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Abstract

We consider a Bayesian approach to the study of independence in a two-way contingency
table obtained from a two-stage cluster sampling design. We study the association between
two categorical variables when (a) there are no covariates and (b) there are covariates at both
unit and cluster levels. Our main idea for the Bayesian test of independence is to convert the
cluster sample into an equivalent simple random sample which provides a surrogate of the
original sample. Then, this surrogate sample is used to compute the Bayes factor to make
an inference about independence.

For the test of independence without covariates, the Rao-Scott corrections to the standard
chi-squared (or likelihood ratio) statistic were developed. They are “large sample” methods
and provide appropriate inference when there are large cell counts. However, they are less
successful when there are small cell counts. We have developed the methodology to overcome
the limitations of Rao-Scott correction. We have used a hierarchical Bayesian model to
convert the observed cluster samples to simple random samples. This provides the surrogate
samples which can be used to derive the distribution of the Bayes factor to make an inference
about independence. We have used a sampling-based method to fit the model.

For the test of independence with covariates, we first convert the cluster sample with
covariates to a cluster sample without covariates. We use multinomial logistic regression
model with random effects to accommodate the cluster effects. Our idea is to fit the cluster
samples to the random effect models and predict the new samples by adjusting with the
covariates. This provides the cluster sample without covariates. We then use a hierarchical
Bayesian model to convert this cluster sample to a simple random sample which allows us to
calculate the Bayes factor to make an inference about independence. We use Markov chain
Monte Carlo methods to fit our models.

We apply our first method to the Third International Mathematics and Science Study
(1995) for third grade U.S. students in which we study the association between the mathe-
matics test scores and the communities the students come from, and science test scores and
the communities the students come from. We also provide a simulation study which estab-
lishes our methodology as a viable alternative to the Rao-Scott approximations for relatively
small two-stage cluster samples.

We apply our second method to the data from the Trend in International Mathematics
and Science Study (2007) for fourth grade U.S. students to assess the association between
the mathematics and science scores represented as categorical variables and also provide the
simulation study. The result shows that if there is strong association between two categorical
variables, there is no difference between the significance of the test in using the model (a) with
covariates and (b) without covariates. However, in simulation studies, there is a noticeable
difference in the significance of the test between the two models when there are borderline
cases (i.e., situations where there is marginal significance).



Chapter 1

Introduction

Analysis of categorical data presented in a two-way contingency table is a well known prob-

lem. In order to analyze such tables obtained from simple random sampling, the Pearson

chi-squared and the likelihood ratio tests are commonly used for testing association between

two categorical variables. These tests depend on the assumption that the data in the table

follow the multinomial distribution. This dissertation is focused on analyzing such tables

when the data are obtained from a two-stage cluster sampling design with simple random

sampling at both stages. We note that Nandram and Sedransk (1993) provided a Bayesian

procedure to obtain inference about a finite population proportion under two-stage cluster

sampling, see also Nandram (1998). We study the association between two categorical vari-

ables when (a) there are no covariates and (b) there are covariates at both unit and cluster

levels. We use a Bayesian test of independence to study the association between two categor-

ical variables. Our main idea for the Bayesian test of independence is to convert the cluster

sample into an equivalent simple random sample which provides a surrogate of the original

sample. Then, we use the Bayes factor to make an inference about independence.

It is pertinent to give some background information. Let {njk, j = 1, . . . , r, k = 1, . . . , c}

denote the cell counts in an r × c contingency table and let n =
∑r

j=1

∑c
k=1 njk denote

the total sample size. The marginal totals for the jth row and kth column are respectively

nj· =
∑c

k=1 njk, j = 1, . . . , r, and n·k =
∑r

j=1 njk, k = 1, . . . , c. Let S = rc denote the total

number of cells and πjk the cell probability for the (j, k)th cell, where we assume that πjk > 0

for all j and k and
∑r

j=1

∑c
k=1 πjk = 1, pj =

∑c
k=1 πjk and qk =

∑r
j=1 πjk. The independence

hypothesis states that πjk = pjqk, j = 1, . . . , r, k = 1, . . . , c, where
∑r

j=1 pj =
∑c

k=1 qk = 1.
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Let π̃jk = nj·n·k/n
2 denote the maximum likelihood estimates of the πjk under the hypothesis

of independence of the two categorical variables. Letting π̂jk = njk/n, the Pearson chi-

squared and the likelihood ratio statistics are, respectively,

X2 = n
∑

jk

(π̂jk − π̃jk)
2/π̃jk, G2 = 2n

∑

jk

π̂jk log(π̂jk/π̃jk),

where π̃jk, j = 1, . . . , r, k = 1, . . . , c, are assumed to be positive and arising from simple

random sampling. It is well known that under the null hypothesis of independence, both X2

and G2 have equivalent asymptotic (n → ∞ with S fixed) chi-squared distributions with

(r − 1)(c− 1) degrees of freedom.

The chi-squared distribution of the Pearson chi-squared and likelihood ratio test statistic

results from simple random sampling assumption. However, these tests are not appropriate

with complex survey designs; in fact, this results in incorrect p-values. For example, when

there is a clustering effect, the units in a cluster are, in general, positively correlated. Due

to intracluster correlation, the usual multinomial sampling scheme is no longer appropriate

because of the violation of the assumptions in the multinomial distribution. Specifically,

the standard chi-squared or likelihood ratio test can fail. If a procedure based on simple

random sampling rather than cluster sampling is used to test for independence, the p-value

can be too small (or X2, G2 values too big), resulting in significant evidence against the null

hypothesis when there may be no such evidence. For a complex sample design (e.g., two-stage

cluster sampling, stratified multistage cluster sampling, etc.), both X2 and G2 have ‘skewed’

distributions.

Rao and Scott (1981, 1984) obtained the design-adjusted version of the Pearson chi-

squared test using the simple correction to the standard X2 and G2 statistics for the test of

independence in a two-way contingency table arising from any complex sampling design. The

corrections are based on normal approximations and moment-matching principles and they

are obtained through design effects. A design effect is the ratio of the variance of a statistic

under a complex sampling design to the variance of the statistic under simple random sample.

For two-stage cluster sampling, these design effects can be much larger than one, under the

assumption of positive correlation within the cluster thereby having a large impact on the
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standard chi-squared statistic. The tests perform well for large complex surveys, but for

smaller surveys, Rao-Scott corrections are not accurate partly, because the chi-squared test

is inaccurate.

Brier (1980) used a Multinomial-Dirichlet distribution to model the distribution of counts

in a two-way contingency table under cluster sampling. He has shown how to make an adjust-

ment to the usual goodness-of-fit statistic by using Multinomial-Dirichlet model. However,

the model provides the same design effects for all estimators of cell probabilities of a two-way

table.

When there is a set of the characteristics (e.g., covariates) at unit level and/or cluster

level, the problem becomes more practical. This is because these covariates are likely to be

associated with the two cross-classified categorical variables and can influence their associ-

ation. If we simply ignore the effect of covariates, the test can be misleading. Under simple

random sampling design, Geenens and Simar (2010, 2011) developed nonparametric and

semiparametric methods for conditional independence in two-way contingency tables.

In Chapter 1, we give some detailed background information. In Section 1.1, we review

some closely related literature. In Section 1.2 we briefly discuss the concept of surrogate

sampling. In Section 1.3 we discuss the Bayes factor. Finally, in Section 1.4 we discuss two

applications which use our methods.

1.1 Literature Review

In this section, we review some of the existing literature on the test of independence in a two-

way contingency table for complex sampling designs and the conditional test of independence

between two categorical variables given a vector X of continuous covariates under simple

random sampling.

1.1.1 Rao Scott Chi-Square Test

Rao and Scott (1981, 1984) show that, under very general complex designs, X2 and G2 are

still asymptotically equivalent. Let P̂
˜
denote a consistent estimator of the cell probabilities

and V = cov(P̂
˜
), where P̂

˜
can be very complex as it can involve survey weights and other

3



design features. Assuming that the central limit theorem holds, Rao and Scott (1981, 1984)

show that X2 =
∑κ

i=1 δiZ
2
i = G2, where the Zi, i = 1, . . . , κ are independent standard normal

random variables and δi, i = 1, . . . , κ, are the positive eigenvalues associated with V and the

design matrix. The δs are known as generalized design effects, a phrase originally coined by

Rao and Scott (1981). Let V̂ be an estimator of V . If the entire data set is available, V̂

can be obtained using linearization or a resampling method (e.g., bootstrap or jackknife).

Let δ̂i be the consistent estimators of δi, i = 1, . . . , κ, and ˆ̄δ be the same for δ̄ =
∑κ

i=1 δi/κ.

Then, the effective sample size (Fellegi, 1980) in the complex survey equivalent to the simple

random sample is ñ = n/δ̄, and the Rao and Scott (1981) adjusted X2 and G2 are

X̄2 = ñ
∑

jk

(π̂jk − π̃jk)
2/π̃jk, Ḡ2 = 2ñ

∑

jk

π̂jk log(π̂jk/π̃jk).

For a two-stage cluster sampling design, ñ can be much smaller than n depending on the intra-

cluster correlation. Rao and Scott (1981) obtained a first order approximation by matching

first moments of the distributions, and a second order approximation by matching the first

two moments of the distributions using Satterthwaite’s procedure, ignoring the sampling

variation in V̂ .

A third approximation, an adjustment which uses the degree of freedom in the variance

estimate to account for sampling variation in V̂ and other parameters, is more accurate

than the first two methods; see Thomas and Rao (1987), Rao and Thomas (1989) and

Thomas, Singh and Roberts (1996). However, the first order approximation is typically used

in practice (e.g., SAS Proc Surveyfreq Version 9.2) and can be calculated using information

on the standard errors of the cell probabilities and marginal proportions which are generally

available (e.g., see Bedrick 1983). Thus Rao-Scott corrections are very useful and practical

for large complex surveys.

However, for smaller complex surveys (i.e., when expected cell counts are less than 5),

the asymptotic distributions of both X̄2 and Ḡ2 can be grossly incorrect and hence their

applicability is questionable. In this case, the Rao-Scott corrections are not appropriate

because they are not constructed to deal with small expected cell counts.

We discuss below in a very simple way how the first and second order corrections are
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obtained.

First Order Correction

In an r× c contingency table obtained from a complex survey, the test statistics X2 and G2

do not follow a χ2
b , b = (r−1)(c−1) distribution under the null hypothesis of independence.

But both statistics have skewed distributions, and a multiple of X2 or G2 may approximately

follow a χ2
b distribution. That is, approximately

cX2 ∼ χ2
b ,

where c is to be determined. Under the first order correction, the mean of the test statistic

is matched with the mean of a χ2
b random variable. This gives c = b/E(X2) and thus

X2/{E(X2)/b} ∼ χ2
b . Because X

2 ≈∑b
i=1 δiZ

2
i , where Zi are independent standard normal

random variables, we get E(X2) =
∑b

i=1 δi. Thus,

E(X2)/b =
b
∑

i=1

δi/b = δ̄,

where δ̄ is called a design correction. Therefore, X2/δ̄ ∼ χ2
b is a first order corrected test

statistic.

Second Order Correction

Under the second order correction, the two moments (mean and variance) of the test statistic

are matched with the mean and the variance of χ2
k∗1
, k∗1 is unknown (as done by Satterthwaite,

1946). Because cX2 ∼ χ2
k∗1
, matching the moments we get c = 2E(X2)/V (X2) and k∗1 =

2{E(X2)}2/V (X2), and because X2 ∼ ∑b
i=1 δiZ

2
i , we get E(X2) =

∑b
i=1 δi and V (X2) =

∑b
i=1 δ

2
i .

Third Order Correction

Under the third order correction cX2 ∼ Fk∗1 ,k
∗

2
, where k∗2 = k∗1ν with ν = rank(V̂ ). Note that

typically ν = # of primary sampling units (psu’s) - # of strata which may be relatively

small even in big surveys (see Scott, 2007). However, if it is only cluster sampling design, ν

would be equal to b.

Now, we briefly describe the Rao and Scott (1981) approach for the test of independence
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in a two-way table. Suppose there are r rows and c columns, the hypothesis of interest is

H0 : hij(p
˜
) = pij − pi+p+j, i = 1, . . . , r − 1; j = 1, . . . , c− 1,

where p
˜
= (p11, p12, . . . , prc−1)

′, pi+ =
c
∑

j=1

pij and p+j =
r
∑

i=1

pij , and pij is the population

proportion in the (i, j)th cell. Let nij be the observed cell count in the (i, j)th cell and

n̂ij = np̂i+p̂+j be the corresponding expected count under independence. Letting p̂ij = nij/n,

where n =
∑r

i=1

∑c
j=1 nij, the sample size, the usual Pearson statistic for testing H0 is

X2 =
r
∑

i=1

c
∑

j=1

(nij − n̂ij)
2/n̂ij

=
r
∑

i=1

c
∑

j=1

(nij − np̂i+p̂+j)
2/np̂i+p̂+j

= n
r
∑

i=1

c
∑

j=1

(p̂ij − p̂i+p̂+j)
2/p̂i+p̂+j,

which can be rewritten as

X2 = nh
˜
(p̂
˜
)′(P̂

˜
r
−1 ⊗ P̂

˜
c
−1
)h
˜
(p̂
˜
). (1.1)

Here, ⊗ denotes the direct matrix product, p̂ij is the estimate of pij under the sampling

design p(s), h
˜
(p̂
˜
) is the column vector of hij(p̂

˜
)′s, and P̂

˜
r and P̂

˜
c are the values of P

˜
r =

diag(p
˜
r)−p

˜
rp
˜
′
r and P

˜
c = diag(p

˜
c)−p

˜
cp
˜
′
c respectively, for p

˜
= p̂

˜
, where p

˜
r = (p1+, . . . , pr−1,+)

′

and p
˜
c = (p+1, . . . , p+,c−1)

′.

Rao and Scott (1981) have shown that under the null hypothesis H0 : h
˜
(p
˜
) = 0

˜
,

X2 ≈∑b
i=1 δ0iWi, where δ

′
is are the eigenvalues of D

˜
h = (P

˜
r
−1⊗P

˜
c
−1)V

˜
h, δ1 ≥ . . . ≥ δb > 0,

W1, . . . ,Wb are independent χ2
1 random variables and δ0i is the value of δi under H0. Here

V
˜
h/n is the covariance matrix of h

˜
(p
˜
) and its consistent estimator V̂

˜
h/n, the covariance

matrix of h
˜
(p̂
˜
), is obtained using the linearization method (see Fellegi, 1980) or the bal-

anced repeated replication or the jackknife method. But we use the bootstrap method in

our application. The modified statistic X2/δ̂· is a χ
2
b random variable, where the δ̂i

′
s are the

eigenvalues of (P̂
˜
r
−1 ⊗ P̂

˜
c
−1
)V̂
˜
h and δ̂· =

∑b
i=1 δ̂i/b with b = (r − 1)(c− 1).
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1.1.2 Brier (1980) Model

Brier formulated the Multinomial-Dirichlet distribution as a model for contingency tables

generated by cluster sampling schemes. This model allows an arbitrary number of response

categories and an arbitrary cluster size. In the model, given the cell probabilities indexed

by the cluster indicators, the cell counts are assumed to have multinomial distribution. To

accommodate the cluster effects, these cell probabilities are assigned the same Dirichlet

distribution with independence over clusters.

Let n
˜
i = (ni1, . . . , nik) be the vector of observed counts for the ith (i = 1, . . . , ℓ) cluster

classified into k distinct categories such that
k
∑

j=1

nij = ni. Let π
˜
i = (πi1, πi2, . . . , πik) be the

vector of cell probabilities for the ith cluster with πij to be the probability of a unit in the

ith cluster being classified into the jth category. Then, Brier model is

n
˜
i|π
˜
i
ind∼ Multinomial(ni, π

˜
i),

π
˜
i | µ

˜
, τ

iid∼ Dirichlet(µ
˜
τ),

where µ
˜
and τ are to be specified. Note that a model for a simple random sampling occurs

in the limit as τ goes to infinity. The unconditional covariance matrix of n
˜
under cluster

sampling is a constant times the covariance matrix under simple random sampling; see Brier

(1980). This constant is the design effect (which is the ratio of variance of the statistic

under complex design to that of simple random sampling) and letting n =
∑ℓ

i=1 ni, it is

B = 1
n

∑ℓ
i=1 ni

(

ni+τ
1+τ

)

, a weighted average of (ni + τ)/(1 + τ), i = 1, . . . , ℓ. Note here that

this standard Multinomial-Dirichlet model provides the same design effect for the estimator

of each cell probability of the two-way table (Brier, 1980). However, the second order Rao-

Scott approximation provides different design effects.

Brier (1980) has shown that under the null hypothesis, the distributions of the Pearson

chi-squared and likelihood ratio statistics (X2 and G2) are the multiples of chi-squared

random variables. That is, the distribution is Bχ2
k−s−1 as the number of clusters become

large (→ ∞), where k denotes the number of distinct categories and s denotes the dimension

of the parameter space under the null hypothesis. For example, in an r × c table with the
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null hypothesis

H0 : πij = πi+π+j, i = 1, . . . r, j = 1, . . . , c,

we have k = rc and s = r + c − 2 so that k − s − 1 = (r − 1)(c − 1). After finding the

consistent estimator, B̂ of B, a simple correction to the usual X2 and G2 is obtained as

X2/B̂ → χ2
k−s−1 and G2/B̂ → χ2

k−s−1.

