
SPECTRAL METHODS FOR FRACTIONAL LAPLANCIAN

A Major Qualifying Project Report:

Submitted to the Faculty of the

WORCESTER POLYTECHNIC INSTITUTE

In Partial Fulfillment of the Requirements for the

Degree of Bachelor of Science

By

Shuyang Sun

Zitai Huang

Advisor:

Prof. Zhongqiang Zhang

March 25, 2016

Abstract

This project is to numerically solve fractional Laplace equations and related equations.

The major numerical methods we use are Jacobi-spectral methods. Our ultimate goal is to

numerically solve a turbulence testbed problem. To achieve our goal, we first establish

fractional Laplacian of Jacobi polynomials and choose proper test functions for our spectral

methods. We start from linear steady and unsteady equations and then solve nonlinear

unsteady equations. For unsteady equations, we have to take a different test function than

that for steady equations to avoid singularity of the resulting linear systems. For each

problem we consider, we perform numerical tests with MATLAB and present numerical

results. We also discuss how to solve our ultimate goal problem based on our numerical

results.

1

Acknowledgment

We would like to thank our professor, Professor Zhongqiang Zhang, for his patience, advice,

and guidance during the project, especially for leading us to the world of fractional Laplacian.

2

Executive Summary

This project is to numerically solve fractional Laplace equations and related equations. The

major numerical methods we use are finite difference in time and spectral methods in space.

We consider the following situations to determine solutions of the following form:

uN =

N∑
n=0

anhn(x) ∈ (1− x2)α/2PN , hn = (1− x2)α/2Pα/2, α/2n (x).

The fractional Laplacian is defined as (−∆)α/2u(x) = cd,α
∫
Rd

u(x)−u(y)
|x−y|d+α dy.

Determine uN for a Linear Equation We solve two linear fractional differential equations

with fractional Laplacian: (−∆)α/2u+ λu = g with λ = 0 and λ 6= 0. We give two numerical

examples and discuss the convergence order of our method, when g(x)=sin(x) and

g(x)=|sin(x)|. We find that the solution when λ = 0 can be much smoother than that when

λ 6= 0.

Determine uN for a Nonlinear Equation We solve one nonlinear fractional differential

equation with fractional Laplacian: (−∆)α/2u = f(u) + g(x). Then, we give two examples and

discuss the convergence order of our method, when g(x)=sin(x) and g(x)=|sin(x)| and

f(u) = u− u3. We apply fixed-point iteration methods solve the resulting nonlinear systems.

Determine uN for Time Dependent Equations We solve two fractional differential

equation in time dependent with fractional Laplacian: (−∆)α/2u+ ∂u
∂t = f(u) + sin(x). We

consider two equations: the first equation is a linear equation where f(u) = u and the second

one is a nonlinear equation where f(u) = u− u3.

Determine uN for a turbulence testbed problem We discuss how to solve our ultimate

goal problem which is a MMT model [2] based on our numerical results. The equation reads

ut=-i((−∆)α/2u+λ
∣∣u2
∣∣u)+∆u.

In conclusion, we find that to have solvable linear or nonlinear algebraic system, it is required

to choose a proper form of approximation basis as well as test functions. In numerical

examples, we show that the convergence order is low when the force g(x) is smooth or has only

bounded first derivatives. Finally, for the MMT model, we discuss the difficulty of the problem

and some potential solution which we believe has provided enough knowledge for future

students to solve interesting fractional equations.

Matlab Code for examples in this report is available upon request.

3

Contents

1 Introduction 8

2 Preliminaries 9

2.1 Fractional Laplacian . 9

2.2 Jacobi Polynomials . 10

2.3 Gauss-Jacobi quadrature rule . 10

2.4 Famous Fractional Derivatives . 10

2.5 Computation of convergence rate . 11

3 How to Determine uN for a Linear Equation 13

3.1 uN for Fractional Equation (−∆)α/2u = f . 13

3.1.1 Numerical Results . 14

3.2 uN for Fractional Equation (−∆)α/2u+λu=f . 18

3.2.1 Numerical Results . 20

3.3 Summary and Discussion . 24

4 How to Determine uN for a Nonlinear Equation 25

4.1 uN for Fractional Equation (−∆)α/2u = f(u) + g(x) 25

4.1.1 Numerical Results . 27

4.2 Summary and Discussion . 29

5 How to Determine uN for Time Dependent Equations 30

5.1 uN for Fractional Equation (−∆)α/2u+∂u
∂t=u+g 30

5.1.1 Discretization in time . 32

5.1.2 Numerical Results . 33

4

5.2 uN for Fractional Equation (−∆)α/2u+∂u
∂t=f(u)+g 36

5.2.1 Numerical Results . 36

6 uN for Fractional Equation ut=-i((−∆)α/2u+λ
∣∣u2
∣∣u)+∆u 38

7 Conclusion 39

Appendices 41

A Basic Functions 41

B Proof of Lemma 2.2 41

C Numerical Methods 43

5

List of Figures

3.1 Numerical Solution for f(x) = sin(x) with α = 0.4 and N = 256 15

3.2 Numerical Solution for f(x) = sin(x) with α = 1.4 and N = 256 16

3.3 Numerical Solution of uN for f(x) = |sin(x)|, α = 0.4 and N = 256 17

3.4 Numerical Solution of uN for f(x) = |sin(x)|, α = 1.4 and N = 256 17

3.5 Numerical solution when f(x) = sin(x) with α = 0.4 and N = 256 21

3.6 Numerical solution when f(x) = sin(x) with α = 1.4 and N = 256 21

3.7 Numerical solution when f(x) = |sin(x)| with α = 0.4 and N = 256 22

3.8 Numerical solution when f(x) = |sin(x)| with α = 1.4 and N = 256 23

4.1 Numerical solution when g(x) = sin(x) with α = 0.4 and N = 256 28

4.2 Numerical solution when g(x) = sin(x) with α = 1.4 and N = 256. 28

5.1 Forward Eulerwhen f(x) = sin(x) with α = 0.4 and N = 256 33

5.2 Backward Euler when g(x) = sin(x) with α = 0.4 and N = 256 34

5.3 Midpoint when g(x) = sin(x) with α = 0.4 and N = 256 35

5.4 RK4 when g(x) = sin(x) with α = 0.4 and N = 256 35

5.5 Numerical error when f(x) = sin(x) with α = 0.4 and N = 256. The red line

represents errors in L2 and the blue line represents errors in L∞. 37

6

List of Tables

3.1 Error table for f(x) = sin(x) with α = 0.4 and N = 256 15

3.2 Error table for f(x) = sin(x) with α = 1.4 and N = 256 16

3.3 Error table when f(x) = |sin(x)| with α = 0.4 and N = 256 16

3.4 Error table when f(x) = |sin(x)| with α = 1.4 and N = 256 18

3.5 Error table when f(x) = sin(x) with α = 0.4 and N = 256 20

3.6 Error table when f(x) = sin(x) with α = 1.4 and N = 256 21

3.7 Error table when f(x) = |sin(x)| with α = 0.4 and N = 256 22

3.8 Error table when f(x) = |sin(x)| with α = 1.4 and N = 256 23

4.1 Error table when g(x) = sin(x) with α = 0.4 and N = 256 27

4.2 Error table when g(x) = sin(x) with α = 1.4 and N = 256. 28

5.1 Error table - forward Euler when g(x) = sin(x) with α = 0.4 and N = 256 33

5.2 Error table -backward Euler when g(x) = sin(x) with α = 0.4 and N = 256 . . . 34

5.3 Error table -Midpoint method when g(x) = sin(x) with α = 0.4 and N = 256 . . 35

5.4 Error table -RK4 when g(x) = sin(x) with α = 0.4 and N = 256 36

5.5 Error table when g(x) = sin(x) with α = 0.4 and N = 256 37

7

1 Introduction

Fractional calculus means calculus with fractional orders. For instance, x2, we can easily find

its first order or any integer order of derivatives and integrals. However, it is more complicate

with the fractinonal order. If we want 2.3th order of x,then we need to use fractional calculus.

Fractional calculus not only apply to the math field, but also apply to some physics, sciences

and technology field.

To use fractional calculus, essential knowledge in mathematical fields should be used. Such as

the basic functions Euler’s gamma function and Euler’s beta function. Some famous fractional

operators to apply are Grunewald Letnikov Fractional Deravative, Riemann Lowville

Fractional Deravative, and Caputo Fractional Derivative. The major numerical methods are

finite difference methods, spectral methods and finite element methods.

The goal of our project is to numerically solve a turbulence testbed problem –

Majda-McLaughlin-Tabak(MMT) [2] model which is a nonlinear time dependent fractional

differential equation. To achieve our goal, the first objective is establishing fractional Jacobi

Polynomial; the second objective is developing numerical methods for some fractional

differential equations; the third objective is measuring errors and convergence orders and infer

the smoothness of solutions. For each problem we consider, we perform numerical tests with

MATLAB and present numerical results and include figures and tables and make discussion

based on results. We also discuss how to solve our ultimate goal problem based on our

numerical results.

The rest of the paper is organized as follows. We present preliminary knowledge in chapter 2,

solve fractional Laplace equations in linear system in chapter 3. We also show that how to

solve fractional Laplace equations in non-linear system in chapter 4. In addition, we provide

the equation with time dependent in chapter 5. Moreover, we explain how to solve the MMT

model in chapter 6. Finally, we make a conclusion in chapter 7.

