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Abstract 

 

Gene expression analysis provides genome-wide insights into the transcriptional 

activity of a cell. One of the first computational steps in exploration and analysis 

of the gene expression data is clustering. With a number of standard clustering 

methods routinely used, most of the methods do not take prior biological 

information into account. Here, we propose a new approach for gene expression 

clustering analysis. The approach benefits from a new deep learning architecture, 

Robust Autoencoder, which provides a more accurate high-level representation 

of the feature sets, and from incorporating prior system-wide biological 

information into the clustering process. We tested our approach on two gene 

expression datasets and compared the performance with two widely used 

clustering methods, hierarchical clustering and k-means, and with a recent deep 

learning clustering approach. Our approach outperformed all other clustering 

methods on the labeled yeast gene expression dataset. Furthermore, we showed 

that it is better in identifying the functionally common clusters than k-means on 

the unlabeled human gene expression dataset. The results demonstrate that our 

new deep learning architecture can generalize well the specific properties of gene 

expression profiles. Furthermore, the results confirm our hypothesis that the 

prior biological network knowledge is helpful in the gene expression clustering. 
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Chapter 1 

 
Introduction 
 
 
Gene expression quantification and analysis using DNA microarrays, RNA sequencing 

(RNA-Seq), and other methods [1-3] have been proved to be an exceptionally powerful 

tool to quantitatively study the relationships among sets of genes. Global gene expression 

analysis provides quantitative information about the protein and mRNA abundance 

across the whole organism and in the individual tissues and cells [4], allowing to explore 

a wide range of biological processes [5]. Capturing the gene expression patterns can help 

studying molecular mechanisms implicated in diseases and cellular responses to drug 

treatment, thus facilitating drug discovery and development [4]. Global analysis of the 

gene expression data has been carried out by a number of supervised and unsupervised 

machine learning methods [6, 7].  An intuitive approach to analysis of the massive 

volumes of expression data is to first group the genes into smaller subsets based on 

common expression patterns they share, and without any preliminary knowledge of what 

each of these groups should include. Unsupervised learning, or clustering, methods are 

well-suited to address this problem [8].  

 

Until recent, clustering of the genes expression data has been commonly carried out using 

the classical unsupervised learning methods, such as k-means or Expectation 

Maximization (EM) algorithms [9, 10]. At the same time, deep learning has made great 

strides in advancing both supervised and unsupervised learning, becoming routine 

methods in image recognition [11], natural language processing [12], and most recently 



in bioinformatics and genomics [13, 14]. Autoencoder is one of the commonly used deep 

architectures, and it has been proven successful to learn low-dimensional representations 

of biological data [15]. However, an autoencoder is  sensitive to the outliers, which are 

widely present in the gene expression data. As a result, this may affect the generalization 

patterns uncovered by such architecture.   Furthermore, most of the current clustering 

methods do not take into account the prior biological information that could guide the 

clustering procedure.  

 

In the past decade, substantial improvements have been made in utilizing high-

throughput ‘‘-omics’’ to map most components of cellular networks [16, 17]. Among them, 

human protein interactome and its edgotyping studies have attracted major attention 

[18]. Network properties of the interactome have provided insights into the system-wide 

biological properties and the interactome evolution [19, 20]. Of special interest is a 

property that is also found in many real-world networks, the community structure [21], 

in which the network nodes are joined together in tightly knit groups, while the groups 

themselves are only loosely connected with each other. One of the key ideas behind our 

work is incorporating the gene community information for the tested gene sets into the 

clustering process; we expect that such information would improve the clustering 

accuracy.  

 

Here, we propose a novel protocol, which combines a new deep architecture with the prior 

biological knowledge for gene expression clustering analysis. Our protocol could be 

divided into two main stages. First, we use a deep network to learn important 

characteristics of the gene expression profiles. We leverage a new autoencoder method, 

Robust autoencoder [22]. The approach is designed to extract more robust features from 

the input data. Once the network is trained, the low dimensional representation of the 

gene expression profile is used for the clustering task. In the second stage, we define a 

network-based metric which allows introducing the community information of each gene 

in the network into our clustering process. The hypothesis behind this idea is that, if two 

genes are in the same network community, then they are more likely to communicate with 



each other and share the same expression pattern. Our new clustering protocol is based 

on the Eisen clustering [23].  

 

We evaluated our method on two distinct gene expression datasets, one with external 

labels and the other one unlabeled. Specifically, we compared the performance of our 

method for gene expression clustering with two traditional clustering methods that are 

commonly used for the gene expression analysis, k-means and hierarchical clustering. We 

found that our method outperformed the traditional clustering methods on both labeled 

and unlabeled datasets. Furthermore, the proposed approach was more accurate than a 

deep learning autoencoder method. The results demonstrate that the new deep 

architecture could capture the high-level features from the gene expression profiles. 

Furthermore, the results confirm our hypothesis that the prior biological network 

knowledge could be utilized for optimizing the gene expression clustering task.  

 

 

 
 
 
 
 
  



 
 
 
 
 
 

Chapter 2 

 
Background and Related Work 
 
 
2.1 Problem Formulation 
 

With the tremendous advancement of RNA-Seq technology[2], as well microarray 

technology[24], we are able to gather genome-wide expression data during important 

biological processes and across collections of related samples. Exploring the gene 

expression patterns can give us more in-depth insights and an enhanced understanding 

of biological processes and disease pathogenesis. However, due to the huge number of 

genes and the high dimension of the gene expression profile, it is very hard for human 

brains to comprehend the dataset and extract insights. This is where clustering come into 

play. Researchers and scientists applied various clustering techniques to address this 

challenge.  The use of clustering techniques can help reveal natural structures and identify 

interesting patterns underlying the data[25].  

 

The clustering tasks in our approach are carried-out using unsupervised learning 

methods. For a given similarity measure defined in an unsupervised learning method, the 

objects belonging to the same cluster are more similar to each other than to those ones 

from other clusters. In the case of gene expression data clustering, a cluster may contain 

a number of genes or samples with similar expression patterns. After the preprocessing 

stage, the data are presented as a matrix X = { xij }. Each cell xij in the matrix stands for 

an expression level of gene i from sample j at a specific time point or in a specific condition 



(See Fig 2.1). The clustering of gene expression data can be divided into two main 

categories: gene-based clustering and sample-based clustering [26]. In this work, we 

focus on the gene-based clustering. The goal is to group genes with similar expression 

patterns (co-expressed genes). The expression patterns, in turn, will be used to help in 

our understanding of gene function, gene regulation, and cellular processes. 

 

2.2 Conventional Methods for Gene Expression 
Clustering Analysis 
 

There are two most important classes of clustering methods for gene expression analysis: 

partitioning-based methods and hierarchical clustering methods[8]. Partitioning 

methods divide the data into a predetermined number of clusters. A partitioning method 

constructs several partitions from the given data, with each partition representing a 

cluster. The k-means algorithm[9] is a typical partition-based clustering method.  When 

we run k-means algorithms, we need to predefine a number k, which refers to the number 

 
Figure 2.1: Illustration of gene expression clustering analysis. After pre-processing, the 
gene expression data is represented as a matrix. The goal of clustering is to subdivide a set of 
items in such a way that similar items fall into the same cluster, whereas dissimilar items fall in 
different clusters 

 

 



of centroids in the dataset. A centroid is the imaginary location representing the center of 

the cluster.  After that, each data point will be assigned to the closest centroid. After all 

data points are assigned with a cluster label, the positions of the k centroids are 

recalculated. This process will be repeated until the k centroids remain the same.  

 

Hierarchical clustering methods[27] are of different philosophy compared against 

partition-based clustering. As suggested from the name, they produce a hierarchy of 

clusters. In hierarchical clustering, each cluster is subdivided into smaller clusters, 

forming a tree-shaped data structure or dendrogram. Hierarchical clustering methods 

generally fall into two types: agglomerative clustering and divisive clustering. In the 

context of gene expression clustering analysis, agglomerative hierarchical clustering 

starts with the single-gene clusters and successively joins the closest clusters until all 

genes have been joined into the supercluster[28]. Divisive clustering methods operate in 

the opposite way; all genes start in one cluster, and they are recursively spited into smaller 

clusters, as one moves down the hierarchy. A popular hierarchical clustering method was 

applied to analyze the first yeast gene expression data by Eisen et al[23]; hence it is often 

referred as ‘Eisen clustering’. 

