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Abstract

Data Science has become a popular tool for deriving solutions in a variety of domains, such as
medicine, materials science, and finances. The performance of such data science applications depends
on how well the data is cleaned and preprocessed. However, choosing the correct techniques can be a
difficult task as this decision depends highly on the data itself. Thus, the automation of this process
could greatly benefit those using data science by reducing human error and, in turn, creating more
reliable and generalizable predictive models.

This project aims to develop an automated cleaning and preprocessing web application for
non-technical users called CODeRS. We performed a literature review to find state-of-the-art techniques
with a range of assumptions to recommend in our application. We implemented those techniques in an
automated recommender system that provides the appropriate cleaning technique based on the dataset.
Additionally, we developed a graphical user interface to simplify the user experience for those creating
data science solutions in a differing domain. Furthermore, we developed this application in a modular
fashion to ensure scalability, longevity, and flexibility. We deployed our final product and measured its
functionality and design in a series of user studies with a group of materials scientists.
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1 Introduction

The recent and periodic increases in emerging technologies worldwide have led to the mass
generation of data in a variety of domains [1], [2], [3]. This increase in available data has motivated
experts in various fields to utilize data science solutions to derive insights and solve problems. However,
a majority of real-world data often contain errors created during data collection. This may occur due
to sensor failures, human error, or errors in the data collection process itself. If left untreated, dirty
data can adversely affect the outcomes of data analyses and cause data-driven solutions to be
inaccurate and unreliable. There are a variety of ways to clean and correct data errors. However, for
experts in domains outside of data science, these techniques can be quite complicated to implement or
understand. As a result, datasets cleaned by non-data scientists are often cleaned incorrectly or with a
technique that introduces bias to the dataset. Thus, there is a need for an application that makes the
cleaning process easy and understandable for users outside of the data science field.

1.1 Motivation

Many fields rely on data being properly cleaned and preprocessed prior to its use in analysis.
However, the process of cleaning this data is not always trivial. Currently, data cleaning has yet to be
standardized in many fields, leaving experts to discover cleaning techniques for themselves.
Unfortunately, many state-of-the-art cleaning techniques are computationally complex and not suitable
for non-data science fields. This lack of automation for ideal cleaning techniques leads domain experts
to utilize simple, yet biased, methods. The materials science and medical fields exemplify these
problems as outlined below.

Materials Science Example

In the field of materials science, processes, such as Nanomechanical Indentation and
Nanomechanical Mapping, are utilized to collected large amounts of data. Nanomechanical Indentation
involves applying a varying force onto an object using an indenter tip. Measurements on properties
such as material hardness, load on the material, and the depth into the material are then recorded at
an interval in milliseconds. Similarly to Nanomechanical Indentation, Nanomechanical Mapping
collects a series of indentations in a grid format. A data tuple containing hardness, modulus, and depth
values is collected for each indentation point. These two forms of data collection often result in massive
datasets filled with null values and outliers. Analyses using such data is often inaccurate since large
areas containing nulls cannot be analyzed, and thus, are not represented. Additionally, outliers are
problematic because they lead to bias and produce incorrect analyses regarding the material altogether.
If left uncorrected, materials being analyzed may appear to be more robust than they are. This can
lead to significant issues in real-world applications where the material is used. Due to the massive size
of such datasets, correcting these values by hand can take hours for a single dataset if an automated
and standardized process is not used.

Medical Example

Predictive modeling is often used in the medical field to minimize risk. One crucial step in
generating these predictive models and minimizing risk overall is cleaning the data. If data is not
properly cleaned, data analyses using this dataset may have significant implications on patient health.
In cases where predictive models are used to provided diagnoses, poor data analysis techniques may
even lead to the loss of human life at worst [4]. Reducing this risk results in benefits such as improved
diagnostics, high cost-effectiveness, enhanced operational efficiency, decreased remission rates,
personalized medical care, and more.

Data cleaning is also beneficial in correcting raw data generated through studies in the medical
field. One evolving area for this is clinical epidemiological research [5]. In this research, data cleaning is
used to identify and correct errors to minimize their impact on the results of a study. Due to the
relatively recent usage of data cleaning in this area, minimal guidance is currently available in
peer-reviewed literature on how to set up and carry out cleaning efforts efficiently and ethically.
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In order to address these problems, the goal of this project is to create an automated
application called CODeRs to handle common anomalies in real-world data. Such anomalies include
null values and outliers. Our application provides multiple options for handling anomalies in the
dataset, including removing, ignoring, or correcting them. Additionally, our application recommends
the appropriate cleaning technique to correct errors in a dataset to simplify the process for our users.
Through literature research, we determined state-of-the-art detection and correction techniques, such
as Multiple Imputation by Chained Equations and DBSCAN, for the anomaly values mentioned above,
and we implemented them in the correction option defined in our application. This function allows
non-data scientists to clean their data accurately without the difficulty of interpreting various anomaly
detection and correction techniques found in top Computer Science and Mathematical conferences.

1.2 Project Goals

To create a tool most suitable to provide an easy-to-use service for cleaning and correcting
data, we laid out the following objectives.

• Implement several state-of-the-art cleaning techniques including but not limited to outlier
detection and null correction through research on relevant methods.

• Create a recommender system to automate the process of correcting nulls and detecting outliers
in a dataset.

• Create a GUI to enable non-data scientists to clean their own datasets using our tool.

• Employ proper automated documentation, automated testing, and development practices
throughout the project to ensure the longevity of the open-source project once our team has
completed our MQP.

Through the completion of these objectives, we hope to provide an automated solution for data
cleaning.
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2 Background

In this chapter, we further establish the necessity for an open-source data cleaning application
with an automated recommender system. We discuss the data gathering and collection process along
with the properties of a dataset. Additionally, we discuss various cleaning techniques presented in
literature and examine their credibility. After providing the necessary data science and statistical
background, we examine existing platforms for data cleaning to determine the need for our application.

2.1 Properties of a Dataset

To make a recommendation on the proper cleaning techniques to use for a dataset, its
attributes must first be defined and considered. Some important attributes of a dataset are its
statistical properties. The distribution of a dataset can be represented by several metrics, such as the
standard deviation, mean, and range of a dataset. The mean represents the average value of the
dataset, the range represents the full spread of the dataset, and the standard deviation represents the
average spread of a dataset. These values provide insight into the distribution of a dataset. However,
they are highly non-resistant to outliers, with a single outlier being enough to highly affect their values.
More resistant properties are the median and interquartile range. The median value is the value of the
second quartile, while the interquartile range is the difference between the first and third quartile.
These values also provide key insights into the distribution of a dataset while being much more
resistant to a skew.

Another dataset attribute that is especially important for replacing missing values is the
relationship between the points in the dataset. In a situation where all points are directly related to
one another, such as a time-series, there is a natural order to the data point. If a value between two
known data points is missing, it is possible to use some method or model, such as linear regression, to
try to determine what this missing value would be. This may be represented by a time-series of
temperature readings where we know the value must move in a continuous pattern. On the other hand,
if the points are not sequential, a model could not be used to replace the value based solely on
surrounding values. It instead may have to consider all of the data points for that column or the values
for that record in the other data columns. An example of this may be temperature readings recorded in
Fahrenheit and Celsius at random times and at random locations. If one value is missing but the other
still exists, a very basic transformation can be applied to retrieve the original value.

One of the more complex attributes of a dataset is the number of data columns it contains. If
the dataset contains a single list of data (i.e. one-dimensional), the dataset is univariate. An example
of this could be temperature readings where only the degrees in Fahrenheit is recorded. It is also
possible for data to be n-dimensional or multivariate. Such a dataset contains two or more columns.
For example, a temperature reading could include the degrees in Fahrenheit, the time the reading was
collected, and a wind reading. Depending on the dimensionality of the data, different cleaning and
preprocessing methods may be more appropriate.

In addition to the above mentioned properties, the type of the dataset, such as point-wise and
time-series, also plays a significant role. A point-wise dataset is the most common type of dataset
generated. The order of the points does not matter, and they are not related to one another in any
sequential form. For example, if we gathered twenty random temperature readings and only kept track
of the temperature, this would represent point-wise data. Unlike point-wise datasets, time-series
datasets’ points are related to one another. In time-series, data values are gathered in some sequential
fashion, similar in nature to a linked list or an array. The order of the values matters relative to the
time, index, or other metric used to keep track of the order of the values.

Unlike point-wise datasets, time-series datasets have additional properties used to define their
behavior. These properties include seasonality, trend-cycle, and remainder components [6]. To
highlight the differences between these components, we created a sample data found at
our GitHub repository. This dataset was created using a seasonality component, a trend-cycle
component, and a residual component. Several outlier values were injected into the dataset as well.
The visualization of these values can be seen below in Figure 1.
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Figure 1: Time-Series Raw Data

The seasonality of a time-series represents the repetition in a time-series in a cyclical behavior.
For example, this may be represented as retail prices being higher in November and December,
following a seasonal cycle [7] [8]. The seasonality component of the dataset above can be shown below
in Figure 2.

Figure 2: Time-Series Seasonality Component

Seasonality is commonly removed to determine long-term trends or errors. The second
component mentioned is the trend-cycle component. While the seasonality represents repeating
patterns that reoccur every x units of time, the trend-cycle represents the long-term behavior of a
time-series [9]. The trend-cycle component of the dataset for this example can be seen below in Figure
3.

Figure 3: Time-Series Trend-Cycle Component

The last component of a time-series is the residual component. This value is simply the
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remainder after removing the seasonality and trend-cycle components of the time-series values. An
example of this can be seen below in Figure 4. Outliers are especially apparent as they have larger
residuals.

