
i

Massachusetts Sober Housing Mobile

Application

Project Team

Jack Charbonneau: jlcharbonneau@wpi.edu

Alex Hard: adhard@wpi.edu

Kyle Savell: kqsavell@wpi.edu

Tom White: twhite@wpi.edu

Joan Wong: jwong3@wpi.edu

Project Advisor

Professor Wilson Wong

Department of Computer Science

The team would like to thank Bruce Feine and Nick Murphy from Rally to Recovery, as well as Troy Clarkson and

Donald Flagg from the Massachusetts Alliance for Sober Housing for their support throughout the project.

This report represents the work of WPI undergraduate students submitted to the faculty as evidence of completion of

a degree requirement. WPI routinely publishes these reports on its website without editorial or peer review. For

more information about the projects program at WPI, please see

http://www.wpi.edu/academics/ugradstudies/project-learning.html

http://www.wpi.edu/academics/ugradstudies/project-learning.html

i

Contents

Tables iv

Figures v

Abstract vi

Introduction 1

Background 3

Methodology 6

Software Development Approach 6

The Waterfall Model 6

The Agile Methodology 9

The Agile Development Life Cycle 10

Kanban Software Development 10

Scrum Software Development 12

Comparison of the Waterfall Approach and the Agile Framework 15

Software Development Environment 17

Version Control 17

Issue Tracking 17

Project Management 18

Communication 18

Internal 18

External 19

Platform 19

Programming Language 21

Java 21

Kotlin 22

React Native 22

Integrated Development Environment 23

User Interface Mockups 24

Adobe XD 25

LucidChart Android Mockup Tool 26

Database Management System 27

MySQL 27

Oracle DB 28

ii

SQLite 28

PostgreSQL 29

Feature Comparisons 29

Data Replication 30

Materialized Views 30

Security 32

In the App 32

Over the Wire 32

Within the Server 33

Application Server 34

SQL Server 34

External Resources 36

Licensed Libraries 36

External SDK 37

Research 38

Management Applications 38

Group Recovery Applications 39

Individual Recovery Applications 40

Software Requirements 43

Survey 43

Interview 45

Epics & User Stories 47

Functional Requirements 51

Nonfunctional Requirements 51

Design 52

UI Mockups 53

Activity Diagram 63

Context Diagram 64

Class Diagram 65

Entity-Relation Diagram 66

Design Patterns 66

Software Development 69

Iteration 0 69

Iteration 1 71

Iteration 2 75

Iteration 3 77

Iteration 4 80

iii

Iteration 5 82

Iteration 6 84

Iteration 7 87

Iteration 8 89

Iteration 9 91

Iteration Addendum 94

Testing 95

Unit Testing 96

Integration Testing 96

Generating Fake Data 96

Manual Testing 97

Assessment 98

Recommendations 100

Conclusion 102

References 103

Glossary 111

Appendix A – MQP Sober Home Survey Questions 115

Appendix B – Interview Questions 120

Appendix C – Product Backlog 122

Appendix D - MASH Guidelines 124

iv

Tables

Table 1. Database Feature Comparison 29

v

Figures

Figure 1. Scrum-Agile Life Cycle 14

Figure 2. Serenity House Health 39

Figure 3. CHESS Health 41

Figure 4. Original UI Mockup 54

Figure 5. Functional UI Mockup 56

Figure 6. Final UI Mockup 59

Figure 7. Activity Diagram 63

Figure 8. Context Diagram 64

Figure 9. Class Diagram 65

Figure 10. Entity-Relation Diagram 66

Figure 11. Survey Question ERD Snip-it 68

Figure 12. Iteration 0 Velocity Chart 69

Figure 13. Iteration 1 Velocity Chart 72

Figure 14. Iteration 2 Velocity Chart 76

Figure 15. Iteration 3 Velocity Chart 78

Figure 16. Iteration 4 Velocity Chart 81

Figure 17. Iteration 5 Velocity Chart 83

Figure 18. Iteration 6 Velocity Chart 85

Figure 19. Iteration 7 Velocity Chart 88

Figure 20. Iteration 8 Velocity Chart 90

Figure 21. Iteration 9 Velocity Chart 92

vi

Abstract

Facilities such as halfway houses and sober homes provide supportive housing for people

undergoing treatment for drug and alcohol addiction. Unlike halfway houses which are modeled

after dormitories, sober houses are structured like a private residence and provide many

amenities to residents. The Massachusetts Alliance for Sober Housing (MASH) provides a set of

standards for sober homes in the state of Massachusetts.

The goal of this project was to develop a mobile application to assist in the administration

of MASH certified facilities, and to provide useful features for residents to support their personal

recovery.

1

Introduction

Opiate addiction has become a problem on a global scale. The opiate crisis began through

overprescription of opiate pain killers and this epidemic has resulted in the death of over 33,000

Americans in 2015 alone or approximately 115 per day (“Opioid Overdose Crisis”, 2018). In

2017, Massachusetts faced over 2000 deaths directly related to opiate overdose (“Data Brief”,

2018).

In the early 1990s, opiate medication manufacturers informed the medical community

that opiates were non addictive and a safe medication to prescribe as pain killers. This

misinformation led to an increase in prescription of the highly addictive drugs. After the patients’

prescriptions ran out, the opiates resulted in numerous patients becoming addicted but no longer

having access to the medication. Although these patients were victim to false information about

the safety of opiates, their addiction often forced them into situations that quickly spiral out of

control. According to the National Institute of Drug Abuse, 80% of heroin users were prescribed

painkillers originally, and there has been a 30% increase in opiate related overdoses between

2016 and 2017.

Individuals suffering from opiate addiction can get help recovering through a halfway

house or a sober home; i.e. a living spaces where recovering individuals live together and

promote recovery. Whereas halfway houses tend to be government-run and act like dormitories,

halfway houses act as a private residence and tend to be run by sober-living experts. While all

homes operate under the ‘sober housing’ umbrella, many of sober houses run under differing

standards, such as MASH standards, independent standards, or no standards at all. Because there

is a lack of universal standard, the homes face different levels of success. While the individuals

2

living in the sober homes come from a wide variety of backgrounds, situations, and locations,

one thing is almost universal; ownership of a cell phone.

In order to better understand the effectiveness of the sober homes in a person’s recovery

as well as assist the person in staying sober, a mobile app was created to track the progress of

recovery and give residents a place to send feedback regarding the sober homes.

To create this application, the team identified a set of goals to accomplish. First, the team

investigated the needs of the residents and the sober home associations in regards to what

functions they wished the application to include. Second, the team implemented those features

through a series of Agile sprints. Finally, the team deployed a completed application for use by

the residents and sober home association that will hopefully have a positive impact on their

recovery.

3

Background

 The purpose of the application was to improve the quality of data collected from sober

homes in Massachusetts while providing additional support for sober home residents.

A sober home is a residence for people recovering from alcohol and drug addiction where their

recovery is promoted and the residents are expected not to use drugs or alcohol. These houses

reside in family neighborhoods to promote a healthy environment (Gorman, Marinaccio, &

Cardinale, 2010). Even though each sober home falls under this definition, every residence runs

differently. Sober homes are run by an owner who makes the rules for that specific building.

Thus, sober homes can range from places for peers to support one another in their recoveries to

having more strict rules such as weekly meetings and curfews ("What is a Sober Home," 2016).

 When discussing sober living environments, it is important to distinguish between sober

homes and halfway houses. Halfway houses can be run by government agencies and sober

homes cannot. Sober housing models a private residence and offers more privacy and comfort

than most halfway houses, which model dormitory living and few amenities. However, because

halfway houses are less structured, they tend to be less expensive than sober housing (Real

Recovery 2017).

Sober living environments have existed for a while, and have come in many different

forms. Sober housing originated in the mid-19th century and were houses run by organizations

such as The Salvation Army and YMCA. In the 20th century, recovery methodologies such as

the “12-step” program that emerged post-WWII were introduced to these housings. Today, in

addition to recovery goals, many houses encourage peer-to-peer recovery and self-sustainability

among residents (Maldonado 2018).

4

 Despite the effort of local and federal governments to create these sober living spaces,

there have has been much opposition. Landlords can label any residence as a “sober home”, and

some have abused that fact; a known problem is that some owners convert single-family homes

into residences for 20-30 people without providing recovery support in order to maximize rent.

Additionally, people in these neighborhoods have been known to raise public safety concerns

due to the background of the residents. These issues required government agencies to

differentiate between legitimate and illegitimate sober homes and to protect sober home residents

(Gorman, Marinaccio, & Cardinale, 2010).

 To aid legitimate sober homes, Massachusetts has made a certification process for sober

housing. Residences are able to get a certification stating they comply to national standards,

ensuring they are operating fairly and legally ("MA Sober Home Laws," 2016). In

Massachusetts, the Massachusetts Alliance for Sober Housing (MASH) sets the certification

standards for sober housing and helps existing sober homes uphold their standards so that they

can be certified. Although sober houses can operate without being certified, only certified sober

homes can receive referrals from state-funded institutions like courts, treatment centers and other

facilities ("Standards," 2016).

 MASH has 35 standards which it uses for certification, targeting a variety of different

fields such as administration, recovery and property. Accuracy of data is of paramount

importance to MASH; certified sober homes are required to provide accurate financial

information, keep accurate resident information, and all information about the home must be

substantiated. Sober homes are required to follow fair housing laws and ensure a resident’s

personal information remains private. For recovery, residents are required to have enough

resources at their disposal to support them. House owners and leaders are trained in managing a

5

sober home and make plans tailored for the individuals in their home, where accountability and a

safe respectful environment is expected. In terms of the physical house, it is meant to be as

home-like as possible and act as an actual household ("Certification Standards," 2016).

 Many of these certification standards are derived from Massachusetts laws regarding

sober homes. Proposed Bill H.1828 states that sober homes should adhere to national standards,

which are the basis for the standards set by MASH. Many of the standards require fair treatment

of tenants and focus on the priority of recovery. Regarding certification, the bill makes it clear

that certification can be both given and revoked by the director of substance abuse services at

any time, which is why MASH continually makes sure sober homes are following their extensive

guidelines which can be found in Appendix D ("MA Sober Home Laws," 2016).

6

Methodology

 The goal of this project was to create a mobile application that would help validate and

optimize the effectiveness of sober homes. In this chapter of the report, the team discussed the

setup of the team dynamic, the various development tools used to create the mobile application,

and the methods employed to perform requirement gathering and designing the application.

Software Development Approach

 Software methodology is crucial to the collaboration and success of a team and the

quality of the project overall. Therefore, the team considered many approaches, including the

Waterfall Model, the Kanban-Agile methodology, and the Scrum-Agile framework. After

discussing each of these options, the team decided to adopt the Scrum-Agile approach in

developing the mobile application. In the following sections, the team gave a brief overview on

each of the approaches mentioned previously.

The Waterfall Model

 The Waterfall Model consists of six stages in the software development: requirements

analysis, design, implementation, testing, deployment, and maintenance. Each phase is

dependent upon the completion of the previous phase.

In the requirements analysis phase, all of the features and components for the lifetime of

the project are captured. Developers need to ensure that the requirements are feasible, testable,

and measurable. For the design phase, the development team creates the architecture for the

project, including class diagrams, activity diagrams, and any other useful reference tool to

7

understand the behavior or construction of the application. Any hardware requirements are

documented in this phase as well.

The creation of the product happens in the implementation phase. The way that the

product is created will vary between teams, but almost all will also create unit tests to assist in

testing individual features of the product.

Verifying the features from the implementation phase happens during the testing phase.

All of the unit tested code is integrated into the project, and additional non-unit testing is done in

this phase. If there are a large number of issues discovered during the testing phase, it is common

to have the project regress back into the implementation phase to redo portions of the product.

After the product has been tested and the requirements have been satisfied, the team moves onto

the deployment phase. Testing aspects of the program such as operations under stress, exit

conditions, and backup restoration are included in this phase.

The deployment phase consists of the initial setup of the code in production machines.

Typically, a user manual is produced during this step to inform the user on how to properly use

the product. The final phase of the Waterfall Model is the maintenance phase.

The maintenance phase is entered after the product has been deployed. Here, software

developers issue patches for the software to address lingering bugs as well as to match the

changing need of the contracted organization. This phase is important for the developers because

it allows them to address problems that may arise that do not warrant the expense of the project

regressing back to the development or even requirement gathering phase. Bugs are filed and

fixed, small improvements are made and additional features are added to satisfy user

requirements, and usability is maintained. If this is a web application, developers would ensure

that the servers stay running; for desktop applications, that operating system patches do not break

8

the product (What is SDLC Waterfall Model, 2018). For professional or contracted work, the

length of developer support in this phase is normally specified in the contract during the

requirement analysis phase. In open source and less traditional contract development, the time

spent in maintenance is not always well defined.

Because of this “strictly sequenced” model, requiring one phase to be completed before

the next, it is costly to respond to users’ changing requirements. For example, if a new feature is

to be added, or an existing feature needs to be changed, the development process will regress to

an earlier stage, the requirement analysis phase, and then be carried through all the other

following phases one at a time before actually returning to the phase prior to implementing this

change in design. During the initial meeting with the team’s sponsor, there were numerous ideas

exchanged between both parties. This indicated to the team that the requirements for this

application were highly likely to change as the project progresses to both fulfill the sponsor’s

needs as well as the requirement as an Major Qualifying Project (MQP) project at Worcester

Polytechnic Institute (WPI). Due to the inflexibility of the Waterfall Model, the lack of

communication this approach offers between the team and the sponsor, and the inability to add

features and changes to the mobile application after beginning development, the team did not

find this approach feasible for this project.

9

The Agile Methodology

The Agile framework has gained popularity over the years due to its promotion of a

flexible, transparent, adjustable-to-change model for software development. In a 2015 study,

25% of software companies indicated that they use and apply Agile techniques on a daily basis,

which was a 10% increase compared to a study completed in the prior year, and 60% of the

respondents indicated that they were exposed to Agile (Farvin Packeer Mohamed, 2014; APMG

International, 2017). The flexibility and transparency that this model offers is based on four

values: individuals and interactions over processes and tools, working software over

comprehensive documentation, customer collaboration over contract negotiation, and

responding to change over following a plan (Beck, 2001). These values form the basis of the

twelve principles abided in an Agile community listed below:

1. “Our highest priority is to satisfy the customer through early and continuous delivery of

valuable software.”

2. “We welcome changing requirements, even late in development. Agile processes harness

change for customer’s competitive advantage.”

3. “We deliver working software frequently, from a couple of weeks to a couple of months,

with a preference to the shorter timescale.”

4. “Business people and developers must work together daily throughout the project.”

5. “We build projects around motivated individuals, giving them the environment and

support they need, and trust them to get the job done.”

6. “The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.”

7. “Working software is the primary measure of progress.”

10

8. “Agile processes promote sustainable development. The sponsors, developers, and users

should be able to maintain a constant pace indefinitely.”

9. “Continuous attention to technical excellence and good design enhances agility.”

10. “Simplicity - the art of maximizing the amount of work not done - is essential.”

11. “The best architectures, requirements, and designs emerge from self-organizing teams.”

12. “At regular intervals, the team reflects on how to become more effective, then tunes and

adjusts its behavior accordingly” (Beck, 2001).

The Agile Development Life Cycle

 As for any software development methodology, the Agile development cycle involves

the following stages: requirements gathering, planning, product design, development, release,

and tracking and monitoring (“What’s the Difference”, 2018). However, it is important to note

that in the Agile framework, it is not necessary for these phases to take place in sequential order;

that is, multiple phases may be happening simultaneously, or in parallel, with one another. There

are several methods for implementing Agile. In the next section, the team discussed two of these

methods: Kanban and Scrum.

Kanban Software Development

 Kanban is the second project management approach the team examined. Kanban supports

a “continuous workflow,” where the application is developed incrementally on a daily basis.

Kanban is rooted in a “Just In Time” (JIT) philosophy, where the needed product is resupplied

just as it runs out. This approach was traditionally utilized in supermarket and industrial

businesses where the food or materials were restocked just as the current stock was about to run

11

out. For Kanban, this approach has been converted for software teams, where the amount of

work in progress (WIP) is matched to the team’s capacity (Radigan, 2018).