 

2.3 PCA and Robust PCA 
 

Because of the huge number of genes measured at the same time point and the complexity 

of biological processes, there is an urgent need to develop analytical methodology to 

reduce the dimension of gene expression data and make the analysis more manageable. 

Some classical techniques, such as principal component analysis (PCA), have been 

applied to analyze gene expression data. PCA[29] is a classic orthogonal linear 

transformation. It transforms the data to a new coordinate system such that the greatest 

variance will be reserved. Linear PCA projects data onto a linear manifold in high 

dimensional space. However, this classic linear transformation is not ideal for discovering 

non-linear representations. The complexity and variability of many real-world problems 

naturally require non-linear methods. In many real-world problems, non-linearity and 

outliers exist at the same time. Typically, PCA does not work well when these outliers 



exist[30]. The linear manifold of PCA will shift to offset the huge errors of those faraway 

outliers. This shifting will harm the information preservation for those normal 

observations. This distracted manifold has a large reconstruction error for all other 

observations. Eliminating the influence of those outliers is needed. 

One shortcoming of PCA is its sensitivity to significant corruptions and outlying 

observations. Robust Principal Component Analysis (RPCA)[31] splits a raw input matrix 

X into a low-rank matrix L0 and a sparse matrix S0: 

X = L0 + S0 

The low-rank matrix L0 contains our interested pattern and the sparse matrix S0 consists 

of element-wise outlying parts which cannot be captured by low-rank pattern L0. We 

constrain the rank of matrix L0 as low as possible and the sparse matrix S0 element-wisely 

as sparse as possible. The L0 could be represented by a linear manifold, while the S0 is a 

filter that peels the faraway part from the linear manifold. (See Fig2.2) RPCA allows for 

the careful removal of sparse outliers, so that the remaining low-rank approximation is 

faithful to the true low-rank subspace describing the raw data. In short, Robust principal 

component analysis (RPCA) refines PCA by making PCA robust to outliers.  

  

 
 

Figure 2.2: Illustration of RPCA. The input data can be decomposed into two parts. L0 is the 
low rank matrix and S0 is the sparse matrix. RPCA allows for the careful teasing apart of sparse 
outliers so that the remaining low-rank approximation is faithful to the true low-rank subspace 
describing the raw data. 

 

 

 



2.4 Stacked Denoising Auto-encoder 
 

Recent years have witnessed the power of deep learning on a wide range of application[13, 

32]. One advantage about deep learning is that it could learn a hierarchical representation 

of the data through multiple layers of abstraction. Autoencoder is one of the most widely 

used deep architectures. Specifically, an autoencoder is a feed forward multi-layer neural 

network in which the output target is the input itself. An auto-encoder is trained to copy 

an input to its output. This process seems trivial, but the meaningful part is the 

dimension-reduced hidden layers learned to reproduce the input and thus these low 

dimensional hidden layers are trained to be lowest loss representations of the input. From 

the perspective of dimensionality deduction, auto-encoder is a generalized framework for 

non-linear dimension reduction process by applying non-linear activating function in 

encoder and decoder. In other words, auto-coder could project the original data in the 

high dimensional space to non-linear manifold in lower dimensional space.  

 

The denoising autoencoder model[33] is a popular deep learning architecture and can be 

viewed as a stochastic version of the autoencoder. It randomly corrupts the input data 

and trains the parameters to recover the uncorrupted data from the corrupted one. 

Denoising autoencoders can be stacked to form a deep network, i.e. stacked denoising 

autoencoder[34]. (See Fig 2.3) The denoising autoencoder’s goal is to learn the mapping 

from the corrupted data to the original uncorrupted data. One of the method’s caveats is 

that it still needs the information about the original uncorrupted data for the training. 

Since the original, uncorrupted, data present the crucial prior knowledge for denoising 

autoencoder, the quality of the original data will influence the denoising autoencoder’s 

map building and the quality of discovered features. If the original input contains outliers, 

denoising autoencoder’s training will still learn to recover these outlying parts and the 

quality of discovered features could be misled by these outlying parts. 

  



 

2.5 Module Detection in Biological Network   
 

Community structure could be viewed as a subnetwork of nodes that are more densely 

connected compared to the parts of the network[35]. It is a common characteristic in 

many physical networks, including the Internet and World Wide Web[36], social 

networks[37], and different kinds of biomolecular networks [21]. (See Fig2.4) 

Physiological and disease processes are typically not driven by a single gene, but a group 

of genes that interact within molecular modules or pathways in the context of complex 

biological network. Identification of such modules in gene or protein networks is at the 

core of many current analysis methods in biomedical research. Nowadays, it is generally 

accepted that biological networks are not randomly connected but follow certain 

structural patterns[38-40]. Among these structural patterns, modularity is one of the 

most important features of biological networks. By modularity, we mean that nodes are 

 
Figure 2.3: Architecture of Stacked Denoising Autoencoder. Denoising autoencoder 
randomly corrupts the input data and trains the parameters to recover the uncorrupted data from 
the corrupted one. Denoising autoencoders can be stacked to form a deep network.  

 

 



tightly connected with each other as a community, while having less connections with 

outside world. The general problem of identifying the functional modules in a biological 

network by relying exclusively on the network’s topology is a challenging one due to the 

lack of information about specific genes/proteins contributing to the topological features 

of the network.  

 
  

 
 

Figure 2.4 Community structure in the network.  A network community is a set of 
network nodes, which are densely connected internally. 

 



 
 
 
 
 
 

Chapter 3 

 
Proposed Computational Solution 
 
 
In this work, we propose a novel protocol, which combines deep architectures and prior 

biological knowledge for gene expression clustering analysis.  Our protocol could be 

divided into two main stages. First, we use a deep network to learn important 

characteristics of the gene expression profiles. We leverage a new autoencoder method, 

Robust autoencoder[41]. The approach is designed to extract more robust features from 

the input data. Once the network has been trained, we use the low dimensional 

representation of gene expression profile for later clustering task. In the second stage, we 

introduce a network-based metric, which could signal the community information of each 

gene in the network, into our clustering process. (See Fig 3.1) 

 
  



 
  

 
 

Figure 3.1: General workflow of our protocol. After acquiring the raw gene expression 
data. Our method consists of four basic steps: input data pre-processing, feature reconstruction 
using deep architectures, detecting community structure from the network, and incorporating 
gene network community information into clustering. The two datasets used in this study are gene 
expression dataset for the yeast cell cycle and human gene expression data from the genomics of 
drug sensitivity in cancer study. 

 



3.1 Proposed Deep Architecture to Regenerate Gene 
Expression Profile 
 

Our deep learning approach to gene expression clustering is driven by its ability to learn 

a hierarchical representation of the data through multiple layers of abstraction.  In this 

work, we propose to apply our newly developed Robust autoencoder method[41]. The 

method improves the basic deep learning autoencoder model by building an outlier filter 

on top of a standard autoencoder, an idea that was inspired by the Robust Principal 

Component Analysis (RPCA) [42]. 

 

To simultaneously address the problems of outliers and non-linearity, we integrate the 

basic ideas of Robust PCA into the autoencoder model. In the Robust autoencoder 

approach, we introduce a filter layer before a normal autoencoder (Fig. 3.2). The filter 

layer culls out the outlying parts that are difficult to reconstruct by the autoencoder. Thus, 

the outlier filter introduces robustness, while the autoencoder provides nonlinearity. The 

low dimensional representation learned by the autoencoder is defined by the compressed 

features that reflect the trend of the observation majority. Similar to Robust PCA, we 

decompose our input data X into two parts: X = LD + S, where LD is a matrix that can be 

represented by a non-linear manifold, and S represents the outliers which will corrupt 

and skew the non-linear manifold. By peeling off the outliers from X into S, the 

autoencoder could perfectly recover the remaining LD. Our loss function for a given input 

X is defined as: 

𝑎𝑟𝑔𝑚𝑖𝑛𝑊,𝑏,𝑆  ‖𝐿𝐷 − 𝐷𝑊,𝑏 (𝐸𝑊,𝑏(𝐿𝐷))‖
2

+  𝜆‖𝑆‖1, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡   𝑋 − 𝐿𝐷 − 𝑆 = 0, 

where 𝐸𝑊,𝑏  denotes an encoder function, 𝐷𝑊,𝑏  denotes a decoder function, W is a 

projection matrix, b is the bias term, and 𝜆 is a balancing parameter to tuning the power 

of sparsity. We feed LD as the input data to a standard deep autoencoder to learn the low-

dimensional representations. The autoencoder is trained through minimizing the 

reconstruction error ‖𝐿𝐷 − 𝐷𝑊,𝑏 (𝐸𝑊,𝑏(𝐿𝐷))‖ . The minimized reconstruction error 

indicates that LD can be projected to a low-dimensional nonlinear manifold without 



significant information loss. S contains all outlying observations, which have high 

reconstruction errors and cannot be interpreted by the majority observations. We require 

S to be sparse because we want the autoencoder to capture the trend of the majority of 

observations, while the outliers are expected to be rare. When minimizing the first term, 

we want the input of the autoencoder LD to be perfectly reconstructed. Thus, we need to 

move more observations to S. Similarly, when minimizing the second term, S will contain 

the increasingly smaller number of the non-zero elements. Sparsifying the outlier filter S 

leaves more errors to LD, and the reconstruction task of autoencoder becomes harder. In 

this optimization, LD and S are mutually influenced by the constraint 𝑋 − 𝐿𝐷 − 𝑆 = 0.  