8

2 Preliminaries

2.1 Fractional Laplacian

We consider the fractional Laplacian, which is defined as

(−∆)α/2u(x) = cd,α

∫
Rd

u(x)− u(y)

|x− y|d+α
dy, (2.1)

where cd,α is a normalization constant

cd,α =
2αΓ(α+d

2)

πd/2 |Γ(−α/2)|
.

The integral in (2.1) is understood in the sense of principle value:

(−∆)α/2u(x) = cd,α lim
ε→0+

∫
Rd∩{|y−x|>ε}

u(x)− u(y)

|x− y|d+α
dy.

When d = 1, we have the following conclusion:

Lemma 2.1 ([3]) Let up = (1− x2)p, |x| ≤ 1, p > −1 and up(x) = 0 when |x| > 1, then for

x ∈ (−1, 1)

(−∆)α/2up(x) = c1,αB(−α/2, p+ 1)2F1(
α+ 1

2
,−p+

α

2
;
1

2
;x2). (2.2)

Let vp(x) = (1− x2)px, |x| ≤ 1 and vp(x) = 0 when |x| > 1, p > −1. Then for x ∈ (−1, 1)

(−∆)α/2vp(x) = (α+ 1)c1,αB(−α/2, p+ 1)2F1(
α+ 3

2
,−p+

α

2
;
3

2
;x2)x. (2.3)

Here the hypergeometric function 2F1(a, b; c; z) is defined for |z| < 1 by the power series

2F1(a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
.

Here (q)n is the (rising) Pochhammer symbol, which is defined by:

(q)n =

1 n = 0

q(q + 1) · · · (q + n− 1) n > 0
.

9

2.2 Jacobi Polynomials

The Jacobi polynomials are mutually orthogonal: for γ, θ > −1,∫ 1

−1
(1− x)γ(1 + x)θP γ,θm (x)P γ,θn (x) dx = en(γ, θ)δnm. (2.4)

Here δnm = 1 if n = m and is zero otherwise and

en(γ, θ) =
2γ+θ+1

2n+ γ + θ + 1

Γ(n+ γ + 1)Γ(n+ θ + 1)

Γ(n+ γ + θ + 1)n!
.

When γ = θ, we write en(γ) =: en(γ, θ).

From Lemma 2.1, we introduce the following conclusion.

Lemma 2.2 For P
α/2, α/2
n (x),the n-th order Jacobi Polynomial with weight function

(1− x2)α/2, it holds that

(−∆)α/2[(1− x2)α/2Pα/2, α/2n (x)] = An,αP
α/2, α/2
n (x).

where An,α = Γ(α+n+1)
n! and we assume that (1− x2)α/2P

α/2, α/2
n (x) is defined to be zero when

|x| ≥ 1.

This lemma can be proved from Lemma 2.1. The proof is due to Professor Zhang and the

proof can be found in the appendix B.

2.3 Gauss-Jacobi quadrature rule

The Gaussian Quadrature Rule [11] is to approximate the following integration with a

continuous function f(x) using a finite sum∫ 1

−1
(1− x)γ(1 + x)θf(x) dx ≈

n∑
i=0

wif(xi), (2.5)

where xi’s are the zeros of the Jacobi polynomials P γ,θn+1 and wi are the corresponding

quadrature weights. The quadrature rule (2.5) is exact when f(x) is an algebraic polynomial of

degree 2n+ 1 or less.

2.4 Famous Fractional Derivatives

Riemann-Liouville fractional derivative [8]

If f(x) ∈ C(a,b) and x ∈ (a,b) then

10

aD
α
t f(t) =

dn

dtn
aD
−(n−α)
t f(t) =

dn

dtn
aI
n−α
t f(t)

where

aI
n−α
t f(t) =

1

Γ(n− α)

∫ t

a

f(τ)

(t− τ)α+1−ndτ.

Caputo fractional derivative [1]

Caputo’s definition is illustrated as follows:

C
aD

α
t f(t) =

1

Γ(n− α)

∫ t

a

f (n)(τ)dτ

(t− τ)α+1−n .

Riesz fractional potential

Spectral relationship for the classical Riesz potential [10]. If 0 < v < 1 and r and k are integer

numbers such that r > −v+1
2 , k > −v+3

2 , then for −1 < x < 1 the following holds

∫ 1

−1

Q
v−1
2

+r, v+1
2

+k
m (t)

|x− t|v
dt =

π(−1)r2r+k+1Γ(m+ v)

m!Γ(v) cos(vπ/2)
P
v−1
2
−r, v−3

2
−k

m+r+k+1 (x),

where m+ k + r + 1 > 0 and

Qα,βm (t) = (1− t)α(1 + t)βPα,βm (t), −1 < t < 1, α, β > −1.

Specifically, when r = k = 0, we have if 0 < v < 1, then for −1 < x < 1 the following holds

∫ 1

−1

Q
v−1
2
, v+1

2
m (t)

|x− t|v
dt =

πΓ(m+ v)

m!Γ(v) cos(vπ/2)
P
v−1
2
, v−1

2
m+r+k+1(x), m = 0, 1, 2, . . .

Through Riesz fractional potential, one can define Riesz derivative [12].

2.5 Computation of convergence rate

Suppose that gn is a good approximation of f , say, ‖f − gn‖ ∼ Cn−r, where C does not

depend on n. To determine the convergence rate of methods, we can use the following formula

log(‖f − gn2‖ / ‖f − gn1‖)
log(n2/n1)

.

Denote that En = ‖f − gn‖. Suppose that En ∼ Cn−r. We then have

En2

En1

∼
(n2

n1

)−r
.

11

Taking the logarithm over both sides leads to the formula above.

When f is not known, we can replace f with some fN obtained with a numerical method

where N is sufficiently large so that f − fN is much smaller than fN − gn

‖f − gn‖ = ‖(f − fN) + fN − gn‖ ≈ ‖fN − gn‖ .

We call this fN as a reference solution and measure the rate by

log(‖fN − gn2‖ / ‖fN − gn1‖)
log(n2/n1)

, n1, n2 � N.

12

3 How to Determine uN for a Linear Equation

In this chapter, we solve two linear fractional differential equations with fractional Laplacian.

We give two numerical examples and discuss the convergence order of our method, when

f(x)=sin(x) and f(x)=|sin(x)|.

3.1 uN for Fractional Equation (−∆)α/2u = f

We first consider the following Fractional Poisson Equation in one dimension for 0 < α < 2.

(−∆)α/2u = f, x ∈ (−1, 1), (3.1)

u = 0, x ∈ (−1,∞) ∪ [1,∞).

We approximate u by uN where uN is a truncated Fourier-Jacobi expansion:

uN (x) =
N∑
n=0

anhn(x) ∈ (1− x2)α/2PN , hn = (1− x2)α/2Pα/2, α/2n (x). (3.2)

Here PN is the set of algebraic polynomials of order less than N + 1 and for any

v ∈ (1− x2)α/2PN , there exists a polynomial pn of order less than N + 1 such that

v = 1− x2)α/2pn

Then we can formulate the numerical solution as follows: to find uN ∈ (1− x2)α/2PN such that

for all test functions v ∈ (1− x2)α/2PN it holds∫ 1

−1
(−∆)α/2uN (x)v(x) dx =

∫ 1

−1
f(x)v(x) dx. (3.3)

Plugging uN for (3.2) into (3.3) and by Lemma 2.2, we have

N∑
n=0

anAn,α

∫ 1

−1
Pα/2, α/2n (x)v(x) dx =

∫ 1

−1
f(x)v(x) dx.

Taking v = hk = (1− x2)α/2P
α/2, α/2
k (x), k = 0, 1, . . . , N , we obtain

N∑
n=0

anAn,α

∫ 1

−1
Pα/2, α/2n (x)(1− x2)α/2P

α/2, α/2
k (x) dx =

∫ 1

−1
f(x)P

α/2, α/2
k (x)(1− x2)α/2 dx.

Recall the orthogonality of Jacobi polynomials (2.4) and we then have

akAk,αek(α/2) = fk, k = 0, 1, 2, . . . , N. (3.4)

13

where ek(α/2) is from (2.2) and we denote

fk =

∫ 1

−1
f(x)P

α/2, α/2
k (x)(1− x2)α/2dx, k = 0, 1, 2, . . . , N. (3.5)

By (3.4), it only requires to find fk. Here we find fk by numerical integration using

Gauss-Jacobi quadrature rule. Specifically, when f(x) have high-order derivatives, we use

fk ≈
m∑
n=0

f(xi)P
α/2, α/2
k (xi)wi. (3.6)

Here, xi’s are the nodes of Jacobi Polynomial P
α/2, α/2
m+1 (x), wi’s are the corresponding

quadrature weights.

Once we find fk, we have ak and thus have the numerical solution uN from (3.4) and (3.2).

3.1.1 Numerical Results

Consider the two cases, when f(x) = sin(x) and f(x) = |sin(x)|, to check if solutions are

smooth or non-smooth by measuring the computation errors.

