the UAVs record RGB values either

within the visual light or infrared frequencies. These images are mapped to the VICON environment using

the camera optics and VICON localization of the respective UAV.

3.5.4.1 Assumptions

A global three-dimensional matrix of user-defined resolution tracks the state of each position-discretized

vertex within the laboratory environment.

x =
[
TGx,px TGy,px RG GG BG NG

]T
(3.19)

60

The pixel dimensions in each image must be less than the user-defined global matrix resolution. A

preliminary analysis suggests that images taken from the UAV at a height of three meters is approximately

one millimeter. In the laboratory environment, the UAVs must operate lower than three meters due to the

physical constraints of the space. Given that the finest global matrix resolution is one centimeter, there

should be at least one pixel per point during the image mapping process. Additionally, the threat plane is

assumed relatively flat. Since RGB values are measured, threat values must be obtainable as a function of

RGB values.

3.5.4.2 Projective Image Transformations in Homogeneous Coordinates

RGB values in sampled images are mapped to the threat plane by transforming a normalized matrix of

position values to the true area that the image covers in the threat plane. The dimensions of the normalized

mesh equal the dimensions of the sampled image. Source and destination corner vertices are used to

calculate a homogeneous transformation matrix, which is then applied to all points in the normalized matrix.

3.5.4.3 Source Corner Vertices

The source corner vertices equal the positions of the corners of the normalized matrix. The index of each

corner represents to the quadrant that corner occupies if the image is taken at the origin and surface normal

to the threat plane. 
S1

S2

S3

S4

 =


1 1

−1 1

−1 −1

1 −1


 î
ĵ

 (3.20)

3.5.4.4 Destination Corner Vertices

The destination corner vertices are calculated using UAV’s pose and the field of view of the camera. The

vector that is surface normal to the camera when the UAV has zero roll and pitch is a negative unit vector

along the global z-axis.
−→v 0 =

[
0 0 −1

]T
(3.21)

A transformation calculates the position of the camera with respect to the measured pose of the UAV object

in VICON Tracker. A translation is applied followed by an XYZ Euler rotation in the UAV body-fixed

frame.

61


TGx,cam

TGy,cam

TGz,cam

 =


TGx,uav

TGy,uav

TGz,uav

+


cos (RGz,uav) − sin (RGz,uav) 0

sin (RGz,uav) cos (RGz,uav) 0

0 0 1




cos (RGy,uav) 0 sin (RGy,uav)

0 1 0

− sin (RGy,uav) 0 cos (RGy,uav)



1 0 0

0 cos (RGx,uav) − sin (RGx,uav)

0 sin (RGx,uav) cos (RGx,uav)



dcam

0

hcam


(3.22)

The vectors from the camera to the corners of each image depend on the roll and pitch of the UAV and the

field of view of the camera.

−→v 1 =
[
tan (RGx,cam + FOVwide) tan (RGy,cam + FOVhigh) −1

]T
(3.23)

−→v 2 =
[
tan (RGx,cam − FOVwide) tan (RGy,cam + FOVhigh) −1

]T
(3.24)

−→v 3 =
[
tan (RGx,cam − FOVwide) tan (RGy,cam − FOVhigh) −1

]T
(3.25)

−→v 4 =
[
tan (RGx,cam − FOVwide) tan (RGy,cam − FOVhigh) −1

]T
(3.26)

The distance in the threat plan from the UAV to each destination vertex is calculated using the angle between

the global z-axis and each vector.

γi = arccos (
−→v 0 · −→v i

| −→v 0 || −→v i |
) (3.27)

di = TGz,cam tan (γi) (3.28)

The camera field of view is also used to determine the angle from the global x-axis to the each destination

vertex in the threat plane.

β = arctan (
tan (0.5FOVhigh)

tan (0.5FOVwide)
) (3.29)

[
α1 α2 α3 α4

]T
=

[
β π − β −π + β −β

]T
(3.30)

62

The destination vertices are subsequently calculated.

Di,x

Di,y

 =

TGx,cam
TGy,cam

+

cos (RGz,cam − 0.5π) − sin (RGz,cam − 0.5π)

sin (RGz,cam − 0.5π) + cos (RGz,cam − 0.5π)

di cos (αi)
di sin (αi)

 (3.31)

3.5.4.5 Homogeneous Transformation Matrix

A three-by-three transformation matrix transforms the normalized source points to the threat plane [22].

H =


H11 H12 H13

H21 H22 H23

H31 H32 1

 (3.32)

The eight unknown transformation coefficients are solved algebraically using the linear relationship between

the source and destination points [23].



H11

H12

H13

H21

H22

H23

H31

H32



=



S1,x S1,y 1 0 0 0 −S1,xD1,x −S1,yD1,x

0 0 0 S1,x S1,y 1 −S1,xD1,y −S1,yD1,y

S2,x S2,y 1 0 0 0 −S2,xD2,x −S2,yD2,x

0 0 0 S2,x S2,y 1 −S2,xD2,y −S2,yD2,y

S3,x S3,y 1 0 0 0 −S3,xD3,x −S3,yD3,x

0 0 0 S3,x S3,y 1 −S3,xD3,y −S3,yD3,y

S4,x S4,y 1 0 0 0 −S4,xD4,x −S4,yD4,x

0 0 0 S4,x S4,y 1 −S4,xD4,y −S4,yD4,y



−1 

D1,x

D1,y

D2,x

D2,y

D3,x

D3,y

D4,x

D4,y



(3.33)

All normalized pixels are mapped and then re-scaled to the global coordinate frame.

ρ =
[
H31 H32 1

]
Sx,px

Sy,px

1

 (3.34)

TGx,px
TGy,px

 =
1

ρ

H11 H12 H13

H21 H22 H23

Sx,px
Sy,px

 (3.35)

63

3.5.4.6 Resolution Shift

Since the pixels of each sampled image are mapped to a user-defined resolution, the computational efficiency

is increased when the mapped destination vertices of all pixels are rounded to the user-defined resolution

and then sorted. TGx,px
TGy,px

 = res

round(T
G
x,px

res)

round(T
G
y,px

res)

 (3.36)

3.5.4.7 Global Matrix Updating

In the global matrix, the RGB values are updated in batches using a weighted sum of the previous RGB

averages and the new RGB averages. The weights are proportional to the number of previously mapped

pixels and newly mapped pixels, respectively. First, the batch of RGB values are averaged, for N0 equals

the number of previously mapped pixels and N1 equals the size of the new batch.

R1 =

√√√√ 1

N1

N1∑
i=1

R2
i , G1 =

√√√√ 1

N1

N1∑
i=1

G2
i , B1 =

√√√√ 1

N1

N1∑
i=1

B2
i (3.37)

The global RGB values are updated with the new batch average.

RG =

√
N0R2

0 +N1R2
1

N0 +N1
, GG =

√
N0G2

0 +N1G2
1

N0 +N1
, BG =

√
N0B2

0 +N1B2
1

N0 +N1
(3.38)

The weight of previously mapped pixels is also updated.