The 𝜆 is the tuning parameter, which balances the impact of two optimizers. After training 

the whole model, the matrix S contains point-wise outliers, and LD should retain the 

majority of information about X inside the hidden layer. 

 

 
 

Figure 3.2: Architecture of robust autoencoder. In Robust autoencoder approach, an 
outlier filter layer before a normal autoencoder is introduced, providing robustness, while the 
autoencoder provides nonlinearity. We decompose the input data X into two parts: LD, a matrix 
representing by a non-linear manifold, and S, a matrix representing the outliers which will 
corrupt and skew the non-linear manifold. The goal is to filter out the outliers from X, thus 
recovering LD. 

 



We solve the minimization problem of Robust autoencoder using an approach similar to 

[22]. While individual optimization techniques exist for training an autoencoder or 

Robust PCA (e.g., alternating direction method of multipliers, ADMM algorithm [43]), to 

the best of our knowledge no methods previously existed that could simultaneously 

optimize both. In [22] , the authors train the autoencoder using back-propagation and the 

outlier filter using the shrinkage function. Back-propagation is an essential element of the 

deep autoencoder training, but it requires the objective function to be smooth to take 

advantage of chain rule of differentiation. This is not the case in our problem, since the 

second term in our objective function, ‖𝑆‖1, is not smooth or differentiable. However, in 

[22] they solved this problem using a refined method is based on the basic idea of ADMM 

algorithm. The original objective function is broken into two smaller pieces, each of which 

is then easier to handle, where (1) a back-propagation algorithm is used to minimize the 

reconstruction cost of an autoencoder ‖𝐿𝐷 − 𝐷𝑊,𝑏 (𝐸𝑊,𝑏(𝐿𝐷))‖ , and (2) a shrinkage 

function on ‖𝑆‖1 is used to sparsify S with the fixed LD. Then [22] borrow an idea from 

the alternating projection forcing both optimizers to obey the constraint.  

 

3.2 Community Detection Algorithm  
 

Determining these community structures in a network can provide insight into the 

structural and functional organization of the network and can be useful in improving 

graph algorithms, such as spectral clustering [21]. In a basic community detection setting, 

a network node is defined as belonging to at most one community.  The majority of 

community detection methods adopt such simplification. In this paper, we resort to a 

widely used methods for community detection based on modularity maximization, the 

Louvain method [44]. Modularity, Q, measures the quality of a partition of the network 

into communities and is defined as:  

 

for the overall network with |E| edges that is partitioned into m communities, where ls is 

the number of edges between the nodes belonging to the s-th community and ds is the 

Q =
ls
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sum of the degrees of the nodes in the s-th community. The modularity maximization 

method detects communities by finding the network partitions that have particularly high 

modularity. Since the exhaustive search over all possible partitions is usually intractable, 

the Louvain Method leverages an approximate greedy optimization approach. 

Specifically, it iteratively optimizes local communities until the global modularity can no 

longer be improved, given perturbations to the current community state [44].  

 

3.3 Network Based Similarity Measure and Proper 
Weighting Strategy 
 

To identify genes that share similar patterns, a similarity (or dissimilarity) measure is 

required. However, most of the commonly used similarity/dissimilarity measures, such 

as Pearson correlation coefficient or Euclidean distance, do not take the prior biological 

information into account. In this work, we propose that such prior information on the 

biological network communities could be used to adjust the distance between the two 

gene expression profiles, thus improving the clustering performance. The weighting idea 

is based on a hypothesis that if two genes are a part of the same community, they are more 

likely to be joined via a direct or indirect interaction and hence share the same expression 

pattern. To achieve that, we introduce a new metric that is weighted by the community 

information of a gene pair in the PPI network. Specifically, for any two genes we check if 

these two genes are in the same community using the results of the above community 

detection algorithm. If they are in the same community, their original distance will be 

assigned a small weight with the effect of shortening the distance. Otherwise, their 

distance will be assigned a large weight, with the effect of elongating the distance.  

 

The specific strategy of assigning a weight to the distance between a pair of genes is of 

critical importance. To derive this strategy, we take advantage on the yeast expression 

dataset (See subsection4.1 below for more details), whose external labels correspond to 

the 5 phases of cell cycles. By comparing the Adjusted Rand Indices (See subsection4.3 

below for more details), one can systematically evaluate a spectrum of strategies with 

various magnitudes of the weights. Here, we evaluate 5×5=25 combinations of the 



following pairs of weights (wk, wm). The distance between a pair of genes is assigned a 

weight with one of the five values, wk=0.6, 0.7, 0.8, 0.9, or 1.0, if the genes are in the same 

community, and a weight with one of the five values, wm=1.0, 1.1, 1.2, 1.3, or 1.4, if the 

genes are not in the same community. The best performing weight combination will be 

integrated into our clustering approach. 

 

3.4 Improved Agglomerative Clustering as Last Step 
 

The gene expression data is first pre-processed using the standard data cleaning and 

normalization methods [45]. Then, our new approach is introduced in two main steps. 

First, we use Robust autoencoder to initialize deep architectures. Once Robust 

autoencoders generalize specific properties of the gene expression profiles, the 

intermediate representation serves as an input for the clustering task. For clustering, 

instead of applying traditional similarity measures, we adopt the biological network based 

measure defined above. The measure is based on the Pearson correlation coefficient, 

which could detect both positive and negative correlations and is scale invariant on 

centered data. The similarity measure is then implemented for the agglomerative 

hierarchical clustering [23]. The linkage criterion for the merge strategy in the 

agglomerative clustering procedure is the average linkage, which minimizes the average 

of the distances between all pairs of clusters.  

 
 
 
  



 
 
 
 
 
 

Chapter 4 

 
Experimental Protocol 
 
 
4.1 Gene Expression Datasets 
 
To test our approach on the real-world data, we used two distinct large-scale datasets. 

The first dataset includes gene expression for the yeast cell cycle [46]. It is organized in 

17 time stamps for a set of 420 genes in yeast. Based on the gene functional categories, 

each gene was assigned to one or more "phases". We removed the gene expression profiles 

for the genes that were assigned to more than one phase, resulting in a subset of 384 genes 

that were partitioned into 5 phases of cell cycle. The yeast dataset is widely used in 

practice to assess the clustering quality using the five phases assignment as an external 

criterion [26, 47]. The second dataset is obtained from the Genomics of Drug Sensitivity 

in Cancer (GDSC) study [48]. The dataset captures the gene expression profiles of 

different human cancer cell lines in response to drug compounds. It consists of 17,419 

genes expressed in 83 cell lines. Overall, these two datasets differ in several principal 

aspects. First, the datasets are of substantially different sizes. In addition, the first dataset 

is time series data, while the second dataset is from different cancer cell lines. Finally, the 

datasets come from two different species.  

 

4.2 Construction of the Protein-protein Interaction 
Networks 
 



To extract the community information for the gene set and link it to the expression data, 

we studied the protein products of these genes in the context of the physical protein-

protein interaction (PPI) network. To this end, two PPI networks are used: HINT yeast 

network [49] and the human interactome project network (HI-II-14) [18]. HINT network 

is organized as a database of high-quality protein-protein interactions collected from 

several databases manually as well as using an automated protocol. The comprehensive 

coverage of the interactome makes it possible to fully understand the network properties 

of the yeast genes. The human interactome HI-II-14 is another recently released source 

of PPI data. It is constructed through mapping binary PPIs obtained by systematically 

interrogating all pairwise combinations of human proteins using yeast two-hybrid high-

throughput experiments. For each network, we run the community detection algorithm 

and apply the extracted community information during clustering. 

