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Abstract

Modern robotic automation technology has transformed manufacturing systems

across many sectors. However, in the field of fabric assembly, which is one of the

most labor-intensive industries in the world, there has been very little increase in

automation over the past several decades. There are several challenges to con-

tend with when automating fabric assembly tasks including the compliant material

nature of fabric, the high frequency of task changes, and the feedback and adjust-

ment required to successfully complete the tasks. A robotic fabric manipulation

and assembly system is created based around a Yaskawa SDA10F industrial robot.

Computer vision capabilities are integrated into the system to measure the process

adjustments that are necessary when performing fabric assembly tasks. The system

is designed to account for variability in material placement and composition and

to be easily re-configurable to perform new tasks. The system’s capabilities are

evaluated by having it perform a proof of concept fabric assembly task with varied

input material. Because the SDA10F robot has a high input command latency,

a custom three degree of freedom wrist was constructed to perform corrections in

real-time by adjusting the position and velocity of the end-effector. The accuracy

of the wrist was independently tested to evaluate how it could improve the total

system’s functionality.
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Chapter 1

Introduction

1.1 Motivation

The development of manufacturing automation has changed the nature of work for

nearly every person on earth. Employment in direct industrial production has been

decreasing, being replaced by jobs in service, education, and healthcare. While au-

tomation can displace workers and create short term readjustment problems in some

communities, overall it creates more and better jobs, increases access to education,

and raises standards of living [1].

Manufacturing automation has not affected all industries in the same way, the

primary beneficiaries of this technology have so far been those manufacturing pro-

cesses which require a high degree of power and precision. Processes such as chem-

ical synthesis, metal and polymer casting, and the assembly of rigid components

have been performed primarily by machines for several decades. Classic industrial

automation involves creating a manufacturing line with custom machines that per-

form repetitive tasks at a high degree of precision, allowing for the creation of a

high volume of near-identical products with a low labor cost.
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Figure 1.1: Robot Use by Sector, per 1000 Employees. [3]

Robotic automation processes are somewhat different. Instead of a custom ma-

chine to complete each process, general-purpose robotic manipulators are used,

which are programmed to complete specific tasks. Industrial robotics has expanded

the capabilities of manufacturing automation into high value and complex assem-

bly operations, such as automotive and electrical manufacturing, which are today

highly automated industries. One of the biggest manufacturing sectors which have

seen little increase in automation in recent years is the textile and clothing industry.

The manufacture of clothing and textiles makes up 6% of the worlds’ exports and

is worth more than $300 billion each year [2]. Despite the size and labor-intense

nature of textile and clothing production, data from the World Trade organization

indicates that the level of robotic automation in the sector is minimal. [3]

The demand for textile products across the world, especially in large develop-
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ing countries such as India and China, has been expanding rapidly, is expected to

increase considerably in the coming years due to rising incomes [4]. The increase

in global demand for textile and clothing products has not been matched by an in-

crease in productivity due to automation. Consequently, textile manufacturing has

been expanding rapidly in areas with very low labor costs, especially in Southeast

Asia. The increasing costs of labor in many of these countries further expands the

need for production efficiency in textile manufacturing. Without the integration of

automation into these production processes, it will become increasingly challenging

to fulfill the demand for these products.

The least automated part of the textile manufacturing process is sewing assembly.

Nearly all garment and fabric assembly tasks are performing manually using sewing

machines. There is a limited amount of automation using programmable pattern

stitchers, which can automatically stitch patterns into the fabric using string or

to affix a piece of fabric to one placed on top of it. These processes are primarily

decorative, however, and all sewing not done on a flat surface is performed manually.

There are several barriers to increased automation in sewing assembly processes,

which this paper explores.

1.2 Barriers to Automation

Apparel and other fabric assembly processes may involve between a dozen and sev-

eral hundred steps to turn sheets of fabric, leather, and thread into final products.

Some of these steps are very complex and require a degree of dexterity and con-

trol unavailable to modern robotic manipulators. The most complex assembly tasks

involve sewing together two pieces of fabric that have been manually deformed to

create a structural stitch which provides the shape of a garment. These operations
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require continual realignment and tension adjustment on the two pieces of fabric so

that the final stitch line is exactly the right shape. Automating these tasks would

likely require significant research and development on custom technology for a task

that can be done quite efficiently with moderately skilled labor. An easier target

for automation is those tasks that require less dexterity, only simple handling, and

positioning of fabrics. There are many such tasks in modern garment assembly

plants, which usually require moving material from one stage to another, arranging

material on a flat surface to be processed by a machine, or affixing pieces together

in a simple manner. Learning how the simpler tasks in the textile assembly process

will start to build the capabilities necessary to automate the more complex ones.

There are however barriers that have prevented almost any automation in the tex-

tile assembly process and which must be overcome to begin to automate even the

simplest production tasks.

1.2.1 Production Scale

Replacing manual processes with automated robotic systems requires a significant

upfront investment to maintain consistency in production throughput. Because gar-

ment manufacturing generally occurs in areas with very low costs of labor, there is

little incentive to replace human workers with robotic automation unless it can be

made very economical. The large production scale also poses a problem because

of the “assembly line” nature of manufacturing. If a malfunction causes any sin-

gle step in the process to be interrupted the whole manufacturing process is now

bottle-necked. The tools of the fabric assembly system are designed to be robust

to malfunction. Human workers and sewing machines can be easily swapped in and

out to perform a wide variety of tasks as production requires. A viable automation

system should be both robust to error and be possible to circumvent in the event
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of a malfunction. Automation systems must be developed with economy and ease

of integration in mind. Optimally automation systems should make use of as much

existing and low-cost hardware as possible.