Figure 4: Time-Series Residuals Component

2.2 Cleaning Techniques

2.2.1 Outlier Detection

One of the major themes in data cleaning revolves around detecting and treating outliers.
Possible outlier treatments include removal, replacement with an interpolated value, or replacement
with a constant. Regardless of the treatment type, they must first be detected using some form of
outlier detection technique. The baseline outlier detection methods implemented for this project are
univariate statistical methods and multivariate clustering methods. Univariate outlier detection
methods compare a single column of data to determine outliers. Multivariate methods discussed later
in this section use two or more columns to determine if a value is an outlier or not.

One of the most common algorithms for detecting outliers is the z-score outlier detection
method. This technique makes use of two metrics from a univariate data distribution: the mean
represented as x̄ and the standard deviation represented as s from a data distribution x [10]. An
observation is considered an outlier if it is outside of the interval defined below in Equation 1.

(x̄− ks, x̄+ ks) (1)

The value k used in the interval above represents the number of standard deviations away from
the mean a data point must be to be considered an outlier. The value of k is typically 2 or 3. This
method is intended for use on normal distributions, where a k of 2 captures 95% of the data and a k of
3 captures 99.7% of the data as stated by the Empirical Rule [11]. A visual representation of this can
be seen in Figure 5 below.
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Figure 5: Empirical Rule

The equation for z-score defined above defines a set interval. However, it does not provide an
indication of how a data point compares to another data point within a dataset. For example, if a data
point is twenty standard deviations away from the mean, it has a stronger impact on the dataset than a
data point three standard deviations. Using the interval method, a point is determined to be an outlier
or not with no variation between the classification. There are several other methods to represent the
above equation and do this, with one popular method shown in Equation 2 below.

|x−x̄|
s > k (2)

This equation calculates how many standard deviations the data point x is away from the
mean and then compares it to a constant k. If the value is above k, the value is determined to be an
outlier. Variations of this method also exist. One such method relies on another constant, α, which
represents a confidence coefficient where 0 < α < 1 [12]. The α-outlier region of a normal distribution
with mean x̄ and standard deviation s can be represented by Equation 3 below.

out(α, x̄, s2) = x : |x− x̄| > z1−α/2 ∗ s (3)

In this equation, zq represents the quintile of the N(0,1). Similar to the above equations, if x is
included in out(α, x̄, s2), it is defined as an outlier. For simplicity, this project uses the second equation
as it is the most commonly used in literature. The results of utilizing this process on a generated
dataset are shown below in Figure 6. The generated dataset can be found our GitHub repository.

Figure 6: Normal Distribution with Outliers Identified Using Z-Score
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The purpose of the z-score outlier detection method is to detect outliers. However, the way it
determines its metrics is flawed. The two metrics that it uses, the mean and standard deviation, are
highly susceptible to skew. If we follow the Empirical Rule of the normal curve, we can see the data is
distributed in a continuous and decreasing frequency away from the mean. The issue with this is that
some outliers do not follow this trend. For example, an outlier can be magnitudes larger than the data
distribution itself. Consider the example located at our GitHub repository where a normal set of 100
values is generated with a mean of 0 and a standard deviation of 1 using NumPy. When we calculate
the mean and standard deviation, we receive a (mean, standard deviation) of (0.07941666293687392,
0.9670394771137057). Now consider if an outlier with a value of 10000 is inserted into the dataset.
This value skews the mean and standard deviation significantly, resulting in the new (mean, standard
deviation) value of (99.08853134944245, 990.091614451334) as shown in Table 1. A visual
representation of the results of the z-score outlier detection can be shown in Figure 7. When z-score is
used to identify outliers on this new dataset, the results are inaccurate since the statistics used to
identify outliers no longer accurately identify the dataset. With these values, a point at 2000 would be
considered not an outlier, even though any data scientist would deduce it to be one. Due to this issue,
a better outlier detection technique that is not heavily impacted by outliers should be used.

Table 1: Table highlighting effects of Outlier Insertion

Mean Standard Deviation Median Interquartile Range
Before 0.07941666293687392 0.9670394771137057 0.09436841421237988 1.1561178267491579
After 99.08853134944245 990.091614451334 0.09914921583524362 1.1902531587620824

Figure 7: Data with Large Outliers with Outliers Identified Using Z-Score

The Boxplot method [10] is another univariate statistical method that solves this problem by
utilizing metrics that are not easily skewed. Instead of the standard deviation, the interquartile range
(IQR) is used. The IQR is defined as the difference between the first quartile (Q1) value and the third
quartile (Q3) value. Instead of using the mean, the average of the first quartile and third quartile of the
dataset (Q1+Q3

2 ) is used. Similar to the z-score method, the interval which contains all points not
marked as outliers can be represented by Equation 4 below.

(Q1 − k ∗ IQR,Q3 + k ∗ IQR) (4)

In this equation, k is a constant that varies depending on the type of outlier being identified.
Two such classifications of outliers are mild outliers and extreme outliers. A data value x is considered
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an extreme outlier if it lies outside of the above interval when k equals 3. A data value is just
considered a mild outlier if it lies within the above interval when k equals 3 but outside of the interval
when k equals 1.5. These constants were chosen by comparison to the normal curve. Similar to z-score
outlier detection, the above equation can also be written as the Equations 5 and 6.

x < Q1 − k ∗ IQR (5)

x > Q3 + k ∗ IQR (6)

These equations represent the comparison to a single data point. If either statement is true,
the data point is an outlier. Given the name of the method, it can also be visually represented by a
boxplot as shown below in Figure 8.

Figure 8: Properties of a Boxplot

To show the effectiveness of this method in comparison to z-score outlier detection method, we
identified outliers usin the Boxplot method on the same dataset used above from
our GitHub repository. Using the same distribution with a (mean, standard deviation) value of

(0.07941666293687392, 0.9670394771137057) and (Q1+Q3

2 , IQR) value of (0.09436841421237988,
1.1561178267491579), the outlier value of 10000 is added to the dataset. While the mean and standard
deviation were skewed a noticeable amount as previously stated, the (Q1+Q3

2 , IQR) value becomes
(0.09914921583524362, 1.1902531587620824) as shown previously in Table 1. These two values only
shift a minimal amount considering the obvious change in the mean and standard deviation. This
highlights the robustness of the Boxplot method over the z-score method in identifying outliers.

Though the above methods are effective for univariate distributions, they are not as useful
when data values are represented by tuples and have multiple values that simultaneously need to be
compared to determine if they are an outlier or not. This is where multivariate outlier detection
methods become useful.

The first multivariate outlier detection method discussed is Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) [13] [14]. DBSCAN is a form of clustering that separates a dataset
into areas of high-density data points and low-density data points. The goal of this algorithm is to
identify the sections of high-density points into separate clusters. To be classified as a cluster, this
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algorithm requires that points have a minimum number of points in that cluster. The process
completes its clustering by creating a circle around each data point and classifying each data point
based on the number of points within a radius. This is referred to as a point being density-reachable to
another point. For example, X is density-reachable from Y when X is in radius of Y. X is
density-connected to Y when there exists a point O where both X and Y are density-reachable from O.
In this algorithm, data points are either classified as core points, border points, or outliers. Core points
have at least a minimum number of points that are density-reachable. A border point is
density-reachable from a core point but does not have enough points that are density-reachable to be
considered a core point. Lastly, outliers are points that are not density-reachable to any core points.
All points that are density-connected then become a separate cluster.

Figure 9: DBSCAN Cluster Selection Process

This process is visualized in Figure 9 above. All green and olive points are included within a
cluster while red points are not included in a cluster and are defined as outliers. Once this process is
complete, there are several clusters from the density-connected point sets and a number of outliers that
did not fit into the requirements of being density-connected with a minimum number of points. Two
examples of this clustering can be seen below using two different datasets. Points that are green, olive,
or orange are within a cluster, while the red points are defined as outliers.

The data in the dataset shown in Figure 10 is scattered throughout the plot with three densely
populated areas. The dataset can be found in our GitHub repository. The clustered results of this
process can also be shown below in Figure 10.
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Figure 10: DBSCAN Results with Normal Clusters

The DBSCAN method was successfully able to identify the densely populated areas and
identify the noise surrounding them. This example shows normal data with fairly simple shapes.
DBSCAN works with any shape of densely populated data, such as the data shown in Figure 11. The
data in this figure has one cluster similar to those in the previous dataset, but it also has a densely
populated curve. This curve represents sine values with random noise added in. The code to generate
this dataset can be found in our GitHub repository. DBSCAN can successfully identify the cluster even
with the shape having x values larger and smaller than the spherically shaped data point cloud as
shown in Figure 11. Though the above case shows two-dimensional data, DBSCAN can be used with
any n-dimensional dataset. Two-dimensional datasets were chosen for ease of visualization with
increased complexity.

Figure 11: DBSCAN Results with Differently Shaped Clusters

Another multivariate method that can be used is K Nearest Neighbors (k-NN) [13]. The k-NN
algorithm uses three constants, m, k, and d, where m < k. For each region of a data distribution, it
checks if m of the k nearest neighbors are within a distance d. If at least m of the k nearest neighbors
are within this distance, the region is classified as being normal. If there are less than m neighbors
within distance d of the region, the points inside of the region are classified as outliers. We performed
outlier detection with k-NN on another generated dataset as shown in Figure 12 below. The data
generation and entire process for this dataset can be found at our GitHub repository.
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Figure 12: Outliers Identified with k-NN

The k-NN algorithm runs without a distance being known ahead of time, and thus, cannot
identify outliers on its own. Instead, k-NN calculates a mean distance metric for every data point that
represents the maximum distance that a data point needs to be within to be considered a normal point.
For example, if a point has a y-axis distance value of 0.1 and an x-axis distance value of 0.2, then the
distance value would need to be 0.15 or greater for that point to not be an outlier. The calculated
mean distance metric for a set of data points is shown in Figure 13.