 

4.3 Selecting Baseline Methods Compared against 
Our Protocol  
 

The gene expression data is first pre-processed using the standard data cleaning and 

normalization methods [45]. Then, our new approach is introduced in two main steps. 

First, we use Robust autoencoder to initialize deep architectures. Once Robust 

autoencoders generalize specific properties of the gene expression profiles, the 

intermediate representation serves as an input for the clustering task. For clustering, 

instead of applying traditional similarity measures, we adopt the biological network based 

measure defined above. The measure is based on the Pearson correlation coefficient, 

which could detect both positive and negative correlations and is scale invariant on 

centered data. The similarity measure is then implemented for the agglomerative 

hierarchical clustering [23]. The linkage criterion for the merge strategy in the 

agglomerative clustering procedure is the average linkage, which minimizes the average 

of the distances between all pairs of clusters.  

 

In the past decade, hundreds of new clustering algorithms have been developed and 

applied to the gene expression data.  However, the performance of each clustering 



algorithm relies on specific properties of the input dataset and their underlying 

assumptions. There is no agreement on the best performing clustering algorithm for all 

datasets [50]. Therefore, for the baseline methods, we only implement two most widely 

used clustering methods: Eisen clustering and k-means. In addition, we compared our 

new approach to a basic autoencoder based clustering similar to the one that have been 

recently used for clustering the microarray gene expression data [47]. By comparing the 

performance of our approach to these methods we test how much of improvement over 

the traditional clustering algorithms, if any, can an advanced clustering method achieve, 

and whether including prior biological information into the gene expression clustering 

analysis can further improve the clustering accuracy.  

 

4.4 Evaluation Criteria for Yeast Gene Expression 
Datasets 
 

First, we evaluate the clustering results against the reference partition for the yeast 

dataset, since the external labels for each gene are provided. Specifically, we use the 

Adjusted Rand Index (ARI) [51], a frequently used measure for cluster validation [51]. 

ARI quantifies the degree of agreement between two partitions: one given by the 

clustering algorithm and the other labeled by external criteria. For a partition U generated 

by the clustering algorithm and a reference partition V, ARI is calculated as: 

ARI =  
(n

2
)(a + d) − [(a + b)(a + c) + (c + d)(b + d)]

(n
2
)

2
− [(a + b)(a + c) + (c + d)(b + d)]

 

Here, n is the total number of samples; a is the number of gene pairs in the same cluster 

for both sets U and V; b is the number of gene pairs in the same cluster in U, but in 

different clusters in V; c is the number of gene pairs in the same cluster in V and in 

different clusters in U; and d is the number of gene pairs that are placed in different 

clusters for both, U and V. The value of ARI is defined to lie between 0 and 1, and a high 

score represents a good agreement between the clustering result and the reference 

partition. We computed the ARI scores for the clustering results using our protocol, and 

compared them with ARI scores obtained using the two baseline clustering methods and 

the basic autoencoder based clustering. 



4.5 GO Enrichment Analysis for Human Gene 
Expression Dataset 
 

In contrast to the yeast set, no external labels are given for the GDSC sets, and the ARI 

metric cannot be used. In this case, a different evaluation procedure is required. Thus, we 

evaluate the clustering results based on their agreement with the available biological 

knowledge, such as Gene Ontology [52]. Here, we apply the following evaluation protocol. 

First, for the GDSC dataset, we set the number of clusters to be 100. Next, since the 

baseline hierarchical clustering can result in many singleton clusters, we select 10 most 

populated clusters for the analysis. For each cluster, we perform gene enrichment analysis 

and obtain the corresponding list of enriched GO terms. In the GO enrichment analysis, 

we use the third level of the GO hierarchy and kept the GO terms with P-value ≤ 0.01. The 

third level represents a trade-off between having too general, but well-populated GO 

terms from the second level (e.g., GO:0050789 regulation of biological process) and more 

specific but not well-populated terms from the fourth level, which cannot be used for the 

enrichment analysis. We compared our results for the two baseline methods. More 

specifically, we compared the p-values of the enriched GO terms existing for Robust 

autoencoder and at least one baseline method results. We expect that, for most of the 

significant GO terms, our protocol would output smaller p-values compared to either of 

the two baseline methods. These results would suggest that our protocol could identify 

more coherent clusters. The GO enrichment was performed using DAVID [53], and 

multiple testing correction was done via false discovery rate estimation. 

 

 
  



 
  

 
 

Figure 4.1: Basic idea of GO enrichment analysis. Gene Ontology system assign genes a set 
of predefined labels depending on their functional characteristics. GO term enrichment analysis is 
done by testing the input gene set against the background information to see which GO term is 
enriched for the input genes 

 



 
 
 
 
 
 

Chapter 5 

 
Results 
 
 
5.1 Two interactomes and their corresponding 
community structures 
 

Two PPI networks were extracted and analyzed, the yeast and human interactomes. For 

the yeast gene sets, we collected the PPI data from HINT database [49]. For the human 

interactome, we used the recently published interactome (referred to as HI-II-14 network 

[18]). Overall, HINT yeast network consisted of 5,687 proteins and 21,528 corresponding 

PPIs, while HI-II-14 network consisted of 11,787 genes and 32,465 corresponding PPIs 

(Table 1). A major giant component [54] existed in both interactomes, with several 

isolated sets of interactions on the periphery. Both interactomes shared the scale-free 

property [54], which means that most nodes in the network had only a few interactions 

and a few highly connected nodes (hubs) held the whole network together (Fig. 5.1, Figs. 

S1, S2 in Supplementary Data).  

 

Table 1. The basic statistics between the two PPI network used in the evaluation protocol 

 

 N of genes N of PPIs  N of 
communities 

HINT 5,687 21,528 81 

HI-II-14 11,786 32,465 143 

 



 

The detection of community structure played a critical role in our protocol.  Once the 

interactome was constructed, we mapped the gene set to the interactome, determined 

which community they belonged to, and later used this information to weight the distance 

between any pair of gene expression profiles. We ran the Louvain method [44] on the two 

interactomes separately. After running the community detection algorithm on both 

networks, we obtained 81 and 143 communities from the yeast and human interactomes, 

correspondingly (Table 1, Fig. 5.2). The largest community in the yeast interactome was 

composed of 764 genes. 

 

 

  

 
Figure 5.1: Visualization of two protein-protein interaction (PPI) networks. Two PPI 
networks used in this works are HINT yeast network (left) and the human interactome project 
network (right).  

 



 

The top 10 largest communities covered 77% of the total proteins in the network. The 

other communities were all composed of only few nodes. Similarly, to the yeast network, 

the first 15 communities accounted for 82% proteins in the human interactome, while the 

largest community contained 1,129 proteins (9.6%) (Fig 5.2).   

 

5.2 Incorporating prior biological network 
information and weighting strategy 
 

After the community detection stage, we examined every gene pair from the gene 

expression list to determine if they were in the same community. Then, we utilized this 

information to weight the distance between each pair of gene expression profiles. We 

compared the weighted clustering results with the baseline clustering results to 

 
 

Figure 5.2: Community information from protein-protein interaction (PPI) 
networks. The networks share similarities in the size distribution of the largest communities 
(top 10 largest communities in yeast PPI network and top 15 communities in human PPI 
network, respectively, shown in the two pie charts). Furthermore, in both networks, 
communities with small numbers of nodes (<100) are predominant ones 

 



demonstrate the effectiveness of incorporating network community information. For the 

baseline clustering methods, we implemented two most widely used approaches, k-means 

and hierarchical clustering. The two baseline methods were considered as the “un-

weighted” clustering approaches.  We then determined the optimized combinations of 

weights using a basic grid search on the hierarchical clustering method.  Specifically, the 

search explored the weights from the range 0.6 to 1 (with a step of 0.1) for each pair of 

genes that were in the same community, and from the range 1.0 to 1.4 (with the same step) 

if the genes were not in the same community. The best performing combination was 

selected for our protocol.  

 

The effectiveness of including the biological information was assessed on the labeled yeast 

gene expression dataset, since one could accurately evaluate the clustering performance 

only when the external labels were available. For each of the two baseline methods, we set 

the number of generated clusters to be five (matching the total number of different labels 

in the yeast dataset). Hierarchical clustering method performed with ARI of 0.448 on the 

yeast dataset, while k-means performed with ARI of 0.420. The ARI values after applying 

different weighting strategy ranged from 0.444 to 0.488 (Table 2). Overall, the accuracy 

after applying the weighting strategy was better compared to the un-weighted baseline 

methods. These results demonstrated that the biological network community information 

could be utilized to improve the traditional clustering. The results also supported the 

hypothesis that gene pairs in the same community of the PPI network are more likely to 

share the same expression pattern.  Also, we note that the weight combination 0.9 and 1.3 

yielded the most accurate results. Therefore, we adopted this weighting strategy for our 

protocol.  