1.1.3 Geenens and Simar (2010, 2011)

Geenens and Simar (2010) address the problem of testing for independence between two

categorical variables given a vector X of continuous covariates, focused on the case where X

is a scalar continuous variable under simple random sampling. They proposed two nonpara-

metric tests which generalize the chi-squared and the likelihood ratio tests. The procedure

is based on a kernel estimator of the conditional probabilities.

Consider a sample of n individuals in a table cross-classified by two categorical variables

R and S with r and s levels respectively. Let, πij = P (R = i, S = j), 1 ≤ i ≤ r, 1 ≤ j ≤ c,

be the probability that a given individual belongs to the cell (i, j) of the table. Then, the

unconditional independence hypothesis is

H0 : πij = πi·π·j ∀(i, j),

where πi· = P (R = i) =
∑c

j=1 πij and π·j = P (S = j) =
∑r

i πij. The corresponding

conditional independence hypothesis is

H0 : πij(χ) = πi·(χ)π·j(χ) ∀χ ∈ Sχ, ∀(i, j),

where Sχ ⊂ Rp is the support of X and π(χ) = {πij(χ) : 1 ≤ i ≤ r, 1 ≤ j ≤ c}, the joint

distribution of R and S conditional on X with πij(χ) = P (R = i, S = j | X = χ).

The test procedure involves two steps. First, for any χ in Sχ, obtain a pointwise divergence

criterion between the estimated joint conditional distribution of R and S given X = χ and

the product of the marginal conditional distribution of R and S given X = χ. The divergence

criterion is basically the generalization of the classical chi-squared or the likelihood ratio crite-

ria. The conditional distributions, π(χ) = E(Z | X = χ), where Z = (Z(11), Z(12), . . . , Z(rs))′
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with Z(ij) taking the value 1 if the individual belongs to (i, j)th cell and 0 otherwise, regarded

as regression functions, are nonparametrically estimated by Nadaraya-Watson-like estima-

tors. Second, the pointwise divergence is integrated with respect to χ in order to evaluate

this divergence on the whole support of Sχ which provides the test statistic.

Geenens and Simar (2011) considered the conditional joint distribution of two categorical

variables given a set of explanatory variables X when analyzing a contingency table. They

proposed a semiparametric model to estimate the conditional probabilities. In doing so,

they assumed that the effect of the vector of covariates (X) on the cell probabilities can

be captured by a single index θt0X, which is a linear combination of the initial covariates

X. The estimation then involves two steps: first, estimate the coefficients (θ0) of the linear

combination and second, estimate the functions linking this index to the related conditional

probabilities.

1.2 Surrogate Sampler, Nandram (2007)

Nandram (2007) used surrogate sampling to convert data obtained through a selection bias

mechanism to provide an equivalent simple random sample. Nandram (2007) considered a

problem in which a sample is drawn from a finite population but because of selection bias,

the sample is not a random sample from the original finite population. In fact, the original

sample is a random sample from a weighted distribution and one can convert this sample

to a surrogate sample from the original distribution. This surrogate sample can be used to

make an inference about the original finite population without any further consideration

about the biased sample.

Let yi, i = 1, . . . , N, denote the finite population values and let p(y
˜
| θ1
˜
) denote the prob-

ability distribution that describes the finite population (i.e., census). When a random sample

is taken from this finite population, it is perturbed by the weight function w(y
˜
; θ1
˜
, θ2
˜
) to pro-

duce a sample from the new probability distribution q(y
˜
| θ1
˜
, θ2
˜
). That is, a representative

sample is observed from

q(y
˜
| θ1
˜
, θ2
˜
) = w(y

˜
; θ1
˜
, θ2
˜
)p(y

˜
| θ1
˜
).

The idea here is to create a surrogate (representative) sample from the original finite pop-
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ulation using p(y
˜
| θ1
˜
) and then make an inference about the finite population proportion.

The Bayesian analysis is used to convert the biased sample into a random sample from the

finite population. Nandram, Bhatta, Bhadra and Shen (2012) used the surrogate sampler to

infer about a finite population proportion using data from a possibly biased sample.

For our Bayesian test of independence between two categorical variables, we use the

Bayes factor as our test statistics. It is easier to calculate the Bayes factor under simple

random sampling design because we have simple and closed form formula. This motivated

us to convert the cluster sample into an equivalent simple random sample. We discuss the

Bayes factor calculation for the simple random sample below.

1.3 Bayes Factor for a Test of Independence

For the r × c categorical table, we can consider two multinomial-Dirichlet models, one with

association and the other with no association.

The model with association is

n
˜
| π
˜
∼ Multinomial(n, π

˜
) and π

˜
∼ Dirichlet(u

˜
), (1.2)

where u
˜
is specified.

Letting π∗
jk = π

(1)
j π

(2)
k , j = 1, . . . , r, k = 1, . . . , c, the model with no association is

n
˜
| π
˜
(1), π

˜
(2) ∼ Multinomial(n, π

˜
∗),

π
˜
(1) ∼ Dirichlet(v

˜
) and independently π

˜
(2) ∼ Dirichlet(w

˜
), (1.3)

where π
˜
(1) and π

˜
(2) have r and c components respectively and v

˜
and w

˜
are specified.

Therefore, integrating out π
˜
(1) and π

˜
(2) from (1.3) and π

˜
from (1.2), it is easy to show

that the marginal likelihood with association (as) is pas(n
˜
) = n!

∏r
j=1

∏c
k=1 njk!

D(n
˜
+u
˜
)

D(u
˜
)
, and with

no association (nas) is

pnas(n
˜
) = pas(n

˜
)

{

D(n
˜
(1) + v

˜
)

D(v
˜
)

D(n
˜
(2) + w

˜
)

D(w
˜
)

/
D(n

˜
+ u

˜
)

D(u
˜
)

}

, (1.4)

where n
˜
(1) = (n1., . . . , nr.)

′ and n
˜
(2) = (n.1, . . . , n.c)

′. Thus, using (1.4) the Bayes factor (BF)
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is given by

BF = pas(n
˜
)/pnas(n

˜
), (1.5)

which provides evidence for association relative to no association. With Jeffreys’ prior (i.e.,

elements of u
˜
, v
˜
and w

˜
are all 0.5) there is no simplification to (1.4) or (1.5).

However, for the special case where u
˜
= 1

˜
, v
˜
= 1

˜
and w

˜
= 1

˜
(i.e., uniform priors), we

have pas(n
˜
) = (rc− 1)!n!/(n+ rc− 1)! and with no association (nas),

pnas(n
˜
) = pas(n

˜
)
(r − 1)!(c− 1)!

(rc− 1)!

(n+ rc− 1)!

(n+ r − 1)!(n+ c− 1)!

∏r
j=1 nj·!

∏c
k=1 n·k!

∏r
j=1

∏c
k=1 njk!

. (1.6)

Looking for evidence of association, we use the rule of thumb of the log-Bayes factor,

(0 − 1), not worth more than a bare mention; (1 − 3), positive; (3 − 5), strong; 5+, very

strong; see Kass and Raftery (1995).

1.4 Applications

To illustrate our methodologies, we use two examples based on the Third International

Mathematics and Science Study (1995) and the Trend in International Mathematics and

Science Study (2007). The purpose of these studies is to examine students achievement in

mathematics and science according to some variables in participating countries at high school

level. In both studies, the data were collected from a stratified two-stage cluster sampling

design.

1.4.1 Third International Mathematics and Science Study
(TIMSS 1995)

We use the third grade population data consisting of 2477 students 1 from United States.

Here, the clusters are schools, and the units are the students. There are four strata: Northeast,

South, Central and West regions of the US. We consider three of the variables in the survey:

mathematics test scores (below average, average and above average), science test scores

(below average, average and above average), and the communities the students come from

(village or rural area, outskirts of a town or city and close to the center of a town or city).

1(ftp://ftp.wiley.com/public/sci tech med/finite population/)
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Within each stratum, we study the association between mathematics test scores (MTS) and

communities (COM), and science test scores (STS) and communities (COM), so there are

eight examples.

1.4.2 Trend in International Mathematics and Science Study
(TIMSS 2007)

We use data consisting of 7,896 fourth grade US students. It is an entire population data

of participating schools. Here, the clusters are the schools and communities are the strata.

There are six communities classified according to the size of the populations. We also have

some observed student level and and cluster level characteristics (or covariates) in the data.

The student level covariates are (i) Sex, (ii) How often do you speak English at home?, (iii)

Index of self confidence in learning math, (iv) Index of self confidence in learning science and

(v) Race. The cluster level covariates are (i) Approximately what percentage of students in

school come from economically affluent homes, (ii) Percent of free lunch-categorized and (iii)

Total school enrollment in all grades. This is the public data available from the National

Center for Educational Statistics 2.

In this application, we consider two variables: mathematics test score (below average and

above average) and science test scores (below average and above average). We are interested

in studying the association between mathematics and science scores represented as cate-

gorical variables within each community, so there are six examples. The examination of the

association between mathematics and science achievements is important because it may help

mathematics and science educators assess the need for curriculum integration advocated by

several professional organizations in the US and other nations.

To assess the intersubject relationship between the continuous mathematics and science

scores TIMSS researchers have adopted modern assessment methodology. For this five plau-

sible scores have been imputed in each subject area, and “one set of the imputed plausible

scores can be considered as good as another”(Gonzalez and Smith, 1997, ch. 6, p. 3). Plausi-

ble values represent what the true performance of an individual might have been, had it been

observed. This interchangeability also suggests equivalency of the design effects (deff) among

2(http://nces.ed.gov/timss/)
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the plausible scores from stratified sample design (Wang, 2005). Then under an assumption of

the invariant deff values between mathematics and science scores, the AM software is adopted

to compute correlation coefficients between the variables. AM is a statistical software pack-

age developed by the American Institute of Research (AIR) for analyzing data from complex

samples, especially large-scale assessments such as the National Assessment of Educational

Progress (NAEP) and the Third International Mathematics and Science Studies (TIMSS).

Wang (2005) examined the relationship between mathematics and science achievement based

on student test scores using correlation coefficients.

1.5 Plan of Dissertation

The dissertation has three additional chapters.

In Chapter 2, we describe the test of independence without covariates. We have developed

a method to overcome the limitations (e.g. small sample size) in the Rao-Scott methodology.

In Chapter 3, we describe the test of independence with covariates. We have found a

related nonparametric conditional test under the simple random sampling design. However,

we did not find any literature for complex survey data.

Finally, in Chapter 4 we summarize our contribution and present concluding remarks.

We also discuss future research work that can be carried out within our framework. These

can also improve our proposed methodology.
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Chapter 2

A Test of Independence Without Co-
variates

In Chapter 2 we discuss the Bayesian test of independence in a two-way contingency table

without covariates when the data are obtained from the two-stage cluster sampling with

simple random sampling at both stages. We develop a hierarchical Bayesian model to convert

the observed cluster data into simple random samples. This provides surrogate samples. We

apply our methodology to the TIMSS 1995 data and present the results.

For many large complex surveys the Rao-Scott corrections to the standard chi-squared

(or likelihood ratio) statistic provide appropriate inference. For smaller surveys, however, the

Rao-Scott corrections may not be accurate, partly because the chi-squared test is inaccurate.

We present a method to overcome the limitations in the Rao-Scott methodology.

In two-stage cluster sampling, a simple random sample of ℓ clusters (primary sampling

unit or psu’s) is selected, and within the ith sampled cluster a simple random sample of ni

units (secondary sampling units or ssu’s) is selected. Note here that data are obtained from

a clustered super population in which each unit has exactly one of S characteristics (S = rc

for a r × c categorical table). Let nijk denote the counts in the (j, k)th cell of the r × c

table constructed from the ith cluster; we call this table the ith cluster table. Analogously,

let njk =
∑ℓ

i=1 nijk be the cell counts for the (j, k)th cell of the table of total counts. We will

call the table of total counts the total table. We are interest in the test of independence of

two categorical variables in the r × c total table.

The idea in our method is to simulate a large sample of total tables under simple random

sampling, and compute the Bayes factor for a test of independence from each simulated
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table. Then, the distribution of Bayes factors is obtained which is used for a final test of

independence. While we present the methodology for two-stage cluster sampling, a special

case, the approach can be extended to other complex surveys. Under our method, first, we

start with a model appropriate for simple random sampling and elaborate it to accommodate

the more complex sample design. Next, fitting the observed data to the model for complex

sample design, we make inference for the (population) parameter, θ, of the initial model

(i.e., draw M ′ samples from the posterior distribution of θ). Then we use θ(1), . . . , θ(M
′) to

draw simple random samples consistent with the observed data. The data from these simple

random samples are then used to make the required inferences (e.g., to test independence in

a contingency table using a Bayes factor).

2.1 Hierarchical Bayesian Model

We string out the counts in the total table to an array of S = rc cells (i.e., ns, s = 1, . . . , S).

If we assume simple random sampling, our Bayesian model is

n
˜
| π̃
˜
∼ Multinomial(n, π̃

˜
),

π̃
˜
∼ Dirichlet(1

˜
), (2.1)

where n
˜
= (n1, ..., nS), π̃

˜
= (π̃1, ..., π̃S), n =

∑S
s=1 ns and 1

˜
is a vector of S ones. We call this

model with simple random sampling MSRS. Typically, the total table will have large counts

relative to the cluster tables, so that the uniform prior is approximately noninformative (i.e.,

posterior mode is the same as the maximum likelihood estimator). It is possible to have a

few cells with zero counts, but most of the cell counts are expected to be relatively large.

We take care of the clustering by assuming that

n
˜
i | a

˜
i
ind∼ Multinomial(ni, a

˜
i), (2.2)

where n
˜
i = (ni1, ..., niS), ni =

∑S
s=1 nis and ais = αisπs, i = 1, . . . , ℓ, s = 1, . . . , S. Note here

that αisπs is the probability that a unit has the sth characteristic within the ith cluster of the

super population and πs, s = 1, . . . , S, are the probabilities corresponding to a homogeneous

superpopulation (i.e., there are no clusters). In (2.2) we have the constraints {
∑S

s=1 αisπs =
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1, i = 1, . . . , ℓ,
∑S

s=1 πs = 1, αis > 0, πs > 0}. Here, the αis are used to adjust for the

clustering.

A priori we take,

αis | τs, ν ind∼ Gamma(τs, τsν), s = 1, ..., S (2.3)

and

π
˜
∼ Dirichlet(1

˜
), (2.4)

where π
˜
= (π1, ..., πS) and τs, s = 1, . . . , S, are to be specified. Noting that in ais = αisπs,

neither the αis nor the πs are identifiable. This is true because while the number of cells

in the ith cluster table is S, the number of parameters corresponding to the ith cluster is

2(S − 1). Thus, we choose to specify the τs to allow both αis and πs to be identifiable.

We note two important features of this model. First, a model for simple random sampling

is a special case of ours. This is easily seen by setting αis ≡ 1. Second, by construction,

the model gives a positive correlation among the units in a cluster and this correlation

varies with the cell of the contingency table. To show this, let Iisj = 1 if a jth secondary

sampling unit (ssu) falls in the sth cell and Iisj = 0 otherwise. Then, given αis and πs,

Iisj
iid∼ Bernoulli(αisπs). After some algebraic manipulation, it follows that var(Iisj) = (νS −

1)/ν2S2, ν ≥ S−1, independent of s, and cov(Iisj, Iisj′) = {2τ−1
s +(S−1)/S}/S(S+1)ν2, j 6=

j′, positive, not independent of s. Therefore, cor(Iisj, Iisj′) = {S(2τ−1
s +1)−1}/(S+1)(νS−

1), j 6= j′, and by the Cauchy-Schwarz inequality the intracluster correlation lies in (0, 1)

provided that ν > S−1. Because the correlation varies with the cell of the contingency table,

we have different design effects for the estimators of the cell probabilities of the total table.

Henceforth, we let νo = S−1 so that ν > νo.

Finally, for ν, we assume a standard noninformative prior,

p(ν) ∝ 1/ν, ν > 0. (2.5)

Note that the joint prior density of the αis, πs and ν must satisfy the above constraints,

{∑S
s=1 αisπs = 1, i = 1, . . . , ℓ,

∑S
s=1 πs = 1, αis > 0, πs > 0}. This is our model for a

two-stage cluster sampling design and we will call it MCSD.
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It is easy to fit MSRS. In fact, under MSRS,

π̃
˜
| n
˜
∼ Dirichlet(n

˜
+ 1
˜
).

However, the Bayesian model under cluster sampling is much more complex partly be-

cause of the constraints and the awkwardness of the ais. The joint posterior density is ob-

tained in Appendix A. Because the prior density in (A.2) is improper, the joint posterior

density in (A.4) may be improper. We next show that the joint posterior density in (A.4) is

proper.

Theorem 2.1.1. The joint posterior density in (A.4) is proper.

Proof: We make the transformation tis = αisπs, s = 1, . . . , S − 1, i = 1, . . . , ℓ, keeping the

πs untransformed. The Jacobian of the transformation is

(

S−1
∏

s=1

πs

)−ℓ

and the joint posterior

density becomes

p(t
˜
, π
˜
(S), ν | n

˜
) ∝

νℓb−1e

−ν
∑ℓ

i=1









S−1
∑

s=1

τs
tis
πs

+ τS
1−

∑S−1
s=1 tis

1−∑S−1
s=1 πs







 ℓ
∏

i=1





(

S−1
∏

s=1

tnis+τs−1
is

)(

1−
S−1
∑

s=1

tis

)niS+τS−1

×
{(

S−1
∏

s=1

πτs
s

)(

1−
S−1
∑

s=1

πs

)τS}−1


 , (t
˜
, π
˜
(S), ν) ∈ T ∗,

where

T ∗ =

{

(t
˜
, π
˜
(S), ν) : 0 <

S−1
∑

s=1

tis,
S
∑

s=1

πs < 1, tis, πs > 0, i = 1, . . . , ℓ, s = 1, . . . , S − 1, ν > νo

}

.