Figure 13: k-NN Distance Values

Once this has been completed, an arbitrary cutoff needs to be assigned to perform outlier
identification. The cutoff chosen for this example was 0.8. All points with a distance value above this
are now considered outliers, as shown in the plot above in Figure 12. At the end of this process, k-NN
has successfully identified several points which would be marked as outliers.

Up until this point, all datasets that have been discussed have been point-wise. Essentially,
each data point has no set relationship with other data points. Other forms of datasets, such as
time-series, have a clear sequential relationship with each other. To deal with this type of dataset, an
additional outlier detection method must be considered.

One method for detecting outliers for data in a time-series format is seasonal decomposition.
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Seasonal decomposition is the process of separating a time-series into several components, including the
seasonality, trend-cycle, and remainder component [6]. Through this decomposition, the original data
values are compared to a new curve created by the combination of the decomposed elements, as done
by statsmodels’s library. A residual values can then be generated to highlight the difference between
the two curves, with higher residuals resulting in points that are more likely to be outliers. We perform
seasonal decomposition on a previously used dataset, which can be found in our GitHub repository.
Figure 14 shows the decomposition of the dataset in terms of seasonality, trend-cycle, and residuals.
Outliers are marked on the residual plot in red.

Figure 14: Time Series with Outliers Identified Using Seasonal Decomposition

When the seasonal decomposition results are compared to the components of the generated
dataset, the residuals often have the greatest variation out of the three components. This is because
any change in both the trend or seasonality is reflected in the residual values, causing variations to be
more significant in the residuals. This is problematic as the residual value for each point needs to be
robust and not easily skewed since it determines outlier identification. Furthermore, this method is not
commonly covered in literature, resulting in minimal standardization of the method. Additionally,
there is no clear cut-off for residuals to determine outliers. Due to this and its lack of implementation
on multivariate time-series datasets, there is a need for another time series outlier identification method
that is not easily skewed.

A time-series outlier detection method that is far more promising, standardized, and popular is
the isolation forest method. Isolation forests detect outliers by measuring the average number of steps it
takes to isolate data points [15]. This method determines a point to be an outlier if it takes fewer steps
than another point because it is deemed more isolated from the other values in the dataset. To further
show how this method works, we performed isolation forests on a dataset we generated by artificially
adding random values at a rate of 3% to a time-series dataset as shown in out GitHub repository. For
each of these features, the isolation forest method determines how likely each data point is to be an
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outlier based off of every component value at an index. For example, a point with all component values
being outliers is much more likely to be classified as an outlier compared to a point with one component
that is an outlier. Once this process is complete, the following result is generated in Figure 15.

Figure 15: Time Series with Outliers Identified Using Isolation Forests

Once the process is completed, we can see that the majority of outliers injected into the dataset
have been determined as outliers. After completing this process, we know which tuple is an outlier but
not necessarily which component determined this classification. As shown in Figure 15 above, if a point
is an outlier then it is marked as an outlier for every component of the time series data.

2.2.2 Null Correction

A missing value is defined as a value that does not hold meaning within a dataset, such as
”NaN” or Null. The presence of missing values in a dataset is a common issue in various domains. In
2004, Peng [16] reviewed 989 randomly selected studies in the fields of applied education and
psychology and found that approximately 16% of the datasets contained null values. Clinical trials also
suffer from large proportions of missing data. A clinical trial for weight-loss [17] was unable to draw
accurate conclusions due to a 59% subject dropout rate. This recurring problem in a variety of fields
limits the conclusions that can be drawn using statistical and data-driven approaches. Missing data
often leads to misleading and biased results when building predictive models and can have huge
implications in crucial studies, such as in the field of medicine [18]. For example, a clinical trial on
patients with heart failure [19] reported that the lack of real data in their datasets contributed to the
inconsistency in results of similar studies. Furthermore, with the exception of KNN and a few others,
most machine learning algorithms cannot handle missing values and produce poor results or return
errors. Thus, these values must be handled in the cleaning process in order to salvage the accuracy of
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predictive models.

Mechanisms of Missingness

In order to properly impute a missing value, the mechanism by which it is missing must be
considered [20]. Mechanisms of missingness describe the cause for a value’s absence. Whether a value is
missing randomly or intentionally can have a large impact on the performance of future predictive
models, so it is important to define the mechanism for a given dataset. There are three mechanisms of
missingness that are commonly defined in literature and depicted in Figure 16: Missing Completely at
Random (MCAR), Missing at Random (MAR), and Missing Not at Random (MNAR).

Figure 16: Mechanisms of Missingness Explained

Values that are defined as MCAR if the probability of its missingness is not dependent on any
values in the dataset, whether they be observed or missing. In this case, the missing values do not
affect the representation of the population distribution in the sample dataset. For example, in real-life
medical examples, this can occur when a subject needs to miss a day of the study due to an outside
conflict. Since the schedule conflict does not occur due to any factors in the study itself, this missing
data is MCAR. The missingness of values that are MAR, on the other hand, relies heavily on other
observed values in the dataset. The probability of such values being missing is directly related to values
that are present in the dataset but not related to the missing values themselves. For example, in a
depression study, participants that identify as male may be less likely to respond to questions or admit
the severity of their depression than participants who identify as female [21]. The third mechanism,
MNAR, differs greatly from MCAR and MAR. The probability of missingness for MNAR data is highly
dependent on both observed and missing values in the dataset. The missingness of these values is not
random and occurs mainly due to the method of data collection. For example, in a materials science
study dealing with powders, the values of the diameter of particles may be recorded as null if the data
collection machine cannot record values below a certain value. As such, these missing measurements
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are dependent on the missing value itself, and thus, are difficult to predict and recover without
collecting the data again. In literature, MCAR and MAR mechanisms are considered ignorable since
the bias produced by them can be reduced and the general distribution of the dataset can be recovered.
MNAR is considered not ignorable since this mechanism leads to high bias that cannot be reduced
through traditional null handling methods.

Handling Missing Data

The best technique for handling missing values must be considered based on the given dataset
in order to reduce bias and a loss of valuable information. Unfortunately, various techniques, such as
mean imputation and list-wise deletion, that do not properly handle these values for all datasets have
been widely adopted. In various fields outside of computing, there is a lack of importance placed on
handling missing values [22], which leads to the usage of such techniques due to their simplicity and
wide accessibility. As a result, the analysis and development of techniques for handling missing data
have been of particular interest in literature [18, 23, 24].

Listwise Deletion (complete-case analysis) is a commonly used technique in which all records
containing missing values are removed. At a first glance, this method is advantageous due to the
simplicity of its implementation and the lack of bias derived from inaccurate missing value imputations.
In particular, in large datasets that contain values categorized as MCAR, listwise deletion may produce
unbiased results since the removal of such random missing values preserves the distribution of the
sample. However, in smaller datasets, listwise deletion introduces bias and reduces sample sizes, which
results in inaccurate and inconclusive results in data-driven approaches [25]. Furthermore, this
technique introduces severe bias [26] and offsets the mean and variances in datasets containing values
either MAR or MNAR since the removed records are not highly represented in the sample [27]. The
bias introduced and valuable information lost by using this technique has caused various sources to
deem listwise deletion as one of the worst techniques for handling missing values [27].

The downfalls of deletion techniques paved the way for handling missing values by imputation.
Imputation techniques work to replace missing values with an estimate based on observed values in the
dataset. Most imputation techniques are categorized as either single or multiple imputation. Single
Imputation techniques calculate one estimate for a missing value for replacement. Single Imputation is
commonly used in non-computing fields due to its simple implementation. However, many of these
methods introduce bias and underestimate the standard error of the dataset. One such inadequate
method, mean/median/mode imputation, has been widely adopted in a variety of fields without
consideration of its implications. This method replaces each missing value in a column with the mean,
median, or mode of the observed values in that column. This naive approach, although simple, severely
skews and biases a distribution and does not attempt to estimate the value that was missing. As a
result, mean/median/mode imputation should not be used under any circumstances in order to achieve
accurate results.

Another more effective single imputation, Hot-Deck Imputation [28], uses observed records in
the dataset to estimate the missing value. In this approach, records in the dataset are sorted based on
the similarity of their observed values and those of the record with a missing value. Once sorted, the
missing value is imputed using the observed value of a randomly selected record from this group [22].
This non-parametric technique is often used in surveys as a way to achieve a more realistic dataset
since the estimates are based on real values. Furthermore, the replacement with values in the current
dataset preserves the distribution, unlike mean imputation [29]. However, similar to many other single
imputation methods, Hot-Deck Imputation tends to underestimate the true standard error of the
dataset [22]. Moreover, the nature of this approach forces continuous variables to be categorized, which
loses important information [29].

Another similar, more evolved, single imputation method overcomes this limitation while still
relying on observed data. Regression Imputation is a technique in which missing values are imputed
using a regression model based on the observed features. The dataset produced by this technique
achieves more reasonable estimates than previously mentioned single imputation methods as it utilizes
the natural patterns found in the observed data. However, the correlations between features artificially
increase [29] as a result of imputation and may force stronger linear relationships than were previously
present. An added error term to the resulting linear regression line can be used to increase the variance
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and reduce feature correlations to better simulate the real-life data [30]. Unfortunately, this method
may cause interpolation of the missing values and increase the bias of standard error estimates [30]. In
general, single imputation methods are a simple way to impute missing values, but they often result in
biased and inaccurate estimates. Since these methods provide only one estimate for each missing value,
they ignore the uncertainty of their imputation and treat the value as if it was never missing. This level
of precision needs to be reduced in order to provide a properly imputed dataset.