We introduce the method we used for measuring error. For error in weighted L2

EWL2 =

∣∣∣∣(1− x2)−α/2(uN − uref)
∣∣∣∣
L2∣∣∣∣(1− x2)−α/2uref

∣∣∣∣
L2

(3.7)

Here uref is a reference solution using the same method but with N = 256.

For error in weighted L∞

EWL∞ =

∣∣∣∣(1− x2)−α/2(uN − uref)
∣∣∣∣
L∞∣∣∣∣(1− x2)−α/2uref

∣∣∣∣
L∞

(3.8)

Here the norms are defined as

||v||L2 = (

∫ 1

−1
v2(x)dx)1/2, ||v||L∞ = max

0≤j≤M
|v(xj)| . (3.9)

Here we use M = 1000 points between −1 and 1 from the Gauss-Jacobi rule with α = 0 (the

zeros of P 0,0
M+1(x)).

Example 3.1 Let f(x) = sin(x).

14

The numerical solutions are plotted in Figure 3.1 where α = 0.4 and N = 256 and in Figure

3.2 where α = 1.4 and N = 256.

The convergence order and errors of numerical solutions are calculated in Table 3.1 where

α = 0.4 and N = 256 and Table 3.2 where α = 1.4 and N = 256. We used N = 256 to obtain a

reference solution, i.e., uref = u256.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x

so
lu

tio
n

Figure 3.1: Numerical Solution for f(x) = sin(x) with α = 0.4 and N = 256

N Errors in L2 Errors in L∞ Convergence Order of L2 Convergence Order of L∞

4 3.5051e-04 5.1207e-04 - -

8 5.9788e-09 1.0272e-08 -15.8393 -15.6053

16 2.3450e-14 2.2614e-13 -17.9599 -15.4712

32 2.1719e-14 1.8523e-13 -0.1106 -0.2879

64 2.0031e-14 1.5064e-13 -0.1167 -0.2982

128 1.8159e-14 1.0627e-13 -0.1416 -0.5034

Table 3.1: Error table for f(x) = sin(x) with α = 0.4 and N = 256

We observe that when N = 16, the accuracy is close to machine accuracy in Table 3.1 and is

slightly improved when N = 32, 64, 128. The numerical results (convergence order) suggests

the smoothness of the solution, to be more precise, u(x)/(1− x2)α/2.

Compared to Table 3.1, similar effects are observed in Table 3.2 when α = 1.4. But the

accuracy for N = 16 is closer to machine accuracy compared to the case when α = 0.4.Also,

when α = 1.4, the solution has smaller magnitude when than that when α = 0.4. The

maximum is around 0.5 while the maximum for α = 0.4 is around 0.15.

Example 3.2 Let f(x) = |sin(x)|.

15

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

x

so
lu

tio
n

Figure 3.2: Numerical Solution for f(x) = sin(x) with α = 1.4 and N = 256

N Errors in L2 Errors in L∞ Convergence Order of L2 Convergence Order of L∞

4 1.1655e-04 1.2598e-04 - -

8 1.1993e-09 1.3023e-09 -16.5684 -16.5618

16 5.5248-16 1.3099e-15 -21.0498 -19.9232

32 3.2690e-16 6.0458e-16 -0.7571 -1.1155

64 1.2384e-16 3.0229e-16 -1.4004 -1

128 6.0900e-17 2.0153e-16 -1.0239 -0.5850

Table 3.2: Error table for f(x) = sin(x) with α = 1.4 and N = 256

The numerical solutions are plotted in Figure 3.3 where f(x) = |sin(x)| with α = 0.4 and

N = 256 and Figure 3.4 where f(x) = |sin(x)| with α = 1.4 and N = 256.

The convergence order and errors of numerical solutions are calculated in Table 3.3 when

f(x) = |sin(x)| with α = 0.4 and N = 256, and Table 3.4 when f(x) = |sin(x)| with α = 1.4

and N = 256. We used N = 256 to obtain a reference solution, i.e., uref = u256.

N Errors in L2 Errors in L∞ Convergence Order of L2 Convergence Order of L∞

4 0.0334 0.0711 - -

8 0.0120 0.0314 -1.4753 -1.1778

16 0.0038 0.0120 -1.6486 -1.3918

32 0.0011 0.0036 -1.7924 -1.7195

64 2.5902e-04 6.4433e-04 -2.0949 -2.4963

128 5.4686e-05 2.0706e-04 -2.2439 -1.6377

Table 3.3: Error table when f(x) = |sin(x)| with α = 0.4 and N = 256

16

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

so
lu

tio
n

Figure 3.3: Numerical Solution of uN for f(x) = |sin(x)|, α = 0.4 and N = 256

The figure suggests that there is a sharp change at 0 while f(x) = |sin(x)| has no second-order

derivative at 0. The error table shows that with N getting larger, the error is getting smaller.

However, the convergence order is around 2, which is much smaller than that in Example 3.1

when α = 0.4. The numerical results suggests that the solution in Example 3.1 is much

smoother than that in here.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

so
lu

tio
n

Figure 3.4: Numerical Solution of uN for f(x) = |sin(x)|, α = 1.4 and N = 256

Compared to the case when α = 0.4, we do not observe a sharp change at 0 even though

f(x) = |sin(x)| has no second-order derivative at 0. The figure suggests that the solution is

much smoother than that when α = 0.4.

The error table shows that with N getting larger, the error is getting smaller. However, the

17

N Errors in L2 Errors in L∞ Convergence Order of L2 Convergence Order of L∞

4 0.0066 0.0131 - -

8 0.0016 0.0037 -2.0659 -1.8086

16 3.0064e-04 8.6304e-04 -2.3889 -2.1177

32 4.8634e-05 1.5387e-04 -2.6280 -2.4877

64 6.5219e-06 1.5399e-05 -2.8986 -3.3208

128 6.6519e-07 2.4062e-06 -3.2935 -2.6780

Table 3.4: Error table when f(x) = |sin(x)| with α = 1.4 and N = 256

convergence order is around 3, which is larger than that for α = 0.4. The convergence order

again suggests that the solution here is much smoother than that for α = 0.4.

Also, we observe that the solution has a smaller magnitude than that for α = 0.4. The

maximum is around 0.28 while the maximum for α = 0.4 is around 0.56.

3.2 uN for Fractional Equation (−∆)α/2u+λu=f

We consider the following equation in one dimension for 0 < α < 2 and λ > 0:

(−∆)α/2u+ λu = f, x ∈ (−1, 1), (3.10)

u = 0, x ∈ (−1,∞) ∪ [1,∞)

We again approximate u by uN from (3.2) and formulate the numerical solution as follows: to

find uN ∈ (1− x2)α/2PN such that for all v ∈ (1− x2)α/2PN , it holds∫ 1

−1
(−∆)α/2uN (x)v(x) dx+ λ

∫ 1

−1
uN (x)v(x) dx =

∫ 1

−1
f(x)v(x) dx. (3.11)

Plugging uN (3.2) into (3.11) and by Lemma 2.2, we have

N∑
n=0

anAn,α

∫ 1

−1
Pα/2, α/2n (x)v(x) dx+ λ

∫ 1

−1
anhn(x)v(x) dx =

∫ 1

−1
f(x)v(x) dx.

Taking v = hk = (1− x2)α/2P
α/2, α/2
k (x), k = 0, 1, . . . , N , we obtain

N∑
n=0

anAn,α

∫ 1

−1
(1− x2)α/2Pα/2, α/2n (x)P

α/2, α/2
k (x) dx

+ λ
N∑
n=0

an

∫ 1

−1
(1− x2)αPα/2, α/2n (x)P

α/2, α/2
k (x) dx =

∫ 1

−1
f(x)P

α/2, α/2
k (x)(1− x2)α/2 dx.

18

Recall the orthogonality of Jacobi polynomials (2.4), we then have

akAk,αen(α/2) + λ
N∑
n=0

Mn,kak = fk, k = 0, 1, 2, . . . , N (3.12)

where fk is the same as in (3.5) and

Mn,k =

∫ 1

−1
(1− x2)αPα/2, α/2n (x)P

α/2, α/2
k (x) dx. (3.13)

To find fk, we again apply numerical integration using Gauss-Jacobi quadrature rule when

f(x) have high-order derivatives. Specifically, we use

fk ≈
m∑
n=0

f(xi)P
α/2, α/2
k (xi)wi.

Here, xi’s are the nodes of Jacobi Polynomial P
α/2, α/2
m+1 (x), wi’s are the corresponding

quadrature weights.

To find Mn,k, we also apply numerical integration using Gauss-Jacobi quadrature rule (2.5)

Mn,k =

∫ 1

−1
(1− x2)αPα/2, α/2n (x)P

α/2, α/2
k (x) dx =

N∑
j=0

Pα/2, α/2n (xj)P
α/2, α/2
k (xk)wj . (3.14)

Here xi’s are the zeros of Jacobi Polynomial Pα,αN+1(x), wi’s are the corresponding quadrature

weights. The quadrature rule here is exact since n+ k ≤ 2N while the quadrature rule here is

exact for all 2N + 1-th order polynomials.

Remark 3.3 We can reduce the amount of operations in obtaining (3.14). Note that

Mn,k = Mk,n. Moreover, when n+ k is odd, Mn,k = 0. In fact, P
α/2,α/2
n ’s are odd functions

when n is odd and are even functions n is even.