Now, assuming ℓb > 1 and letting Fℓb(a) =
∫ a

0
tℓb−1e−t/Γ(ℓb)dt, the cdf of a gamma

random variable and integrating out ν, we get

p(t
˜
, π
˜
(S) | n

˜
) ∝ {1− Fℓb(Aνo)}A−ℓb

×
ℓ
∏

i=1





(

S−1
∏

s=1

tnis+τs−1
is

)(

1−
S−1
∑

s=1

tis

)niS+τS−1{(S−1
∏

s=1

πτs
s

)(

1−
S−1
∑

s=1

πs

)τS}−1


 , (t
˜
, π
˜
(S)) ∈ T̃ ∗,

(2.6)
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where

T̃ ∗ =

{

(t
˜
, π
˜
) : 0 <

S−1
∑

s=1

tis,
S
∑

s=1

πs < 1, tis, πs > 0, i = 1, . . . , ℓ, s = 1, . . . , S − 1

}

,

and

A =
ℓ
∑

i=1

{

S−1
∑

s=1

τs
tis
πs

+ τS

(

1−∑S−1
s=1 tis

1−∑S−1
s=1 πs

)}

.

Since p(t
˜
, π
˜
(S) | n

˜
) is finite on any compact subset of T̃ ∗, the integral of p(t

˜
, π
˜
(S) | n

˜
) over any

compact subset of T̃ ∗ is finite. Thus, the joint posterior density p(t
˜
, π
˜
(S), ν | n

˜
) is proper.

2.2 Computations, Bayes Factor and Specifications

Letting n
˜
denote the observed data from the total table and n

˜
the vector of surrogate sample

counts for the total table, we need to generate sample from

fSRS(n̂
˜
| n
˜
) =

∫

fSRS(n̂
˜
| π
˜
, n
˜
)fCL(π

˜
| n
˜
)dπ
˜
. (2.7)

In (2.7) fSRS indicates that n̂
˜
are the surrogate cell counts appropriate to simple random

sampling and fCL is the posterior density of π
˜
using the model for the observed cluster data

(MCSD). In Section 2.2.1 we show how to generate samples from fCL(π
˜
| n
˜
) using (2.6).

In section 2.2.2 we show how to obtain simple random sample from fSRS(n̂
˜
| π
˜
, n
˜
) using

(2.1). We then show how to obtain the Bayes factor, and we also show how to specify the

parameters τs, s = 1, . . . , S.We use a computational method which ensures that our method

is more accurate and at least as fast as the methods of Rao and Scott (1981).

2.2.1 Computations

As is apparent, the joint posterior density is complicated, and so we need a sampling based

method to draw samples from it. We obtain random draws from an approximation of the

joint posterior density and then use the sampling importance resampling (SIR) algorithm

(Gelman, Carlin, Stern and Rubin 2004, Ch. 12) to subsample these draws to obtain samples

from π
˜

| n
˜
; this gives us the required samples of π

˜
. Note that we are not using Markov

chain Monte Carlo methods because we want to avoid monitoring which will not make our

algorithm as fast the Rao-Scott methods.
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Using a heuristic argument we conjecture that an approximation which satisfies four

properties may be useful. First, an approximation should have some dependence between the

tis and the πs; see (2.6). Second, tis and πs should have similar forms. Third, the distributions

of tis and πs should be functions of the data (i.e., the cell counts of the cluster tables) to

allow the data to have direct influence on these distributions. Fourth, the computations of

the approximation must be fast and require no monitoring. To approximate the joint density

of t
˜
and π

˜
, we take t

˜
i = (ti1, . . . , tiS), i = 1, . . . , ℓ, given π

˜
and n

˜
to be independent, giving

pa(t
˜
, π
˜
| n
˜
) =

{

ℓ
∏

i=1

pa(t
˜
i | π

˜
, n
˜
)

}

pa(π
˜
| n
˜
), (2.8)

where pa(t
˜
i | π

˜
, n
˜
) and pa(π

˜
| n
˜
) are determined next.

First, to obtain the approximation, pa(π
˜
| n
˜
), we consider the posterior density under

simple random sampling. Here,

p∗(π
˜
| n
˜
) ∝

S
∏

s=1

πn·s+1
s ,

S
∑

s=1

πs = 1.

Our intuition is that the correct posterior density under clustering sampling should be re-

lated to this posterior density under simple random sampling. However, it should reflect the

clustering through the design effects. Thus, we make two additional adjustments to p∗(π
˜
| n
˜
).

First, by penalizing n·s, s = 1, . . . , S, we replace n·s by n·s/δs where δs are design effects,

possibly all the same as in Brier’s method. Second, to make this dependent on τs (suggested

by the term in πs in (2.6)), we add τs to n·s/δs +1 to get the approximate posterior density,

pa(π
˜
| n
˜
),

π
˜
| n
˜
∼ Dirichlet(d

˜
), (2.9)

where ds = n·s/δs + τs + 1, s = 1, . . . , S and τs, s = 1, . . . , S are specified in Section 2.2.3.

Second, note that ignoring the term (1−F (Aνo))A−ℓb and the constraints, the conditional

posterior density in (2.6) is of the form,

p∗∗(t
˜
| π
˜
, n
˜
) ∝

ℓ
∏

i=1

S
∏

s=1

tnis+τs−1
is , tis > 0, s = 1, . . . , S,

S
∑

s=1

tis = 1, i = 1, . . . , ℓ.

That is, approximately t
˜
i | n

˜

ind∼ Dirichlet(n
˜
i + τ

˜
). We allow this to be dependent on π

˜
by

replacing nis with ni·πs. Then approximately t
˜
i | π

˜
, n
˜

ind∼ Dirichlet(ni·π
˜
s + τ

˜
). Adding unity
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to the Dirichlet parameters to increase computational stability, the final approximation,

pa(t
˜
i | π

˜
, n
˜
) of the conditional posterior distribution of t

˜
i | π

˜
, n
˜
is

t
˜
i | π

˜
, n
˜

ind∼ Dirichlet(b
˜
i), (2.10)

where bis = ni·πs + τs + 1, i = 1, . . . , ℓ, s = 1, . . . , S. Observe that (2.9) and (2.10) have

similar forms.

We now show how to carry out the SIR algorithm. To obtain the probability of selecting

each sampled iterate, we need to study the ratio,

R(t
˜
, π
˜
) =

p(t
˜
, π
˜
| n
˜
)

pa(t
˜
, π
˜
| n
˜
)
,

where p(t
˜
, π
˜
| n
˜
) and pa(t

˜
, π
˜
| n
˜
) are given, respectively, in (2.6) and (2.8). Simplifying, we

get,

R(t
˜
, π
˜
) = C

{1− Fℓb(Aνo)}
∏ℓ

i=1[{
∏S

s=1 t
nis−niπs−1
is }D(niπ

˜
+ τ

˜
+ 1
˜
)]

{∏S
s=1 π

ns/δs+(ℓ+1)τs
s }Abℓ

, (2.11)

where strictly 0 < πs < 1, 0 < tis < 1, D(·) is the Dirichlet function and C is a proportion-

ality constant. Note that, by construction, R(t
˜
, π
˜
) is bounded because both p(t

˜
, π
˜
| n
˜
) and

pa(t
˜
, π
˜
| n
˜
) are bounded. The SIR algorithm requires R(t

˜
, π
˜
) to be bounded.

We use 10% subsampling. We draw M̃ = 10, 000 samples from the approximate joint

posterior density in (2.8). This is obtained using the composition rule by first drawing π
˜

from (2.9) and, in turn, drawing ti
˜
from (2.10). Letting Ω(h) = (t

˜
(h), π

˜
(h)), h = 1, ..., M̃ , the

subsampling probabilities are Wh = R(Ω(h))/
∑M̃

h′=1R(Ω
(h′)), h = 1, . . . , M̃ , where R(·) is

given in (2.11). Then we sample 10% of the M̃ samples without replacement to getM = .10M̃

samples (drawing without replacement is a sensible procedure to avoid some values being

sampled repeatedly). Thus, we finally have samples from the posterior density of π
˜
.

2.2.2 Bayes Factor

Having obtained samples from the posterior density of π
˜
, we can now obtain samples from

the distribution of the Bayes factor. Let π
˜
(h), h = 1, . . . ,M , denote the M samples from our

MCSD (i.e., cluster model). Then, we draw n̂
˜
(h) from the total table,

n̂
˜
(h) ind∼ Multinomial{n, π

˜
(h)}, h = 1, . . . ,M.
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Here, n̂
˜
(h) is surrogate data because the original total table (observed data) has now been

converted and a model for simple random sampling is appropriate. Thus, we have M surro-

gates for the total table. Now, to compute a sample of M values of the Bayes factor, we fit a

model of association and a model of no association to the surrogate data, n̂
˜
(h), h = 1, . . . ,M,

each surrogate in turn. We take the model of association to be

n
˜
(h) ∼ Multinomial(n, π

˜
), π

˜
∼ Dirichlet(u

˜
), h = 1, . . . ,M, (2.12)

where us = .5, s = 1, . . . , S, for Jeffreys’ prior (proper prior). Letting π∗
jk = π

(1)
j π

(2)
k , j =

1, . . . , r, k = 1, . . . , c, the model with no association is

n
˜
(h) | π(1)

˜
, π(2)

˜
∼ Multinomial(n, π∗

˜
),

π(1)

˜
∼ Dirichlet(v

˜
) and independently π(2)

˜
∼ Dirichlet(w

˜
), (2.13)

where vj = .5, j = 1, . . . , r and wk = .5, k = 1, . . . , c. It is worth noting that, while the

computation of Bayes factor requires proper prior distributions, proper priors are not required

in MCSD as long as the posterior density (2.6) is proper (as we have shown in Appendix A).

However, we do need proper priors in (2.12). Inference should not be sensitive to moderate

departures from Jeffreys’ prior because the cell counts of the total table are expected to be

relatively large.

In Section (1.3) we present the Bayes factor for a test of independence for the total table

which is given by

BF (h) = pnas(n
˜
(h))/pas(n

˜
(h)), h = 1, . . . ,M,

where pnas(n
˜
(h)) and pas(n

˜
(h)) are, respectively, the marginal likelihoods under the models

with no association (nas) and association (as). In Appendix C, we show how to obtain the

mode of the posterior distribution of the Bayes factor. It is straightforward to obtain other

summaries of the Bayes factor.

Thus, our method obtains M estimates of the Bayes factor and these estimates, in turn,

provide an estimate of the empirical distribution of the true Bayes factor. Our computations

show that the entire procedure to obtain the M estimates of the Bayes factor and its distri-

bution takes less than five seconds for data from small two-stage cluster sampling designs.
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Henceforth, we will mostly work with the log-Bayes factor.

2.2.3 Specifications

We show how to specify the design effects δs and the τs. Note that while the τs are part of

MSCD, δs are not part of MCSD and the δs only affect the computations.

We state and prove an important lemma about the maximum likelihood estimator (MLE)

of the parameters of a gamma distribution in Appendix B. We will use this lemma repeatedly

to specify the hyperparameters and the tuning constants.

Let n′
is, i = 1, . . . , ℓ, s = 1, . . . , S, denote past data or data from a similar survey. We

obtain estimates of αis from the cluster tables with cell counts n′
is, i = 1, . . . , ℓ, s = 1, . . . , S,

adding 0.5 because of some zero cell counts. First, define p̂is = (n′
is + .5)/(n′

i· + .5S), π̂s =

(n′
·s + .5)/(n′ + .5S) and α̂is = p̂is/π̂s, i = 1, . . . , ℓ, s = 1, . . . , S. We use this form for the α̂is

because under (2.2) only, E(n′
is/n

′
i·) = αisπs, i = 1, . . . , ℓ, s = 1, . . . , S. Therefore, removing

the expectation on the left-hand side, we get p̂is ≈ α̂isπ̂s. Then, we take

α̂is
iid∼ Gamma(τs, τsν)

as in (2.3). First, pretending that the τs are equal and letting A denote the arithmetic mean

of the α̂is, the MLE of ν is ν̂ = A−1 as in Appendix B. Then, for τs a ‘profile’ log-likelihood

is obtained by replacing ν in the log-likelihood function by A−1. For each τs with ν fixed at

A−1, we obtain the MLE of τs by maximizing the profile log-likelihood function,

τs ln(τs)− τs ln(A) + (τs − 1) ln(Gs)− τsAs/A− ln Γ(τs), s = 1, . . . , S,

where As and Gs are the arithmetic and geometric means of α̂is. By an argument similar to

Appendix B, the MLE exists and is unique. We use the Nelder-Mead algorithm to do the

maximization.

We now show how to obtain the design effects for the computation. We consider the

following simpler model for cluster sampling,

n
˜
i | π

˜
i
ind∼ Multinomial(ni, π

˜
i) and π

˜
i
iid∼ Dirichlet(µ

˜
φ),

where ni =
∑S

s=1 nis is the number of ssu’s in the ith cluster, π
˜
i = (πi1, ..., πiS) and φ are
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to be specified. Note that simple random sampling occurs in the limit as φ goes to infinity.

The covariance matrix of n
˜
under cluster sampling is a constant times the covariance matrix

under simple random sampling; see Brier (1980). This constant is the design effect and, letting

n =
∑ℓ

i=1 ni, it is
1
n

∑ℓ
i=1 ni(ni+φ)/(1+φ), a weighted average of (ni+φ)/(1+φ), i = 1, . . . , ℓ.

To specify τ , we start by using a method of moments estimator for µ
˜
(i.e., µ̂s =

∑ℓ
i=1 nis/n,

s = 1, . . . , S). These are reasonably efficient estimators because they are formed from the

total table. We obtain φ by maximizing the profile log-likelihood of the multinomial-Dirichlet

model,
ℓ
∑

i=1

[

S
∑

s=1

{ln Γ(nis + µ̂sφ)− ln Γ(µ̂sφ)} − {ln Γ(ni + φ)− ln Γ(φ)}
]

over φ > 0. We denote the MLE of φ by φ̂ and it is easily obtained using the Nelder-Mead

algorithm. Thus we take δs =
1

n

ℓ
∑

i=1

ni

(

ni + φ̂

1 + φ̂

)

, s = 1, . . . , S, equal.

2.3 Numerical Analysis

We discuss an illustrative example. This example suggests certain features which are inves-

tigated further in a simulation study.

We use the mode of the distribution of the Bayes factors, obtained from the surrogate total

tables, for testing and the interquartile range of these Bayes factors for gauging this evidence.

We interpret the mode using the rule of thumb of Kass and Raftery (1995). However, we

share the philosophy that evidence cannot be measured by a single test and other tests (e.g.,

Rao-Scott test) should be used. It is not sensible to look at a single p-value or just the mode

of the distribution of the Bayes factor.

2.3.1 Illustrative Example

To illustrate our methodology, we use data from the Third International Mathematics and

Science Study (TIMMS). The data consist of 2477 students 1. Here, the clusters are schools

while the units are the students. There are four strata: Northeast, South, Central and West

regions of the US. We consider three of the variables in the survey: mathematics test scores

1(ftp://ftp.wiley.com/public/sci tech med/finite population/)
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(below average, average and above average), science test scores (below average, average,

above average) and the communities the students come from (village or rural area, outskirts

of a town or city and close to the center of a town or city). Within each stratum, we study the

association between mathematics test scores (MTS) and communities (COM) and science

test scores (STS) and communities (COM), so there are eight examples. We assume that the

finite population is a sample from a superpopulation.

In Table 2.1 we present the total tables for the eight examples (E1-E4 for MTS versus

COM and E5-E8 for STS versus COM in each of the four regions). The number (ℓ) of

clusters changes considerably over regions as does the number of observations. The intra-

class correlations are moderately large and they change considerably over examples. The

design effects (DEFs), obtained from Brier’s model, are considerably larger than one. Thus,

in all the examples, the cluster effect is substantial. Some of the observed counts in the total

tables do not exceed 5. This is noticeable in cell (1,3) (below average in a town or city) in

all examples except E3 and E6. In E4, cell (1,3) is 0 so standard X2 and G2 tests are not

really applicable. In fact, for E4 the Rao-Scott first order test cannot be computed using SAS

because it uses linearization or the jackknife to estimate the covariance matrix. We are able

to compute the Rao-Scott test because we use the bootstrap method. Rao-Scott methods

do not provide a sensible adjustment because in our case they correct X2 and G2 only for

clustering, not for tables with small cell counts.

The ‘posterior’ design effects for the individual cells are presented in Table 2.2. These

are different from those in Brier’s method (see Section 2.2.3) and are computed as the

diagonals of the posterior variance of π
˜
under the hierarchical Bayesian model specified by

(2.2)-(2.5) and the posterior variance under the model for simple random sampling specified

by (2.1). These design effects are considerably larger than 1. The average design effects,

9.01, 6.75, 5.91, 7.80, 8.34, 5.67, 6.71, 7.10 for E1-E8, are very similar to the design effects

obtained from Brier’s method given in Table 2.1. But what is more important is that the

DEFs vary quite a bit over the cells for all examples except E3 and E6. Thus, Brier’s method

is inappropriate except, perhaps, for E3 and E6. With such large variations in DEFs across

the cells the, Rao-Scott approximations are not expected to work well. This is particularly
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true in E4 in which cell (1, 3) has a design effect of 25.65 corresponding to the zero count. For

completeness we have also calculated the effective sample size (ESS), the sum of the ratios of

the original cell counts of the total table divided by the corresponding design effects. As can

be seen in the last row of Table 2.2, these are considerably smaller than the original sample

size (see Table 2.1).