One of the key features of Kanban is its visualization of displaying the states of current

tasks on Kanban Boards to identify any bottleneck issues. This also has been adapted from a

factory-floor approach, where physical cards describing the state of a process were passed

between people. On a Kanban Board, a virtual card (or a physical one for physical Kanban

Boards) represents one work item and describes what the item is and who it is assigned to. Each

card is placed under a section on the board such as “To Do,” “In Progress,” or “Done,” and the

task is moved to the appropriate section when the state changes. WIP limits can be applied to

specific sections so that only a certain number of cards at a time can be there. Having too many

cards in a section indicates there is a bottleneck in the subsequent section. Overall, the Kanban

Board gives the entire team a visual representation of the flow of work, who is working on

specific tasks, and where any blockages in the workflow are (Radigan, 2018).

The backlog for Kanban is the “To Do” section of the board, with each card in this

section being an item in the backlog. Although there are not many predefined team roles in the

Kanban methodology, there is the role of product owner. Product owners prioritize the work in

the backlog however they see fit while also trying to minimize interruptions for other team

members. When team members finish the item they are working on, they pull the task with the

highest priority from the backlog to work on (Radigan, 2018).

As stated before, Kanban has the potential to create bottlenecks for the workflow. A

bottleneck happens when one of the sections gets more work than the maximum throughput of

that section. For example, if an “In Progress” section has five current work requests, but a WIP

limit of four, this would cause a bottleneck. In other methodologies, it can be difficult to identify

12

these bottlenecks in a timely fashion. For the Kanban methodology, there are also predefined

ways to handle a bottleneck. If the WIP limit of the bottlenecked section is too high, the limit can

be reduced so there are fewer context switches to that section. Alternatively, more resources

could be applied to the section, or the number of work items could be limited or grouped together

based on similarity, to reduce the risk of a bottleneck occurring (“What is a Bottleneck”, 2018).

The Kanban Board directs the team’s focus to active tasks and eliminates overproduction

by saving, conserving and focusing team resources. As a result, this type of project management

is more responsive to changes in workload than the Waterfall Model. When the priorities for a

project change frequently, this methodology performs well because of how it weighs demand

against throughput. Additionally, the Kanban approach also fosters rapid feedback and shorter

cycles with continuous delivery (“What is Kanban?”, 2018). In the Waterfall and Agile-Scrum

methodologies, cycles are determined by a preset time frame. In Kanban, a cycle is the amount

of time it takes for a single task card to travel through the team’s workflow and be deployed

(Radigan, 2018). Because cycles are based on a single-piece workflow, they are much more

flexible and changes can be made at any time, whereas in Agile-Scrum, changes should not be

made once a development iteration has begun (“What is Kanban?”, 2018).

The Kanban methodology can struggle in projects that span over a long period of time

because tasks have no deadline associated with them. The completion and deployment of a single

task is determined “at the team’s discretion” (“What is Kanban?”, 2018). Furthermore, if a team

member is spending a lot of time on a particular problem, or work is not delegated to a certain

section of the Kanban Board, development could halt and delivery could take longer than it

would have under other methodologies.

13

Scrum Software Development

 Scrum is another variant of Agile software development. Scrum is so widely used that it

makes up more than two-thirds of all Agile software methodologies used by software companies

in 2013 (Retzlaff, 2013). Scrum is an “iterative software model that follows a set of roles,

responsibilities, and meetings that never change,” operating in a continuous cycle of delivery

(“What’s the Difference”, 2018). In the following sections, the team discussed each of the crucial

components and processes of the Scrum-Agile software development life cycle: logging, the

sprint cycle, and roles.

Logging

 Maintaining a log is crucial to keeping the team on track during the development process.

There are two types of logs that the team needs to manage: product backlog and sprint backlog.

The product backlog keeps records of all the requirements and features for the application, which

may change over the course of the development process, while the sprint backlog stores a subset

of these features to be completed within the next iteration (Broggio; Retzlaff, 2013; Taymor).

The sprint backlog entries, however, should not change as this may make it difficult to track the

progress of the iteration.

The product backlog is initially created in the requirement gathering phase, where

developers create user stories to gauge all of the different features for which the users may want

to have implemented in the application. The user stories are notes used to identify actions and

features that accomplish specific goals for specific users of the application (Taymor). The team

will then record them in the product backlog and rank these features in order of estimated

completion time using a 1-, 2-, and 3-point scale. The sum of the point values associated with

14

each item in the backlog is referred to as the sprint velocity and is used as a measure of the

team’s productivity.

The Sprint Cycle

 In a Scrum environment, a team develops the software application in fixed-intervals

known as sprints, which are usually about 1-3 week-long iterations allowing the team to deliver

software regularly. Before each sprint, the team will hold an initial meeting to discuss the project

and team goals, and populate the sprint backlog for the upcoming iteration of the application

(Broggio; Retzlaff, 2013). During the sprint, the team is also required to hold short Scrum

meetings on a daily-basis, where members share what they did yesterday, what they are planning

to do today, and what difficulties they are experiencing while completing a specific task from the

backlog (“What’s the Difference”, 2018). After a sprint is completed, a functional deliverable

will be available for testing and presentation to users for feedback.

Figure 1. Scrum-Agile Life Cycle (Retzlaff).

15

Figure 1 above provides a graphical depiction of the interaction between backlogs and the

sprint cycle. All of the items that need to be completed are laid out in the product backlog while

a subset of those items is contained in the sprint backlog. The sprint backlog is fed into the sprint

cycle, at which time the items in this backlog will be completed over a period of a few weeks.

When the sprint is finished and the sprint backlog is complete, a new set of deliverables has been

made. The cycle will start over again and continues to repeat until all items in the product

backlog have been turned into deliverables.

Roles

 For self-organizing teams, additional responsibilities may need to be placed on ensuring

that the team is on schedule and is pursuing the project goals. The two positions that play critical

role in the Scrum-sprint development cycle for this purpose are Product Owner and Scrum

Master. Product Owner is the “voice of the customer” (Broggio; Retzlaff, 2013). That is, being

the product owner is responsible for prioritizing and assigning user stories to the product

backlog, making sure that team is creating a product of user’s interest. On the other hand, the

Scrum Master facilitates Scrum meetings by “removing impediments” or issues that the team

may be experiencing to ensure the delivery of sprint goals (Broggio; Retzlaff, 2013; Taymor).

Comparison of the Waterfall Approach and the Agile Framework

An Agile approach divides the development process into short increments. At the end of

each iteration, there is a functional, working deliverable to be presented with new features added.

As opposed to the Waterfall Model, this allows the team to receive feedback from users and

address any changing requirements they may have at the end of an iteration. This embodies the

16

Agile value “customer collaboration over contract negotiation” (Beck, 2001). The close

interaction and project transparency of the Agile approach, such as holding daily Scrum

meetings, ensures better productivity of the team. Although the Kanban-Agile framework does

allow the team to view active tasks, the absence of roles, such as the Scrum Master, minimizes

supervision and awareness of team status and effectiveness. Because the Scrum-Agile approach

is favorable to both the customer and developers, the team chose this approach as the software

development method for the project.

17

Software Development Environment

Version Control

Making use of version control ensured that the team could safely develop and test

individual features with a greatly reduced risk of introducing bugs or security vulnerabilities to

the production code. GitHub is the current industry standard, but other platforms such as

Bitbucket and GitLab have enjoyed seen substantial growth in recent years.

All three of these platforms are quite feature-rich and have all of the tools that the team

required such as issue tracking and project management tools built-in. However, Bitbucket does

not have an integrated project management system and Gitlab has many added tools for business

analytics that the team does not require. As a whole, the team was most familiar with GitHub

and provided all of the features needed for the project. In order to facilitate and keep track of

collaboration in the codebase, the team used GitHub as the version control software.

Issue Tracking

In order to track issues and bugs within the team’s code, the team made use of GitHub

Issues. This option was ideal for the team because it is, by default, integrated with the GitHub

repository. GitHub Issues also allowed issues to be assigned to specific contributors, which

ensures that team members did not waste time fixing bugs that were already being fixed by other

team members. Furthermore, the platform allowed issues to be labeled and classified in a variety

of different ways. This allowed the team to stay more organized and assisted in focusing on the

most critical aspects of development first.

18

Project Management

Since the team used Agile, it was of the utmost importance that the team remained on

task and on schedule. The team needed to keep track of iteration goals, feature development,

quality assurance, bug fixes, and a number of other factors. A popular software for this type of

project management is Trello. Trello is multiplatform and allows for the creation of a variety of

“Boards” which each pertain to one topic such as UI, Server, Database, etc.. Each board contains

a number of “Lists” which generally keep track of the stage of development that a “Card” is in.

A card generally represent an individual task or feature that must be completed. Although the

team was originally planned on using Trello, the team found that GitHub provided an extremely

similar service, GitHub Projects, which is integrated by default with each repository. GitHub

Projects has the added benefits of keeping the project management and version control software

in one central location, and providing great integration with GitHub Issues that allows an issue to

be made directly into a card and placed in its appropriate List and Board. For these reasons, the

team decided to use GitHub Projects for project management.

Communication

Internal

For communication the team used Slack. All of the team members have used Slack in the

past and are familiar with its features. One benefit of Slack is that it allows for the creation of

multiple channels which can each be dedicated to an individual topic. This reduces clutter in the

team’s communications and ensures that conversations will stay organized and cohesive.

Additionally, Slack can be integrated with GitHub to send messages corresponding to the

repositories activities so that team members are always up to date about the latest developments.

19

It is also important to note that Slack is multiplatform, meaning that it can be accessed via web

browser, desktop application, or mobile application. This helped to ensure that all team members

were made aware of any important developments in a timely fashion.

The team also looked at other communication platforms such as Microsoft Teams and

GroupMe. GroupMe was not chosen due to its simplistic layout and features. GroupMe also does

not support multiple channels or GitHub integration, resulting in less organization and no Github

tracking. Microsoft Teams is very similar to Slack in its capabilities. It is also multiplatform and

can integrate with GitHub. The team chose not to use Microsoft Teams as it does not offer any

advantages over Slack and would require the team to become familiar with a new system and

install a new program on personal devices, whereas the team members were already familiar

with Slack and had the program set up on their personal devices.

External

In order for the team to conduct any external communication with sponsors, institutional

boards, or research participants, the team created an Outlook Group. This group allowed us to

present one email address that ensured all communications could be viewed by all team

members. Similar functionality could be provided through a variety of platforms, but Outlook

was the best option for the team because the team already had Outlook accounts that were used

on a consistent basis.

Platform

 In the current market, there are two primary types of operating systems that cell phones

utilize - Android and iOS. Both are widely accepted, used and developed for making it relatively

easy for an application to be downloaded and used. While iOS and Android operate very

20

similarly on the user interface, development differs greatly between the platforms making it

difficult to develop one application for both platforms.

 The team ultimately decided to develop for Android for a variety of reasons. First,

Android phones are much more common that iOS devices, with Android currently holding 88%

of the mobile operating system market share as of Q2 2018 (Gartner, 2018). Statistically,

developing the application on Android allows it to be available to the most people. Second,

developing for iOS is more costly than for Android. In addition to requiring an expensive Apple

Developer license, iOS development is centered around MacOS specific technology. To develop

efficiently for iOS team members would have needed to purchase MacOS computers or make a

significant time investment to set up a proper development environment in another operating

system. The team members had previous experience with Android development, but not with

development for iOS. This prior experience allowed the team to reduce the time needed to learn

new technologies which, in turn, provided more time to focus on development.

 It is possible to develop one application that can be utilized by both operating systems by

using Facebook’s React Native platform. This platform allows developers to write their

application using JavaScript to invoke and direct the operating system’s native components

(Facebook, 2018). In some cases JavaScript cannot be made to implement all desired

functionalities, in which case some functionality must be written in native code and then linked

in the JavaScript application. In cases where an application must be developed for both Android

and iOS, React Native can save development time by allowing much of the applications code to

be written once and used on both systems.

 In the end, the team decided to develop solely for Android. This decision was heavily

influenced by the fact that Android has the majority market share in mobile operating systems

21

and the team would not need to incur costs from buying developer licenses. Additionally, the

team did not want to develop for both operating systems using React Native due to the

inexperience with the platform.

Programming Language

 There are three main programming languages used in Android Development: Java,

Kotlin, and React Native. Each of the languages have benefits and disadvantages, which made

selecting the development language a challenge. After numerous discussions the team decided to

use Java.

Java

 Java was chosen as the development language due to its extensive documentation, use

within Android’s systems, and the team member’s development experience. Java was first

introduced in may of 1995, over 23 years ago (Binstock, 2015), and has become a popular

development language. Due to Java’s popularity, the documentation for Java and the knowledge

shared between developers is extensive. On a popular programming knowledge website

stackoverflow.com, there are currently over 1.4 million posts regarding the Java programming

language(Stackoverflow, 2018). This extensive knowledge base was beneficial to the team as it

assisted with debugging and implementing new features into the application.

 Further the Android SDK is written in Java and makes development and integration with

the Android system easy and straightforward (Android Studio, 2018).

 Finally, the team members had experience with creating full Java applications through an

Agile methodology from completing a software engineering course at Worcester Polytechnic

Institute. This previous experience allowed the team to begin development quickly without the

22

need to learn a new language. The familiarity with the language also allowed the team to

implement more advanced features in the application leading to a more robust final product.

Kotlin

 Kotlin, while an official programming language of Android as of 2017, was not chosen

because of its relative lack of documentation and the team having no experience with the

language (Android Developer, 2018). Kotlin was first released in 2016 making it one of the

newest mainstream programming languages available (Breslav, 2016). As of September 2018,

stackoverflow.com has only 14 thousand posts tagged to the Kotlin language (Stack Overflow,

2018). The team discussed concern that bugs with kotlin would be more difficult to patch due to

the relatively small development community and existing documentation. The team also decided

against using Kotlin because they had no previous experience developing in the language and

would have had to cut into development time to become familiar.

React Native

 React Native is a framework created by Facebook to allow developers to create Android

and iOS applications in JavaScript. React Native is particular useful when an app must be

developed to support both Android and iOS since the majority of the code would be cross-

compatible between both operating systems (React Native). There are, however, some situations

in which React Native does not supply all of the developer’s desired functionality. In these

situations, native code must be written for each system and linked to the JavaScript code.

Additionally, React Native generally performs a worse than native code, which can be important

when creating resource intensive applications. The team decided against using React Native in

23

order to avoid the necessity of linking JavaScript and Native code, and because the majority of

team members were inexperienced with regards to React or JavaScript in general.

 Because of Java’s large development community, extensive documentation, Android

support, and the team’s familiarity with the programming language, it was chosen as the

development language for the project.

Integrated Development Environment

 When programming in Java, it is important to use an Integrated Development

Environment (IDE) to maintain organization between numerous files in comparison to a simple

text editor. Because of Java’s large development base there are many IDEs available. For

Android development, two of the most popular IDEs are Android Studio and Eclipse. For this

project the team elected to use Android Studio.

 Android Studio is an IDE developed by Google and JetBrains and is currently the official

development environment for Android (Android Studio, 2018). The team chose to use Android

Studio because of its Android specific nature and features. Android Studio receives regular

updates and fixes making it the most current IDE for Android development with support for

numerous Android versions. Android Studio also comes equipped with an Android Emulator,

making testing for different devices easy and quick. Android Studio is based off IntelliJ, another

popular Java IDE with which all team members have previous experience (Android Studio,

2018).

 Eclipse is an IDE that was formerly the official IDE of Android. Android development

for Eclipse was done with the Android Development Tools (ADT) plugin. The ADT was

deprecated in 2015 in favor of Android Studio and has not received any updates since then

24

(Eason, 2015). Because Eclipse is no longer officially supported for Android development, the

team elected not to use it.

 Because Android Studio is supported by Google as the official IDE for Android, and

Android Studio contains Android emulators to streamline testing, the team elected it as the IDE

for the project.