NG = N0 +N1 (3.39)

3.5.4.8 Threat Retrieval

A .csv file contains a column of float values ranging from zero to one, representing the normalized threat

intensity, and three columns of RGB values generated using a MATLAB colormap and the threat intensity

column vector. The threat resolution is user defined. To calculate the threat at a tracked point, the current

RGB values are subtracted from all RGB values in the colormap .csv file. Each RGB vector is normalized,

and the index of the minimum is used to retrieve the threat intensity from the colormap .csv file.

64

3.6 Experimental Lab Set

3.6.1 Hardware

To achieve the stated project objectives, we must develop an easily configurable indoor lab setup to

run experiments. This indoor setup reduces the need for large-scale, expensive, and time consuming

outdoor experiments that may be infeasible. Further, an indoor configurable lab allows for year round

experimentation irregardless of outside temperature and weather. While the indoor laboratory configuration

presents several advantages, its principal drawback resides in the absence of a dependable Global Positioning

System (GPS) signal.

To resolve this issue, we use a motion-capture VICON system to provide accurate position data for the

UAVs and UGVs. The VICON system emulates GPS data allowing the autonomous vehicles to operate as

if they were connected to a standard GPS receiver. This system also provides ground truth data, allowing us

to study how accurately the autonomous vehicles estimate their positions in 3D space.

The initial setup of the lab is inadequate due to several factors, including the placement of VICON

cameras and the ground station setup. The cameras are mounted on large tripods, as seen in Figure

3.31, which can obstruct the movement of UAVs within the lab space and pose significant danger of

collisions. Additionally, the VICON system requires recalibration—which can take several hours—if any

of the cameras are moved or bumped so it is imperative that we find a more stable lab configuration.

Figure 3.31: Original laboratory setup

Our solution to the aforementioned problems is to mount the cameras on the walls of the lab. We have

access to 10 VICON cameras, which is more than sufficient to track any object within the lab. Figure 3.32

shows a top-down overview of the lab environment with the approximate locations of each VICON camera.

Walls A-C are solid boundaries of the lab; however, Wall D is an imaginary wall that bisects the lab space.

65

Figure 3.32: Top-Down VICON camera setup

This is because the lab environment does not encompass the entirety of the room in which the experiments

take place. The VICON cameras located on Wall D are mounted on a wooden structural support beam unlike

the rest of the cameras which are mounted on their respective walls.

The cameras on Walls A-C are mounted horizontally using one inch aluminum pipes and steel brackets

secured with drywall anchors. Each camera has its own 4 ft section of pipe for lateral adjustments which

allows the camera placement to be reconfigured should a future user deem it necessary. The cameras are

mounted as high as possible to avoid interfering with any autonomous vehicles. The cameras mounted on

Wall-D are mounted vertically with the steel brackets attached to the ceiling beam.

Above the cameras, we mount plastic cable sleeves and feed the VICON wires to the ground station

switchbox. Figure 3.33a shows an example of one of the camera mounts and wire management sleeves

before the cameras are mounted. This wire management helps properly organize the 100ft camera wires

making the lab environment cleaner and safer. Along Wall D, the wires are mounted directly to the ceiling

beam using wire staples due to their convenient location close to the ground station and the difficulty in

mounting cable sleeves in that area. The excess cable for each camera is coiled up next to its respective

camera and mounted to the wall using J-hooks as seen in Figure 3.33b.

To organize our hardware and clear table space, we shift the computer hardware to a small server rack

66

(a) Wall camera mount with cable sleeve
(b) Final lab design with cameras mounted, wire sleeves
mounted, and wires coiled and hung against the walls

Figure 3.33: Cable sleeves and final lab design

as in Figure 3.34. The main hardware components on the server rack are three switches used to link all ten

cameras, a desktop dedicated to running only the VICON software, and a smaller desktop used as a ground

control station. With this setup, we can efficiently collect data from lab mounted equipment such as the

cameras and any autonomous vehicles operating in the lab environment.

Figure 3.34: Ground station and server rack setup

Having mounted all of the cameras, next we must configure each camera to ensure any motion tracking

markers within the lab space are in focus, allowing for accurate data collection. The first step is to line the

borders of the lab space with reflective markers and place three additional markers in the center of the lab

space as shown in Figure 3.35.

The next step involves securing and positioning a single camera as intended, then adjusting its focus,

aperture, and zoom settings to their maximum levels. An iPad is then linked to the Vicon tracking software

67

Figure 3.35: VICON calibration lab setup

allowing us to see exactly what the camera sees. At this point, the camera view is completely dark and no

markers are visible. We close the aperture slightly and slowly close the focus until all of the markers come

into view as shown in Figure 3.36.

Figure 3.36: Sample Vicon camera view of the lab space with markers. Note, the white rings visible at the top of the screen are
other cameras, not markers.

Finally, we zoom in on one of the center three markers on the iPad screen and further adjust the focus

to ensure the marker is perfectly in focus and appears white instead of light gray. This step requires fine

adjustments and some trial and error with aperture/focus combinations to get the desired focus. Figure 3.37

shows the zoomed in marker before and after adjusting the camera focus.

Figure 3.37: VICON camera focus adjustment process

68

4 Results

4.1 Experiment 1 Results

4.1.1 Threat Mapping with Ideal Conditions

A unit test consisting a Raspberry Pi Camera Module 2 pointing towards a screen through a pinhole

demonstrates threat mapping with near ideal conditions. A known threat field is split into two sections, each

with an aspect ratio equivalent to that of the screen. The Figure Figure 4.1a contains the top of the threat

field, and Figure Figure 4.1b contains the bottom of the threat field.

(a) Upper half of known unit test threat field (b) Lower half of known unit test threat field

Figure 4.1: Upper and lower half of a known threat field

By assuming zero roll, pitch, and yaw, the simulated position required for the images to overlap

correctly is calculated using basic trigonometry. Both images are sampled and mapped to a fully unknown

environment, as in Figure 4.2.

Figure 4.2: Mapping of known threat at simulated positions

69

This mapping is converted to the known threat field’s color map, as is shown in Figure 4.3a. The known

threat field is also discretized to the lab resolution in the mapping, as in Figure 4.3b.

(a) Color map-corrected mapping of known threat at simulated position (b) Discretization of known threat

Figure 4.3: Initial processing of mapped threat field

To evaluate the error between the measured threat and the known threat, we plot the absolute value of

the difference between the known and measured threats, shown in Figure 4.4.

Figure 4.4: Normalized absolute error between known and measured threat

The mean error serves as a metric to evaluate the validity of the measured threat. In this trial, the mean

threat value error of each pixel equals 0.0997. However, upon inspection, the greatest errors occur in areas

of misalignment or areas exposure diffusion.

70

4.1.2 Threat Mapping with Non-Ideal Conditions

A threat field consisting of colored construction paper occupies a 8.73 square meter surface in the

laboratory environment. A visual light Raspberry Pi Camera Module 2 is mounted to the bottom of one

of the UAVs and faces downwards. As seen in Figure 4.5, we attach the UAV to a wooden stick and hold

the UAV over the construction paper threat field.