In Table 2.3, we present summaries of the Bayes factor obtained from our model. Again,

our rule is the one described by Kass and Raftery (1995) applied to the mode of the distri-

bution of the Bayes factor. For example, in example E1 the mode is 5.7 and according to

Kass and Raftery (1995) there is ‘strong’ evidence against independence. For comparison,

we also present the p-values obtained from the standard chi-squared test and Rao-Scott first

order (RSF) and second order (RSS) approximations.

In example E1, RSF and RSS do not reject independence, while the chi-squared test

and Bayes factor test show evidence against independence. The very strong evidence against

independence shown by the chi-squared test may be due to ignoring the large cluster effect

(ρ = .56, see Table 2.1). Except perhaps for E2 and E6, the Bayes factors show that there

is some evidence for a strong dependence between mathematics test scores and community

and science test scores and community. It is interesting that the tests based on chi-squared,

RSF, RSS and Bayes factor agree in all examples except E1.

We also obtained the proportion, P , of estimated Bayes factors in the 1000 runs that are

larger than the observed Bayes factor under the (incorrect) simple random sampling in the

observed total table. If the cluster sampling design was a simple random sampling design, it

seems reasonable that these Bayes factors should have a distribution symmetric around the

observed Bayes factor obtained from simple random sampling. Thus, under simple random

sampling these P s should be around .5. These are shown in the penultimate column of Table

2.3. However, these P s are significantly larger than .5, showing that the clustering effect our

model accounts for is substantial.

Because Bayesian estimation procedures are much less sensitive to prior specifications

than Bayesian hypothesis we have considered an estimation procedure as well. Based on

the hierarchical Bayesian model we have obtained 95% credible intervals of the ratios,
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πjk/pjqk, j = 1, . . . , r, k = 1, . . . , c where pj =
∑c

k=1 πjk and qk =
∑r

j=1 πjk. Note that

there are S = rc = 9 credible intervals. Then, we have computed the number, N , of 95%

credible intervals of πjk/pjqk containing 1 (e.g., see Nandram and Choi 2007 for a similar

procedure). If some of these intervals do not contain 1, this provides some evidence against

independence. The values of N , presented in the last column of Table 2.3, show some evi-

dence of independence in examples E3, E5 and E8. Of course, these intervals are much too

wide for this latter procedure to be particularly useful. Nevertheless it is sensible to consider

it as well.

In Figure 2.1, we present the distributions of the Bayes factors obtained from the 1000

estimates of the Bayes factor from each of the eight examples. Looking at where most of the

distribution lies, it shows that in E2 and E6 there is little evidence against independence

and in the other examples there is much stronger evidence against independence. Note that

calculating the distribution provides substantially more information than quoting a single

summary but it is not done in practice.

In Table 3.7, we study the issue of sensitivity of the Bayes factor to the specification

of τs, s = 1, . . . , S (S = 9). We set τs = ητ̂ where we take η = .5, 1, 2 and τ̂s are the

maximum likelihood estimates. The mode, median, the first and third quartiles and P all

decrease as η changes from 0.5 to 2. However, the evidence against independence does not

change markedly. This is true in all eight examples. We have also looked at sensitivity to the

specification of the uniform prior for the model based on simple random sampling applied

to the surrogate total tables. Small variations in Jeffreys prior show very small changes in

the Bayes factor (e.g., changing .5 in Jeffreys prior to .10 or 1).

2.3.2 Simulation Study

We have performed a small simulation study to help understand these tests further. We

consider three factors: dependence between the two categorical variables (weak, strong), the

table density of the cluster tables (low, medium) and intracluster correlation (very small,

small, moderate). The density of a total table is the total number of observations divided by

the product of the number of clusters and the number of cells (S = 9 for a 3× 3 table). We
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have set the number of clusters at ℓ = 35 and the table density, ∆, at 2 and 4 giving a total

number of observations of 630 and 1260.

Corresponding to the nine cells (3×3 categorical table), let ψs = 1, s = 2, 3, 4, 6, 7, 8, (off-

diagonal cells) and ψs = ind, s = 1, 5, 9 (diagonal cells) where ‘ind’ is to be specified. The cell

probabilities are ψs/
∑S

s+1 ψs, s = 1, . . . , S. When the ψs are roughly the same (ind=1), there

will be independence and when the diagonal ψs are larger than 1, there will be dependence

(ind=2). For a 3 × 3 table with large cell counts, if the diagonal probabilities are twice the

off diagonals, there will be strong dependence (ind=2). With an intracluster correlation of

ρ, we set αs = {(1 − ρ)/ρ}ψs/
∑S

s=1 ψs, s = 1, . . . , S. For i = 1, . . . , ℓ we generate π
˜
i

iid∼

Dirichlet(α
˜
) to get the cell probabilities for the 35 cluster tables. We divide the total number

of observations into the clusters with sizes, ni, i = 1, . . . , ℓ, based on multinomial distributions

with equal cell probabilities. Finally, the cluster tables are generated independently from

multinomial distributions with total counts ni and cell probabilities π
˜
i. We choose ρ =

.01, .10, .30.

Thus, there are twelve (2×2×3) design points, and 100 cluster samples are generated at

each design point. We perform our computations exactly as for the Third Grade population

and obtain both the p-values and the Bayes factors from our model. We ‘average’ various

quantities over the 100 replications at each design point. For example, in Table 2.5 the mode

is the average of the 100 modes.

In Table 2.5, we present numerical summaries from the simulation study. As expected, the

p-value of RSS is at least as large as the p-value from the chi-squared test and as ρ increases

the design effects increase for all design points. It is good that the chi-squared test, RSS test

and BF test give the correct answers under independence or dependence respectively. For

the six design points under independence, the interquartile ranges are much narrower than

their counterparts under dependence. Looking at the modes under dependence, according

to Kass and Raftery (1995) there is ‘very strong’ evidence for dependence. We also observe

that while there are changes in the magnitudes of the p-values and the log-Bayes factors, the

changes in inference over the design points are small whether the modes or the p-values are

used. However, there are two exceptions at (ind=1, ρ = .30) for ∆ = 2 and ∆ = 4. Here the

27



modes are −1.48 and −.73, very weak evidence for independence, but there is very strong

evidence for independence at ∆ = 2, ρ = .01 (the mode is −5.86) and ∆ = 4, ρ = .01 (the

mode is −7.50).

However, we observe a few interesting things. First, under independence as ρ increases,

both p-values decrease, changing the evidence against independence, but under dependence

these p-values increase which changes the degree of evidence against independence (note the

minor aberration at (Ind=2, ∆ = 2)). However, there is a clear advantage in using the mode

because it is the most plausible value, as there is a measure of uncertainty (e.g., the interquar-

tile range) and symmetry between the “association” and “no association” cases. Unlike the

behavior of the p-values, the evidence against independence increases as ρ increases (for fixed

Ind and δ) for both cases.

In Figure 2.2, we show the distributions of the estimated Bayes factors for the twelve

design points. The distributions are essentially unimodal; the locations of the modes tell us

about the strength of the evidence against independence. We expect the evidence to be weak

under independence but the intra-cluster correlation blurs this vision. As the intracluster

correlation increases, we expect more spread, of course, and what we see is that the distri-

butions move over to the right. There is not much change in the distributions with the table

density. Also, as we go from independence to dependence, the distributions of the Bayes

factor tend to be flatter with more spread.

Finally, we have performed an additional simulation study for a small sample size and

a large intracluster correlation. Specifically, we have taken n = 50 and ρ = .50 with ℓ = 35

and ind = 1 for independence and ind = 5 for strong dependence. For ind = 5 most of the

counts will be on the diagonal of the 3 × 3 categorical table with the off-diagonal elements

tending to be less than 5 and sometimes zero. For ind = 1 some cells will have counts less

than 5 because of the strong cluster effect. For ind = 1 the mode and the quartiles of the

log-Bayes factor are −1.38,−1.55,−0.11, 2.00 and the p-values of the X2 and RSS tests are,

respectively, .625 and .454. For ind = 5 the mode and the quartiles of the log-Bayes factor are

4.18, 3.02, 6.58, 10.80 and the p-values of the X2 and RSS tests are, respectively, 12.73×10−5

and 2.06 × 10−5. Clearly, the RSS test is not able to accommodate the cluster effect with
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such a small sample size because the p-value of the RSS test is smaller than that of the X2

test in both examples.

2.4 Concluding Remarks

We have proposed a method to test for independence in a r × c contingency table which

is obtained from a two-stage cluster sampling design with simple random sampling at both

stages. We have used a hierarchical Bayesian model and a sampling-based method to fit it.

By making close approximations to several densities we avoid using Markov chain Monte

Carlo methods for inference. Specifically, we use random samples from the approximate

posterior density and subsample them using the SIR algorithm. Although ours is a sampling

based method it is at least as fast as the Rao-Scott methods. We use the Bayes factor to

make inference about independence. Relative to standard methods our approach provides

additional insight by displaying the distribution of the Bayes factor rather than simply relying

on a single summary measure.

The Rao-Scott methods were developed to correct for design effects such as cluster effects,

i.e., by correcting the standard X2 and G2 statistics. They are “large sample” methods and

work well when there are large cell counts. However, they are less successful when there are

small cell counts. An extreme case is a table with zero counts, in which case the X2 and G2

tests are not applicable. Consequently, the Rao-Scott methods do not apply either (since they

are adjustments of the X2 and G2 tests for design effects, not sparse tables). Our procedure

will get around this problem when there are a few cells having zero counts. However, by

doing a more sophisticated analysis, we have validated RSS for two-stage cluster sampling

with many examples, but as we discussed, there are some examples when this is not quite

true.

Finally, we note that in small complex surveys, most cluster tables will have many zero

cells (e.g., contingency tables with categorical variables having many levels). As noted above

the problem of sparse total tables cannot be accommodated within the Rao-Scott framework.

However, it may be possible to do so within our framework. For example, a likelihood ratio

test of independence in a single contingency table with many sampling zeros is given by
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Nandram, Bhatta and Bhadra (2012) assuming simple random sampling. It will be useful to

extend this work to complex surveys.

Table 2.1: Features of the total table for each of the eight examples

n ℓ ρ def (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)
E1 469 37 .56 11.8 44 57 5 83 71 5 63 136 5
E2 663 24 .33 6.85 49 74 1 107 151 13 93 164 11
E3 438 23 .34 7.39 44 47 8 54 44 3 56 167 15
E4 857 51 .33 6.62 25 17 0 157 134 13 205 294 12
E5 469 24 .54 11.46 63 38 5 105 47 7 70 124 10
E6 663 37 .31 6.45 61 56 7 117 141 13 117 145 6
E7 438 23 .35 7.67 53 44 2 67 30 4 95 133 10
E8 857 51 .33 6.63 34 7 1 181 112 11 226 272 13

NOTE: These are all 3 × 3 contingency tables; n is the number of observations; ℓ is the

number of schools; ρ is the intracluster correlation and Def stands for design effect. E4 has
a zero cell and E2, E3, E7, E8 have some cell counts near zero.

Table 2.2: Bayesian Design effects for each cell by example

Cell E1 E2 E3 E4 E5 E6 E7 E8
(1,1) 7.42 5.17 4.75 5.32 6.88 4.93 4.72 5.12
(1,2) 6.99 5.09 4.92 5.69 6.66 4.59 5.25 7.45
(1,3) 12.10 17.05 7.35 25.65 12.69 7.51 12.91 17.59
(2,1) 7.94 5.31 4.81 5.22 7.65 5.07 4.83 5.31
(2,2) 6.88 5.18 5.47 5.04 6.37 5.06 5.35 5.13
(2,3) 14.04 5.85 9.99 6.14 11.40 6.13 9.43 6.59
(3,1) 6.23 5.20 5.23 5.37 6.45 5.02 5.92 5.39
(3,2) 6.54 5.35 4.85 5.14 6.59 5.30 5.27 5.22
(3,3) 12.97 6.56 5.80 6.60 10.37 7.40 6.70 6.09
ESS 67 126 87 164 68 130 82 161

NOTE: The cells are (j, k), j, k = 1, 2, 3. ESS stands for the effective sample size and it is
the sum of the cell counts divided by the design effects, taken for the total table.
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Table 2.3: Comparison of the log-Bayes factor with the p-values by example

p-values log-Bayes factor
χ2 RSF RSS Min Q1 Q2 Q3 Max Mode P N

E1 .001 .17 .14 -7.1 3.6 12.5 23.3 105 5.7 .81 9
E2 .247 .58 .66 -7.9 -2.8 1.1 7.2 60 -1.6 .89 9
E3 .000 .04 .02 -7.4 7.9 17.0 28.0 94 10.8 .69 7
E4 .001 .04 .02 -8.6 1.0 8.0 16.9 84 4.5 .76 9
E5 .000 .02 .01 -6.4 9.3 20.1 33.7 109 14.6 .66 7
E6 .240 .60 .69 -7.9 -1.3 3.4 10.2 55 -0.7 .95 9
E7 .000 .03 .01 -7.2 2.5 9.6 18.5 77 6.05 .71 9
E8 .000 .01 .00 -8.1 7.2 16.2 26.6 108 10.6 .66 7

NOTE: RSF and RSS denote, respectively, the first and second order Rao-Scott
approximations; a bootstrap method is used to estimate the covariance matrix in the

Rao-Scott approximations.

Table 2.4: Sensitivity anlaysis of the log-Bayes factor with respect to τs, s = 1, . . . , 9, by
region (reg) and example

MTS vs. COM STS vs. COM
reg η .5 1 2 .5 1 2

1 Mode 9.3 6.3 4.9 24.5 12.6 9.4
Median 13.8 12.4 10.3 25.6 21.1 15.6

IQR (4.8,25.4) (4.1,23.5) (2.9,19.0) (11.9,37.8) (9.9, 33.7) (6.9, 26.9)
P .84 .82 .79 .73 .66 .56

2 Mode -1.5 -1.7 -2.6 -0.9 -0.5 -0.5
Median 2.1 1.1 1.0 3.6 3.5 2.8

IQR (-2.3,7.7) (-2.5,7.3) (-3.1,6.9) (-1.5,10.8) (-1.5,10.7) (-1.7,9.1)
P .90 .90 .88 .95 .94 .94

3 Mode 14.0 11.1 10.1 5.8 4.9 2.5
Median 17.5 16.5 13.9 10.5 9.6 6.8

IQR (8.3,28.6) (7.5,27.0) (6.1,23.1) (3.6,21.2) (3.0,18.7) (1.0,14.8)
P .70 .68 .62 .74 .72 .62

4 Mode 3.7 4.2 1.8 12.6 12.1 9.2
Median 8.8 8.2 7.0 17.0 15.7 14.0

IQR (1.8,19.0) (1.6,16.9) (0.4,15.9) (8.3,28.4) (6.6,28.0) (5.1,24.1)
P .78 .78 .73 .70 .66 .62

NOTE: Each region has two examples (e.g., region 1 corresponds to E1, left, and E5, right).

We have used τs = ητ̂s, s = 1, . . . , 9, where the τs are maximum likelihood estimates and
η = .5, 1, 2.
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Table 2.5: Simulation: Comparison of p-values and log-Bayes factor

p-values log-Bayes factor
Ind ∆ ρ Def χ2 RSS mode Q1 Q2 Q3

1 2 .01 1.00 .964 .993 -5.86 -6.14 -4.50 -2.31
1 2 .10 1.50 .760 .899 -4.66 -5.35 -3.36 -0.51
1 2 .30 3.74 .350 .816 -1.48 -2.78 0.85 6.06
1 4 .01 1.00 .991 .999 -7.50 -7.61 -6.08 -3.95
1 4 .10 2.32 .700 .883 -5.62 -5.97 -3.25 0.38
1 4 .30 6.71 .280 .884 -0.73 -1.76 3.46 11.39
2 2 .01 1.15 .005 .001 6.16 2.47 8.44 15.58
2 2 .10 2.70 .006 .010 7.60 4.73 12.09 23.47
2 2 .30 6.12 .001 .044 11.19 8.23 19.87 35.79
2 4 .01 1.29 .000 .000 15.40 11.83 20.33 31.35
2 4 .10 4.38 .000 .002 25.39 15.33 30.57 47.62
2 4 .30 11.26 .001 .033 29.50 19.14 39.87 66.92

NOTE: Ind is the degree of dependence, ∆ is table density, ρ is the intracluster correlation,
Def is the design effect from Briers method, RSS is the second order Rao-Scott correction.
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Figure 2.1: Plots of the empirical densities of the log-Bayes factors for the eight strata in the
third grade example
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Figure 2.2: Simulation: Plots of the empirical densities of the log-Bayes factors at twelve
design points. The symbols are correlation (solid: ρ = .01, dotted: ρ = .10, long dashed:
ρ = .30), association (independence: ind=1 and dependence: ind=2) and table density (∆)
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Chapter 3

A Test of Independence With Covari-
ates

In Chapter 3, we discuss the test of independence in a two-way contingency table when there

are covariates at both unit and cluster levels. These covariates are likely to be associated with

the two cross-classified categorical variables and can have influence over their association. If

we simply ignore the effect of covariates and perform the test of independence, the test can be

misleading. Geenens and Simar (2010, 2011) developed nonparametric and semiparametric

methods for conditional independence in two-way contingency tables for simple random

sampling. However, we did not find any literature for the test of independence on complex

survey data when there are covariates.