Let

Sk = Ak,αek(α/2). (3.15)

Plugging in (3.15) and (3.14) we have

akSk + λ
N∑
n=0

akMn,k = fk, k = 0, 1, 2, . . . , N. (3.16)

We rewrite (3.16) in a matrix format. Here, denoting S as the matrix of Sk, M as the matrix

of Mk.

19

S =


S0 0 0 . . . 0

0 S1 0 . . . 0

.

0 0 0 . . . SN

 , M =


M0,0 M1,0 M2,0 . . . MN,0

M0,1 M1,1 M2,1 . . . MN,1

. .

M0,N M1,N M2,N . . . MN,N

 .
Denote B that is

B = S + λM =


S0 + λM0,0 λM1,0 λM2,0 . . . λMN,0

λM0,1 S1 + λM1,1 λM2,1 . . . λMN,1

. .

λM0,N λM1,N λM2,N . . . SN + λMN,N

 .

Denote ~a = (a0, a1, a2,aN)> and ~f = (f0, f1, f2,fN)>. Then we have the resulting linear

system

B~a = ~f.

Thus, we get ~a = B−1 ~f and obtain the numerical solution uN .

3.2.1 Numerical Results

Take λ=1. Consider two cases: when f(x) = sin(x) and f(x) = |sin(x)|.

Example 3.4 Let f(x) = sin(x).

The numerical solutions of two situation are plotted in Figure 3.5 with α = 0.4 and N = 256

and Figure 3.6 with α = 1.4 and N = 256.

The convergence order and errors of numerical solutions are calculated in Table 3.5 where

α = 0.4 and N = 256, and Table 3.6 when f(x) = sin(x) with α = 1.4 and N = 256. We used

N = 256 to obtain a reference solution, i.e., uref = u256.

N Errors in L2 Errors in L∞ Convergence Order of L2 Convergence Order of L∞

4 0.0220 0.1190 - -

8 0.0079 0.0699 -1.4824 -0.7661

16 0.0026 0.0362 -1.6122 -0.9501

32 7.7253e-04 0.0149 -1.7378 -1.2763

64 1.8538e-04 0.0033 -2.0591 -2.1675

128 4.0150e-05 7.0276e-04 -2.2070 -2.2431

Table 3.5: Error table when f(x) = sin(x) with α = 0.4 and N = 256

20

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x

so
lu

tio
n

Figure 3.5: Numerical solution when f(x) = sin(x) with α = 0.4 and N = 256

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

x

so
lu

tio
n

Figure 3.6: Numerical solution when f(x) = sin(x) with α = 1.4 and N = 256

N Errors in L2 Errors in L∞ Convergence Order of L2 Convergence Order of L∞

4 0.0028 0.0089 - -

8 2.3131e-04 0.0013 -3.5955 -2.7347

16 1.9453e-05 2.0654e-04 -3.5718 -2.6911

32 1.5523e-06 2.8718e-05 -3.6475 -2.8464

64 1.1639e-07 2.9474e-06 -3.7374 -3.2845

128 2.8217e-09 7.4302e-08 -5.3663 -5.3099

Table 3.6: Error table when f(x) = sin(x) with α = 1.4 and N = 256

21

The error table shows that with N getting larger, the error is getting smaller. When α=0.4,

the convergence order is around 2 which indicates that the solution is not smooth. When

alpha=1.4, the convergence order is around 4 which means that the solution is smoother than

α=0.4.However, the convergence order is still low, around 4, which indicates gain that the

solution is not smooth. Also, the solution has smaller maximum than the previous one, see

Figure 3.6 and Figure 3.5.

Example 3.5 Let f(x) = |sin(x)|.

The numerical solutions of two cases are plotted in Figure 3.7 with α = 0.4 and N = 256) and

Figure 3.8(f(x) = sin(x) with α = 1.4 and N = 256).

The convergence order and errors of numerical solutions are calculated in Table 3.7 with

α = 0.4 and N = 256 and Table 3.8 with α = 1.4 and N = 256.We used N = 256 to obtain a

reference solution, i.e., uref = u256.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

so
lu

tio
n

Figure 3.7: Numerical solution when f(x) = |sin(x)| with α = 0.4 and N = 256

N Errors in L2 Errors in L∞ Convergence Order of L2 Convergence Order of L∞

4 0.0543 0.0705 - -

8 0.0185 0.0399 -1.5520 -0.8214

16 0.0060 0.0167 -1.6228 -1.2589

32 0.0018 0.0053 -1.7499 -1.6409

64 4.3186e-04 9.8859e-04 -2.0505 -2.4341

128 9.5353e-05 3.3140e-04 -2.1792 -1.5768

Table 3.7: Error table when f(x) = |sin(x)| with α = 0.4 and N = 256

22

The figure 3.7 suggests that there is a sharp change at 0 while f(x) = |sin(x)| has no

second-order derivative at 0. The error table 3.7 of α=0.4 shows that with N getting larger,

the error is getting smaller. However, the convergence order is around 2, which is almost the

same as in Example 3.2 when α = 0.4. The numerical results suggests that the solution is not

smooth.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

x

so
lu

tio
n

Figure 3.8: Numerical solution when f(x) = |sin(x)| with α = 1.4 and N = 256

N Errors in L2 Errors in L∞ Convergence Order of L2 Convergence Order of L∞

4 0.0101 0.0192 - -

8 0.0025 0.0059 -2.0138 -1.6982

16 4.8709e-04 0.0014 -2.3646 -2.0846

32 7.9412e-05 2.5055e-04 -2.6168 -2.4760

64 1.0684e-05 2.5154e-05 -2.8939 -3.3163

128 1.0913e-06 3.9368e-06 -3.2913 -2.6757

Table 3.8: Error table when f(x) = |sin(x)| with α = 1.4 and N = 256

Compared to the case when α = 0.4, we do not observe a sharp change at 0 in Figure 3.8 . The

figure suggests that the solution is much smoother than that when α = 0.4. However, from

Table 3.8 we can see that the convergence order is around 3, which is almost the same as in

Example 3.2 when α = 1.4. The convergence order again suggests that the solution here is

much smoother than that for α = 0.4.

Also, we observe from figure 3.8 that the solution has a smaller magnitude than that for

α = 0.4. From figure 3.7, the maximum is around 0.16 while the maximum for α = 0.4 is

around 0.32.

23

3.3 Summary and Discussion

In this chapter, we considered Jacobi spectral methods for two linear fractional differential

equations:

(−∆)α/2u+ λu = f.

We found that

• When λ = 0 and f was smooth, the convergence order was high and the solution

(u(x)/(1− x2)α/2) was smooth, see Example 3.1.

• When λ = 0 and f was not smooth, the convergence order was high and the solution

(u(x)/(1− x2)α/2) was not smooth, see Example 3.2.

• When λ = 1 and f = sin(x) or f = |sin(x)|, the convergence order was low and the

solution (u(x)/(1− x2)α/2) was not smooth, see Example 3.4 and Example 3.5.

When λ = 0, we considered two different f : f =sin(x) and f=|sin(x)|. For α = 0.4 and

N = 128, the error in weighted L2 for sin(x) was 1.8159e− 14 and the error in weighted L2 for

|sin(x)| was 5.4686e− 05. This was because that sin(x) was differentiable when x in R and the

derivatives are always bounded by 1. But |sin(x)| is not differentiable at 0. We could see that

sin(x) was smoother than |sin(x)|. That’s why they had such large difference. When λ = 1, we

did not observe the same effects and we believed that the solution was not smooth because of

the operator (−∆)α/2.

Moreover, from error tables with convergence order, we found that when α was getting larger,

the convergence order was getting larger. This suggested that with a large α, the solution was

smoother than that from a small α.

24

4 How to Determine uN for a Nonlinear Equation

In this chapter, we solve a nonlinear fractional differential equation with fractional Laplacian.

We give two numerical examples and discuss the convergence order of our method, when

g(x)=sin(x) and g(x)=|sin(x)|.

4.1 uN for Fractional Equation (−∆)α/2u = f(u) + g(x)

Consider the following equation in one dimension for 0 < α < 2 and λ > 0:∫ 1

−1
(−∆)α/2uv dx =

∫ 1

−1
f(uN)v dx+

∫ 1

−1
gv dx, (4.1)

Plugging uN (3.2) into (4.1) and by Lemma 2.2, we have

N∑
n=0

anAn,α

∫ 1

−1
Pα/2, α/2n (x)v(x) dx =

∫ 1

−1
f(uN)v(x)dx+

∫ 1

−1
g(x)v(x) dx.

Taking v = hk = (1− x2)α/2P
α/2, α/2
k (x), k = 0, 1, . . . , N , we obtain

N∑
n=0

anAn,α

∫ 1

−1
Pα/2, α/2n (x)(1− x2)α/2P

α/2, α/2
k (x) dx

=

∫ 1

−1
f(uN)P

α/2, α/2
k (x)(1− x2)α/2 dx+

∫ 1

−1
g(x)P

α/2, α/2
k (x)(1− x2)α/2 dx.

Recall the orthogonality of Jacobi polynomials (2.4) , we then have equation of gk :

akAk,α

∫ 1

−1
(1−x2)α/2P

(α,β)
k (x)P

(α,β)
k (x) dx+

∫ 1

−1
f(uN)P

α/2, α/2
k (x)(1−x2)α/2 dx = gk, k = 0, 1, 2, . . . , N.

where we denote

gk =

∫ 1

−1
g(x)P

α/2, α/2
k (x)(1− x2)α/2dx, k = 0, 1, 2, . . . , N.