 

The denoising autoencoder model [33] is another popular deep learning architecture. 

Denoising autoencoder is mostly viewed as a randomized version of the autoencoder. 

Autoencoders are commonly used for feature selection and extraction. However, 

autoencoder could risk learning the so-called “Identity Function”, which means that the 

output equals the input. Denoising Autoencoders solve this problem by randomly turning 



some of the input values to zero. In other words, it randomly corrupts the input data and 

trains the parameters to recover the uncorrupted data from the corrupted one. The 

denoising autoencoder’s goal is to learn the mapping from the corrupted data to the 

original uncorrupted data. One of the method’s caveats is that it still needs the 

information about the original uncorrupted data for the training. If the original input 

contains outliers, denoising autoencoder’s training will still learn to recover these 

outlying parts and the quality of discovered features could be misled by these outlying 

parts.  

 

In contrast, Robust autoencoder distinguishes the outliers from corrupted data without 

the knowledge of uncorrupted data. To illustrate that Robust autoencoder is a better 

choice than the denoising autoencoder for regenerating the gene expression profile, we 

applied both methods on the yeast expression dataset. We considered the individual 

effects of deep architecture on the clustering results, i.e., without applying the community 

information to weight the distance in the protocol. For Robust autoencoder, the best ARI 

obtained across different hidden layer sizes was 0.5, whereas the highest ARI obtained 

for the denoising autoencoder was 0.48 (Fig. 5.3). Thus, our deep architecture performed 

better, although not significantly. We also noted that Robust autoencoder suffered from 

the greater variation of ARI values compared to denoising autoencoder.  

 

Table 2. Comparison of results from different weighting strategies obtained when including the 

network community information. 

 

 Weight for genes in the 
different community 

1.1 1.2 1.3 1.4 

Weight for 
genes in 
the same 
community  

0.6 0.470 0.469 0.455 0.462 

0.7 0.480 0.473 0.475 0.448 

0.8 0.461 0.441 0.485 0.471 

0.9 0.444 0.474 0.488 0.474 

 

 
 



5.3 Evaluation of our protocol on the Yeast gene 
expression dataset 
 

In our protocol, instead of taking as an input for clustering the raw expression data, we 

reconstructed the features via Robust autoencoder and used this intermediate feature 

representation for clustering, so the best performing weight combination was not directly 

assigned to the raw dataset. To compare the results of our protocol with the baseline 

methods on the yeast dataset, the same ARI measure was calculated. The results showed 

that our protocol, which incorporates the prior biological information on the regenerated 

data from the deep architecture, outperformed the baseline methods applied to the raw 

data (Fig. 5.3, Fig. S4 in Supplementary Data). Furthermore, the results of our protocol 

outperform the baseline method with the used community information for the pairs of 

genes. This behavior is perhaps due to the ability of the architecture to learn important 

properties in the underlying input distribution. Also, we note that, compared against the 

results without incorporating biological information, the former clustering results had 

smaller variation of ARI values, suggesting that incorporating the prior biological 

information could stabilize the clustering process. Finally, we found that deep 

architecture does not guarantee that it will always perform better than the basic clustering 

methods. For instance, our deep architecture with hidden size of 5, the performance is 

comparable to the baseline methods.  This implies that tuning parameters of deep 

architecture is a critical but not a simple step for these methods. 

  



 

5.4 Evaluation of our protocol on the human gene 
expression dataset 
 

When implementing our protocol on the GDSC dataset, we used the results got from the 

Yeast dataset to guide the construction of the deep architecture. Specifically, we used a 

comparable percentage of the input layer size as in the best performing deep structure for 

the Yeast dataset to build the hidden layer. This led to a hidden layer with 55 nodes.  

The human gene expression dataset consisted of 17,419 genes expressed in 83 cell lines. 

We independently applied our protocol as well as the k-means and hierarchical clustering 

methods on this gene set, while setting the cluster number in each case to be 100. Out of 

100 clusters, we focused on the top 10 largest clusters and performed the GO enrichment 

analysis on these clusters. We only selected the third level GO terms in the GO hierarchy 

tree and compared the results against k-means and hierarchical clustering (Fig. 5.3, Fig. 

S3 and Tables S1, S2 in Supplementary Data). Comparing against k-means, 22 GO terms 

 
Figure 5.3: Evaluation of the new clustering approach.  Comparison of the performance 
of two deep architectures against baseline methods performed on previously labeled yeast gene 
expression dataset. The accuracy measure used here is Adjusted Rand Index (ARI). Shown is the 
comparison of our approach that combines the Robust autoencoder architecture with the PPI 
network community information (yellow) against the base line K-means clustering method (blue), 
standard denoising autoencoder (red), and Robust autoencoder without additional biological 
information (grey).  

 



from the third level were enriched in at least one cluster in both cases, and most of the 

GO terms identified by our protocol had smaller P-values. This indicated that our protocol 

could group a more coherent and meaningful set of genes into a cluster. Compared against 

hierarchical clustering, we obtained 114 GO terms enriched in at least one cluster. In this 

case, the number of GO terms obtained in our approach (N1=61) with smaller P-value was 

slightly larger than the number obtained in hierarchical clustering (N1=53).  This did not 

indicate that our protocol could significantly improve the traditional hierarchical 

clustering in terms of generating more coherent clusters.  However, we noted another 

interesting observation. One main problem about hierarchical clustering is that it groups 

too many genes into a very large, giant, cluster. In this case, the largest cluster resulted 

from hierarchical clustering consisted of 11,043 genes, and its size was almost comparable 

to the first three largest clusters found by our protocol. This suggests that our protocol 

could compensate the inability of hierarchical clustering to further separate the clusters. 

 

 
Figure 5.4: Comparison of enriched Gene Ontology terms between our approach 
and K-means for the human gene expression dataset. The values are converted using 
negative log of p-value function. A smaller p-value reflects a larger proportion of the cluster 
members sharing the same GO term.  

 



 

 
 
  

 
 

Figure 5.5: Performance of our approach against the base line K-means clustering 
(right) on the yeast gene expression dataset. The comparison of our approach (left) against 
the base line K-means clustering (right) provides a visibly better clustering into 5 previously 
labeled gene classes across 17 different time stamps (c1-c17). 

 



 
 
 
 
 
 

Chapter 6 

 
Conclusion and Future Work 
 
 
6.1 Final Conclusion 
 

In his paper, we present a proof-of-principle study where we integrate system-wide 

biological knowledge into the microarray-based gene expression clustering task by 

leveraging a novel deep learning architecture. We trained a Robust autoencoder to learn 

general patterns of the gene expression profiles. The obtained low dimensional 

representations of gene expression profiles were then used for the clustering task. To 

increase the clustering accuracy, the clustering algorithm employed a knowledge-based 

molecular network similarity measure. We compared the performance of our clustering 

approach with two widely used  clustering methods, k-means and agglomerative 

hierarchical clustering. We selected these methods because of several reasons. First, these 

two methods have been arguably the most widely used in the gene expression analysis to 

date, with a wide range of applications and are considered the golden standard [55-59]. 

Furthermore, k-means has been consistently among the top performing clustering 

methods for gene expression data in recent comparative evaluation studies [55, 56]. Other 

methods for clustering gene expression data have been also recently introduced [60]. 

Having shown the superior performance of the deep learning paradigm over these 

traditional clustering approaches, our next step is to carry out a more comprehensive 

assessment of our approach by including other clustering methods and protocols.  

 



Another important aspect for the performance assessment is exploring multiple 

experimentally validated gene expression datasets to determine the tasks for which our 

approach will be most useful. In this work, we have explored two large-scale datasets from 

different species, each carrying different expression patterns: gene co-expression in 

different stages of yeast cell cycle and common response to cancer drug compounds. Many 

other interesting datasets also focus on the cancer-related data or cell cycle data [56], 

while others include [55, 61]. One limitation of our approach is in its requirement of the 

large-scale interactomics data, which is currently available only for a handful of species 

[18, 62, 63]. The human interactome is arguably the most well-studied protein-protein 

interaction system, making our approach applicable to a large number of disease-

associated expression dataset. 