Figure 4.5: Experimental setup for estimating construction paper threat field

We conduct 27 trials attempting to calibrate the measured pose of the UAV and the computer vision

program. Although some trials have marginal error (such as in Figure 4.6), many have significant

misalignment.

(a) Construction paper threat measurement with marginal error
(b) Mapped threat field of measured construction paper threat with
marginal error using HSV colormap

Figure 4.6: Threat estimate and mapping using a construction threat field

In all other trials, the misalignment in the projection of images into the threat plane introduces significant

71

error, shown in the lack of resolution in Figure 4.7. We unsuccessfully attempt to remedy this error by

ensuring the global z-axis in VICON Tracker is properly level, applying a translation to account for the

position of the camera with respect to the location of the measured UAV object in VICON Tracker, and

modifying the computer vision program.

Figure 4.7: Construction paper threat measurement with misalignment

4.2 Experiment 2 Results

4.2.1 UGV Vertex Navigation using OpenCR1.0 Odometry

Initial tests rely on state estimates from the TurtleBot3’s OpenCR1.0 odometry since real-time feedback

from VICON Tracker is not yet configured. To demonstrate the functionality of the navigation package, we

input five vertices in the local frame, track the TurtleBot3 using VICON Tracker for post-analysis, and log

the onboard odometry. We transform the logged odometry data to the global frame in post-analysis. Results

of this experiment are shown in Figure 4.8.

The TurtleBot3 converges to each vertex according to the onboard state approximations, but does not

converge to the true position of each vertex. This is expected since we introduce error by relying on data

from the TurtleBot3’s odometry. We add additional error by approximating the angle of the z-rotation, but

we disregard this error since it is not applicable while using feedback from VICON Tracker.

72

Figure 4.8: Single TurtleBot3 vertex navigation using OpenCR1.0 odometry compared with VICON truth

4.2.2 UGV Line Following in the VICON Environment

After establishing a connection between VICON Tracker and the ROS environment using the

vicon bridge package, we demonstrate real-time VICON feedback [19]. We simplify our initial tests in the

VICON environment by creating a new line following package consisting of a calibration and a continuous

translation. The angular velocity control input is calculated using the line following system model.

Figure 4.9: Single TurtleBot3 line following in the VICON environment

The TurtleBot3 converges to the positive x-axis in Figure 4.9 in the VICON environment, confirming

the feedback works as intended and that the TurtleBot3 object is properly calibrated.

73

4.2.3 UGV Vertex Navigation in the VICON Environment

We update the navigation package to include a VICON callback function, a function to calibrate the

object in VICON tracker, a function to calibrate the onboard odometry, and logic for when the onboard

computer should use VICON localization versus odometry. We arrange shipping boxes into a makeshift city

within the VICON environment consisting of multiple obstacles and two tunnels. We input eight vertices

and test the updated navigation package.

Figure 4.10: Trajectory of single TurtleBot3 vertex navigation in the VICON environment

Upon inspection of Figure 4.10, it appears that the TurtleBot3 converges to the lines from each initial

vertex to each target vertex. Additionally, the onboard computer correctly switches to using odometry

callbacks during periods of occlusion, such as going through tunnels. We simultaneously demonstrate our

onboard data logging by comparing the measured odometry and VICON callbacks to the onboard estimated

state and by examining the calibration coefficients.

The plot of the TurtleBot3’s global states in Figure 4.11 further confirms that the onboard computer

correctly detects when the TurtleBot3 is occluded and that the odometry calibrations are sufficient.

The calibration coefficients in Figure 4.12 also behave as expected. The first four calibration coefficients

are constants calculated during the calibration of the TurtleBot3’s VICON Tracker object, while the

remaining three are calculated in real-time after each VICON callback. Spikes in the dynamic calibration

coefficients are due to sensor noise.

74

Figure 4.11: States of single TurtleBot3 vertex navigation in the VICON environment

Figure 4.12: Calibration coefficients of single TurtleBot3 vertex navigation in the VICON environment

75

4.2.4 Multi-UGV Vertex Navigation in the VICON Environment

We receive four TurtleBot3 Waffle Pi to incorporate into the laboratory environment. We build all four

and flash the appropriate software. To distinguish between vehicles in ROS, we first create a roslaunch file

that includes the bringup launch file, messop node, and logger node within a group. We add a name space

tag to the group that remaps all nodes and topics to include the vehicle name as a prefix, as shown in Figure

4.13.

Figure 4.13: Remapped TurtleBot3 bringup, messop, and logger topics with vehicle name prefix

We place three TurtleBot3 Waffle Pi in the VICON environment and successfully input vertices for each

vehicle to transition to. However, there is time desynchronization between the core processes launched

during bringup and the navigation and logger node, causes the vehicles to over rotate and over translate. We

unsuccessfully try separating the launch file into two .launch files to launch the bringup separately from the

custom nodes. We suspect that the name space tag introduces time delay due to the quantity of messages

being remapped across multiple topics. We next try to hard-code the vehicle name into the bringup package

and the navigation and logger nodes. The combination of modifying the TurtleBot3 diagnostics in the

bringup package, using remap tags in the launch files, and decreasing the proportional gain experimentally

corrects the issue.

76

4.3 Experiment 3 Results

4.3.1 Experiment Setup

This experiment phase focuses on collecting multi-modal data in a system with multiple aerial and

ground vehicles, and fixed environmental sensors. Figure 4.14 shows the assets we use in this experiment.

Figure 4.14: Phase 3 Experimental Setup

We use a TurtleBot 3 Waffle Pi (waffle) and a TurtleBot 3 Burger Pi (burger) as ground vehicles.

We equip the waffle with a heating strip attached to a metal bar and command the vehicle to navigate to

waypoints via the MESS. Due to time synchronization issues inherent to commanding multiple vehicles, we

command the burger manually.

We equip the Hawk1 UAV with an infrared (IR) camera and Hawk2 with a visual light (VL) camera.

Since we never achieve stable flight using mavros, we opt to attach the UAVs to wooden posts and move the

posts to simulate flight. The Tello drone, which we control manually, has a forward-facing camera.

In addition to vehicle-fixed sensors, we use a 4K visual light camera mounted on a tripod. This camera

captures the entire environment.

4.3.2 Sensor Data

We capture 798 images over the course of about 6 minutes while running the experiment.

Figure 4.15a shows the waffle driving underneath the IR camera on Hawk1 with the lights in the lab shut

off. The line visible on the waffle is the metal bar that houses the heating element. While the heating element

is active, the IR camera does not detect a heat signature. This can be seen as the strip on the waffle is the

same color as the background, and the floor of the lab is not the same temperature as the heating element.

77

Figure 4.15b shows the waffle driving underneath the IR camera on Hawk1 with the lights in the lab

illuminated. Much like when the lights are off, the camera does not detect a heat signature coming from

heating element.

(a) Image captured with an IR camera on the Hawk1 UAV with
overhead lights off

(b) Image captured with an IR camera on the Hawk1 UAV with
overhead lights on

Figure 4.15: IR images captured by Hawk1 with lights off and on

Figure 4.16 is an image of the waffle and burger passing each other. Over the course of the experiment,

the Hawk2 VL camera captured 1882 images.

