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Abstract

The ultimate goal of any visual analytic task is to make sense of the data and gain insights.

Unfortunately, the process of discovering useful information is becoming more challeng-

ing nowadays due to the growing data scale. Particularly, the human cognitive capabilities

remain constant whereas the scale and complexity of data are not. Meanwhile, visual an-

alytics largely relies on human analytic in the loop which imposes challenge to traditional

human-driven workflow. It is almost impossible to show every aspect of details to the

user while diving into local region of the data to explain phenomenons hidden in the data.

For example, while exploring the data subsets, it is always important to determine which

partitions of data contain more important information. Also, determining the subset of

features is vital before further doing other analysis. Furthermore, modeling on these sub-

sets of data locally can yield great finding but also introduces bias. In this work, a model

driven visual analytic framework is proposed to help identify interesting local patterns

from the above three aspects. This dissertation work aims to tackle these subproblems in

the following three topics: model-driven data exploration, model-driven feature analysis

and local model diagnosis. First, the model-driven data exploration focus on the prob-

lem of modeling subset of data to identify the co-movement of time-series data within

certain subset time partitions, which is an important application in a number of domains

such as medical science, finance, business and engineering. Second, the model-driven

feature analysis is to discover the important subset of interesting features while analyzing

local feature similarities. Within the financial risk dataset collected by domain expert, we

discover that the feature correlation among different data partitions (i.e., small and large

companies) are very different. Third, local model diagnosis provides a tool to identify in-

teresting local regression models at local regions of the data space which makes it possible



for the analysts to model the whole data space with a set of local models while knowing

the strength and weakness of them. The three tools provide an integrated solution for

identifying interesting patterns within local subsets of data.

2



Acknowledgements

I would never have been able to finish my dissertation without the guidance of my

committee members, and support from my family, especially my wife who contributed a

tremendous amount of her time to support me.

I would like to express my sincere gratitude to my advisor, Dr. Matthew O. Ward,

who guided and mentored me with great patience. His persistent dedication to work and

research motivates me to make progress on my dissertation research. His spirit vigorously

influences me to face any difficulties positively at times before and after he passed away.

I would like to thank my co-advisor, Dr. Elke A. Rundensteiner, who energetically

replenished my knowledge and refined my work. Her diligence towards any seemingly

trivial issues always leads to non-trivial research questions worth further investigation.

My thanks also go to Dr. Joseph E. Beck, who serves as my first year academic

advisor, reader of my qualifier examination, and my committee member. He opened a

door for me which lead to a whole new world of advanced studies. Working with him

prepared me with a great learning methodology.

My thanks go to Dr. Jimmy Johansson. He pointed me to interesting visualization

research topics that benefits my researching problems.

My thanks go to Dr. Xiangnan Kong, whose suggestions and comments inspired me

in machine learning related research.

I want to thank everyone in my committee for their time, encouragement and valuable

ideas while I was working on this dissertation.

My thanks go to all members of Xmdv, ISRG and DSRG who made suggestions to

my work.

Finally, I appreciate the financial support from NSF that funded the research discussed

in this dissertation.

i



Contents

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Proposed Approach for Local Pattern Analysis . . . . . . . . . . . . . . . 6

1.3.1 Model-driven Data Exploration . . . . . . . . . . . . . . . . . . 7

1.3.2 Model-driven Feature Analysis . . . . . . . . . . . . . . . . . . . 9

1.3.3 Local Model Diagnosis . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Contributions of this Dissertation . . . . . . . . . . . . . . . . . . . . . . 12

1.4.1 Model-driven Data Exploration: . . . . . . . . . . . . . . . . . . 12

1.4.2 Model-driven Feature Analysis: . . . . . . . . . . . . . . . . . . 13

1.4.3 Visual Guided Model Diagnosis: . . . . . . . . . . . . . . . . . . 13

1.5 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Model-driven Data Exploration 15

2.1 Preliminaries of Data Patterns and Models . . . . . . . . . . . . . . . . . 16

2.1.1 Drift Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.2 Seasonal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.3 Uncertainty Model . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Proposed MaVis Framework . . . . . . . . . . . . . . . . . . . . . . . . 21

ii



2.2.1 Data Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2 Model Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.3 Model Relation Space . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.4 Nugget Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.1 Case Study: Stock Price Co-movement . . . . . . . . . . . . . . 35

2.3.2 User Study Design . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.3 User Study Result . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Model-driven Feature Analysis 46

3.1 FeaVis Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Feature Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.1 Correlation Coefficient . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.2 K-th Central Moment . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.3 Cross Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.4 Automatic Weighted Feature Clustering . . . . . . . . . . . . . . 54

3.2.5 Cross Metric Similarity View . . . . . . . . . . . . . . . . . . . 57

3.3 Feature Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.1 Diversified Feature Ranking . . . . . . . . . . . . . . . . . . . . 59

3.3.2 Feature Cluster Drill-down View . . . . . . . . . . . . . . . . . . 63

3.4 Feature Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4.1 Partition Based Redundancy Pruning . . . . . . . . . . . . . . . 66

3.4.2 Redundancy Inspection View . . . . . . . . . . . . . . . . . . . . 68

3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

iii



3.5.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.5.2 Case Study: Representative Financial Variables . . . . . . . . . . 72

3.5.3 Comparison to Empirical Studies . . . . . . . . . . . . . . . . . 74

3.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4 Local Model Diagnosis 81

4.1 Model Complementarity Visualization . . . . . . . . . . . . . . . . . . . 85

4.1.1 Goodness Measure . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.1.2 Point-wise Comparison . . . . . . . . . . . . . . . . . . . . . . . 87

4.1.3 Stacked Binned Summary View . . . . . . . . . . . . . . . . . . 87

4.2 Model Diversity Visualization . . . . . . . . . . . . . . . . . . . . . . . 90

4.2.1 Isolating Multiple Local Models . . . . . . . . . . . . . . . . . . 90

4.2.2 Mutable Partitions . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2.3 Partition Layout and Representation . . . . . . . . . . . . . . . . 92

4.3 Model Representativity Visualization . . . . . . . . . . . . . . . . . . . . 94

4.3.1 Representative Trend . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3.2 Interactive Local Trend Aggregation . . . . . . . . . . . . . . . . 96

4.3.3 Aggregation Quality Loss . . . . . . . . . . . . . . . . . . . . . 97

4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4.1 Case Study: Linear Models of Bankruptcy Risks . . . . . . . . . 99

4.4.2 User Study for Evaluating Model Fit . . . . . . . . . . . . . . . . 103

4.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5 Conclusion and Future Directions 107

5.1 Conclusion: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

iv



5.2 Future Directions: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

v



List of Figures

1.1 Conceptual Picture of this dissertation work. . . . . . . . . . . . . . . . . 2

1.2 Basic data reduction techniques for visualizing large scale data. . . . . . . 3

1.3 Pairwise variable relationship visualization. A conceptual picture of sev-

eral typical patterns of 2-D variable relationship. The displaying space

of this figure is a MDS layout of 2-D scatter plots [WAG05] where the

positioning of one particular plot is determined by the pattern it shows. . . 5

1.4 Confusion matrices of EnsembleMatrix [TLKT09]. Multiple classifiers

are shown in thumbnails on the right. The matrix on the left shows the

confusion matrix by aggregating classifiers using weights. . . . . . . . . 6

2.1 Comparison of two binning strategies for collection of time series. The

binning method may count every data point (a) or count the number of

time series (b). Counting every data point highlights grid cells that have

multiple occurrences of data points but with only one time series (c). . . . 19

2.2 Time line movement view (b) presents a collection of 250 time series

where x-axis represents the time progression and y-axis is the normal-

ized price values ranging from 0 to 1. The darker region in the view at

around October 2008 shows that the majority of the companies were at

relatively low price values. The line chart view (a) presents the data with

the same normalization method (view rendered within Excel). . . . . . . 22

vi



2.3 Two constraint boxes are placed to reveal companies that fell (a) and rose

(b) during the 2008 crisis. Compared to the view in Fig 2.2b, we see that

most ( 70/ 100) of the prices move with such behavior. The color schema

range is adjusted based on the maximal count of all the grid cells by default. 23

2.4 Drift abstraction of a collection of 32 time series objects. a) The default

color encoding which represent the count of time series in each bin. b) Fil-

ter operator selects time series lower than the risk neutral zone. The color

encoding represents the count of selected time series. c) Link the selected

time series in space b back to original data space. The leftmost histogram

shows the overall drift of the time series over the selected time span (2006

and 2007). The histograms to the right with white background show the

local drift of each company at the granularity of 6 months in each view.

In these sets of views, we observe several interesting patterns. (1) Most

companies stay in the risk neutral zone which is the longest bar in all the

histograms while many companies fell down at the end of 2007. (2) We

can also observe an outlier time series (Apple) that grows exceptionally.

(3) Linking from the model space view (highlighted rectangles in leftmost

rectangle of b) to the time line movement view reveals an overall falling

pattern with high density towards the end of 2007 in (c). . . . . . . . . . 25

2.5 Time series similarity in the drift model space. The leftmost bar code

view visualizes the overall drift tendency of the selected time series where

each line corresponds to one time line. The 5 bars to its right visualize

the local drift. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

vii



2.6 Model similarity analysis view. a) A brushed co-moving drift pattern

begins since about July 2006. b) The darker color bins show a high cor-

relation between different time intervals. The drift estimate of bins in (a)

and that in (b) are at relatively the same value range. It shows the drift

of co-moving patterns is quite consistent over time. c) A high degree of

volatility is shown. d) A long seasonal cycle is represented. . . . . . . . . 30

2.7 The view represents a collection of time series with a co-moving trend

that is identified in the first time interval indicated by the green box plot

(a). However, the co-movement pattern of the same group became grad-

ually diverging over time and reached peak during the last time interval

(greatest variance indicated by the height of bars) (e). From a long term

perspective, the co-movement pattern that is identified in the green model

space is more consistent across the three model types at time interval (f)

compared to the other local intervals (a-e). . . . . . . . . . . . . . . . . . 31

2.8 The views show a interactive exploration process for co-movement pat-

tern investigation. a) The overall drift pattern is presented as heatmap

view. b) Filtered results are shown after a range query is submitted. In

the view to the right, co-moving patterns are linked via color encoding. c)

When the collection of growing time series are selected the correspond-

ing risk of this collection is linked to other portion of the views such as

(d) (e) and (f). d) The boxes have darker colors which indicates higher

correlation. e) The lighter color there shows lower correlation. f) The

pattern is also showing some degree of correlation but at high dispersion

which means the collection is less likely co-moving. . . . . . . . . . . . . 34

viii



2.9 The first row (from left to right) shows the summary statistics of the se-

lections in Fig 2.8d), e) and c). The second row shows the same glyphs

with focus on a reference glyph for comparison. The similarity score is

calculated between the reference glyph and the other glyphs (second row)

and then the similarity score is rendered as alpha value of the glyph color. 36

2.10 The chosen design of the views in question 1A and question 2A requires

less time for discovering the pattern of interest. The two glyph views

tested in question 3A require relatively the same amount of time. How-

ever, the chosen design has better accuracy as discussed in Sec 2.3.3. . . . 40

2.11 Each question B has 5 options (x axis) a subject may choose from. Option

1 to 3 (Sec 2.3.2) for question B are supported by our system and the

subject may dig further to discover more insights. Option 4 is Don’t know

which means the subject has no more questions. Option 5 is Other and the

subject may have additional questions to query the system but we do not

yet support those. Bars with 3 different colors represent three views we

are evaluating (1B:time line movement view, 2B:model similarity view,

3B:nugget analytic view). Y axis represent number of subjects who chose

the corresponding option. Based on the result, few subjects chose option

5 indicating the framework covers most their further needs initiated from

the given 3 questions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.12 Accuracy comparison between our choices and alternative options. Y axis

shows the percentage of subjects who correctly recognized the pattern in

the design space. X axis lists the design choices we have for the three views. 43

ix



3.1 The overall workflow of the FeaVis system. The top 3 components are

model-driven algorithmic methods that search the most descriptive subset

of features based on given metrics automatically. The bottom 3 com-

ponents are interactive visual support that help refine and interpret the

automatic processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 The view shows a comparison between the 3 default ranking metrics (left)

and 3 user metrics generated by combining the 3 default metrics (right).

The user metrics are generated by using different weight combinations,

in this case [0.5,0.3,0.2], [0.1,0.8,0.1] and [0.4,0.2,0.4] respectively. The

feature on top is the focused feature and it has similarity score of 1 to

itself. Other features are ranked based on similarities to the focus feature

using different metrics. The length of bars represent the similarity score.

(AT: total assets; LSE: leverage; LogAT: log total asset; LT: total liabil-

ity; SALE: total sale; GP: gross profit; MKVALT: market value; XSGA:

general expenses; DLTT: long term debt; XINT: interest expenses.) . . . . 58

3.3 The detailed view of a cluster of features. The column represents a fea-

ture, and for each column the color of a grid indicates how far this feature

is away from its neighbors. The first column is automatically selected as

a representative of this group (long rectangle). The small red selection

box to the right in the view is a cursor over selection which shows more

information about that particular neighbor. . . . . . . . . . . . . . . . . . 62

3.4 Cluster view of 45 features in 10 groups, including one single element

group represented by a cyan rectangle. The group can be selected/unselected

and the selections are marked with small red boxes. The black circle over

the group indicates a marked focus group by an analyst, the details of the

focus group are displayed in a different view, shown in Figure 3.3. . . . . 64

x



3.5 (a) A relatively large feature group with high in-group similarity, indi-

cated by the relatively low average distance, as well as low variances. It

indicates the large group of features are very similar to each other. Thus

the redundancies in this group is significant. (b) Based on the same rea-

son, b shows high intra cluster similarity but it is a much smaller cluster.

(c) It is a relatively large group with low in-group similarity. The confi-

dence of removing redundancies in this group using automatic methods

is less for the group on the right. . . . . . . . . . . . . . . . . . . . . . . 65

3.6 Illustration of process for partitioning on two features. The bin size is 3

and the number of bins is 2. . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.7 The analysts may examine the stability of the feature similarity across ev-

ery partition. In this view, each histogram view represents the stability of

one feature vs the others within a cluster. The horizontal red line indicates

the global similarity between the given feature and the others. The label

underneath each histogram represents the name of the given feature. The

x-axis of each histogram represents partitions generated on the given fea-

ture arranged from low value to high value from left to right. The y-axis

represents the degree of redundancy from low to high. The shape of the

histogram represents the stability based on how close the bars are to the

red base line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.8 This view shows the features selected by global redundancy measure

when the analyst finishes adjusting the number of groups. This selection

is done without conducting any local redundancy analysis. . . . . . . . . 74

3.9 This view shows the features selected by local redundancy measures over

a subset of data points. This view is generated after the analyst brushes

the partitions of interest. . . . . . . . . . . . . . . . . . . . . . . . . . . 75

xi



4.1 The two plots show that the two models displayed by the line trend oppose

each other in terms of bias. Model1 has the tendency to underestimate

and Model2 tends to overestimate when the total asset grows. The y-axis

shows the goodness of fit (residuals). The x-axis is the value of total

assets (one of the independent variables). DLTT: Total long-term debt;

LEV: Leverage; MKVALT: Market value . . . . . . . . . . . . . . . . . . 84

4.2 The plots represent how the linear relationship between two variables can

differ when considering different partitions of data points. From a domain

expert point of view, both high return and low return companies have

relatively high risk; intermediate return (fluctuate around 0) companies

tend to follow a trend whose risk is reversely proportional to the return. . 85

4.3 Integrated analysis framework with 3 stages. 1) Variables are ranked by

their relevance to the dependent variable. The scatterplot (a) shows the

relationship between a selected independent variable and the dependent

variable. The global models built by the analysts are listed in (b). Model

complementarity is presented in (c) for refining a model in (b). 2) Local

models can be derived from a selected global model and are presented in

(d,e). 3) The local models are grouped and summarized in a hierarchy (f). 86

4.4 A candidate model LEV complements the to-be-refined model DEBTTA

(in the yellow box). The y-axis represents the error spread of two models.

Positive (Negative) values suggest bias towards underestimate (overesti-

mate). The x-axis represents local partitions where the errors are esti-

mated. The theme river design [HHN00] represents the residuals of the

to-be-refined model. The red vertical lines represent the residuals of a

candidate model (usually a univariate model). . . . . . . . . . . . . . . . 89

xii



4.5 The x-y position of any cell in the grid view (a) is determined by the lower

(x) and upper (y) percentile threshold of a data partition. The relationship

between the x-y position and the partition boundary is shown in (b) and

is indexed as in (c,d). Each cell is colored by the fitness of a local model

in it. The diagonal and the orthogonal direction in (c) indicates two ways

a data partition may change to another: expanding (add more data points)

and shifting (add data points at one end and remove at the other). An time

chart display (Fig 4.4b) of (a) is transformed from (a) by the sequence in

(d) where the main diagonal is walked from top left first followed by the

second diagonal above it. The walk continues till the right top corner. . . 91

4.6 Visualize the degree of diversities. It shows that the local models isolated

by partitioning on DLTT (a,b) have more diversity over the local models

isolated by partitioning on ARChange (c,d). ARChange: Account Re-

ceivable Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.7 Visualize the coverage (cells with red outline on the left) of a selected

cluster of data partitions (selected node marked with red rectangle on the

right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.8 Visualize the coefficient vector (red horizontal bars in the icicle plot) of

the linear trend in the highlighted data partition (left). The red text shows

the value of the coefficients and the name of variables. The color scale

shows the relative goodness of local models in a corresponding partition. . 98

4.9 A case study for modeling risk. a) A ranking list of independent vari-

ables. b) Scatterplot of a selected independent variable and the dependent

variable. c) A list of built models. d, e) Complementarity analysis. . . . . 99

4.10 A case study for modeling risk. f), g), h) and i) Local model diversity

analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

xiii



4.11 A case study for modeling risk. j), k), l) and m) Model representivity

analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

xiv



List of Tables

3.1 Example of similar features for feature total assets. By default the aggre-

gation weight is 0.333 for each metric and the similarity is normalized to

(0,1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Explanations of features . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3 The mark “x” indicates selection of that feature. The numbers in the last

column are the measures of correlation (1− |ρ|) between the selected

feature and unselected features in a group. NA means there is no such

feature available in our dataset. . . . . . . . . . . . . . . . . . . . . . . . 76

4.1 Model specific metrics for quality evaluation . . . . . . . . . . . . . . . . 83

4.2 User study accuracy results based on 3 questions. . . . . . . . . . . . . . 104

xv



Chapter 1

Introduction

1.1 Background

Visual analytics nowadays has to deal with increasingly large scale data. Analysts have to

deal with larger scale of data than ever, in terms of higher volume and dimensionality. The

significant bottleneck for large-scale visual analytics is the human element within the

analytic workflow [WSJ+12]. As data scale continue to grow rapidly, the human cognitive

abilities remain constant. To tackle the large scale data analytics problem, numerous data

models are created to discover and extract useful information. However, to diagnose and

fine tune the models generated by various of machine learning techniques tends to be a

challenging problem. It involves a long tedious process of data engineering which is based

on trial and error. To facilitate the such tasks, this dissertation focuses interactive model-

driven visual analytics on three tasks, namely, model-driven data exploration, model-

driven feature analysis, and local model diagnosis. Data analytic activities often involve

the three tasks and they complement each other and serve the same purpose: interpret

the data and make use of the knowledge gained from the data (Fig 1.1). The model-

driven data exploration utilized machine learning models to capture interesting aspects

1



Figure 1.1: Conceptual Picture of this dissertation work.

of the data and enables analysts to compare and contrast patterns identified by different

models. The model-driven feature analysis captures feature similarity and allow analysts

to compare the correlations between different features discovered among data partitions.