25

User Interface Mockups

Adobe XD

The team chose to use the recently released Adobe XD program for user interface (UI)

Mockups. XD was chosen due to quick learning curve, easy integration of Android standard UI,

and its ability to link mocked up scenes together to create a mock app. XD uses a simple drag

and drop interface to create individual app screen mockups. The resources to make the mockups

can either be imported from a standard UI library or created by the user. The program also

utilizes a simple connection system to link UI elements together, allowing the team to test UI

flow without needing a full front end to be created. XD also allowed the team to develop the UI

mockups on a computer and load them on mobile devices to test the UI on different size devices.

Finally, XD is available at no cost.

26

LucidChart Android Mockup Tool

LucidChart also offers a UI mockup tool, however the team chose not to use it due to its

online nature, limited functionality, and paid subscription. LucidChart has a limited free version,

which prevented full development of the UI without paying a subscription fee. Furthermore, with

the software being hosted on a website, performance can become slow when a large number of

objects are present. Because of these reasons the team chose not to use LucidChart.

Because Adobe XD is free, has greater functionality, and can easily be displayed on a

device, the team chose XD as the UI mockup software for the project.

27

Database Management System

In the software development field, there are a number of relational database competitors

vying for market share. The top ten competitors are Oracle DB, MySQL, Microsoft SQL Server,

PostgreSQL, MongoDB, IBM DB2, Redis, Elasticsearch, Microsoft Access, and SQLite (“DB-

Engine Ranking”, 2018). Competitors, such as Microsoft SQL Server, IBM DB2, and Microsoft

Access are relational databases, but were excluded from this analysis because the team was

unfamiliar with them. MongoDB, Redis, and Elasticsearch are non-relational databases; instead

they store data in key-value pairs, which does not lend itself for how the team modeled the data.

Therefore, the relational-databases that the team considered for this project were: MySQL,

Oracle DB, SQLite, and PostgreSQL. Though these are all relational database, they were all

designed with different paradigms in mind which resulted in certain features being better

supported than others in a DBMS. The features that are emphasized or neglected were what

ultimately informed the team’s decision on which database to use. The team’s concerns were

with speed, potentially complex queries, and data security. The team utilized a server running

Linux, so the only considered database systems had to be compatible with Linux.

MySQL

MySQL is a common solution for web applications. Its continued popularity over its

lifetime has led to a mature tool in the form of MySQL Workbench, which offers graphical

interfaces designing, implementing, administering, and migrating databases (“MySQL

Workbench & Utilities”, n.d). MySQL aims to be very efficient with input/output operations per

second(IOPS). MySQL has adopted a high percentage of the SQL standard. This DBMS

generally has the highest market share for usage with websites in the Alexa top 1 million visited

28

websites, and was a strong competitor for use in the project (Database Market Share,

2018). Where MySQL falls short is with security. When MySQL was built, the developers

didn’t include support for end-to-end encryption with SSL certificates. For the type of data that

the team stored and the network setup that the team had, this is a feature that was very important

to the project. This feature currently does exist in MySQL, but requires plugins and changing a

number of settings, which would have led to difficulty in setting up security correctly.

Oracle DB

Oracle DB is a closed source DBMS developed by Oracle. It was developed as an

enterprise solution for large amounts of business data. Oracle DB has a community/’express’

edition (XE) but primarily markets its enterprise solutions. Oracle DB has a low SQL standards

compliance and can require specialized knowledge to work with. The time investment required

to properly configure the database did not lend itself for use in this project.

SQLite

SQLite is a lightweight database engine. An attractive feature of SQLite was the ability to

create and interact with ‘in-place’ databases. These databases are stored purely in memory.

SQLite also offers a traditional storage mechanism on-disk within a single file. These features

and their implementations are useful for local embedded databases, as embedded environments

normally have very few resources to spare. SQLite does have a high average limit for how many

input/output operations can be performed per second at ~50,000/s (“SQLite Frequently Asked

Questions”, n.d.), and size of data storage at 150 Terabytes, but it does not have the features that

a full fledged DBMS has. Some of the features that would have been useful to the project would

have been triggers (stored subroutines run when a rule is matched), a wide array of data types,

29

and data replication, which could be used for read-only operations during periods of high traffic.

Also, SQLite is designed as a system around a single database, unlike the other options

mentioned that offer the ability to manage multiple databases under the same server instance

which can be useful to further segregate and secure data (“About SQLite”, n.d.).

PostgreSQL

Postgres offers a similar default start that optimizes queries without much fine tuning

(Shaughnessy, 2014). Postgres is commonly used in research and web development

environments. The main features that highlight Postgres’s use with web applications include

support for SSL certificates, single click synchronous or asynchronous replication, and

horizontal table partitioning. Out of the various DBMSs discussed in this section, Postgres has

the highest SQL Standard compliance (“About PostgreSQL”, n.d.), which is why the team chose

to use PostgreSQL.

Feature Comparisons

 MySQL

8.0

OracleDB XE

11g

SQLite

3.25

PostgreSQL

10.5

Multiple Databases (DBMS) ✓ ✓ ✓

Asynchronous Data Replication ✓ ✓ ✓

Synchronous/Semisynchronous

Replication

✓ ✓ ✓

Maximum DB Size Unlimited 4 GB 140 TB Unlimited

Materialized Views ✓ ✓

Column Level Actions ✓

Custom Data Types ✓ Partial ✓

Table 1. Database Feature Comparison

30

Data Replication

There are two schemas for data replication: Asynchronous and Synchronous which the

team will refer to as Master-Slave and Mirrored respectively. Master-Slave replication is when a

single database instance is the ‘master’ that is directly interacted with read/write operations.

When a write operation is made on the master database, it sends the update to the ‘slave’

replicated databases but does not wait to confirm that the data gets updated correctly. This frees

up the master to perform another action, but it cannot be sure that the slave is at perfect parity

with it. The slave database can be used as read only databases in high load situations to not slow

down write operations on the master database. There is a danger with these duplicate databases

as they may not be perfect clones of the master database. The advantage you get in exchange for

this is the potential for a faster read operation under heavy load. This type of replication is

asynchronous (TechTarget, 2015). The other type of replication is a Mirrored setup. In this type

of replication, all of the databases can be used as read/write clones of the original database.

When one instance gets written to, it makes a transaction with the other databases and waits for

the transaction to finish before moving on to another task. This setup guarantees that if one

database become corrupted, another can replace it seamlessly, at the trade-off of waiting for

verification of every write operation (TechTarget, 2010).

Materialized Views

Views are a mechanism to create pseudo-tables or to join together data from many tables

into a concise display. Views can be interacted with for read operations as if they were real

tables. The difference between materialized and transient views is when the data is fetched.

Materialized views execute the SELECT statement when data from the involved tables is

31

updated. Transient views run the SELECT statement every time the view itself is queried (“40.3

Materialized Views”, n.d.).

32

Security

The user base consisted almost entirely of sober home residents and recovering addicts.

The data that they provide may be extremely sensitive and personal in nature, and as such it was

imperative that the team take precautions to ensure that their data was securely transmitted and

stored. This requires attention to detail when the user inputs information into the app, what is

stored on the local device, what is sent to the application server, how the application server and

database server communication, and how the database server audits access to the data store.

In the App

The team stored as little data as possible in the local application. The team used the

standard storage APIs on Android to store preference settings in what Android calls ‘internal

storage’. Internal storage is app specific and cannot be read by other apps. This effectively

sandboxed the application. Sandboxing, in a mobile context, is the process of artificially

separating or compartmentalizing apps, which effectively protects the app’s data from other,

potentially malicious, apps (“Data and File Storage”, 2018).

Over the Wire

When storing data on a remote server, it was imperative to secure the information being

transferred. To this end, the team used Transport Layer Security (TLS) 1.3 for end-to-end

encryption between an instance of the app and the server that stores the data. End-to-end

encryption is an encryption scheme where no central authority is able to decrypt the messages

being sent. The only people that can decrypt it are those who are intended to receive the message

(Saltzer, J. H., Reed, D. P., & Clark, D. D., 1984). TLS is the protocol HTTPS that websites use

33

to secure communication with the browser. TLS is a standard that grew out of the Secure Socket

Layer (SSL) protocol, which was discontinued due to numerous exploits found since popular

adoption of the SSL 2 protocol. Both the SSL and TLS protocol detail a scheme that involves

both symmetric and asymmetric encryption in order for the client and server to agree on a shared

secret code that will be used to encrypt and decrypt messages securely. TLS is based on SSL 3.0,

but was designed differently enough to warrant a new standard, instead of a change to the

existing SSL protocol. The team will specifically be using TLS 1.3 because it is the latest

released standard of the protocol. TLS 1.3 is described in RFC 8446 (McKinley, 2003).

Within the Server

Non-application connection sessions were done explicitly through Secure Shell (SSH).

SSH is a remote access protocol that encrypts data as it is passed between the server and the

client. Password login will be disabled for the server and RSA 3072 keys will be required to

authenticate. RSA is an asymmetric cryptographic system that uses pairs of keys to encrypt and

decrypt data. The 3072 refers to the length of the key that will be generated; in this case a 3072

bit key will be generated. The team chose to use 3072 as the key length as it was currently

regarded by the NSA and National Institute of Standards and Technology to be the minimum

length for security (National Security Agency [NSA], 2016). Each project member generated a

key pair and used it to prove their identity to the server before starting every session. By taking

these measures, making unauthorized access more difficult, and have an audit log of who

connects to the server. These steps assisted security during development, but could be

impractical when the application is handed over to MASH for continued maintenance.

Specifically the use of SSH with a 3072 key length may be difficult to enforce and support, so

simple password authentication was enabled at the completion of the project.

34

Application Server

The application server was run under a service account without root privileges. Root

privileges, commonly referred to as just ‘root’, is the Unix equivalent to having Administrator

privileges in Windows. Root is also commonly the name of the superuser account on a Unix-like

operating system, essentially allowing the root user to have access to all features and commands

on the system. Running the application server with restricted privileges follows the security

principle of least privilege (PoLP) where programs or users are only given a level of permissions

that allows them to complete the task they are assigned to do (National Institute of Standards and

Technology [NIST], n.d.). The application server did not need to modify operating system files

or other users’ data, so it did not need root privileges, and therefore was not given any root

privileges. This server was the way that the application was able to retrieve data from the

database. All statements run by the server were prewritten, known as prepared statements, in

order to prevent an SQL injection. An SQL injection (attack) is where a user is able to

manipulate a form of input to take an action on the database that was not intended by the

developer. Normally this results in data being compromised to the attacker or destruction of data

(Open Web Application Security Project [OWASP], 2010).

SQL Server

The SQL server was run under a service account without root privileges. Communication

between application server instances and the SQL server was end-to-end encrypted using UNIX

(domain) sockets. UNIX sockets are a mechanism for interprocess communication. This allows

messages to be sent between different process running on the system without the need of an

intermediate temporary file. By using UNIX sockets, the team avoided binding to a network port,

35

further reducing the risk of unintended access. The SQL server only served queries originating

from the application server to prevent unauthorized access.

36

External Resources

For the mobile application, there were two key features that required the use of external

resources, including the timeline feature and the Facebook feature. In the following sections, the

team discusses the libraries, Android Timeline View, Android View Animations, Konfetti, and

the Facebook SDK used to implement these two features, respectively.

Licensed Libraries

 For the mobile application, the timeline feature allows users to be able to track their own

progress on personal goals, which in turn is a way to encourage their recovery. To facilitate the

implementation of this feature, the team decided to use an external Android Application Package

(APK) named Timeline-View (Asri, 2018). An APK is package file used for distributing and

installing an application. This file is created from the compilation of resources, code, and the

AndroidManifest.xml file of the application (Phillips, 2017). The manifest file is an XML file

containing metadata of your application to the Android operating system. This library uses

RecyclerView, a UI component in Android that allows developers to display a list of objects, in

its implementation of timeline events display (Asri, 2018), which the team was already familiar

with from previous iterations of development. Therefore, it would be easier to design the

application where the team has some kind of knowledge on the setup and functionality of the

new library resource.

 Furthermore, to add interesting animations to some of the features in the application, the

team incorporated two external APKs - Android View Animations and Konfetti (Daimajia, 2017;

Segijn, 2018). The Android View Animations library was used to alert the user of any updates

from the server, such as notifying the user for any surveys to complete, and any actions taken by

37

the user, such as changing the status of timeline events. Konfetti is a Kotlin library that offers a

confetti particle system (Segijn, 2018), which was used to celebrate any achievements made by

the user in the timeline feature, such as meeting a goal. Both of these external libraries were

selected for their simplicity and easy-to-use functionality, allowing the team to easily implement

the effects needed to improve existing features while making the application more user-friendly.

External SDK

 Another feature involved integrating social media into the application, such as Facebook,

allowing users to make posts to their personal page. This functionality was enabled through the

use of Facebook’s provided Software Developer Kit (SDK). A SDK is “a set of development

tools required to develop applications for Android platform” (“What is Android SDK”, 2018).

Facebook SDK contains six other component SDKs for Android development, which developers

can download separately to save space (Facebook, 2018). For example, for the purpose of the

application, the shared SDK would be sufficient to make a post.

38

Research

Many mobile applications have been developed over the years to assist recovery in sober

homes. The team researched some existing mobile products, and examined their features and the

opinions of their user base as reference for the development of the application. In the following

sections, the team discusses the applications found in the areas relating to sober home

management, group recovery, and individual recovery.

Management Applications

 The most relevant application on the market for sober home management is the Sober

Living App by Behave Health. This application features macro and micro management for all

different aspects of managing sober houses. It allows owners to be able to manage multiple

houses, keeping track of the overseer, the category of residents, and the overall occupancy. The

app also allows owners to keep track of individual information for each resident in a home

(Sober Living App, 2017).

 There are a few of design features that were used for inspiration for the project

application. The color scheme for the app is mostly white with occasional use of desaturated

colors, making icons and text very clear. Information for the houses and residents are displayed

in rows with tabs at the top of the screen to switch contexts. There is also a dashboard which acts

as a homepage, where owners can quickly track all of the overarching views for a house. Lastly,

the Sober Living App allows owners to set schedules, drug tests and notes for each individual

patient (Sober Living App, 2017). This app has a very clean and efficient design, and is

something that was considered for the team’s application.

39

Group Recovery Applications

 SoberGrid is an iOS and Android application that offers users the opportunity to reach

out to the people who are also in recovery. Users are able to find, chat with, or meet other nearby

users using the GPS capabilities on their phones. SoberGrid’s user base has shown a positive

attitude towards its on-demand connections with others. This application also allows users to

remain anonymous to make them feel comfortable and be more willing to share their

experiences, offer support to others, and make posts through a newsfeed feature. Lastly,

SoberGrid uses color boxes in users’ profiles to indicate a specific need or help to the user

(Sober Grid, 2017).

 Developer CaredFor has created numerous version of an application for private addiction

rehabilitation organizations. These applications contain features such as a progress tracker with

motivational messages, as well as a forum for other members of the recovery center to

community, discuss, share milestones, and provide support for one other.

Figure 2. Serenity House Health (Serenity House Health, 2018).

40

 The application allows for alumni of the recovery center as well as staff to post and

monitor the open forum. The app is also invite only, providing privacy and security to those who

would not like to share their recovery with the public.

Individual Recovery Applications

There are a wide variety of apps aimed at a solo sobriety program. Some of these include

‘Squirrel Recovery; Addiction’, ‘Quit That’ (Horton, 2015), ‘A-CHESS’, and ‘iPromises’. Each

app varies in the medical knowledge that went into them, as well as different features, which

results in a wide range of quality. However, there are certain features that seem to be prevalent in

many of them.

 The most common feature that was found among self help apps is motivational

messages. The app will display or give the user an option to display a motivational message,

which tries to encourage them and prevent a relapse. Some apps have a daily message that is

displayed on first use of the app per day, whereas others give the user a section where they can

go to read short motivational messages or a longer motivational article.

41

Figure 3. CHESS Health (CHESS Health, 2018).

Another common feature with these apps is the ability to add contacts as a support group.