1.2.2 Scope of Variation of Tasks

While each step in most fabric assembly processes is relatively simple, no two are

the same. Each task requires slightly different tooling and motion. A typical fabric

assembly factor may produce several products and modifications of products. This

is especially true in garment assembly, where factories manufacture many different

sizes and models with production shifting daily. Human operators can easily switch

between different tasks but taking time reprogramming a robot delays production.

A viable automation solution must utilize hardware able to perform many tasks and

must be run on software that is quickly re-configurable to perform new operations.

1.2.3 Soft and Variable Material

Perhaps the most difficult barrier to overcome when trying to automate tasks in fab-

ric assembly is dealing with the soft and variable nature of the material involved in

the processes. For manufacturing involving rigid objects, once a robot has grasped

a component, all of the motions of that component can be calculated for future ma-

nipulation. This makes task planning and precise actuation very straightforward.

This is not the case for soft material, and especially for fabric which will move dy-

namically in a manner that is complex to model. There has been a large amount

of research in the field of modeling soft materials to try and address this problem

but is it far from resolved [5]. Furthermore, materials used in garment manufactur-

ing, especially biologically derived products such as wool, cotton, and leather, may

exhibit significant variation in physical characteristics between samples. A fabric
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assembly system must be able to account for the dynamic nature of the material

and be robust to any material variability that may exist.
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Chapter 2

Related Work

Much of the recent academic literature regarding fabric manipulation and assembly

focuses on techniques for sensing and managing position and configuration in a rela-

tively unknown environment. [5] Additionally, a lot of research focuses on exploring

a specific task such as smoothing, folding, or stacking. There is also significant re-

search into modeling the deformations of fabric and techniques and into techniques

for smoothing out wrinkles in fabric to reduce the complexity of its configuration.

This research is often not directly relevant to automation engineering, which deals

in fixed inputs and outputs, and optimizes for speed, economy, flexibility, and high

success rate.

There are also several recent commercial ventures which have advertised them-

selves as being textile assemble automation solutions. Evaluating these is not

straightforward as limited technical information is generally available for commer-

cial products and the company’s claims cannot be taken at face value. This section

discusses some of the most relevant research and commercial technology aimed at

addressing the challenges in textile manufacturing.
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2.1 Early Research

The first significant research into the automation of garment manufacturing was

performed during the 1980s. During a time marked by an increase in automation

in other sectors such as automotive, apparel manufacturers sought ways to decrease

the labor volume in their operations. Automation issues that are presented by both

the physical nature of the fabric as well as the scope and flexibility requirements

of the manufacturing process were evaluated and discussed. This research was also

motivated by the fact that at this time, manufacturing was moving to areas with

lower costs of labor and was sponsored by both manufacturing groups and trade

organizations such as NATO [7]. This early research led to the development of

many robotic capabilities useful for fabric manipulation, such as stack separation

[8], visual analysis [9], and tactile sensing [10].

A report by the American Apparel Manufacturers Association from 1987 [11]

lauded the great improvement in “hard automation” or non-robotic labor-saving

tools such as thread spinning and fabric weaving and was optimistic about the en-

trance of the newer robotic automation into the field. The report describes several

advancements in robotic capabilities that would be necessary before there would be

a large scale integration of robotics into the apparel manufacturing market. To-

day, all of the advancements listed in this report have been achieved, including the

development of real-time vision processing, robust tactile sensing, increased robotic

mobility, and general-purpose end effectors. Nevertheless, few of these developments

ever became a part of commercial apparel manufacturing processes. The reason for

this, in part, is that while narrow solutions for individual manufacturing applica-

tions can be developed, It is much more difficult to combine them into a feasible

total manufacturing solution.
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An analysis by Henry A. Seesselberg, Director of Advanced Technology opera-

tions at the Fashion Institute of Technology in New York City in 1990, concluded

that any device which could account for the variability in shape and material prop-

erties as well as have the process flexibility required to begin to replace humans in

the garment assembly process would be infeasible using traditional automation ap-

proaches [11]. History would seem to support Seesselberg’s analysis, although there

have been some commercial advances in garment manufacture, recent increases in

efficiency have come primarily from ever-expanding globalized supply chains and

increased access to low-cost labor markets. Access to sufficient low-cost labor has

reduced the economic incentives to create automation solutions have also decreased

significantly. However, due to the global increase in both cost of labor and de-

mand for textile products, especially garments, this field has had a recent increase

in research interest.

2.2 Softwear automation

One of the most ambitious commercial attempts to create a garment assembly au-

tomation solution is being performed by the company Softwear Automation.[13]

The Softwear Automation solution consists of a large flat surface with small balls

mounted on the surface which can spin in different directions, moving fabric placed

on the surface. The technology is designed to be modular, with sewing machines

and other processes devices distributed along the bed which performs operations on

fabric in a fashion similar to an assembly line. This approach addresses some of the

barriers to fabric assembly by circumventing the problem of soft material manipu-

lation. On their table, the orientation of the fabric can be easily manipulated and

it is possible to correct for folds and creases. Automatic rollers can be employed
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Figure 2.1: Softwear Automation Structure [12]

to create simple folds, and different pieces can be positioned relative to each other

in order to create stitches. vacuum picking modules are used to re-position fabric

more exactly than the rollers are capable.