Figure 4.16: Image captured with a VL camera on the Hawk2 UAV

In addition to images from the IR and VL cameras, a static camera captures overhead video,

which can be found here https://youtu.be/8 nLpJBP0Ls, and another camera captures a side view

https://youtu.be/optsCQL-fFo. We also record the VICON position data for each vehicle in the experiment.

Finally, we record and transfer the odometry and position logs from the waffle via MESS.

78

4.4 UAV Flight Testing

4.4.1 Indoor Flight

Upon switching to PX4, we achieve stable, level flight. We use the Manual/Stabilize option in

QGroundControl, which levels the vehicle in flight. It does not maintain either altitude or position [24],

so the vehicle may drift during flight. In this flight mode, we can hold a stable position, and take off

in a level orientation. However, true to the documentation, the UAV is subject to drift in the indoor

environment. Altitude control is completely subject to the operator, but is relatively easy to control

by adjusting the throttle. A short flight with each of the UAVs can be viewed at the following links:

https://youtu.be/UrG0fQwiXDQ and https://youtu.be/FEtOMRbK9r0.

We also perform basic roll, pitch, and yaw tests. We tip the UAV to either side, and return to the level

position with no oscillations. We perform this test with both UAVs, with one equipped with the RPi and

RPi camera. In both cases, the UAV is easily able to take off and stabilize itself, indicating that the build

and components are correct. One thing that we notice is that one of the flight controllers loses barometer

readings during initial flight testing. While we disable this reading and still achieve stable flight, the UAV

with a working barometer is less sensitive to throttle changes. This may be due to the barometer reading, or

may be due to the slight configuration differences of the two UAVs.

4.4.2 Autonomous flight (in SITL)

When first testing mavros, we use simulation software. We choose ArduPilot’s Software in the Loop

(SITL) capabilities to test our mavros connections and Python code. With this capability, we can arm the

vehicle, takeoff, move to a waypoint, land, and disarm. These mission stages are easy to implement in

mavros. To do so, we use a Python script that can publish and receive information from the mavros package.

As a result, we can read the state of the flight controller at any point during the mission and direct the flight

controller.

We choose to perform simulated tests to ensure that the code performs how we expect. Once we assemble

the UAV, we then move to testing the code with a companion computer, in this case the Raspberry Pi 3 (RPi).

Originally, with the ArduPilot software, we can connect to mavros easily. However, once we flash PX4 onto

the flight controller, we begin running into processing issues. A key part of ROS is time synchronization,

which allows the software to know when commands are sent and received. However, when we attempt to

use a baud rate of 921,600 B/s, the RPi first begins to restart the UART port that is connected to the flight

controller. If left long enough, the RPi crashes and shuts down. As a result, we never achieve a successful

autonomous flight test. This is mainly because without proper time synchronization, we do not want to

attempt to fly the UAV, which can cause substantial damage if control is lost from the RPi.

79

However, we do validate the physical connection and mavros by setting the baud rate to 38,400 B/s.

With a low baud rate, we can send and receive information from the flight controller (for instance the

charge of the battery). This is an important first step into connecting to the UAV with mavros. For future

work, we recommend that the same software and physical connections are used. However, we recommend

troubleshooting the RPi to either increase the baud rate it can handle, or to purchase an RPi with greater

processing capabilities. Other considerations would be changing the physical connection or cable between

the flight controller and RPi, switching software platforms (from mavros to either DroneKit, ROS 2, or

MAVSDK), or testing mavros with ArduPilot. The last option would lead to unstable flight once again but

would allow the user to test if the issues lies with PX4 or mavros. If the connection works between ArduPilot

and the RPi via mavros, it is possible that certain configuration parameters could be set in PX4 to resolve

the baud rate problems.

4.5 Wind Tunnel Results

4.5.1 Data Processing

The goal of wind tunnel data processing and analysis is to correlate motor speed data from the Ardupilot

logs with thrust and torque data from the thrust stand. The main challenge with this methodology is time

alignment of the data. We do not have time to develop a sophisticated method for conducting a wind tunnel

test. Thus, we use separate logging software for the UAV and the thrust stand. Although this is simple to

configure and operate, we are left with data lacking time synchronization.

Figure 4.17: Raw motor PWM readings from Ardupilot log files

To remedy this issue, we must examine experimental data from both log files and manually align the

time intervals. Figure 4.17 shows the raw motor PWM readings measured by the flight controller during one

80

test. The first step in the analysis is to isolate the time interval of the experiment. This is done manually for

each run, and the resulting data should look similar to Figure 4.18, which shows one such reduced dataset.

Figure 4.18: Motor PWM readings in time interval of interest

We process the thrust stand data similarly to the UAV log files. However, instead of defining a time

interval, we only need to define a starting time. This is because we want the time interval for the log data

and thrust stand data to be the same length. Thus we define only a start point for the thrust stand data and

then enforce the same duration as the log files. Figure 4.19 shows a sample graph of the raw thrust stand

data.

Figure 4.19: Raw thrust stand data collected during a wind tunnel experiment

After choosing time intervals, we analyse the resulting truncated dataset to determine if our data is

properly aligned. At this stage we curve fit the data and interpolate the curve at fixed timestamps so that we

81

can then remove the time dependency. Figure 4.20 shows the results of this alignment for the thrust data.

Note that at this point we have taken the average of motor PWM value at a given timestamp because we spin

all the motors simultaneously.

Figure 4.20: Motor PWM and thrust stand data alignment

After aligning the thrust stand data, we completely remove time dependency by associating motor PWM

values with their respective thrust value. We can then perform a simple quadratic curve fit to find the

quadratic coefficient. Figure 4.21 shows the results of this curve fitting as well as a 95% confidence interval

for the accuracy of the curve fit. As seen in Figure 4.22 the torque data is more disordered, as evidenced by

the larger confidence interval. We will discuss this in more detail in subsequent sections.

Figure 4.21: Quadratic curve fitting for thrust data

82

Figure 4.22: Quadratic curve fitting for torque data

4.5.2 Data Analysis

After processing all thrust and torque data, we are left with Figure 4.23 and Figure 4.24 which show the

final quadratic curve fit for each wind speed. The title of each graph contains the final average value for both

kF and kM , both of which are a simple average of each quadratic coefficient.

Figure 4.23: Thrust curve fit data for each wind tunnel condition

We consider enforcing some boundary conditions on the individual curve fits, such as enforcing that

at 1000 PWM—which is equivalent to 0 rpm—there should be no thrust. We decide this approach is not

necessary because the relationship between PWM and thrust is more nonlinear as the motors are closer to

zero RPM. Also, since the steady state armed motor PWM is 1100, so we would never attempt to control

83

Figure 4.24: Moment curve fit data for each wind tunnel condition

the motors at a smaller PWM value.

The thrust curves are much more consistent with their concavity and magnitude compared to their torque

counterparts. We conclude that this is most likely due to the lack of torque accuracy with our thrust stand at

very low torque values.