The apps that include this allow for the user to send updates to these contacts on their progress;

some even allow for an emergency ‘panic button’ which alerts the support group that the user

needs help because they are having a relapse.

Of the individual recovery apps, there are a couple that stood out in terms of features. The

“I Am Sober” application is primarily focused on tracking progress rather than providing

support. The app allows users to input goals, milestones, and daily pledges that can be used to

track progress one day at a time. The app also offers support for more than one addiction which

can be useful since the recovery processes for two different forms of abuse may not be identical.

One of the more interesting features of this application is its Sobriety Calculator. This feature

attempts to estimate how much money a user has saved by staying clean/sober and uses this

information to further encourage positive decision making (I Am Sober, 2018).

42

 recoveryBox is an iOS application that allows users to track their progress throughout

their recovery. The app benefits from a simple design that allows users to log their daily

activities which are then designated as Green (good), Yellow (Warning), or Red (Bad). Days are

also designated as either green, yellow, or red based on what activities were recorded for the day.

Long term progress can be viewed in a calendar format in which the calendar square for each day

is filled with the green/yellow/red indicator for that day. The recoveryBox app also promotes

accountability by implementing a feature that allows daily logs to be sent to friends, spouses, or

sponsors. This helps to ensure that good days are properly celebrated and that support is

available on bad days (recoveryBox, 2014).

43

Software Requirements

 The requirement gathering process of this project was completed through surveys and

interviews. Surveys were given through an online survey application, and interviews were

administered to Rally 2 Recovery and MASH representatives.

Survey

The surveys were done through Qualtrics, an online tool used to design and analyze

surveys. Online surveys were used since they take much less time to create and distribute, are

generally more accessible and are better for maintaining privacy (Singh, Taneja, & Mangalaraj,

2009). While traditional paper surveys may be able to target a wider audience since not everyone

has access to the internet, the time saved by the quick response time and the built in data analysis

tools made an online survey a better option for this project.

Qualtrics also eliminated design problems that online surveys tend to have. With online

surveys, it is important to keep track of the data that a participant has submitted and to limit

participants to one response each. Qualtrics already does these things automatically, so less time

was spent on these facets of the survey. There are also problems that Qualtrics addresses

indirectly through the design tools it provides. When creating a survey, for non-skippable

questions an error message is needed if the participant attempts to continue the survey without

filling in a required field (Singh, Taneja, & Mangalaraj, 2009). Using the question-designing

tools in Qualtrics, each individual question could be non-skippable or tailored to any format the

team needed.

44

Qualtrics is able to provide detailed analysis of the questions asked, but the relevance of

the data was achieved through careful construction of the survey questions. It was important that

questions were only added if they helped get the information that was sought after. The questions

focused on the sole topic of the survey, and had clear language that anyone can understand

(Dunleavy, 2017)(“Surveys 101”, 2018). The types of questions also matter; avoiding yes/no

answers was optimal as a response scale provides greater depth of answers. The survey was also

short, since people are not as likely to participate in longer surveys (Dunleavy, 2017). Most

importantly, questions were catered to the target audience and the knowledge of this population

was kept in mind (“Surveys 101”, 2018).

Since the project involved human subjects, Institutional Review Board (IRB) guidelines

were followed. This meant that a user could not be forced to answer a question if they did not

want to which is especially important given the sensitive nature of the project’s topic. In the

survey, allowing a participant to skip questions while still providing a message describing which

questions were skipped in case the participant accidentally missed one was implemented through

Qualtrics (Singh, Taneja, & Mangalaraj, 2009). Alternatives for questions, such as a “choose not

to answer” option, was another way this issue was solved (Dunleavy, 2017). Safeguards were

also required to ensure the confidentiality of the participant’s information (Singh, Taneja, &

Mangalaraj, 2009). While the online data on Qualtrics provides a degree of privacy, little

personal information about the participants were gathered and the information that was gathered

was categorized by data ranges to ensure anonymity.

In terms of design, online surveys should be attractive so participants are not put off and

the color scheme should be simple while still making important elements clear. Qualtrics has a

clean and attractive design by default, but can be edited manually to fit the theme of the survey.

45

The team used the default Qualtrics design since it was suitable enough for the survey. Layout

can also be an important factor in terms of the success of the survey; single-page surveys gives

the user a greater sense of how much they have completed of it, but due to the scrolling requires

more effort from the user. Alternatively multi-page surveys do not require scrolling but generally

take longer to complete and there is not an indicator of progress (Singh, Taneja, & Mangalaraj,

2009). Due to needing participant consent at the beginning of the survey, the survey for this

project was multi-page, starting with the consent script. Qualtrics has the ability to add a

progress bar for multi-page surveys so the respondent can track their progress.

In order to distribute the survey there are multiple strategies that can be used. Solicitation

can be done through email, either through individual distribution or through mass-emails. If done

correctly this method can be relevant and simple if the email is not oversold. However, mass-

emails tend to come across as impersonal and garner low response rates. Another option is to do

solicitation via associations. Because the project is sponsored by MASH and Rally 2 Recovery,

surveys were distributed to both organizations to distribute to the target audience. While this was

more likely to get the target population of respondents the team are looking for, solicitation

through this method has a history of lower response rates than emails. Since web surveys

themselves tend to have lower response rates than traditional surveys, a combination of both

solicitation methods could have been used to maximize the response rate (Singh, Taneja, &

Mangalaraj, 2009).

Interview

 Another data collection method that was implemented was an interview. This method is

useful for gathering more personalized data and information about the underlying factors of an

46

issue (Madziwa, 2016). They are helpful when a point needs to be clarified for the participant, as

this can be done while in conversation (Alshenqeeti, 2014). Interviews are also helpful for a

limited number of respondents, and they typically provide more meaningful information than

surveys (Madziwa, 2016). Most of the personal data collection that was conducted was with a

small subset of staff at MASH and Rally 2 Recover, making interviews the optimal method in

this case.

 There are many types of interviews that could be used. One type is a structured interview,

where questions are similar to that of a questionnaire and little freedom is given to the

interviewee’s response. Another type is an unstructured interview, in which the interview is more

like a conversation where key topics are discussed and the interviewee is encouraged to elaborate

on answers. A third type is the semi-structured interview, where a degree of freedom is given to

the interviewee and the interviewer’s goal is to touch on specific topics to get the required

information (Alshenqeeti, 2014). This project used a semi-structured approach since the team

needed information for specific areas to understand the clients’ requirements and depth to the

answers.

 Unfortunately, there are a lot of negatives to using interviews for collecting data. Due to

the social nature of this method, the interview and the resultant data is only ever as good as the

interviewer themselves. Thus, interviews tend to to be subjective, and the interviewer’s bias and

worldview affect the data. Most relevant to this project is the fact that interviews take a long time

to conduct; it can take a long time to set up interview appointments as well as to transcribe and

analyze the data (Madziwa, 2016). Given the small sample size the team targeted for social data

and the need to understand the underlying issues, interviews were the best option for this kind of

data.

47

Like surveys, interviews are also subject to IRB guidelines. Thus, although interviews

gather more personalized data, the data also needed to be anonymous. Due to this, no questions

regarding personal information or that may allude to a participant’s identity were asked. To

identify the data that is collected, anumeric identifiers were used instead of names.

Epics & User Stories

Epic - Accounts

As a RESIDENT I want to [create an account] so that I may [save my data in the app].

As a RESIDENT I want to [login to an account] so that I may [access my profile, timeline, and

chat functionality].

As a RESIDENT I want to [keep my account private] so that I may [prevent others from viewing

sensitive information].

As a RESIDENT I want to [add a profile picture] so that [others may know who I am].

As a RESIDENT I want to [publicize my account] so that I may [share my progress with others].

As a RESIDENT I want to [revise my account information if it is rejected by a sober home] so

that I may [fix any errors].

As a HOUSE OWNER I want to [have a separate tier of account] so that I may [perform

supervisory functions for my houses].

Epic - Timeline

As a RESIDENT I want to [view my timeline] so that I may [see my recovery progress].

As a RESIDENT I want to [create a custom event] so that I may [share personal progress].

As a RESIDENT I want to [set a goal] so that I may [remind myself what I am aiming for].

48

As a RESIDENT I want to [make goals and events public] so that I may [show others how I am

progressing].

As a RESIDENT I want to [have a count showing how long I have been sober] so that I may [be

motivated by the progress that I have made].

As a RESIDENT I want to [comment on other residents’ timelines] so that I may [interact with

fellow residents and give them encouragement].

As a HOUSE OWNER I want to [approve of resident events] so that I may [verify or deny

whether an event actually took place].

Epic - Social

As a RESIDENT I want to [chat with other people who are recovering] so that I may [encourage

others and be encourage by others].

As a HOUSE OWNER I want to [chat with other house owners] so that I may [share and get

helpful tips for running a house].

As a HOUSE OWNER I want to [send announcements to the residents of my house] so that I

may [update residents with events].

Epic - Data Collection

As a HOUSE OWNER I want to [explain why someone was kicked out of a sober home] so that

I may [justify why a resident was removed].

As a HOUSE OWNER I want to [create a sober home in the application] so that I may [add

residents to it].

49

As a HOUSE OWNER I want to [approve new residents] so that I may [regulate who joins the

application].

As a APP OVERSEER I want to [collect basic data from residents] so that I may [know how best

to support them].

As an APP OVERSEER I want to [collect information through periodic polls] so that I may

[know the state of the residents across houses].

As a RESIDENT I want to [opt out of sensitive questions] so that I may [be comfortable with the

information that I am sharing with the application].

As an APP OVERSEER I want to [compare data between sober homes] so that I may [know

which sober homes are doing better and why].

As an APP OVERSEER I want to [access data in usable formats] so that I may [perform further

analysis].

As an APP OVERSEER I want to [see visualizations of the data] so that I may [get a quick

overview of the data].

As an APP OVERSEER I want to [display percentages of goals met] so that I may [get an

overview of the data].

As an APP OVERSEER I want to [see why residents were kicked out of a sober home] so that I

may [know if the sober home owner is acting fairly].

As a RESIDENT I want to [rate the quality of my sober home] so that I may [let other people

looking to be residents know the quality of the sober home].

Epic - Resident Support:

50

As a HOUSE OWNER I want to [remove residents from a sober home] so that I may [clear

space if a resident has graduated or remove people that are disruptive to the sober home].

As a RESIDENT I want to [see where local sober homes are located] so that I may [know which

sober homes I can go to].

As a RESIDENT I want to [access emergency info] so that I may [call for help if needed].

As a RESIDENT I want to [find local Narcotics Anonymous meetings] so that I may [know

where to find local support groups].

As a RESIDENT I want to [sort local sober homes by certain criteria such as gender] so that I

may [know which sober homes I am eligible for].

As a RESIDENT I want to [report incidents to a higher authority] so that I may [prevent

negligence or injustice].

51

Functional Requirements

 Functional requirements are requirements based on what the client wants. These can be

conscious requirements, which are features that the stakeholders of the application deem

necessary. There are also unconscious requirements, which are features not specifically stated by

the client but will be needed by them later on. These requirements can also be features that the

client did not know could be possible but that would be a benefit to the application (Futrell,

2002). For the application, the functional requirements were:

● An account system with multiple tiers for residents, sober home owners and MASH

representatives

● A timeline that allows users to document their journey through recovery

● A comment/like system to allow residents to contribute to each other’s timelines

● Ability for sober home owners to approve resident information for their sober home

● Ability for residents to rate and file complaints for sober homes

● An emergency button that can anonymously be used if the sober home is not safe

● Feature that allows users to see and filter local sober homes

● Geographically match residents with local NA meetings

Nonfunctional Requirements

 Nonfunctional requirements are requirements that are not requested by the client but are

necessary for the operation of the application. These requirements relate to performance,

scalability, security, maintainability among other non-user features. For the application, the

nonfunctional requirements were:

● Database should be able to handle up to 1000 users.

52

● Database should be secure and not be susceptible to injection attacks.

● Requests to the database should be executed in a reasonable time (10 seconds maximum)

● Network connection to the server should be secure using SSL.

● The application should work for all Android devices.

● The application should be tested using the Android emulator.

53

Design

 As mentioned previously, the User Interface (UI) of the application was first mocked up

in Adobe XD before being created in Android Studio. Initially the UI was designed with no

guidelines and was strictly a mockup to demonstrate the potential design of the application. It

created a vision for the team to follow. The initial UI in the application was basic and purely for

functionality. It lacked proper constraints to work on all phone screen sizes, appropriate color

palettes, and Material design recommendations. The final version of the application UI followed

Material color design, reformatted registration for a more user friendly experience, and overall

had a better feel. The following sections show the changes in the application UI.

54

UI Mockups

Figure 4. The original UI mockup

55

56

Figure 5. The Functional UI Mockup

57

58

59

Figure 6. The Final UI Mockup

60

61

62

63

Activity Diagram

Figure 7. Activity Diagram

64

Context Diagram

Figure 8. Context Diagram

65

Class Diagram

Figure 9. Class Diagram

66

Entity-Relation Diagram

Figure 10. Entity-Relation Diagram

67

Design Patterns

Android development includes a few design patterns that are enforced through

encapsulation of the SDK. For instance, there is a strict enforcement of the Model-View-

Controller (MVC) pattern, as well as a singleton for the ‘Context’ object of the application which

is used to access information about the application. The team used these throughout the

application, but because they are standard to Android, the team will focus on design patterns that

the team chose to use beyond these in this section.

While switching the application over to use a networked data store, the team chose to

incorporate a library, Volley, to handle making requests. The requests were going to simply be

interacting with an a RESTful API, so they were all going to follow a similar structure. In order

to save time writing complex Volley calls, the team used a facade pattern to only expose the

variable parameters such as the target endpoint, arguments, a success callback, and a failure/error

callback. In the facade, the team set up a method for each HTTP method needed in that given

part of the program (such as authentication or registration). Because Android enforces that

network requests must be asynchronous, the team also included some way to keep track of all

active requests. For this a NetworkManagerSingleton was used which handled the array of active

requests, sent the new requests, and translated between HashMap arguments and JSON strings.

Even in the case of an HTTP error code or a networking error, Volley will return a JSON

object as a response. Passing around JSON objects in the program can get complex, due to the

unpacking method declaring that it can throw a JSONParsing error that needs to be in a try/catch

block which is why the team decided to use the a variation of the Null Object pattern. An ‘error

state’ JSON object was defined in the NetworkManagerSingleton and returned to the caller of the

68

HTTP request (in order to fulfill the method contract). The caller then checked if the returned

object was in fact the ‘error state’ object and then decided what to do based on that. This is a

variation because the team did not re-implement any methods of the JSON class to deal with

being null, the team just took advantage of an instance of an object standing in for a Null value.

A design implementation that the team are particularly happy with is the generation and

response recording of Surveys. As seen in the figure below, the application allows for multiple

surveys to reuse questions, in case the administrators of the application would like to see if

responses vary over time. This design is also aimed at keeping the data collected from the

surveys useful while still keeping the individual user responses anonymous. This is

accomplished by tracking which surveys users have taken in a many-to-many relationship so

users are not sent the same survey twice and keeping the result of the survey in a different

relationship, without including the id of the user who submitted the response.

Figure 11. Survey Question ERD Snip-it

69

Software Development

Iteration 0

Figure 12. Iteration 0 Velocity Chart

 During this iteration two user stories were completed - the account-creation form and the

login screen.

● As a RESIDENT I want to [create an account] so that I may [save my data in the app]: 4

points

● As a RESIDENT I want to [login to an account] so that I may [access my profile,

timeline, and chat functionality]: 1 point

The velocity for this sprint was 5 points. Since this is the first iteration, the velocity for the

project was also 5 points. The database that the group planned to setup was unable to be created

70

due to the lack of a server. Despite this set-back, this initial iteration went smoothly; all of the

functionality that the team intended to create was completed with the help of a stub database

connection.

To create a foundation for the application and to get acclimated to programming for

Android, the team decided to do an initial iteration to prepare for the actual application. The goal

of this “iteration zero” was to create a minimal Android application that collected user input as

data and switched between multiple activities. Additionally, the team wanted to create an initial

version of the PostgreSQL database so that it would be ready to store the data for the application.