Multiple Imputation [31] is a popular imputation that can fix these problems. In contrast to
previously mentioned imputation techniques, Multiple Imputation aims to preserve the characteristics
of the underlying dataset, rather than focusing on a case-by-case analysis. This intuitive approach
builds a model from observed values in the dataset to estimate the missing value, similarly to single
imputation. This step is performed multiple times, resulting in m ”complete” datasets with the missing
values imputed. Once m datasets have been produced, statistical analysis is performed on each dataset
to derive parameter estimates for the model, and the resulting estimates are pooled to produce a final
multiply-imputed dataset. This approach using multiply-imputed datasets preserves the uncertainty
that is introduced by missing values by producing unbiased parameter estimates [32]. Multiple
Imputation further maintains the natural variability and relationships between features present in the
population [31]. Various studies have shown Multiple Imputation to outperform other imputation
techniques for datasets with a low sample size, a large proportion of missing data, and a non-normal
distribution [33, 34, 35, 36]. However, the computational power required for this technique has
prevented a few fields from benefiting from Multiple Imputation [37]. As a result, there have been
several software solutions developed to provide access to multiple imputation techniques [38].

Various techniques utilize multiple imputation, one of which is Multiple Imputation using
Chained Equations (MICE) [39]. MICE, also known as Sequential Regression Imputation and Fully
Conditional Imputation, utilizes regression models to build its multiply-imputed datasets. During each
cycle of imputed-dataset creation, a feature, xj , containing missing values is modeled with regression
trained on all available features in the dataset and only records with observed values for xj . The
regression model chosen depends on the data type of the feature being imputed. Each missing value in
xj is then imputed using the generated regression model. In the following iterations, another feature
containing missing variables is modeled using all features in the dataset where any previously imputed
feature is used in place of its original null version. Once all the missing values have been imputed, the
cycle is complete, and a new cycle begins to re-impute each of these missing values. Each subsequent
time these values are imputed, the features used include the updated imputation of the given column
[39]. MICE ends this iterative process once the regression coefficients converge [40]. In general, MICE
performs optimally when all the feature variables of the given dataset are provided, including the
target variable. If one of these variables is not included, missing value estimates are biased and the
correlation between an imputed feature and a held-out feature are not preserved and are often reduced
to zero [40]. This approach to multiple imputation is incredibly accurate in comparison to various other
imputation methods [41]. It is also flexible due to its ability to handle various variable types, such as
continuous numerical, binary, unordered categorical, and ordered categorical, using a variety of
regression models, such as linear regression, ordinal regression, and logistic regression [41].
Furthermore, MICE is not time-intensive since it performs well on a small number of iterations.

2.3 Related Technology

Data cleaning, although important, is often a time-intensive process. Thus, recent efforts have
focused on developing software solutions to provide easy access to data cleaning tools.

2.3.1 Sci-Kit Learn Cleaning Modules

One such solution is provided through Sci-Kit Learn’s extensive data science library [14].
Sci-Kit Learn is a vast library that contains many modules widely used in data science. One of these
modules is focused on clustering. Our implementation for DBSCAN outlier identification uses this
library. This module offers an assortment of clustering methods, ranging from K-Means, DBSCAN,
OPTICS, and more. It also allows for extensive customization, allowing many parameters to be
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specified in each clustering configuration. A similar module in Sci-Kit Learn’s library is the imputation
library. It also focuses on allowing as much customization as possible. However, it includes a minimal
amount of automation.

Though these packages offer a massive collection of useful methods, it suffers from the ability
to specify many options for each configuration. The library itself does not have any tactics to
recommend parameters outside of default parameters, which is problematic for non-technical users.
Our application offers the automation that this library does not. The automation of our application
saves the user time in learning what each of the parameters are used for while also ensuring that they
are using the right values for their right dataset.

2.3.2 ActiveClean Framework

Moreover, recent frameworks have been developed to automate the cleaning process.
ActiveClean [42] is an automated framework in which a dataset is cleaned based on its current
accuracy in a predictive model. Studies have shown that data cleaning can be conducted as an iterative
process using Active Learning in which a model is trained and dirty data can be identified based on the
accuracy of the model. ActiveClean utilizes this approach by iteratively updating the training model
based on the deemed clean data. Once the model converges, the framework returns the dirty data in
the provided dataset. This approach is a strong contender for automated data cleaning as it produces
accurate predictive models. This framework also provides a user-friendly interface in which users can
explore their dirty data and decide how to proceed [43]. However, this approach is parametric and can
only be used if the user provides the model for predicting, and a method for cleaning detection.
Furthermore, the only way to clean dirty data with this user interface is to either delete the dirty data,
write a custom method for cleaning, or choose from a pre-defined list of cleaning techniques. Based on
our previous research, data should be treated in a certain way depending on its properties, such as the
type of the dataset, and should be reflected in this automation to ensure accurate results.

2.3.3 BoostClean Framework

Another such automated tool is BoostClean [44]. This framework is designed to find the best
cleaning process for a given dataset using Boosting. Dirty data is first identified using isolation
forest-based outlier detection, and then an ensemble of cleaning techniques is iterated through using
Boosting to determine the most accurate ensemble. Unlike ActiveClean, this framework utilizes
machine learning to truly automate the cleaning process and provide the user with a clean dataset.
Nevertheless, the repair algorithms used by BoostClean are limited to mean/mode/median imputation
and listwise deletion. As stated previously, these imputation techniques are inaccurate and weak repair
techniques as they introduce bias and destroy the distribution of the population. Along with this, their
technique using Boosting brute-forces the cleaning process, rather than using the properties of the
dataset to accurately clean the data. Moreover, BoostClean is not open source and does not provide a
user interface to allow for exploratory data cleaning and outlier detection. This blind cleaning is not
optimal since each domain defined its outliers differently.

Thus, there is a necessity for an automated cleaning suite that provides the user with tools for
exploratory dirty data analysis as well as recommendations for accurate, robust data cleaning based on
the properties of their dataset and dirty data.
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3 Methodology

To ensure the successful implementation of the CODeRS application, we clearly define a set of
practices in this section that we employed for the entire development cycle. We describe the plan for
front-end and back-end development, focusing on their architecture as well as the libraries used.
Additionally, we discuss the various methods and dataset properties we used to build our recommender
system for dataset cleaning. We also elaborate on our techniques for evaluating both the front and
back end portion of our application.

3.1 Technical Approach

GitHub Workflow

Before beginning development, we established a clear set of GitHub practices to organize our
work and focus development towards a series of set goals. Each developer followed the following process
during the development of each feature:

• When a developer wishes to implement a new feature or update an existing one, they should first
make a GitHub issue.

• Once the GitHub issue has been created, the developer should make a new branch to develop and
implement their features.

• Branches should only contain development for one focused issue. This ensures that all merges to
the main branch can be easily reverted in case of changes or errors.

• While committing to their branch, developers should include the relevant GitHub issue numbers
where appropriate in commit messages.

• Commits to a branch should occur early and often.

• Once the development of a feature has been completed, the developer should submit a pull
request with a description of the work that was done. The developer should assign another
member to review the pull request and ensure everything added to was done properly.

• Once the reviewer has approved the pull request, the developer who initiated the pull request
should merge with the main branch, delete the branch they were working on, and resolve the
issue.

Test Driven Development

In addition to the above mentioned practices, we utilized Test Driven Development (TDD)
throughout development in both the front-end and back-end of our application. Test Driven
Development is implemented by writing tests before developing functionality. Whenever new
functionality was created on the back-end, datasets and examples were first created to test the
effectiveness of the developed feature. For example, when developing the z-score outlier detection, we
created a normal dataset with several outliers to ensure that the outlier detection method detects the
outliers properly. We chose to implement this practice to ensure the longevity and robustness of our
application as well as our focus on implementing features one at a time. This reduced the time
searching for bugs and fixing code. Additionally, this provided a set of additional tests to automatically
run using Pytest and GitHub Actions during a merge to our main branch to ensure that no new feature
negatively affected old features. If any tests fail, the developers were notified to correct anything that
may have been broken unintentionally.

Agile Development Method

Our MQP team employed the Agile framework by developing a consistent schedule and set of
tasks each week. The Agile framework is implemented by several top software companies to keep
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developers motivated and focused on specific goals. Each week, we held a scheduled meeting and
defined a set of development tasks to complete. For each meeting, we produced the following set of
deliverables:

• A meeting agenda including all meeting participants and an outline of everything the group plans
to cover. All agendas are available here.

• A presentation covering the progress made during the week using the appropriate terminology
and visuals. All presentations are available here.

• A minutes document to document all discussion that takes place during the meetings. All
minutes documents are available here.

• A Gantt chart to reflect the work that was completed during the past week. This allowed the
team to compare the actual work that was completed against what was planned. All Gantt charts
created after the week has been completed are available here.

• A Gantt chart to reflect the work planned for the upcoming week. All Gantt charts planning the
next week are available here.

For each of these meetings, one team member led the meeting, while the other took minutes.
During the following week, team members completed the tasks they were assigned to the best of their
abilities.

3.2 User Interface

As previously mentioned, the goal of this project is to generate an application for cleaning data
that is easy to use as a non-technical user. Thus, we built a web application with a Graphical User
Interface (GUI) for users to process their data quicker and easier. We chose to utilize a web application
due to its easy accessibility for a wide range of users.

During the development of the user interface, we followed a series of steps. We started the
development process by generating a mock-up the entire web application, focusing on both the user
interface and user experience of the application. For the user interface, we focused on the appearance
of the application, including the color scheme and designs of the various web elements. For the user
experience, we focused on the user’s interaction with the application, including the placement of web
elements, the page layout, and the sequence of web pages. We discussed these mock-ups during our
meetings with our advisor and refined our designs accordingly. In cases with severe design flaws, we
scrapped our old mock-ups and designed a new one to be evaluated. Once we finalized our mock-ups,
we developed the front-end of our application accordingly. From here, we utilized a series of user
studies to gather further feedback regarding the user interface and experience of our application as
described in subsequent sections. Based on the feedback received, several rounds of adjustments were
performed on our application before another user study. This process helped us to make our
application as user-friendly as possible.