The local model diagnosis help analysts to identify strength and weakness of local models

which are generated based on local subsets of data. The main focus of all these work is to

visually support and guide analysts while they perform the above three tasks.

1.2 State of the Art

Model-driven Data Exploration: To alleviate the cognition load, data are often pro-

cessed in a data reduction pipeline involving binning, filtering, sampling, summarizing

and other steps [LJH13] (Fig 1.2). Such a data reduction process is usually a non-trivial

task. The process has to capture the ”interestingness” of the data to provide an overview

of the data space based on some standard. However, the standard can often only be deter-

mined by analysts after they ”see” the ”interestingness” of the data. Analysts often goes

into a loop of generating hypothesis and verifying it via trial and error [Tuk77]. Unfor-

tunately, this process sometimes does not only take significant amount of time given the
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Figure 1.2: Basic data reduction techniques for visualizing large scale data.

complexity and the growing scale of data nowadays, but it also can be ineffective without

appropriate visual support. Meanwhile, given the available machine learning models, an-

alysts have the option of taking advantage of existing techniques to model the main char-

acteristics of the data space and gain insight [GNRM08]. However, these work usually

do not support multi-model comparison and analysts may still not know if they are us-

ing the right technique to approach their problem. This dissertation work provides visual

guided modeling to capture the main characteristics of time series data for co-movement

pattern discovery. Multiple time series models are integrated for analysts to compare and

experiment.

Model-driven Feature Analysis: Visualizing a multi-variate dataset can be challenging

due to ”curse of dimensionality”. The pairwise and/or higher order relationships between

a number of features can be overwhelming. Visualizing such dataset without proper op-

timization usually leads to cluttered and ineffective display which can hardly lead to any

useful insight [PWR+]. Most visual analytic techniques are made well working for 4
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or 5 dimensions but they are less effective for hundreds or more dimensions. Optimiza-

tion strategies such as dimension reordering [JJ09] or pairwise summarization [WAG05]

(Fig 1.3), often times reveal the important visual structures to analysts by filtering out the

less interesting ones. Some of these optimization techniques are specific for a type of

visualization (i.e., scatterplots) because the optimization process takes account of view-

specific properties such as whether a point cloud in a scatter plot view is apparent to

human eyes. These optimization techniques are helpful once the analyst has decided

which visualization techniques to use. However, deciding on the appropriate view type

for a given task type is a non-trivial problem in itself. Especially when analysts have

no clue about the characteristics of the features such as the data types and the data dis-

tributions. This work instead integrates three feature similarity metrics (i.e., correlation,

cross entropy and distribution similarity) and clustering models to help discover redun-

dant features in the data space. Additionally, analysts is able to choose local partitions

and identify feature similarities for a data partition of interest.

Local Model Diagnosis: Dozens of evaluation metrics have been proposed for visual

quality measure [CWRY06, BTK11]. The visual quality metrics primarily focus on the

quality of the display rather than that of data in general. For example, metrics for identi-

fying views that are great for scatter plot projections do not necessarily help identify high

order linear trends. Moreover, few metrics are designed to measure and diagnosis the

quality of data abstraction and summarizations that are generated computationally by ma-

chine learning models in terms of ”fitness”. Furthermore, metrics are needed for analysts

to understand the landscape of the data space. For example, precision and recall curves

are indicators for diagnosing classification models. Interactive tools [TLKT09] (Fig 1.4)

are also developed to support ensemble classifier diagnosis. However, most of these met-

rics are able to measure the quality of visual representations or data abstractions are global

in nature. They are less effective for identifying local patterns (e.g., Simpson’s Paradox)
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Figure 1.3: Pairwise variable relationship visualization. A conceptual picture of several
typical patterns of 2-D variable relationship. The displaying space of this figure is a
MDS layout of 2-D scatter plots [WAG05] where the positioning of one particular plot is
determined by the pattern it shows.

5



Figure 1.4: Confusion matrices of EnsembleMatrix [TLKT09]. Multiple classifiers are
shown in thumbnails on the right. The matrix on the left shows the confusion matrix by
aggregating classifiers using weights.

described by local models that are generated by subset of the dataset. In this work, three

metrics are proposed to visualize and measure the goodness of regression models. They

are designed to reveal local models of interest that fit the data well. Additionally, analysts

may identify complement local models that can improve performance of others.

1.3 Proposed Approach for Local Pattern Analysis

To address the above challenges, a model-driven visual analytic framework is proposed

and applied to the three areas of interest: model-driven data exploration, model-driven

feature analysis and local model diagnosis. Henceforth, the ”model” in this work refers

to machine learning models that are high level abstractions of the input data. For example,

a linear trend model is an abstract representation of the underlying data that follows a cer-

tain linear trend. There are three main components for the model-driven approach. First,

the models are used to summarize and describe large scale datasets to address the data
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exploration problem. Second, the models can also be used to describe the relationships

between different features to facilitate the feature selection process. Third, the models

are then diagnosed, interpreted and refined in a visual environment to further interpret the

landscape of the data space particularly the local subsets of interest. The model diagno-

sis aims to provide more insight by helping analysts to analyze local pattens captured by

local models. All the three topics are collaborated work with a domain expert who is a

Professor at school of business at Worcester Polytechnic Institute. The design of systems

in this work is mainly motivated by the cognition limitations humans have [WGK10],

such as limited ability to differentiate multiple colors on the screen. Therefore we prefer

visualizing aggregated results (e.g., heatmap and histogram) to showing raw data to the

user.

1.3.1 Model-driven Data Exploration

For the first task, a visual analytic tool called MaVis is proposed that integrates multiple

machine learning models with a plug-and-play style to describe the input data. The data

can often be processed in a data reduction pipeline involving binning, filtering, sampling,

summarizing and other variations [LJH13]. Then analysts start to perform user-driven

exploratory data analysis tasks. In this work, we provide model driven analytics such

as model summarizations (clusters and trends) as well as data binning strategy. While

investigating the co-movement patterns of time series dataset, this part of work aims to

answer the following questions:

• What time intervals contain interesting co-movement patterns?

• What time-series model can I use to capture the co-movement?

• Which model is more interesting?
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• What are the relationship between the models I use?

To answer these questions, we propose a plug-and-play visualization framework that

integrate multiple machine learning models to summarize the interestingness of the raw

data with four analytic spaces, data, models, model relationships or user queries. The

models in MaVis are compact descriptions of the raw data such as clusters, trends and

others. They are visualized and presented in a derived model space to provide compacted

representation (e.g., cluster radius, slope and etc.) of the original raw data. The cognitive

load can be significantly reduced by using machine learning models that lead to very

compact descriptions. For example, 1 million data points can be effectively reduced to k

clusters (k� 1 million) in the cluster model space so that the analyst can have a grasp of

the underlying data space.

This work includes a design of visual distinctions for the model descriptions, so that

analysts can compare the models swiftly and determine which model to use for further

exploration. MaVis incorporates 3 commonly used models and a higher level analytic

space, namely, model relation space, to support such comparison activities via linked

views. For example, to determine whether linear or non-linear trends are more appropriate

to describe the underlying data, an analysts may want to compare the two models and

decide which model type reveals more interesting patterns.

As discussed in [ZWRH14, MP13], the description of a model (e.g., slope of trend)

is also determined by the data partition of the data space. For example, the trend slope

of this year’s data may be different from that of last year’s. MaVis provides analysts the

capability of managing and comparing their discoveries in a nugget space to keep track

of the findings of an analyst. A nugget contains a subset of the points of interest and then

summarize it for future analysis. For example, when an analyst identifies two clusters in

two different data partitions, the nugget space maintains summaries of such observations

which may lead to other discoveries such as overlap of two clusters.
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1.3.2 Model-driven Feature Analysis

For the second task, the dissertation work primarily discusses the proposed visual fea-

ture exploration tool called FeaVis. It uses clustering techniques and feature similarity

metrics to explore the feature spaces for selecting features of interest. Feature analysis

is useful for reducing the scale of analysis by focusing the analysis on a subset of fea-

tures [IMI+10a]. Feature analysis can be both expensive and difficult. To overcome such

difficulties, dozens of techniques have been proposed to automate the feature selection

process by considering feature similarities [MMP02, YL04, PLD05]. Since most auto-

mated feature selection processes are black-box approaches by nature, it is challenging

to intervene and understand them. Furthermore, the designs are often based on specific

algorithms not applicable in general for the exploratory analysis of features. An analyst

may have questions to ask during analyzing the features of her data:

• Is this feature selection metric applicable to my problem?

• Why are my preferred features not picked by this selection algorithm?

• Are there any alternative methods I can use instead?

• Which features are correlated at which partitions?

To answer these questions, a multi-metric system is adopted in this work. Each met-

ric measures the similarity of features from a particular aspect. Then the features are

clustered into feature groups. This work integrates multiple metrics including pearson

correlation, distribution similarity [kld] and cross entropy [DBKMR05].

To support feature similarity discovery and selecting most representative features, the

metrics are combined to generate an aggregated measure which can be refined over the

metric analytics. Specifically, for any specified feature, there can be different sets of fea-

tures and each set corresponds to a particular metric. An analyst may then fine tune the
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aggregation process to recompute the clustering result based on the multiple sets depend-

ing on which set of similarity relationship is more interesting determined by an analyst.

For example, for a resort analytic dataset the feature set 〈 temperature, number of visitors

〉 is more interesting in the summer while the feature set 〈 snow fall, number of visitors

〉 is more interesting during the winter. Then the less interesting similarity metric can be

deemphasized with a lower weight and vice versa.

Next, a ranking schema is designed to select the top-k most descriptive features within

each group using a diversifying strategy. The features are first clustered into feature

groups with a predefined aggregated similarity metric. Then k features are selected from

each group for further inspection. To diversify the selection, the features are sorted based

on a priority order of adjacent features being similar to each other. The selection then

picks k dissimilar features from the feature group.

Furthermore, FeaVis also provides a drill-down functionality that an analyst is able

to examine feature selections for different data subsets. A finer resolution analysis may

involve investigating feature spaces in a subset of the original data space. According to

the Simpson-Paradox [Wag82], local relationships between two variables can be totally

distinct from the global relationship. For example, two redundant features (e.g., traffic

jam and accidents) may be non-redundant for a given subset (e.g., traffic data around Los

Angeles). The traffic jam and number of accidents may usually explain each other, but it

is hardly true in a local region such as Los Angeles as there are always traffic jam there.

To investigate this phenomena, the FeaVis system provides a partition importance view

to direct analysts to the partitions of interest where a very different selection of features

may be compared to the globally selected features.
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1.3.3 Local Model Diagnosis

For this third task, a visual supported model diagnosis tool called LoVis (local pattern

visualization) is proposed [ZWRH14]. The primary focus of this tool is to visually in-

vestigate how well a data abstraction method describes the dataset. For example, using

a linear model to describe a dataset can potentially be inaccurate if there is any non-

linearity or multiple linear segments in the dataset [MP13,ZWRH14]. Understanding the

quality of the data modeling process facilitates the diagnosis of models in terms of fitness

in describing the landscape of the underlying data space. The model-driven quality eval-

uation is analogous to visual quality measure techniques [CWRY06] where information

loss caused by data transformation and mapping process is estimated. Generally, the info

may also be lost or distorted by data reduction or data abstraction processes. For instance,

the linear models can be used to describe the linear trends in a dataset with error and bias.

The quality metrics allow analysts to summarize the main characteristics of the data with

confidence.

While using model to summarize a data set, analysts may ask these questions before

being able to confidently use the model to communicate ideas or report findings extracted

from the data.

• Is my model accurately describing the whole data space?

• Does the model bias over a certain subset of the data?

• Is there any part of data that has very high error?

To help answer these questions, this work proposes a set of local measures and a

mechanism to form models locally about certain interesting data subsets. We define three

metrics for visualizing and measuring the quality of linear models particularly taking

account for local patterns of the trends.
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First, model complementarity is defined to find models that complete each other lo-

cally, so that combining them can achieve a balanced model that does not bias over any

subset of data points. For example, model A tends to overestimate the risk of small com-

panies while model B tends to underestimate the risk of the same group of companies. In

that case, we may decide to combine the two models to achieve a balance at the level of

bias.

Second, model diversity is proposed to find interesting variables for partitioning the

data points into groups. This help analysts to identify variables that can partition the data

spaces into subsets that can generate local models with diversified ”fitness”.

Third, model representivity is designed to identify local models that share model co-

efficients so that the underlying data subsets could be potentially merged and generate a

representative model which covers larger area of the overall data space.

1.4 Contributions of this Dissertation

The goal of this dissertation is to apply visualization and guidance to the local pattern

discovery of identified three tasks while performing data analytics. The contribution in

the above areas are summarized as below:

1.4.1 Model-driven Data Exploration:

This work reduces cognition overhead of analytic tasks while performing the complex

data analytic tasks. It utilizes multi-model abstractions to describe the data in a meaning-

ful and compact way with visual comparison and contrast. 1) A novel data exploration

approach is designed by providing plug-and-play multi-models for data reduction. 2)

Four linked spaces are offered to support analysis with a connected context across differ-

ent spaces. For example, data filtering in data space and model comparisons in the model
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space. 3) First, evaluation is conducted for this exploration approach via a case study

using stock market data. Second, the user study is conducted to compare the alternative

view design choices for visualizing the data and model relations. The metrics we use

include user performance and user feedback.

1.4.2 Model-driven Feature Analysis:

This work facilitates the feature exploration process by combining clustering, ranking and

diversifying methods to extract more descriptive features of a high dimensional dataset. It

allows analysts to explore the feature space by visualizing their relationships using clus-

tering techniques. 1) Multi-Stage Analysis: We offer flexible integration between the

automatic processes and user interaction. The analysts can choose the degree of automa-

tion and choose to get involved in specific phases of the process. The resulting dimen-

sions can be automatically determined and manually refined at different granularities. 2)

Redundancy Detection: Our system utilizes both redundancy detection and dimension

ranking for the feature selection process. Each feature is clustered into a feature cluster

using feature similarity metrics and then ranked by how well it represents the cluster. 3)

Multi-Selection Criterion: Partition driven analysis as well as multiple metrics are used

to identify different sets of features of interest. With visual support in FeaVis, analysts

may discover alternative selections of data features that may be interesting to look at.

1.4.3 Visual Guided Model Diagnosis:

Enhance the evaluation process of the model quality measurement by providing interac-

tive feedback on how the analytics input affects the performance of models both globally

and locally. 1) This work allows analysts to interactively build and evaluate models at

both global and local scales. The interactive exploration is guided by the visual designs
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in three model spaces. 2) This work utilizes a pairwise comparison of local models for

model refinement. Models that complement the to-be-refined model are identified and

combined (union of variables) to the to-be-refined model. 3) This work integrates a novel

partitioning strategy for isolating local linear patterns. Strong and weak trends (in terms

of goodness of fit) are visualized distinctly in a pattern space. 4) A hierarchical view

is presented for grouping local models, where each group can be interactively divided

into smaller ones interactively. Meanwhile, the analyst may investigate the relationship

between the size of a group and the divergence within it.

1.5 Dissertation Outline

The rest of this dissertation is organized as follows:

Chapter 2 discusses the first topic model-driven data exploration. We investigate mul-

tiple modeling techniques for data abstraction and using the proposed technique to iden-

tify local co-movement of time series data.

Chapter 3 presents the second topic model-driven feature analysis. It illustrates fea-

ture relationships using multiple feature similarity metrics. The partition based similarity

analysis are also supported for discovering local feature similarities.

Chapter 4 describes the third topic local model diagnosis. It enables analysts to dive

into local data space to diagnose how the model performs locally which helps them to

refine models locally.

Finally, Chapter 5 summarizes this work and discusses future directions.
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Chapter 2

Model-driven Data Exploration

First of all, a model-driven data exploration framework is presented in this chapter, where

data models such as linear model and time series model can be applied to summarize the

data space to facilitate the data exploration process for gaining insight. It empowers the

analysts to select the predefined methods to summarize the data. This component provides

multiple linked analytic spaces for interpretation at different levels of abstractions. For

example, the low level data space supports data binning while the high level model space

offers model summarizations such as clusters or trends. It also supports model analytics

that visualizes the summarized patterns and thus enables the analyst with ease to compare

and contrast them. In this dissertation, we provide novel methods for investigating co-

movement patterns of timeseries dataset that is important for applications from medical

sciences, finance, business to engineering. The models are mainly used as magnifiers

analogous to a map reading task. The models automatically capture certain interesting

aspects of the underlying data space. In this work, multiple models are utilized to provide

a plug-in-and-play style data summarization and interpretation workflow. This work is

accepted as the best paper of VDA 2016 [ZWRH16].
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2.1 Preliminaries of Data Patterns and Models

In this paper, we provide support for co-movement analysis in both the data space and the

model space by offering integrated visual presentation support. Co-movement pattern is a

widely studied pattern in application domains, from medical science, finance, business to

engineering. It refers to the correlation between a collection of time series objects such as

EEG signals recorded from multiple channels or the stock price of different companies.

Co-movement in our work concerns the correlation between time series in both data

space and space. The data space corresponds to the observed values of the time series.

Numerous tools have been developed to analyze correlations in data space, such as covari-

ation [KP08] and detrended cross-correlation [RRCZ14]. A derived space is then formed

based on the extracted features such as frequency [FGP+13], trend [BPS14], seasonal-

ity [CL98], and uncertainty [BTV14] of the time series. The co-movement is a widely

studied pattern of time series. The study of EEG co-movement in neuroscience [FGP+13]

aims to detect the epileptic seizure onset zone by investigating the causal relationship

between different EEG channels in the frequency space. In finance applications, the co-

movement research aims to detect financial contagion which is said to indicate the spread

of market disturbance [KP08]. The analysis of co-movement patterns in engineering can

be used to optimize wireless device localization [CEG+09]. While we focus on financial

time series in our work, the proposed framework can be applied to other applications by

integrating appropriate domain-specific machine learning techniques.

Modeling techniques in this work are mainly used on time series data to detect

co-movement patterns by extracting model descriptions. These model descriptions (i.e.

trend, seasonality and volatility) are essential for the exploration of the model space in

MaVis. A number of techniques have been discussed in different fields for the detection

of co-movement patterns. For example, the rule-based approach [WFYL08] designed
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co-moving rules to categorize the pairwise relation of two time series as 1) up-up, 2)

down-down, 3) up-down, 4) down-up. Unfortunately, these rules create a variable num-

ber of segmentation points depending on the dynamics of the time series. For a collection

of time series the rule space may thus explode. Analogues to the signal decomposition

process (e.g., high vs low frequency) for most signal processing techniques [Mal89], we

instead look for statistic models that can describe the co-movement of time series in the

model space. In this paper we in particular focus on three common model types for time

series, namely, drift, seasonality and volatility. Each of them may be associated with

different semantics in the domain.