 The application that resulted from this iteration had three interconnected activities that

were utilized in subsequent iterations; a login page that was the entry activity, a registration page

and a homepage that greeted the user. To switch between activities and retain basic information

from user input, the group used intents. Intents are the way Android starts new activities and

shares information between those activities. These intents are used to launch the registration page

and the homepage from the login screen, and the username and password from the login fields

were passed into these intents as extras.

 The login activity had username and password fields, a login button, and a prompt at the

bottom of the screen to take the user to the registration page. If the user pressed the login button

it would take them to the homepage, which for this iteration was left blank except for a message

that displays the user’s name. Basic input validation was implemented to check that the

username and password fields were not empty, and if they were, an error message would pop up.

 The registration activity contained basic demographic information that the team thought

would be helpful for both creating a user account and collecting the data. In this iteration the

registration page asked for the user’s name, age, birthday, gender, email and the current sober

71

house they were a part of. The user was also prompted to choose a password using a password

field and a confirmation field. As with the login activity, all of the registration fields contained

input validation so that if a field that was required was empty an error would pop up. At the

bottom of the page was a submit button that took the user back to the login screen, and was later

used to add the new user to the database.

 Due to not having access to a database server during this iteration, the group decided to

create a database stub which would emulate data transfer. Using this stub connection, data was

temporarily stored in a CSV file for this iteration. All of the database calls in this minimal

application were done using this stub connection; it stored the registration information and

checked that the login credentials were valid.

 In order to prepare for data transfer with the actual database the team would be using, the

group started to create an interface for the database. This interface handled all of the SQL queries

to the database, so the application could retrieve data just through function calls built into the

interface. The plan was to later move this interface into the database server so that it could also

perform validation on the data being sent to the database.

72

Iteration 1

Figure 13. Iteration 1 Velocity Chart

 During this iteration no user stories were completed. Thus, the sprint velocity was 0

points, and the project velocity for this iteration was 2.5 points. No user stories were completed

because a couple of features added during this iteration such as an emergency contacts page were

later removed due to their unforeseen complexity. Despite the setbacks, the group learned

widgets and systems that would be used throughout the entire application and had a plan for the

next iteration.

For the first official iteration of the application, the team decided to focus on a few

smaller activities that would be integral to the rest of the application, but that would also allow

the group to continue to learn the Android system. These activities included an activity to change

the user information created in the registration page from iteration zero, a profile activity and an

73

emergency contacts activity. As part of the profile activity, the team planned to integrate other

applications such as the camera and photos apps to get images to use for the user’s profile

picture. The group did not know if the database would be ready, so they planned to implement

the database functionality for these activities in a later iteration.

 At the end of the iteration, the deliverable did not meet the expectations for the iteration.

The emergency contacts activity was finished, however the profile page and settings pages were

not fully completed. The group also discovered limitations of Android that hindered the backend.

Therefore, a portion of this iteration was dedicated to researching the constraints of the system so

they could be factored into the design of the application.

 The page that was created for updating the user account information directly mirrored the

registration page; they both had the same fields, but the update activity filled these fields with the

information that the user already input for their account. Each field could be edited, and when the

user pressed the submit button the information was updated. Due to not having the database, the

updated information was instead put into the database stub. This page did not see further

development due to time constraints.

 The emergency contacts activity contained a list of phone numbers that could be called

for help. This page utilized the RecyclerView widget for Android, which was used throughout

the application in future iterations. This widget allows custom-formatted information to be

displayed in a vertical list, which enables easily scrollable pages. In this instance, each item of

the RecyclerView contained a profile photo and a phone number. When an item was pressed, the

system’s phone app was started and the corresponding phone number was automatically input.

This type of external integration with the phone application was what was planned for the

profile page, however this was not accomplished in this iteration. The profile activity for this

74

iteration just contained the minimal UI that would be used on the page, including an ImageView

to hold the profile image, a field for the user’s name and a description field that the user would

be able to update. The name field was populated with the name received from the database stub,

but beyond that the profile page for this iteration did not contain any functionality.

After running into limits of the Android system, the team refactored the backend to meet

these constraints. The group discovered that in the future, data fetching could not be run in the

main thread of the application. This was because the data was going to be networked, and

Android raises an error if a network request is run on the main thread. The team refactored the

code to use Volley, a library for making requests on Android. After spending a significant time

planning the design, a singleton network manager to abstract some of the intricacies associated

with networking was chosen. This included converting arguments to JSON strings, handling

parsing errors, timeout errors, and setting proper headers. The team also ended up including the

null object design pattern to represent some of the error states that can result from issuing a

network request.

Although the progress of the application did not meet the groups standards, a few key

decisions were made that would benefit the project in future iterations. To adhere to the scrum-

agile methodology the group chose, they assigned Kyle as the scrum master and Alex as the

product owner; from then on Kyle would be in charge of initiating the scrums, and Alex would

be the main point of contact between the team and the project’s sponsors. The team also created

the user story backlog and agreed on a way to rate user stories; A rating of 1 would take the least

amount of time to complete. A rating of 2 would take twice as long to do as a user story with a

ranking of 1, a rating of 4 would take twice as long to do as a user story with a ranking of 2, and

so on.

75

Since the database was still not available, everyone decided to focus on the user

interactivity. Thus, user stories such as account tiers were saved for when the database was set

up. The team agreed to work on the timeline user story for the next iteration, since it seemed to

be the task that would take the longest to do. To aid in knowing what features to add to the

application, the group decided to visit a local sober home and talk to the sober home owners.

This way everyone would get a better grasp of the user group, and they would be able to ask

about specific features that sober home owners wanted.

76

Iteration 2

 Figure 14. Iteration 2 Velocity Chart

At the end of this iteration the team completed three user stories - the ability for users to

set a profile picture, the timeline system and the ability for a user to create a custom event for

their timeline.

● As a RESIDENT I want to [view my timeline] so that I may [see my recovery progress]:

8 points

● As a RESIDENT I want to [create a custom event] so that I may [share personal

progress]: 4 points

● As a RESIDENT I want to [add a profile picture] so that [others may know who I am]: 2

points

77

The sprint velocity was 14 points, and the velocity for the whole project for this iteration was

6.33 points. The team felt positive about the following iterations with one of the major features

implemented unlike the previous iteration. Looking forward the team sought to implement the

next main feature as well as begin to revise the look and feel of the application to make it more

user friendly and visually appealing.

The second iteration of the application saw the first major features being added. In

addition to completing the unfinished user stories from iteration 1 such as the user profile page,

the team added the event timeline feature. This feature allowed users to track and save notable

events throughout their recovery as well as share those event with other members of their sober

homes. This feature was achieved through the use of an external timeline library that was

integrated into the application. While initially thought to be a placeholder design, the design of

the timeline was received well and thought to be an acceptable layout to remain in the

application.

 During this iteration the team also began to add more supplementary features such as a

sidebar for navigation and the start of a settings page. These activities and features were added to

the application, however at the end of this iteration their full implementations were not

completed in favor of more major features. These features were planned to be finished in a later

iteration once the core of the application had been completed and made fully functional, however

due to time constraints they were never fully implemented.

78

Iteration 3

Figure 15. Iteration 3 Velocity Chart

 During this iteration, three user stories were completed - the implementation of the chat

feature, the different categories for the chat (global, house and owners) and having public

timeline events appear in the house chat that a user belongs to.

● As a RESIDENT I want to [chat with other people who are recovering] so that I may

[encourage others and be encourage by others]: 4 points

● As a HOUSE OWNER I want to [chat with other house owners] so that I may [share and

get helpful tips for running a house]: 4 points

● As a RESIDENT I want to [make goals and events public] so that I may [show others

how I am progressing]: 2 points

The sprint velocity was 10 points, and the project velocity for this iteration was 7.25 points.

79

The third iteration of the application sought to increase usability, visual appeal, and add

the second major feature: a chat system. Up until the third iteration the UI was plain white with

black text. During the third iteration the team created numerous potential color palettes and

background options before settling on a blue theme with a gradient background. In order to

prevent spending too much time on that design a placeholder gradient and color scheme were

used, which was intended to be replaced by a custom designed theme in iteration 6. The user

interface was also updated on the main screen by the addition of cards linking to the timeline and

chat features. This allowed users to directly go to these main features rather than navigating

through a maze of profiles and settings in order to find them.

 The chart feature, a major goal for the finished application, was also implemented this

iteration. The chat feature had three main rooms: a house room, a global room, and an owner

room. The house chat room allowed application users to communicate with the people inside

their sober home. This was designed to promote inner house communication and be a place for

topics of discussion or announcements The global chat allowed all application users to

communicate and have a platform for discussion that extended past in-house conversations. The

administrator chat allowed house owners and MASH administrators to converse regarding house

issues, openings, and other executive level discussions. It was designed so that each account was

given permissions to the appropriate channels, which was implemented in the last iteration.

 Iteration 3 also saw the expansion of the registration activity. A second page was added

to account registration and included a basic survey. This data included topics such as

employment history, recovery history, and any sober home history. This was predicted to be data

MASH wished to collect from application users, however the team did not have a complete list

of data to collect.

80

 Finally, iteration 3 saw the refactoring of the event system to share events to the chat

channels if they were set as public as well as changed some input types to reduce possible errors.

81

Iteration 4

Figure 16. Iteration 4 Velocity Chart

During this iteration, two user stories were completed - the ability for a sober home owner to

create a sober home within the application and the setup for the web application.

● As a HOUSE OWNER I want to [create a sober home in the application] so that I may

[add residents to it]: 2 points

● As a APP OVERSEER I want to [collect basic data from residents] so that I may [know

how best to support them]: 2 points

The sprint velocity was 4 points, and the velocity for the project during this iteration was 6.6

points. The velocity was much lower this iteration because only a couple smaller user stories

were completed, but many user stories were partially completed.

82

Iteration 4 included maintenance of existing features, improvements of others, the start of

a web application to view the collected data, and the creation of a supervisor page. The

supervisor feature was designed to allow sober home owners to manage their home’s page as

well as resident’s accounts inside their home. The page allowed the supervisor to approve

accounts to join their home’s chat channel, remove users that may be detrimental to other

residents, and edit or update their houses picture or description. This was an extension of the

permissions given to accounts that could access the administrator chat channel.

 In addition to the supervisor page, a house page was created that allows user to view

information about the sober home they reside in as well as post a review of the sober home. The

information displayed on this page was entered through the supervisor page. This page was

reworked into the list of sober homes residents could browse that was implemented near the end

of the project.

 This iteration also included the refactoring of numerous exists activities to extend

functionality or improve performance on different devices.

 Iteration 4 also marked the beginning of a web application to view the data collected

during registration. In order to allow MASH administrators to easily interpret and use the data

collected, the team elected to create a basic website using Vue.js to pull live information from

the server and display it in an easy to understand presentation.

83

Iteration 5

Figure 17. Iteration 5 Velocity Chart

During this iteration, two user stories were completed - the ability for sober home owners

to process resident housing requests and the ability for an owner to remove a resident from their

sober home by giving a reasoning.

● As a HOUSE OWNER I want to [approve new residents] so that I may [regulate who

joins the application]: 2 points

● As a HOUSE OWNER I want to [explain why someone was kicked out of a sober home]

so that I may [justify why a resident was removed]: 1 point

The sprint velocity was 3 points, and the velocity for the project during this iteration was 6

points. The velocity was lower this iteration because most of the iteration was spent planning and

working on the paper.

84

Iteration 5 contained a few additional features but was focused on non-development

project work such as paper additions, meetings with the sponsors, and future planning. The

iteration began with a meeting between the team and Rally to Recovery, where the current state

of the application was demonstrated and reviewed. This meeting provided insight into future

expectations and good feedback on the current design of the application.

 The web app was expanded upon and had the charts.js API added. This was done to allow

data collected to be easily displayed and understood, and did much of the heavy-lifting for the

web-app.

 The supervisor activity was polished to include most of the interactivity that the final

version would have. The different sub-activities within the page now interacted with one another,

and all of the data needed to complete all of the various forms were added to the application.

 From the meeting with the sponsors the idea of Facebook integration was discussed. The

team elected to spend time in this iteration to explore the Android Facebook SDK and begin to

architect its potential integration into the teams application. The sponsors wished to add a form

of private chat between users, and the team felt it may be beneficial to integrate an existing, well

known and used platform rather than develop one from the ground up. It was discovered that the

Facebook SDK was much more complicated to implement than was first thought, so

implementing it was eventually deemed outside of the scope of this project.

 The team also began to plan the UI and layout redesign following Google’s material

design standards. Material is the current standard for Android application UI and is used almost

universally. Following those standards allowed the application to be more intuitive for use and fit

in well with the look of the Android ecosystem.

85

Iteration 6

Figure 18. Iteration 6 Velocity Chart

 During this iteration two user stories were completed - the ability for supervisors to

approve resident events and the option for users to opt out of questions during registration and

polling.

● As a HOUSE OWNER I want to [approve of resident events] so that I may [verify or

deny whether an event actually took place]: 4 points

● As a RESIDENT I want to [opt out of sensitive questions] so that I may [be comfortable

with the information that I am sharing with the application]: 1 point

The sprint velocity was 5 points and the velocity for the project during this iteration was 5.86

points. The velocity was low this iteration due to the important meetings that took place and

because of how close this iteration was to the holidays. Because of the approaching holidays, the

86

team focused a lot of effort preparing the paper proposal so it could be edited during the winter

break.

During this iteration the team started setting up the final database and implemented

additional functionality and polish to parts of the application that were worked on earlier. There

were also a couple important meetings that took place during this sprint that laid out the work for

the rest of the development of the application.

 The group had a meeting with one of the WPI faculty in charge of the WPI servers to

discuss using some of the server space to temporarily host the database for the application.

During this meeting the details for the server allocation and setup were finalized, allowing the

group to start developing the final version of the database system. Thus, the backend setup for

the application was heavily worked on for this iteration but was not completed.

 Additionally, the team also had their first meeting with MASH, where the progress of the

application and the features that they wanted to see in the application were discussed. The most

important decision was how to measure the success of recovery in MASH certified sober homes;

it was decided that success would be based on the events that users post to their timeline, which

include length of time sober, length of time at the sober home and length of time in a current job,

among other metrics. Another key part of the discussion was agreeing on what information to

include regarding timeline events and the polling system. For timeline events this included goals

that would activate every 30 days for sobriety and time spent in a sober home. Questions

regarding experiences in non-MASH certified homes in the polling was suggested, but the team

was unsure whether to add these at this point in the project.

 During the MASH meeting a couple of small features were also suggested that were great

additions to the application. A portal to a list of sober homes in Massachusetts was brought up

87

which was planned to be implemented in a future sprint. The ability to opt out of sensitive

questions during registration and polling was also suggested, and this option was implemented

during this iteration.

 Besides features related to the meetings that took place, the material design UI was

partially implemented, including the login screen and the home screen. The planning for the

redesigned UI continued during this iteration as well, and was not fully completed at this point.

The UI was mocked up using Adobe XD as a prototyping tool to test and refine the new design

before implementing it in the application. The registration form was completely remade and

changed from a two page design to a three page design. This change was made to make

registration more personal, easier to comprehend, and to collect the necessary data requested by

the sponsors.

The supervisor activity was also updated to include the ability for a supervisor to approve

resident requests to join the sober home. The UI for this task was updated so that all supervisor

functions were put on a single scrollable task bar, allowing additional functions to be added in

the future more easily and to make more room for the UI of each individual task that can be done

on the supervisor screen.

88

Iteration 7

Figure 19. Iteration 7 Velocity Chart

 During this iteration one user stories was completed - the portal for to the list of

Massachusetts sober homes.

● As a RESIDENT I want to [see where local sober homes are located] so that I may [know

which sober homes I can go to]: 1 point

The sprint velocity was 1 point, and the project velocity was 5.25 points. Due to larger user

stories being worked on, such as the material UI redesign and the start of the ORM, the velocity

for this sprint was low.