In addition to the user-friendly interface, we ensured usability by developing a user manual to
help users understand further how to use the application. This provided insights into the libraries
needed, installation instructions, and descriptions of the functionality offered. Not only did this further
simplify the user experience, but it also furthers the longevity of the project.

3.3 System Architecture

In addition to the above mentioned methods, we implemented a set of best practices to develop
the back-end of CODeRS. The first practice is to develop each step in our cleaning pipeline in a
modular fashion. Following this practice allows developers to replace, add to, or subtract from any
portion of the data cleaning process with minimal time and effort without affecting other portions of
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the pipeline. This increased efficiency during each development cycle as well as followed the same
organization our user encounters when using CODeRS. Our intent is for the end-user to be able to run
any set of data cleaning operations on a dataset, which requires modularity. This also improved the
longevity of the project. Modularity allowed each method to be reasonably separated and new methods
to be created following the same template. One example is described with outlier detection. If the
z-score method is updated to allow for extra functionality, it should not interfere with the functionality
of other methods. At the same time, the addition or removal of an existing method should not interfere
with the operation of the system when using other outlier detection methods.

Another practice we implemented is the use of abstraction. This involves having the project
use the same process to employ different cleaning techniques. For example, if abstraction is applied to
the outlier detection portion of the project, the developer only calls one set method to perform outlier
detection. They do not have access to the other methods used internally in the project and only need
to call a general identify outliers() method. The greatest benefit of this is that it keeps the structure of
the program the same when completing similar tasks. If a developer wants to detect outliers using
z-score and the Boxplot methods, they only have to change a minimal amount of code.

The last design method we incorporated in our project is a clear and strict folder structure.
We want to group all related files in the necessary folders and sub-folders to organize the project so
both a developer and user could understand its organization. This involves putting all callable methods
in one folder and possibly an outlier detection sub-folder in this main folder. This is especially
important for the longevity of the project as it results in a fraction of the time being needed to onboard
a developer to the project structure.

3.4 Libraries Utilized

Throughout the development of our application, we heavily relied on existing python libraries.
We created the entire pipeline of our application but utilized these libraries to implement the various
modular processes on the back-end. An example of this could be using a library to automate the
documentation process or using a series of libraries for different outlier detection methods. In addition,
we utilized libraries that implement the specific cleaning techniques themselves. Since the cleaning
techniques implemented are widely defined, using python libraries ensures that the implementation of
the methods in our application is correct. Below is a list the libraries we used as well as the motivation
for using them.

• pandas - The pandas library was used for storing and transforming data. One common pandas
data structure that is commonly used in the project is the pandas DataFrame. This data
structure stores index columns of data with extra information about each column and the object
itself. It is commonly used to store the entire dataset we are reading in.

• SciPy - The SciPy library was used for several statistics elements in the project, such as finding
the Interquartile Range of a list of points for the Boxplot outlier detection method.

• NumPy - The NumPy library was used for example dataset generation and other data list
operations, such as finding the percentile cutoff value of a list of data points. NumPy is especially
useful as only a few parameters are required to generate an entire dataset. For example, the
dataset used in Figure 11 was created with only 4 different numpy datasets.

• sklearn - The sklearn library was used for the implementation of several algorithms, such as
DBSCAN, MICE, and k-NN. Using these libraries allows development to go faster and ensures the
algorithm itself is functional. With complex methods such as DBSCAN, this is especially useful.

• pytest - The pytest library was used to run automated tests on the existing code base. All testing
methods are structured in a fashion where pytest automatically runs the methods to see if all
pass or fail.

• Matplotlib - The Matplotlib library was used to produce all visualizations made by the project.
Matplotlib was chosen due to its highly customizable plotting area, easy-to-use function calls,
immense popularity, and compatibility with other libraries.
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• Sphinx - The Sphinx library was used to generate all auto-documentation created for this project.
The theme for the current auto-documentation sections is from the sphinx rtd theme library.

• Missingno - Missingno is a library that was used to create various visualizations to represent the
presence of null values in a dataset. This library is used to generate the images that are viewed
on the Null Identification page of our application.

3.5 Automated Recommendation System

Our major contribution to this cleaning suite is a recommendation system that automated the
cleaning process using state-of-the-art techniques found in our literature research. Currently, popular
cleaning techniques utilized are single imputation that provides more harm to data analysis than
benefits. Furthermore, past attempts to prevent the overuse of these techniques and automate the
cleaning of data performed a brute force analysis to determine the proper cleaning techniques. In
contrast, our cleaning suite utilizes the properties of the dataset to derive the proper cleaning and
detection techniques. For null correction, the mechanism of the missing values determines the
appropriate correction method. However, Multiple Imputation by Chained Equations has been proven
to perform extremely well on ignorable missing data (i.e. MCAR and MAR). Thus, our suite
recommends the usage of MICE for imputation for all datasets. For values that are MNAR, we cannot
provide recommendations for imputation. Since MNAR values are dependent on values that are not
present in the dataset, they cannot be properly replaced and should be recollected in the
data-gathering phase altogether. Furthermore, there is no way to determine whether missing values are
MAR or MNAR since the difference is based on values that are not observed. Thus, we suggest that
any dataset provided to this cleaning suite should not contain MNAR data as we cannot remove them
for cleaning. For outlier detection, the type of dataset plays a role in the proper recommendation for
cleaning. In our literature research, we found that DBSCAN outperforms all other outlier detection
methods for point-wise data. However, for time series data, we found that isolation forests work better
than DBSCAN. Thus, our application identifies outliers in using DBSCAN for point-wise datasets and
isolation forests for time series datasets. In addition to this automated system, our application allows
the user to ignore or remove dirty data rather than correct it. Although our techniques are
state-of-the-art, the domain from which a dataset is generated must be considered before performing
any cleaning. For example, in the Materials Science field, a domain expert may choose to ignore the
outliers because they know that some powders in their datasets are much larger than the other
available powders. Even though these powders appear to be outliers, they are correct and are
important to the data analysis. As a result, we provide the functionality to allow domain experts to
choose how to handle their null values and outlier based on what is best for their dataset.

3.6 Evaluation Techniques

In order to properly evaluate the performance of our cleaning techniques in the back-end of our
suite, we utilized our cleaning suite on artificially dirty datasets. In the case of outlier detection, we
injected outliers into several datasets with differing distributions. We used our outlier detection
techniques to identify the outliers and utilize the original data to measure how accurate our detection
was. For missing value imputation, we used several datasets and generated multiple versions of these
datasets, each with a differing percentage of missing values and a different missing data mechanism (i.e.
MCAR, MAR, and MNAR). Since MNAR values cannot be accurately imputed, we do not generate
such datasets. Such evaluation techniques are commonly used to compare cleaning techniques in
literature from various fields [45, 46, 47, 48, 41, 30]

The user-friendliness and usability of the GUI constructed was evaluated through user studies.
In these user studies, we provided each participant with a list of tasks pertaining to the use of our
platform in order to evaluate the user experience. We also provided each participant with a form to
evaluate the user interface with the Nielsen Heuristic. This heuristic provided ten metrics to determine
user-friendliness and usability. To measure users’ analysis of the MQP team’s GUI according to this
heuristic, the team provided them with a numerical scale to rate the application as having achieved
according to each metric. For example, the first metric as listed at Nielsen Norman Group’s website is
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”#1: Visibility of system status. The design should always keep users informed about what is going on,
through appropriate feedback within a reasonable amount of time. To measure this and other metrics,
they had a scale underneath each section between 1 and 4 to rate how well the current design follows
this metric. A comment section also was provided to allow for specific reasons for high or low ratings.
We conducted these user studies with various materials science members of the Data-Driven Materials
Science research team at Worcester Polytechnic Institute as this cleaning suite directly benefits their
work. We also chose this group since it allowed us to evaluate the user-friendliness of this suite on
researchers in a non-computing domain.
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4 Implementation

Utilizing the knowledge we gained through our background research as well as the methodology
we outlined in the previous section, we implemented our web application, CODeRS, to help
non-technical users clean their data effectively. CODeRS can be accessed by the link located in
Appendix 7.1 In the following section, we discuss how we structured our web application as well as the
server we chose to host CODeRS on. Additionally, we provide a demo of the application through a
series of images from start to end of the cleaning process.

4.1 System Architecture

4.1.1 Python

Python is an ideal language for data processing, outlier detection, and data manipulation due
to the large number of libraries available for these purposes. Due to this, any action that manipulates
or processes the data in some way is handled in Python using the libraries discussed in the background
section. In the back-end, helper methods were created to run the cleaning methods described in the
background, such as null identification, outlier identification, and outlier correction. To fit our Python
back-end into the structure of our Ruby on Rails web application, we made a series of Python pipelines
to accomplish the necessary tasks. Described below are the Python pipelines that were implemented
along with a brief description of their functionality.

• Null Identification Executable - This executable reads in the initial data file and identify all
the null values. This is completed through reading a data file in the file structure and producing
the necessary visuals to highlight these nulls. This step is designed to provide the user with
valuable information on the nulls within their dataset.

• Null Handler Executable - After nulls have been identified, this executable handles the nulls
and produces an updated CSV file. The options for handling nulls are below.

– Ignore Nulls - This option leaves all null values in the data file. In this case, a new CSV
file is not created. This step does not allow the web application to move onto outlier
identification and handling since DBSCAN cannot run properly if null values are present in
a dataset.