 

Our results demonstrate the effectiveness of using (i) deep networks and (ii) prior 

biological information for the gene expression clustering analysis. Several other 

conclusions have been made from this work. First, we used a fairly simple deep learning 

architecture because of the long computation time. In future work, we plan to adopt a 

much deeper architecture. An autoencoder with a single encoder and decoder is usually 

considered as a shallow model. The way of extending shallow autoencoder to deep 

autoencoders is to add more encoding and decoding phases. A typical implementation of 

this idea is the stacked autoencoders [33]. The same idea could be applied to the Robust 

autoencoder model presented here. To address the problem of computational overhead, 

one can resort to the GPU computing algorithms.  

 

6.2 Future Work 
 

As to the future direction, in spite of the improved accuracy over the standard clustering 

methods as well as over the basic autoencoder, our clustering protocol could be further 

optimized in several ways. For example, one can explore other distance metrics that have 

been previously shown to perform well in the clustering with homogenous features [5]. 

Alternatively, we plan to investigate if the clustering performance can be improved by 

supplying the complementary biological information. For example, instead of the gene 



community information used in this work, the shortest path between two nodes in the 

network can be considered, since the former sometimes provides more accurate 

information than the latter. 

 
  



 
 
 
 
 
 

Appendix 
 

 

 

 

 

 

 

 
 

Supplementary Figure S1. Distribution of communities with different sizes in the 
yeast interactome.  

 

 

 

 

 

 

 

 



 

 
 

 
Supplementary Figure S2. Distribution of communities with different sizes in the 
human interactome 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
Supplementary Figure S3. Comparison of enriched Gene Ontology (GO) terms 
between our protocol and traditional hierarchical clustering for the human gene 
expression dataset. The values are converted using negative log of p-value function. A 
smaller p-value reflects a larger proportion of the cluster members sharing the same GO 
term. 
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Supplementary Figure S4. Performance of our approach (left) against the base line 
hierarchical clustering (right) on the yeast gene expression dataset provides a visibly 
better clustering into 5 previously labeled gene classes across 17 different time stamps (c1-
c17). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table 1 Comparison of the result of GO enrichment analysis based 
on the protocol and k-means clustering. 

 

GO term 
new approach 
p-value 

kmeans p-
value 

GO:0044459~plasma membrane part 1.07E-21 1.49E-05 

GO:0005102~receptor binding 7.97E-10 5.78E-07 

GO:0003013~circulatory system process 1.06E-04 3.27E-03 

GO:0048513~organ development 6.77E-24 2.66E-08 

GO:0007165~signal transduction 6.61E-08 1.16E-06 

GO:0031224~intrinsic to membrane 1.25E-12 1.02E-05 

GO:0009653~anatomical structure 
morphogenesis 5.27E-12 3.49E-07 

GO:0048731~system development 3.93E-35 8.74E-10 

GO:0005615~extracellular space 2.89E-27 1.52E-07 

GO:0016020~membrane 8.10E-11 1.04E-03 

GO:0031012~extracellular matrix 1.20E-23 1.55E-12 

GO:0030154~cell differentiation 1.41E-16 1.11E-03 

GO:0004872~receptor activity 5.33E-11 1.22E-13 

GO:0050877~neurological system 
process 1.24E-12 3.24E-10 

GO:0007267~cell-cell signaling 2.87E-15 1.95E-03 

GO:0009888~tissue development 9.72E-10 4.47E-03 

GO:0009611~response to wounding 6.30E-08 8.71E-03 

GO:0005578~proteinaceous extracellular 
matrix 9.83E-25 5.37E-14 

GO:0044425~membrane part 2.32E-09 4.84E-04 

GO:0016337~cell-cell adhesion 9.12E-10 1.02E-06 

GO:0022803~passive transmembrane 
transporter activity 6.55E-09 7.91E-03 

GO:0005886~plasma membrane 3.76E-18 3.60E-06 

 

 
 
  



Supplementary Table 2 Comparison of the result of GO enrichment analysis based 
on the protocol and hierarchical clustering. 
 
 

GO term 
new approach p-
value 

hierarchical p-
value 

GO:0044459~plasma membrane 
part 1.07E-21 4.94E-43 

GO:0006935~chemotaxis 5.79E-04 5.14E-07 

GO:0051239~regulation of 
multicellular organismal process 7.32E-10 1.78E-21 

GO:0070727~cellular 
macromolecule localization 1.94E-07 2.07E-04 

GO:0006952~defense response 4.89E-04 6.60E-06 

GO:0005102~receptor binding 7.97E-10 3.41E-12 

GO:0003013~circulatory system 
process 1.06E-04 6.56E-06 

GO:0032553~ribonucleotide 
binding 4.32E-11 7.77E-09 

GO:0030198~extracellular matrix 
organization 2.34E-03 4.63E-06 

GO:0044424~intracellular part 1.60E-109 5.52E-75 

GO:0016817~hydrolase activity, 
acting on acid anhydrides 2.82E-06 3.43E-05 

GO:0048519~negative regulation of 
biological process 3.68E-03 1.94E-05 

GO:0009986~cell surface 4.60E-07 2.90E-08 
GO:0030247~polysaccharide 
binding 4.00E-04 1.10E-09 

GO:0009057~macromolecule 
catabolic process 9.60E-18 3.36E-15 

GO:0042330~taxis 5.79E-04 5.14E-07 
GO:0016324~apical plasma 
membrane 6.69E-06 5.28E-04 

GO:0031090~organelle membrane 7.62E-11 8.47E-05 

GO:0043233~organelle lumen 9.15E-80 1.79E-55 

GO:0044057~regulation of system 
process 7.01E-03 1.56E-06 

GO:0045177~apical part of cell 4.32E-05 2.66E-03 

GO:0070013~intracellular organelle 
lumen 1.52E-84 8.91E-62 



GO:0048513~organ development 6.77E-24 5.69E-46 

GO:0051240~positive regulation of 
multicellular organismal process 8.31E-03 2.97E-09 

GO:0015031~protein transport 1.66E-11 5.70E-06 

GO:0051082~unfolded protein 
binding 1.60E-07 1.39E-04 

GO:0045184~establishment of 
protein localization 1.76E-11 9.90E-06 

GO:0043229~intracellular organelle 4.35E-93 5.55E-75 

GO:0051276~chromosome 
organization 9.57E-09 1.91E-05 

GO:0022403~cell cycle phase 4.57E-16 8.93E-07 

GO:0006811~ion transport 1.85E-06 1.28E-10 

GO:0006974~response to DNA 
damage stimulus 5.95E-20 8.31E-16 

GO:0006928~cell motion 1.82E-03 2.29E-14 

GO:0048193~Golgi vesicle 
transport 1.08E-03 8.91E-04 

GO:0042995~cell projection 1.37E-06 1.96E-06 
GO:0022603~regulation of 
anatomical structure 
morphogenesis 3.34E-05 6.06E-09 

GO:0009725~response to hormone 
stimulus 7.78E-03 2.01E-07 

GO:0046930~pore complex 3.33E-07 6.31E-04 

GO:0048468~cell development 7.66E-06 2.50E-16 

GO:0008285~negative regulation of 
cell proliferation 7.16E-03 6.45E-04 

GO:0050793~regulation of 
developmental process 1.51E-05 8.42E-18 

GO:0019866~organelle inner 
membrane 1.47E-10 6.90E-05 

GO:0005626~insoluble fraction 6.22E-03 1.43E-05 

GO:0007165~signal transduction 6.61E-08 1.09E-05 
GO:0019538~protein metabolic 
process 2.19E-16 1.42E-08 