By numerical integration using Gauss-Jacobi quadrature rule (2.5) when g(x) have high-order

derivatives, we use

gk ≈
m∑
n=0

g(xi)P
α/2, α/2
k (xi)wi.

Here, xi’s are the nodes of Jacobi Polynomial P
α/2, α/2
m+1 (x), wi’s are the corresponding

quadrature weights.

25

Assume that f(u) = u− u3.∫ 1

−1
f(uN)P

α/2, α/2
k (x)(1−x2)α/2 dx =

∫ 1

−1
uNP

α/2, α/2
k (x)(1−x2)α/2 dx−

∫ 1

−1
(uN)3P

α/2, α/2
k (x)(1−x2)α/2 dx.

We can rewrite the equation (4.1) as

N∑
n=0

anAn,αP
α/2, α/2
n (xi)P

α/2, α/2
k (xi)wi −

∫ 1

−1
uNv(x)dx+

∫ 1

−1
u3
Nv(x)dx− gk = 0 (4.2)

Denote that

F (~a) = (
∫ 1
−1(uN)3P

α/2, α/2
0 (x)(1− x2)α/2 dx, . . . ,

∫ 1
−1(uN)3P

α/2, α/2
N (x)(1− x2)α/2 dx)T . To find

F (~a)k =
∫ 1
−1(uN)3P

α/2, α/2
k (x)(1− x2)α/2 dx, we also apply Gauss-quadrature rule (2.5).

Specifically, we have from (3.2) that∫ 1

−1
(uN)3P

α/2, α/2
k (x)(1− x2)α/2 dx =

∫ 1

−1
(1− x2)2α

(N∑
j=0

anj P
α/2
i (x)

)3
, P

α/2
k (x) dx.

Note that the integrand
(∑N

j=0 a
n
j P

α/2
i (x)

)3
, P

α/2
k (x) is a polynomial of order no more than

4N . Then we apply Gaussian quadrature rule (2.5) and we have

∫ 1

−1
(uN)3P

α/2, α/2
k (x)(1− x2)α/2 dx =

2N∑
i=0

(N∑
j=0

anj P
α/2
j (yi)

)3
P
α/2, α/2
k wi. (4.3)

Here the yi’s (i = 0, 1, 2, . . . , 2N) are the zeros of P 2α,2α
2N+1 and wi’s are the corresponding

weights.

Denote also that ~a = (a0, a1, a2,aN)T and ~g = (g0, g1, g2,gN)T . In a matrix form, we write

(4.2) as

G(~a) = S~a+ F (~a)− ~g(x)−M~a = 0. (4.4)

where M is the matrix with elements (3.14) and S is the diagonal matrix (3.15).

Now, by Newton’s method, we obtain

∇~aG(~a)(~ar−1 − ~ar) = G(~ar), where ∇~aG(~a) = S −∇~aF (~a)−M.

To use Newton’s method, we need to find the initial value ~a0. Here we guess the value of ~a0

from the following equation

∇~a0G(~a0) = S −M.

Thus, we can get ~a and then plug in equation (3.2) to get the numerical solution uN .

26

4.1.1 Numerical Results

We check convergence order and measure errors of our method.

Example 4.1 Assume f(u) = u3, g(x) = sin(x).

According to Newton’s method, plugging in the matrix S, ∇~aF (~a), we get ∇~aG(~a) =
S0 0 0 . . . 0

0 S1 0 . . . 0

.

0 0 0 . . . SN

− ~g(x)−


(3u2

Nh0(x), h0(x)) (3u2
Nh1(x), h0(x)) (3u2

Nh2(x), h0(x)) . . . (3u2
NhN (x), h0(x))

(3u2
Nh0(x), h1(x)) (3u2

Nh1(x), h1(x)) (3u2
Nh2(x), h1(x)) . . . (3u2

NhN (x), h1(x))

. .

(3u2
Nh0(x), hN (x)) (3u2

Nh1(x), hN (x)) (3u2
Nh2(x), hN (x)) . . . (3u2

NhN (x), hN (x))

 .

However, we find the solution is oscillatory which suggests that the Newton’s method is not

working well. We believe the failure of Newton’s method is due to a bad initial guess ~a0 given

above. Instead, we use a fixed point iteration method with tolerance 1e− 12 to solve the

equation.

The numerical solutions are plotted in Figure 4.1 where f(x) = sin(x) with α = 0.4 and

N = 256, and in Figure 4.2 where f(x) = sin(x) with α = 1.4 and N = 256.

The convergence order and errors of numerical solutions are calculated in Table 4.1 where

α = 0.4 and N = 256, and Table 4.2 where f(x) = sin(x) with α = 1.4 and N = 256. We used

N = 256 to obtain a reference solution, i.e., uref = u256.

N Errors in L2 Errors in L∞ Convergence Order of L2 Convergence Order of L∞

4 0.0565 0.0785 - -

8 0.0083 0.0135 -2.7703 -2.5417

16 7.2560e-04 0.0090 -3.5136 -0.5773

32 2.0721e-04 0.0045 -1.8081 -1.0128

64 5.0052e-05 0.0019 -2.0496 -1.2400

128 1.1760e-05 6.1751e-04 -2.0896 -1.6127

Table 4.1: Error table when g(x) = sin(x) with α = 0.4 and N = 256

The error table shows that with larger N , the error is smaller. We compare two error tables

and find that when α=0.4, the convergence order is around 2. When α=1.4, the convergence

27

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x

so
lu

tio
n

Figure 4.1: Numerical solution when g(x) = sin(x) with α = 0.4 and N = 256

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

x

so
lu

tio
n

Figure 4.2: Numerical solution when g(x) = sin(x) with α = 1.4 and N = 256.

N Errors in L2 Errors in L∞ Convergence Order of L2 Convergence Order of L∞

4 3.5444e-04 5.7414e-04 - -

8 4.9591e-05 7.8128e-05 -2.8374 -2.8775

16 3.2080e-06 6.3001e-06 -3.9504 -3.6324

32 1.3194e-07 3.9494e-07 -4.6037 -3.9957

64 4.8471e-09 2.3120e-08 -4.7666 -4.0944

128 1.6717e-10 1.3178e-09 -4.8577 -4.1329

Table 4.2: Error table when g(x) = sin(x) with α = 1.4 and N = 256.

.

28

order is around 4. It means that the solution with α=0.4 is smoother than with α=1.4. In

addition, we find from the two figures that the maximum magnitude of Figure 4.1 is 0.75 and

the maximum magnitude of Figure 4.2 is 0.15.

4.2 Summary and Discussion

In this chapter, we considered Newton’s method and fixed point iteration method for this

nonlinear equation:

(−∆)α/2u = f(u) + g(x).

We chose a fixed point method instead of Newton’s method since Newton’s method leads to

solutions with high oscillation. We didn’t find a good initial guess for Newton’s method.

Instead, fixed point iteration did not have this problem and worked for our nonlinear system.

We found that when g = sin(x) was smooth,the convergence order was low and thus the

solution was not smooth. However, when α was lager, the numerical results suggested that

solutions were smoother.

29

5 How to Determine uN for Time Dependent Equations

In chapter 5, we solve both linear system and nonlinear system fractional equations in time

dependent equations. Then, we give numerical examples and discuss the convergence order of

our method, when g(x)=sin(x).

5.1 uN for Fractional Equation (−∆)α/2u+∂u
∂t
=u+g

We first consider the following equation in one dimension linear system for 0 < α < 2:∫ 1

−1
(−∆)α/2uNv dx+

∫ 1

−1

∂uN
∂t

v dx =

∫ 1

−1
uNv dx+

∫ 1

−1
gv dx. (5.1)

We use the following approximation

uN (t, x) =

N∑
n=0

an(t)hn(x) ∈ (1− x2)α/2PN , hn = (1− x2)α/2Pα/2, α/2n (x). (5.2)

Plugging (5.2) into (5.1), we have

N∑
n=0

anAn,α

∫ 1

−1
Pα/2, α/2n (x)v(x) dx+

d

dt

∫ 1

−1

N∑
n=0

an(t)hn(x)v(x) dx

=

∫ 1

−1

N∑
n=0

an(t)hn(x)v(x) dx+

∫ 1

−1
g(x)v(x) dx.

Taking v = hk(x) is not working because it makes the matrix M of

Mn,k =
∫ 1
−1(1− x2)α/2hkhn dx a singular matrix. We find that when N = 128 and α = 1.4, the

determinant of M is 4.1054e− 217. Even when N = 16 and α = 1.4, the determinant of M is

1.2863e− 14.

Instead of taking v = hk(x), we take v = P
α/2, α/2
k (x), k = 0, 1, . . . , N and obtain

N∑
n=0

anAn,α

∫ 1

−1
Pα/2, α/2n (x)P

α/2, α/2
k (x) dx+

d

dt

N∑
n=0

an(t)

∫ 1

−1
(1−x2)α/2Pα/2, α/2n (x)P

α/2, α/2
k (x) dx

=

N∑
n=0

an(t)

∫ 1

−1
(1− x2)α/2Pα/2, α/2n (x)P

α/2, α/2
k (x) dx+

∫ 1

−1
g(x)P

α/2, α/2
k (x) dx.