Softwear Automation has successfully completed several basic sewing tasks using

this system but it has plans for more ambitious operations such as full shirt and

mattresses. However, they are yet to demonstrate assembly operations that surpass

the capabilities of programmable stitching machines, which have been standard in

the industry for more than thirty years. This technology may be able to replace

some operations, such as decorative stitching and shoe upper preparation, which

consist of many flat layers of fabric being stacked on top of one another and sewn

together in 2D, but they have not demonstrated thus far that the technology could

match the speed and efficiency of human operators. This system also represents

a significant investment on the part of an assembly plant, as all of the production

hardware integrated into the table and the entire production process must be based

10



around the capabilities of the system.

2.3 SewBo

In 2016, the company SewBo developed a system that can fully assemble a shirt out

of fabric pieces using a standard industrial manipulator, a sewing machine, and a

vacuum pickup module. It was able to do this because, before the process, each of

the pieces of fabric had been treated with a starch solution which made the fabric

rigid and thus easily manipulable. This does not represent a major technological

advancement in automation. As discussed earlier, it is very easy to manipulate rigid

objects to perform simple motions such as sewing. There is also little information

on the additional time it takes to starch and unstarch sewn components. The

Sewbo robot does however present a more flexible and economical system than that

put forward by softwear automation. Because the Sewbo system has few custom

hardware components, it would be much easier to begin to integrate it into existing

manufacturing systems if the technology proves effective for automating additional

tasks.

2.4 Soft Matter Manipulation Research

Much of the recent work relevant to textile assembly automation focuses on soft

material manipulation, which would be a vital component of a robust textile au-

tomation platform. Soft matter manipulation is a form of indirect position control,

which is a control approach that for example would calculate how manipulating one

part of a soft material held by an end effector can be used to control a different part

of the same material. A system that is designed to deal with frequently changing

shapes and materials must be able to determine optimal gripping points and control

11



Figure 2.2: Sewbo System performing a sewing operation on starched fabric [14]

policies for performing a specific task.

Concept of Inverse position control on fabric illustrating how forces may be

mapped to intended motion of particular part of fabric. [15]

In order to perform accurate inverse position control, one needs to generate a

physical model of the material. There are several methods to do this, including

modeling a sheet of soft material as a grid of masses and spring [16]. These include

using a linearized controller [15] Jacobian estimation based on distance from the

point to the end effector [17], and a PID based approach [18]. These attempts to

accurately estimate, rather than to completely model the motion of soft materials

may be more useful when it comes to automated manufacturing. The key adaptation

these methods would need added to these methods to be useful in fabric assembly

is the ability to be automatically generated from visual data. In that way, modeling

software could be integrated automatically into fabric assembly systems, and would

not need to be regenerated manually for different tasks.
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Figure 2.3: Concept of inverse position control on fabric illustrating how forces may
be mapped to intended motion of particular part of fabric. [15]

Machine learning is another promising area for fabric assembly. Fabric assembly

tasks are mechanically simple but difficult to manually program a robot to perform.

There has been some success in teaching robots to perform fabric manipulation

and assembly tasks such as using fuzzy logic to perform sewing [19] deep learning

to perform bed making [20]. An issue with the machine learning approach for

automation tasks is that they are very time critical, many of machine learning

methods have lengthy training periods and may generate inefficient solutions . To

utilize machine learning approaches for fabric assembly, they must be set up in

such a way that they could accept different shapes, sizes, and materials as input

parameters and still be able to perform their tasks accurately.
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Chapter 3

Methodology

This section documents the design considerations and implementation of the au-

tomated alignment platform. The system is constructed using several provided

pieces of hardware which serve as its primary robotic actuation components. Addi-

tional hardware and visual sensing systems are constructed in order to perform the

alignment task. A ROS based communication framework is used by the system to

translate visual feedback data into the required physical adjustments.

3.1 Platform Hardware

The automation platform developed in this work was built in part using hardware

components provided to Popovic Labs in a partnership with New Balance Athlet-

ics. The provided hardware consists of a Yaskawa SDA10F 15 axis dual armed

robot [21], two Robotiq 2F-85 two-finger grippers [22] attached to each army of the

SDA10F, and an ORISOL B1510-OCS computerized stitching machine [23]. A com-

puterized stitching machine clamps a piece of fabric to a flat surface then stitches

a programmed path into it. The motors in the SDA10F are driven by a Yaskawa

FS100 controller box [24].

14



Figure 3.1: Left to Right: Yaskawa SDA10F, Robotiq 2F-85, ORISOL ONS-1510
[22,23,24]

An Arduino Uno microprocessor [25] is wired into the stitching machine’s manual

pedal control system so that it can be software controlled. There is a 1280X720p

ELP USB camera [26] mounted directly above and pointed at a table where the

robot picks up material in order to provide visual data about the input material.

There is a 3840x2160p USB camera [27] mounted to the stitching machine which is

pointed down onto the surface where the stitching is performed in order to provide

visual data when the material is in under the stitching machine.

3.2 Previous Contributions

This work is informed by the work of a 2017-2018 WPI Major Qualifying Project

(MQP) by the author as well as Thomas Brown, Sarah O’Grady, William Sullivan,

and Andrew Lewis [28]. That MQP attempted to use motion planning and tactile

sensing to perform fabric handling and sewing tasks using the robot and gripper

presented above and a standard sewing machine. The MQP concluded that in order

to automate a sewing task, the robot performing the sewing must be able to control

its motion velocity dynamically and have real-time feedback capability. These are

necessary because the motion required to use a sewing machine requires continuously

15



Figure 3.2: Left: ELP Camera, Right: e-CAM131 Camera [25,26]

changing speed and maintaining a particular tension on the fabric. It must also be

able to account for errors caused by the variability of the material that may exist.