The models in MaVis are compact descriptions of the raw data such as clusters, trends

and others. They are visualized and presented in a derived model space to provide a

compact representation (e.g., cluster radius, slope and etc.) of the original raw data. The

cognitive load required by analysts to make sense of the data can be significantly reduced

by using machine learning models that lead to very compact descriptions of the data. For

example, 1 million data points can be effectively reduced to k clusters (k� 1 million) in

the cluster model space so that the analyst can grasp the underlying data space. While

there is a need for high performance modern machine learning algorithms, dealing with

large scale data is not our primary focus. Our focus instead is related to the second half

of the chicken-and-egg dilemma when an analyst may find a pattern not interesting or

he/she does not know what is interesting, specifically, we aim to support analysis needed

in the following scenarios: 1) what if the extracted clusters are not considered interesting

by some analysts? 2) what if the analysts are not sure which models are more interesting

than others?

To tackle the first issue, we list the selected model descriptions that enable the analysts

to swiftly examine and determine what model type to examine further. To deal with the

second issue, we enable the analysts to engage in the exploratory data analysis workflow
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of testing multiple methods and comparing them to reach a final conclusion. MaVis in-

corporates three commonly used models and a higher level analytic space, namely, model

relation space, to support such comparison activities via linked views. For example, to

determine whether linear or non-linear trends are more appropriate to describe the under-

lying data, an analysts may want to compare the two models in the model relation space

and decide which model type reveals more interesting patterns.

The model descriptions, however, are dependent not only on the model type but

also on the local data partitions that are used for creating models. As discussed in

[ZWRH14, MP13], the description of a model (e.g., slope of a trend) is also strongly

based on the partitions of the data space. For example, the trend slope of this year’s data

may be different from that of last year’s. To get an overview of the data space, the MaVis

model relation space thus supports the relationship analysis of the local model descrip-

tions. However, investigating such phenomena clearly adds complexity to the comparison

analysis of the model relation space as there are, for instance, many ways to partition the

space. To facilitate such analysis, MaVis provides analysts the capability of managing and

comparing their discoveries in a nugget space to keep track of the findings of an analyst

so far during her discovering process. A nugget contains a subset of the points of interest

produced by summarization for future analysis. For example, when an analyst identifies

two clusters in two different data partitions, the nugget space maintains summaries of

such observations which may lead to other discoveries related to their summaries such as

the overlap of two clusters.

Next, we discuss three common types of models for time series data. Each of them

is extracted by automated modeling techniques from the literature [PK10,GB14,VBB12,

MZ08, Ulr13] which are developed by other researchers.
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Figure 2.1: Comparison of two binning strategies for collection of time series. The bin-
ning method may count every data point (a) or count the number of time series (b). Count-
ing every data point highlights grid cells that have multiple occurrences of data points but
with only one time series (c).

2.1.1 Drift Model

Drift model is often used to describe the increase or decrease tendency of a non-stationary

time series. It models the growth or decay of time series data. In finance it is often used

as an indication of whether buying or selling a stock is likely going to produce a profit

or not. Geometric Brownian motion [PK10] is one of the commonly used techniques to

model the drift of financial time series. The Stochastic Differential Equation (SDE):

dSt = θStdt +δStdWt

is often used to simulate the geometric Brownian motion. Many techniques (as summa-

rized in [GB14]) may be used to estimate the parameters in the SDE, including the drift

parameter θ . In our work, we integrate the pseudo-likelihood method implemented in

R [GB14] into our system to extract the drift from time series data.

2.1.2 Seasonal Model

Seasonality may be extracted from time series for prediction and modeling purposes. For

example, the sale of ice cream could reach a peak during the summer and a valley in
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the winter. Such pattern can be widely found in finance [KKL12], economy, medicine

[MUCM03] and other fields. Understanding the cyclic pattern of a collection of time

series is informative particularly in the context of co-movement patterns. For time series

that move with similar periodic duration, they are more likely driven by the same factors

and thus co-move together. Many techniques in different applications have been proposed

to investigate such seasonal patterns including wavelet [Mas08], ARIMA [VBB12] and

HP Filtering [KM99]. Since we focus on financial applications, we choose to integrate

the ARIMA model parameter estimation [MZ08] into our system. The ARIMA model

can be used to estimate the most likely cycle duration of the time series. Thus we use it

here to represent the degree of co-movement regarding the seasonality duration. Stocks

with longer seasonal (e.g. year) duration may co-move with others with similar durations

rather than those with shorter durations (e.g. week).

2.1.3 Uncertainty Model

Investigating the uncertainty of time series may help us to quantify the degree of risk in

finance (stock price data) or help detect brain activities (EEG data). Clearly, different

application domains may favor different notions for capturing uncertainty. For example,

uncertainty could refer to the volatility of data [Blo09]. It may also refer to the unpre-

dictability of model parameters [BB01]. Also, uncertainty is an interesting problem in

data visualization where it refers to errors that occur during the transformation process

from data to visual representation [BOL12].

In our work, we focus on the uncertainty of the time series data. In the finance domain,

risky assets tend to have certain similarities in terms of their dramatic price changes. In

such cases, an investor may gain/lose a lot during a short time period due to the high

dispersion of price values. The techniques for modeling such change can be divided into

two categories: historical volatility [Ale08] and implied volatility [ABHA09]. Since the
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implied volatility is commonly used for risk forecasting, we focus on historical volatility

modeling to serve as a volatility descriptor. We adopt and apply the implementation of

volatility calculation from [Ulr13] into our system.

We next discuss how to investigate the co-movement in an interactive environment

using the above discussed modeling techniques.

2.2 Proposed MaVis Framework

In this section, we describe the design and implementation of the proposed MaVis frame-

work designed to support visual explorations in four spaces at different levels of abstrac-

tions, namely, data space, model space, model relation space and nugget space. The

design of the 4 space architecture of the system is based on both the notion of ladder

of abstraction [Urs13, Vic11] and the idea of multi-scale representations [Kin06]. The

ladder of abstraction illustrates the thinking process that starts with specific items and

continues to high levels. For example, the model space (e.g., clusters and trends) pro-

vides high level compact descriptions that the analysts may comprehend with ease.

Any given model may not always be perfect in terms of conveying accurate and useful

insights. It is often unclear how well a given model describes the original data [CWRY06]

due to the fact that there can be information distortions during the data abstraction process

from data to visual representations. One type of information loss during the abstraction

process is due to the existence of local patterns that cannot be described by the global

pattern [ZWRH14]. We use a multi-scale representation strategy to model data at multi-

ple granularities so that local patterns of interest are no longer lost. In order to support

multiple granularities, MaVis provides user controlled scales for capturing local patterns.

These local patterns, once detected, are then presented in a small multiples display to the

analysts. Then, the local patterns and the global patterns may be compared and contrasted
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Figure 2.2: Time line movement view (b) presents a collection of 250 time series where
x-axis represents the time progression and y-axis is the normalized price values ranging
from 0 to 1. The darker region in the view at around October 2008 shows that the majority
of the companies were at relatively low price values. The line chart view (a) presents the
data with the same normalization method (view rendered within Excel).

via the designed linking operator. Next we discuss in detail the design and implementa-

tion of the 4 spaces.

2.2.1 Data Space

The data space of MaVis supports data specific analytic queries (e.g., brushing over a

period of time) that allows the analyst to investigate the co-movement of time series at

specified time intervals. One common approach for visualizing the data space is to map

the time series to segments of lines in a line chart (Fig 2.2a) (similar approach can be

seen in [HS04]). Its variations such as the ThemeRiver based designs [SCL+12] are

also popular in cases when a moderate amount of time series are displayed. In MaVis,

we seek for an alternative visual representation that is inspired by the idea of binning

aggregation [LJH13]. The binning strategy provides an overview of all the data before

the analyst submits any queries. The line chart approach tends to work well when one

wishes to examine a detailed view of a collection of focused time series but the view

may be overwhelming at first glance due to the high density of time lines [HS04]. To

overcome the clutter of the line chart view we design a time line movement view (as
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shown in Fig 2.2a). The view illustrates the movement of a collection of time series at

a relative (i.e., percentage) scale. The absolute scale may reveal other patterns, however,

we choose to use relative scale as the degree of growth in finance is often measured by

percentages.

Figure 2.3: Two constraint boxes are placed to reveal companies that fell (a) and rose (b)
during the 2008 crisis. Compared to the view in Fig 2.2b, we see that most ( 70/ 100)
of the prices move with such behavior. The color schema range is adjusted based on the
maximal count of all the grid cells by default.

The time line movement view as presented in Figure 2.1 transforms the collection

of time series into a value-time space. Color is used to indicate the population densities

within each grid cell. Darker color indicates higher density while lighter shows lower den-

sity. The horizontal and vertical scales are adjustable and controlled by the user depending

on their needs. To observe sensitive value changes the user may adjust the vertical scale

to finer resolution. Similarly, to perceive short term pattern changes the horizontal scale

may be adjusted. The idea of adjustable bin is motivated by the design mantra ”Overview

First, Zoom and Filter, Details-on-Demand” by Ben Shneiderman [Shn96]. By adjust-

ing the bin size, the user can filter time lines at a controlled resolution and observe the

co-movement pattern in detail.
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Next we discuss the two options we considered for the binning method. The first

option for binning the time lines in the time line movement view is to count the number

of values that fall into each grid cell (Figure 2.1a). This method is memory efficient

regardless of the size of the dataset. It only requires one scan of the dataset and then to

count the number of data points in each bin. The memory requirement is determined by

the resolution of the time line movement view. However, it is dependent on the sampling

rate of the time series (i.e., hours, days or weeks) which may distort the view. The second

option is to count the time series (Figure 2.1b) that go through each grid cell. The purpose

of only counting the number of time lines is to reduce the impact of variances within each

grid cell and highlight the overall pattern for a collection of trajectories (Figure 2.1c). It

requires extra memory to store the index of the time lines so that we remove all duplicated

data samples of each time line within a particular grid cell.

To further support the exploration in the data space, two interactive operators are in-

tegrated into the time line movement view of MaVis, namely, filter and link. The filter

operators allow the analysts to apply constraint boxes similar to those in [HS04] at the

resolution level specified by the analyst via adjusting the size of the bins. We consider

two options for designing the filtering operator: preserve and exclude. That is, the be-

havior of a filter selection is either to preserve the items that are selected by a user or

to conceal them. To facilitate the refinement of filtering, we support multiple selections

which are aggregated with set operators such as union, intersect and negation. With the

filter aggregation, the selection query box is more flexible than a typical single rectangle

box. For example, an analyst may want to exclude some the time series from those that

bypass a large rectangle. For this, she may attach a small negation rectangle to the larger

box (as shown in Fig 2.3).

The linking operator links the analyst selection in the data space to model descrip-

tions in the model space to enable the analyst to further examine the co-movement of the
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selected time series regarding other domain specific features such as drift (for stock price

analysis).

Additionally, to support multiple resolutions of the binned view. The size of the bins

is adjustable by the user in two directions, namely the time axis and the value axis.

2.2.2 Model Space

Figure 2.4: Drift abstraction of a collection of 32 time series objects. a) The default color
encoding which represent the count of time series in each bin. b) Filter operator selects
time series lower than the risk neutral zone. The color encoding represents the count of
selected time series. c) Link the selected time series in space b back to original data space.
The leftmost histogram shows the overall drift of the time series over the selected time
span (2006 and 2007). The histograms to the right with white background show the local
drift of each company at the granularity of 6 months in each view. In these sets of views,
we observe several interesting patterns. (1) Most companies stay in the risk neutral zone
which is the longest bar in all the histograms while many companies fell down at the end
of 2007. (2) We can also observe an outlier time series (Apple) that grows exceptionally.
(3) Linking from the model space view (highlighted rectangles in leftmost rectangle of
b) to the time line movement view reveals an overall falling pattern with high density
towards the end of 2007 in (c).

In this section we focus on the three models we discussed in Sec 2.1 for time series
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data modeling, namely, drift, seasonality and uncertainty. The drift indicates whether

buying an asset yields potential profit. The seasonality represents how predictable the

change of a stock price is. The uncertainty (also called volatility) of a stock price measures

how much the price may change over a certain period of time. The above modeling

method may generate a description that explains certain domain patterns. For example,

let us take a closer look at the stock price of a particular company: Apple, Inc (Fig 2.4a).

The overall drift of Apple is 0.35 in the years of 2006 and 2007. This is a indication of

a relatively strong growth. The finer resolution reveals local dynamics that contain more

information. In this case, the drift of Apple is 0.29 in the first half of 2007 and 0.57 in the

second half. This means the growth of Apple in the two years mainly concentrated in the

second half of 2007.

One interesting question to answer is which companies have similar drift patterns like

Apple or any other company of interest? We design the model similarity view (Fig 2.4a&b)

that visualizes the similarity of time series in the model space. Next we discuss how the

model space works as well as how the visual representations are designed to illustrate the

local dynamics.

Figure 2.5: Time series similarity in the drift model space. The leftmost bar code view vi-
sualizes the overall drift tendency of the selected time series where each line corresponds
to one time line. The 5 bars to its right visualize the local drift.

The model space of MaVis provides an abstracted representation of the original time
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series data to highlight any domain related co-movement patterns such as correlation be-

tween price risk of different companies. The domain related co-movement patterns are

revealed by utilizing the abstracted description of domain models such as Brownian mo-

tion (drift abstraction) and Weighted moving average (volatility abstraction). Compared to

the automatic piecewise linear approximation method [KCHP93], our primary objective

is to facilitate the sense making of the analytical process rather than finding the best data

points to preserve for further analysis. Therefore, we use both the domain specific mod-

eling techniques (discussed in Section 2.1) and a user controlled interactive segmentation

for extracting local patterns at specified time interval size.

We chose the user driven approach due to several reasons. 1) The automatic segmen-

tation points extracting methods tend to work on univariate time series. They are not

appropriate for a collection of time series because finding the alignment of segmentation

points for a collection of time series is not a trivial problem. 2) Manual segmentation

would be controlled by the analyst. The analyst thus may choose a universal cutting point

for the collection of time series based on the overview of the data space. For example,

the crash of the stock market in 2008 lasted about 6 months before recovering when we

look at the time line movement view (Fig 2.2b). The analyst may thus choose to select the

6-month resolution as a reasonable setting to explore the local model space.

To present the co-movement of time series in the model space, we consider several

options. 1) Present the model estimate (e.g., drift) of each time series into a 2-D projection

where one axis represents the estimated value and the other axis represents the order of

the data points. However, we face the dilemma of optimizing the ordering of data points

across different projections and preserving the group structure of similar model estimates

in the same time. 2) To optimize the presentation we instead turn to a 1-D layout (bar

code view) that only shows the value of model estimate (Fig 2.5). Each line segment of

equal length represents the drift of a corresponding time series. The vertical position of it
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is determined by the estimated drift value. With support of brushing and linking, the bar

code view is able to illustrate the co-movement pattern represented by connecting the line

segments.

However, the line connections may be difficult to interpret when line segments overlap

in several regions. It is especially difficult to interpret when the density of line segments

is high.

To overcome the above clutter issue we use a histogram view (Fig 2.4a) by binning the

line segments. The length of each histogram bar represents the count of line segments.

The color encoding is used to represent the number of line segments that are currently

highlighted (darker color means higher density of line segments in that bin). For example,

when an analyst applies a filter operation to select the bins that represent time series with

low drift estimate in the 2 year view (leftmost in Fig 2.4b), the color of all bars is updated

accordingly to show the prevalence of the selection in other bins. It represents how these

time series are distributed over the 4 local views (e.g., the first half of 2006). The design

for model space visualization is evaluated in our user study described in Section 2.3.2.

There are two types of brushing and linking operators in the model space. The first

type is the linkage between multiple model space. The co-movement pattern in one model

space can be linked to another model space. Such linkage may reveal relationships be-

tween different model types or across multiple time intervals. Understanding the model

relationship may help answer several questions including: What are the volatilities of a

selection of growing time series? or How does the drift of a collection of time series

change over time? We will discuss the design for analyzing the model relationships in

detail in Section 2.2.3. The second type is the linking between the model and the data

space. Specifically, the patterns in the model space can be linked back to the data space

to reveal the data characteristics. For example, by selecting the time series with a low

drift estimate in the drift model space (Fig 2.4b), the overal time line movement pattern
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is shown in the data space (Fig 2.4c).

2.2.3 Model Relation Space

The primary purpose of model relation space is facilitate the investigation of the co-

movement dynamics. The hypothesis of a co-movement pattern within one model space

during one specific time interval may be reinforced or lessened in another model space

over the same or a different time interval. For example, even when two companies have a

similar tendency of growth (i.e., drift), the degree of fluctuation (i.e., volatility) can differ

greatly. Therefore the co-movement pattern we observe regarding a single model type

may be biased. On the other hand, the growth tendency may also diverge over time. It

may indicate that the co-movement pattern only occurs within a specific time interval.

To capture such dynamics and to compare multiple models we visualize each model type

in one row of an integrated small multiple display. The analysts then can compare and

contrast the patterns interactively.

We use a similarity metric and color encoding to illustrate the pattern overlap of mul-

tiple models. To measure the degree of overlap, we first apply the Jaccard similarity

measure between the focused model space and non-focused space. In a focused space,

the analysts brush and select time series of interest. In a non-focused space, each bin

of time series are grouped by co-movement properties (e.g., similar drift). When we are

interested in whether a selection of 20 time series in space A are still co-moving in space

B. We can check if any bins in space B contain every time series of the selection. We

choose to use Jaccard Similarity as it is a commonly used measure for set similarities:

J(A,B) =
|A∩B|
|A∪B|

where A and B are two sets of time series.
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Figure 2.6: Model similarity analysis view. a) A brushed co-moving drift pattern begins
since about July 2006. b) The darker color bins show a high correlation between different
time intervals. The drift estimate of bins in (a) and that in (b) are at relatively the same
value range. It shows the drift of co-moving patterns is quite consistent over time. c) A
high degree of volatility is shown. d) A long seasonal cycle is represented.

After computing the similarity, we update the color of bins (Fig 2.6) to represent it.

In the case when multiple bins are selected (e.g. 3 bins of time series are selected in

Fig 2.6a), we use the union of all the selected bins as set A and the other bins (e.g., bins

in b, c and d) as set B to compute the similarity.

2.2.4 Nugget Space

The design of the nugget space is to support the analysis of multiple user queries in one

place. A nugget is a subset of data points selected by an analyst in a user query via

brushing or filtering. For example, it can be created when an analyst brushes over a set of

time series in one model space based on how closely they are related. In this space, we are

particularly interested in how the co-movement patterns are different over time and under

the models of different types. A pattern is defined by a user query over a particular time
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interval and the pattern difference is measured by the similarity between those queries.

The objective of this analytic space is to answer questions such as: 1) How closely does

the current high risk (i.e., high volatility) relate to an increasing trend (i.e., high drift) in

a later time? 2) How many time series are present in such a pattern? To answer these

questions, we provide two features: 1) Summarize the user queries (e.g., risk vs. growth)

and then 2) compare them to establish connections. In the nugget space we support the

above two features by visualizing the summary information in a nugget analytic view

(Fig 2.7) where the queries are compared and analyzed.

Figure 2.7: The view represents a collection of time series with a co-moving trend that is
identified in the first time interval indicated by the green box plot (a). However, the co-
movement pattern of the same group became gradually diverging over time and reached
peak during the last time interval (greatest variance indicated by the height of bars) (e).
From a long term perspective, the co-movement pattern that is identified in the green
model space is more consistent across the three model types at time interval (f) compared
to the other local intervals (a-e).