By the orthogonality of (2.4) and (2.2), we can write the resulting equation as follows:

d

dt
ak(t)ek(α/2) +

N∑
n=0

Sn,kak(t) = ak(t)ek(α/2) + gk, k = 0, 1, . . . , N. (5.3)

30

Here we denote

Sn,k = An,α

∫ 1

−1
Pα/2, α/2n (x)P

α/2, α/2
k (x) dx and gk =

∫ 1

−1
g(x)P

α/2, α/2
k (x) dx.

To find Sn,k, we also apply numerical integration using Gauss-Jacobi quadrature rule (2.5)

Sn,k = An,α

∫ 1

−1
Pα/2, α/2n (x)P

α/2, α/2
k (x) dx = An,α

N∑
j=0

P
α/2, α/2
k (xi)P

α/2, α/2
k (xi)wi. (5.4)

Here xi’s are the zeros of Jacobi Polynomial P 0,0
N+1(x), wi’s are the corresponding quadrature

weights. The value of gk can be approximated similarly.

gk =

∫ 1

−1
g(x)P

α/2, α/2
k (x) dx ≈

N∑
j=0

g(xi)P
α/2, α/2
k (xi)wi.

Remark 5.1 We can reduce the amount of operations as in obtaining (3.14). Note that

Mn,k = Mk,n. Moreover, when n+ k is odd, Mn,k = 0. In fact, P
α/2,α/2
n ’s are odd functions

when n is odd and are even functions n is even.

To solve the ordinary differential equation (5.3), we first write (5.3) in a matrix form. Denote

~a(t) = (a0(t), a1(t), a2(t), . . . , aN (t))T and ~g = (g0, g1, g2,gN)T . Denote also the diagonal

matrix of ek(α/2) by E and the matrix of Sn,k by S′. The resulting linear system is

S′~a(t) +
d

dt
E~a(t) = λE~a(t) + ~g, (5.5)

where

E =


e0 0 0 . . . 0

0 e1 0 . . . 0

.

0 0 0 . . . eN

 , S′ =


S′0,0 S′1,0 S′2,0 . . . S′N,0
S′0,1 S′1,1 S′2,1 . . . S′N,1
. .

S′0,N S′1,N S′2,N . . . S′N,N

 .
Let y(t)=E~a and we have

d

dt
y(t) = f(t, y), y(0) = E~a(0),

where

f(t, y) = E~a+ ~g − S′~a = (E − S′)E−1y(t) + ~g. (5.6)

Now we explain here how y(0) is computed. According to the equation (5.2), we find the value

of ak(0),

ak(0) =

∫ 1
−1 u(0, x)P

α/2, α/2
k (x) dx∫ 1

−1(P
α/2,α/2
k (x))2(1− x2)α/2

,

where the integration can be approximated by a proper Gauss-Jacobi quadrature rule. Then

we get the initial value y0.

31

5.1.1 Discretization in time

We use forward and backward Euler method, midpoint methods, and RK4 method in time to

find approximation of y(t) at tn+1 and compare the numerical results. We provide the

following discrete schemes of forward Euler method, backward Euler method, midpoint

method and RK4 method.

Forward Euler method

Let tn = t0 + h. Now, one step of the Euler method from tn to tn+1 = tn + h is

yn+1 = yn + hf(tn, yn).

Specifically, we have

y0 = Eak(0) , t0 = 0,

y1 = y0 + hf(t0, y0) = y0 + h((E − S′)E−1y(0) + ~g),

y2 = y0 + hf(t1, y1) = y1 + h((E − S′)E−1y(1) + ~g),

... ...

yn+1 = yn + hf(tn, yn) = yn + h((E − S′)E−1y(n) + ~g).

Backward Euler method

Let tn = t0 + h. Now, one step of the backward Euler method from tn to tn+1 = tn + h is

yn+1 = yn + hf(tn+1, yn+1) = yn + h(~g − SE−1yn+1) + yn+1).

Simplifying it, we have

yn+1 = (I + ShE−1 − h)−1(yn + h~g), y0 = Eak(0).

Here I is the identity matrix.

Midpoint method

Let tn = t0 + h. Now, one step of the midpoint Euler method from tn to tn+1 = tn + h is

yn+1 = yn + hf

(
tn +

h

2
,
1

2
(yn + yn+1)

)
= yn + h(g − SE−1 1

2
(yn + yn+1) +

1

2
(yn + yn+1)).

Simplifying it, we have

yn+1 = (I +
1

2
hSE−1 − h

2
)−1((I − 1

2
hSE−1 +

h

2
)yn + h~g).

RK4 method

32

Let tn = t0 + h. Now, four steps of the RK4 method from yn+1= yn + h
6 (k1 + 2k2 + 2k3 + k4)

tn+1= tn + h for n=0,1,2,3,....., using:

k1 = f(tn, yn),

k2 = f(tn + h
2 , yn + h

2k1),

k3 = f(tn + h
2 , yn + h

2k2),

k4 = f(tn + h, yn + hk3).

5.1.2 Numerical Results

Example 5.2 (Forward Euler) Let g(x) = sin(x).

The numerical solution at t = 0.1 is plotted in Figure 5.1 where α = 0.4 and N = 256. The

convergence order and errors of numerical solutions are calculated in Table 5.1 where α = 0.4

and N = 256.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

x

so
lu

tio
n

Figure 5.1: Forward Eulerwhen f(x) = sin(x) with α = 0.4 and N = 256

N Errors in L2 Errors in L∞ Convergence Order of L2 Convergence Order of L∞

4 0.0234 0.6159 - -

8 0.0167 0.5669 -0.4859 -0.1195

16 0.0108 0.4913 -0.6298 -0.2065

32 0.0062 0.3854 -0.7941 -0.3505

64 0.0031 0.2536 -1.0073 -0.6037

128 0.0013 0.1162 -1.3021 -1.1259

Table 5.1: Error table - forward Euler when g(x) = sin(x) with α = 0.4 and N = 256

33

Example 5.3 (Backward Euler) Let g(x) = sin(x).

The numerical solution at t = 0.1 is plotted in Figure 5.2 where α = 0.4 and N = 256. The

convergence order and errors of numerical solutions are calculated in Table 5.2 where α = 0.4

and N = 256.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

x

so
lu

tio
n

Figure 5.2: Backward Euler when g(x) = sin(x) with α = 0.4 and N = 256

N Errors in L2 Errors in L∞ Convergence Order of L2 Convergence Order of L∞

4 0.0113 0.1086 - -

8 0.0071 0.0.0978 -0.6771 -0.1504

16 0.0039 0.0826 -0.8456 -0.2442

32 0.0020 0.0614 -0.9920 -0.4278

64 8.7975e-04 0.0377 -1.1686 -0.7041

128 3.4847e-04 0.0157 -1.3361 -1.2623

Table 5.2: Error table -backward Euler when g(x) = sin(x) with α = 0.4 and N = 256

Example 5.4 (Midpoint) Let g(x) = sin(x).

The numerical solution at t = 0.1 by Midpoint Method is plotted in Figure 5.3. The

convergence order and errors of numerical solutions are calculated in Table 5.3 where α = 0.4

and N = 256.

Example 5.5 (RK4) Let g(x) = sin(x).

The numerical solution by RK4 Method is plotted in Figure 5.4. The convergence order and

errors of numerical solutions are calculated in Table 5.4 where α = 0.4 and N = 256.

34

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

x

so
lu

tio
n

Figure 5.3: Midpoint when g(x) = sin(x) with α = 0.4 and N = 256

N Errors in L2 Errors in L∞ Convergence Order of L2 Convergence Order of L∞

4 0.0698 1.3390 - -

8 0.0617 1.3086 -0.1782 -0.0331

16 0.0517 1.2455 -0.2561 -0.0713

32 0.0400 1.1197 -0.3686 -0.1536

64 0.0276 0.8882 -0.5349 -0.3342

128 0.0156 0.5148 -0.8200 -0.7869

Table 5.3: Error table -Midpoint method when g(x) = sin(x) with α = 0.4 and N = 256

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

x

so
lu

tio
n

Figure 5.4: RK4 when g(x) = sin(x) with α = 0.4 and N = 256

35

N Errors in L2 Errors in L∞ Convergence Order of L2 Convergence Order of L∞

4 0.0234 0.6159 - -

8 0.0167 0.5669 -0.4861 -0.1196

16 0.0108 0.4913 -0.6301 -0.2067

32 0.0062 0.3854 -0.7944 -0.3507

64 0.0031 0.2536 -1.0076 -0.6038

128 0.0013 0.1162 -1.3021 -1.1259

Table 5.4: Error table -RK4 when g(x) = sin(x) with α = 0.4 and N = 256

Table 5.1 shows that the convergence order is around 1.1. Table 5.2 shows that the

convergence order is around 1.2. Table 5.3 shows that the convergence order is around 0.8.

Table 5.4 shows that the convergence order is around 1.1. All the convergence order is low and

thus the solution is non smooth. But the error tables show that the error is getting smaller

with N getting larger.

5.2 uN for Fractional Equation (−∆)α/2u+∂u
∂t
=f(u)+g

Then we consider the following equation in one dimension nonlinear system.