However, the SDA10f, like many other industrial robots, is not designed to allow

for dynamic velocity control or real-time feedback. Industrial robots are designed

primarily to perform point to point motions to a very high degree of precision and

to perform for long periods without malfunctioning. Because of this, all motion and

path requests are processed by internal proprietary kinematics verification software

to ensure that the motion will not damage the robot. Any new motion command

will cause the robot to stop for a period of up to one second to check the validity of

the new requested path before it is executed.

3.3 Software Structure

The software for this system is based on ROS [29], a communication framework for

robotics that allows for simple and robust cross-platform communication. It also
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Figure 3.3: Left: Visualization of end effector path required to sew a sine wave into
a piece of material, each red dot represents an equally spaced point in time. Center
and Right: Simulation of the robot sewing a sine wave into a piece of fabric from a
different starting position [28]

provides many software tools which are useful in robotics research. This system uti-

lizes the MoveIt [30], ROS Industrial [31], and MotoROS [32] libraries. MoveIt and

ROS-Industrial are open-source community maintained robotics motion planning

libraries. MotoROS is a software package developed by Yaskawa and the South-

west Research Institute to allow Yaskawa Robots to be integrated with ROS. The

MotoROS software package includes a 3D model, kinematic data, and MoveIt inte-

gration for the SDA10F.

ROS operates as a decentralized node-based structure, where nodes communicate

with one another over channels using a “publisher-subscriber” model. Any node

may publish data to a specific channel, and other nodes may subscribe to that

channel to receive the information. There is a central “main” node that processes

information from camera and robot and sends commands to the robot, gripper, and

stitching machine. The data from the cameras above the stitching machine and

input table are processed by individual ROS nodes. These use OpenCV [33] tools

to interpret the images, transform local positional data into the robot’s kinematic

frame, and transmit that data to the main node. The microprocessor which controls

17



Figure 3.4: Functional diagram of the ROS software system

the stitching machine is also a ROS node and takes commands from the main node

over USB using the rosserial library. The FS100 Controller which drives the robot

motors is another ROS node that takes trajectory commands as inputs from the

main node via the MoveIt library. Data from the main node and the robot are

ready by a ROS component called rvis, which allows the user to see the current

position and trajectory of the robot and monitor all activity in the ROS network.

3.4 Fabric Alignment Automation System

The primary goal of this work is to create an assembly automation platform and to

use that platform to perform a proof of concept assembly task. The chosen task is to

pick up a piece of flat material and move it to a processing machine, in this case, the

ORISOL stitching machine, and align the material for processing. This is a common
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class of assembly tasks, where a worker aligns one or two pieces of material on a flat

surface to be processed by a machine. Processes which fall into this class of tasks

include cutting, stamping, affixing of a logo or design, and automatic stitching. The

operation is relatively simple and widely applicable and therefore serves as a good

starting point for examining how to begin automating garment assembly processes.

The additional design requirement for this system is that it must address the

barriers and challenges to fabric assembly automation discussed earlier. The system

must be able to account for deviation and error in the material composition and

placement. The system must also be able to perform its task on different sizes and

shapes of input material with little or no alteration to the system. Leather was

chosen as the primary test material because it displays a moderate stiffness and

high degree of variation in material properties between samples.

3.4.1 Fingertip Design

Custom gripping fingers affixed to the end of the Robotiq two-finger gripper were

developed to optimally pick up and manipulate fabric. There are several consid-

erations when designing the gripping attachments including ease of manipulation,

passive compliance, and gripping quality.

The gripper must be able to manipulate the fabric satisfactorily inside the

workspace and to perform corrective alignment once the fabric is placed in the

stitching machine. The 45 degree offset in the gripper provides two key features. It

allows the robot to move the bottom of the finger across a flat surface without the

hand and robot obstructing its path. The offset also reduces the radius of rotation

in the upper arm while rotating a grasped object. A “T-shaped” design of the finger

is used so that it does not collide with the guide clamp on the stitching machine,

which sits 3 cm above the surface of the fable and clamps the fabric in place after
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Figure 3.5: Fabric Alignment System

the alignment is performed.

The finger must be rigid enough so that it is able to perform accurate alignment,

however, there are advantages to some amount of compliance. Compliant fingers

can be pressed down onto a surface to create a flush surface with the table, allowing

for precise pickup and placement operations without needing to perform as precise

of a motion. This simplifies complex path planning that may need to be done in

real-time and adds acts as a passive form of error tolerance. Because of the grippers

flat wide design, it is much more compliant vertically than horizontally. It gains the

benefit of compliance in the vertical direction without being horizontally flexible

which may impact alignment accuracy.

Another issue that arises when gripping fabric is that the surface of the material
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Figure 3.6: The finger attachment on the Robotiq gripper and Yaskawa robotic arm

Figure 3.7: The angle in the fingers allow the hand to slide on top of surfaces without
colliding with them

may be uneven, varying in thickness and surface characteristics such as friction. This

can result in a grip that only makes partial contact and a loose grip. This can be

exacerbated by a compliant gripper, as applying additional force to compensate for

variation in grip quality can warp the fingers, leading to an even lower quality grip.

The solution to this problem was to introduce a slight angle to the top finger so that

the fingers are slightly closer together at the end than at the base. The difference

in angle is only about 2 degrees, but when the gripper closes, it first makes contact

at the end of the finger, bending as it closed until the whole finger was in contact.
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Figure 3.8: Visualization of slightly thicker that intended fabric warping a flat com-
pliant gripper, by introducing a slight angle to the gripper, a wider variety of fabrics
can be gripped.

This is not a perfect solution, with enough force, the same undesired warping will

occur, but was sufficient to solve the problem for this application.