Nugget summarization: First, we describe how to summarize and visualize a nugget
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that is created by a user query. For each nugget we present three types of information:

the time interval of the user query, time series distribution for each model type, and the

model type which analysts choose to model the time series and submit a query. Inspired by

the clockmap view [FFM12], we use a round shaped glyph to present the summarization

information (Fig 2.7). 1) The outer space of the glyph is reserved to display the time

interval of the user query. 2) The time series distribution of each model type is represented

by 5-number summary, namely, min, max and 3 quartiles of the corresponding model

description of the selection of time series. 3) The inner space of the glyph displays the

distribution of model descriptions of one of the three model types. To further explain

our design, the Box-and-Whisker plots for the distribution are color coded to match each

model type. A small rectangle underneath each box plot is used to indicate the model type

of the user query (analogus to a tickbox). The three box plots in each glyph describe the

distribution of all three model types for the user query that may lead to insights about the

data. For example, in Fig 2.7c, the drift pattern (green box plot) shows the selected time

series are co-moving with a rather small dispersion, yet the volatility measure is quite

diverging as the height of the second bar (volatility) is relatively high. It suggests that

determining co-movement of the selected time series only by the drift is biased.

To determine the way of visualizing the summarization, we have experimented with

several glyph design alternatives. We then finalized our design based on user feedback.

For example, the time interval can either be represented in a circular (i.e., 360 degree)

space or a linear space. We choose circular space because degrees in the circular space

can support the comparison of angular values between two glyphs without alignment as

we believe degrees are more interpretable. We also hypothesize that it is more challenging

to perceive the time ordering of any two glyphs in a linear space unless they are properly

aligned (evaluated in Sec 2.3). We also experiment with the visual designs for indicating

model types.
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Nugget comparison: A second feature of the nugget analytic view is to provide com-

parisons between multiple nuggets which covers different data subsets. There are several

ways to quantify the similarity between multiple data subsets. One way is to compare the

data sample distributions to see whether they are from the same one. However, there is

no readily made solution for time series collection as even for one single time series, the

distribution may change over time. Then a plausible alternative approach is to make use

of the already computed model description for each time series. We use the query overlap

measure and the query summarization together to compare the similarities of user queries.

Specifically, to compute the summary of a given pattern, we first convert the 5-number

summaries to a vector of length 15 that consists of 5 values for each of the 3 model types,

respectively. Let va and vb be the vector representation of two patterns A and B. The

similarity score is computed as:

s(a,b) =
|A∩B|
|A∪B|

∗ arctan
(√
||va||2 + ||vb||2−2va ·vb

)
The similarity measure above is a combination of pattern overlap measure (Jaccard

similarity coefficient) and pattern summarization measure (Euclidean distance) normal-

ized to [0,1] space. Since the similarity is a pairwise relationship, another problem we

need to solve is to display the n by n similarity relationship in addition to the n glyphs

already displayed which is likely overwhelming. Thus, we design a color filter on the

alpha channel of the color space to fade the glyphs depending on how similar they are

to the focused one so that similar nuggets can be recognized (Fig 2.9 second row). The

similarity score s(a,b) between two nuggets (a and b where a is the highlighted glyph at

bottom right corner) is also displayed on the top left corner of each glyph.
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Figure 2.8: The views show a interactive exploration process for co-movement pattern
investigation. a) The overall drift pattern is presented as heatmap view. b) Filtered results
are shown after a range query is submitted. In the view to the right, co-moving patterns
are linked via color encoding. c) When the collection of growing time series are selected
the corresponding risk of this collection is linked to other portion of the views such as (d)
(e) and (f). d) The boxes have darker colors which indicates higher correlation. e) The
lighter color there shows lower correlation. f) The pattern is also showing some degree of
correlation but at high dispersion which means the collection is less likely co-moving.
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2.3 Evaluation

In this section, we discuss the evaluation of the MaVis framework using both a case study

and a user study. The main purpose of the case study is to show the typical analytic

workflow of MaVis using a financial stock price dataset. The user study is conducted for

testing our system regarding the usefulness and design choices.

2.3.1 Case Study: Stock Price Co-movement

The purpose of the case study is to show that MaVis is able to support the discovery of

patterns that are interesting to analysts, specifically people who often analyze stock price

data. To conduct the case study we collect data from http://www.crsp.com which is a

research center for security prices. The daily stock exchange data for all listed companies

dates back to the year of 1925 in NYSE and 1972 for NASDAQ. For the purpose of

evaluating our system, we collected a subset of the database by querying one category of

all the industries, namely, the USA based information technology companies classified

by SIC (Standard Industrial Classification) code with the range from 7371 to 7379. We

also clean the data based on the availability of data points from year 2006 to 2009. Time

series with missing values are discarded. After this cleaning process, out final collection

contains 348 companies and a total of 348,696 data points.

An analyst may have various questions she wishes to ask of her data before starting

the analysis. For example, ”What are the overall co-moving patterns in the data space?”

To analyze the co-movement patterns, the analyst first studies the time line movement

view (Fig 2.8a) to explore the data space. From the view, she perceives a dominant price

fall pattern around Jan. 2006 - June 2006. She then has a second question. ”Does

the selection of companies comove in the other months?” She then submits a constraint

query to preserve only the time series presenting a falling pattern before and near June
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Figure 2.9: The first row (from left to right) shows the summary statistics of the selections
in Fig 2.8d), e) and c). The second row shows the same glyphs with focus on a reference
glyph for comparison. The similarity score is calculated between the reference glyph and
the other glyphs (second row) and then the similarity score is rendered as alpha value of
the glyph color.

2006 (Fig 2.8b). After filtering, other perceivable patterns are revealed: the time series

start to climb and reach the first high point towards the end of 2006. Later on, starting

from early 2007, the time series start to rise again till the end of 2007. On the other hand,

the selected collection of time series have an overall increasing trend in the data space

according to the view (Fig 2.8b).

After seeing an overall pattern, the analyst may still want to know more details about

the dataset. For example, what are the other characteristics of the falling patterns in

June 2006? Are there any fluctuations within the co-moving collection of time series?

What are the risks associated with the increasing or decreasing drift tendency? To get

answers to these questions, the analyst moves on to the model similarity view (Fig 2.8

right) to study model descriptions for the selected collection of time series. In Fig 2.8c,
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the solid line rectangle highlights the user selected time series that have a relatively higher

drift estimate among the population during July 2006 - Dec. 2006. Then she notices the

degree of fluctuations in two time intervals (measured by moving average and marked by

dash line rectangles in Fig 2.8d, f) are correlated with the drift patterns. Specifically, the

color encoding suggests that the high growth pattern among the population during July

2006 - Dec. 2006 is correlated with the high degree of fluctuations (i.e., high risks) in

Jan. 2006 - June 2006. Also, the degree of fluctuations decreases while the collection of

time series are growing in July 2006 - Dec. 2006. This may indicate that the potentially

earning stock time series present high risks before they actually start to earn.

Next, the analyst may still have questions about the co-movement pattern relationship.

For instance, she wants to know how closely are the patterns related. The color encoding

helps her to identify a region of interest and to get an overall sense of where to look next.

To further analyze the dataset, she moves on to the nugget analytic view (Fig 2.9). The

glyph representation of the view is generated by summarizing the patterns browsed by the

user. She clicks on the rightmost glyph on the first row which represents the high drift

pattern. The second row of Fig 2.9 is used to display the correlation between the selected

glyph and the other two. In this case, the analyst found the growth in July 2006 - Dec.

2006 is more correlated to the high fluctuation co-moving collection in Jan. 2006 - June

2006 (with a similarity score of 0.61) than the low fluctuation collection in the same time

interval (with a similarity score of 0.3).

To conclude the case study, we have shown that analysts was able to uncover an overall

market down movement pattern in the dataset. She drilled down and found the fall of the

market followed by a growth of most of the companies. Furthermore, the growth towards

the end of the time frame is positively correlated to the degree of fluctuations at an earlier

time.
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2.3.2 User Study Design

We recruited 21 subjects including professors and students from the departments of Math-

ematics, Computer Sciences, and School of Business at WPI. The main purpose of this

user study is to validate the usefulness and design of the MaVis framework. 1) The use-

fulness test verifies if MaVis is useful to an analyst for undertaking a particular task. It

is evaluated by testing whether the useful information is delivered as expected. 2) The

design test quantifies how a user interacts with a view compared to other plausible alter-

native choices. It is evaluated by asking the subjects to answer the same question after

looking at either design X or Y. We record the time and accuracy of a subject on both

design X and Y. Then we ask for their preferences between X and Y. We randomly swap

the order of design X and Y for different subjects to avoid learning effect. The accuracy

is measured by which percentage of the subjects can get the right answer. The design X

is the chosen design in our system.

Next, we describe the user study design in detail. We ask each subject 9 questions

about the design 3 views in MaVis (3 question per view). The expected time to finish is

about 15 to 20 minutes based a pilot study involving a small sample of 3 subjects (not

included in the 21 subjects). The 3 questions for different views are in a similar format.

The first question (A) asks the subject to determine if she/he can spot a specific pattern

in either design X or design Y. The second question (B) asks if the subject has more

questions he/she wants to ask the system as follow-up questions. The third question (C)

asks which design a subject prefers, X or Y.

The visualization of MaVis mainly consists of 3 views, namely, the (1) time line move-

ment view, (2) model similarity view, and (3) nugget analytic view. We label our 9 ques-

tions using both the view number and the question number. For example, for the time line

movement view, we have the following 3 questions:

38



1A Do you think there is a growing pattern that involves at least 100 companies in the

year 2007?

1B Which of the following question would you like to ask? Choose the most important

one in your opinion. 1) How closely are the companies of the growing pattern related

in a different time interval? Answering this question may help analysts to understand

whether the co-movement pattern in 2007 is consistent over time. 2) What are the names

of these companies? Answering this question may help the analyst to confirm the pat-

tern based on their prior knowledge about these companies. 3) Do these companies

have other similar properties other than the drift pattern? Answering this question may

help analysts to get a broader picture about these companies such as understanding the

volatilities and seasonal patterns. 4) Don’t know. 5) Other.

1C Which design of the two in question 1A do you prefer?

The choices for any questions are typically like the following. For question 1A, the

user may choose to answer Yes, No or Don’t know. We further ask the user to mark the in-

teresting pattern (lines, bars or glyphs) if they answer Yes. Only the subject that answered

Yes and correctly marked the pattern of interest are considered a positive example for the

numerator of the accuracy computation. Furthermore, they need to answer the question

twice by looking at both design X and Y to validate our choice.

For question 1B, we want to understand if any further questions inspired by the current

view can be answered by the system next. Option (5) is used as a flexible response to

capture other thoughts from the subjects. The option (4) is for the subjects who have no

more questions and they don’t know any other questions next might be interesting. The

options (1) to (3) are the questions that can be answered by the system. For example,

the question ”How closely are the companies of the growing pattern related in a different

time interval?” can be answered by exploring the model similarity view.
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Figure 2.10: The chosen design of the views in question 1A and question 2A requires
less time for discovering the pattern of interest. The two glyph views tested in question
3A require relatively the same amount of time. However, the chosen design has better
accuracy as discussed in Sec 2.3.3.

For question 1C, we want to verify our design choices by learning about the prefer-

ences of each subject. For example, in question 1A design X and Y are used. Specifically,

based on the literature [AMST11] for multivariate time series visualization techniques,

line charts are the most appropriate design to compare with our binned design. As it ap-

pears to have the highest information density compared to the other techniques such as

ThemeRiver [HHN00], Braided Graph [JME10] and Circle view [KSS04]. We determine

our preference based on the time and accuracy measure of these alternative techniques.

The questions for the other two views are similar in style. We discuss the result

in Sec 2.3.3. The other 6 questions are designed to evaluate the model similarity view

and the nugget analytic view. The two design choices for the model similarity view are

discussed in Sec 2.2.2 (barcode view vs. histogram). The two choices for the nugget

analytic view are discussed in Sec 2.2.4 (linear space vs. circular space).
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2.3.3 User Study Result

The result of the user study shows that our system is reasonably useful when the subjects

are answering the assigned questions. For question A of all the three views, the time spent

of two groups of subjects for both design X and Y are summarized in Fig 2.10. It shows

the time spent on design X (our choice) and Y (alternative) over the 3 type A questions.

According to the result the choice we made for both the time line movement view (1A) and

model similarity view (2A) are better (with p-values as: p1 = 0.09 and p2 = 0.01) in terms

of time efficiency. We also observe our chosen designs are better in terms of accuracy

(Fig 2.12): [0.77 vs. 0.46] for time line movement view (1A) , [0.85 vs. 0.15] for model

similarity view (2A). For the two designs of nugget analytic view (3A), the difference is

not as significant in terms of time efficiency. Both glyph designs require similar effort to

understand. Regarding the view accuracy, the result is [0.54 vs. 0.31] for nugget analytic

view (3A) which shows our choices are better in terms of accuracy. The p-values are

calculated using R package t.test [R C12] with option of two.sided and default confidence

interval of 0.95.

For question B, we count the number of subjects who chose to ask questions that are

supported by our framework (option 1 to 3). We also count the number of subjects who

have no further questions (option 4). There are also a few subjects asked in-depth ques-

tions that are not supported yet (option 5). We show the result of question B in Fig 2.11.

According to the result, one user chose Other for question 1B (time line movement view)

and a second user chose Other for all the three views. They both left comments about

what other questions might be more interesting. These are in-depth questions such as

”why do all the companies drop at the same time?”. To answer these questions, analysts

may need to more work and collect more related data to gain a full picture. Using the

dataset we collected is not yet sufficient to answer it. It is beyond the scope of our toolkit.

Most of the subjects selected questions that can be answered by the system. It shows that
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Figure 2.11: Each question B has 5 options (x axis) a subject may choose from. Option 1
to 3 (Sec 2.3.2) for question B are supported by our system and the subject may dig further
to discover more insights. Option 4 is Don’t know which means the subject has no more
questions. Option 5 is Other and the subject may have additional questions to query the
system but we do not yet support those. Bars with 3 different colors represent three views
we are evaluating (1B:time line movement view, 2B:model similarity view, 3B:nugget
analytic view). Y axis represent number of subjects who chose the corresponding option.
Based on the result, few subjects chose option 5 indicating the framework covers most
their further needs initiated from the given 3 questions.
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Figure 2.12: Accuracy comparison between our choices and alternative options. Y axis
shows the percentage of subjects who correctly recognized the pattern in the design space.
X axis lists the design choices we have for the three views.

our system works as expected and it is able to guide the user to further investigate pat-

terns of interest during the exploration process. More subjects tend to choose option 4 in

nugget analytic view. As we can see in Fig 2.11, the green bar (model similarity view) is

higher and the orange bar (nugget analytic view) is the highest. This indicates that higher

level spaces tend to require more effort to interpret.

Task C collects the user preferences about the view choices. According to the re-

sponses, the percentage of subjects who prefers our final choice are 77%, 92% and 69%.

It confirms that we made reasonable choices for our final design.

2.4 Related Work

Recently, several works have attempted to utilize model-driven visualizations to help an-

alyzing data. The model-driven approach by Garg et. al. [GNRM08] described a visual
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analytics infrastructure that adopts logic reasoning to help reduce the complexity of visual

analysis by automating the selection of interesting patterns. This approach has a similar

goal to ours in that it aims to reduce visual complexity using algorithmic methods. MaVis

provides multiple automated modeling methods for data reduction and additionally allows

comparison and contrast between these methods to gain more insights.

Dis-Function [BLBC12] presents a system to learn the distance between data objects

with both user input and predefined metrics. It handles low-level optimizations such as

distance computation and presents high-level patterns to the user to aid the optimization.

In MaVis, instead of learning a single distance function, we aim to support analysts to

identify the relationships of time series in multiple model spaces with different ways of

measuring similarity. The Nugget Browser [GWR11] displays visual abstractions over

data points using clustering techniques which enables high level sub-group pattern dis-

covery. The multiple level abstraction is similar to our approach. In addition to that,

MaVis also supports user query analysis in the nugget space to help analyze the correla-

tions between the user identified nuggets.

In many cases, a single learning algorithm or a single view may fail to capture the true

characteristics of a dataset. The EnsembleMatrix [TLKT09] designed visual representa-

tions to present results from multiple models. The idea of combining different models is

similar to our approach. However, their views are designed to support the model assembly

process. MaVis is instead designed for data exploration while using modeling techniques

for data reduction. Potter et. al. [PWB+09] proposed the Ensemble-Vis framework that

consists of a collection of views at multiple scales which inspired our work. It combines

views to present information of different types to facilitate the exploration process. The

authors of CVVs [JE12] explored visual design spaces for presenting correlated visual

representations in case of complex heterogeneous data. These two works focus on co-

ordinating multiple views for complex information visualization. In MaVis, we provide
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linkage between multiple views across multiple analytic spaces. Furthermore, we support

coordination and interpretation of multiple models.

The visual mining work in the literature concerning user experiences is also relevant

to our work. Show Me [MHS07] proposed a query language VisQL that formalizes the

transformation from data to visual representations. To automate the process, Automatic

Marks are proposed to create rules for different data types so that views can be selected

accordingly by algorithms. In MaVis, we automate the data reduction process and map

the summarized information to the view space. No language is given, instead, we focus

on a selected types of visual representations for data exploration. Visual aided diagnosis

is another category of visual mining applications. Alsallakh et. al. [AHH+14] proposed

several visualization techniques to visualize the multi-class classification confusion ma-

trix so that the analyst may understand the source of errors. In MaVis, we instead focus

on the diagnosis of local errors of a modeling process. For example, when a global trend

is found over one year, the user may confirm whether the quarterly trends are consistent

with it with ease.

2.5 Summary

In this chapter, we present the MaVis framework. It is a system designed for identifying

co-movement patterns in time series dataset. It provides four analytic spaces that allow

the analyst to navigate between them. It integrates multiple models to support the inter-

pretation of the data space from multiple angles by comparing the different model types.

MaVis also captures local dynamics of the time series data and allows the user to analyze

connections between different time intervals. We evaluated our system with stock price

data in a case study and also conducted user study measured the performance of subjects

using our system.
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Chapter 3

Model-driven Feature Analysis

A feature modeling and visual exploration system FeaVis is demonstrated in this chapter

where the features are clustered based on feature similarities metrics. Techniques for visu-

alizing the redundancies between similar features are discussed, additionally, analysis of

features with partial similarities are supported. This work is mainly from an unpublished

manuscript [ZWRH12].

Nowadays, it is common to deal with high dimensional data while performing data

analytic tasks. On one hand, several automatic feature selection algorithms [ABK98,

MMP02,YL03,YL04] are proposed for boosting up the performance of machine learning

models by searching for the most suitable subset of features. On the other hand, a number

of quality metrics [YWRH03,SS04,PWR04,JJ09,IMI+10b] have been proposed for rank-

ing or reordering the features for maximizing interpretation of a dataset. Both directions

yield promising outcomes for data analytic tasks but are limited to their own domains.

This work instead investigates how to make use of the automatic feature searching strat-

egy but now supported also by the visual analytic techniques to facilitate the feature space

exploration.