4.5.3 Conclusions and Future Work

The wind tunnel testing proved an effective way of measuring aerodynamic coefficients for UAVs. The

scope of this work did fall short of fully accomplishing the goal of directly relating motor rpm to UAV forces

and moments. Since the motor rpm value was not a direct output of the Ardupilot log files, we could not

easily associate rpm to thrust. However, through further testing, it is possible to convert the motor PWM

output to rpm by finding the relationship between PWM and rpm for these specific motors.

Another potential avenue for future work would be to determine the moment of inertia about each

Cartesian axis for our UAV design. This data is the final piece of information required to simulate the

UAV’s movement using a differential flatness model. Moment of inertia data can be found experimentally

or by modeling the UAV in a CAD software such as Solidworks.

84

5 Conclusions

5.1 Conclusions

The main goal of this project is to design a modular lab set-up that can be used to collect small data

sets for research in coupled sensor configuration and planning (CSCP). Our lab set-up requires minimal

coding experience and knowledge on the part of the user and can accommodate multiple types of sensors. It

supports both ground vehicles and UAVs.

Throughout the course of the project, the team on-boarded multiple robotic vehicles, sensors, and UAVs.

A modular experimental software system (MESS) allows any user to specify the objectives of different

vehicles in the experiment, save and load data, and save experimental configurations. Multiple UAVs were

flight tested, with and without sensor payloads. Ultimately, the UAVs were not incorporated into the MESS

due to late achievement of stable flight, as well as difficulties connecting to mavros.

The MESS was tested during a large experiment involving multiple robotic vehicles and sensors, proving

the framework and data collection. The UAVs were flight tested to demonstrate stable flight, but were not

included in the MESS, nor demonstrated autonomous flight. Overall, these tests demonstrated the feasibility

and usability of the software, as well as compatibility between all components on the UAVs.

Through this MQP, the team learned about the important of systematic testing and troubleshooting.

While flying the UAV may sound easy, we found many setbacks and small challenges along the way. Many

of these issues were fixed by testing each component individually to find any errors with the system. We also

learned that we do not have to sustain our first decision. Throughout the project, we found that we had to

switch components and change our vision. For instance, we re-built the UAV when the 2022 UAV presented

too many challenges and broken components. We also switched coding languages partway through the

project and evaluated multiple ground vehicles. While one choice may be the easiest, it may not the best,

so we found times when we needed to pivot quickly to avoid setbacks. Finally, we learned to always over-

estimate the amount of time that things would take, especially regarding configuration and software.

5.2 Future Work

While we met many of the objectives set at the beginning of the project, or made significant progress

towards them, there is still future work that can be done to refine and expand the capabilities of the current

lab setup.

85

For the VICON motion capture system, future work should focus on increasing the field of view of the

cameras. As it stands, the VICON cameras are all mounted higher than 7 feet above the ground, which

allows the cameras to cover the airspace, but not the entire floor space. There still exist areas, especially in

the corners of the lab space, where objects become occluded and lose useful position data. There are ten

additional cameras available to us, but given the scope and time-frame of the project we did not install them.

Our recommendation for future work is to mount the additional cameras closer to the floor to supplement

the current setup. In doing this, the lower cameras can be configured to view all ground activity and the

higher cameras can be configured to capture the entire airspace and some of the floor space as well. With all

of the cameras mounted, future experiments should have very accurate coverage of the entire lab space and

can mitigate interference from obstacles in the experiments.

For the UAV, future work should focus on achieving autonomous indoor flight. We were unable to

achieve fully autonomous flight because of issues with the Raspberry Pi boards (both RPi 3 and 4 boards)

crashing when communicating with the flight controller. Future work should investigate alternatives to the

Raspberry Pi with better computing capabilities that can handle the large amounts of data output by the flight

controller. Additionally, future work could investigate other software/protocols for communicating with the

flight controller through the Raspberry Pi. We have identified MAVSDK and DroneKit as two potential

alternatives, but ultimately these may not integrate as well with the MESS and ROS. PX4 also recommends

using ROS2 instead of ROS, so future work could explore using ROS2 on the UAVs to achieve autonomous

flight. This will unfortunately make it difficult to integrate the UAVs with the MESS, since the ground

vehicles are based on ROS 1 not ROS2, but it could be worth pursuing autonomous flight independent of

the MESS to prove its possible before then figuring way to incorporate with MESS.

For the computer vision, future work should focus on implementing point cloud registration. The current

computer vision program relies purely on geometry to align images, and calibration issues results in critical

misalignment. Future work should investigate updating the initial transformation of the sampled images

using previously sampled images to estimate the threat in the environment. Additional work may include

point cloud registration of obstacles in the laboratory environment if users want a threat field that is not

relatively flat.

Within the MESS improvements can be made to the mission planning. MESS cannot perform actions

outside of waypoint navigation. For example, there is no way to tell a sensor to activate after a vehicle

reaches a destination. Additionally, safeguards should be implemented. These safeguards should include

obstacle avoidance, ensuring the user can only command actions at the proper time, and should overall guide

the user through the process of configuring an experiment. For example, MESS currently allows a user to

86

run an experiment before launching vehicles, when vehicles should be launched before running.

87

Bibliography

[1] F. Ahmed, J. C. Mohanta, A. Keshari, and P. S. Yadav, “Recent Advances in Unmanned Aerial

Vehicles: A Review,” Arabian Journal for Science and Engineering, vol. 47, pp. 7963–7984, July

2022.

[2] Z. Zhang and L. Zhu, “A Review on Unmanned Aerial Vehicle Remote Sensing: Platforms, Sensors,

Data Processing Methods, and Applications,” Drones, vol. 7, p. 398, June 2023.

[3] A. Gupta and X. Fernando, “Simultaneous Localization and Mapping (SLAM) and Data Fusion in

Unmanned Aerial Vehicles: Recent Advances and Challenges,” Drones, vol. 6, p. 85, Mar. 2022.

[4] X. Yin and S. Lafortune, “A general approach for optimizing dynamic sensor activation for discrete

event systems,” Automatica, vol. 105, pp. 376–383, July 2019.

[5] K. Yousif, A. Bab-Hadiashar, and R. Hoseinnezhad, “An Overview to Visual Odometry and Visual

SLAM: Applications to Mobile Robotics,” Intelligent Industrial Systems, vol. 1, pp. 289–311, Dec.

2015.

[6] A. Bachrach, S. Prentice, R. He, P. Henry, A. S. Huang, M. Krainin, D. Maturana, D. Fox, and N. Roy,

“Estimation, planning, and mapping for autonomous flight using an RGB-D camera in GPS-denied

environments,” The International Journal of Robotics Research, vol. 31, pp. 1320–1343, Sept. 2012.

[7] B. S. Cooper and R. V. Cowlagi, “Interactive planning and sensing in unknown static environments

with task-driven sensor placement,” Automatica, vol. 105, pp. 391–398, July 2019.

[8] C. Laurent and R. Cowlagi, “Coupled Sensor Configuration and Path-Planning in Unknown

Environments with Adaptive Cluster Analysis,” (Atlanta), 2022.