3.4.2 First Alignment Step

To begin the process, a piece of fabric with a paper pattern affixed to it is placed on

the input area. The paper pattern serves as the processing target for the task. The

goal of the process is to align the processing target with the processing point on the

stitching machine. The input area of the system consists of a table with two raised

bars onto which are placed the fabric to be processed by the system. Above the
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Figure 3.9: Photo of input area with fabric in the start position. The white back-
ground and yellow bars have maximum contrast with the fabric. Shaded lamp
provides diffuse light for computer vision processing

table, a camera looks directly down onto the tabletop. The camera takes a photo

of the fabric input and uses OpenCV contour identification tools to determine the

geometry and pose of the fabric and processing target. The robot then lifts the fabric

into the air so that it naturally droops and deforms. The camera takes a picture of

its new geometry to determine how much the fabric has deformed. Different samples

and even the same sample run through the process multiple times will differ in how

they deform once picked up.

After the robot picks up the fabric, it moves it over to the stitching machine.

Using information about the original shape and deformed shape of the fabric, the

robot slides the fabric under the clamp of the stitching machine. Using the data
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Figure 3.10: Visualization of initial computer vision algorithm. Algorithm records
the geometry of the fabric and position of the target area. After the robot lifts the
fabric into the air, the degree of deformation is measured.

from the pre-lift and post-lift photos, the fabric is placed so that the drooping edge

makes contact with the table between the edge of the table and the edge of the

clamp. The robot then moves the fabric down to be flat on the table while pulling

it slightly away from the stitching machine. If the robot moves the fabric down but

not backward, it can fold over itself, as is shown in figure 3.11 under error 1. If the

friction between the material and the table is too high or the fabric is too soft or

too long, the material may bunch up as shown in figure 3.11 under error 4. This

error is sometimes correctable in the second alignment step, but if not, the process

would need to be changed so that the fabric is pulled rather than pushed across the

surface. This rarely occurs in leather, as it is quite stiff compared to other fabrics.
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Figure 3.11: Left: Proper process of alignment, Right: Several error states that can
occur

3.4.3 Second Alignment Step

The second stage of alignment occurs after the robot places the fabric underneath the

clamp on the stitching machine. Once the fabric is moved under the clamp during

the first alignment step, the clamp partially closes so that it can serve as guide

geometry for the vision alignment program. The camera placed directly above the

clamp takes a photo of the fabric and generates a model of the target area and guide

geometry through the following process. The Process refers to points and distances

listed in Figure 3.13

1. Convert the image to grayscale.

2. Normalize the image brightness.

3. Perform a binary threshold to change to black and white, separating the back-
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Figure 3.12: Clamp on programmable stitching machine in its partial closed position,
the white markers act as guides for the fabric alignment

ground from the target area.

4. Remove specular noise from the image by performing a logical ”and” operation

on several consecutively taken images.

5. Approximate the “center” of the pattern using the OpenCV contour tool

6. Generate the two points, i and j, at a 90◦ angle and same distance from the

center.

7. From points i and j, generate the distances A and B, between the bottom of

the pattern and edge of the clamp which serves as an alignment guide.
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Figure 3.13: Visualization of the second stage vision processing. The generated
distances A, B, and C are used along with known values D and θ to generate the
necessary alignment

8. Determine the angular error in the alignment using the formula:

AngularError = φ = arcsin(D(B − A)) (3.1)

9. Rotate the material around the center of the pattern by the amount of the

angular error so that the edge of the pattern are parallel with the edges of the

guide on the clamp.

10. Generate the horizontal and vertical error using the following formulae:

V erticalError = y =
A+B

2

HorizontalError = x = (C − (y)tan(θ))

(3.2)

11. Move the material so that the processing pattern is aligned with the guide

geometry on the clamp.

12. Fully close the clamp.
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Figure 3.14: Example before and after images of the second stage alignment process

3.5 Independently Controlled Wrist

This section describes the addition of an independently controlled wrist capably of

low latency control in order to expand the capability of the total robotic system. The

SDA10F robot is capable of very high precision, power, and speed, but has limited

dynamic control and high input latency. The SDA10F is driven by the FS100 control

box which takes the intended trajectory from the control software via ROS as its

input. When a new trajectory command is received by the FS100 stops all current

motion, verifies the integrity of the intended trajectory, and then executes the new

trajectory. This process can take up to a second, severely limiting the capability for

adjustments based on sensory feedback. The SDA10F does however transmit its joint
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Figure 3.15: 3D model of independently controlled wrist

coordinates and position at a high frequency, so while it is not possible to strictly

control its position, it is possible to continuously monitor it. The concept behind

the independently controlled wrist is by keeping track of the robot’s position and

controlling the position of the wrist, the position of the end effector can be controlled

in the global coordinate frame. The independently controlled wrist can be added

with end-effector in the form of the Robotiq gripper with finger attachments or it

can be added with even more biologically realistic hand like Accurate Prosthetic

Hand [34] developed recently in Popovic Labs.
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3.5.1 Mechanical Design

Unlike a spherical wrist, which contains three rotational degrees of freedom, the

wrist contains two rotational joints as well as a prismatic joint which can extend

and retract the wrist. This is because, unlike a spherical wrist, whose purpose is to

provide precise orientation control, the primary purpose of this wrist is to provide

positional control. The total angular range of each rotational joint in the wrist is 45◦

and the range of the prismatic joint is 45mm. Fully retracted the wrist is 192mm

long.