The goal of FeaVis is to provide a visual analytic workflow for revealing the relation-
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ships between features of the input data and identifying a subset of interesting features for

further analysis. Both a clustering model and user-driven selections is provided to support

interactive feature analytics. It enables the analyst to interact with a cluster model space of

all the potential features. The appropriate relationship model of features are constructed

based on the redundancies among the features established using pairwise metrics such as

information entropy. The workflow is evaluated with real-world datasets collected and

analyzed by financial experts, and this work concludes that the pairwise metrics as well

as the clustering plus user-driven workflow is able to help the analysts to identify features

of interest that are consistently used by published empirical studies which usually involve

a long trial-and-error process.

3.1 FeaVis Workflow

The automatic feature searching algorithms and interactive feature selection methods

share the same goal to find most appropriate feature subset for a high dimensional dataset.

The found subset can be used either by a machine learning model (i.e., linear regression)

or visual analytic views (i.e., parallel coordinates) to further support data exploration.

This work aims to provide a generic framework that utilizes both automatic feature se-

lection and interactive visualization support to offer flexible feature exploration. An

overview of the system workflow is described in Fig 3.1 and explanation of each com-

ponent is introduced briefly below.

• Feature Clustering

– Automatic Weighted Feature Clustering: It is analogous to the data clus-

tering algorithms such as DBSCAN [EpKSX96] and K-means [Boc07] in the

sense that it groups features instead of data objects. However, the proposed

feature clustering process is different from classic clustering algorithm in the
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Figure 3.1: The overall workflow of the FeaVis system. The top 3 components are model-
driven algorithmic methods that search the most descriptive subset of features based on
given metrics automatically. The bottom 3 components are interactive visual support that
help refine and interpret the automatic processes.

following: The distance metrics in this work are specific to feature similarities

such as correlation, distribution similarity and cross entropy and thus is dif-

ferent from the commonly used clustering distance metrics such as euclidean

distance or cosine similarity. Further, this work integrates multiple feature

similarity metrics with a weighted aggregation to provide flexible feature re-

lationship analysis given different tasks.

– Cross Metric Similarity View: To support multiple metrics for feature clus-

tering analysis, this work integrates a line up view [GLG+13] to show the

most similar features to a specified feature under different metrics. The line-

up comparison is then used for spot checking whether the weighted clustering

result makes sense to the analyst for her particular tasks. The corresponding
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weight could then be adjusted to refresh the similarity metric for a updated

line-up view.

• Feature Ranking

– Diversified Feature Ranking: Many quality metrics (e.g., [SS04]) for mea-

suring the importance of features ranking metrics exist. However, ranking

metrics alone are not able to capture the interestingness of whole data space.

For example, in the process of searching for a feature subset for a linear re-

gression model, the top ranked features that are highly correlated to the target

feature may likely have colinearity and thus lead to linear models with bad

performance. This work focuses instead on a diversified feature ranking strat-

egy that selects the top-k interesting features while maintaining a certain level

of diversity so that the selected subset has less redundant information.

– Cluster Drill-down View: To support the diversity and the ranking explo-

ration all together the FeaVis workflow provides a Cluster Drill-down view to

explore the feature relationship within each cluster. The features are placed

in an increasing order in terms of their similarity to all other features of that

cluster. Therefore an analyst is able to pick the ones are less similar to others

(i.e., the more diverse ones) based on the view.

• Feature Pruning

– Partition Based Redundancy Pruning: To further refine the redundant fea-

tures in a cluster, the similarity between features in a cluster are further exam-

ined on different data partitions to detect partial redundancies. Each feature of

interest is partitioned into smaller bins first and then for each bin the similarity

between each pair of features are re-evaluated. This partition-based similarity
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measure can further help to remove redundant features if similarity is present

in a number of the partitions.

– Redundancy Inspection View: The view provides an overview of the partition-

based redundancy. The redundancy inspection allows the analysts to deter-

mine if locally a feature is similar to another one even though the global rela-

tionship does not have high similarity. The view lays out every feature within

a cluster and every partition on each feature is assigned a redundancy score

based on partial similarity measure within the partitions.

3.2 Feature Clustering

With a similarity definition, the features can be grouped into different structures. The

structure can be hierarchical [YWR02,YWRH03] or relative visual positions [YPH+04].

The similar features can then be refined to reduce the amount of information for dis-

playing [MMP02, YL03, YL04, IMI+10b], or can be placed together to enhance certain

visual presentations [PWR04, JJ09]. Grouping features is important in discovering inter-

esting patterns in different ways. In this approach, a hierarchical clustering algorithm with

Ward’s minimum variance [WJ63] is used to cluster the data features. The benefit of this

strategy is that the result from running the clustering algorithm better support interactive

re-clustering which can be driven by the user while examining the feature relationship in

the view this work provides.

Feature clustering is analogous to data clustering which classifies a collection of data

objects into subgroups by computing the distance between data objects using metrics such

as Euclidean distance. The feature clustering algorithm instead calculates the similarity

measure between each pair of features. There are multiple ways to compute the simi-

larities between a pair of features. Different similarity metrics define different types of
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feature redundancies, such as linear dependencies, statistical properties, and information

divergence. It is not possible to find a best similarity metric suitable for every possible an-

alytic task. This work thus integrates 3 different similarity metrics, discussed next, to meet

the needs of several analytic purposes. However, the framework is flexible to integrate

additional or other metrics as needed. Currently the FeaVis workflow supports Pearson

Correlation [Spe04], Central Moment Comparison [Ram02], and Cross Entropy [KL51].

Let us discuss the 3 feature similarity metrics first and then we introduce the weighted

clustering algorithm.

3.2.1 Correlation Coefficient

Pearson Correlation is a well-known statistical method that is used in many visualization

systems [JJ09, IMI+10b, PWR04]. The usage of correlation in these systems is to find

correlated features and group them to serve different purposes. The correlation coefficient

ρ between x and y is defined as

ρ(x,y) =
cov(x,y)√

var(x)var(y)

where cov(x,y) is the covariance between features x and y, and var(x), var(y) are vari-

ances of x and y respectively. The measure 1−|ρ| satisfies all the properties (positivity,

reflexivity and symmetry) that a similarity metric must have [ABK98]. 1− |ρ| has the

properties we need for clustering. The range of |ρ| is [0,1] where 0 and 1 indicate no

correlations and strong correlations (positive/negative), respectively. We use |ρ| here as

both the strong negative correlation and strong positive correlation between two features

suggest that they are redundant. In our system, we use a variation of correlation invented

by Spearman [Spe04].
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3.2.2 K-th Central Moment

Statistical properties of the features determine the quality of views formed by these fea-

tures. In Rasmey’s work [Ram02], moment-based strategies are used to determine the

shape of one dimensional data that can be used to rank the interestingness of features.

Similarly, Histogram Density Measure (HDM) [TAE+09] ranks the features based on

how well data points are separated which is a more specific application of 1-D dimension

ranking. We use more general statistics to measure each feature, as here we are more

interested in the general shape of each feature such as skewness.

The K-th central moment is a mathematical measure of a given statistical distribution,

represented as:

mk =
1
n

n

∑
1
(xi−µ)k

where k the the degree of moment, n is the sample size and µ is the mean. Since the

first central moment is 0 and does not contain any useful information, we use the mean

value instead. The second central moment is variance. The third central moment measures

skewness, which represents the symmetricity of a distribution. The fourth central moment

measures kurtosis which represents the shape of the shoulder and tails of a distribution.

We use up to the fourth moment in our system, as higher order moments characterize the

shape of the distribution in more abstract ways and are not visually perceivable. We scale

each feature to the range of [0,1] then we generate a feature vector of size 4 composed

of the mean value, variance, skewness and kurtosis of the feature. Then we calculate the

distance matrix between each pair of such feature vectors using Euclidean distance (other

distance metrics for the feature vectors can be plug in in the future). Thus K-th Central

Moment similarity metric effectively measures how the shape of the distribution of each

feature is different from others. A smaller distance between two feature vectors means the

two corresponding features have similar statistical shapes. Using this similarity metric,
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we are able to group the features with similar distribution shapes (e.g. bimodels) together

that may indicate some degree of similarities in terms of the real world processes that

generate the data.

3.2.3 Cross Entropy

Cross Entropy (or Mutual Entropy) is a measure of the mutual dependency of two random

variables in the information theory literature [KL51]. The definition of cross entropy is

based on the definition of Shannon Entropy (H):

H(x) = E(−ln(x))

where E is the expectation and x is the input feature. The cross entropy between dimen-

sion x and y can be represented as:

Hc(x,y) =
H(x)−H(x|y)
H(x)+H(y)

Hc(x,y) is proven to be symmetric and is bounded to [0,1] in [YL03]. The cross entropy is

also known as KL divergence [KL51]. It is used in a visual analytic application [SSN+11],

where the metric is used to measure the distance between two distributions. In our ap-

proach we also binned the continuous variables before calculating KL divergences. A

cross entropy of 0 means that given one feature, no extra information is needed to de-

scribe the other dimension. When two features are distinct, Hc approaches 1. In machine

learning domain, this property is often used as a metric to identify how well one feature

predicts another one that is considered one other type of similarity in this work.
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3.2.4 Automatic Weighted Feature Clustering

A single metric is often only useful for a limited scope of exploration. For example, the

correlation metric is able to detect linear correlations between a collection of features.

However, in many situations, analysts may want to explore the feature space to identify

the most descriptive features in the high dimensional space. Combining the metrics [JJ09]

can be a promising way of supporting interactive user metrics. Our work not only supports

interactive user metrics, but also enables metric comparison and refinement for feature

clustering.

The most important question this work tries to answer is, how do different feature

similarity metrics impact on the feature clustering process? In order to interpret the clus-

tering result under different metrics, FeaVis workflow uses a weighted clustering strategy

and allows the analyst to evaluate the effectiveness of each similarity metric interactively.

The main challenge of interactively comparing clustering results is to compare multiple

clustering results all together in a visual representation to support interaction based on per-

computed similarity relationship. Typically, a clustering process needs at least one scan of

the dataset which requires O(N) runtime where N is the number of data points. [XW+05].

The time for computing the distance between data points is often insignificant as the num-

ber of features d is often much less than the number of data points N. However, for the

clustering process in FeaVis, the time for computing distances between different features

is not insignificant. It is determined by the size (number of data points) of each feature

which is often large.

To support the real-time querying and analyzing the feature similarities across differ-

ent metric spaces, FeaVis uses a automatic weighted clustering strategy that aggregates a

set of feature similarity metrics. It allow the user to query similar features to one feature

of interest with the flexibility to specify what similarity metrics are more important. In

the meantime, it also help analysts to determine what user metric can discover interesting
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feature relationship by examining the feature similarity generated by a certain user metric

that is combining several predefined metrics.

Then we discuss a pre-computing and optimization strategy for interactive metric tun-

ning. It supports weight tuning and provide a local verification mechanism for visual

feedback without re-cluster the features. A naive way of finding clusters based on a new

user metric is to combine the similarity metrics first to compute similarities such that

similarity Sagg(X ,Y ) = θ1 · S1(X ,Y )+ θ2 · S2(X ,Y ). Then the clustering process is exe-

cuted according to the computed pairwise relationship by Sagg(X ,Y ). If a analyst wants

to adjust the weight during the analysis phase, the clusters have to be re-computed for

the user metric with new weights. Such pipeline is inefficient and FeaVis instead caches

the similarity by predefined metrics such as S1(X ,Y ) and S2(X ,Y ) and then perform sim-

ilarity search. The similarity search and visualization is performed by focusing on a user

selected feature and its similarity to other features. The similar features of that given

feature can be examined by only finding and visualizing the d− 1 pairs of relationship

instead of d · (d−1).

Similarity Matrix Pre-Computation

In this subsection we explain in more detail how we handle the feature similarity com-

putation. In FeaVis, the user metric between feature X and Y is calculated based on a

weighted sum:

simu(X ,Y ) =
3

∑
i=1

θisimi(X ,Y )

where simu is the aggregated user metric, simi is an individual metric such as correlation

and X and Y are two features.

The concept of caching is to store the similarity of each pair of features regarding X

and Y and a tuple of user weights 〈θ1,θ2,θ3〉 so that similarity based on any user metric
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regarding a set of weights can be acquired by using cache function f (X ,Y,〈θ1,θ2,θ3〉) in

constant time after adjusting the weight parameter θ . The computation of user metric in

this case can be very efficient. In reality the weight space can be huge as the weight can be

in any arbitrary granularity (e.g., 1E-6 at the scale of (0,1)) which may use a huge amount

of caching space. To tackle this problem, the weight are at a specified granularity 0.1 as

default so that the total number of combinations becomes an n choose k problem where n

is 10 and k is 2. It is equivalent to the problem of distributing 10 identical balls (total sum

of weight divided by default granularity) to 3 buckets (three predefined metrics). Adding

more metrics may require a finer granularity that is a caching problem that is out of the

scope of this work.

Similarity Verification with Sorted Neighbors

The next problem to be solved is to provide a feedback loop so that the goodness of the

customized user metric can be evaluated effectively by analysts through the channel of

visualization.

FeaVis supports spot checking the user metric and provides feedback to the user metric

weight setting by providing a comparison system that allows comparing feature similari-

ties among multiple metrics. Specifically, the spot checking compares the three sets of k

most similar features of any given feature X for the three corresponding metrics.

For example, for any user specified feature such as total assets, three lists are gener-

ated based on the cached similarity matrices of the 3 predefined metrics. If analysts have

any knowledge about this feature, they may contribute their knowledge to the process by

examining the three sorted list of most similar features and then adjust weights based on

their preferred lists. Then the generated new user-metric may be used to another itera-

tion of generating similar features based on the weighted aggregation. Since the iterative

adjustment is based on the cached pairwise relationship, it allows analysts to efficiently
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explore the metric space as well as the feature space.

Next, we discuss how the features are clustered based on the predefined and cus-

tomized metrics. As observed in Table 3.1, the features can be similar to a specified

feature (i.e., total assets) in a set of metric spaces. The three similar features based on the

correlation metric are total debt, total sale and total profit. Combining the three metrics

reveals that total sale and total profit are more similar to the selected feature: total as-

sets. However,the plain table view is not able to effectively guide the user to digest and

contribute into the customization process of user metric.

name correlation distribution cross entropy user metric
total debt 0.83 0.42 0.51 0.59
total sale 0.71 0.59 0.73 0.68

total profit 0.65 0.68 0.51 0.61
... ... ... ... ...

Table 3.1: Example of similar features for feature total assets. By default the aggregation
weight is 0.333 for each metric and the similarity is normalized to (0,1).

3.2.5 Cross Metric Similarity View

Next, a visualization strategy is introduced to support ranking of similar features by multi-

ple attributes (i.e., the multiple metrics for measuring similarities). The cross metric sim-

ilarity view is provided to compare and contrast the ranking result from multiple metrics

and allow the user to determine which features are more interesting based on a selection

of metrics. With the predefined metrics that are discussed earlier, an analyst is able to

hand craft user metrics by adjusting the weight of combined metrics and then observe an

refined similar feature sets in the cross metric similarity view (Fig 3.2). The main purpose

of this view is to guide analysts in creating a combination of weights for a user metric that

is appropriate for their tasks. Then how to adjust the weight for the predefined metrics is

the main problem to be solved here.
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Figure 3.2: The view shows a comparison between the 3 default ranking metrics (left) and
3 user metrics generated by combining the 3 default metrics (right). The user metrics are
generated by using different weight combinations, in this case [0.5,0.3,0.2], [0.1,0.8,0.1]
and [0.4,0.2,0.4] respectively. The feature on top is the focused feature and it has similar-
ity score of 1 to itself. Other features are ranked based on similarities to the focus feature
using different metrics. The length of bars represent the similarity score. (AT: total as-
sets; LSE: leverage; LogAT: log total asset; LT: total liability; SALE: total sale; GP: gross
profit; MKVALT: market value; XSGA: general expenses; DLTT: long term debt; XINT:
interest expenses.)

To guide the weight adjustment, the corss metric similarity view provides: 1) Ranking

comparisons between different predefined metrics; 2) The user metrics that are generated

by combining the predefined metrics using different weights. Inspired by the ranking

strategy in [GLG+13], this work incorporates a multiple ranked lists in the view.

For example, when an analyst is investigating a dataset before building linear models,

she may want to emphasize on the correlation metric by assigning a larger weight to it

and use smaller weights to the other two metrics. The question is what is an appropriate

weight setting? In FeaVis, any user specified combination of weights is evaluated in the

cross metric similarity view by providing a similarity ranking list of features (Fig 3.2). In

this view, FeaVis calculate the resulting ranking list against existing user metric settings

to detect if the new weights generate a new ranking list. The the weight settings that lead

to new results are preserved in the view space.

The cross metric similarity view implemented in this system allows analysts to iter-

58



atively adjust weight for each predefined metric and this way generate a weighting that

results in a new user metris for comparison. Such generated user metrics are used to

cluster the features for further analysis.

3.3 Feature Ranking

Previously, the features are clustered into similar groups to help the feature similarity

explorations. However, in many situations, the features within each group may have

different importance scores which implies the selection of features within a group is not

a trivial task. The degree of importance of one feature can be measured by, for example,

how representative it is in a group of features. Many different ways of determining the

degree of importance can be found in [BTK11]. The focus of this work is to rank the

features while considering diversity among them. During the ranking process, the feature

importance is calculated based on how close they are to each other and ranked in a spectral

space (Fig 3.3) as explained below.

3.3.1 Diversified Feature Ranking

By default, the most important features within the group are selected into the descriptive

data subspace. The main goal of this component is to rank and diversity the features

to help select most representative features. To support feature ranking, we use several

measures to help diversify the selection, namely, center-based metric and amount of out-

liers. In the mean time, to support the diversifying process, we design and implement a

feature neighborhood view (Fig 3.3) to show redundancies within a cluster of features.

The manual selection is supported by FeaVis to override the default ranking metric if the

analyst feels the features that are suitable for her task is not selected by default. Then she

can verify if her hypothesis stands by examining the neighborhood of the selected feature
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and the overall distribution of features within that cluster. We discuss our methods in the

following paragraphs.

Ranking Features by Importance

First, the ranking metrics that are integrated in this work are discussed. In a center-based

metric the analyst is able to rank the features in the order of how close one feature is from

the center of the cluster. We define center as

argmin
X∈G

(∑ f (X ,Y )) ∀Y ∈ G

where f is one of the similarity metrics we mentioned in Section 3.2 and G is the group

of features. This metric considers the features more interesting when they appear closer

to the center of a feature cluster. The semantics behind this metric is that the features

closer to the center are more similar to the rest of the group. Obviously, the features at the

boundary of the group is less similar to all the other members of the group. [BvLBS11]

uses a similar idea to filter the features in a redundancy group.

Amount of outliers is another interestingness measure for the features. Following

[WAG05], we choose the ωl and ωu as the lower and upper thresholds for determining

outliers on one feature. ωl and ωu are defined as

ωl = Q1−1.5∗ (Q3−Q1)

ωu = Q3 +1.5∗ (Q3−Q1)

where Q1 and Q3 are lower and upper quartiles of this feature. We use the proportion of

data instances outside the range of [ωl,ωu] as the outlying score.
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Diversifying Selections

In this view, each column represents one feature. The k-th row from the bottom in each

column represent the k-th nearest feature to that feature. Each color grid is used to present

the similarities between the current feature and its k-th nearest neighbor. The color grid is

arranged so that the farthest neighbor appears at the top of that column and the other grids

follow a descending order. Thus, the first neighbor appears at the bottom of the column.

The ordering of the columns are based on the result of a ranking metric.