(−∆)α/2uN +
∂uN
∂t

= f(u) + g

We again use the approximation (5.2).

From section 5.1 and equation 5.3, we can get the following equation

d

dt
ak(t)ek(α/2) +

N∑
n=0

Sn,kak(t) = ak(t)ek(α/2) + gk +Mf (t), k = 0, 1, . . . , N. (5.7)

Here Mf (t) =
∫ 1
−1(1− x2)3α/2(

∑N
j=0 aj(t)P

α/2
i)3P

α/2
k dx. Using the forward Euler method, we

get

an+1
k − ank

∆t
ek(α/2)) +

N∑
n=0

Sn,ka
n
k = ankek(α/2) + gk +Mn

f ,

where

Mn
f =

∫ 1

−1
(1− x2)3α/2(

N∑
j=0

anj P
α/2
i)3P

α/2
k dx.

5.2.1 Numerical Results

Example 5.6 Assume f(u) = u− u3, g(x) = sin(x).

36

The errors are plotted in Figure 5.5 where α = 0.4 and the reference solution is generated by

N = 256 and we use M = 256 in (3.9). The convergence order and errors of numerical

solutions are presented in Table 5.5 where α = 0.4 and N=256.

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N

E
rr

or

Figure 5.5: Numerical error when f(x) = sin(x) with α = 0.4 and N = 256. The red line

represents errors in L2 and the blue line represents errors in L∞.

N Errors in L2 Errors in L∞ Convergence Order of L2 Convergence Order of L∞

4 0.0234 0.6159 - -

8 0.0167 0.5669 -0.4865 -0.1196

16 0.0108 0.4913 -0.6299 -0.2066

32 0.0062 0.3853 -0.7941 -0.3505

64 0.0031 0.2536 -1.0074 -0.6037

128 0.0013 0.1162 -1.3021 -1.1259

Table 5.5: Error table when g(x) = sin(x) with α = 0.4 and N = 256

From Table 5.5, the accuracy is very low but we can still observe that some convergence order

is around 1. The accuracy is slightly improved when N = 64, 128.

37

6 uN for Fractional Equation ut=-i((−∆)α/2u+λ
∣∣u2
∣∣u)+∆u

In this chapter, we discuss how to solve this MMT equation. More information can be found in

reference [2].

We consider the following equation in one dimension for 0 < α < 2 and λ > 0:

ut = −i((−∆)α/2u+ λ
∣∣u2
∣∣u) + ∆u. (6.1)

Let u(x)=v(x)+iw(x), we have:

∂t(v + iw) = −i((−∆)α/2u+ λ
∣∣u2
∣∣u) + ∆u

= −i((−∆)α/2(v + iw) + λ
∣∣(v + iw)2

∣∣ (v + iw))v + ∆(v + iw)

= −i(−(∆)α/2)v + (−∆)α/2w − iλ(v2 + w2)v + λ(v2 + w2)w + ∆v + i∆w.

Now we have

vt = (−∆)α/2w + λ(v2 + w2)w + ∆v,

wt = −(−∆)α/2v − λ(v2 + w2)v + ∆w.

Similar to the approximation in (5.2), we let

vn(t, x) =
N∑
n=0

zn(t)hn(x), wN (t, x) =
N∑
n=0

bn(t)hn(x).

But we are in trouble to calculate of ∆(hn(x)). Here we take the test function as hk(x)∫ 1

−1
∆hn(x)hk(x) dx = −

∫ 1

−1
∂xhn(x)∂xhk(x) dx.

But the term
∫ 1
−1 hn(x)hk(x)dx lead to a singular matrix as stated in Chapter 5. It seems that

we need to take the test function as P
α/2,α/2
k (x). Then we have∫ 1

−1
∆hn(x)P

α/2,α/2
k (x)dx = ∂xhn(x)P

α/2,α/2
k (x) |1−1 −

∫ 1

−1
∂xhn(x)∂xP

α/2,α/2
k (x) dx.

Notice that ∂xhn(x)P
α/2,α/2
k (x) is not well defined at x = ±1 when 0 < α/2 < 1. We are in a

position to choose a working test function. But we don’t have a solution yet at the time of

writing this report.

38

7 Conclusion

In conclusion, this project was to numerically solve fractional Laplace equations and related

equations, where the fractional Laplacian was defined as

(−∆)α/2u(x) = cd,α

∫
Rd

u(x)− u(y)

|x− y|d+α
dy.

The major numerical methods we used were finite difference in time and spectral methods in

space. We considered the following situations to determine solutions of the form uN which read

uN =
N∑
n=0

anhn(x) ∈ (1− x2)α/2PN , hn = (1− x2)α/2Pα/2, α/2n (x).

We solved two linear fractional differential equations with fractional Laplacian in Chapter 3:

(−∆)α/2u+ λu = g with λ = 0 and λ 6= 0. We gave two numerical examples and discuss the

convergence order of our method, when g(x)=sin(x) and g(x)=|sin(x)|. We found the

relationship between λ, g(x)and convergence order: We found that

• When λ = 0 and g was smooth, the convergence order was high and the solution

(u(x)/(1− x2)α/2) was smooth.

• When λ = 0 and g was not smooth, the convergence order was high and the solution

(u(x)/(1− x2)α/2) was not smooth.

• When λ = 1 and g = sin(x) or f = |sin(x)|, the convergence order was low and the

solution (u(x)/(1− x2)α/2) was not smooth.

Moreover, from error tables with convergence order, we found that when α was getting larger,

the convergence order was getting larger. This suggested that with a large α, the solution was

smoother than that from a small α.

We solved one nonlinear fractional differential equation with fractional Laplacian in chapter 4:

(−∆)α/2u = f(u) + g(x). Then, we gave two examples and discussed the convergence order of

our method, when g(x)=sin(x) and g(x)=|sin(x)| and f(u) = u− u3. We applied a fixed-point

iteration method instead of Newton’s method to solve the resulting nonlinear systems since

Newton’s method leads to solutions with high oscillation. We were able to find a good initial

guess for Newton’s method.

We found that when g was smooth,the convergence order was very low and thus the solution

was not smooth. However, when α was lager, the numerical results suggested that solutions

were smoother.

39

We solved two fractional differential equation in time dependent with fractional Laplacian in

Chapter 5: (−∆)α/2u+ ∂u
∂t = f(u) + sin(x), where f(u) = u or f(u) = u− u3. We used forward

and backward Euler methods, midpoint method and RK4 method for the linear equation and

forward Euler method for the nonlinear equation. All numerical results showed a very low

convergence order which indicated the solution was not smooth enough.

We discussed how to solve our ultimate goal problem which is a MMT model [2] based on our

previous numerical results. We discussed the difficulty of the problem and some potential

solution. We believed this report had provided enough knowledge for future students to solve

MMT model and other fractional models.

40

Appendices

A Basic Functions

Gamma Function [10]

Some essential knowledge is required to enter the world of fractional calculus. One of the basic

functions is the Gamma function. It is a special function which is the factorial n! and allows n

to be real or even complex number except non-positive integer.It is defined by the integral

Γ(t) =

∫ ∞
0

xt−1e−x dx. (A.1)

Here is a useful properties of gamma function.

Γ(t+ 1) = tΓ(t). (A.2)

(A.2) can be proved simply using integration by parts,

Γ(n) = (n− 1)! (A.3)

for all positive integer n.

Beta Function [10]

Euler’s Beta function is like the family of Gamma function and also essential to the fractional

calculus. It is also a spectial function defined by

B(x, y) =

∫ 1

0
tx−1(1− t)y−1 dt. (A.4)

It also can be represented by gamma function.

B(x, y) =
Γ(x) Γ(y)

Γ(x+ y)
(A.5)

We can find out from (A.5) that Beta function is symmetric

B(x, y) = B(y, x). (A.6)

B Proof of Lemma 2.2

Proof. The conclusion can be shown by induction. By Lemma 2.1, for n = 0,

(−∆)α/2[(1− x2)α/2] = −Γ(α+ 1),

41

and for n = 1,

(−∆)α/2[(1− x2)α/2(α+ 1)x] = −Γ(α+ 2)(α+ 1)x.

Now suppose that k ≤ n the relation holds then when k = n+ 1, we want

(−∆)α/2[(1− x2)α/2P
α/2, α/2
n+1 (x)] = An+1,αP

α/2, α/2
n+1 (x).

By integration-by-parts formula [4], for any j ≤ n, we have∫ 1

−1
(−∆)α/2[(1− x2)α/2P

α/2, α/2
n+1 (x)]P

α/2, α/2
j (1− x2)α/2) dx

=

∫ 1

−1
(1− x2)α/2P

α/2, α/2
n+1 (x)(−∆)α/2[P

α/2, α/2
j (1− x2)α/2]) dx

= Aj,α((1− x2)α/2
∫ 1

−1
P
α/2, α/2
n+1 , P

α/2, α/2
j dx = 0.

Here we have used the induction assumption.

By Lemma 2.1, (−∆)α/2[(1− x2)α/2P
α/2, α/2
n+1 (x) is a polynomial of order n+ 1, then we have

(−∆)α/2[(1− x2)α/2P
α/2, α/2
n+1 (x)] = Cn+1,αP

α/2, α/2
n+1 (x). (B.1)

where Cn+1,α is a constant depending on n+ 1 and α. Then we compare the coefficients of

leading-order term over both sides and obtain the conclusion at k = n+ 1.