The wrist consists of four custom components which are 3D printed in 40%

density Acrylonitrile Butadiene Styrene (ABS). One end of the wrist can be affixed

with machine screws to the end of the SDA10F’s arm and the other end can be

affixed to the Robotiq 2F-85. The linear motion is provided by a Greartisan 25

RPM 12-volt worm gear driven DC motor [35] on the base of the wrist drives a

gear rack supported by two linear ball bearing slides. The motor is driven using

a 12-volt power supply and DROK L298 Dual H Bridge [36]. The gear driven by

the motor has 16 spurs and the spur density of the gear rack is 2.86 spurs/cm. A

25 RPM maximum speed yields a maximum linear speed of 2.33 cm/s. Position

control for the linear motion is achieved with feedback from a linear potentiometer

attached to the gear rack and base of the wrist. The two rotational joints are driven

by Miuezuth 20KG Digital Servos [37] which are mounted on rotational bearings.

The servo motors are position controlled via pulse width modulation (PWM). The

PWM signal sent to the motor corresponds with the desired angle and the servo

moves to that angle using an internal control system.
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Figure 3.16: Left: Servo motor which drives the rotational joints of the Wrist, Right:
Worm gear motor which drives the prismatic joint of the wrist

3.5.2 Kinematics

The positions of the prismatic and two rotational joints of the robot respectively

represented as a1 θ1 and θ2 .L1, L2, and L3 are the lengths of each joint. L1 is 148

mm, L2 is 9mm, and L3 is 35mm. The Cartesian coordinates of the tip of joint 3

are x, y, and z, where the origin is at the connection point between the wrist at the

robot at the base of L1. The joint positions are considered at zero when a1 is fully

retracted and when θ1 and θ2 are such that L1, L2, and L3 are co-linear.

The forward and inverse kinematics equations of the wrist are as follows:

x = sin(θ1)L2 + sin(θ1)cos(θ2)L3

y = sin(θ2)L3

z = L1 + a1 + cos(θ2)L2 + cos(θ1)cos(θ2)L3

(3.3)
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Figure 3.17: Kinematic model of the wrist, the kinematics equations are based on
the variables shown in this diagram

θ2 = arcsin(
L3

y
)

θ1 = arcsin(L2 +
cos(θ2)L3

x
)

a1 = L1 + cos(θ2)L2 + cos(θ1)cos(θ2)L3 − z

(3.4)

3.5.3 Software control

When a new position command is sent to the wrist, the linear component of the

motion begins first, with the 12V motor moving prismatic joint toward its target

length using proportional gain control. The linear potentiometer which provides

positional data for this motion is also used to synchronize the motion of the servos.

The servo motors are sent positional commands so that they progress towards their
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Figure 3.18: Independently controlled wrist affixed to Robotiq Gripper as well as
pen

goal position at the same relative rate as the linear motor is progressing toward its

position. This causes the wrist to move in a smooth arc, regardless of the speed of

the linear motor, which is usually slower than the rotational servos. The wrist is

controlled by an Arduino Uno microprocessor which is able to communicate with

a python script over USB. The python script uses the Klampt inverse kinematics

library [38] to take Cartesian data from the user and transmit it to the wrist.
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Chapter 4

Experiments and Results

In this section, the experimental tasks are described and the data from the experi-

ments are presented.

4.1 Fabric Alignment System

The experimental alignment task is to pick up a piece of leather with a paper pro-

cessing target affixed to it and align that processing target with the clamp under

the stitching machine. The alignment task was performed nine consecutive times.

Three tests were performed for each of three sizes of pig leather, each with an iden-

tical paper parallelogram acting the processing goal. The three leather samples are

100mm by 150mm, 125mm by 200mm, and 105mm by 250mm. There was no change

to the software of the system between these trials. The fabric was placed manually

and without any guide on the input station with a variation of approximately two

centimeters to simulate the possible input variation in a manufacturing system.

The success of the task is measured by comparing the position of the processing

target on the leather to the intended position stipulated by the guide on the clamp.

The Cartesian and rotational errors are measured over the nine trials. The results of
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Figure 4.1: Cartesian and Rotational Alignment Error Data

the test are recorded in Figure 4.1 which presents the error position of the processing

pattern in terms of Cartesian distance and rotation.

4.1.1 First Stage Alignment

As well as analyzing the final error, the results of the first stage alignment system are

also examined. Figure 4.2 presents the Cartesian Error after in the first alignment

stage for the nine trials separated by sample size. The differences in characteristic

errors between the different materials show the degree of systematic error in the first

alignment system.

Figure 4.3 presents how the error in the first alignment step effects the final

alignment. The data shows that there is not a significant correlation between the

magnitude of error present after the first alignment and the final process error.

4.2 Independently Controlled Wrist

The first test of the robotic wrist was an accuracy test. Several Cartesian coordinates

were input into the control software and the position of the end of a pen attached

to the wrist using calipers. The results of the five tests are recorded in Table 4.1.
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Figure 4.2: How the Error in the first alignment system effect the final task error

The second test of the wrist was an evaluation of its ability to follow a trajectory

smoothly and accurately. A ball point pen was attached to the wrist and it was

given a 2000 point trajectory to follow over the surface of a piece of paper. Two

trajectories were tested, a circle a sine wave that loops back to a negative sine wave.

The results of these tests are shown in figure 4.5.