GO:0042127~regulation of cell 
proliferation 1.55E-05 2.10E-11 

GO:0048518~positive regulation of 
biological process 1.92E-03 2.93E-10 



GO:0044260~cellular 
macromolecule metabolic process 2.61E-46 5.10E-41 

GO:0031224~intrinsic to 
membrane 1.25E-12 1.03E-15 

GO:0010817~regulation of 
hormone levels 1.83E-03 6.42E-07 

GO:0051094~positive regulation of 
developmental process 3.32E-04 2.36E-09 

GO:0044444~cytoplasmic part 4.20E-44 1.48E-19 

GO:0009653~anatomical structure 
morphogenesis 5.27E-12 3.04E-29 

GO:0051649~establishment of 
localization in cell 2.35E-07 7.40E-05 

GO:0009887~organ morphogenesis 1.43E-07 5.72E-18 

GO:0008104~protein localization 1.48E-10 2.11E-05 

GO:0031966~mitochondrial 
membrane 8.72E-11 3.18E-04 

GO:0044428~nuclear part 1.88E-88 1.36E-62 

GO:0005740~mitochondrial 
envelope 6.05E-12 1.93E-04 

GO:0048731~system development 3.93E-35 8.76E-71 

GO:0003713~transcription 
coactivator activity 5.27E-04 1.35E-05 

GO:0016879~ligase activity, 
forming carbon-nitrogen bonds 5.05E-05 1.51E-07 

GO:0005615~extracellular space 2.89E-27 2.57E-28 

GO:0034641~cellular nitrogen 
compound metabolic process 4.82E-28 1.05E-28 

GO:0005643~nuclear pore 5.47E-07 7.94E-04 

GO:0016020~membrane 8.10E-11 3.55E-21 

GO:0044429~mitochondrial part 1.10E-27 6.15E-15 

GO:0031012~extracellular matrix 1.20E-23 2.31E-35 

GO:0034702~ion channel complex 1.87E-07 5.02E-06 

GO:0046907~intracellular transport 4.45E-12 1.14E-09 

GO:0030154~cell differentiation 1.41E-16 9.34E-41 

GO:0060348~bone development 1.11E-03 6.05E-06 

GO:0043232~intracellular non-
membrane-bounded organelle 7.94E-31 1.11E-20 

GO:0010467~gene expression 1.99E-14 1.02E-15 



GO:0009059~macromolecule 
biosynthetic process 9.33E-06 3.08E-10 

GO:0003723~RNA binding 1.13E-21 7.55E-13 

GO:0007267~cell-cell signaling 2.87E-15 2.27E-19 

GO:0008284~positive regulation of 
cell proliferation 9.14E-05 1.40E-05 

GO:0045595~regulation of cell 
differentiation 1.73E-03 2.88E-11 

GO:0005622~intracellular 7.56E-112 7.98E-77 

GO:0030529~ribonucleoprotein 
complex 2.11E-32 3.32E-19 

GO:0009888~tissue development 9.72E-10 5.04E-21 

GO:0009611~response to 
wounding 6.30E-08 2.33E-12 

GO:0008134~transcription factor 
binding 1.49E-07 2.35E-05 
GO:0044420~extracellular matrix 
part 4.02E-04 5.54E-11 

GO:0031967~organelle envelope 1.06E-23 1.71E-09 
GO:0044248~cellular catabolic 
process 4.26E-17 4.84E-10 

GO:0044249~cellular biosynthetic 
process 1.24E-10 5.44E-13 

GO:0022891~substrate-specific 
transmembrane transporter activity 2.37E-05 4.27E-07 

GO:0033554~cellular response to 
stress 1.04E-18 1.26E-11 

GO:0009897~external side of 
plasma membrane 1.81E-05 1.27E-08 

GO:0022402~cell cycle process 7.00E-19 2.46E-07 

GO:0048285~organelle fission 1.75E-15 7.66E-10 

GO:0000776~kinetochore 8.37E-06 6.06E-03 

GO:0043005~neuron projection 5.89E-04 1.59E-03 

GO:0017076~purine nucleotide 
binding 1.06E-11 6.06E-09 

GO:0005737~cytoplasm 1.39E-54 3.90E-22 

GO:0044427~chromosomal part 1.59E-14 9.29E-11 

GO:0043231~intracellular 
membrane-bounded organelle 1.64E-101 4.98E-81 

GO:0044446~intracellular organelle 
part 1.29E-101 4.31E-67 



GO:0001883~purine nucleoside 
binding 4.92E-12 4.59E-11 

GO:0005578~proteinaceous 
extracellular matrix 9.83E-25 3.88E-35 

GO:0006139~nucleobase, 
nucleoside, nucleotide and nucleic 
acid metabolic process 5.31E-29 5.24E-31 

GO:0005635~nuclear envelope 1.52E-10 1.24E-03 

GO:0007565~female pregnancy 3.01E-05 2.90E-05 

GO:0044425~membrane part 2.32E-09 7.32E-19 

GO:0042254~ribosome biogenesis 7.11E-13 1.11E-05 

GO:0016337~cell-cell adhesion 9.12E-10 1.57E-08 

GO:0000151~ubiquitin ligase 
complex 2.53E-05 4.16E-03 

GO:0005604~basement membrane 2.00E-03 1.89E-04 

GO:0000278~mitotic cell cycle 1.38E-21 1.84E-11 

GO:0022803~passive 
transmembrane transporter activity 6.55E-09 7.33E-14 

GO:0005886~plasma membrane 3.76E-18 5.72E-35 

GO:0005681~spliceosome 6.51E-17 9.93E-11 
 
  



 
 
 
 
 
 

Bibliography 

 
 
1. Lockhart, D.J. and E.A. Winzeler, Genomics, gene expression and DNA arrays. 

Nature, 2000. 405(6788): p. 827-836. 

2. Wang, Z., M. Gerstein, and M. Snyder, RNA-Seq: a revolutionary tool for 
transcriptomics. Nature reviews genetics, 2009. 10(1): p. 57. 

3. Edfors, F., et al., Gene‐specific correlation of RNA and protein levels in human cells 

and tissues. Molecular Systems Biology, 2016. 12(10): p. 883. 

4. Lovén, J., et al., Revisiting global gene expression analysis. Cell, 2012. 151(3): p. 

476-482. 

5. Belacel, N., Q. Wang, and M. Cuperlovic-Culf, Clustering methods for microarray 
gene expression data. Omics: a journal of integrative biology, 2006. 10(4): p. 507-531. 

6. Lyons-Weiler, J., S. Patel, and S. Bhattacharya, A classification-based machine 
learning approach for the analysis of genome-wide expression data. Genome 

research, 2003. 13(3): p. 503-512. 

7. Kuo, W.P., et al., A primer on gene expression and microarrays for machine learning 
researchers. Journal of Biomedical Informatics, 2004. 37(4): p. 293-303. 

8. D'Haeseleer, P., How does gene expression clustering work? Nature biotechnology, 

2005. 23(12): p. 1499. 

9. Hartigan, J.A. and M.A. Wong, Algorithm AS 136: A k-means clustering algorithm. 
Journal of the Royal Statistical Society. Series C (Applied Statistics), 1979. 28(1): p. 

100-108. 

10. Moon, T.K., The expectation-maximization algorithm. IEEE Signal processing 

magazine, 1996. 13(6): p. 47-60. 

11. Ciregan, D., U. Meier, and J. Schmidhuber. Multi-column deep neural networks for 
image classification. in Computer Vision and Pattern Recognition (CVPR), 2012 
IEEE Conference on. 2012. IEEE. 

12. Collobert, R. and J. Weston. A unified architecture for natural language processing: 
Deep neural networks with multitask learning. in Proceedings of the 25th 
international conference on Machine learning. 2008. ACM. 

13. LeCun, Y., Y. Bengio, and G. Hinton, Deep learning. Nature, 2015. 521(7553): p. 

436-444. 

14. Chen, Y., et al., Gene expression inference with deep learning. Bioinformatics, 2016. 

32(12): p. 1832-1839. 

15. Chen, L., et al., Learning a hierarchical representation of the yeast transcriptomic 
machinery using an autoencoder model. BMC bioinformatics, 2016. 17(1): p. S9. 

16. Barabasi, A.-L. and Z.N. Oltvai, Network biology: understanding the cell's functional 
organization. Nature reviews genetics, 2004. 5(2): p. 101-113. 

17. Cui, H., et al., The variation game: Cracking complex genetic disorders with NGS 



and omics data. Methods, 2015. 79: p. 18-31. 

18. Rolland, T., et al., A proteome-scale map of the human interactome network. Cell, 

2014. 159(5): p. 1212-1226. 

19. Alhindi, T., et al., Protein interaction evolution from promiscuity to specificity with 
reduced flexibility in an increasingly complex network. Scientific Reports, 2017. 7: p. 

44948. 

20. Han, J.-D.J., et al., Evidence for dynamically organized modularity in the yeast 
protein–protein interaction network. Nature, 2004. 430(6995): p. 88-93. 

21. Leskovec, J., et al. Statistical properties of community structure in large social and 
information networks. in Proceedings of the 17th international conference on World 
Wide Web. 2008. ACM. 

22. Zhou, C.P., Randy Anomaly Detection with Robust Deep Auto-encoders. in 

Proceedings of the 23th ACM SIGKDD international conference on Knowledge 
discovery and data mining. 2017. Halifax, Nova Scotia - Canada: ACM. 