This work uses a feature neighborhood view (Fig 3.3) to illustrate the redundancies

among the cluster of features. In this view, the highlighted column highlighted indicates

the default representative of this group that is prioritized by the default ranking metric.

The spectrum of that column indicates how close that column is related to its neighbors

shown as colors vertically where each color cell represents a similarity score to its neigh-

bor. Based on this view, we can see the columns to the left are close to other features

except two also the columns to the right are more distinct from other features. To avoid

selecting redundant features and manually override the default selection to represent the

whole group, a good strategy is to select from the right side of the plot.
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Figure 3.3: The detailed view of a cluster of features. The column represents a feature,
and for each column the color of a grid indicates how far this feature is away from its
neighbors. The first column is automatically selected as a representative of this group
(long rectangle). The small red selection box to the right in the view is a cursor over
selection which shows more information about that particular neighbor.

To further help examine the diversity, we also shows more information about the
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neighbors of one specified feature by mousing over the corresponding cell (shown as

the smaller rectangle in the view).

3.3.2 Feature Cluster Drill-down View

Following the workflow and three main computational components described earlier, we

now discuss the design decisions made for the visual representations that guide analysts

for exploration.

The design of the cluster view is inspired by the VHDR system [YWRH03] and the

Interring system [YWR02]. The feature hierarchy in these two systems can help the

analyst to interactively select/brush features of interest to do further analysis in a lower

dimensional space. The hierarchical representation uses derived features to represent the

underlying similar features. In some domains, such as financial analytics, analysts prefer

features that are collected or computed by other experts that actually carry important

meaning. The derived features commonly used for visual representations are often hard

for the analysts to interpret. Instead, in our approach, we thus use a cluster view that is

based on the hierarchical structures generated by the algorithm and similarity metrics we

discussed in Section 3.2, Section 3.3 and Section 3.4. Although the hierarchical structure

is not displayed in our view (Fig 3.4), we allow the analyst to control the clusters by

supplying a cutoff value. In the meantime, the statistics of each group are updated and

displayed. We also considered incorporating the summary statistics of each group into the

hierarchical view, but decided the resulting view was cluttered and less scalable. After

such considerations, we chose to use a scatterplot and profile glyph (Fig 3.4). The layout

of the scatterplot is computed using an MDS algorithm [CC00] offered in R [R C12]. The

profile glyphs are used to show summary statistics of each cluster.

The statistics we provide to the analyst include 1) the size of the group, 2) the average

distance, 3) the variance of distance and 4) median distance between any pair of mem-
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Figure 3.4: Cluster view of 45 features in 10 groups, including one single element group
represented by a cyan rectangle. The group can be selected/unselected and the selections
are marked with small red boxes. The black circle over the group indicates a marked
focus group by an analyst, the details of the focus group are displayed in a different view,
shown in Figure 3.3.

bers. The four measures provide an overview of each feature cluster that help analysts to

identify cluster of interest for drilling down analysis. The interestingness of glyph shapes

64



are illustrated in Fig 3.5.

Figure 3.5: (a) A relatively large feature group with high in-group similarity, indicated
by the relatively low average distance, as well as low variances. It indicates the large
group of features are very similar to each other. Thus the redundancies in this group is
significant. (b) Based on the same reason, b shows high intra cluster similarity but it is a
much smaller cluster. (c) It is a relatively large group with low in-group similarity. The
confidence of removing redundancies in this group using automatic methods is less for
the group on the right.

The cluster on the right is worth further investigating as the degree of redundancy is

relatively higher than other two clusters. The other two examples show a large and small

cluster with a fair amount of redundancy. The hierarchical clustering cutoff parameter is

controlled by the analyst which is used to generate clusters with specified distance range.

There are at least two good ways of implementing the glyph layout [War02]: (1)

Place the glyphs based on the glyph similarities so that feature clusters with similar intra

cluster similarities are placed at neighboring locations; (2) Place the glyphs based on inter

feature similarities, so that the groups that have similar features are near each other. The

advantage of (1) is that the feature clusters of interest to a particular analyst are neighbors

in the view; it can speed up the exploration as the analyst is able to identify similar glyphs

in a relatively small region. The layout (2) can tell the analyst how similar any two groups

are based on their relative positions on the screen, while the layout (1) does not provide

such information. Hence, during the interaction of adjusting the number of groups the
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analyst is aware of what an appropriate stopping point is based on the distribution of

the glyphs in layout (2). We considered implementing both but switching between two

layouts loses context. This hinders the ease of the exploration process. We thus proceeded

with design (2) after considering the advantages and disadvantages. The key reason is

that the patterns found in (1) can be seen in (2) given some extra time (by recognizing the

shape of the glyphs) but some patterns (i.e., inter cluster relationship) in (2) can not be

seen in (1).

Figure 3.4 shows 10 groups and one single element group (represented as a small rect-

angle). The red box outside of each glyph indicates the group is selected as descriptive.

The analyst can select and unselect any glyph by a single click. Unselecting one glyph

means all the features of that group are considered not interesting and thus are removed

from the descriptive subspace.

3.4 Feature Pruning

In this section, this work primarily focuses on identifying redundant features from the

stability perspective as some of the redundancies may only exist in certain subsets of

data space. Partitioning the data space on the features can help the analyst identify local

correlations. Such local patterns indicate whether the local redundancies exist that may

not be captured by the clustering and ranking methods discussed earlier.

3.4.1 Partition Based Redundancy Pruning

Next, a partition based redundancy pruning and inspection method is introduced to sup-

port feature pruning in a local subset data space. The descriptive features we get by

applying metrics globally on all data instances may be less meaningful for some subsets

of the dataset. In order to investigate the local redundancies to determine a good set of
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features on different subsets of data points, we first partition the data into smaller subsets

and apply the similarity metrics to each partition to get local similarity. Then the sta-

bility of the similarity relationship between different features is computed across all the

partitions.

The approach in [MBD+11] offers two partitioning methods, which we think are typ-

ical in subsetting high dimensional data: 1) Partition all features based on one feature; 2)

Partition each single feature based on the values of that feature. Neither of these satisfies

our need. The local patterns we are interested in are redundancies between features. Thus

correlations between features should be presented to the analyst after the partitioning.

Method 2) is not able to show the relationships between the features locally, because the

partitioning on each feature is independent of each other. As for method 1), it can be

effective if the one feature we choose to partition on has good local structures, but the an-

alyst may have to exhaustively search the possibilities. Another way of partitioning high

dimensional data on all features is to iteratively embed the features as in the dimensional

stacking display [LWW90]. The downside of this method is that the size of bins after

combining all features is small and hard to control. Also, the number of bins could grow

to bd , where b is the number of bins on each feature and d is the number of features. After

considering the above alternative options, we decided to use a parallel partitioning method

where the data space is partitioned on all features one by one, and the partitioning result is

saved for each feature. The partition strategy of this process is shown in Figure 3.6 where

the top path shows partitioning on Dim 1 and the bottom path shows partitioning on Dim

2.
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Figure 3.6: Illustration of process for partitioning on two features. The bin size is 3 and
the number of bins is 2.

For each feature we partition on, we use equal count binning, where each bin has the

same amount of data points. Using equal width binning can certainly be an alternative

option, but enumerating all possible binning methods is not our primary goal. The main

idea of our work is to show the interestingness of the local patterns, not how best to define

the semantics of ”local”. The local patterns we show in Fig 3.7 are based on equal count

binning.

3.4.2 Redundancy Inspection View

The inspection view is mainly used to inspect the stability of the feature similarity rela-

tionships over different data partitions. To present the stability of the pairwise similarity

is a challenging problem in that the number of possible partitions is large. For a cluster

of features of size k, the pairwise relationship is k2, the complexity increases to k ∗ p∗ k2

where p is the number of partitions on each feature. To quickly guide the analyst to

68



the most relevant information, the redundancy inspection view aggregates the similarity

relationship before visualizing the stability.

The similarity between each feature and all other features are calculated and summa-

rized using average similarity. The similarity between feature X and all other features in

{S−X} are averaged to a summary description to measure the similarity of X to other

features in the cluster S. Then, each partition of X is measured against the corresponding

partition of all other features to generate a list of local similarity averages.

The next step is to visualize and compare these local similarities with the global sim-

ilarity measure. In order to gain confidence before pruning any features from the final

selection, an analyst still needs to examine the stability of the relationship between one

feature and the others. FeaVis compare the local similarity to the global similarity by

plotting the local similarity against the global similarity.
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Figure 3.7: The analysts may examine the stability of the feature similarity across every
partition. In this view, each histogram view represents the stability of one feature vs the
others within a cluster. The horizontal red line indicates the global similarity between
the given feature and the others. The label underneath each histogram represents the
name of the given feature. The x-axis of each histogram represents partitions generated
on the given feature arranged from low value to high value from left to right. The y-
axis represents the degree of redundancy from low to high. The shape of the histogram
represents the stability based on how close the bars are to the red base line.

To identify features to be pruned based on the above information, an interactive explo-

ration method is required. In Fig 3.7, an analyst is able to determine the relatively more
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redundant features are the features on the bottom 2 rows where the stability across differ-

ent partitions is high and they are close to the global similarity measure. Discarding these

features lose less information as the similarity relationship of those features are stable in

the local partitions relative to the global space. The top two rows are not ideal candidate

to discard. The redundancy score of local partitions are lower which means the features

are less similar in local partitions.

3.5 Evaluation

In this section we introduce how to use our system through examples. The examples we

use are in the financial domain. However, our system is not restricted to this particular

domain and other datasets have also been tested. The purpose of using a domain spe-

cific dataset is to get feedback from experts and compare our visual representations with

published empirical studies. In this domain, analysts often deal with modeling problems,

such as identifying the characteristics of high risk. One of the biggest challenges in the

modeling process is to find an appropriate subset of features to use. Typically, their se-

lection process is based on the domain knowledge of an analyst. It relies on experiments

or results from other studies. Few published works discuss methodologies that lead to a

systematic way of choosing features. This section shows our system is able to facilitate

the selection process by suggesting features that are similar to the ones identified in em-

pirical studies. We also show that alternative features can be selected in some subsets of

the data space to improve results. Through this case analysis, we show that our real-time

interaction framework can achieve similar outcomes to the studies that require significant

efforts by domain experts. The use case studies we use focus on building models to detect

abnormal financial activities.
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Literature Database Explanation
DEBT/EQ DEBTEQ Debt/equity
SAL/TA SALTA Sales/total assets
NP/SAL NPROFSA Net profit/sales
NP/TA NPROFTA Net profit/total assets

RLC/SAL RECSA Receivable/sales
WC/TA WCAPTA Working capital/total assets
GP/TA GPROFTA Gross profit/total assets

INV/SAL INVSA Inventories/sales
TD/TA DEBTTA Debt/total assets

LAT LogAT Logarithm of total assets
ZSCORE Altman zscore

EBIT Earning before interest and tax
ARchange Account Receivable change

Table 3.2: Explanations of features

3.5.1 Data Description

We extracted 45 features from Compustat [SP12], a database of companies in North

America. The 45 features include those used in 3 financial studies, along with some

miscellaneous features suggested by domain experts. Each feature is a measure of the fi-

nancial status of the companies; for instance, such measures can be the sales, gross profit,

and working capital. The features selected by financial experts are usually used to dis-

tinguish abnormal financial activities (e.g. falsifying financial statements) from normal

ones. In Spathis’s study [SDZ02], there are 10 chosen features. The notations in the

database and our system are different from that used in Spathis study. We have a trans-

lation in Table 3.2, which also includes features in other studies [Suy09, Alt12, KSM07].

The number of companies we extracted from this data base is 3,791.

3.5.2 Case Study: Representative Financial Variables

In this section, we show a walkthough of our system. The analyst loads the dataset we

described into the system.
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By default, every feature is visible to the analyst and visual patterns are hard to per-

ceive. We start a reduction pipeline. The 3 views we described in Section 3.2 are shown.

The cluster view shows several groups of features with summary statistics for each group

(Figure 3.4). The cluster detail view (Figure 3.3) and the local view (Figure 3.7) show the

largest group by default. In the meantime, selected features by analysts are visualized in

a parallel coordinates view (Figure 3.8).

The next step is to refine this view by adjusting the number of groups and changing the

representatives of any group if the analyst feels better representatives exist. The analyst

starts to adjust the size of clusters by changing the cut-off value of the hierarchical cluster-

ing result. The more clusters she allows, the less redundancy to be removed. The extreme

case is that every features is a single element cluster and thus by default all of them are

selected as representatives of themselves. In this case no redundancy is removed. The

other extreme case is only one feature is left, representing all other features. The more

meaningful cases are when the analyst forms several groups and the number of groups is

close to the number of features she wants to handle.

After the adjusting, she can continue with fine tuning or go ahead with the automati-

cally selected features within each group. One group representative is shown at the bottom

of the screen when the cursor is over any profile glyph in the cluster view. Some group

representatives (i.e. AT) may not make much sense to her. In that case, she can double

click on one of these groups and go to the detailed view of the group. Every member of

that group is displayed in the cluster detail view (Figure 3.3). The analyst may feel that

“LogAT” better represents the group; she then disables the red box over features “AT” by

clicking on the column “AT” and enables the feature “LogAT” by clicking on the column

“LogAT”. She can modify other groups with manual tweaking and then stop to investigate

the data space view (Figure 3.8). She can also further fine tune the model by looking at

the local properties of a certain group as in Figure 3.7.
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Figure 3.8: This view shows the features selected by global redundancy measure when the
analyst finishes adjusting the number of groups. This selection is done without conducting
any local redundancy analysis.

In the local view, the group features are less similar to each other in certain partitions

(e.g., data points with low values in “LogAT”) than in the global space. This may indicate

the group members may be less similar in these partitions. The redundancy she removes

based on the global similarity may mislead her to sub-optimal selection of features for

these partitions. She brushes over the histogram “LogAT” and marks these partitions

(Figure 3.7). A different grouping of the features is formed based on the similarities

between features in the portion of the data she selects. She can switch to the data space

view (Figure 3.9) to check the features that are representatives of the groups for the subset

of data she selects.

3.5.3 Comparison to Empirical Studies

We compared the features picked by analysts over the workflow of the FeaVis System to

the three published empirical studies [SDZ02, KSM07, Suy09]. The automatic process
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Figure 3.9: This view shows the features selected by local redundancy measures over a
subset of data points. This view is generated after the analyst brushes the partitions of
interest.

identifies several feature groups (represented as several sections in Table 3.3) and selects

one representative feature out of each group by default. The selected features cover all

the feature groups as we can see in the table. Using our dataset that is collected by

analysts, some of the empirically chosen features are redundant as they appear in the

same feature group. It is very common problem the empirical studies often encounter.

When an analyst deals with a different dataset, the guidelines provided by the literature

may not be perfectly appropriate. We show the level of redundancy with 1−|ρ| (ρ is a

correlation score) in Table 3.3. Moreover, our system help identify the 3 core features that

are used in all the three studies. It indeed offers the analyst a relative good starting point.

She can choose to interact with the system and adjust the selection towards an improved

descriptive subset of features. Two of the empirical studies use redundant features for

their modeling process. Likely, the reason may be that domain experts want to emphasize

the contribution of a particular feature group in a particular task. The other reason could
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be that the dataset collected for this work has different redundancy relationship.

Another interesting observation is that for companies with lower values of “LogAT”

(smaller firms) the most informative features shown in Figure 3.9 are not the same as the

features we get globally in Figure 3.8. Treating firms of different sizes differently is a

common strategy in financial analytics. Our local view provides them a tool to investigate

any partitions on any feature.

Name [SDZ02] [KSM07] [Suy09] Our pick
SALTA x x x x

GPROFTA x x 0.38
NPROFTA x x x x
NPROFSA x 0.12

EBIT x 0.15
DEBTTA x x x x
DEBTEQ x x 0.39
ZSCORE x 0.18
INVTA x x
INVSA x 0.16

WCAPTA x x 0.59
WCAP x 0.70

ARchange x
RECSA x 0.78

AT x
LAT x 0

COSAL x NA

Table 3.3: The mark “x” indicates selection of that feature. The numbers in the last col-
umn are the measures of correlation (1−|ρ|) between the selected feature and unselected
features in a group. NA means there is no such feature available in our dataset.

3.6 Related Work

Strategies for finding lower dimensional projections of interest have been discussed in

many works [AWD12,AEL+10,BM01]. In these works, the primary task is to project the

original high dimensional data into a lower dimensional space that is human interpretable.
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These approaches are similar to our approach in the sense of searching for lower dimen-

sional representations of the original high dimensional data space.

Another related approach [IMI+10b] combines similar features together and use syn-

thetic features to represent the joined features. The above techniques generate a lower

dimensional data space through matrix transformations and other computations. The

features generated by such computations do not have any readily understood meaning.

Therefore, it is more challenging for the domain experts to interpret the result. In our ap-

proach, we focus on keeping the data semantics in the lower dimensional representations.

In searching for meaningful structure in a high dimensional dataset, quality met-

rics [JJ09, BTK11, PBH08, SS04, TAE+09, PWR04, WAG05] are used to measure the in-

terestingness of the features. Dimensions (1D) or combinations of dimensions (2D and

higher) are promoted or demoted based on the interestingness score assigned by the met-

rics. These approaches are able to identify subsets of dimensions of interest. However,

while ranking the features based on quality metrics, redundancies between the features

may be high within the promoted set of features. The metrics-driven approaches do not

in general take into account the redundancy relationships between the features. In our

approach, we integrate ranking metrics as well as redundancy detection techniques for

selecting more informative features.

Strategies for redundancy removal have been discussed in many machine learning

approaches. In [MMP02] similar features are grouped iteratively and part of the group

is removed based on a pre-defined threshold. The result set contains the features that

are considered representatives of the groups. A similar but supervised selection process

is described in [YL03] and its follow-up work [YL04], where the redundancy removal

within a homogeneous group also considers the relevance of features to the target fea-

tures. In [PLD05], the authors discuss the combination of min-redundancy and max-

relevance and also evaluate the proposed methodology with different datasets. All these
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approaches are effective in finding descriptive features, but less interactive for hypothesis

verification. In our approach we are building our system upon these strategies and offer

user interactive exploration so that their hypothesis can be verified and confirmed through

visual presentation and interactive analysis.

The subspace searching approach [TMF+12], the VHDR method [YWRH03] in Xmd-

vTool [War94], and Visual-FSSEM [DB00] are systems very similar to the concept of

our work. [TMF+12] allows the user to refine the subspace found by a heuristic search

process. [YWRH03] visualizes the relationship between features in a hierarchy struc-

ture. [DB00] takes user input at each iteration of the sequential forward search. However,

the search part of the workflow in [TMF+12] does not support user input that it can hardly

be altered as needed. The reduction schema in [YWRH03] does not provide a descriptive

subset of features by default and the analysts need to do the selection by trial and error.

In our system, we focus more on guidance for the analysts so that they may perform the

analysis with default options. In the meantime, the can drill down the local analysis if

needed.

The system in [BvLBS11] is capable of identifying feature redundancy based on pair-

wise comparison; the filtering stage of this approach retains the center of the group. In

our approach, we integrate multiple filtering strategies, including the center based ap-

proach. Additionally, we allow the user to manually select different representatives for

each group. SmartStripes [MBD+11] is a visualization system designed for redundancy

discovery. Both the global redundancies and the local redundancies are visualized and

presented to the user. However, in order to effectively remove the redundancy, proper

guidance must be integrated, such as ranking and filtering strategies. Another limitation

of the system, as the author suggested, is the partitioning process, which may be burdened

by the selection of reference features. We address these limitations in our approach. Ad-

ditionally, the user is able to use our system to identify alternative subsets of features after
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spotting the local partitions of interest.