– Remove Nulls - This option removes all null values from the dataset. If any tuple has a
null value in one of its columns, the entire tuple is removed. The resulting data file is used
for the following outlier identification step.

– Correct Nulls - This option corrects all null values using the recommended MICE null
correction technique. The new dataset with the corrected values is placed in a new datra file
to be used for the following outlier identification step.

• Outlier Identification Executable - This executable reads in the data file generated after the
Null Handler Executable is run to identify outliers. This process has several different outlier
detection methods that can be run as described below. Once this has been done, the non-outlier
and outliers are separated into two different Pickle files, and visuals to show the outliers and
non-outliers in the dataset are produced.

– DBSCAN Outlier Identification - If the data is not a time series dataset, DBSCAN
Outlier Identification is used.

– Isolation Forest Outlier Identification - If the data is a time series set, Isolation Forest
Outlier Identification is used.

• Outlier Handler Executable - After outliers have been identified, the outliers are handled,
and a CSV file with the updated dataset is produced. The options to handle outliers are below.
The CSV file generated by this executable represents the final cleaned dataset.
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– Ignore Outliers - This option leaves all outlier values in the data file. In this case, a new
CSV file is not created.

– Remove Outliers - This option removes all outlier values from the dataset. The resulting
data is moved into a new CSV file.

4.1.2 Ruby on Rails

CODeRS was created as a web application to allow availability and accessibility to users. As
such, we chose to utilize the Ruby on Rails framework to develop our application simply and effectively.
Rails is a full-stack, server-side framework that provides back-end and front-end template structures to
build web applications. This framework provides all the necessary tools for building a web application,
which allows the developer to focus on their specific application implementation. Several popular
websites utilize Ruby on Rails, including GitHub, AirBNB, SoundCloud, and Hulu. In our architecture,
the web application itself runs on Ruby on Rails. As such, Ruby controls the HTTP actions,
underlying logic, and page directions, PostgreSQL and Ruby combined handle the database, and
HTML and CSS generate the front-end and views.

Ruby on Rails is most suitable for web applications but struggles to handle machine learning
applications. Thus, the logic utilized to derive the outlier identification and null correction tasks is
handled by a Python script that is called from within the Ruby on Rails framework. As a result of this
interaction between Python and Ruby on Rails, there was a necessity to develop a system for handling
the data files and information produced by the scripts. Each time a user opens the CODeRS
application, a new unique ID is created for their session and stored in the database along with
information about their dataset. Furthermore, a new folder named with their session ID is created
within the storage folder in the Ruby on Rails application. When the outlier identification task or null
correction task is executed, the files produced, including any visualizations or altered CSV files, are
stored in this folder. Once the user starts the process over, their folder and database record is removed.
In the case where users exit out of their browser mid-way through the workflow, their data is removed
within 1 hour of creation, keeping our database and file system clean.

4.1.3 Model View Controller

Since we utilized Ruby on Rails to build our application, we chose to follow the
Model-View-Controller (MVC) framework. The MVC framework is a popular software architecture in
which the functionalities of an application are broken down into three components.

1. Model: This component refers to any data that is used throughout the application. Such model
classes contain data-related logic regarding a table in the database. Items in the model can be
transferred between Controller and View classes. In our application, Sessions for each user are
stored in the database and provided a model class to keep track of any logic regarding retrieving,
storing, or verifying Session data.

2. View: This component contains logic pertaining to the front-end or user interface of the
application. All aspects of the application that are shown on the screen when using the
application are handled by this component. In our application, our view is full of HTML files.

3. Controller: This component handles all interactions between the Model and View components.
Logic pertaining to page redirects and HTTP calls are processed by the Controller components.
In our application, when the ”Identify Nulls” button is pressed on the first page, the Session
Controller Create action creates a new Session with the user’s data and redirects to the Identify
action within the NullTasks Controller. From here, the Controller calls the Python script to
identify nulls within the user’s dataset. The user is then redirected to the Show view where the
user can view visuals regarding the presence of nulls in their dataset.

The architecture provided by this framework promotes simplicity throughout the entire
application. The separation of such components manages complex applications by encouraging the
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usage of single-responsibility classes. This, in turn, simplifies the test-driven development process and
reduces redundant code by allowing each component of the application to be tested once.

4.1.4 Hosting Software

To host our web application, we used Heroku services. Heroku hosts applications connected to
a GitHub branch, allowing for new code development to be quickly and easily updated in an existing
web application. Heroku provides quicker page retrieval times at a free level as compared to other web
application hosting services such as Glitch. We were able to successfully conduct all of our user studies
using Heroku and plan to leave the application on Heroku for our final build. We used Heroku over a
custom server due to the simplicity and flexibility it offers. Instead of worrying about a payment plan
or setting up the environments necessary to host our web application, Heroku can complete this for free
and with the development tools already installed. Ruby was especially difficult to install on our
Windows machines during the development of the web application. Thus, utilizing Heroku saved us
valuable time that we then allocated to spend time adding functionality to and polishing our final web
application. This likely will be an area for future MQP teams to explore when taking over this project.

4.2 User Interface

The user interface and experience of our application is best described by a walk-through of the
entire website. Our full application follows a linear process in which users clean their null values before
identifying outliers. We chose to use this linear process due to the requirements of our chosen outlier
detection technique. Null values cannot be present in a dataset while utilizing DBSCAN or Isolation
Forests to detect outliers. Thus, it was important for our application to force users to handle their null
values before moving onto outliers. Moreover, the users of our application are not experts in Data
Science. Due to this lack of expertise, the linear structure better guides our users through the process
by giving them a set of appropriate steps to take to clean their data.

Our application starts on the home page as shown in Figure 17 below.

Figure 17: Web Application Home Page

The home page serves as the starting point of the cleaning process where users upload their
dataset and answer a few questions pertaining to the characteristics of their data. The dataset upload
and dataset type (i.e. Time Series or Static) are required fields because cleaning techniques used in the
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subsequent pages utilize the responses in these fields. The target variable is an optional field as some
users do not know the target variable of their dataset before the cleaning process. We ask for the target
variable because outlier detection should not be performed on this column due to the nature of our
outlier detection technique. To ensure that the user enters a valid column name, our application checks
the column names in the given dataset and returns an error as shown in Figure 18 if the entered
column is not in the dataset. To assist the user in choosing a valid column, the error lists the possible
columns in the given dataset. Once a user has inputted the appropriate information, they can press the
”Submit” button at the bottom of the page to start the cleaning process.

Figure 18: Web Application Home Page - Wrong Column Name

The next page starts the cleaning process by identifying the null values in the dataset. As
shown in Figure 19 below, our application represents the null values in the user’s dataset through a
series of four visuals. Users can scan through the images by clicking on the left and right arrows of the
image carousel. An indicator is shown beneath the image view that shows which image in the series the
user is viewing.

Figure 19: Web Application Nulls Identified Page
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From here, the user can select to remove, ignore, or correct nulls in the dataset. Clicking on
the ”Remove all nulls” button creates a new dataset where tuples containing null values are removed.
Furthermore, clicking on the ”Correct all nulls” button creates a new dataset where previously null
values are corrected using the MICE algorithm described previously. In contrast, clicking on the
”Ignore all nulls” button results in no change to the user’s dataset. As shown in the warning above the
buttons, selecting the ”Ignore all nulls” button ends the cleaning process for the user. Our
recommended outlier detection algorithm cannot detect outliers in a dataset containing null values.
Thus, ignoring null values forces the cleaning process to end. A user can proceed to the next page by
clicking any of these buttons.

During the transition from identifying null values to completing the cleaning step for handling
null values, the null values are handled based on the button pressed by the user. As shown in Figure 20
below, the following page confirms the completion of the null handling step.

Figure 20: Web Application Nulls Handled Page

From here, the user is given several actions. The ”Download Updated Data File(s) and Images”
button allows the user to download their original data file and the new data file created as a result of
their chosen null handling technique. This button also allows users to download all of the images shown
in the previous step. Clicking the ”Clean a New Dataset” button ends the cleaning process for this
dataset and allows the user to start the entire process over. The back arrow provided in the top left
corner allows the user to move to the previous step and choose a different technique for handling their
null values. If this option is chosen, the updated data file is replaced with the new handling technique
they choose. The final option is the click the ”Proceed to outliers identification”. As previously
mentioned, the user does not have this option if they chose to ignore null values as shown in Figure 21.
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Figure 21: Web Application Nulls Handled Page When Nulls Are Ignored

Clicking on the ”Proceed to outliers identification” redirects the user to the outlier
identification page as shown in Figure 22. Similar to the null identification step, our application
generates a series of images to represent the presence of outliers in the user’s dataset. Each image
shows the user the distribution of values for a different column, highlighting the outliers in red.

Figure 22: Web Application Outliers Identified Page

From here, the user can select to remove or ignore outliers in the dataset. Clicking on the
”Remove all nulls” button creates a new dataset where tuples identified as outliers are removed
entirely. In contrast, clicking on the ”Ignore all nulls” button results in no change to the user’s dataset.
A user can proceed to the next page by clicking any of these buttons.