23. Eisen, M.B., et al., Cluster analysis and display of genome-wide expression patterns. 
Proceedings of the National Academy of Sciences, 1998. 95(25): p. 14863-14868. 

24. Schena, M., et al., Quantitative monitoring of gene expression patterns with a 
complementary DNA microarray. Science, 1995. 270(5235): p. 467-470. 

25. Jiang, D., C. Tang, and A. Zhang, Cluster analysis for gene expression data: A 
survey. IEEE Transactions on Knowledge & Data Engineering, 2004(11): p. 1370-

1386. 

26. Jiang, D., C. Tang, and A. Zhang, Cluster analysis for gene expression data: a 
survey. IEEE Transactions on knowledge and data engineering, 2004. 16(11): p. 

1370-1386. 

27. Johnson, S.C., Hierarchical clustering schemes. Psychometrika, 1967. 32(3): p. 241-

254. 

28. Sherlock, G., Analysis of large-scale gene expression data. Current opinion in 

immunology, 2000. 12(2): p. 201-205. 

29. Wold, S., K. Esbensen, and P. Geladi, Principal component analysis. Chemometrics 

and intelligent laboratory systems, 1987. 2(1-3): p. 37-52. 

30. De la Torre, F. and M.J. Black. Robust principal component analysis for computer 
vision. in Proceedings Eighth IEEE International Conference on Computer Vision. 
ICCV 2001. 2001. IEEE. 

31. Hubert, M. and S. Engelen, Robust PCA and classification in biosciences. 
Bioinformatics, 2004. 20(11): p. 1728-1736. 

32. Schmidhuber, J., Deep learning in neural networks: An overview. Neural networks, 

2015. 61: p. 85-117. 

33. Vincent, P., et al. Extracting and composing robust features with denoising 
autoencoders. in Proceedings of the 25th international conference on Machine 
learning. 2008. ACM. 

34. Vincent, P., et al., Stacked denoising autoencoders: Learning useful representations 
in a deep network with a local denoising criterion. Journal of machine learning 

research, 2010. 11(Dec): p. 3371-3408. 

35. Newman, M.E., Modularity and community structure in networks. Proceedings of 

the national academy of sciences, 2006. 103(23): p. 8577-8582. 

36. Palla, G., et al., Uncovering the overlapping community structure of complex 
networks in nature and society. nature, 2005. 435(7043): p. 814. 

37. Girvan, M. and M.E. Newman, Community structure in social and biological 
networks. Proceedings of the national academy of sciences, 2002. 99(12): p. 7821-



7826. 

38. Barabasi, A.-L. and Z.N. Oltvai, Network biology: understanding the cell's functional 
organization. Nature reviews genetics, 2004. 5(2): p. 101. 

39. Barabási, A.-L., N. Gulbahce, and J. Loscalzo, Network medicine: a network-based 
approach to human disease. Nature reviews genetics, 2011. 12(1): p. 56. 

40. Costa, L.d.F., et al., Characterization of complex networks: A survey of 
measurements. Advances in physics, 2007. 56(1): p. 167-242. 

41. Zhou, C. and R.C. Paffenroth. Anomaly detection with robust deep autoencoders. in 

Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining. 2017. ACM. 

42. Wright, J., et al. Robust principal component analysis: Exact recovery of corrupted 
low-rank matrices via convex optimization. in Advances in neural information 
processing systems. 2009. 

43. Boyd, S., et al., Distributed optimization and statistical learning via the alternating 
direction method of multipliers. Foundations and Trends® in Machine Learning, 

2011. 3(1): p. 1-122. 

44. De Meo, P., et al. Generalized louvain method for community detection in large 
networks. in Intelligent Systems Design and Applications (ISDA), 2011 11th 
International Conference on. 2011. IEEE. 

45. Herrero, J., R. Díaz-Uriarte, and J. Dopazo, Gene expression data preprocessing. 
Bioinformatics, 2003. 19(5): p. 655-656. 

46. Yeung, K.Y. and W.L. Ruzzo, Principal component analysis for clustering gene 
expression data. Bioinformatics, 2001. 17(9): p. 763-774. 

47. Gupta, A., H. Wang, and M. Ganapathiraju. Learning structure in gene expression 
data using deep architectures, with an application to gene clustering. in 

Bioinformatics and Biomedicine (BIBM), 2015 IEEE International Conference on. 

2015. IEEE. 

48. Yang, W., et al., Genomics of Drug Sensitivity in Cancer (GDSC): a resource for 
therapeutic biomarker discovery in cancer cells. Nucleic acids research, 2013. 

41(D1): p. D955-D961. 

49. Das, J. and H. Yu, HINT: High-quality protein interactomes and their applications 
in understanding human disease. BMC systems biology, 2012. 6(1): p. 92. 

50. Quackenbush, J., Computational analysis of microarray data. Nature reviews 

genetics, 2001. 2(6): p. 418-427. 

51. Yeung, K.Y. and W.L. Ruzzo, Details of the adjusted rand index and clustering 
algorithms, supplement to the paper an empirical study on principal component 
analysis for clustering gene expression data. Bioinformatics, 2001. 17(9): p. 763-774. 

52. Ashburner, M., et al., Gene Ontology: tool for the unification of biology. Nature 

genetics, 2000. 25(1): p. 25-29. 

53. Huang, D.W., B.T. Sherman, and R.A. Lempicki, Bioinformatics enrichment tools: 
paths toward the comprehensive functional analysis of large gene lists. Nucleic acids 

research, 2009. 37(1): p. 1-13. 

54. Bollobás, B. The Evolution of Random Graphs—the Giant Component. in Random 
Graphs. 2001. 

55. de Souto, M.C., et al., Clustering cancer gene expression data: a comparative study. 
BMC bioinformatics, 2008. 9(1): p. 497. 

56. Freyhult, E., et al., Challenges in microarray class discovery: a comprehensive 
examination of normalization, gene selection and clustering. BMC bioinformatics, 

2010. 11(1): p. 503. 



57. Spencer, W.C., et al., A spatial and temporal map of C. elegans gene expression. 
Genome research, 2011. 21(2): p. 325-341. 

58. Zang, S., et al., Identification of differentially-expressed genes in intestinal gastric 
cancer by microarray analysis. Genomics, proteomics & bioinformatics, 2014. 12(6): 

p. 276-283. 

59. Thomou, T., et al., Adipose-derived circulating miRNAs regulate gene expression in 
other tissues. Nature, 2017. 542(7642): p. 450. 

60. Andreopoulos, B., et al., A roadmap of clustering algorithms: finding a match for a 
biomedical application. Briefings in Bioinformatics, 2009. 10(3): p. 297-314. 

61. Manfield, I.W., et al., Arabidopsis Co-expression Tool (ACT): web server tools for 
microarray-based gene expression analysis. Nucleic acids research, 2006. 

34(suppl_2): p. W504-W509. 

62. Consortium, A.I.M., Evidence for network evolution in an Arabidopsis interactome 
map. Science, 2011. 333(6042): p. 601-607. 

63. Vo, T.V., et al., A proteome-wide fission yeast interactome reveals network evolution 
principles from yeasts to human. Cell, 2016. 164(1): p. 310-323. 

 


	Introduction
	Background and Related Work
	2.1 Problem Formulation
	2.2 Conventional Methods for Gene Expression Clustering Analysis
	2.3 PCA and Robust PCA
	2.4 Stacked Denoising Auto-encoder
	2.5 Module Detection in Biological Network

	Proposed Computational Solution
	3.1 Proposed Deep Architecture to Regenerate Gene Expression Profile
	3.2 Community Detection Algorithm
	3.3 Network Based Similarity Measure and Proper Weighting Strategy
	3.4 Improved Agglomerative Clustering as Last Step

	Experimental Protocol
	4.1 Gene Expression Datasets
	4.2 Construction of the Protein-protein Interaction Networks
	4.3 Selecting Baseline Methods Compared against Our Protocol
	4.4 Evaluation Criteria for Yeast Gene Expression Datasets
	4.5 GO Enrichment Analysis for Human Gene Expression Dataset

	Results
	5.1 Two interactomes and their corresponding community structures
	5.2 Incorporating prior biological network information and weighting strategy
	5.3 Evaluation of our protocol on the Yeast gene expression dataset
	5.4 Evaluation of our protocol on the human gene expression dataset

	Conclusion and Future Work
	6.1 Final Conclusion
	6.2 Future Work