[9] P. Zulch, M. Distasio, T. Cushman, B. Wilson, B. Hart, and E. Blasch, “ESCAPE Data Collection

for Multi-Modal Data Fusion Research,” in 2019 IEEE Aerospace Conference, (Big Sky, MT, USA),

pp. 1–10, IEEE, Mar. 2019.

[10] H. Shakhatreh, A. H. Sawalmeh, A. Al-Fuqaha, Z. Dou, E. Almaita, I. Khalil, N. S. Othman,

A. Khreishah, and M. Guizani, “Unmanned aerial vehicles (uavs): A survey on civil applications

and key research challenges,” Ieee Access, vol. 7, pp. 48572–48634, 2019.

88

[11] Z. Ameli, Y. Aremanda, W. A. Friess, and E. N. Landis, “Impact of uav hardware options on bridge

inspection mission capabilities,” Drones, vol. 6, no. 3, p. 64, 2022.

[12] “Zipline 2023 health impact report.” https://www.flyzipline.com/newsroom/stories/

2023-impact-report.

[13] M. Yaqot and B. Menezes, “The good, the bad, and the ugly: review on the social impacts of unmanned

aerial vehicles (uavs),” in International Conference of Reliable Information and Communication

Technology, pp. 413–422, Springer, 2021.

[14] “Turtlebot3 quick start guide.” https://emanual.robotis.com/docs/en/platform/turtlebot3/quick-start/.

[15] “Mandatory Hardware Configuration.” https://ardupilot.org/copter/docs/configuring-hardware.html.

[16] “Standard Configuration.” https://docs.px4.io/main/en/config/, Jan. 2024.

[17] “Aws-deepracer.” https://github.com/NESTLab/aws-deepracer, 2023.

[18] D. J. Balkcom and M. T. Mason, “Time optimal trajectories for bounded velocity differential drive

vehicles,” The International Journal of Robotics Research, vol. 21, p. 199–217, Mar. 2022. DOI:

10.1177/027836402320556403.

[19] “vicon bridge.” https://github.com/ethz-asl/vicon bridge.

[20] “raspicam node.” https://github.com/UbiquityRobotics/raspicam node.

[21] “turtlebot3 bringup.” https://github.com/ROBOTIS-GIT/turtlebot3.

[22] R. Hartley and A. Zisserman, “Estimation - 2D Projective Transformations,” in Multiple View

Geometry in Computer Vision, New York, NY, USA: Cambridge University Press, 2nd ed., 2004.

[23] I. Gkioulekas, “Image Homographies.” Feb. 2020.

[24] “Flight Modes (Multicopter).” https://docs.px4.io/main/en/flight modes mc/, Feb. 2024.

[25] “Ubuntu Install of ROS Noetic.” https://wiki.ros.org/noetic/Installation/Ubuntu.

[26] “Installing ROS.” https://ardupilot.org/dev/docs/ros-install.html.

89

https://www.flyzipline.com/newsroom/stories/2023-impact-report
https://www.flyzipline.com/newsroom/stories/2023-impact-report
https://emanual.robotis.com/docs/en/platform/turtlebot3/quick-start/
https://ardupilot.org/copter/docs/configuring-hardware.html
https://docs.px4.io/main/en/config/
https://github.com/NESTLab/aws-deepracer
https://github.com/ethz-asl/vicon_bridge
https://github.com/UbiquityRobotics/raspicam_node
https://github.com/ROBOTIS-GIT/turtlebot3
https://docs.px4.io/main/en/flight_modes_mc/
https://wiki.ros.org/noetic/Installation/Ubuntu
https://ardupilot.org/dev/docs/ros-install.html

A Raspberry Pi and Sensor Configuration

This section details our process for installing and using Ubuntu 20.04, ROS Noetic, and Ubiquity

Robotics’s “raspicam node” ROS Noetic package on a Raspberry Pi 3B. Unless stated otherwise, all of

the following commands should be done in an Ubuntu terminal on the Raspberry Pi.

Ubuntu 20.04 Server Installation & Setup

Flash microSD

1. Install Raspberry Pi Imager onto your device.

2. Connect the microSD to your device using a card reader and open Raspberry Pi Imager.

3. Click ”CHOOSE DEVICE” and select “Raspberry Pi 3”

4. Click “CHOOSE OS” and select “Other general-purpose OS” → “Ubuntu” → “Ubuntu Server

20.04.05 LTS (32-bit)”

5. Click “CHOOSE STORAGE” and select the microSD

6. Click “WRITE” to flash the Ubuntu 20.04 Server image onto the microSD.

Note: Raspberry Pi Imager may ask for a network SSID and password before writing. Please skip this step

as Network information is manually configured after the first Ubuntu boot.

Boot Ubuntu

Connect a keyboard, mouse, and monitor to the Raspberry Pi and then connect a power supply. As

Ubuntu boots for the first time, you will be asked to choose a new password. If you are prompted to login

first, “ubuntu” is both the default username and password. After you set a new password, Ubuntu will

continue to boot.

Configure Network Information

To connect your Raspberry Pi to a network, you must create a YAML configuration file. Run the

following command in the terminal:

sudo nano /etc/netplan/01-network-manager-all.yaml

The file that you create will be blank initially. A sample YAML configuration file for a WiFi connection

is provided below. For a wired connection, you will need to modify the sample YAML configuration file.

90

network:

version: 2

renderer: networkd

wifis:

wlan0:

dhcp4: true

access-points:

{SSID}:

password: {password}

Copy the sample YAML configuration file into the blank file you just created. Change the {SSID} and

{password} text in the sample YAML configuration file to the SSID and password of your network (do not

include the curly brackets).

Once you have entered all information into the YAML configuration file, save it and exit the text editor.

Apply the changes to the network configuration by running the following command in the terminal:

sudo netplan apply

Edit Bash Script

To enable communication with the ROS master, you must edit the bash script to export the ROS master

and the ROS host IPs. Using the terminal, open the bash script.

sudo nano ˜/.bashrc

In the text editor, add the following code at the bottom of the bash script.

export ROS_MASTER_URI=http://{IP_OF_ROS_MASTER_DEVICE}:11311

export ROS_HOSTNAME={IP_OF_RASPBERRY_PI}

Reboot the Raspberry Pi.

sudo reboot

To test that your Raspberry Pi is connected to the network properly, use an SSH connection to access

your Raspberry Pi from the ROS master. In a terminal on the ROS master device, run the following

command.

ssh ubuntu@{IP_OF_RASPBERRY_PI}

If the ssh is successful, you will be prompted to log into the Raspberry Pi using the password you

previously chose.

ROS Noetic Installation & Setup

Run the following commands to install ROS Noetic onto your Raspberry Pi [25].