VaR [YPH+04] and DimStiller [IMI+10b] also inspired our work. The VaR system

uses an MDS layout to show the similarities between features. Thus redundancies can

be readily perceived. FeaVis provides more flexible interactive exploration methods in

that similar features to a specified feature can be ranked. The correlation view in the

DimStiller system removes the redundancies by a predefined threshold, and generates

synthetic features to represent the removed ones. The goal of our work is to instead

search for descriptive features that are readily communicable for different analysts. In

that case, the derived mathematical representations are more difficult to understand.

3.7 Summary

We have described a hybrid system for feature selection that allows interaction and re-

finement at different level of details. It supports redundancy removal based on grouping

and ranking features with default options. The analysts may choose to dive deep into one

or several of the tasks such as local redundancy analysis.

Another contribution of this work is that our system integrates several commonly

used quality metrics for filtering the features. Moreover, we also detect redundant features

while analyzing the feature relationships. Based on this redundancy discovery process, we

show the user the automatically selected non-redundant data features. Also, we allow the

user to identify alternative non-redundant features according to their domain knowledge

and visual feedback.

Lastly, our system enables local redundancy analysis in a three stage framework. The

first stage shows the groups of features, where the user is able to identify the group of

interest. The second stage shows group details, where the user is able to identify features

of interest. Also, she is able to select or unselect any features to form an improved de-
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scriptive subspace. The third stage shows patterns of local data partitions. The user can

discover partitions of interest based on the visual feedback. She can also fine tune the

selection of features for a subset of the data points.
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Chapter 4

Local Model Diagnosis

A visualization system are demonstrated in this chapter for better visual model diagno-

sis where linear model training is embedded within visual interactions to facilitate model

refinement. Most metrics for evaluating regression models are global in nature, and thus

not useful for identifying local patterns. In this work, an integrated framework with visual

representations is presented that allows the user to incrementally build and verify models

to support local pattern discovery and summarization. This work enables the discovery

of complementary models in terms of their performance locally on different subsets of

the whole data space. A diversity measure is also provided to support the isolation of

local models to reveal confounding factors during the regression analysis. Furthermore,

this work integrates a hierarchical representation to identify abnormal local trends as well

as common local trends. The former trend shares little with others while the later shares

common characteristics such as slope and intercept. Real-world data is also used to eval-

uate the work and it shows the work is able to complement the computational algorithms

in Weka. This part of work is published in EuroVis [ZWRH14].

In this chapter, three components are used to visually evaluate the performance of

linear models from different perspectives. First, the Model Complementarity model eval-
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uates the goodness of several feature combinations and measures how well they com-

plement each other. In this view space (discussed in detail in Section 4.1), the model

comparisons (Figure 4.3c) are visualized and presented to the analyst. This work also

describes how to characterize the degree of complementarity between different features.

Second, the Model Diversity measures how much local diversity a set of features

have. In this view space (discussed in Section 4.2), the local data spaces are generated

via partitioning methods that are used to evaluate local performance of models in each

partition. The measurement of diversity is also discussed in this space, which is ranked

and visualized in Figures 4.3d&e.

Third, Model Representivity measures the degree of similarities between local models.

In this view space (Section 4.3), we discuss how the representativity of a group of local

models is measured. This helps us to determine how well a group of local models is

represented by a single model. We also discuss how the view (Figure 4.3f) is designed to

seek balance between coverage of a group of local models and the divergence within the

group.

The overall workflow of the system is analogous to how a linear model is generated

automatically. The first step is to evaluate which features are more relevant to the target

feature. Then for the diversity metric, it measures how diverse the local performance of a

selected feature set can be. Lastly, to avoid over-fitting, the local models can be merged

after calculating the representativeness of them by clustering the model parameters.

To achieve the above goal, three model specific metrics are proposed and used in this

work based on how much data are used to evaluate the quality (global measure vs. local

measure) and how much data are used for constructing the models (global model vs. local

model) as the Table 4.1 shows:

In the first space (top-left), linear models are built on all data points and the perfor-

mance (goodness of fit) of the models are measured on all data points using Coefficient
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Global
Measure

Local
Measure

Global
Model

R2,
RMSE

Model
Complementarity

Local
Model

Model
Representivity

Model
Diversity

Table 4.1: Model specific metrics for quality evaluation

of Determination (R2) and Root Mean Squared Error (RMSE). This space together with

3 other spaces are shown in Table 4.1. Here, the local measure means the models are

evaluated against a subset of data points. For example, companies with asset value be-

low 1 million (small companies) and companies with asset value over 10 billions (large

companies) can be two subsets of data in a financial dataset. The local models are the

models specifically built in a local data space, such as a risk prediction model for small

companies and another are for large companies. Since the metrics in this metric space

has already been commonly studies by many other researchers, the metric spaces we pri-

marily focused on in this work are model complementarity, model diversity and model

representativity.

Below are two examples that show the insight of investigating local measures:

First, Figure 4.1) shows two models with bias towards opposite directions for part of

the data space. Additionally, data with more complex structures can be described after

tunning the simple linear models. These examples show that different local measures

reveal different properties of the original model.

Regarding the this example, analysts may want to learn how the models complement

each other locally, namely, (a) on which subset of the data does one model have a smaller

error than the other? and (b) on which parts of the data does one model overestimate the

dependent variable while the other underestimates it?

Second, Figure 4.2 shows different ways of defining multiple local models for the
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Figure 4.1: The two plots show that the two models displayed by the line trend oppose
each other in terms of bias. Model1 has the tendency to underestimate and Model2 tends to
overestimate when the total asset grows. The y-axis shows the goodness of fit (residuals).
The x-axis is the value of total assets (one of the independent variables). DLTT: Total
long-term debt; LEV: Leverage; MKVALT: Market value

same data. With different segments, the simple linear model can more flexibly represent

the underlying data.

For this example, an analyst may want to understand (a) are there any local models

that significantly overperform the global model in terms of model fitness? (b) how many

distinguishable local models are appropriate to describe the multiple trends in the data?

(c) what are the best cutting values for forming appropriate subsets for isolating the local

models?

Two example solutions are: 1) to build local models on every single data point or; 2)

to build one model for all the data points. However, the first case is overly complicated

while the second case is not capable of capturing local patterns. This work focus on

finding solutions inbetween these two. Regarding the isolated local patterns in example 2,

an analyst may further ask, (a) how different are these local models w.r.t. their direction

(e.g., slope and intercept)? (b) do these local models comply with the direction of a

representative global trend? (c) are there any outlier trends to oppose the majority of
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Figure 4.2: The plots represent how the linear relationship between two variables can
differ when considering different partitions of data points. From a domain expert point
of view, both high return and low return companies have relatively high risk; intermedi-
ate return (fluctuate around 0) companies tend to follow a trend whose risk is reversely
proportional to the return.

other trends?. We will be discussing how we answer these questions in the following

sections.

4.1 Model Complementarity Visualization

This section introduces: 1) how we measure goodness of fit of a model locally; 2) how

we compare models based on their local measures; and 3) how we visualize the model

complementarity based on the model comparison.

4.1.1 Goodness Measure

Consider the following scenario: A financial analyst found that a risk model she built is

dominated by large companies. This means that the fitness (measured by residuals) is

smaller for large companies. She wants to find out what additional variables can help

the model to perform better on smaller companies.

To make the scenario more specific, the dependent variable she uses is the bankruptcy
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Figure 4.3: Integrated analysis framework with 3 stages. 1) Variables are ranked by their
relevance to the dependent variable. The scatterplot (a) shows the relationship between a
selected independent variable and the dependent variable. The global models built by the
analysts are listed in (b). Model complementarity is presented in (c) for refining a model
in (b). 2) Local models can be derived from a selected global model and are presented in
(d,e). 3) The local models are grouped and summarized in a hierarchy (f).

risk of companies labeled by financial analysts [WGG10]. The independent variables are

financial attributes, such as working capital (WCAPTA), liability (DEBTTA and DEBTEQ),

and total assets (AT). Next, the residual is defined as Y−Ŷ , where Y is the dependent vari-

able and Ŷ is the predicted value. The analyst wants to learn for which portions of the data

the model performs poorly, and for which portions of the data the model overestimates

or underestimates. Hence, we need to investigate the local performance in local data sub-

spaces using additional independent variables such as total assets to investigate whether

there exists local models that behave differently from the globally trained model. The

relationship between residuals of a linear model and the additional independent variable

can illustrate where the model performs poorly (the small companies in this scenario).
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4.1.2 Point-wise Comparison

Now, we conduct a point-wise model comparison. In Figure 4.1, the residuals of two

linear models are plotted against an additional independent variable, total assets. Both

models predict rather poorly as indicated by the large absolute values of residuals for the

smaller companies. That is model1 tends to under-estimate (positive residuals) the risk

of larger companies while model2 tends to over-estimate (negative residuals). In order to

reduce such errors, we could take the following actions.

In practice, the two conditions for complementarity are: 1) error complement; 2)

bias complement, as we will explain next. For a list of local partitions p1, p2, . . . , pn of

the given dataset D, let the local errors of a model A be ea
1,e

a
2, . . . ,e

a
n. The above two

conditions for complementarity between models A and B are defined as:

∃i :(|ea
i |>> 0 ⇒ |eb

i | → 0)

∨ (|eb
i |>> 0 ⇒ |ea

i | → 0) (i ∈ N, i≤ n)
(4.1)

∃i : (ea
i ≈ ε ⇒ eb

i ≈−ε) (ε ∈ R) (4.2)

Intuitively, the two equations can be interpreted as: 1) the large errors of one model align

with the small errors of another (Equation 4.1); 2) the over-estimation of one model aligns

with the under-estimation portion of another (Equation 4.2).

4.1.3 Stacked Binned Summary View

A point-wise comparison becomes impractical as the number of data points gets larger. To

help analyze the complementarity between models, we design a stacked binned summary

view. The design is inspired by the visualizations for model local performance in [MP13],
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where the residuals of two models are compared in a 2-D space-filling display using |Y −

Ŷ1|− |Y − Ŷ2| which is the performance difference of two models. Rather than showing

the model differences we are instead interested in determining whether the combination

of the two models is cost-effective. The cost is that adding each variable to a to-be-refined

model increases the model complexity while helping with performance. Hence we want

to know which variable helps to improve performance better.

We believe the models that complement each other form a better combined model

(union of variables). The performance of the combined models can be examined in our

table (see in Figure 4.3b). In order to compare the local performance of two models, we

use Tukey’s 5-number summary [Tuk77] to measure the distribution of residuals. In order

to compare the local performance of two models, we need to plot two groups of box plots

side by side. To visually enhance the comparison we provide a visual design (Figure 4.3c),

to present the comparison and contrast. This particular design decision is made after

experimenting with parallel bar charts and parallel box plots. The parallel bar charts only

show the number of data points that fall into a particular partition, which is quite limited

in determining the complementarity relationship. The parallel box plots provide more

information but take a lot of screen space. Finally, we chose vertical lines with five dots

as an alternative representations of classic box plots. To enhance comparison, we also use

horizontal line connections to represent the second group of box plots by connecting the

corresponding dots on each box plot.

Now we discuss how to define the local measures. A data partition (or range query)

is needed to evaluate models locally. To define the data partitions, we use a reference

variable driven partitioning method [MBD+11]. We chose the decomposition strategy

that allows comparisons across other variables because we need to compare models that

are formed by multiple variables over each data partition.

Next, we describe variable rankings in our system. Variable ranking is utilized to
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support model refinement (Figure 4.3a) by showing the user the most promising variables

first. The ranking score between an independent variable and the dependent variable

are measured based on local partitions of the independent variable. Specifically, R2 is

computed for each partition formed by the independent variable of the dataset D. The

final score then is the maximum R2 over all these partitions.

Figure 4.4: A candidate model LEV complements the to-be-refined model DEBTTA (in
the yellow box). The y-axis represents the error spread of two models. Positive (Negative)
values suggest bias towards underestimate (overestimate). The x-axis represents local
partitions where the errors are estimated. The theme river design [HHN00] represents the
residuals of the to-be-refined model. The red vertical lines represent the residuals of a
candidate model (usually a univariate model).

With the model fitness comparison view designed in this space, the tasks a user can

perform are listed as follows:

• Identify relevant variables: The users may freely choose a variable according to

either its relevance to the dependent variable, or their previous domain knowledge.
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• Identify model weaknesses: The visualization of model local measures reveals the

distribution of residuals in local data spaces. By examining the local measures, a

user may learn which parts of the data are not described effectively.

• Identify complementary variables: The visualization of local measures and lo-

cal comparisons helps the user to identify whether adding variables to an exist-

ing model is cost-effective. The effectiveness of this strategy is evaluated in Sec-

tion 4.4.2.

4.2 Model Diversity Visualization

This section discusses the problem when simply adding variables does not significantly

improve the model fitness. According to previous work [MP13,GWR09], the reasons for

this may be: 1) the trend is not linear, thus the refinement process must consider non-

linear polynomials to be effective [MP13]; 2) there are multiple linear trends [GWR09].

In this work, we mainly focus on a domain-driven model coverage problem, namely, to

seek a way for isolating multiple models and to label the trends with range queries so that

local models can be associated with actual domain meanings. A query that contain a local

pattern for example can be ”companies with income above 1 million”.

4.2.1 Isolating Multiple Local Models

After an interactive selection process, the financial analyst is not satisfied with the

model. She suspects there are multiple local trends in the dataset. Therefore she wants

to break the dataset into a few partitions based on the size of the companies (total as-

sets). Then, she builds local models for each partition.

This task raises several interesting questions: 1) how do we retain the domain meaning

of each partition while we search for the local trends, and is this important? 2) how do
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Figure 4.5: The x-y position of any cell in the grid view (a) is determined by the lower (x)
and upper (y) percentile threshold of a data partition. The relationship between the x-y
position and the partition boundary is shown in (b) and is indexed as in (c,d). Each cell is
colored by the fitness of a local model in it. The diagonal and the orthogonal direction in
(c) indicates two ways a data partition may change to another: expanding (add more data
points) and shifting (add data points at one end and remove at the other). An time chart
display (Fig 4.4b) of (a) is transformed from (a) by the sequence in (d) where the main
diagonal is walked from top left first followed by the second diagonal above it. The walk
continues till the right top corner.

we define the partitions? 3) how do we illustrate the relationship between the possible

ways of partitioning and the local trends each partition may have?

For the first question, the analyst wants to isolate local based on different data parti-

tions. She wants to know which companies (e.g., large companies or small companies) are

associated with a particularly interesting local trend (Figure 4.2). To accomplish this task,

we define a space P = {p1
1, p1

2, . . . ; p2
1, p2

2, . . . ; . . . ; pv
1, pv

2, . . .} that contains partitions for

v variables where the v variables are explored in the view we previously introduced. Once

we have the partitions ready the next steps are to identify a linear trend in each partition

using Robust Regression (as implemented in R [Hub11]), and visualize the model good-

ness (Figure 4.5a). The details about how to create partitions is discussed in Sec 4.2.2.

The variables used in the local models are selected using the process discussed in Sec-

tion 4.1.

In order to investigate how the trends are isolated into several data partitions. The first

question to answer is whether local trends exist. Second, we need to annotate the local

models with actual domain meanings. Then by linking a local trend to a range query such
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as ”large companies with more than 1 billion assets”, the analysts are able to investigate

the subset of data and further investigate the local properties of models.

4.2.2 Mutable Partitions

The discussions above lead to the second question. Specifically, How do we assign

the partition boundaries so that a trend is not divided into different partitions and ir-

relevant data points are minimized in a partition? The question is also motivated by

the representation of the piece-wise linear ranking model [MP13]: 1) when using very

coarse piece-sizes, partitions are large and may contain irrelevant data points; 2) when

using very fine segments, a trend may be assigned into several partitions. To address

that, we use a enumerated partitioning strategy considering all interesting reference vari-

ables for partitioning and all interesting sub-intervals of partitions. For example, total

assets : [0/100,30/100] represents a 0th and 30th percentile interval on reference vari-

able total assets. Each partition in space P thus can be defined as pR
k = R : [l,h] where R

denotes the chosen reference variable; k represents the index of the partition; and l and h

(0≤ l,h≤ 1) represent lower and upper boundaries on the reference variable. The space

P is populated by partitions of varying boundaries, which is discussed next together with

the layout strategy.

4.2.3 Partition Layout and Representation

We answer the third question by introducing the layout strategy of the diversity view

(Figure 4.5a). In an n by n grid view (Figure 4.5a), the position (i, j) of a cell (Figure 4.5b)

represents the boundaries [i/n, j/n] of a data partition. The factor 1/n is a minimum step

size threshold to avoid infinite number of partitions. Due to the symmetricity of the n

by n grid and the trivial information on the diagonal we first remove the diagonal and
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the entries below the diagonal. Then we fill the lower half of the grid according to the

symmetricity. We fill the grid because several test subjects felt the symmetric view is more

pleasing while others have no preferences. In some cases a partition R : [i/n, j/n] may not

well cover a linear trend due to missing relevant data points or containing irrelevant data

points. Alternative partitions R : [(i+ ε)/n,( j +ω)/n] (ε,ω ∈ Z) need to be compared

to R : [i/n, j/n] for getting better boundary positions. A vicinity relationship between the

compared partitions is depicted in Figure 4.5c in two directions to help the comparisons.

The diagonal direction corresponds to partition shifting (i.e., ε and ω changes towards

the same direction). The anti-diagonal direction represents the expanding or shrinking of

a partition. The color of each cell in Figure 4.5a represents the goodness of fit of the trend

in that partition. We use relative measure R2 to measure the goodness of fit because the

absolute fitness measure, such as RMSE, is often driven by the value of the independent

variables. This may cause unfair comparisons between data partitions.

To support the ranking and filtering of diversity views, we design a linear layout of the

partitions (Figure 4.3d), that are ranked by the degree of fluctuation (Figure 4.6b,d). We

use standard deviation of the local goodness of fit to quantify the fluctuations. The data

partitions in a line chart (x-axis) are ordered by the diagonal walking sequence illustrated

in Figure 4.5d. The more fluctuating line in Figure 4.6b indicates higher diversity. It

suggests that the reference variable is effective in isolating multiple local trends. The

smoother line in Figure 4.6d suggests the performance of isolated local models is similar

to that of the global model. The diversity view is ordered and filtered using the same

standard deviation measure.

A user can perform the following tasks, using the views designed in this space:

• Identify reference variables: With the local model diversity measure, a reference

variable is ranked based on the fluctuation local model (Fig 4.6b). With the ranking

metric, the user may identify variables that better isolate local models.
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Figure 4.6: Visualize the degree of diversities. It shows that the local models isolated by
partitioning on DLTT (a,b) have more diversity over the local models isolated by parti-
tioning on ARChange (c,d). ARChange: Account Receivable Change

• Identify multiple trends: With the diversity representations, the user may identify

multiple trends by reading the color spread in the diversity view (Fig 4.6a&c).