Due to how the beginning of the semester was scheduled, this iteration was quite short

and not as much work was done as in other iterations. During this iteration, the portal to

Massachusetts sober homes that was discussed in the MASH meeting from the previous sprint

89

was implemented. This was incorporated as a button on the login screen so that even people who

have not registered for an account can have access to the list.

 The group decided to switch to using an Object-Relational Mapping (ORM) interface for

the database. Instead of making raw SQL queries, this interface allowed SQL queries to be

generated from functions inside the ORM. SQLAlchemy, the ORM framework the team used,

models tables as classes and relations as fields in the relevant classes. This allowed the team to

interact with the database with an object-oriented mindset. As the number of tables and

endpoints grew, the development time required to add new features to the backend started to

increase exponentially. Using an ORM removed the need to think about crafting, testing, and

optimizing raw SQL queries for each additional feature, some of which required multiple queries

to fulfil a request. The ORM also enabled faster local development because it provided a

programmatic way to generate all the tables and relations needed for the database.

 The UI redesign was further improved, with the entire application being planned in

Adobe XD. All activities and forms were completely redone to follow a Material color palette

and to be more intuitive to users. Buttons were made to follow a consistent size, location, and

color. The full implementation was planned for the following iteration.

90

Iteration 8

Figure 20. Iteration 8 Velocity Chart

 During this iteration two user stories were completed - tracking the number of days sober

and displaying milestones, and displaying polling questions to residents occasionally for

additional data collection.

● As a RESIDENT I want to [have a count showing how long I have been sober] so that I

may [be motivated by the progress that I have made]: 8 points

● As an APP OVERSEER I want to [collect information through periodic polls] so that I

may [know the state of the residents across houses]: 8 points

The velocity for the sprint was 16 points, and the project velocity was 6.44 points.

91

This iteration saw the completion of many of the important backend features such as the

ORM and its implementation with the RESTful API. Development of the web application went

into full swing as well.

 The ORM that the group decided on developing in the previous sprint was completed

during this sprint, allowing easy database implementation for the mobile and web applications. It

was also connected to the RESTful API that was created for the application server. The NGINX

file was completed to account for the new set-up of the backend.

 The web application was developed for the first time since the fourth sprint to prepare it

for ORM integration. A login system was created so that users could not access the data from the

mobile application unless they used a valid username and password from an admin account.

Once the admin logged in, access to the data and statistics was enabled. In the next iteration this

login was removed due to completely refactoring the web application framework.

 The UI redesign was fully implemented in this iteration, with all activities, forms, and

fragments updated to follow the new look. This created a consistent user experience within the

application and ensured all parts of the app appeared cohesive. Many menus were redesigned to

be more clear and intuitive in their operation. A basic logo was also designed for the application.

Overall the redesign made the application easier to use, provided a clear consistent look, and

increased the functionality of the application both for users and administrators. The UI in this

iteration was also changed to ensure full compatibility on all Android devices of different screen

sizes. Each UI element was updated so the constraints were dynamic and would automatically

resize on different devices.

92

Iteration 9

Figure 21. Iteration 9 Velocity Chart

 During this iteration, seven user stories were completed - different account tiers for

residents and sober home owners, the ability for residents to browse sober homes, the ability for

residents to request access to a sober home, making data downloadable in JSON and CSV in the

web application, allowing data in the web application to be sorted by home, displaying amount

of goals met from residents’ timelines and displaying dynamic visualizations on the web

application based on resident data.

● As a HOUSE OWNER I want to [have a separate tier of account] so that I may [perform

supervisory functions for my houses]: 4 points

● As a HOUSE OWNER I want to [approve new residents] so that I may [regulate who

joins the application]: 4 points

93

● As a RESIDENT I want to [see where local sober homes are located] so that I may [know

which sober homes I can go to]: 4 points

● As an APP OVERSEER I want to [access data in usable formats] so that I may [perform

further analysis]: 4 points

● As an APP OVERSEER I want to [see visualizations of the data] so that I may [get a

quick overview of the data]: 4 points

● As an APP OVERSEER I want to [compare data between sober homes] so that I may

[know which sober homes are doing better and why]: 2 points

● As an APP OVERSEER I want to [display percentages of goals met] so that I may [get

an overview of the data]: 2 points

The sprint velocity was 24 points, and the velocity for the project during this iteration was 8.2

points.

Iteration nine was the final iteration of the project. Development on the mobile

application drew to a close during this iteration as the team focused on creating database

endpoints to add connectivity to the current features. Endpoints are pieces of code in the

application that connect to the database allowing data to be correctly displayed and entered.

These endpoints created the connected experience the application was designed around. The

application was also refactored in places to allow the database connections to be simpler and to

‘clean up’ portions of code.

Outside of connecting the application to the database, the mobile app received minor UI

updates including customized placeholder images for user profiles and sober home profiles.

Additionally, the registration page was refined. Date input was switched to calendar dials for

ease of use and fields were edited so they are always visible while the keyboard is active.

94

A final feature that was added to the mobile application was an activity to browse and

send a request to join a sober home. A RecyclerView was used to display all sober homes that

were present in the database, and when one was pressed it brought the user to a detailed

description of the home. This details screen was a refactored version of the sober home activity

that was developed previously, and kept many of the same fields. An addition to the home page

was a button that would send a request to join the home. This request would appear in the

supervisor activity for the owner of the house.

 The web application also saw improvements with the ability to view a number of charts

and graphs. The charts were intended to show a brief overview of the underlying data. The charts

were dynamically generated, meaning that they display the most recently data available in the

database. The data displayed on the web app was also improved in this iteration by adding the

data from the events logged by each resident. This data was particularly valuable because it

pertained to the residents’ paths of recovery rather than just their demographic backgrounds.

95

Iteration Addendum

 While the team was able to successfully implement the majority of the user stories in the

project, there were some user stories that saw partial implementation. These features were added

to the application but did not see total completion. The main partially completed user stories

include the sober home rating system, an emergency contact information page, application

notifications, and application settings.

The sober home rating system appears on the sober home pages in a five-star format,

however there is currently no place for residents to submit a rating. The emergency contact

information activity was created, however it was removed from later iterations due to design

issues and difficulty in providing correct location-based phone numbers. An application

notification framework was created and added to the application, however it was not developed

to the point of actively pushing the notifications to users. Finally, an application settings page

was introduced in an early iteration, but it was updated as a low priority feature and when the

application was completed, the team determined that there was no time to create adjustable

application settings.

96

Testing

Unit Testing

The testing framework that the team used is known as ‘Robolectric’ and is recommended by the

Android documentation. This framework allowed the team to test features using the Android

SDK without having to launch an emulator or building to a device, which can take a long time.

The development team created tests for features to cover corner cases in features they were

creating as time went on.

Integration Testing

During integration of feature branches the team manually tested the features being merged to

ensure that they were working in the master build. In testing these new features in the master

branch the team made sure that database queries still operated the same as they did in the feature

branch, that buttons and interactivity still worked the same way, and so on. Integration was done

using a top-down approach, stubbing the lower levels for testing, as each feature branch was

merged with each other the above procedure was done.

Generating Fake Data

To test the web visualizations, the team needed a way to generate large sets of data. To

accomplish this, the team used a Python library, ‘faker’. Using faker, the team described the

types of fields needed and specified any restrictions such as length or possible value, and then

the library generated data within those parameters. This data was uploaded to the server and was

then pulled from the database to the web server via the RESTful API.

97

Manual Testing

While integrating new features into the application, the team made sure to manually test common

workflows to ensure that the feature felt right to interact with. For example, during registration,

the team wanted to ensure that the transitions between questions and activities felt natural to

encourage users to complete the process. When switching over from the local datastore to a

remote database, the team took the time to test each networked feature to see if the size of the

responses that were designed took too long to return, causing the experience of the app to slow

down. In addition to personal testing during development, the team received help from students

to try and identify designs in the app that did not feel intuitive. Using this feedback, user tests

continued on the workflows and the team made sure that the structure of the features did not

interfere with the user’s goal.

98

Assessment

 At the start of the project the team hoped to accomplish a few goals; create a mobile

application, have that application collect data that would be useful for MASH administrators, and

have the features of the application help residents of sober homes in their recovery.

Throughout the numerous iterations of this project the team learned many things. The

project challenged the team to combine numerous languages, learn development techniques for a

new platform, apply proper design patterns and AGILE methodology, and manage a long term

development life cycle.

The project combined four main languages throughout a mobile application, RESTful

API server, and web application in order to provide a suite of tools to assist in a resident's

personal recovery as well as collect aggregate data for MASH administrators to analyze.

The project began with the team choosing the tools to use for the duration of the project.

It required the team to investigate all of the potential options and then not only choose but justify

why each tool was the best of for the task.

During development the team practiced AGILE methodologies to manage the project and

iteratively create the application from the ground up, focusing on basic structure initially and

fine-tuning design at the end. While the mobile application was being built, an entire database

was setup on a WPI hosted server that required the team to combine their mobile application

knowledge with that of networking and databases. Furthermore, the team built a web application

for the mobile application, so web administrators could view the data collected by the

application.

Finally, the team was able to demonstrate the working mobile application to the sponsors

and document the entire project timeline, leaving documentation of the application’s

99

development along with recommendations so that any future projects would benefit from the

data collection, development, and techniques used by the team.

 The project overall went very smoothly with only few hiccups in each stage. At the very

beginning with the start of the data collection and requirements gathering, the team was able to

quickly focus on the important section of the project which became the foundation for the

application. The team did run into the issue of sometimes vague and unclear application

requirements from the project sponsors but was able to persevere and forge requirements from

their understanding of the presented problem which lead to a successful application.

 When developing the application the team was able to, with little interruption, work each

week presenting a new and improved iteration of the application. There were some weeks where

an iteration saw little progress and had to be continued into the following week, however those

weeks were often around holidays or school term breaks. When an iteration was not fully

completed the user stories were moved into the following weeks iteration with the team

completing both the new user stories as well as the previous iterations.

 Finally when nearing the end of the project, the team was able to make the effort

necessary to finalize a finished product for the sponsors of the project. The final iterations were a

cohesive and comprehensive application that met the requirements set at the beginning of the

project. Beyond the mobile application, the team’s successful creation of a web application

helped to build in more features for application supervisors to view data and perform

administrative operations. At the conclusion of the project, the team’s sponsors, MASH and

Rally to Recovery, viewed a demonstration of the application and began to work with the team to

transfer the project data to them with great interest. The sponsors were impressed with the team’s

work and wished that the project may be continued and eventually deployed in the future.

100

Future Work

While the team was able to accomplish many goals during the course of the project there

is room for the project to be continued. The team has the following recommendations for future

projects on this topic.

First the team recommends ensuring requirements are gathered at the very start of the

project. The team encountered communication problems with the sponsors due to a change in

leadership and as a result, did not receive the sponsors requirements until nearly two-thirds of the

way through the project. Due to the timing of receiving the sponsors requirements the team was

forced to compromise on some features and was unable to implement others. Another result of

the delayed requirements was a lack of clear direction when starting the development portion of

the project. This, in turn, required the team to predict what features would be beneficial to the

application and design the application based on their perception of what the sponsors would

require.

Second, the team recommend bringing the application to iOS. The team chose to target

Android due to its open ecosystem and larger market share. iOS is still a popular phone platform

in the United States and therefore there will be some potential users who are unable to utilise the

benefits of the application due to their phone’s platform. By bringing the application to iOS all

MASH residents will be able to use the app and benefit from the features it contains.

The team’s third recommendation is to further develop and expand upon the web

application. The development of the web application began near the end of the development

phase of the project and is simple in design and features. A future project could be expanding the

capabilities of the web application to be more dynamic, better displayed, with more

administration features for viewing the data or regulating users inside the mobile application.

101

There is also potential for the web app’s data to be used for true statistical analysis; something

the team was unfamiliar with and unable to complete.

The team’s fourth recommendation is to implement the security features of the mobile

application and web application described in the paper. Due to time constraints and the delayed

setup of the server, the team was not able to implement the previously discussed security

features. As the application designed was a minimal viable product, and is not meant to store

personal data in its current form, the security was scheduled to be implemented last. In a final

production level application the security must be implemented.

The team’s fifth and final recommendation is a number of development features to be

implemented or expanded. The features are as follows:

1) Add employment status to the database to keep records of who is employed and

for how long

2) Add timeline events to the path visualization

3) Support survey assignment to specific demographics of users inside the mobile

application

4) Store the images uploaded in the application.

These features will further the application’s functionality and make it more effective. The

team was able to implement an outline of a notification system, and the team recommends a

future project expanding and utilizing the notification feature. The team has created the

infrastructure to automatically add milestones to a user’s timeline, however the server connection

is not complete. The team also recommends expanding the chat features to increase house

connectivity; potentially using temporary or noSQL data storage.

102

Conclusion

Overall, the project experience was beneficial for both the members of the development

team and for the project’s sponsors. The group was able to gain first-hand experience designing a

large-scale mobile application and a companion web application, while utilizing frameworks

such as Robolectric. Through developing the application, the team gained a greater

understanding of Android development and mobile interfaces. Even though there were

difficulties gathering requirements for the application, the team was able to learn a great deal

about communicating with clients that can be used in their future endeavors, and requirements

have been gathered for future development of the application. This project was beneficial to the

sponsors by showing them what can be done to help them gather information on how sober

houses are running. The application that was produced will help the sponsors of the project to

elicit more features that can be added in the future and will pave the way for improving support

for sober home residents.

103

References

About SQLite (n.d.). Retrieved September 12, 2018 from https://www.sqlite.org/about.html

Alexander, M. (2018). Agile Project Management: A Comprehensive Guide. CIO. Retrieved

From https://www.cio.com/article/3156998/agile-development/agile-project-

management-a-beginners-guide.html

Alshenqeeti, H. (2014). Interviewing as a Data Collection Method: A Critical Review. English

Linguistics Research, 3(1), 39-45. Android Developer (2018) Kotlin and Android.

Retrieved October 7, 2018 from https://developer.android.com/kotlin/

Android Studio (2018, September 11) Use Java 8 Language Features. Retrieved October 7, 2018

from https://developer.android.com/studio/write/java8-support

APMG International. (2017). Why is Agile becoming so popular in project management?

Retrieved from https://apmg-international.com/article/why-agile-becoming-so-popular-

project-management

Asri, V. (2018). Timeline-View. Vers. 1.0.6. Android Arsenal, https://android-

arsenal.com/details/1/2923#!description

https://www.cio.com/article/3156998/agile-development/agile-project-
https://www.cio.com/article/3156998/agile-development/agile-project-
https://apmg-international.com/article/why-agile-becoming-so-popular-project-management
https://apmg-international.com/article/why-agile-becoming-so-popular-project-management

104

Beck, K. B., Mike; Bennekum, Arie; Cockburn, Alistair; Cunningham, Ward; Fowler, Martin;

Grenning, James; Highsmith, Jim; Hunt, Andrew; Jeffries, Ron; Kern, Jon; Marick,

Brian; Martin, Robert; Mellor, Steve; Schwaber, Ken; Sutherland, Jeff; Thomas, Dave.

(2001). Principles behind the Agile Manifesto. Retrieved from

http://agilemanifesto.org/principles.html

Binstock, A. (2015, May 20). Java's 20 Years Of Innovation. Retrieved September 23, 2018,

from https://www.forbes.com/sites/oracle/2015/05/20/javas-20-years-of-

innovation/#79edd75811d7

Breslav, A. (2016, February 15). Kotlin 1.0 Released: Pragmatic Language for JVM and

Android. Retrieved from https://blog.jetbrains.com/kotlin/2016/02/kotlin-1-0-released-

pragmatic-language-for-jvm-and-android/

Broggio, B. (Producer). Agile Processes - Scrum. [Presentation] Retrieved from

https://www.unf.edu/~broggio/cen6016/Lecture%2012%20-%20Agile%20Processes-

Scrum.ppt

Certification Standards. (2016). Retrieved from

https://mashsoberhousing.org/standards-ethics/narr-quality/

CHESS Health. (2018, July). Connections: A-CHESS Platform - Apps on Google Play.