91

Sources List and Keys Setup

sudo sh -c ’echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main"

> /etc/apt/sources.list.d/ros-latest.list’

sudo apt install curl

curl -s https://raw.githubusercontent.com/ros/rosdistro/master/ros.asc |

sudo apt-key add -

Installation

sudo apt update

sudo apt install ros-noetic-ros-base

Environment Setup

source /opt/ros/noetic/setup.bash

echo ’source /opt/ros/noetic/setup.bash’ >> ˜/.bashrc

source ˜/.bashrc

ROS Dependencies

sudo apt install python3-rosdep python3-rosinstall python3-rosinstall-generator

python3-wstool build-essential

sudo apt install python3-rosdep

sudo rosdep init

rosdep update

Additional Steps

After completing the installation, run the following commands in the terminal.

cd

mkdir catkin_ws && cd catkin_ws

mkdir src

catkin_make

Once the catkin workspace compiles, run the following command so that the setup.bash script is initiated

every time a terminal is opened.

echo "source ˜/catkin_ws/devel/setup.bash" >> ˜/.bashrc

92

Install raspicam node

To build the raspicam node from Ubiquity Robotics’s GitHub repository [20], first clone the node.

cd ˜/catkin_ws/src

git clone https://github.com/UbiquityRobotics/raspicam_node.git

Create a new YAML configuration file for some missing dependencies.

sudo nano /etc/ros/rosdep/sources.list.d/30-ubiquity.list

In the text editor, add the following code to the blank YAML file.

yaml https://raw.githubusercontent.com/UbiquityRobotics/rosdep/master/raspberry-pi.yaml

Install additional ROS dependencies and then compile the node.

rosdep update

cd ˜/catkin_ws

rosdep install --from-paths src --ignore-src --rosdistro=$ROS_DISTRO -y

catkin_make

Run raspicam node

Start the ROS master in a terminal on the master device.

roscore

Depending on the version of your Raspberry Pi Camera, SSH into the Raspberry Pi and run the following

command in a new Ubuntu terminal. The below command is an example for a v2 camera with 1280x960

resolution.

roslaunch raspicam_node camerav2_1280x960.launch

To view the camera output, open a new terminal on the ROS master device and run the following

command.

rqt_image_view

To view your image feed from the Raspberry Pi Camera, select your device from the dropdown menu.

Troubleshooting

If you get an error stating “Failed to create camera component” when attempting to launch the

raspicam node with roslaunch, Ubiquity Robotics advises to check that the camera cable is seated properly

on both ends. In case that was not the issue, complete the following steps to manually install the camera info

YAML file and update the config.

93

Update config.txt

Navigate to the root directory on your Raspberry Pi device. Ensure that you are in the root directory by

entering pwd into the terminal and verifying that “/” is the output. Then, navigate to the firmware directory.

cd /boot/firmware

Open config.txt in the text editor.

sudo nano config.txt

At the bottom of config.txt, add the following information.

[all]

start_x=1

gpu_mem={MEMORY_ALLOCATED_TO_CAMERA_MODULE}

Reboot the Raspberry Pi, and then reattempt to launch the raspicam node.

Install camera info.txt

If you get an error that camera info.txt is missing, navigate to the root directory on your Raspberry Pi

device. Then, navigate to the camera info directory.

cd /home/ubuntu/.ros/camera_info

If any of the directories do not exist, you can create them by entering the following command in the

terminal.

mkdir {DIRECTORY_NAME}

Copy the YAML files from the installation to the new path.

cp -r ˜/catkin_ws/src/raspicam_node/camera_info /home/ubuntu/.ros/

94

B Raspberry Pi and Flight Controller Configuration

This section provides a basic overview of configuring the PX4 autopilot on an ARKV6X board [16]. We

refer the reader to PX4 documentation and community forums for further documentation if needed.

Flight Controller Software Configuration

Flash PX4

This section assumes the user has downloaded QGroundControl. However, any ground station that can

flash autopilot software will work.

1. Open QGroundControl, and using the logo in the upper left corner, navigate to “Vehicle Setup.”

2. Select “Firmware” from the menu on the left.

3. Connect the autopilot (in this case the ARKV6X) to your computer.

4. Confirm the autopilot software to download (PX4), the autopilot version, and the make and model of

the flight controller.

5. Select “OK” to load the firmware to the board.

Select the Frame Type

Connect the flight controller to QGroundControl. From the ”Vehicle Setup” menu, select ”Airframe.”

For our configuration and frame, choose ”HolyBro QAV250” under the ”Quadrotor X” category.

Calibrate the Sensors

Select the ”Sensors” tab under ”Vehicle Setup.” Then,

1. Select ”Orientations.” By default, PX4 assumes the flight controller is on the top of the frame, with

the x-axis toward the front of the vehicle. If this is not the case, select the applicable rotation.

2. Calibrate the compass, gyro, and accelerometer by selecting each option and following the relevant

instructions in QGroundControl.

If needed, the user can disable some or all of the onboard sensors. We choose to disable the compass (due

to interference from flying inside) and one UAV’s barometer (due to a loss in functionality). The relevant

parameters and values are:

95

1. Set ”CAL BAROx PRIO” to 0 to disable all barometer input.

2. Set ”CAL MAGx PRIO” to 0 to disable all compass input.

Battery & Power Module

Select the ”Power” tab under ”Vehicle Setup.” At this point, enter the relevant characteristics of the

connected battery. At minimum, input the number of cells, maximum, and minimum voltage. The maximum

voltage should be slightly lower than the actual maximum voltage of the battery, for instance 4.05V per cell

if the full capacity is 4.2V.

Motor Configuration

Select the ”Actuators” tab under ”Vehicle Setup.” Specify the coordinates of each motor from the center

of mass. This can be an approximate value if needed. Then, select appropriate ESC (in our case the

OneShot125 ESCs). Ensure that the motors are assigned to the correct AUX channel. Typical configuration

and spin direction are shown in Fig. B.1. To change the location of each motor, the easiest way is to change

Figure B.1: Proper motor orientation and direction

the AUX input in QGroundControl. However, to change the spin direction, the easiest way is to reverse the

positive and negative wires. To ensure that the motor are in the correct places and spinning properly, use the

”Actuator Testing” option. First, remove the propellers to avoid injuries or unpredictable behavior. Then,

each motor can be tested by moving the respective slider.

96

ESC Calibration

One the motor configuration is complete, return to the ”Power” tab. Ensure the propellers are not

installed. Then, select ”Calibrate” under ”ESC PWM Minimum and Maximum Calibration.” Follow the

instruction in QGroundControl.

Joystick Calibration

We choose to use a joystick to control the UAV. To configure this, navigate to ”Parameters” under

”Vehicle Setup.” Set ”COM RC IN MODE”=1. Then, pair a controller to the computer. We use an Xbox

controller. Once the controller is paired, navigate to ”Joystick.” Then, perform the stick calibration and

assign buttons. Note that only one button should be assigned to each function. Further, important functions

include: arm, disarm, emergency stop, and any useful flight modes.

Tuning

PX4 provides two options for tuning. A user may opt for either automatic tuning or manual tuning. PX4

recommends autotuning, but this does not work for us. For future teams, we would recommend following

PX4 autotune documentation before resorting to manual tuning.

Log Files

QGroundControl provides method to view logged data from the flight controller. Under ”Analyze Tools”

the user can navigate to ”Log Download” to download the .bin files or to ”MAVLink Inspector” to view real-

time data. We use this functionality to diagnose issues and to gather data during wind tunnel testing.