The constant can be found by the following procedure.

Suppose that m = n+ 1 = 2k. Then we can compare the coefficients of the leading order term

in a power series representation of P
α/2, α/2
m (x). The coefficient can be obtained by

∂nxP
α/2, α/2
m (x) =

Γ(α+ 2m+ 1)

2mΓ(α+m+ 1)
P
α/2+m,α/2+m
0 (x) =

Γ(α+ 2m+ 1)

2nΓ(α+m+ 1)
. (B.2)

While the coefficient of leading-order tem of LHS in (B.1) is the coefficient of leading order

term of

(−1)k
Γ(α+ 2m+ 1)

2nΓ(α+m+ 1)
× (−∆)α/2[(1− x2)α/2(1− x2)k],

which is (p = α/2 + k)

(−1)k
Γ(α+ 2m+ 1)

2mΓ(α+m+ 1)
c1,αB(−α/2, p+ 1)2F1(

α+ 1

2
,−p+

α

2
;
1

2
;x2)

So it requires to check the coefficient of leading-order term of

42

c1,αB(−α/2, p+ 1)2F1(α+1
2 ,−p+ α

2 ; 1
2 ;x2).

2αΓ(α+d
2)

πd/2 |Γ(−α/2)|
Γ(−α/2)Γ(p+ 1)

Γ(p− α/2 + 1)

((α+1)
2)k(−p+ α/2)k

(1/2)kk!

2αΓ(α+d
2)

πd/2 |Γ(−α/2)|
Γ(−α/2)Γ(p+ 1)

Γ(p− α/2 + 1)

((α+1)
2)k(−k)k

(1/2)kk!

=
2αΓ(α+d

2)

πd/2 |Γ(−α/2)|
Γ(−α/2)Γ(p+ 1)

Γ(k + 1)

Γ(α+1
2 + k)Γ(1

2)

Γ(α+1
2)Γ(1

2 + k)

(−k)k
k!

=
2α

πd/2 |Γ(−α/2)|
Γ(−α/2)Γ(p+ 1)

Γ(k + 1)

Γ(α+1
2 + k)Γ(1

2)

Γ(1
2 + k)

(−1)k

=
(−1)k+12αΓ(1

2)

πd/2
Γ(p+ 1)Γ(α+1

2 + k)

Γ(k + 1)Γ(1
2 + k)

.

Then by the following the duplication formula

Γ(z)Γ
(
z + 1

2

)
= 21−2z √π Γ(2z),

we have

2αΓ(α+d
2)

πd/2 |Γ(−α/2)|
Γ(−α/2)Γ(p+ 1)

Γ(p− α/2 + 1)

((α+1)
2)k(−p+ α/2)k

(1/2)kk!

=
(−1)k+12αΓ(1

2)

πd/2
Γ(p+ 1)Γ(α+1

2 + k)

Γ(k + 1)Γ(1
2 + k)

=
(−1)k+12αΓ(1

2)

πd/2

√
π2−α−2kΓ(α+ 1 + 2k)

2−2k
√
πΓ(2k + 1)

= (−1)k+1 Γ(α+ 1 +m)

m!
.

Comparing the coefficients of leading order terms of

(−1)k
Γ(α+ 2m+ 1)

2nΓ(α+m+ 1)
× (−∆)α/2[(1− x2)α/2(1− x2)k+] and Cn+1,α.

Similarly, we can have the same conclusion when m = n+ 1 = 2k + 1.

C Numerical Methods

Forward Euler Method [7]

Suppose that we want to approximate the solution of the initial value problem y′(t)=f(t, y(t)),

y(t0)=y0. Choose a value h for the size of every step and set tn = t0 + nh. Now, one step of

the Euler method from tn to tn+1 = tn + h is yn+1 = yn + hf(tn, yn).

43

Backward Euler Method [7]

Consider the ordinary differential equation dy
dt = f(t, y) with initial value y(t0) = y0. Choose a

value h for the size of every step and set tn = t0 + nh. The backward Euler method computes

the approximations using yk+1 = yk + hf(tk+1, yk+1). This differs from the (forward) Euler

method in that the latter uses f(tk, yk) in place of f(tk+1, yk+1).

Midpoint Method [9]

The midpoint method is a one-step method for solving the ordinary differential equation:

y′(t) = f(t, y(t)), y(t0) = y0. The method by: yn+1 = yn + hf
(
tn + h

2 ,
1
2(yn + yn+1)

)
, for

n = 0, 1, 2, Here, h is the ‘step size’ - a small positive number, tn = t0 + nh, and yn is the

computed approximate value of y(tn).

Runge - Kutta Method [13]

The most famous one is “RK4” method. Let an initial value problem be specified as

follows.ẏ = f(t, y), y(t0) = y0. The initial time t0 and initial value y0 is given. A step-size h0

is picked and define

yn+1 = yn + h
6 (k1 + 2k2 + 2k3 + k4) ,

for n = 0, 1, 2, 3,, using

k1 = f(tn, yn),

k2 = f(tn + h
2 , yn + h

2k1),

k3 = f(tn + h
2 , yn + h

2k2),

k4 = f(tn + h, yn + hk3).

Newton’s Method (Newton-Raphson method) [5]

Suppose f(x∗) = 0 ⇐⇒ 0 = f(x) +f ′(x)(x− x∗) if |x− x∗| is small. Then there is the

following scheme when f ′(x) 6= 0,

0 = f(xk) + f ′(xk)(xk − xk+1) ⇐⇒ xk+1 = xk −
f(xk)

f ′(xk)
.

Fixed Point Iteration [6]

Let g be a continuous function on the interval [a, b]. If g(x) ∈ [a, b] for each x ∈ [a, b], then g

has a fixed point in [a, b]. Furthermore, if g is differentiable on (a, b) and there exists a

constant k ≤ 1 such that |g′(x)| ≤ k, x ∈ (a, b), then g has exactly one fixed point in [a, b].

The following algorithm computes a number x∗ ∈ (a, b) that is a solution to the equation g(x)

= x. Choose an initial guess x0 ∈ [a, b]. For k = 0, 1, . . . 2, · · · , do xk+1 =g(xk) iteration until

|xk+1 − xk| < ε. Then let x∗ = xk+1.

44

References

[1] Michele Caputo. Linear models of dissipation whose q is almost frequency independent ii.

Geophysical Journal International, 13(5):529–539, 1967.

[2] Will Cousins and Themistoklis P Sapsis. Quantification and prediction of extreme events

in a one-dimensional nonlinear dispersive wave model. Physica D: Nonlinear Phenomena,

280:48–58, 2014.

[3] Bart lomiej Dyda. Fractional calculus for power functions and eigenvalues of the fractional

Laplacian. Fract. Calc. Appl. Anal., 15(4):536–555, 2012.

[4] Qing-Yang Guan. Integration by parts formula for regional fractional Laplacian. Comm.

Math. Phys., 266(2):289–329, 2006.

[5] E Eric Kalu et al. Numerical Methods with Applications: Abridged. Lulu. com, 2008.

[6] Jim Lambers. Fixed point iteration. University of Southern Mississippi, Fall, 2009.

[7] John Denholm Lambert. Numerical Methods for Ordinary Differential. Wiley, 1991.

[8] JD Munkhammar. Riemann-liouville fractional derivatives and the taylor-riemann series.

UUDM project report, 7:1–18, 2004.

[9] Richard S Palais and Robert Andrew Palais. Differential equations, mechanics, and

computation, volume 51. American Mathematical Soc., 2009.

[10] Igor Podlubny. Fractional differential equations. Academic Press, Inc., San Diego, CA,

1999.

[11] Anthony Ralston and Philip Rabinowitz. A first course in numerical analysis. Courier

Corporation, 2012.

[12] Stefan G. Samko, Anatoly A. Kilbas, and Oleg I. Marichev. Fractional integrals and

derivatives. Gordon and Breach Science Publishers, Yverdon, 1993. Theory and

applications, Edited and with a foreword by S. M. Nikol′skĭı, Translated from the 1987

Russian original, Revised by the authors.

[13] Endre Süli and David F Mayers. An introduction to numerical analysis. Cambridge

university press, 2003.

45

	Introduction
	Preliminaries
	Fractional Laplacian
	Jacobi Polynomials
	Gauss-Jacobi quadrature rule
	Famous Fractional Derivatives
	Computation of convergence rate

	How to Determine uN for a Linear Equation
	uN for Fractional Equation (-)/2 u= f
	Numerical Results

	uN for Fractional Equation (-)/2u+u=f
	Numerical Results

	Summary and Discussion

	How to Determine uN for a Nonlinear Equation
	uN for Fractional Equation (-)/2u=f(u)+g(x)
	Numerical Results

	Summary and Discussion

	How to Determine uN for Time Dependent Equations
	uN for Fractional Equation (-)/2u+ut=u+g
	Discretization in time
	Numerical Results

	uN for Fractional Equation (-)/2u+ut=f(u)+g
	Numerical Results

	uN for Fractional Equation ut=-i((-)/2u+"026A30C u2"026A30C u)+u
	Conclusion
	Appendices
	Basic Functions
	Proof of Lemma 2.2
	Numerical Methods