To perform the Bayesian test of independence, we use the idea of surrogate sampling

similar to the one applied in Chapter 2. However, in this case, we use a two-step procedure

to compute the Bayes factor by using a surrogate sample. First, we fit a multinomial logistic

regression model with random effects to the observed cluster data with covariates. The

random effect in the model accommodates the cluster effect in the data and the covariates

incorporated in the model explain the fixed effect. After fitting the random effects model,

we predict the samples given the set of covariates. The sample obtained as such would be

the cluster sample without covariates because the sample has already been adjusted with

the covariates. Then, in the next step we use a hierarchical Bayesian model to convert the

cluster sample without covariates into an equivalent simple random sample.

Here, we have developed a new methodology instead of using the same one as Chapter

2. In this new situation, the method we adopted in Chapter 2 is computationally expensive.
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First, because we use SIR algorithm in Chapter 2 which requires a large number of samples

to subsample. Second, we have many constraints in the model from Chapter 2 which makes

computation complicated. However, we have fewer constraints if we use logistic regression

because many constraints are automatically incorporated there through its structure.

In Chapter 3, we will discuss seven more sections. In Section 3.1, we describe a random

effects multinomial logistic regression model. In Section 3.2, we describe the cluster model

without covariates. In Section 3.3, we show how to compute the Bayes factor from the

surrogate samples. In Section 3.4, we present an example (TIMSS 2007 data) which we use

to illustrate our methodology. We also fit our cluster model without covariates in order to

make a comparison between the test with covariates and the test without covariates. In

addition, we will also study the effect of covariates on the test. In Section 3.5, we perform

a simulation study to validate the findings we obtain for the real data. In Section 3.6, we

study the empirical power function of our Bayes factor test statistic. Finally, Section 3.7 has

concluding remarks.

3.1 A Random Effect Multinomial Logistic Regression

Model

Consider an r × c categorical table of a sample of ni individuals for the ith, i = 1, . . . , ℓ,

cluster. Also consider a set of individual (or unit) level covariates X and the set of cluster

level covariates Z. We string out the observations in a table to an array of S = rc cells.

Let Iijs = 1 if the jth ssu (or individual) falls in the sth cell within ith cluster and Iisj = 0

otherwise. Then,

I
˜
ij

ind∼ Multinomial(1, a
˜
ij), i = 1, . . . , ℓ, j = 1, . . . , ni, (3.1)

where

aijs =















e
β
˜
s
′x
˜
ij+γ

˜
′z
˜
i+δi

1+
∑S−1

s=1 e
β
˜
s
′x
˜
ij+γ

˜
′z
˜
i+δi

, s = 1, . . . , S − 1

1

1+
∑S−1

s=1 e
β
˜
s
′x
˜
ij+γ

˜
′z
˜
i+δi

, s = S,

and δi
iid∼ N(0, σ2), i = 1, . . . , ℓ, are the random effects. Here, β

˜
s is the p × 1 vector of

regression parameters, x
˜
ij the p× 1 vector of unit level covariates and similarly γ

˜
and z

˜
i are
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the q× 1 vectors of regression parameter and cluster level covariates respectively. Then, the

likelihood of an individual falling in cells 1, . . . , S is

P (I
˜
ij | β

˜
, γ
˜
, σ2) =

∏S−1
s=1 e

(

β
˜
s
′x
˜
ij+γ

˜
′z
˜
i+δi

)

Iisj

1 +
∑S−1

s=1 e

(

β
˜
s
′x
˜
ij+γ

˜
′z
˜
i+δi

)

Iisj

.

For computational convenience we take νi = γ
˜

′z
˜
i + δi so that νi | γ

˜
, σ2 ind∼ N(γ

˜

′z
˜
i, σ

2).

Then, the likelihood function becomes

P (I
˜
| β
˜
, γ
˜
, σ2) ∝

ℓ
∏

i=1

ni
∏

j=1







∏S−1
s=1 e

(

β
˜
s
′x
˜
ij+νi

)

Iijs

1 +
∑S−1

s=1 e
β
˜
s
′x
˜
ij+νi







, (3.2)

where I
˜
= {I

˜
ij , i = 1, . . . , ℓ, j = 1, . . . , ni}.

A priori, we take

π(β
˜
) ∝ 1, γ

˜
| σ2 ∼ Nq(γ

˜
0, σ

2∆0) and σ2 ∼ IGamma(a/2, b/2), (3.3)

where we choose a = b = .001. we will also study the sensitivity of these specification. We

take γ
˜
0 = γ̂

˜
and ∆0 = κ∆̂ = κ(z′z)−1, where γ̂

˜
and ∆̂ are the maximum likelihood estimators

of γ
˜
and ∆, the covariance matrix of γ

˜
, and z is a ℓ×q design matrix of the cluster covariates.

Note here that we can use any value for γ
˜
0 not only γ̂

˜
. We take κ large enough (κ = 100) so

that the prior is proper diffuse.

3.1.1 The Joint Posterior Density

Combining the likelihood in (3.2) and the priors in (3.3) via Bayes’ theorem, given the sample

data I
˜
, we get the joint posterior density of β

˜
, ν
˜
, γ
˜
, σ2

π(β
˜
, ν
˜
, γ
˜
, σ2 | I

˜
) ∝

ℓ
∏

i=1

ni
∏

j=1







∏S−1
s=1 e

(

β
˜
s
′x
˜
ij+νi

)

Iijs

1 +
∑S−1

s=1 e
β
˜
s
′x
˜
ij+νi







×
ℓ
∏

i=1

{

(

1/σ2
)1/2

e−
1

2σ2

(

νi−γ
˜

′z
˜
i

)2}

× 1

(σ2)q/2|∆0|1/2
e−

1
2σ2

(

γ
˜
−γ
˜
0

)

′

∆−1
0

(

γ
˜
−γ
˜
0

)

×
(

1/σ2
)a/2−1

e−b/2σ2

=
ℓ
∏

i=1

ni
∏

j=1

{

∏S−1
s=1

∏p
k=0(e

βsk)xijkIijs(eνi)
∑S−1

s=1 Iijs

1 + eνi
∑S−1

s=1

∏p
k=0(e

βsk)xijk

}

×
ℓ
∏

i=1

{

(

1/σ2
)1/2

e−
1

2σ2

(

νi−γ
˜

′z
˜
i

)2}

× 1

(σ2)q/2|∆0|1/2
e−

1
2σ2

(

γ
˜
−γ
˜
0

)

′

∆−1
0

(

γ
˜
−γ
˜
0

)

×
(

1/σ2
)a/2−1

e−b/2σ2

. (3.4)
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We transform each βsk from (−∞,∞) to (0, 1). The transformation is useful because it

reduces the complexity of the computation and the fact that 0 < φsk < 1, it helps to do the

proof of propriety.

eβsk = φsk/(1− φsk), s = 1, . . . , S − 1, k = 0, . . . , p, (3.5)

φsk are now in (0, 1) and the Jacobian of the transformation is

|J | =∏S−1
s=1

∏p
κ=0 1/{φsk(1− φsk)}. Then,

π(φ
˜
, ν
˜
, γ
˜
, σ2 | I

˜
) ∝

ℓ
∏

i=1







∏S−1
s=1

∏p
k=0

(

φsk

1−φsk

)

∑ni
j=1 xijkIijs(eνi)

∑ni
j=1

∑S−1
s=1 Iijs

∏ni

j=1

[

1 + eνi
∑S−1

s=1

∏p
k=0(

φsk

1−φsk
)xijk

]







×
ℓ
∏

i=1

{

(

1/σ2
)1/2

e−
1

2σ2 (νi−γ
˜

′z
˜
i)

2
}

× 1

(σ2)q/2|∆0|1/2
e−

1
2σ2 (γ

˜
−γ
˜
0)

′∆−1
0 (γ

˜
−γ
˜
0)

×
(

1/σ2
)a/2−1

e−b/2σ2 ×
{

S−1
∏

s=1

p
∏

κ=0

1

φsk(1− φsk)

}

. (3.6)

Letting ai =
∑ni

j=1

∑S−1
s=1 Iijs, the posterior density in (3.6) becomes

π(φ
˜
, ν
˜
, γ
˜
, σ2 | I

˜
) ∝

ℓ
∏

i=1

{
∏S−1

s=1

∏p
k=0(

φsk

1−φsk
)
∑ni

j=1 xijkIijseνiai
∏ni

j=1

[

1 + eνi
∑S−1

s=1

∏p
k=0(

φsk

1−φsk
)xijk

]

}

×
(

1/σ2
)(ℓ+a+q)/2−1

× e−
1

2σ2

[

b+
∑ℓ

i=1(νi−γ
˜

′z
˜
i)

2+(γ
˜
−γ
˜
0)

′∆−1
0 (γ

˜
−γ
˜
0)
]

×
{

S−1
∏

s=1

p
∏

κ=0

1

φsk(1− φsk)

}

. (3.7)

We would like to simplify the term
∑ℓ

i=1(νi − γ
˜

′z
˜
i)
2 + (γ

˜
− γ

˜
0)

′∆−1
0 (γ

˜
− γ

˜
0) in (3.7)

further. Maximizing the likelihood function of νi
ind∼ N(γ

˜

′z
˜
i, σ

2) with respect to γ
˜
, we get

γ̂
˜
= (
∑ℓ

i=1 z˜
iz
˜
i
′)−1(

∑l
i=1 νiz˜

i) = (z′z)−1(z′ν
˜
), the maximum likelihood estimator of γ

˜
. We

can write

ℓ
∑

i=1

(νi − γ
˜

′z
˜
i)
2 + (γ

˜
− γ

˜
0)

′∆−1
0 (γ

˜
− γ

˜
0) =

ℓ
∑

i=1

(νi − γ̂
˜

′z
˜
i + γ̂

˜

′z
˜
i − γ

˜

′z
˜
i)
2 + (γ

˜
− γ

˜
0)

′∆−1
0 (γ

˜
− γ

˜
0)

=
ℓ
∑

i=1

(νi − γ̂
˜

′z
˜
i)
2 + (γ̂

˜
− γ

˜
)′∆̂−1(γ̂

˜
− γ

˜
) + (γ

˜
− γ

˜
0)

′∆−1
0 (γ

˜
− γ

˜
0), (3.8)

38



where ∆̂ = (z′z)−1. We have simplified (3.8) further in Appendix D to get

ℓ
∑

i=1

(νi − γ
˜

′z
˜
i)
2 + (γ

˜
− γ

˜
0)

′∆−1
0 (γ

˜
− γ

˜
0)

= γ
˜
0
′ (z

′z)

κ+ 1
γ
˜
0 + ν

˜
′[I − κ

κ+ 1
z(z′z)−1z′]ν

˜
− 2

κ+ 1
γ
˜
0
′z′ν
˜

+(γ
˜
−
κγ̂
˜
+ γ

˜
0

κ+ 1
)′
(κ+ 1

κ

)

∆̂−1(γ
˜
−
κγ̂
˜
+ γ

˜
0

κ+ 1
).

Thus, we can write the distribution (3.7) as

π(φ
˜
, ν
˜
, γ
˜
, σ2 | I

˜
) ∝

ℓ
∏

i=1

{
∏S−1

s=1

∏p
k=0(

φsk

1−φsk
)
∑ni

j=1 xijkIijseνiai
∏ni

j=1

[

1 + eνi
∑S−1

s=1

∏p
k=0(

φsk

1−φsk
)xijk

]

}

×
(

1/σ2
)(ℓ+a+q)/2−1

× e
− 1

2σ2

{

b+γ
˜
0
′ (z

′z)
κ+1

γ
˜
0+ν
˜

′[I− κ
κ+1

z(z′z)−1z′]ν
˜

− 2
κ+1
γ
˜
0
′z′ν
˜
+
(

γ
˜
−

κγ̂
˜

+γ
˜
0

κ+1

)

′
(

κ+1
κ

)

∆̂−1
(

γ
˜
−

κγ̂
˜

+γ
˜
0

κ+1

)

}

×
S−1
∏

s=1

p
∏

κ=0

1

φsk(1− φsk)
. (3.9)

Letting

g(φ) =
S−1
∏

s=1

p
∏

κ=0

{

(

φsk

1− φsk

)

∑ℓ
i=1

∑ni
j=1 xijkIijs

× 1

φsk(1− φsk)

}

, (3.10)

and

h(νi) =
eνiai

∏ni

j=1

{

1 + eνi
∑S−1

s=1

∏p
k=0(

φsk

1−φsk
)xijk

} , (3.11)

we can write the distribution in (3.9) as

π(φ
˜
, ν
˜
, γ
˜
, σ2 | I

˜
) ∝ g(φ

˜
){

ℓ
∏

i=1

h(νi)}(1/σ2)(ℓ+a+q)/2−1

× e
− 1

2σ2

{

b+γ
˜
0
′ (z

′z)
κ+1

γ
˜
0+ν
˜

′[I− κ
κ+1

z(z′z)−1z′]ν
˜

− 2
κ+1
γ
˜
0
′z′ν
˜
+
(

γ
˜
−

κγ̂
˜

+γ
˜
0

κ+1

)

′
(

κ+1
κ

)

∆̂−1
(

γ
˜
−

κγ̂
˜

+γ
˜
0

κ+1

)

}

. (3.12)

We next develop some theoretical properties about the joint posterior density in (3.12).

Lemma 3.1.1. Each univariate function h(νi) in (3.11) is log-concave.

Proof: Let

cij =
S−1
∑

s=1

p
∏

k=0

( φsk

1− φsk

)xijk . (3.13)

39



Then, we have from (3.11)

h(νi) =
eaiνi

∏ni

j=1{1 + eνicij}
. (3.14)

Taking the logarithm of both sides

∆ = log[h(νi)] = aiνi −
ni
∑

j=1

log(1 + eνicij).

Then, the first and second order derivatives are

∆′ = ai −
ni
∑

j=1

eνicij
1 + eνicij

∆′′ = −
ni
∑

j=1

eνicij
(1 + eνicij)2

.

Because eνi > 0 and cij > 0, ∆′′ < 0. Therefore, h(νi) is log-concave. This allows us to use

adaptive rejection sampling (ARS) to draw νi from its conditional posterior density.

Now, we are going to show that joint posterior density in (3.12) is proper under very

mild conditions. We consider the case when κ → ∞ under which the prior of γ
˜
becomes

improper, the worst case. Then, the joint posterior density is

π(φ
˜
, ν
˜
, γ
˜
, σ2 | I

˜
) ∝ g(φ

˜
)

{

ℓ
∏

i=1

h(νi)

}

(1/σ2)(ℓ+a+q)/2−1

× e−
1

2σ2{b+ν
˜

′[I−z(z′z)−1z′]ν
˜
+(γ
˜
−γ̂
˜
)′∆̂−1(γ

˜
−γ̂
˜
)}. (3.15)

Theorem 3.1.1. For 0 < φsk < 1, the joint posterior density in (3.15) is proper.

Proof: Integrating out γ
˜
(which has multivariate normal) from (3.15) we get

π(φ
˜
, ν
˜
, σ2 | I

˜
) ∝ g(φ

˜
)

{

ℓ
∏

i=1

h(νi)

}

(1/σ2)(ℓ+a)/2−1

× e−
1

2σ2

[

b+ν
˜

′[I−z(z′z)−1z′]ν
˜

]

. (3.16)

Let P = I − z(z′z)−1z′ be a projection matrix. It is not invertible because rank(P ) =

ℓ − q. By Seber (1984), for any projection matrix of rank r we can write P =
∑r

i=1 ti
˜

′ti
˜
,

where t1
˜
, . . . , tr

˜
form an orthonormal set. Thus, we can write ν

˜
′[I − z(z′z)−1z′]ν

˜
= ν

˜
′Pν

˜
=
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∑ℓ−q
i=1(ti

˜

′ν
˜
)′ti
˜

′ν
˜
. Now, let us make a one to one transformation as























y1
...

yℓ−q

yℓ−q+1

...

yℓ























=























t
˜
′
1

...

t
˜
′
ℓ−q

0 · · · 0 1 · · · 0
... · · ·

...
...
. . .

...

0 · · · 0 0 · · · 1













































ν1
...

νℓ−q

νℓ−q+1

...

νℓ























so that y
˜
= Aν

˜
. Here, we keep νℓ−q+1, · · · , νℓ as untransformed. Since A is invertible, we have

ν
˜
= A−1y

˜
. Let us denote y

˜

(1)′ = [y1, · · · , yℓ−q], y
˜

(2)′ = [yℓ−q+1, · · · , yℓ], ν
˜
(1)′ = [ν1, · · · , νℓ−q],

and ν
˜
(2)′ = [νℓ−q+1, · · · , νℓ], then, ν

˜
′[I − z(z′z)−1z′]ν

˜
=
∑ℓ−q

j=1 y
2
j = y

˜

(1)′y
˜

(1). Note here that

y
˜

(2) and ν
˜
(2) are the same vector. The transformation is one to one, so the Jacobian matrix

is not a function of any of the random variables and contains only constant elements. With

this transformation, the joint posterior in (3.16) becomes

π(φ
˜
, y
˜

(1), ν
˜
(2), σ2 | I

˜
) ∝ g(φ

˜
)

{

ℓ−q
∏

i=1

h(y∗i)

}{

ℓ
∏

i=ℓ−q+1

h(νi)

}

(1/σ2)(ℓ+a)/2−1

× e−
1

2σ2

[

b+y
˜

(1)′y
˜

(1)
]

,

where y∗i = (A−1y
˜
)i. Here, h(y

∗
i) is bounded by its maximum Bi(φ

˜
) due to the log-concavity

of h(νi) as proved in Lemma 3.1.1. This means that
∏ℓ−q

i=1 h(y
∗
i) is bounded by B(φ

˜
) =

max{Bi(φ), i = 1, · · · , ℓ− q}. Therefore,

π(φ
˜
, y
˜

(1), ν
˜
(2), σ2 | I

˜
) ∝ g(φ

˜
)

{

ℓ−q
∏

i=1

h(y∗i)

}{

ℓ
∏

i=ℓ−q+1

h(νi)

}

(1/σ2)(ℓ+a)/2−1

× e−
1

2σ2

[

b+y
˜

(1)′y
˜

(1)
]

< g(φ
˜
)B(φ

˜
)

{

ℓ
∏

i=ℓ−q+1

h(νi)

}

(1/σ2)(ℓ+a)/2−1

× e−
1

2σ2

[

b+y
˜

(1)′y
˜

(1)
]

.

