

ALMOND

Acoustic Localization for Mobile Open-Source Network Deployment

Scott Almquist Muhammad Saleem Daniel Skehan

Embedded Digital Systems – Group 102

Approved for public release - distribution is unlimited

MIT Lincoln Laboratory

This work is sponsored by the Department of the Air Force under Air Force contract FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government.

ALMOND 10/14/2009

- WPI Advisors:
 - Professor Clancy
 - Professor Heineman
- Lincoln Laboratory Advisors
 - Albert Reuther
 - Glenn Schrader

- Acoustic Localization
- Motivation
- Setup and Processing
- Signal Detection
- Time Synchronization
- Results
- Conclusions and Future Work

Acoustic Localization

- Motivation
- Setup and Processing
- Signal Detection
- Time Synchronization
- Results
- Conclusions and Future Work

- Determining the location of a sound source by using an array of sensors
- The difference in arrival times is used to calculate an approximate position of the sound source

Time Differences of Two Microphones Result in a Hyperbola

MIT Lincoln Laboratory

Acoustic Localization

MIT Lincoln Laboratory

6

ALMOND 10/14/2009

- Acoustic Localization
- Motivation
- Setup and Processing
- Signal Detection
- Time Synchronization
- Results
- Conclusions and Future Work

Mobile phones are readily available and have lots of functionality

- GPS
- Camera
- Wireless Communication
- Microphone
- Operating System

Phone architecture suitable for many applications

- Acoustic Localization
- Motivation
- Setup and Processing
- Signal Detection
- Time Synchronization
- Results
- Conclusions and Future Work

Processing Overview

Phones are Unable to Perform Necessary Processing

MIT Lincoln Laboratory

- Acoustic Localization
- Motivation
- Setup and Processing

Signal Detection

- Time Synchronization
- Results
- Conclusions and Future Work

Signal Detection

- Chirps are signals that can be easily detected because of their unique characteristics
- They can be detected using a cross correlation
- Cross correlation of two similar chirps will create a peak

Detection of Chirps is Simple

Signal Detection

ALMOND 10/14/2009

- Acoustic Localization
- Motivation
- Setup and Processing
- Signal Detection
- Time Synchronization
- Results

ALMOND 10/14/2009

• Conclusions and Future Work

Time Synchronization

Time synchronization errors are the greatest source of positional error

Global Positioning System (GPS)

- Precision of 100 nanoseconds 99% of the time
- Can be used with Network Time Protocol (NTP) to discipline the phones' clocks

Network Broadcast Signal

- A message is broadcasted across the network
- When the phones receive the message time is reset
- Both phones receive the signal at the same time resulting in synchronization

Calibration Chirp

- An initial chirp is produced for calibration
- The time offset from the two phones is calculated based on known positions
- Future detection calculations adjust time based on the offset

If the phones are equidistant from the sound source, the time difference of arrival should be zero

- Acoustic Localization
- Motivation
- Setup and Processing
- Signal Detection
- Time Synchronization

• Results

• Conclusions and Future Work

Results

Timing Error Using Network Broadcast

Time on Phone Two After Synchronization (seconds)

MIT Lincoln Laboratory

- Acoustic Localization
- Motivation
- Setup and Processing
- Signal Detection
- Time Synchronization
- Results
- Conclusions and Future Work

- Sound detection is possible with cell phones
- With the current setup, time can be synchronized to within 10 milliseconds for several minutes
- A more refined method of time synchronization would probably be required for future applications
 - Correction for drift rate
 - More precise calibrations
 - Periodic synchronizations
- Bandwidth can be saved by performing processing on more capable phones