X target Y target Z target X result Y Result Z Result Total Error

30 mm 30 mm 12 mm 29.0 mm 28.4 mm 12.9 mm 2.0 mm
-40 mm 10 mm 22 mm -38.5 mm 10.5 mm 23.4 mm 2.2 mm
-30 mm 50 mm 17mm 24.8 mm 48.5 mm 17.7 mm 5.5 mm
-20 mm -20 mm 70 mm -19.8 mm 22.3 mm 67.0 mm 4.2 mm
10 mm 30 mm 13 mm 11.2 mm 27.5 mm 14.7 mm 3.25 mm

Table 4.1: [Wrist Position Error Data]
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Figure 4.3: The Cartesian error of the first state alignment system

Figure 4.4: Wrist Accuracy Test Setup

37



Figure 4.5: Circle and Sine wave drawn by the wrist

38



Chapter 5

Discussion

In this section, the results of the experiments are discussed to evaluate the level of

success of the system and identify possible areas for future improvement.

5.1 Fabric Alignment System

The results of the fabric alignment process demonstrated that the system can per-

form its task one several different sizes of fabric without any modification to system

hardware or software. The largest samples, which had the highest degree of material

deformation, showed the largest errors, but an error of approximately 1mm is ac-

ceptable in many fabric assembly tasks. The increase in error in larger samples are

to be expected, as the larger samples will exhibit more irregularity and unexpected

behavior during processing. For example, the further from the rigidly controlled

robotic gripper the processing target, the more the soft intervening material will

reduce the precision of the control. There is also significant systematic error in the

first alignment step, as the size of the material effects the error in that step. It is

unclear exactly what causes this error, but there appears to exists a property of

the fabric that the system is not accounting for during the first alignment stage.
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However, these errors are able to be corrected in the second stage alignment, and

the error in the first stage does not significantly effect the final error.

Both of the computer vision algorithms developed here are designed to be simple

and easily modifiable for use in similar tasks. The first stage alignment system

will function on many sizes and shapes of leather and likely on other fabric of

similar material properties. If a new processing target cannot be identified with

visual contour tools, changing the way that the program recognizes the center of the

object will correct the issue and the rest of the software will work unmodified. By

using a mono-color background, the contour of any piece of fabric should be easily

identifiable. If the algorithm can identify the contour of the fabric and position

processing target it will be able to move them into the correct processing position.

The second stage alignment system, because it is based on the geometry of the

target area, would need slight modifications to work for different shapes. A simple

scaling factor would be sufficient to work on a differently sized target area. For

simple geometric shapes involving straight lines, the same alignment formula could

be applied, all that would be necessary would be to determine from what points on

the shape to measure the distance to a guide.

5.2 Robotic Wrist

The positional accuracy of the wrist was verified to the limit of hardware, the servo

motors used have a maximum angular precision of 1.4 degrees, which given the

0.15m arm used in the experiments can create an error of up to 5.1 mm. This is

very close to the average error observed in tests of the wrist. It is therefore likely

that in order to improve upon the accuracy of the wrist, the servos can be exchanged

for high precision stepper motors. This may cause a reduction in speed and torque
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performance but for the intended purpose of this device, providing small adjustments

for fabric assembly tasks, torque and speed are not likely to be priorities.

In the drawing test, the wrist was able to draw a circle much more accurately

then it was able to draw a sine wave. This is likely due to the fact that drawing

with a ballpoint pen is relatively error-tolerant in the axes in the plane of the page,

but is not error tolerant in the in the axis perpendicular to the page. When drawing

a circle, the wrist did not need to change its distance from the page, and thus the

visible error is minimal. When drawing the sine wave, the height of the gripper was

changing constantly, and so small errors in that axis cause the pen to warp, creating

a much more visible error in the drawing.

When the 0.9 kg Robotiq Gripper is attached to the end of the wrist, the worm

gear driven the prismatic joint can slow considerably. Additionally, the momentum

of the hand can cause the wrist to bend and oscillate if the hand is moved at a

high speed. There are two solutions to this problem. The first would be to use

higher power motors, as well as a fully metal machined frame to reduce oscillation.

The other solution is to use a smaller and lighter gripper at the end of the wrist.

A lightweight gripper is likely to supply sufficient grasping power to satisfactorily

manipulate fabric for the purposes of further automation research.

5.3 Conclusion

During this work, a fabric assembly automation platform was created, and its capa-

bilities were demonstrated by reliably performing a proof of concept manufacturing

assembly task. The system was designed considering the many challenges and bar-

riers to automating fabric assembly tasks. A fabric assembly automation tool must

be able to contend with variable material properties and frequent task changes.
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It was demonstrated that the system could perform its task on input materials of

different sizes and shapes, as well as with input placement deviation, as would be

required of a viable manufacturing platform. A robotic wrist attachment was devel-

oped and tested to enhance the feedback capabilities of the system. The limitations

of the robotic wrist are well understood and opportunities for improvement have

been discussed. The addition of the wrist opens up new research possibilities in the

area of fabric assembly. Research into more automating more complex actions such

as direct sewing is now possible. The ROS integrated computer vision framework

created during this process is designed to be easily adaptable for different shapes

and sizes of fabric and alignment goals. The necessity for robust fabric assembly

automation tools is clear. As the world becomes more industrialized, the demand

for clothing and other textile products is rising, while production is becoming more

expensive. The development of economical and robust fabric assembly tools will

become increasingly valuable in the years to come.
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Appendix A

A.1 Inverse Kinematics Python Script

import sys

import time

import math

import klampt

import OpenGL

import numpy as np

from klampt import vis

from klampt.model import ik

from klampt import IKObjective,IKSolver

import pyautogui

from pySerialTransfer import pySerialTransfer as txfer

if __name__ == ’__main__’:

try:

com = txfer.SerialTransfer(’COM14’)

com.open()

time.sleep(2) # allow some time for the Arduino to completely reset\

world = klampt.WorldModel()

world.loadElement("testrobot.rob")

robot = world.robot(0)

robot.setConfig([0,0,0])

link = robot.link(2)
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print("Position")

print(link.getWorldPosition([1,0,0]))

print(robot.getConfig())