Next we show that
∫

φ
˜

∫

y
˜

(1)

∫

σ2

∫

ν
˜
(2) π(φ

˜
, y
˜

(1), σ2, ν
˜
(2) | I

˜
)dν
˜
(2)dσ2dy

˜

(1)dφ
˜
is finite.
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Let us denote

∫

φ
˜

∫

y
˜

(1)

∫

σ2

∫

ν
˜
(2)

π(φ
˜
, y
˜

(1), σ2, ν
˜
(2) | I

˜
)dν
˜
(2)dσ2dy

˜

(1)dφ
˜
∝ F

=

∫

φ
˜

∫

y
˜

(1)

∫

σ2

∫

ν
˜
(2)

g(φ
˜
)B(φ

˜
)

{

ℓ
∏

i=ℓ−q+1

h(νi)

}

(1/σ2)(ℓ+a)/2−1

× e−
1

2σ2

[

b+y
˜

(1)′y
˜

(1)
]

dν
˜
(2)dσ2dy

˜

(1)dφ
˜
.

Note here that we do not want to bound
∏ℓ

i=ℓ−q+1 h(νi) otherwise the integration of the

function with respect to v
˜
(2) would be infinite. We want to show that F is finite. Here,

F =

∫

φ
˜

∫

y
˜

(1)

∫

σ2

g(φ
˜
)B(φ

˜
)(1/σ2)(ℓ+a)/2−1

× e−
1

2σ2

[

b+y
˜

(1)′y
˜

(1)
] ℓ
∏

i=ℓ−q+1

{∫ ∞

−∞

h(νi)dνi

}

dσ2dy
˜

(1)dφ
˜
. (3.17)

We have shown in Appendix (E) that
∫∞

−∞
h(νi)dνi, i = ℓ− q + 1, · · · , ℓ is finite. Let M(φ

˜
)

be the upper bound for
∏ℓ

i=ℓ−q+1{
∫∞

−∞
h(νi)dνi}.

Now, integrating out σ2 and noting that σ2 has the inverse gamma distribution, we get

F <

∫

φ
˜

∫

y
˜

(1)

g(φ
˜
)M(φ

˜
)B(φ

˜
)

{∫ ∞

0

(1/σ2)(ℓ+a)/2−1e−
1

2σ2

[

b+y
˜

(1)′y
˜

(1)
]

dσ2

}

dy
˜

(1)dφ
˜

=

∫

φ
˜

∫

y
˜

(1)

g(φ
˜
)M(φ

˜
)B(φ

˜
)

Γ(ℓ+ a)/2
[

b+ y
˜

(1)′y
˜

(1)
](ℓ+a)/2

dy
˜

(1)dφ
˜

=

∫

φ
˜

∫

y
˜

(1)

g(φ
˜
)M(φ

˜
)B(φ

˜
)

Γ(ℓ+ a)/2
[

1 +
y
˜

(1)′y
˜

(1)

b

](ℓ+a)/2
dy
˜

(1)dφ
˜
.

Here, the density of y
˜

(1) (with dimension of y
˜

(1), t = ℓ − q ) is a multivariate t-distribution

with degree of freedom, ϑ = q + a, µ
˜
= 0

˜
and Σ = (b/ν)I. Integrating out y

˜

(1), we get

F <

∫

φ
˜

g(φ
˜
)M(φ

˜
)B(φ

˜
)dφ
˜
.

Finally, because g(φ
˜
), M(φ

˜
), B(φ

˜
) are finite distinctly in ǫ ≤ φsk ≤ 1− ǫ, with small ǫ >

0, s = 1, · · · , S − 1, k = 0, · · · , p,
∫

φ
˜

g(φ
˜
)M(φ

˜
)B(φ

˜
)dφ
˜
is finite. The mild condition we used

is that 0 < φsk < 1.
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3.1.2 Computation

First, we fitted (3.12) using the Gibbs sampler but we found that γ
˜
has high autocorrelation.

So, we draw the samples using the composition rule as

π(φ
˜
, ν
˜
, γ
˜
, σ2 | I

˜
) = π(φ

˜
, ν
˜
, σ2 | I

˜
)π(γ

˜
| φ
˜
, ν
˜
, σ2, I

˜
).

Integrating out γ
˜
(which has multivariate normal) from (3.9), we get

π(φ
˜
, ν
˜
, σ2 | I

˜
) ∝

ℓ
∏

i=1

{
∏S−1

s=1

∏p
k=0(

φsk

1−φsk
)
∑ni

j=1 xijkIijseνiai
∏ni

j=1

[

1 + eνi
∑S−1

s=1

∏p
k=0(

φsk

1−φsk
)xijk

]

}

×
(

1/σ2
)(ℓ+a)/2−1 × e−

1
2σ2

{

b+γ
˜
0
′ (z

′z)
κ+1

γ
˜
0+ν
˜

′[I− κ
κ+1

z(z′z)−1z′]ν
˜
− 2

κ+1
γ
˜
0
′z′ν
˜

}

×
{

S−1
∏

s=1

p
∏

κ=0

1

φsk(1− φsk)

}

. (3.18)

The joint posterior density in (3.18) is complex, we use Markov chain Monte Carlo meth-

ods to fit it. Specifically, we use the grid method and adaptive rejection sampling to sample

the parameters. First, we consider the conditional posterior distribution of φ
˜

π(φ
˜
| ν
˜
, σ2, I

˜
) ∝

∏S−1
s=1

∏p
k=0(

φsk

1−φsk
)
∑ℓ

i=1

∑ni
j=1 xijkIijse

∑ℓ
i=1 νiai

∏ℓ
i=1

∏ni

j=1

[

1 + eνi
∑S−1

s=1

∏p
k=0(

φsk

1−φsk
)xijk

]

×
{

S−1
∏

s=1

p
∏

κ=0

1

φsk(1− φsk)

}

. (3.19)

We can write the denominator in a slightly simplified form to make ease for sampling

ℓ
∏

i=1

ni
∏

j=1

[

1 + eνi
S−1
∑

s=1

p
∏

k=0

(
φsk

1− φsk

)xijk

]

=
ℓ
∏

i=1

ni
∏

j=1

[

1 + eνi
{

p
∏

k=0

(
φsk

1− φsk

)xijk +
S−1
∑

s′=1,s′ 6=s

p
∏

k=0

( φs′k

1− φs′k

)xijk
}]

=
ℓ
∏

i=1

ni
∏

j=1

[

1 + eνi
{( φsk

1− φsk

)xijk
p
∏

k′=0,k′ 6=k

(
φsk′

1− φsk′
)xijk′ +

S−1
∑

s′=1,s′ 6=s

p
∏

k=0

( φs′k

1− φs′k

)xijk
}]

.

We use an adaptive grid method (Ritter and Tanner, 1992) to draw a sample of each φsk

from its univariate distribution π(φsk | φ
˜
(sk), ν

˜
, σ2, I

˜
). We started by using 10 grids (i.e. we

have divided the range of φsk, (0, 1), into 10 intervals of equal widths) to form an approximate
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probability mass function of φsk, s = 1, . . . , S − 1, k = 0, . . . , p based on the evaluation of

π(φsk | φ(sk)

˜
ν
˜
, σ2, I

˜
) on a grid of point. Then, we determine an interval (a, b) of φsk of high

mass. Typically (a, b) is much narrower than (0, 1). We now take (a, b) as our new interval

and stratify the range into 10 grids to approximate the probability density function by a

probability mass function. Using this probability mass function, we draw φsk from (a, b). We

perform this for each φsk based on its conditional posterior densities.

Next, we consider the conditional posterior distribution of σ2

π(σ2 | φ
˜
, ν
˜
, I
˜
) ∝

(

1/σ2
)(ℓ+a)/2−1 × e−

1
2σ2

{

b+γ
˜
0
′ (z

′z)
κ+1

γ
˜
0+ν
˜

′[I− κ
κ+1

z(z′z)−1z′]ν
˜
− 2

κ+1
γ
˜
0
′z′ν
˜

}

.

Therefore,

σ2 | φ
˜
, ν
˜
, I
˜
∼ IGamma

{

(ℓ+ a)/2,

1

2

[

b+ γ
˜
0
′ (z

′z)

κ+ 1
γ
˜
0 + ν

˜
′
[

I − κ

κ+ 1
z(z′z)−1z′

]

ν
˜
− 2

κ+ 1
γ
˜
0
′z′ν
˜

]}

. (3.20)

We note that when κ→ ∞ (in which case the prior of γ
˜
is improper),

σ2 | φ
˜
, ν
˜
, I
˜
∼ IGamma

{

(ℓ+ a)/2,
1

2

(

b+ ν
˜
′[I − z(z′z)−1z′]ν

˜

)

}

,

and similarly when κ→ 0,

σ2 | φ
˜
, ν
˜
, I
˜
∼ IGamma

{

(ℓ+ a)/2,
1

2

[

b+ γ
˜
0
′(z′z)γ

˜
0 + ν

˜
′ν
˜
− 2γ

˜
0
′z′ν
˜

]

}

.

The conditional posterior distribution of ν
˜
is

π(ν
˜
| φ
˜
, σ2, I

˜
) ∝

ℓ
∏

i=1

{ eaiνi
∏ni

j=1

{

1 + eνi
∑S−1

s=1

∏p
k=0(

φsk

1−φsk
)xijk

}

}

× e−
1

2σ2

{

b+γ
˜
0
′ (z

′z)
κ+1

γ
˜
0+ν
˜

′[I− κ
κ+1

z(z′z)−1z′]ν
˜
− 2

κ+1
γ
˜
0
′z′ν
˜

}

. (3.21)

Again we note that when κ→ ∞,

π(ν
˜
| φ
˜
, σ2, I

˜
) ∝

ℓ
∏

i=1

{ eaiνi
∏ni

j=1

{

1 + eνi
∑S−1

s=1

∏p
k=0(

φsk

1−φsk
)xijk

}

}

× e−
1

2σ2

{

b+ν
˜

′[I−z(z′z)−1z′]ν
˜

}

,
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and when κ→ 0,

π(ν
˜
| φ
˜
, σ2, I

˜
) ∝

ℓ
∏

i=1

{ eaiνi
∏ni

j=1

{

1 + eνi
∑S−1

s=1

∏p
k=0(

φsk

1−φsk
)xijk

}

}

× e−
1

2σ2

{

b+γ
˜
0
′z′zγ

˜
0+ν
˜

′ν
˜
−2γ
˜
0
′z′ν
˜

}

.

We use adaptive rejection sampling (ARS, Gilks and Wild, 1992) to draw νi, i = 1, . . . , ℓ

from their conditional posterior densities. To apply the ARS, we need to show that the

conditional posterior density of each νi in (3.21) is log-concave.

Let P =
[

I − κ
κ+1

z(z′z)−1z′
]

and t
˜
= 1

κ+1
zγ0, we have from (3.21)

π(ν
˜
| φ
˜
, σ2, I

˜
) = e−

1
2σ2

{

b+ν
˜
Pν
˜
−2t

˜
′ν
˜

}

×
ℓ
∏

i=1

h(νi)

∝ e−
1

2σ2

{

∑ℓ
i=1

∑ℓ
i′=1 νiνi′pii′−2

∑ℓ
i=1 tiνi

}

×
ℓ
∏

i=1

h(νi),

where h(νi) =
eaiνi

∏ni
j=1{1+eνicij}

is defined in (3.14) and cij =
∑S−1

s=1

∏p
k=0

(

φsk

1−φsk

)xijk is defined

in (3.13). Noting that P is symmetric, the function for fixed i is

π(νi | φ
˜
, σ2, I

˜
) ∝ e−

1
2σ2

{

(2νi
∑ℓ

i′=1 ν
′

ipii′−ν2i pii)−2tiνi

}

× h(νi). (3.22)

Lemma 3.1.2. π(νi | φ
˜
, σ2, I

˜
) in (3.22) is log-concave.

Proof: Taking the logarithm of both sides of (3.22), we get

∆ = log[g(νi)] = − 1

2σ2

{

(2νi

ℓ
∑

i′=1

νi′pii′ − ν2i pii)− 2tiνi

}

+ log{h(νi)}.

The first and second order derivatives are

∆′ = − 1

σ2

{

ℓ
∑

i′=1

νi′pii′ − ti

}

+ ai −
ni
∑

j=1

cije
νi

1 + cijeνi

∆′′ = − (1/σ2)pii −
ℓ
∑

j=1

cije
νi

(1 + cijeνi)2
.

Here, pii ≥ 0 because P is a non-negative matrix. Therefore, ∆′′ < 0, so π(νi | φ
˜
, σ2, I

˜
) is

log-concave.
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The sampling algorithm is executed by running the Gibbs sampler 5500 times, every

time drawing a random deviate from (3.19), (3.20) and (3.21). We use a “burn in” of 500

iterates and take every fifth iterate thereafter from the remaining 5000 to make the auto-

correlations among the iterates negligible. This provides a sample of M = 1000 from the

posterior densities for the estimation. Finally, after drawing samples of φ
˜
, σ2 and ν

˜
, we draw

γ
˜
from its conditional posterior density given the other parameters. The conditional posterior

distribution for γ
˜
is

γ
˜
| φ
˜
, ν
˜
, σ2, I

˜
∼ Nq

{κγ̂
˜
+ γ

˜
0

κ+ 1
,

κ

κ+ 1
σ2∆̂

}

.

Again, we note that when κ→ ∞ (in which case the prior of γ
˜
is improper), γ

˜
| φ
˜
, ν
˜
, σ2, I

˜
∼

Nq

{

γ̂
˜
, σ2∆̂

}

and similarly as κ→ 0, γ
˜
| φ
˜
, ν
˜
, σ2, I

˜
→ γ

˜
0.

3.1.3 Assessing the Model Fit

Next, we need to check the fit of the model to the observed data. If the model fits well, then

replicated data generated under the model should look similar to the observed data (Gelman,

Carlin, Stern and Rubin 2004, Ch. 6). For this we would like to quantify the discrepancies

between data and model, and assess whether they could have arisen by chance, under the

model’s own assumption. In order to evaluate the fit of the model, we draw simulated values

from the posterior predictive distribution of replicated data and compare these samples to

the observed data. Any systematic difference between the simulations and the data indicate

potential failings of the model (Gelman, Carlin, Stern and Rubin 2004, Ch. 6). Lack of fit of

the data with respect to the posterior predictive distribution can be measured by the tail-

area probability, or p-values, of the test quantity, and computed using posterior simulations

of (θ, yrep).

We use a summary measure of fit, in particular the χ2 discrepancy quantity, written in

terms of univariate responses yi as

χ2 discrepancy: T (y, θ) =
∑

i

(yi − E(yi | θ))2
var(yi | θ)

,

where the summation is over the sample observations. The same summary measure can also
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be calculated for posterior predictive distribution. Then, the posterior predictive p-value is

PPP = Pr(T (yrep, θ) ≥ T (y, θ) | y).

In the context of our problem, we compute the χ2 discrepancy quantity as

T (n
˜
, a
˜
) =

S
∑

s=1

(ns − E(ns | a
˜
))2

var(ns | a
˜
)

, (3.23)

where ns =
∑ℓ

i=1

∑ni

j=1 Iijs, E(ns | a
˜
) =

∑ℓ
i=1

∑ni

j=1E(Iijs) =
∑ℓ

i=1

∑ni

j=1 aijs and var(ns |

a
˜
) =

∑ℓ
i=1

∑ni

j=1 aijs(1−aijs). Note here that we use the total table to compute T (n
˜
, a
˜
) instead

of using the cluster tables under which the corresponding quantity would be computed as

T (n
˜
, a
˜
) =

∑S
s=1

∑ℓ
i=1

(nis−E(nis|a
˜
))2

var(nis|a
˜
)

. The reason for this is that we may have some cells with

zero counts in cluster tables which leads to the problem of instability. We calculate T (n
˜
, a
˜
)

for both observed and replicated data:

T (n
˜
(obs), a

˜
) =

S
∑

s=1

(n
(obs)
s −∑ℓ

i=1

∑ni

j=1 aijs)
2

∑ℓ
i=1

∑ni

j=1 aijs(1− aijs)
, (3.24)

and

T (n
˜
(rep), a

˜
) =

S
∑

s=1

(n
(rep)
s −∑ℓ

i=1

∑ni

j=1 aijs)
2

∑ℓ
i=1

∑ni

j=1 aijs(1− aijs)
. (3.25)

Replicate the data M = 1000 times and each time calculate T (n
˜
(rep), a

˜
). Then,

PPP = Pr{T (n
˜
(rep), a

˜
) ≥ T (n

˜
(obs), a

˜
) | n

˜
(obs)}

=
#[T (n

˜
(rep), a

˜
) ≥ T (n

˜
(obs), a

˜
) | n

˜
(obs)]

M
.