MAVLink Communication

The default port for MAVLink communication is TELEM2. We configure the following parameters on

the flight controller to use the TELEM2 port for MAVLink communication to a Raspberry Pi, which runs

mavros.

1. Set ”MAV 1 CONFIG” to 102 (TELEM2).

2. Set ”MAV 1 RATE” to the appropriate baud rate (recommended: 921600).

3. Set ”SER TEL2 BAUD” to the appropriate baud rate (must be the same as ”MAV 1 RATE”).

VICON Input

PX4 recommends using ”VISION POSITION ESTIMATE” for motion capture localization. This is

because the EKF2 subscribes to this topic, but does not subscribe to the motion specific topics. As a result,

we recommend using the corresponding ROS topics to publish VICON position data to the UAV. A few

parameters must be set on the UAV to allow the EKF2 to take in these inputs.

97

1. Set ”EKF2 EV CTRL” horizontal, vertical, velocity, and yaw fusion according to model.

2. Set ”EKF2 HGT REF” to Vision to use VICON for height estimation.

3. Set ”EKF2 EV DELAY” to the network delay in publishing and recieving VICON position data.

4. Set ”EKF2 EV POS X”, ”EKF2 EV POS Y”, and ”EKF2 EV POS Z” to the offset between the

VICON and the UAV’s frame of reference.

After setting these parameters, reboot the flight controller.

Raspberry Pi Configuration

mavros Installation

Assuming that ROS is installed (see Appendix A), run the following commands in terminal to install

mavros [26].

sudo apt-get install ros-noetic-mavros ros-noetic-mavros-extras

wget https://raw.githubusercontent.com/mavlink/mavros/master/mavros/scripts/

install_geographiclib_datasets.sh

chmod a+x install_geographiclib_datasets.sh

./install_geographiclib_datasets.sh

Launch File

On the Raspberry Pi, create and open the launch file in /̃catkin ws src.

touch px4.launch

nano px4.launch

Copy and paste the following code into the new file. This launch file assumed a baud rate of 921,600

and that the flight controller is connected to the Raspberry Pi on pins 8 and 10. Note that the baud rate must

match the baud rate on the flight controller.

<launch>

<!-- vim: set ft=xml noet : -->

<arg name="fcu_url" default="/dev/ttyAMA0:921600" />

<arg name="gcs_url" default="" />

<arg name="tgt_system" default="1" />

<arg name="tgt_component" default="1" />

<arg name="log_output" default="screen" />

<arg name="fcu_protocol" default="v2.0" />

98

<arg name="respawn_mavros" default="false" />

<include file="$(find mavros)/launch/node.launch">

<arg name="pluginlists_yaml" value="$(find mavros)/launch/

px4_pluginlists.yaml" />

<arg name="config_yaml" value="$(find mavros)/launch/

px4_config.yaml" />

<arg name="fcu_url" value="$(arg fcu_url)" />

<arg name="gcs_url" value="$(arg gcs_url)" />

<arg name="tgt_system" value="$(arg tgt_system)" />

<arg name="tgt_component" value="$(arg tgt_component)" />

<arg name="log_output" value="$(arg log_output)" />

<arg name="fcu_protocol" value="$(arg fcu_protocol)" />

<arg name="respawn_mavros" value="$(arg respawn_mavros)" />

</include>

</launch>

Start the ROS master in terminal on the master device.

roscore

Launch mavros on the Raspberry Pi.

roslaunch px4.launch

Troubleshooting

If mavros crashes due to permission issues, assign the current user as the owner of the relevant serial

port.

sudo chown {user} /dev/ttyAMA0

Replace {user} with the name of relevant profile on the Raspberry Pi.

If the connection is crashing, check the baud rate of the port. It should be greater than or equal to the

desired baud rate.

stty -F /dev/ttyAMA0

If the flight controller is not connecting to mavros, ensure that /dev/ttyAMA0 is properly assigned. Open

the config file.

sudo nano /boot/firmware/config.txt

Append the following lines the end of the file.

99

enable_uart=1

dtoverlay=disable-bt

By default on the Raspberry Pi 3, this port is assigned to Bluetooth and /dev/ttyS0 is the port assigned to

pins 8 and 10. However, /dev/ttyS0 is the miniUART and is less powerful, so this is not desired.

If the baud rate is not high enough on the Raspberry Pi, try to change the clock of the port by appending

the following to the end of the /boot/firmware/config.txt file.

init_uart_clock=16*{desired baud rate}

If mavros prints ”RT too high for timesync” increase the baud rate on the Raspberry Pi and the flight

controller.

100

	Project Overview
	Introduction
	Project Objectives and Tasks
	Literature Review
	Design Requirements, Constraints, and Other Considerations
	Project Management
	Tasks and Timetables
	A-Term
	Execution
	B-Term
	C-Term

	Relevant Engineering Standards
	Methods
	Broader Impacts

	System Design
	Project Objectives
	Experiment 1: Computer Vision and UAV Flight
	Experiment 2: UGV Navigation
	Experiment 3: Multi-modal Sensors in a Dynamic Environment

	Final UAV Design
	Final Components
	Wiring Diagrams

	Wind Tunnel Test Design
	Final UGV Design
	Final Sensor Suite
	Software
	Modular Experiment Software System
	Software System Integration

	Lab Setup
	VICON Motion Capture System Setup
	Experimental Field Setup

	Design Process and Analysis
	UAV Selection and Development
	Troubleshooting
	Battery
	Power Module and Power Distribution Board
	Motors and Propellers
	Electronic Speed Controllers (ESCs)
	Frame
	3D Printed Mounts
	Flight Controller and Autopilot Software
	Ground Station
	Micro-Controller
	Wi-Fi Board
	Modularity
	Safety
	Electrical Diagram

	Wind Tunnel Testing
	Mathematical Modeling
	Wind Tunnel Setup
	Data Collection

	UGV Selection and Development
	AWS DeepRacer
	TurtleBot3 Burger and Waffle Pi

	Sensing Suite
	Design Requirements
	Sensor Evaluation and Selection

	Software
	Modular Experimental Software System (MESS)
	Robot Operating System (ROS) Integration
	Software System Integration
	UAV Computer Vision

	Experimental Lab Set
	Hardware

	Results
	Experiment 1 Results
	Threat Mapping with Ideal Conditions
	Threat Mapping with Non-Ideal Conditions

	Experiment 2 Results
	UGV Vertex Navigation using OpenCR1.0 Odometry
	UGV Line Following in the VICON Environment
	UGV Vertex Navigation in the VICON Environment
	Multi-UGV Vertex Navigation in the VICON Environment

	Experiment 3 Results
	Experiment Setup
	Sensor Data

	UAV Flight Testing
	Indoor Flight
	Autonomous flight (in SITL)

	Wind Tunnel Results
	Data Processing
	Data Analysis
	Conclusions and Future Work

	Conclusions
	Conclusions
	Future Work

	Raspberry Pi and Sensor Configuration
	Raspberry Pi and Flight Controller Configuration