During the transition from identifying null values to completing the cleaning step for handling
null values, the outliers are handled based on the button pressed by the user. As shown in Figure 23
below, the following and final page confirms the completion of the outlier handling step and the
cleaning process.
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Figure 23: Web Application Outliers Handled Page

Similar to the completion page for null handling, the user is given several actions to choose
from. The ”Download Updated Data File(s) and Images” button allows the user to download their
original data file and both new data files created from their null handling technique and outlier handling
technique. The data file created following the outlier handling step contains changes made from both
cleaning steps. This button also allows users to download all of the images shown in the previous steps
from both outlier and null identification. Clicking the ”Clean a New Dataset” button ends the cleaning
process for this dataset and allows the user to start the entire process over. The back arrow provided in
the top left corner allows the user to move to the previous step and choose a different technique for
handling their null values. If this option is chosen, the updated data file is replaced with the new
handling technique they choose. This page marks the end of the entire cleaning process for the user.
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5 Results

After our project was fully implemented, we tested the functionality and design of our
application to make improvements and provide recommendations for future MQP teams. We
performed two types of tests to gain an understanding of the effectiveness of our application for users.
Our first test was to performing data cleaning on a series of artificially generated datasets using our
web application. Based on how well the data was cleaned, we could confirm how well the python
back-end handles the actual data cleaning portion. Due to CODeRS being a web application, we spent
just as much time testing the front-end portion through user studies. These user studies involved
non-computer science members of our research team utilizing the application and providing us with
their honest opinions on how well the application performs in terms of both design and usability.

5.1 Datasets

To test the effectiveness of our application in terms of data cleaning, we created four datasets
and attempted to clean them using CODeRS. Each dataset was created using a python script that
injects outliers and null values into the dataset to allow us to test how well our application is able to
identify and clean both outliers and null values.

5.1.1 Dataset 1

The first dataset tested using the CODeRS web application is a one-dimensional dataset
injected with nulls and outliers. The script used to create this dataset and raw data plots is located at
our GitHub repository. The dataset itself is also located in our GitHub repository. This dataset was
created using the NumPy library. This dataset was generated by randomly sampling values from a
normal distribution with a set mean and standard deviation. We then used a random probability to
insert null values and outliers throughout the dataset. This nature of inserting null values produces
MCAR null values. A visualization of this raw data is shown below in Figure 24.

Figure 24: Dataset 1 - Raw Data

During the null identification step, the application was able to correctly identify that the
dataset contained 30 null values as shown below in Figure 25.
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Figure 25: Dataset 1 - Null Count

In the outlier detection portion of the CODeRS application, outliers were identified using the
DBSCAN outlier identification method. This resulted in Figure 26 below, identifying the majority of
the outlier points as outliers except for one small cluster of points located around -50.

Figure 26: Dataset 1 - Outlier Identification

This test succeeded as all of the null values and a majority of the outliers were correctly
identified and handled without needing to input any information other than the dataset type and
dataset itself.

5.1.2 Dataset 2

The next dataset used in our testing is five-dimensional. Columns Data X, Data Z, and Data A
were generated using a random sample from a normal distribution. In contrast, column Data Y was
determined using a random sample from a uniform distribution, and column Data B was determined
using a random sample from a Wald distribution. We then used a random probability to insert null
values and outliers throughout the dataset, similar to the process used to generate the previous
dataset. To make the dataset more interesting, some columns were changed based on changes
performed on other columns. This first occurs with the Data X column, where if any value is set to null
in another column, the same index of the Data X column is set to be null. This causes Data X to be
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null if any other value in the tuple is set equal to null. This accurately simulates MAR null values.
Similarly, in Data Z, if any tuple is an outlier in the other columns, the item at the same index in Data
Z is set to be an outlier. This results in Data Z points being outliers at every position another data
point is an outlier in another column. The script to create this dataset and display its raw data
distributions is located on our GitHub repository. The dataset itself is also located on
our GitHub repository. The most notable part of running this dataset through CODeRS is that the
null images correctly show the correlation between the null columns. This is shown below in Figure 27.

Figure 27: Dataset 2 - Null Correlation Matrix

The correlation matrix figure is able to show the null values in column Data X having a strong
correlation with null values in every other column. From this plot, a user is able to determine that
their Data X column is most prone to having null values based on other null values in their dataset.
After this step, all null values were corrected and all outliers were removed. CODeRS was able to
successfully handle all nulls and most outliers in a similar fashion to the previous dataset, showing that
CODeRS works on multivariate datasets.

5.1.3 Dataset 3

The next dataset used was a six dimensional dataset that is equivalent to the previous dataset
but with an additional column. This extra column was set to be the sum of all other columns after
nulls and outliers were inserted into the dataset. This column was then labeled as the target column to
test how CODeRS handles datasets with a target column. The script that created this dataset is
located on our GitHub repository. The dataset itself is also located on our GitHub repository.

After running this dataset through the CODeRS web application, the process was able to
successfully handle the target variable according to our desired functionality. When handling nulls, it
removes all null values in the target column regardless of remove nulls or correct nulls being selected on
the null identification page. On the outlier identification page, it then does not perform outlier
identification on the target column and does not display a plot for the column values. It only removed
tuples based solely on non-target variable columns. Thus, the CODeRS web application cleaned the
data as we had intended.

5.1.4 Dataset 4

The last dataset included for testing purposes is a four dimensional time-series dataset. Each
column represents a different sine or cosine curve with a varying amount of noise and a different
frequency. Null values and outliers were then injected at random points. This dataset did not have any
columns whose values were reliant off of other columns. The purpose of this dataset was to test
CODeRS and its handling of n-dimensional time series datasets. The code to create this dataset is
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located on our GitHub repository. The dataset itself is also located on our GitHub repository. To
highlight the cleaning process, we focus on the Data Z column shown below in Figure 28.

Figure 28: Dataset 4 - Raw Data

This dataset starts off with a few extreme outliers along with 29 null values. CODeRS was able
to successfully identify and correct these null values to allow outliers to be identified. The resulting
column’s values following outlier identification and removal is shown below in Figure 29.

Figure 29: Dataset 4 - Cleaned Data

The transition from the raw data to the cleaned data highlights the effectiveness of CODeRS
since it removes outliers to the point where the majority of points that remain have minimal deviation
from the main curve. As intended, this example dataset shows that CODeRS successfully handles nulls
and outliers in a time series.

5.2 User Study: Materials Science

Throughout the development of our web application, we held two user studies over Zoom to
test the usability, complexity, and appearance of our application. Our participants consisted of three

33

https://github.com/Data-Driven-Materials-Science/cleaning_suite/blob/main/paper_examples/results_four_data_series_plots.py
https://github.com/Data-Driven-Materials-Science/cleaning_suite/blob/main/datasets/Results_FourDimensional_Datafile.csv


top-notch materials scientists from WPI’s Data Driven Materials Science research group. In the real
world, this application will be used by users who are experts in a field outside of data science but wish
to implement data science solutions. Our participants’ expertise in a separate domain as well as their
past utilization of data analytics in their research made them the perfect candidates for our
application. During each user study, the participants shared their screen and attempted to complete
the tasks we provided, while we observed and collected notes regarding their interaction with the
application. The tasks we developed are provided below:

• Upload a csv file

• Identify nulls

• Remove all nulls

• Download files

• Navigate to downloaded files

• Choose to start the process over with a new
csv file

• Upload a new csv file and input a target
variable

• Choose to Ignore nulls

• Return to the previous step

• Correct all nulls

• Move on to the next step

• Remove outliers

• Download files

• Start the process over

• Perform any additional tasks

For each task, we asked them to complete the task and provide opinions on how difficult the
task was to complete. Additionally, each time a user was redirected to a new page, we asked them to
comment on the complexity of the layout and how intuitive the page functionalities were. This allowed
us to identify overly technical or unclear aspects of our application that we were blinded to as
developers and data scientists. We also asked our participants to provide any ideas for solutions to
these flaws in functionality or design to guide our next stage of development. This ensured that these
flaws would be fixed for the benefit of the user.

Our first user study involved one participant. The application was fully fleshed out for this
user study with full functionality. However, this version of our application had not yet received
feedback, so the design and amount of provided information at each step was minimal. The following
table shows the opinions presented during our user study as well as the resulting changes made in our
web application.
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Table 2: User Study 1 Results and Solutions

Comments Solutions
It is unclear which data fields are re-
quired on the first page.

We added asterisks to the required
fields, similar to other popular web ap-
plications.

The fillable data fields on the first page
are confusing.

We provided information about each
text field at the top of the page to fur-
ther describe the purposed of each fields
and what type of value should be in-
serted.

The null images are unclear and not
easy to understand what they repre-
sent.

We added axis labels and a title to each
image. We also provided further de-
scriptions in the user guide.

The options for handling outliers and
nulls were unclear and not explained.

We added additional information about
each option at the top of the page
to further explain what each technique
does. Additionally, we provided exam-
ples of when to use each technique in
the user guide.

There is no option to go back to a pre-
vious page after selecting a method for
handling nulls or outliers.

We added a back button to allow the
user to easily move to a previous page
without downloading the wrong image
and data files.

The user’s progress throughout the en-
tire cleaning process was unclear.

We developed a progress bar, similar
to the pizza tracker used on Domino’s
website, to help the user understand
which step they are on while using our
application.

The terminology used in the application
is confusing. An example is the word
”null”.

We defined these technical terms and
processes in the user guide.

The wording on the completion pages
(i.e. once outlier and null handling is
finished) is confusing.

All the wording was updated to be
clearer and more consistent. We also
added more text segments to better ex-
plain what each option means.

Updated data files are named the same
regardless of the handling technique
that was used, which is confusing. For
example, removing nulls and correcting
nulls both lead to a data file named
null corrected.csv.

We changed the naming of the data files
to be generated based on the technique
used. Additionally, we did not add an
extra data file if the dirty data was ig-
nored.

The order of the buttons on the last
page do not match the order of the but-
tons on the null completion page even
though they contain the exact same
buttons.

We rearranged the order of the buttons
to match on both pages.

The gray used on the application is
harsh on the eyes.

We changed the color to a lighter, more
appealing gray.

One major theme of this user study was the lack of information provided during each step of
the process. Our participant often struggled to determine what would occur if a button was pressed.
They also struggled to figure out which cleaning technique to use for outliers and nulls due to the lack
of explanation on the images and page itself. Due to the knowledge we gained through our development
of the application, we did not realize that aspects of our application would not be intuitive to non-data
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science experts. From our perspective, each page was self-explanatory. However, to a domain expert in
an entirely different field, each step of the process was entirely new. These comments from our
participant alone were highly valuable to us and proved the importance of these user studies in the
development of our application. As a result, we provided an increased amount of text descriptions
above each set of buttons and field inputs to further explain each element in our application.