Retrieved September 13, 2018, from

https://play.google.com/store/apps/details?id=com.cmh.achessapp&hl=en

http://agilemanifesto.org/principles.html
https://www.forbes.com/sites/oracle/2015/05/20/javas-20-years-of-innovation/#79edd75811d7
https://www.forbes.com/sites/oracle/2015/05/20/javas-20-years-of-innovation/#79edd75811d7
https://blog.jetbrains.com/kotlin/2016/02/kotlin-1-0-released-
https://blog.jetbrains.com/kotlin/2016/02/kotlin-1-0-released-
https://www.unf.edu/~broggio/cen6016/Lecture%2012%20-%20Agile%20Processes-Scrum.ppt
https://www.unf.edu/~broggio/cen6016/Lecture%2012%20-%20Agile%20Processes-Scrum.ppt
https://mashsoberhousing.org/standards-ethics/narr-quality/

105

Daimajia, V. (2017). Android View Animations. Vers. 2.3. GitHub,

https://github.com/daimajia/AndroidViewAnimations

Data and File Storage. (2018). Retrieved October 8, 2018 from

https://searchdatabackup.techtarget.com/definition/asynchronous-replication

Data Brief: Opioid-Related Overdose Deaths Among Massachusetts Residents. (2018).

Retrieved from

https://www.mass.gov/files/documents/2018/08/24/Opioid-related%20Overdose%

20Deaths%20among%20MA%20Residents%20-%20August%202018_0.pdf

Database Market Share (2018). Retrieved from

https://www.datanyze.com/market-share/databases/Alexa%20top%201M/

DB-Engine Ranking (2018). Retrieved September 25, 2018 from https://db-

engines.com/en/ranking

Development Process. (2012). Retrieved from https://sumatosoft.com/software-development-

lifecycle

Dunleavy, K. (2017). 12 Best Practices for Creating Effective Surveys. Retrieved from

MovableInk website: https://movableink.com/blog/12-best-practices-for-creating-

effective-surveys/

Eason, J. (2015, June 26). An update on Eclipse Android Developer Tools. Retrieved from

https://android-developers.googleblog.com/2015/06/an-update-on-eclipse-android-

developer.html

Facebook. (2018). Facebook SDK for Android. Retrieved December 17, 2018,

https://developers.facebook.com/docs/android

Facebook. (2018). React Native · A framework for building native apps using React. Retrieved

https://www.mass.gov/files/documents/2018/08/24/Opioid-related%20Overdose%20Deaths%20among%20MA%20Residents%20-%20August%202018_0.pdf
https://www.mass.gov/files/documents/2018/08/24/Opioid-related%20Overdose%20Deaths%20among%20MA%20Residents%20-%20August%202018_0.pdf
https://www.mass.gov/files/documents/2018/08/24/Opioid-related%20Overdose%20Deaths%20among%20MA%20Residents%20-%20August%202018_0.pdf
about:blank
https://sumatosoft.com/software-development-
https://movableink.com/blog/12-best-practices-for-creating-
https://movableink.com/blog/12-best-practices-for-creating-
https://android-developers.googleblog.com/2015/06/an-update-on-eclipse-android-
https://android-developers.googleblog.com/2015/06/an-update-on-eclipse-android-

106

October 8, 2018, from https://facebook.github.io/react-native/

Farvin Packeer Mohamed, S. B., Fauziah; Deraman Aziz. (2014). An Exploratory Study on

Agile based Software Development Practices. International Journal of Software

Engineering and its Applications, 8(5), 29. doi:10.14257/ijseia.2014.8.5.09

Futrell, R. T., Shafer, D. F., & Shafer, L. I. (2002). Quality Software Project Management (1st

ed.). Prentice Hall.

40.3 Materialized Views. (n.d.). Retrieved October 8, 2018 from

https://searchdatabackup.techtarget.com/definition/asynchronous-replication

Gartner. (n.d.). Global mobile OS market share in sales to end users from 1st quarter 2009 to 2nd

quarter 2018. In Statista - The Statistics Portal. Retrieved October 7, 2018, from

https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-

operating-systems/.

Global Mobile OS Market Share 2009-2018, by Quarter. (2018). Retrieved from

https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-

operating-systems/

Gorman, M. M., Marinaccio, A., & Cardinale, C. (2010). Fair Housing for Sober Living: How

the Fair Housing Act Addresses Recovery Homes for Drug and Alcohol Addiction. The

Urban Lawyer, 42(3), 607-614.

Hughey, D. (2009). Agile Methodologies. Retrieved from

http://www.umsl.edu/~hugheyd/is6840/agile.html

Hughey, D. (2009). The Traditional Waterfall Approach. Retrieved from

http://www.umsl.edu/~hugheyd/is6840/waterfall.html

Horton, M. J. (2015). Six Sobriety Apps You Should Know About. Retrieved from

https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-
http://www.umsl.edu/~hugheyd/is6840/waterfall.html

107

https://www.addiction.com/12575/six-sobriety-apps-you-should-know-about/

I Am Sober. (2018). Retrieved from https://iamsoberapp.com/

Lotz, M. (2013). Waterfall vs. Agile: Which is the Right Development Methodology for Your

Project? Retrieved from https://www.seguetech.com/waterfall-vs-agile-methodology/

MA Sober Home Laws. (2016). Retrieved from

https://mashsoberhousing.org/certification/ma-sober-homes-law/

Madziwa, M. (2016). Interviewing as a Data Collection Method. Retrieved from

https://www.linkedin.com/pulse/interviewing-data-collection-method-munyaradzi-

madziwa

Maldonado, L. (2018). Sober Living and Halfway Homes. Retrieved from ProjectKnow website:

https://www.projectknow.com/research/sober-living/

MiKinley, Holly Lynne. (2003). SSL and TLS: A Beginners Guide. Retrieved from

https://www.sans.org/reading-room/whitepapers/protocols/ssl-tls-beginners-guide-1029

MySQL :: MySQL Workbench & Utilities (n.d.). Retrieved December 1, 2018 from

https://dev.mysql.com/downloads/tools/

National Institute of Standards and Technology. (n.d.) NIST Special Publication 800-53 (Rev. 4).

Retrieved October 5, 2018 from https://nvd.nist.gov/800-53/Rev4/control/AC-6

National Security Agency. (2016). Commercial National Security Algorithm Suite and Quantum

Computing FAQ. Retrieved from https://cryptome.org/2016/01/CNSA-Suite-and-

Quantum-Computing-FAQ.pdf

Open Web Application Security Project. (2010). Retrieved from

https://www.owasp.org/index.php/SQL_Injection

Opioid Overdose Crisis. (2018). Retrieved from

https://mashsoberhousing.org/certification/ma-sober-homes-law/
https://www.linkedin.com/pulse/interviewing-data-collection-method-munyaradzi-
https://www.linkedin.com/pulse/interviewing-data-collection-method-munyaradzi-
https://www.drugabuse.gov/drugs-abuse/opioids/opioid-overdose-crisis

108

https://www.drugabuse.gov/drugs-abuse/opioids/opioid-overdose-crisis

Phillips, Bill, et al. Android Programming: The Big Nerd Ranch Guide. Version 3. Big

Nerd Ranch, 2017.

Radigan, D. Kanban. Retrieved from https://www.atlassian.com/agile/kanban

React Native · A framework for building native apps using React. (n.d.). Retrieved September

24, 2018, from https://facebook.github.io/react-native/

Real Recovery (2017). The Difference Between Sober Living and Halfway Houses. Retrieved

from https://myrealrecovery.com/difference-between-sober-living-and-halfway-houses/

recoveryBox. (2014). Retrieved from https://recoveryboxapp.com/

Retzlaff, D. (Producer). (2013). Agile Development Using Scrum. [Presentation]

Retrieved from

https://nces.ed.gov/whatsnew/conferences/MIS/2013/ppt/X_J_Retzlaff.pptx

Rouse, Margaret; Posey, Brien. (2015). Asynchronous Replication. Retrieved October 6,

2018 from https://searchdatabackup.techtarget.com/definition/asynchronous-replication

Saltzer, J. H., Reed, D. P., & Clark, D. D. (1984). End-to-end arguments in system design. ACM

Transactions on Computer Systems (TOCS), 2(4), 277-288.

SDLC - Waterfall Model. (2018). Retrieved from

https://www.tutorialspoint.com/sdlc/sdlc_waterfall_model.htm

Segijn, D. (2018). Konfetti. Vers. v1.1.2. Android Arsenal, https://android-

arsenal.com/details/1/5884

Serenity House Health (2018) Retrieved from

https://play.google.com/store/apps/details?id=com.caredfor.shd

Shaughnessy, Pat (2014). Following a Select Statement Through Postgres Internals. Retrieved

https://www.drugabuse.gov/drugs-abuse/opioids/opioid-overdose-crisis
https://facebook.github.io/react-native/
https://recoveryboxapp.com/
https://nces.ed.gov/whatsnew/conferences/MIS/2013/ppt/X_J_Retzlaff.pptx
https://www.tutorialspoint.com/sdlc/sdlc_waterfall_model.htm
https://github.com/DanielMartinus/Konfetti/releases/tag/v1.1.2?utm_source=android-arsenal.com&utm_medium=referral&utm_campaign=5884

109

from

http://patshaughnessy.net/2014/10/13/following-a-select-statement-through-postgres-

internals

Singh, A., Taneja, A., & Mangalaraj, G. (2009). Creating Online Surveys: some wisdom from

the trenches. IEEE Transactions on Professional Communication, 52(2), 197-212.

Sober Grid. (2017). Retrieved from https://www.sobergrid.com/

Sober Living App. (2017). Retrieved from https://soberlivingapp.com/

Stackoverflow. (2018) Newest Java Questions. Retrieved October 7, 2018 from

https://stackoverflow.com/questions/tagged/java

Stackoverflow. (2018) Newest Kotlin Questions. Retrieved October 7, 2018 from

https://stackoverflow.com/questions/tagged/kotlin

Standards. (2016). Retrieved from https://mashsoberhousing.org/standards-ethics/

SQLite Frequently Asked Questions (n.d.). Retrieved December 10, 2018 from

https://www.sqlite.org/faq.html

Taymor, E. Agile Handbook. 1-34.

What is a Bottleneck and How to Deal With It? (2018). Retrieved from Kanbanize website:

https://kanbanize.com/lean-management/pull/what-is-bottleneck/

What is Android SDK? (2018). Retrieved from Techopedia website:

 https://www.techopedia.com/definition/4220/android-sdk

What is a Sober Home. (2016). Retrieved from

https://mashsoberhousing.org/what-is-a-sober-home

What is Kanban? (2018). Retrieved from https://resources.collab.net/agile-101/what-is-kanban

https://mashsoberhousing.org/standards-ethics/
https://mashsoberhousing.org/what-is-a-sober-home

110

What is SDLC Waterfall Model? (2018) Retrieved from

 https://www.softwaretestinghelp.com/what-is-sdlc-waterfall-model/

What's the Difference? Agile vs Scrum vs Waterfall vs Kanban: Agile Methodology. (2018).

Retrieved from https://www.smartsheet.com/agile-vs-scrum-vs-waterfall-vs-kanban

https://www.softwaretestinghelp.com/what-is-sdlc-waterfall-model/
https://www.smartsheet.com/agile-vs-scrum-vs-waterfall-vs-kanban

111

Glossary

Agile Methodology - A project management methodology using incremental, iterative, fixed-

length sprint cycles as its foundation for development. In each sprint cycle, a subset of user

stories is completed following the steps of SDLC.

Android - An operating system overseen by Google that is used by the majority of mobile

devices.

Android Application Package (APK) - A file format used to distribute Android applications to

Android-compatible devices.

GitHub - A web service used to store code repositories. Also contains built-in issue tracking and

project management tools.

Halfway House - An institution housing people who are recovering from an addiction or a

criminal background that are typically government funding. This type of housing tends to be

more affordable and dorm-like.

Integrated Development Environment (IDE) - A framework of tools used to aid in the writing of

code, consisting of source code editor, compiler, and debugger for checking syntax errors and

debugging issues.

iOS - A proprietary operating system by Apple that runs on all Apple mobile devices.

Java - A programming language that was created by Sun Microsystems in 1995 that was

designed to be object-oriented and have as little dependencies as possible.

Kanban - A subset framework of Agile project management methodology. The goal of this

method is continuous delivery, where a Kanban board is used to organize tasks, allocate

resources, and identify work bottlenecks.

112

Kotlin - A programming language that was created by JetBrains in 2011 designed to work with

existing Java resources and to be concise.

Massachusetts Alliance for Sober Housing (MASH) - An organization dedicated to promoting

critical management, operational, and ethical standards for sober homes in Massachusetts.

MASH helps sober homes meet these standards needed to gain certification.

Mobile Application - A program that runs on a handheld device such as phone or a tablet.

Model-View-Controller (MVC) - An architectural pattern in software that divides the application

into three segments: model, view and controller. The model portion controls the data-flow within

an application, the view portion controls the user interactivity of the application, and the

controller manipulates data and processes requests between the model and the view.

Narcotics Anonymous (NA) - An organization that facilitates help meetings for people

recovering from drug addiction.

Opioid - A class of drugs that is used to reduce pain and is based on opium-like substances,

which includes illegal drugs like heroin and prescription pain relievers, such as oxycodone and

morphine.

Object Relational Model (ORM) - Framework that allows developers to describe database tables

as classes and interact with database data as if they were objects.

Rally 2 Recovery - An organization dedicated to raising awareness of the opiate epidemic and

helping those whose loved ones are struggling with addiction.

React Native - A programming framework developed by Facebook that uses JavaScript for

creating mobile applications.

RSA Keys - A security technology that provides secure authentication for a user. An unique key

is required for each user.

113

Scrum - A subset framework of Agile software development methodology that involves the use

of development cycles (Sprints) and daily ‘scrum meetings’ as a team to discuss what was

accomplished the previous day, what were the challenges encountered, and what will be

accomplished that day.

Software Developer’s Kit (SDK) - A set of software development tools that are typically used to

create applications based on software packages or frameworks.

Secure Sockets Layer (SSL) - A security technology that creates an encrypted link between a

client and a server.

Sober Home - An institution housing people recovering from an addiction that are typically

affiliated with addiction treatment centers. The main focus of this type housing is to provide a

safe living environment that tends to be more home-like than halfway houses.

Software Development Lifecycle (SDLC) - A process for developing software intended to create

the highest quality deliverable in the shortest time and with the lowest cost while meeting or

exceeding customer expectations. This process is categorized into seven phases: Planning,

Requirements Gathering, Design, Development, Testing, Deployment, Maintenance.

Sprint Cycle - A development cycle that lasts a constant interval of time for a phase of a project,

targeting a set of features (or a subset of user stories). Each time one sprint cycle finishes,

another one is started. A working deliverable is expected after every sprint cycle in the Scrum-

Agile methodology.

User Story - A description identifying one or more software features from the end-user’s

perspective, which is used primarily in the Agile methodology written in the format: As a (role) I

want (something) so that (benefit)

114

Version Control - A system that organizes changes over time and maintains different versions of

the code.

Waterfall Methodology - A project management methodology where the phases of the SDLC are

completed one at a time sequentially for the entire project. The next phase can only be worked on

once the previous phase is completely finished.

Web Application - A program that runs in a web browser and can be used on any device that

supports a web browser.

115

Appendix A – MQP Sober Home Survey Questions

Consent Agreement on Participation in Sober Home Study

You have been invited to participate in a Worcester Polytechnic Institute (WPI) sponsored Major

Qualifying Project (MQP) concerning Sober Homes. The goal of this research is to validate and

optimize the effectiveness of sober homes through the use of a mobile application.

Your participation will provide useful data regarding which features and considerations should

be taken into account during the application development process. Information gathered in this

survey will remain completely anonymous. No names or identifying information will be

recorded.

Participation in this survey is voluntary. You may choose to stop this survey at any time. You

may skip any question without consequence.