The p-value close to 0 or 1 indicates that the observed pattern would be unlikely to be seen

in replications of the data if the model were true with an extreme p-value, implying that

the model cannot be expected to capture this aspect of the data. In order to address this

problem of model failure, we need to improve the model in an appropriate way.

3.1.4 Surrogate Cluster Sample Without Covariates

We discuss how to obtain a surrogate sample without covariates. Upon fitting the cluster

model with covariates in (3.1) and (3.3), we estimate the cell probabilities (â
(h)
ijs , i. . . . , ℓ, j =
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1, . . . , ni, s = 1, . . . , S;h = 1, . . . ,M) for each of the cluster tables by using the multinomial

logistic regression. Let â
˜

(h)
i = (â

(h)
i1 , . . . , â

(h)
iS ), h = 1, . . . ,M denote the M estimates of the

probability for ith, i, . . . , ℓ, cluster table. Then, given these cell estimates of the cluster tables,

we draw n̂
˜
i
(h) as

n̂
˜
i
(h) ind∼ Multinomial{ni, â

˜

(h)
i }, h = 1, . . . ,M. (3.26)

Note that, the sample data thus obtained represents the surrogate of the original cluster

sample with covariates. The surrogate samples {n̂
˜

(h)
i , i = 1, . . . , ℓ} are now free of covariates.

3.2 Cluster Model Without Covariates

We use a hierarchical Bayesian model to convert M = 1000 cluster samples obtained in

Section 3.1.4 to equivalent simple random samples. For this, instead of using the methodology

developed in Chapter 2, we have developed a new methodology. We use the converted simple

random sample to compute Bayes factor to make an inference about independence. We first

describe the hierarchical Bayesian model and then show the computation.

3.2.1 Hierarchical Bayesian Model

For convenience, we drop the superscript h and use n
˜
i for n̂

˜
i for the sample obtained in

(3.26). Then, we assume

n
˜
i | a

˜
i
ind∼ Multinomial(ni, a

˜
i) i = 1, . . . , ℓ, (3.27)

where n
˜
i = (ni1, . . . , niS), ni =

∑S
s=1 nis and

ais =

{

πseνis

πS+
∑S−1

s=1 πseνis
, s = 1, . . . , S − 1

πs

πS+
∑S−1

s=1 πseνis
, s = S.

In (3.27) we have standard constraints {∑S
s=1 ais = 1, i = 1, . . . , ℓ,

∑S
s=1 πs = 1, ais >

0, πs > 0}. We want a test of independence based on the πs.

A priori we assume

νis
iid∼ N(0, σ2), i = 1, . . . , ℓ, s = 1, . . . , S − 1; (σ2)−1 ∼ Gamma(c, d), (3.28)
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where we choose c = d = .001. The likelihood function of the data is

p(n
˜
| ν
˜
, π
˜
) =

ℓ
∏

i=1

{

ni!
S
∏

s=1

(ais)
nis

nis!

}

∝
ℓ
∏

i=1

{

S−1
∏

s=1

[ πse
νis

πS +
∑S−1

s=1 πse
νis

]nis
[ πS

πS +
∑S−1

s=1 πse
νis

]niS

}

=
ℓ
∏

i=1

{

∏S−1
s=1

(

πse
νis
)nis
(

1−
∑S−1

s=1 πs
)niS

[

πS +
∑S−1

s=1 πse
νis
]ni·

}

. (3.29)

Combining the likelihood function in (3.29) with the prior densities in (3.28) via Bayes’

theorem, the joint posterior density of π
˜
, ν
˜
, and σ2 given the surrogate cluster samples n

˜
is

π(π
˜
, ν
˜
, σ2 | n

˜
) ∝

ℓ
∏

i=1

{

∏S−1
s=1

(

πse
νis
)nis
(

1−
∑S−1

s=1 πs
)niS

[

πS +
∑S−1

s=1 πse
νis
]ni·

}

×
ℓ
∏

i=1

S−1
∏

s=1

{

(1/σ2)1/2e−
1

2σ2 ν
2
is

}

× (1/σ2)c−1e−d(1/σ2). (3.30)

3.2.2 Computation

The joint posterior density in (3.30) is complex, we use Markov chain Monte Carlo methods

to fit it. Specifically, we use the grid method and the Metropolis-Hastings sampler to sample

the parameters. First, we consider the conditional posterior distribution of π
˜

π(π
˜
| ν
˜
, σ2, n

˜
) ∝

ℓ
∏

i=1

{

∏S−1
s=1

(

πse
νis
)nis
(

1−∑S−1
s=1 πs

)niS

[

πS +
∑S−1

s=1 πse
νis
]ni·

}

∝
(
∏S−1

s=1 π
n·s
s

)(

1−∑S−1
s=1 πs

)n·S

∏ℓ
i=1

[

πS +
∑S−1

s=1 πse
νis
]ni·

,

where
∑S

s πs = 1, πs ≥ 0, s = 1, . . . , S. Let π
˜
(s) denote the vector of all components except

πs, then, we have

π(πs | π
˜
(s), ν

˜
, σ2, n

˜
) ∝

πn·s
s

(

1− πs −
∑S−1

s′=1,s′ 6=s πs′
)n·S

∏ℓ
i=1

[

πS + πseνis +
∑S−1

s′=1,s′ 6=s πs′e
νis′
]ni·

, (3.31)

0 ≤ πs ≤ 1 −∑S−1
s′=1,s′ 6=s πs′ . We use an adaptive grid method to draw a sample of πs from

its univariate distribution π(πs | π
˜
(s), ν

˜
, σ2, n

˜
). We started by using 10 grids (i.e. we have

divided the range of πs, (0, 1 −∑S−1
s′=1,s′ 6=s πs′), into 10 intervals of equal widths) to form

an approximate probability mass function of πs, s = 1, . . . , S − 1 based on the evaluation
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of π(πs | π
˜
(s), ν

˜
, σ2, n

˜
) on a grid of points. Then, we determine an interval (a, b) of πs of

high mass. Typically (a, b) is much narrower than (0, 1). We now take (a, b) as our new

interval and stratify the range into 10 grids to approximate the probability density function

by a probability mass function. Using this probability mass function, we draw πs from [a, b].

Finally πS is obtained from its conditional posterior density by taking πS = 1−∑S−1
s′=1,s′ 6=s πs′ .

The conditional posterior density of ν
˜
is

π(ν
˜
| π
˜
, σ2, n

˜
) ∝

ℓ
∏

i=1

{

∏S−1
s=1

(

eνis
)nis

[

πS +
∑S−1

s=1 πse
νis
]ni·

}

×
ℓ
∏

i=1

S−1
∏

s=1

{

e−
1

2σ2 ν
2
is
}

=
ℓ
∏

i=1

{

∏S−1
s=1 e

(nisνis−
1

2σ2 ν
2
is)

[

πS +
∑S−1

s=1 πse
νis
]ni·

}

. (3.32)

We use Metropolis-Hastings sampler to sample ν
˜
. For each i, we have

π(ν
˜
i | π

˜
, σ2, n

˜
) ∝

∏S−1
s=1 e

(nisνis−
1

2σ2 ν
2
is)

[

πS +
∑S−1

s=1 πse
νis
]ni·

. (3.33)

The function of ν
˜
i in (3.33) is unimodal, so using the mode Hessian approximation, we can

approximate the density in (3.32) as

ν
˜
i | γ2, n

˜
∼ Np(ν̂

˜
i, γ

2Σ), (3.34)

where p = S − 1. We obtain ν̂
˜
i and Σ by optimizing the function of ν

˜
i in (3.33) using the

Nelder-Mead algorithm. We take

η

γ2
∼ χ2

η. (3.35)

We consider η as the tuning constant. Now combining (3.34) and (3.35) we get

π(ν
˜
i, γ

2 | n
˜
) ∝

(

1/γ2
)p/2

e
− 1

2γ2
(ν
˜
i−ν̂

˜
i)

′Σ−1(ν
˜
i−ν̂

˜
i) ×

(

η/γ2
)η/2−1

e−
1
2
(η/γ2)

∝
(

1/γ2
)(η+p)/2−1

e
− 1

2γ2

[

(ν
˜
i−ν̂

˜
i)

′Σ−1(ν
˜
i−ν̂

˜
i)+η
]

. (3.36)

Integrating out γ2 (which has an inverse gamma distribution) from (3.36), we get

π(ν
˜
i | n

˜
) ∝ 1

[

1 +
(ν
˜
i−ν̂

˜
i)′Σ−1(ν

˜
i−ν̂

˜
i)

η

](η+p)/2

50



which is a multivariate t-distribution. Therefore,

ν
˜
i | n

˜
∼ t(η+p)/2(ν̂

˜
i,Σ). (3.37)

We consider this as our proposal density for ν
˜
i to use Metropolis-Hastings algorithm.

Finally, the conditional posterior density of σ2 is

π(σ2 | π
˜
, ν
˜
, n
˜
) ∝

ℓ
∏

i=1

S−1
∏

s=1

{

(1/σ2)1/2e−
1

2σ2 ν
2
is

}

× (1/σ2)c−1e−d(1/σ2)

= (1/σ2)[{ℓ(S−1)+2c/2}]−1e−
1

2σ2 {
∑ℓ

i=1

∑S−1
s=1 ν2is+2d}.

Therefore,

σ2−1 ∼ Gamma

[

{ℓ(S − 1) + 2c}/2, 1

2

(

ℓ
∑

i=1

S−1
∑

s=1

ν2is + 2d

)]

. (3.38)

The sampling algorithm is executed by running the Gibbs sampler 101 times, each time

drawing a random deviate from (3.31), (3.37) and (3.38). Finally, we pick the last 101st

sample value. We iterate this procedure for all M = 1000 cluster tables obtained in (3.26)

after fitting the model in (3.2) and (3.3).

3.3 Bayes Factor

Having obtained samples of π
˜
from our cluster model defined by (3.27) and (3.28), we obtain

simple random sample as

n
˜
∼ Multinomial{n, π

˜
},

Here, n
˜
is surrogate data because the total table of cluster data without covariates has now

been converted, and a model for simple random sampling is appropriate. To compute a value

of the Bayes factor, we take

n
˜
∼ Multinomial(n, π

˜
), π

˜
∼ Dirichlet(v

˜
), (3.39)

where vs = .5, s = 1, . . . , S, for Jeffreys’ prior. In Section 1.3 we present the Bayes factor for

a test of independence in the total table which is given in (1.5) as

BF = pas(n
˜
)/pnas(n

˜
),
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where pnas(n
˜
) and pas(n

˜
) are, respectively, the marginal likelihoods under the models with

no association (nas) and association (as). We repeat this for allM = 1000 tables and compute

the Bayes factor each time, yielding 1000 Bayes factor values. Then, we can find the modal

Bayes factor value that will be used to make an inference about the test of independence.

We can also obtain other summaries of the Bayes factor.

3.4 Applications

In this section, we present an illustrative example using TIMSS 2007 fourth grade US data.

We described the data in Chapter 1 and the cluster tables are presented in Appendix F.

We consider two variables: mathematics test score (below average and above average) and

science test scores (below average and above average). We study the association between

mathematics test scores (MTS) and science test scores (STS) by community. This creates

six examples in all.

In Table 3.1, we present the total tables for the six examples (E1-E6 for MTS versus STS

in each of the six communities). The number (ℓ) of clusters changes considerably over the

communities, as does the number of observations. The intracluster correlations are small and

they do not vary too much over examples. The design effects (DEFs), obtained from Brier’s

model, are larger than one but not so big. The observed counts in the total tables are large

in all examples.

We have five student (unit) level covariates: (i) Sex (X1), (ii) How often do you speak

English at home? (X2), (iii) Index of self confidence learning math (X3), (iv) Index of self

confidence learning science (X4) and (v) Race (X5), and three school (cluster) level covariates:

(a) Approximately what percentage of students in school come from economically affluent

homes? (Z1), (b) Percent of free lunch-categorized (Z2) and (c) Total school enrollment in

all grades (Z3). We do not present the data on covariates.

From the preliminary analysis, we have found that the unit level covariates X1 and X5

are insignificant across most of the cells for all examples, and similarly the cluster level

covariates Z2 and Z3 are also insignificant over examples. However, the remaining covariates

(X2, X3, X4 and Z2), although they are not significant uniformly, we keep them to make the
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set of covariates common across all the examples. We fit the cluster model with covariates

by using the final set of covariates. The posterior estimates of regression coefficients together

with the 95% credible intervals are presented in Table 3.2 by examples.

In order to assess the fit of our model, we compute the chi-squared discrepancy measure

for the observed data and for the posterior simulations. We have obtained the posterior

predictive p-values (PPP) for examples E1-E6 to be 0.467, 0.470, 0.489, 0.466, 0.447 and 0.500

respectively which are also presented in Table 3.2. These values indicate that in all examples

the model fits the observed data very well. But note how they all cluster near 0.50, see Hjort,

Dahl and Steinbakk (2006).

In Table 3.3, we present summaries of the log-Bayes factor as developed in Section 3.3. The

modal log-Bayes factor values for examples E1-E6 are respectively 77.28, 76.39, 97.78, 90.61,

107.76 and 41.27. According to Kass and Raftery (1995), these values indicate very strong

evidence for dependence between mathematics and science scores.

We have also computed the posterior predictive p-value to assess the fit of the second

model, presented in Section 3.2. These are obtained by computing the chi-squared discrep-

ancy measure T (n
˜
, a
˜
) as in (3.23) where now ns =

∑ℓ
i=1 nis, E(ns | a

˜
) =

∑ℓ
i=1 ais, and

var(ns | a
˜
) =

∑ℓ
i=1 ais(1 − ais). We compute T (n

˜
, a
˜
) for both observed data and replicated

data. The posterior predictive p-values are 0.465, 0.469, 0.504, 0.448, 0.471 and 0.501 for ex-

amples E1-E6 respectively. These values show that the cluster model (3.27)-(3.28) is also

fitting well in all examples but again the PPP values cluster near 0.50.

We have studied the effect of the student level (X2, X3 and X4) and school level (Z1)

covariates in the test of independence. For this, we started fitting the cluster model with the

intercept only. Thereafter, we keep adding one student level covariate at a time and finally,

we add the school level covariate. In Table 3.5, we present the results of the fit of these

different models. We see that the model fit is good for each examples. The modal log-Bayes

factor value is always large, with or without covariates. This suggests that the effect of the

covariates is small and it is true for all examples. The reason for this may be that the two

categorical variables (mathematics and science scores) are highly correlated. Inclusion of the

school covariate changes the log-Bayes factors to some extent in all examples except E1 but
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they are still large. For example in E1, the modal log-Bayes factor with the covariates X2, X3

and X4 is 76.59, and with X2, X3, X4 and Z1 it is 77.28. Also in E2, the corresponding values

are 87.74 and 76.39. Note here that the model with only the intercept term is the cluster

model without covariates.

In order to make a meaningful comparison, we perform a test of independence with

covariates but no random effect. This is equivalent to the test of independence with covariates

under simple random sampling. The results of this study are presented in Table 3.6. The

log-Bayes factor values are still large, showing a strong association between mathematics

and science test scores. This result also shows that the effect of clustering is small. We also

studied the effect of covariates, and we see that these do not have a substantial impact on

the test.

We have computed the Bayes factor by treating the observed cluster sample as a simple

random sample. For this we simply combine the cluster tables, ignoring the covariates. We

have obtained the modal log-Bayes factor values for examples E1-E6 to be respectively

73.24, 90.28, 105.80, 96.40, 113.12 and 47.63. These are close to the corresponding values for

cluster model with covariates presented in Table 3.3 as one might expect.

Looking at these different cases, there appears to be a very strong dependence between

mathematics score and science score with and without covariates. To further understand and

investigate this result, we perform a simulation study below in Section 3.5.

We have also computed the posterior design effects for the individual cells. These design

effects are computed as the ratio of diagonal elements of the posterior variance of π
˜

=

(π11, π12, π21, π22) under the multinomial logistic regression random effect model specified by

(3.1) and (3.2) and the corresponding posterior variance under the model for simple random

sampling described below

Iij
˜

ind∼ Multinomial(1, a
˜
ij), i = 1, . . . , ℓ, j = 1, . . . , ni, (3.40)

where

aijs =















e
β
˜
s
′x
˜
ij+γ

˜
′z
˜
i

1+
∑S−1

s=1 e
β
˜
s
′x
˜
ij+γ

˜
′z
˜
i
, s = 1, . . . , S − 1

1

1+
∑S−1

s=1 e
β
˜
s
′x
˜
ij+γ

˜
′z
˜
i
, s = S,
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and a priori

π(β
˜
) ∝ k1 and π(γ

˜
) ∝ k2, (3.41)

where we take k1 = 1 and k2 = 1. After fitting the two models separately, we estimate

πs =
∑ℓ

i=1

∑ni

j=1 aijs, s = 1, . . . , S using each M = 1000 sample of βs
˜

and γ
˜
. Then, we

compute the covariance matrix of π
˜
. The design effects are presented in Table 3.4. The

design effects vary across the cell but not much larger than 1. The average design effects are

2.51, 1.66, 1.31, 1.34, 1.94 and 2.11 for E1-E6 respectively, some of which are very different

than the analogue in Table (3.1) obtained from Brier’s model. For example in E2 it is 4.25

using Brier’s model and is 1.66 under our model. This is expected because we did not use

covariates when fitting Brier’s model, whereas under our model, we have incorporated the

covariates.