Our second user study involved two participants. The 3-day break between user studies gave
us the ability to make many changes to the web application prior to the second user study. Throughout
this user study, the participants affirmed the comments made in our first user study. They commented
on how easy the application was to understand. Some of the features they found especially useful were
the go back buttons, the pizza tracker progress bar, and the custom names of updated data files. The
following table shows the opinions expressed in this second user study as well as the changes made in
our application as a result.
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Table 3: User Study 2 Results and Solutions

Comments Solutions
Throughout the application, the addi-
tional information regarding data fields,
buttons, and general information about
each step was incredibly useful. How-
ever, it was bulky and intimidating as
text at the top of each page.

We moved the information from the top
of the page to information bubbles next
to the necessary location to increase
simplicity.

The data fields on the home page are
too large and prevent the user from see-
ing everything they see in one glance.

We reduced the width of each data field
and button to half the size of the web
page.

The format of the column names that
appear when the Target Variable error
shows on the first page is confusing to
non-technical users.

We adjusted the formatting to be
clearer as to what the specific column
names in the dataset are.

The Target Variable error does not
stand out enough.

We put this error into a banner with dif-
ferent colors to grab the user’s attention
better.

The application itself is super cool! We are pleased the application is en-
joyed by the users.

It would be useful to see all images
at once for a side-by-side comparison
rather than in a carousel on the null
and outlier handling pages.

For time’s sake, we chose to add a rec-
ommendation to future MQP team’s to
place these images as thumbnails on the
page at once and allow users to click to
enlarge the image.

For users who are inexperienced in data
science visualizations, the images to
represent the state of outliers and nulls
in the dataset are confusing.

We included thorough details about
what these plots mean as well as how
to use them to determine the best han-
dling method for their dataset.

The order of the null handling buttons
do not reflect the best order at which a
user should choose a technique.

We adjusted the order of the but-
tons to start with ”Correcting Null”
since correction is the preferred han-
dling method in a majority of situa-
tions. We also bolded this button to
emphasize that it is the best choice.

The button for moving to the previous
page is not intuitive as a ”Go Back”
button.

Since icons are powerful, we changed
the ”Go Back” button to a left arrow
and placed it in the top left corner of
the completion pages.

The transition from handling dirty data
to the process being complete is quick,
which causes users to be confused about
if the process occurred or not.

We added ”Success!” in large text at
the top of each completion page to help
signify that the process succeeded.

The horizontal orientation of the but-
tons on the completion pages is not ap-
pealing.

We moved these buttons into a vertical
alignment for visual appeal.

It is not clear which data point are con-
sidered outliers in the outlier plots.

We added a legend to explain that data
points colored in red are outliers.

It would helpful to allow users to choose
which outliers they want to delete.

For time’s sake, we added this addi-
tional functionality as a recommenda-
tion for future MQP teams.

The pizza track progress bar is super
helpful in tracking progress throughout
the application.

We chose to keep this feature due to this
positive feedback.
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Overall, the users in this study appreciated the additional information provided at the top of
each page, but they found it cumbersome and intimidating. They mentioned that first time users may
have a difficult time digesting the information in this paragraph format. In order to alleviate this
intimidation, we moved this information into a series of information bubbles next to the appropriate
elements. For example, on the first page of our application, an information bubble was added to each
text field to further explain the field itself as well as the values that are accepted. This allowed us to
provide our users with strong descriptions in a simple way. Another major talking point during this
user study was adding more clarity and validation throughout our application. For example, our users
expressed interest in adding a notification to the completion pages to highlight that the cleaning
process finished. We saw this same need for more clarity in our first user study when our user expressed
interest in having a progress bar to show which step the user is in the process. As a result, we went
through our application and determined pages where we could add a higher sense of clarity for our
users. Additionally, we developed a user guide to provide users with a thorough description of each step
of our cleaning process. This user guide gave us the opportunity to provide more detailed explanations
of our process to our users while keeping our application simple. This user guide is accessible on every
page and pops up in a new window to allow users to read the user guide while using our application.

These user studies provided invaluable feedback that was used to improve the web application
immensely. In addition to the user study itself, we wanted to gather more information regarding the
design and usability of our application. Thus, our participants completed a Nielsen Heuristic survey
[49], as shown in Appendix 7.4. This survey was created with questions based on the heuristic
presented on the Nielsen Norman Group website. The results of these surveys are shown in Appendix
7.3. Though we had a small dataset, we saw a significant improvement in every usability standard on
our survey.
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6 Conclusions and Future Work

Data cleaning is a crucial step that must be taken in order to derive insights from a dataset.
However, due to the lack of literature and implementations of high quality cleaning techniques,
non-data science experts struggle to create accurate data science solutions. We built CODeRS with the
sole purpose of creating an application that automates the cleaning process with robust cleaning
techniques for non-technical users. Through our research, we found that Multiple Imputation by
Chained Equations is the ideal null correction method, while DBSCAN and isolation forests are the
ideal outlier identification methods for static and time series data respectively. Utilizing the previously
mentioned state-of-the-art cleaning techniques, we automated the cleaning process and provided direct
functionality for cleaning. We utilized the Agile methodology as well as a set of best practices for
software development to develop our application from scratch. Through a series of user studies, we
determined points of weakness in our application, such as the lack of user instructions, and refined our
application in multiple iterations. We tested the functionality of our final application on a series of
datasets, and CODeRS accurately identified and corrected a majority of the null values and outliers
found.

Our work over the past three terms has laid the foundation for the CODeRS web application.
With this foundation, we hope that future MQP teams will expand upon our work and continue to
improve CODeRS. To help future teams continue where we left off, we compiled a list of
recommendations for future work on CODeRS based on the feedback we received from our user studies.
Our recommended additional functionalities for future MQP teams to add listed below.

• Time Series Specific Visualizations

• Raw Data Visualizations Prior to Preprocessing

• A Preprocessing Section to Allow for Techniques such as Normalizing Data

• Page Redirects to Maintain a User’s Position in the CODeRS Process

• A Custom Server for CODeRS

• An Image View on the Null Identification Page and Outlier Identification Page that Shows Users
All the Images and Enlarges them on Click

• Support for More File Upload Types such as Excel

• Functionality to Support Categorical Data

Each recommendation above serves to further expand the CODeRS application. One
recommendation that highlights this is the addition of a preprocessing section that allows for
techniques such as normalizing data. This would allow the base functionality of the CODeRS to be
utilized while expanding it to include more use cases.

Upon reflection of our work, we are proud to declare that we have accomplished our project
goals. We are hopeful that CODeRS will highly benefit data analyses performed in various fields,
including the Materials Science and Medical fields, by providing them with a simple, automated tool
for cleaning their dataset. CODeRS ability to quickly clean an arbitrarily sized dataset using our
recommender system solves the issues previously presented in the Materials Science field. Additionally,
the standardized recommender system implemented in CODeRS provides medical professionals with
the accurate and automated tools they have needed to perform data analyses. We are excited to see
how CODeRS is used in the real world to standardize the data cleaning process and improve the
quality of data science solutions for all of our users.
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7 Appendices

7.1 Web Application Link

Our web application can be found at http://coders-alpha.herokuapp.com/.

7.2 User Manual

CODeRS User Manual can be found on the website at User Manual Link.

7.3 User Study Documents

Listed below are each of our documents related to our User Studies.

Initial task list prior to any user study taking place: User Study Task List V1.

Notes on User Study 1: User Study with Jack.

Second tasks list developed after User Study 1: User Study Task List V2.

Notes on User Study 2: User Study with Matt.

Notes on User Study 3: User Study with Professor Cote:

Nielsen Heuristic Survey: User Survey Results

7.4 User Study Survey

A survey was given to ever individual who participated in our User Study to fill out based on
their experience with our web application. They were presented with every question below and given
the following prompt.

”Please leave feedback in each category on a scale of 1-4. 1 indicates the current state of the
application not properly satisfying the description of the category while a 4 indicates the current state
satisfies the description.”

Survey Categories:

• Visibility of System Status - The design should always keep users informed about what is going
on, through appropriate feedback within a reasonable amount of time.

• Match between system and the real world - The design should speak the users’ language. Use
words, phrases, and concepts familiar to the user, rather than internal jargon. Follow real-world
conventions, making information appear in a natural and logical order.

• User control and freedom - Users often perform actions by mistake. They need a clearly marked
”emergency exit” to leave the unwanted action without having to go through an extended process.

• Consistency and standards - Users should not have to wonder whether different words, situations,
or actions mean the same thing. Follow platform and industry conventions.

• Recognition rather than recall - Minimize the user’s memory load by making elements, actions,
and options visible. The user should not have to remember information from one part of the
interface to another. Information required to use the design (e.g. field labels or menu items)
should be visible or easily retrievable when needed.
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• Flexibility and efficiency of use- Shortcuts (hidden from novice users) may speed up the
interaction for the expert user such that the design can cater to both inexperienced and
experienced users. Allow users to tailor frequent actions.

• Aesthetic and minimalist design - Interfaces should not contain information which is irrelevant or
rarely needed. Every extra unit of information in an interface competes with the relevant units of
information and diminishes their relative visibility.

• Help and documentation - It’s best if the system doesn’t need any additional explanation.
However, it may be necessary to provide documentation to help users understand how to
complete their tasks.

7.5 Heroku Help

Our instructions for hosting our web application through Heroku can be found at
Heroku Setup Document. Following these instructions allows any team to host this application.
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