By clicking “>>” below you are consenting to participate in this survey. Thank you once again

for supporting this project. If you have any questions regarding our study, feel free to contact our

project advisor Wilson Wong (wwong2@wpi.edu). For questions regarding your rights as a

participant, please contact the Human Research Protection Program at WPI (irb@wpi.edu).

116

What is your age?

o < 18 Years Old

o 18-25

o 26-30

o 31-35

o 36-40

o 41-45

o 46+

Length of addiction:

o < 1 month

o 1 month - 6 months

o 6 months - 1 year

o 1 year -3 years

o 4 years - 6 years

o 6+ years

Length of stay in current sober home

o < 1 month

o 1 month - 6 months

o 6 months - 1 year

o 1 year - 3 years

o 4 years - 6 years

o 6+ years

117

What kind(s) of support would be or has been encouraging for recovery?

__

What kind(s) of support would be or has been ineffective for encouraging for recovery?

__

How often do you use your phone on an average day?

o Never

o Very Rarely

o Rarely

o Occasionally

o Frequently

o Very Frequently

Since you've had a smartphone, what is the longest period of time you've been without access to

one?

o Less than a day

o Less than a month

o 1-3 Months

o Less than 6 months

o Less than a year

o Longer than a year

118

How likely would you be to sell your phone?

o Extremely unlikely

o Somewhat unlikely

o Neither likely nor unlikely

o Somewhat likely

o Extremely likely

How well would you say you know the people you live with?

o Not well

o Slightly not well

o Moderately well

o Slightly well

o Very well

What kind of phone do you have?

o Android Phone

o iPhone

o Windows Phone

o Other

o I do not own a phone

What phone application(s) do you find easy to use?

__

__

__

__

__

119

What makes that applications easy to use?

__

__

__

__

__

What phone application(s) do you find difficult to use?

__

__

__

__

__

What makes those applications difficult to use?

__

__

__

__

__

What feature(s) would you like to see in a phone application for sober home residents?

__

__

__

120

__

__

121

Appendix B – Interview Questions

Hello (Name of Participant), thanks for coming! Please take a seat.

We are conducting a Worcester Polytechnic Institute sponsored project to make a mobile

application for sober homes in Massachusetts. The goal of this project is to validate and optimize

the effectiveness of sober homes through the use of this application.

Your participation will provide useful data regarding which features and considerations should

be taken into account during the application development process. Information gathered in our

study will remain completely anonymous. No names or identifying information will be recorded.

Participation in this interview is voluntary. You may choose to stop this interview at any time.

You may choose not to answer any questions without consequence.

Thank you for consenting. We will now start the interview with some basic questions:

MASH Sober Housing / Rally-2-Recovery Coordinators:

1. What goal(s) do you have in mind for the application to accomplish?

2. What information would you like the application to collect?

3. What features would you like the application to have?

4. What requirements do you have for the application?

5. From your experience, what type of support do you think is most effective to residents?

6. What is your vision for how this application will support your operations?

122

Appendix C – Product Backlog

123

124

Appendix D - MASH Guidelines

Retrieved from: ("MA Sober Home Laws," 2016)

Core Principle: Operate with Integrity

1. Are guided by a mission and vision

1.1 A written mission statement that corresponds with NARR’s core principles

1.2 A vision statement that corresponds with NARR’s core principles as stated in this document

2. Adheres to legal and ethical codes

2.1 An affidavit that attests to complying with non-discriminatory state and federal requirements.

2.2 Marketing materials, claims and advertising that are honest and substantiated as opposed to:

 False or misleading statements or unfounded claims or exaggerations;

 Testimonials that do not really reflect the real opinion of the involved individual;

 Price claims that are misleading;

 Misleading representation of outcomes.

2.3 Prior to the initial acceptance of any funds, the operator must inform applicants of all fees

and charges for which they will be, or could potentially be, responsible. This information needs

to be in writing and signed by the applicant.

2.4 The operator must maintain accurate and complete records of all resident charges, payments

and deposits. A resident must be provided with a statement of his/her personal charge and

payment history upon request.

2.5 The operator must disclose refund policies to applicants in advance of acceptance into the

home, and before accepting any applicant fees.

2.6 Staff must never become involved in residents’ personal financial affairs, including lending

or borrowing money, or other transactions involving property or services, except that the

operator may make agreements with residents with respect to payment of fees.

2.7 Policy and procedure that ensures refunds consistent with the terms of a resident agreement

are provided within 10 business days, and preferably upon departure from the home.

2.8 Policies and procedures that ensure all residents are age eighteen or older at time of

admission.

3. Are financially honest and forthright

125

3.1 Identifying the type of accounting system used and its capability to fully document all

resident financial transaction, such as fees, payments and deposits.

3.2 Policy and procedure for disclosing to potential residents their financial obligations,

including costs for which they might become liable, such as forfeiture of any deposits and fees as

a result of prematurely leaving the home.

3.3 Policies about the timing of and requirements for the return of deposits, if financial deposits

are required.

3.4 The ability to produce clear statements of a resident’s financial dealings with the operator

(although it’s not a requirement that statements be automatically produced).

3.5 Policies and procedures that ensure the follow conditions are met, if the residence provider or

a staff member employs, contractors or enters into a paid work agreement with residents:

 Paid work arrangements are completely voluntary. Residents do not suffer consequences

for declining work. Residents who accept paid work are not treated more favorably than

residents who do not.

 Paid work for the operator or staff does not impair participating residents’ progress

towards their recovery goals.

 The paid work is treated the same as any other employment situation.

 Wages are commensurate with marketplace value, and at least minimum wage. The

arrangements are viewed by the majority of the residents as fair.

 Paid work does not confer special privileges on residents doing the work. Work

relationships do not negatively affect the recovery environment or morale of the home.

Unsatisfactory work relationships are terminated without recriminations that can impair

recovery.

Core Principle: Collect data for continuous quality improvement

4. Collect data for continuous quality improvement

4.1 Procedures that collect resident’s demographic information

4.2 Adoption of procedures that collect, evaluate and report accurate process and outcomes data

for continuous quality improvement, once data items and protocols to be developed by NARR

are adopted by MASH.

Core Principle: Operate with Prudence

5. Operate with Prudence

5.1 Documentation that the owner/operator has current liability coverage and other insurance

appropriate to their level of support.

126

5.2 Written permission from the owner of record to operate a recovery residence on the property.

5.3 Document that there are no taxes or other municipal assessments that constitute liens on the

real estate upon which the recovery residence is located by providing a municipal lien certificate

issued by the treasurer or collector’s office in the city or town in which the recovery residence is

situated.

Core Principle: Uphold resident rights

6. Communicate rights and requirements before agreements are signed

6.1 A process that ensures residents receive an orientation on agreements, policies and

procedures prior to committing to terms.

6.2 Written resident’s rights and requirements (e.g. House Rules and grievance process) posted

in common areas

6.3 Written resident agreement that includes recovery activities provided (required and optional),

including house meetings.

6.4 Resident documents that fully disclose policies regarding possessions (personal property) left

in a home.

7. Promote self and peer advocacy

7.1 Grievance policy and procedures, including the right to take grievances that are not resolved

by the house leadership to the operation’s oversight organization for mediation

7.2 Policy and procedure for identifying the responsible person(s) in charge to all residents

8. Support housing choice

8.1 Applicant screening policies and procedures provide current residents a voice in the

acceptance of new members

8.2 Policies and procedures that defend residents’ fair housing rights

9. Protect privacy

9.1 Policies and procedures that keep resident’s records secure, with access limited to authorized

staff only

Core Principle: Are recovery-oriented

10. View recovery as a person-driven, holistic and lifelong process

10.1 Demonstrating that residents participate in the development of their recovery including an

127

exit plan and/or lifelong plan

10.2 Documenting that the operator cultivates alumni participation

11. Are culturally responsive and competent

11.1 Policies and procedures that identify the priority population, which at a minimum includes

persons in recovery from substance use but may also include other demographic criterion.

11.2 A staffing or leadership plan that reflects the priority population’s needs

Core Principle: Are peer staffed and governed

12. Involve peers in governance in meaningful ways

12.1 Some rules made by the residents that the residents (not the staff) enforce?

12.2 A resident council or process is in place that ensures resident’s voices can be heard

12.3 The resident council has a voice in the governance of the home

13. Use peer staff and leaders in meaningful ways as evidenced by: at least one of the following:

13.1 Residents’ responsibilities increase with their length of stay or progress in their recovery.

13.2 Staffing or leadership plan that formally includes a peer component

13.3 Written job description or house manager duties and/or contracts for peer staff and leaders

14. Maintain resident and staff leadership based on recovery principles

14.1 A home staffing or leadership plan that includes current residents and where possible,

former residents that model recovery principles

14.2 Leader and/or staff job descriptions and selections are based in part on modeling recovery

principles

15. Create and sustain an atmosphere of recovery support

15.1 Integrated recovery support in the daily activity schedule

15.2 The schedule includes formal and informal opportunities for staff and resident interaction in

support of recovery

16. Ensure staff are trained

16.1 Documentation that a house manager or operator in functioning as the house manager

possesses an appropriate level of knowledge and understanding of the MASH standards and

practices as evidenced by the completion of MASH training class Recovery Residence 101 and

subsequent training as may be required by MASH from time to time

128

16.2 Written staffing or workforce development plan.

17. Provide supportive staff supervision

17.1 Policies and procedures for supervision of staff

17.2 Ongoing skills development, oversight and support policies and NARR procedures

appropriate to staff roles and level of support

Recovery Support Domain
Core Principle: Promote health

18. Encourage residents to own their recovery

18.1 Policies and procedures that encourage each resident to develop and participate in their own

personalized recovery plan (Person-driven recovery)

18.2 Policies and procedures that encourage residents to make their own outside appointments

19. Inform and encourage residents to participate in a range of community-based supports

19.1 Staff that are knowledgeable about local community-based resources

19.2 Resource directories or similar resources are readily available to residents

20. Offer recovery support in informal social settings

20.1 Staffing plan that corresponds to the delivery of this service

20.2 Traditions, policies or procedures that foster mutually supportive and recovery-oriented

relationships between residents and/or staff through peer-based interactions

21. Offers recovery support services in formal settings

21.1 Weekly schedule of recovery support services recognized by the respective NARR Affiliate

organization

21.2 Weekly schedule of recovery-oriented presentations, group exercises, and activities

21.3 Staffing plan that corresponds to the delivery of this service

Core Principle: Provide a home

22. Provide a physically and emotionally safe, secure and respectful environment

22.1 Policies and procedures, such as applicant screenings, that establish the home’s priority

population and cultivate physically and emotionally safe environments for discussing the needs,

feelings and sustaining recovery-supportive connections

23. Provide an alcohol and illicit drug-free environment

129

23.1 Written and enforced policies and procedures that address:

 Alcohol and/or other prohibited drug-seeking or use

 Possession of hazardous and other prohibited items and associated searches

 Drug-screening and or toxicology protocols*

 Prescription and non-prescription medication usage and storage consistent with the

relevant state law

*Note: “The MassHealth agency does not pay for the following services: […] (4) tests performed

only for purposes of civil, criminal, administrative, or social service agency investigations,

proceedings, or monitoring activities; (5) tests performed for residential monitoring purposes;

[…] (9) test that are not medically necessary as defined in 130 CMR 450.204: Medical

Necessity; …”130 CMR 401.411: Noncovered Services and Payment Limitations.

24. Are cultivated through structure and accountability

24.1 Written resident rights, requirements, agreements, social covenants and/or “House Rules”

24.2 Requirements and protocols for peer leadership and/or mentoring policies that foster

individual and community accountability

Core Principle: Inspire purpose

25. Promote meaningful daily activities

25.1 A weekly schedule of the typical resident’s activities

25.2 Are residents encouraged to (at least one of the following):

 Work, going to school, or volunteer outside of the residence community

 Participate in mutual aid or care giving

 Participate in social, physical or creative activities

 Attend daily or weekly programming

25.3 Person-driven recovery planning & peer governance

Core Principle: Cultivate community

26. Creating a “functionally equivalent family” within the household. As evidenced by meeting

at least 50% of the following:

26.1 Are residents involved in food preparation?

26.2 Do residents have control over who they live with?

26.3 Do residents help maintain and clean the home e.g. chores?

130

26.4 Do residents share in household expenses?

26.5 Family or house meetings at least once a week?

26.6 Do residents have access to the common areas of the home?

27. Foster ethical, peer-based mutually supportive relationships between residents and/or staff

27.1 Encouraging residents to engage one another in informal activities and conversation

27.2 Encouraging staff to engage residents in informal activities and conversations

27.3 Coordinating community gatherings, recreational events and/or other social activities

among residents and/or staff

28. Connect residents to the local (greater) recovery community

28.1 Residents are informed of or linked to mutual aid, recovery community centers, recovery

ministries recovery-focused leisure activities and recovery advocacy opportunities;

28.2 Mutual aid meetings are hosted on site and there are typically attendees from the greater

recovery community

28.3 The recovery residence helps participants find a recovery mentor or mutual aid sponsor if

they are having difficulty finding one

28.4 Participants are encouraged to find a recovery mentor or mutual aid sponsor before leaving

the recovery residence

28.5 Residents are formally linked with the community such as job search, education, family

services, health and/or housing programs

28.6 Residents engage in community relations and interactions to promote kinship with other

recovery communities and goodwill for recovery services

28.7 Sober social events are regularly scheduled

Property and Architecture Domain
Core Principle: Promote recovery

29. Create a home-like environment

29.1 Furnishing are typical of those found in single family homes or apartments as opposed to

institutional settings

29.2 Entrances and exits that are home-like (vs institutional or clinical)

131

29.3 70 sq. ft. for first bed; 50 sq. ft. additional beds

29.4 One sink, toilet and shower per eight female residents and one sink, toilet and shower per

ten male residents

29.5 Each resident has personal item storage

29.6 Each resident has food storage space

29.7 Laundry services are accessible within onsite or within walking distance to all residents

29.8 Working appliances

29.9 A staffing plan that provides for addressing repairs and maintenance in a timely fashion

30. Promote community

30.1 Community room (space) large enough to reasonably accommodate community living and

meetings.

30.2 A comfortable group area, a living room or sofas, for participants to informally socialize

30.3 A kitchen and dining area(s) that encourages residents to share meals together

30.4 Entertainment or recreational areas and/or furnishings that promote social engagement

30.5 Furniture that is in good condition

Core Principle: Promote safety

31. Promote home safety

31.1 Affidavit from the owner or operator attesting that the residence meets nondiscriminatory

local health and safety codes OR document from government agency or credentialed inspector

attesting to the property meeting health and safety standards

31.2 Signed and dated safety self assessment checklist which includes:

 Functioning smoke detectors in the sleeping rooms

 Functioning carbon monoxide detectors

 Functioning fire extinguishers in plain sight and/or clearly marked locations

 Interior and exterior of the property is in a functional, safe and clean condition and free of

fire hazards

31.3 Smoke-free living environment policy and/or designated smoking area outside of the

residence

132

31.3 Naloxone (Narcan) available and accessible; evidence that staff and residents are oriented in

its use

32. Have an emergency plan

32.1 Post emergency numbers, procedures and evacuation maps in conspicuous locations

32.2 Collect emergency contact information from residents and orient them to emergency

procedures

Good Neighbor Domains
Core Principle: Are good neighbors

33 Are compatible with the neighborhood

33.1 If recovery residence is in a residential neighborhood, there are no external indications that

the property is anything other than a single family household typical of its neighborhood The

property and its structures are consistently maintained

34. Are responsive to neighbor concerns

34.1 Policies and procedures that provide neighbors with the responsible person(s) contact

information upon request

34.2 Policies and procedures that require the responsible person(s) to respond to neighbor’s

concerns even if it is not possible to resolve the issue

34.3 New resident orientation includes how residents and staff are to greet and interact with

neighbors and/or concerned parties

35. Have courtesy rules

35.1 Policies that are responsive or preemptive to neighbor’s reasonable complaints regarding:

 Smoking

 Loitering

 Parking

 Noise

 Lewd or offensive language

 Cleanliness of public space around the property

35.2 Parking courtesy rules where street parking is scarce