# Wrist.setName("Wrist")

goal = [0.3,0,0]

obj = ik.objective(link,local=[1,0,0],world=goal)

solver = ik.solver(obj)

solver.solve()

robot.getConfig()

print( solver.getResidual())

vis.add("world",world)

vis.add("local point",link.getWorldPosition([1,0,0]))

vis.setAttribute("local point","type","Vector3")

vis.add("target point",goal)

vis.setAttribute("target point","type","Vector3")

vis.setColor("target point",1,0,0)

vis.show()

i = 0.5

time.sleep(3)

while vis.shown():

vis.lock()

x, y = (pyautogui.position())

x = x/7000.0 - 0.08

y = y/6000.0 - 0.08

goal = [0.3,x,y]

i = i-0.002

obj = ik.objective(link,local=[0.165,0,0],world=goal)

solver = ik.solver(obj)

solver.solve()

vis.add("local point",link.getWorldPosition([0.165,0,0]))

vis.setAttribute("local point","type","Vector3")

vis.add("target point",goal)

vis.setAttribute("target point","type","Vector3")

vis.unlock()

time.sleep(0.1)
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send_size = 0

zdata, xdata, ydata = (robot.getConfig())

xsend = int((xdata+0.3) / 0.002737)

ysend = int((ydata+0.3) / 0.002737)

zsend = int((zdata)*1000*231.0/46)

if (xsend == 0):

xsend = 1

if (ysend == 0):

ysend = 1

if (zsend == 0):

zsend = 1

print(xsend,ysend,zsend)

list_ = [xsend,ysend,zsend]

print (sys.getsizeof((list_)))

list_size = com.tx_obj(list_)

send_size += list_size

com.send(send_size)

while not com.available():

if com.status < 0:

if com.status == -1:

print(’ERROR: CRC_ERROR’)

elif com.status == -2:

print(’ERROR: PAYLOAD_ERROR’)

elif com.status == -3:

print(’ERROR: STOP_BYTE_ERROR’)

rec_list_ = com.rx_obj(obj_type=type(list_),

obj_byte_size=list_size,

list_format=’i’)

print(’SENT: {}’.format(list_))

print(’RCVD: {}’.format(rec_list_))

print(’ ’)

if done():

vis.show(False)

except KeyboardInterrupt:

com.close()

except:

import traceback

traceback.print_exc()

com.close()
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A.2 Wrist Control Code on Ardunio Uno

#include "SerialTransfer.h"

#include <Servo.h>

// bottom is 930, top is 100, 43mm length

int analogPin = A0; // potentiometer wiper (middle terminal) connected to analog pin 3

int val = 400; // variable to store the value read

int pos = 0;

Servo myservo; // create servo object to control a servo

Servo myservo2; // create servo object to control a servo

Servo myservo3; // create servo object to control a servo

SerialTransfer myTransfer;

uint16_t datarx[10] = {};

int xgoal = 0;

int ygoal = 0;

int old_xgoal = 0;

int old_ygoal = 0;

int old_zgoal = 0;

int zgoal = 100;

int factor = 1;

void setup()

{

Serial.begin(115200);

myservo.attach(5);

myservo2.attach(6);

myservo3.attach(11); // attaches the servo on pin 9 to the servo object

myTransfer.begin(Serial);

pinMode(11, OUTPUT);

pinMode(6, OUTPUT);

pinMode(5, OUTPUT);

pinMode(3, OUTPUT);

pinMode(10, OUTPUT);

pinMode(9, OUTPUT);

pinMode(8, OUTPUT);

digitalWrite(9, HIGH);

digitalWrite(10, LOW);

myservo.write(90);

myservo2.write(60);

}

void loop()

{

val = analogRead(analogPin); // read the input pin
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pos = ((val-120)*255.0/950.0);

if(myTransfer.available())

{

val = analogRead(analogPin); // read the input pin

pos = ((val-120)*255.0/950.0);

myTransfer.rxObj(datarx, sizeof(datarx), 0);

factor = max(0,min(1, float(pos - old_zgoal) / float(zgoal - old_zgoal)));

old_xgoal = xgoal;

old_ygoal = ygoal;

old_zgoal = zgoal;

xgoal = myTransfer.rxBuff[0]/255.0*40.0;

ygoal = myTransfer.rxBuff[4]/255.0*40.0;

zgoal = abs(myTransfer.rxBuff[8]- pos)*10;

analogWrite(3,myTransfer.rxBuff[8]);

analogWrite(11,min(abs(pos - myTransfer.rxBuff[8])*3 ,255));

if (pos >= myTransfer.rxBuff[8]) {

digitalWrite(10, HIGH);

digitalWrite(9, LOW);

//myservo3.write(abs(pos-myTransfer.rxBuff[8]));

}

if (pos < myTransfer.rxBuff[8]) {

digitalWrite(9, HIGH);

digitalWrite(10, LOW);

//myservo3.write(abs(pos-myTransfer.rxBuff[8])*5);

}

// send all received data back to Python

for(uint16_t i=0; i < myTransfer.bytesRead; i++) {

myTransfer.txBuff[i] = myTransfer.rxBuff[i];

}

myTransfer.sendData(myTransfer.rxBuff[0]);

}

}

A.3 ROS Package

The ROS package which includes the control code for the SDA10F as well as the
first and second stage vision alignment algorithms can be found in the following
github repo. https://github.com/briggscalum/MotoWorkspace
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