• Identify the size, location and strength of a local trend: The user may identify

the corresponding range query for a trend in the diversity view by reading the x-y

position of the cells. The size and strength of the trend can also be identified by the

color spread the cells (Fig 4.6a&c).

4.3 Model Representativity Visualization

Let us continue our case scenario from Section 4.2. The financial analyst discovered

that the local models perform rather well in some partitions (pro f it : [0.3,0.5], assets :
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[0.4,0.7], sales : [0,0.4]). She would like to confirm or rule out if these suggest the

existence of a single model that can cover these local models. Furthermore, she also

wants to know if that single model is robust, namely, are the local models it covers

significantly diverging? Additionally, which data partitions contain trends that disagree

with the majority of trends?

4.3.1 Representative Trend

To help her, we designed an interactive hierarchical visualization that represents the simi-

larities between the isolated models. We measure the similarities using coefficient vectors

of the models (e.g., slope and intercept in a 2-D case). We want to answer: 1) do the iso-

lated local trends point to a similar direction, and thus can be covered by a representative

trend? 2) if yes, how much confidence can be assigned to such local trends? 3) if not,

how different are the trends in terms of their directions in the hyperspace?

A representative model in S (the set of local models over a selection of partitions) is

expected to be central and cover as many partitions in P (local partitions) as possible,

while the divergence in S is below a certain threshold ξ . We define S as:

min
∀S⊂P

(|P|− |S|) subject to Div(S)< ξ

where Div(S) denotes the model divergence in S where S is a group of partitions. To

measure the model divergence, we use a normalized version of Euclidean distance:

di j =

√
1

wa
(ai−a j)2 +

1
wb

(bi−b j)2 + . . .

where di j is the distance between two models mi and m j and ai,bi, . . . and a j,b j, . . . are

the coefficients for the two models. The normalization factor we use is the amplitude of

each coefficient: wa = maxi(|ai|), wb = maxi(|bi|), and so on. To visualize the divergence
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and the coverage problem, we leverage the idea of below traversal in the hierarchical

aggregation [EF10]. The idea is to cluster the local models based on model coefficients

so that similar local models within one cluster may be represented by a more general

model. The details are discussed in Sec 4.3.2.

4.3.2 Interactive Local Trend Aggregation

To support interactive local model clustering and understand the model coverage problem.

We employ a divisive clustering algorithm [KR09] that divides a large cluster of items into

smaller clusters in a top-down process. At each iteration it separates clusters of items at

a computed cutting location. Icicle plots [KL83] are used to represent the hierarchical

group structures. The icicle plots use relative positions of the node instead of binary

representation of edges to infer parents and children thus it is believed to have higher

information density than classic tree node graph [MR10]. The model divergence of each

cluster is visualized at each node of the icicle plot using a variation of box-plot (Figure 4.7

right) where bars represent the coefficient statistics of the models. Using the techniques

above, the representivity of a model MR in the partition space S (a cluster of partitions)

can be implied from the divergence of the models in S, the centrality of model MR in S and

the coverage of S. The divergence of models represents the degree of differences between

model coefficients. The model divergence can be directly read from the box-plot in each

node of the icicle plot where higher bars represent higher degree of divergence and lower

bars represent low divergence. The centrality of a particular model can be discovered by

linked interaction between the two views in Fig 4.7. Specifically, mouse over the color

grids triggers a highlighted bar in the icicle plot. In Fig 4.8, the model at the edge of the

heatmap view (red rectangle) has quite different model coefficients from its peer models

as indicated by the horizontal red bars (appears at mostly very top or very bottom of the

box plot) in the icicle plot. This example shows the model has very low centrality and it
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cannot be used as a representative model.

Figure 4.7: Visualize the coverage (cells with red outline on the left) of a selected cluster
of data partitions (selected node marked with red rectangle on the right).

4.3.3 Aggregation Quality Loss

The user can double click on a node to break down a cluster with high divergence or

merge smaller clusters with low divergence. The user may find the divergence of a cluster

reduces to small values while still covering a set of data partitions (highlighted by red

rectangles) (Figure 4.7). Also that highlighted cluster of local models is shown as the

bottom left node in the icicle plot where the divergence of model parameters is low. As

briefly discussed earlier. The user can also mouse over the heatmap view (Figure 4.8 left)

and examine the centrality of the highlighted partition in a group (Figure 4.8 right). In

this example, it is an outlier trend in the 2nd node at level 3 of the icicle plot (node with

red bars in it) because all the three bars are at the boundary of the box-plot (Figure 4.8

right).

Additionally, the divergence of the group is higher than the other three groups at the

same level. Another example can be seen in Figure 4.11l where the divergence of the
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Figure 4.8: Visualize the coefficient vector (red horizontal bars in the icicle plot) of the
linear trend in the highlighted data partition (left). The red text shows the value of the
coefficients and the name of variables. The color scale shows the relative goodness of
local models in a corresponding partition.

grouped model is lower than that in the previous example and the coefficients of the

highlighted model are close to the center of the box-plot (Figure 4.11l). Lastly, the user

may want to click on the nodes in the icicle plot (Figure 4.7 right) and examine the data

coverage of each node (Figure 4.7 left) which is a linked interaction that highlights all

corresponding partitions in the heatmap (Figure 4.7 left) corresponding to clicks on the

nodes of the icicle plot.

This view space supports:

• Identify outlier trends: Coefficient values of a trend that are boundary values com-

paring to other trends may indicate that it is an outlier trend.

• Identify a representative trend: A representative trend can be identified by checking

the divergence of the group it belongs to, centrality of the trends in the group and

data coverage of the group.
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4.4 Evaluation

In this section, we demonstrate a case study using a financial database. We also report

the result of a user study we conducted involving professors and students from the depart-

ments of Math, Computer Sciences, and School of Business.

4.4.1 Case Study: Linear Models of Bankruptcy Risks

The data we use in this work are from Compustat [Poo11], a database of financial, statis-

tical and market information of companies from around the world. Since the database is

very large for visual analytics. It has more than 10 GB data collected for over 60 years.

we focus on only on one sector of the US companies that are active in the year 2010,

namely the service sector classified by the SIC standard [sic13]. After this cleaning, we

acquired 45 variables suggested by domain expert for 9,483 observed companies that are

in the selected service sector.

Figure 4.9: A case study for modeling risk. a) A ranking list of independent variables.
b) Scatterplot of a selected independent variable and the dependent variable. c) A list of
built models. d, e) Complementarity analysis.
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To build linear models for risk prediction, the analyst first examines the relevance

ranking scores of the independent variables in the relevance view by computing the de-

pendency between all the independent variables and the dependent variable (Figure 4.9a).

The relationship between the highlighted independent variable and the dependent vari-

able can also be plotted in a scatterplot (Figure 4.9b) to examine the relationship in detail.

From the relevance ranking list, she identifies that the variables DEBTTA, DEBTEQ, and

LEV are most predictive for the dependent variable. However, she would like to figure

out which combination is better. Choosing all 3 of them is an option, but it may increase

the model complexity unnecessarily.

She next examines the model complementarity view (Figures 4.9d and 4.9e) to deter-

mine which variable complements the variable DEBTTA (the first candidate) better. The

two models in Figure 4.9d share a common pattern (up/down and vertical spread, and less

complementary). The model represented as red lines in Figure 4.9e performs better at the

right half of the data partitions (smaller error spreading, and more complementary). She

confirms that the combination {DEBT TA,LEV} is better (RMSE = 8.68,R2 = 0.359)

than {DEBT TA,DEBT EQ} (RMSE = 8.89,R2 = 0.330) in the model list (Figure 4.9c)

after trying both combinations. Although both of them are better than model with only

one variable {DEBT TA} (RMSE = 8.89,R2 = 0.329), LEV is the variable that adds more

fit. In an automatic model building process, the analyst would not have had direct control

over this variable selection, the expert knowledge thus cannot be directly applied to help

the selection.

Next, the analyst may examine the local models that are derived from the current best

model. The derived local models are based on the same set of variables we identified

via the complementarity analysis. Each local model is built on a partition (R : [l,h]).

By examining the model diversity views, the analyst immediately notices two interesting

patterns: 1) Figure 4.10f shows that in some partitions (in Figure 4.10g cells with darker
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Figure 4.10: A case study for modeling risk. f), g), h) and i) Local model diversity
analysis.

blue), the local trends are very strong, as R2 is over 0.9 in some of them. The strong linear

trends can be expanded along the orthogonal direction (Figure 4.10g) to a larger range of

partitions at a lower threshold (lighter colors). 2) Another pattern that could be spotted is

that the local models show 4 local maxima in Figure 4.10i, where 4 strong linear trends

are isolated in the partitions represented by the darker blue cells. The pattern shows that

the domain knowledge of the analyst is partially correct in the sense that the local trends

are indeed stronger when isolating them by the variable total assets.

It suggests that constructing models with a mixture of both small and large companies

is less effective because the model with only smaller companies (the dark cell at R :

[1/14,2/14] in Figure 4.10i) outperforms the model built on all companies (top-right cell
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at R : [0/14,14/14] in Figure 4.10i). The reason she is only partially correct is that the 4

local maxima in Figure 4.10i suggest modeling the companies at 4 different scales instead

of 2.

Figure 4.11: A case study for modeling risk. j), k), l) and m) Model representivity analy-
sis.

The next step is to check the model representivity. The analyst breaks the local models

down hierarchically, and discovers that at level 3 each of the 4 clusters contains one local

maximum (Figure 4.11j, 4.11k, 4.11l, 4.11m). This confirms that using the group of 4

is the right choice, because the directions of the trends in the 4 clusters are different.

Specifically, DEBT TA and MKVALT are more significant in the small company group

and the significance decreases with the scale of the companies. WCAPTA and LEV are

less significant in the large medium and large groups, while WCAPTA is most significant

in the small medium group. Another notable pattern is that the local trend in the small

medium group can be represented by a more general trend, because the coefficients of the

102



trends in that group has rather small variances indicated by the heights of the bars in the

icicle plot as show in Fig 4.11k.

The three model spaces in this part of work are additional features that complement

the automatic model building process. We compare our approach to the LinearRegression

algorithm in Weka from the perspective of model complexity (number of variables) and

model fit (R2). Using the same dataset as input, Weka selects 27 out of the original 45

variables and forms a linear model with R2 at 0.522. This overall fit in the whole data

space is better than the models we formed in LoVis which usually involve much fewer

variables (4 or 5). However, LoVis has the advantage of modeling the local properties of

the dataset. 1) It discovers local data spaces that can form linear models with R2 at above

0.8 (Figure 4.10f,g) which is higher than the fit of the automatically formed global model;

2) It also characterizes multiple local models with local maximal fit (Figure 4.10h,i).

With only 4 variables, each model has R2 of about 0.6 which is higher than the fit of the

automatically formed model on 27 variables.

4.4.2 User Study for Evaluating Model Fit

To validate the usability of the model complementarity metric and the corresponding

views, we performed a user study with 20 subjects. The participants answered 3 questions

after a short training. In each question, they were asked to choose one option out of two.

The ground truth is that one option that shows a model formed based on a set of variables

(e.g. Figure 4.9e) is better than the other (e.g. Figure 4.9d) that is formed by a different

set of variables. We expected to see the user selected option is better by examining the

complementarity view to compare two models. Specifically the difference of two models

are measured using FD score that is defined as below:

FD = |Model Fitvariable set 1−Model Fitvariable set 2|
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Table 4.2: User study accuracy results based on 3 questions.

FD (R2) Accurary (%) Avg time(s)
0.12 90 13.4
0.08 80 24.6
0.03 60 25.3

The FD score is calculated by using the model performance of one set of variables

minus the other. In the results, there is a relationship between the selection accuracy and

the FD scores between the two options, as show in Table 4.2.

From the result, more users (90%) made optimal selections when the FD between

the two choices is more significant (0.12). Here we define accuracy as the percentage

of subjects who made the right choice. When the FD goes down to 0.03 (R2), the user

selection tends to be less accurate (60%) and is more time consuming (25.3s). However,

at that point, the performance gain of adding the wrong selection is only 0.03 (measured

by R2) less than the right selection. Based on this user study we shown that the metric

and visual design of this work is useful to guide the user make right choices most of the

time, it is less useful when the two choices leads to very similar models in terms of model

fitness.

4.5 Related Work

Many methods for identifying local patterns exist. Guo et al. [GWR09] proposed a system

to isolate linear trends by only including the data points within a user specified distance to

a trend. Their idea of isolating multiple trends is similar to ours, except that our methods

use partition-driven methods to describe the meaning of multiple linear trends. The local

patterns in paper [GWRR11] are defined around a focal point; the relative positions of

neighbouring points of it are visualized. In LoVis, however, we are instead interested in

the local pattern of a group of data points and the comparisons between groups.
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A partition-based framework [MP13] compares the linear models in both 1-D and 2-D

partitions of independent variables to facilitate variable selection. In LoVis, we are more

interested in how the variables locally complement each other, how the performance of

local models varies in different data partitions, and how to identify the representativeness

of local patterns. A maximal information coefficient (MIC) metric [RRF+11] was defined

for identifying multiple types of pair-wise relationships via local analysis. In LoVis, we

focus on one type of local relationship and investigate the local pattern of models formed

by multiple variables.

Data partitioning is perhaps the most important step for identifying local patterns;

an interactive framework [MBD+11] was implemented to guide the user to identify lo-

cal relevance and aggregated global correlation. We do not intend to solve the problem

of searching locally correlated feature sets and the corresponding subset of data points,

which leads to an expensive optimization problem [GFVS12]. In our work, we instead

leverage the knowledge of analysts to make choices to reduce the search space by parti-

tioning on variables of interest that show fluctuations regarding local model performance.

The Rank-by-Feature Framework [SS04] is similar to our work; it provides quality

metrics to measure the interestingness of lower projections (1-D and 2D) to facilitate the

visual exploration process in high dimensional data. It has inspired our work in the sense

of ranking views by importance. Models with diverse goodness of fit are believed to

have more prediction power [BWHY05] and they may indicate the existence of a “lurk-

ing explanatory variable” [BHO+75]. Other techniques that focus on the application of

quality measures are not specifically designed for local pattern discovery, though they

indeed inspired us. Scagnostics [WAG05] proposed metrics for identifying interesting

structures (e.g., clumpy and stringy). The user-centric approach [JJ09] utilizes several

quality metrics that could be combined and adjusted by the user. Peng et al. [PWR04] pro-

posed a metric for reducing clutters in the visual representations. Peringer et al. [PBH08]
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suggested a quality measure integrated with data space brushing and linking. Tatu et

al. [TMF+12] implemented a system that ranks data variables based on subspace clus-

ter structures. The EnsembleMatrix [TLKT09] combines multiple model analysis with

visual representations. It allows the user to visually examine the contrast of multiple clas-

sifiers and interactively combine them. This strategy motivated us to build a framework

to investigate the relations between multiple models. Additionally, we allow the user to

incrementally examine the model comparisons in terms of model complementarity and

determine the best candidate models for combining.

4.6 Summary

In this work, we presented the LoVis system that integrates three visual spaces, focus-

ing on local pattern discoveries that facilitate the linear model refinement process. We

measure the degree of complementarity between a to-be refined model and the candidate

variables so that a suitable variable can be selected to compensate for the poor perfor-

mance of the to-be refined model locally. Local models are built to model the diversity

in the dataset in a novel partition space. Divergence of the local models is measured and

visualized to investigate the representivity of a group of models.
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Chapter 5

Conclusion and Future Directions

5.1 Conclusion:

This dissertation contributed to three research direction of visual exploration by integrat-

ing machine learning techniques into a comprehensive interactive framework for local

pattern discovery. The three areas are closely related to what data analysts do in their

every day work, namely, data exploration, feature exploration and model diagnosis. Each

of the three types of visual explorations are based on leveraging machine learning tasks

that facilitate the data modeling and summarization. Unlike other work that combines

machine learning and visualization to perform rather specific tasks such as facilitate deci-

sion tree building or optimizing clutter issues in a visual display, this dissertation aims to

provide novel frameworks that unify modeling tasks as well as visualization techniques

to make the general data exploration task more efficient and effective.

The main contributions of this dissertation are:

• A system (MaVis) integrated multi-model strategy for time series co-movement

analysis. Which is a prevalent pattern discovery problem in various application

domains such as finance, business, medical science and engineering. The co-
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movement of a collection of time series are measured using multiple time series

models and allow the analysts to compare and contrast with ease in an interac-

tive framework. State-of-the-art visual analytic techniques usually use specific data

mapping strategies for time series pattern discovery. Compared to these approaches,

adopting time series models in this work allows analysts to choose the modeling

techniques that most suitable to their tasks.

• A system (FeaVis) implemented multiple feature similarity metrics for feature re-

lationship visual inspection. FeaVis supports automatic redundancy removal based

on grouping and ranking data dimensions. It integrates commonly used feature

similarity metrics for investigating feature relationships.

• A system (LoVis) provides a novel way of diagnosing regression models locally.

The degree of complementarity between models is measured to facilitate model

refinement. Local models can be identified to describe the diversity of the dataset

for gaining insight. Divergence of the local models is also measured to help identify

common patterns of the model fitness that locally presents.

5.2 Future Directions:

There are several interesting directions for future research based on this work.

First, we are mostly interested in local patterns for the three areas of work. How-

ever, it is still a quite challenging problem to show the overall landscape of the data while

providing insights to certain local subsets of the data space that contain interesting infor-

mation. It is however a very expensive computational approach [GFVS12] to search for

local space patterns. To design visual systems to reduce the complexity of computational

tasks is a promising direction that may benefit the whole data science field. For example,

for any given machine learning tasks, it executes the predefined algorithms to run though
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the possibly large dataset. It is quite often that a data scientist realize there is a problem in

the run after spending a long time waiting for the process to complete. Combining with

visual system can potentially relieve such problem by showing partial results that only

involves models trained locally.

Second, we support user metrics based on predefined metrics to determine similarities

between features. However, it is a challenging problem to scale the number of metrics

in the process of combining multiple metrics to a user metric using a set of weights. We

currently only support three metrics and to parameterize the weight combination which

is computationally feasible however, the required caching can quickly grow up when the

number of metrics increases or the granularities of weight adjustment gets finer. Solving

this problem will be really helpful for interactive analysis in case of multiple metrics.

Third, industry deployment of this work will be useful for evaluation. The system

designed in this dissertation work can be used and improved by collecting feedback from

analysts while using this work in their daily work. The evaluation can be beneficial for

the visual analytic field if we can understand what the bottlenecks are during the data

analytics process. The evaluation is especially useful when an analyst has inadequate

knowledge while performing an analytic task. In that case, the feedback we collect can

be valuable to generate principles for visual designs to help analysts gain insights even

when they work on a type of new dataset.

Fourth, the scalability of the systems are not designed for larger dataset mainly due to

computational cost rather than visual rendering cost. Generating appropriate partitions be-

fore forming local models is an expensive search problem. Another potential contribution

in this field is to reduce the cost of computations based on interactive human adjustment.

In that case, a human expert may identify a non-promising searching strategy and termi-

nate it early enough to make the search more effective. In case the computational process

may take a long time, the intermediate feedback may help analysts to make decisions in a
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timely manner.

Finally, this work integrates two types of models (i.e., regression model and time

series model). It is still a challenging problem to integrate visual interactions to all the

machine learning processes in general. It requires efforts from data scientists to design

and tweak the machine learning algorithms to provide rich feedback for the analysts to

make sense of the machine learning process.
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