In Table 3.7, we study the issue of sensitivity of the specification of the parameters a and

b used in the prior for σ2 in (3.3) to the Bayesian test of independence. We varied a and b to

be .001, .01, .1 and 1.0. The evidence against independence does not change markedly. This

is true in all six examples.

3.5 Simulation Study

We have performed a simulation study to help understand the tests further. We consider

three factors: dependence between the two categorical variables (weak, medium, strong),

number of clusters (low, medium) and intracluster correlation (very small, small, moderate).

Corresponding to the four cells (2 × 2 categorical table), let ψs = 1, s = 2, 3 the (off-

diagonal cells) and ψs = ind, s = 1, 4 (diagonal cells), where ‘ind’ is to be specified. The cell

probabilities are ψs/
∑S

s=1 ψs, s = 1, . . . , S. When the ψs are roughly the same (ind=1), there

will be independence and when the diagonal ψs are larger than 1, there will be dependence

(ind=2). For a 2 × 2 table with large cell counts, if the diagonal probabilities are twice

the off diagonals, there will be strong dependence (ind=2). With an intracluster correlation

of ρ, we set αs = {(1 − ρ)/ρ}ψs/
∑S

s=1 ψs, s = 1, . . . , S. For i = 1, . . . , ℓ, we generate

π
˜
i
iid∼ Dirichlet(α

˜
) to get the cell probabilities for the cluster tables without covariates. We
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get the corresponding probabilities for the cluster tables with covariates as

π̃ijs =











πise
β
˜

′

sxij
˜

+γ
˜

′z
˜
i

πiS+
∑S−1

s=1 πise
β
˜

′
sxij

˜

+γ
˜

′z
˜
i
, s = 1, . . . , S − 1

πis

πiS+
∑S−1

s=1 πise
β
˜

′
sxij

˜

+γ
˜

′z
˜
i
, s = S.

Note here that we use the student level and school level covariates from the observed data

but generate the new data. We divide the total number of observations into the clusters

with sizes, ni, i = 1, . . . , ℓ, based on a multinomial distribution with equal cell probabilities.

Finally, the cluster tables are generated independently by drawing an indicator I
˜
ij from

multinomial distributions with cell probabilities π̃
˜
ij, so that total count is ni. In order to

construct an example we choose the covariates X3 and Z2 from example E2 because these are

the most significant covariates. Accordingly we use the cluster size ℓ = 27 (with sample size

837) that corresponds to E2. We choose ind = 1.0, 1.2, 1.4, ρ = .01, .10, .30 and ℓ = 27, 54.

In order to obtain the covariates for ℓ = 54 cluster, we simply stacked the covariates from

E2 twice. The sample size for ℓ = 54 clusters would be 1674.

Thus, there are eighteen (3× 3× 2) design points, and 100 cluster samples are generated

at each design point. We perform our computations exactly as for TIMSS 2007 fourth grade

US data and obtain the Bayes factors from our model. We fit (i) a model with covariates

(MWC) and (ii) a model without covariates (MWOC) for the same data. We ‘average’ various

quantities over the 100 replications at each design point. For example, in Table 3.8 the mode

is the average of the 100 modes.

In Table 3.8 and Table 3.9, we present numerical summaries from the simulation study.

We see that mostly, the log-Bayes factor values increase as ρ increases. This is because usually

high intracluster correlation dampens the effects. Comparing the corresponding modal values

for MWC and MWOC, there are some notable differences as marked with “†” in the tables.

For example, when ind=1.0, ρ = .30 and ℓ = 27 the modes of the log-Bayes factors are

−0.22 and 3.53 respectively for MWC and MWOC. These two values provides different

inferences about the test of independence. According to Kass and Raftery (1995), the first

one is the evidence for independence and the second one is the ‘strong’ evidence against the

independence. Similarly, with (ind = 1.2, ρ = .10, ℓ = 27), the log-factor values are 0.20 and

−0.62. We also see these kinds of differences for (ind = 1.2, ρ = .30, ℓ = 27), (ind = 1.4, ρ =
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.01, ℓ = 27), (ind = 1.2, ρ = .01, ℓ = 54) and (ind = 1.2, ρ = .10, ℓ = 54). The interquartile

ranges of the log-Bayes factor gets narrower as the dependence structure increases (i.e., as

ind increases). Also as the structure gets more dependence, the log-Bayes factor increases

showing that there are no differences in an inference for the test of independence between

two models, as we found in real data.

In Figure 3.1, we plot the empirical distributions of the log-Bayes factors when fitting the

model with covariates for each of the design points. Of the three plots, the first corresponds

to ind=1.0 and has six curves corresponding to six design points (ρ = .01, ℓ = 27), (ρ =

.10, ℓ = 27), (ρ = .30, ℓ = 27), (ρ = .01, ℓ = 54), (ρ = .10, ℓ = 54), (ρ = .30, ℓ = 54).

Similarly, the other two plots correspond to ind=1.2 and ind=1.4. Comparing these plots we

see that distribution of the log-Bayes factor has least variation when ind=1.0 (independent),

and has largest with ind=1.4 (moderately dependent). We have also obtained the these plots

when fitting the model without covariates. They appear similar to the one with covariates.

3.6 Power Function

We calculate the ‘power’ of our statistical test for the cluster model with covariates. In

non-Bayesian statistics, the power of a statistical test is the probability that the test will

reject the null hypothesis when the null hypothesis is false. To describe departures from the

null hypothesis of independence, we consider a mixture distribution under the alternative

hypothesis.

We assume that the distribution under the alternative hypothesis is multinomial with

cell probabilities π̃ijku = wπijku + (1 − w)πk·π·u, i = 1, . . . , ℓ, j = 1, . . . , ni, k = 1, 2, u =

1, 2; πk· =
∑ℓ

i=1

∑ni

j=1

∑2
u=1 πijku, π·u =

∑ℓ
i=1

∑ni

j=1

∑2
k=1 πijku. Note here that πijku is

arbitrary, the more important is w. So, for πijku, we use the estimate of aijku, which are

obtained after fitting the cluster model with covariates to the observed data. Here, w = 0

corresponds to the null hypothesis distribution and w = 1 corresponds to the alternative

hypothesis of dependence. Therefore, values of w close to zero give local alternatives, and

larger values of w give larger departure from the null hypothesis.

Letting bfα denote the critical value of an upper-tailed test of size α, the power function
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is given by

Pr{BF > bfα | Iij
˜

∼ Multinomial(1, π̃
˜
ij), i = 1, . . . , ℓ, j = 1, . . . , ni},

where
∑ℓ

i=1 ni = n. Here, BF is the Bayes factor test statistic used in our test, and ℓ and

ni are the number of clusters and sample size for Example E1 in observed data. The data is

generated as

I
˜
ij ∼ Multinomial(1, π̃

˜
ij), i = 1, . . . , ℓ, j = 1, . . . , ni, (3.42)

and then the cluster models (3.1) and (3.3) are fitted to this data in a similar way to how

they were fit to the TIMMS 2007 fourth grade US data and compute the Bayes factors.

The critical value is obtained by taking the 100(1 − α)th percentile point of the test

statistics from the data generated under the null hypothesis. Generating data under the

null hypothesis here is equivalent to generating data from (3.42) when w = 0. We generate

M = 1000 data sets and fit the cluster models (3.1) and (3.3) thereby obtaining the Bayes

factor for each set. We then obtain the critical value using the distribution of the Bayes

factor. Since the power function in (3.42) is a function of w ∈ [0, 1], we vary w in this range.

For each w, we generated M = 1000 data sets and computed the Bayes factor (denoted

by BF ), thereby having M = 1000 Bayes factor values. Then, we obtain the proportion of

values of the test statistics exceeding its critical value as

p-value =
1

M

M
∑

m=1

I{BF > bfα},

which is the power.

We have plotted the estimated power function in Figure 3.2. We see that the power

function increases rapidly as w increases from 0 to 0.40, attaining power = 1.0 as w takes

the value around 0.50, thereby showing that this is a reasonable test.

3.7 Concluding Remarks

We have proposed a method to the test of independence with covariates in an r×c contingency

table obtained from a two-stage cluster sampling design with simple random sampling at

both stages. We have used a hierarchical Bayesian model and a Markov chain Monte Carlo
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method to fit it. We use the Bayes factor to make an inference about independence. For the

real data (TIMSS 2007) we have found that there is very strong dependence between two

categorical variables both with and without covariates. To further investigate and understand

the findings, we have performed a simulation study where we generated the data under (i)

the dependent model and (ii) the independent model. We then fit both the models with and

without covariates. We have found that there are some noticeable differences between the

test of independence from two models. We have also found that as the structure of the model

from which we generate the data gets more dependent, there is no difference in the test of

independence between two models.

Table 3.1: Features of the total table for each of the six examples

n ℓ ρ Def (1,1) (1,2) (2,1) (2,2)
E1 781 26 .078 3.52 229 116 101 335
E2 837 27 .100 4.25 239 101 117 380
E3 744 26 .090 3.71 239 88 85 332
E4 1467 49 .045 2.35 268 235 168 796
E5 1675 59 .064 2.84 412 305 205 753
E6 575 25 .056 2.41 141 112 53 269

NOTE: These are all 2× 2 contingency tables; ρ is the intracluster correlation; Def stands
for design effect calculated using Brier’s model.
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Table 3.2: Posterior estimate of the parameters under multinomial logistic regression

Examples Cells Covariates PM PSD NSE Interval
E1 1 Intercept 0.26 0.30 0.04 (-0.30, 0.85)

1 X2 0.06 0.06 0.00 (-0.08, 0.16)
1 X3 1.09 0.17 0.01 (0.77, 1.41)
1 X4 0.27 0.17 0.01 (-0.04, 0.61)
2 Intercept -0.95 0.32 0.04 (-1.53, -0.26)
2 X2 -0.17 0.07 0.01 (-0.32, -0.04)
2 X3 0.81 0.20 0.01 (0.37, 1.15)
2 X4 0.15 0.20 0.01 (-0.24, 0.54)
3 Intercept -1.15 0.34 0.04 (-1.81, -0.52)
3 X2 0.05 0.07 0.00 (-0.08, 0.20)
3 X3 -0.14 0.25 0.02 (-0.61, 0.35)
3 X4 0.58 0.20 0.01 (0.19, 0.93)

Z2 0.46 0.12 0.01 (0.20,0.68)
PPP=0.467

E2 1 Intercept 0.72 0.22 0.02 (0.31, 1.14)
1 X2 0.14 0.06 0.00 (0.02, 0.24)
1 X3 1.32 0.17 0.01 (1.00, 1.65)
1 X4 0.37 0.15 0.01 (0.07, 0.63)
2 Intercept -0.68 0.26 0.02 (-1.19, -0.18)
2 X2 -0.03 0.08 0.00 (-0.17, 0.13)
2 X3 0.83 0.21 0.01 (0.45, 1.25)
2 X4 0.21 0.19 0.01 (-0.16, 0.57)
3 Intercept -0.56 0.25 0.02 (-1.04, -0.09)
3 X2 0.09 0.07 0.00 (-0.05, 0.23)
3 X3 0.51 0.21 0.01 (.09, 0.89)
3 X4 0.17 0.18 0.01 (-0.20, 0.53)

Z2 0.66 0.10 0.00 (0.48,0.85)
PPP=0.470

E3 1 Intercept 1.22 0.26 0.03 (0.76, 1.79)
1 X2 0.31 0.07 0.01 (0.16, 0.46)
1 X3 1.22 0.18 0.01 (0.90, 1.60)
1 X4 0.39 0.16 0.01 (0.12, 0.72)
2 Intercept -0.42 0.31 0.03 (-0.98, 0.26)
2 X2 0.08 0.09 0.01 (-0.10, 0.27)
2 X3 1.32 0.21 0.01 (0.93, 1.71)
2 X4 -0.05 0.23 0.01 (-0.52, 0.39)
3 Intercept -0.48 0.30 0.03 (-1.04, 0.12)
3 X2 0.17 0.08 0.01 (0.00, 0.31)
3 X3 0.47 0.25 0.02 (-0.04, 0.91)
3 X4 0.39 0.19 0.01 (0.03, 0.75)

Z2 0.61 0.08 0.00 (0.47,0.77)
PPP=0.489
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E4 1 Intercept 0.33 0.17 0.02 (0.01, 0.66)
1 X2 0.23 0.05 0.00 (0.12, 0.32)
1 X3 1.02 0.12 0.01 (0.78, 1.24)
1 X4 0.38 0.13 0.01 (0.16, 0.64)
2 Intercept -0.39 0.18 0.02 (-0.75, -0.05)
2 X2 0.11 0.05 0.00 (0.00, 0.20)
2 X3 0.93 0.12 0.01 (0.71, 1.17)
2 X4 -0.15 0.15 0.01 (-0.39, 0.16)
3 Intercept -0.45 0.20 0.02 (-0.83, -0.09)
3 X2 0.21 0.06 0.00 (0.09, 0.31)
3 X3 0.44 0.15 0.01 (0.18, 0.75)
3 X4 0.36 0.14 0.01 (0.09, 0.64)

Z2 0.42 0.07 0.003 (0.28,0.55)
PPP=0.466

E5 1 Intercept 0.93 0.19 0.02 (0.54, 1.27)
1 X2 0.26 0.06 0.01 (0.16, 0.37)
1 X3 0.93 0.11 0.01 (0.75, 1.15)
1 X4 0.71 0.11 0.01 (0.51, 0.93)
2 Intercept -0.22 0.23 0.03 (-0.68, 0.19)
2 X2 0.00 0.07 0.01 (-0.13, 0.12)
2 X3 0.93 0.11 0.01 (0.71, 1.14)
2 X4 0.25 0.13 0.01 (0.00, 0.48)
3 Intercept -0.27 0.22 0.02 (-0.71, 0.16)
3 X2 0.25 0.06 0.01 (0.12, 0.36)
3 X3 0.16 0.15 0.01 (-0.13, 0.46)
3 X4 0.55 0.13 0.01 (0.31, 0.80)

Z2 0.47 0.09 0.003 (0.29,0.67)
PPP=0.447

E6 1 Intercept 1.07 0.32 0.04 (0.46, 1.72)
1 X2 0.23 0.09 0.01 (0.05, 0.40)
1 X3 1.03 0.18 0.01 (0.68, 1.38)
1 x4 0.99 0.20 0.01 (0.63, 1.37)
2 Intercept -0.37 0.38 0.04 (-1.13, 0.42)
2 X2 -0.09 0.12 0.01 (-0.32, 0.12)
2 X3 0.68 0.19 0.01 (0.28, 1.03)
2 X4 0.42 0.24 0.02 (-0.07, 0.88)
3 Intercept -0.67 0.44 0.05 (-1.48, 0.24)
3 X2 0.02 0.13 0.01 (-0.22, 0.29)
3 X3 0.43 0.26 0.02 (-0.05, 0.95)
3 X4 0.95 0.25 0.01 (0.49, 1.41)

Z2 0.17 0.01 0.036 (0.04,0.67)
PPP=0.500

NOTE: (i) Posterior means (PM), posterior standard deviations (PSD), numerical
standard errors (NSE) and 95% credible intervals for the regression coefficients

(ii) PPP denotes the posterior predictive p-value.
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Table 3.3: Summary of the log-Bayes factor

log-Bayes Factor
Examples Min Q1 Q2 Q3 Max Mode

E1 7.51 55.43 77.85 101.60 183.70 77.28
E2 10.59 70.32 95.70 122.50 230.40 76.39
E3 19.42 84.66 109.60 137.00 285.70 97.78
E4 7.39 73.76 99.47 128.10 279.00 90.61
E5 6.00 95.41 122.90 156.80 263.60 107.76
E6 3.34 33.79 48.96 66.66 142.60 41.27

Table 3.4: Bayesian design effects for each cell by example

Cell E1 E2 E3 E4 E5 E6

(1,1) 2.07 1.53 1.28 1.16 1.58 1.58
(1,2) 1.44 1.17 1.01 1.23 1.42 1.80
(2,1) 1.52 1.24 1.19 1.08 1.38 1.19
(2,2) 5.03 2.73 1.78 1.90 3.40 3.87

Avg Def 2.51 1.66 1.31 1.34 1.94 2.11
ESS 311 504 568 1091 863 273

NOTE: The cells are (j, k), j, k = 1, 2. Avg Def stands for average design effect. ESS
stands for the effective sample size and it is the sum of the cell counts divided by the

design effects, taken for the total table.
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Table 3.5: Study of the effects of covariates on the test of independence
log-Bayes Factor

Examples Covariates PPP Min Q1 Q2 Q3 Max Mode
E1 Intercept .479 .10 57.49 78.11 101.10 243.60 73.89

X2 .478 1.79 54.83 75.53 100.50 255.10 67.79
X2X3 .505 2.65 55.63 74.58 96.94 179.60 71.80

X2X3X4 .491 6.08 54.16 76.49 99.29 206.30 76.59
X2X3X4Z1 .467 7.51 55.43 77.85 101.60 183.70 77.28

n=781
E2 Intercept .471 .22 68.96 92.88 120.10 220.10 88.61

X2 .495 6.60 68.52 95.34 123.30 216.50 95.50
X2X3 .472 11.60 73.25 97.24 125.70 225.60 91.59

X2X3X4 .501 3.57 72.72 96.76 123.30 276.10 87.74
X2X3X4Z1 .470 10.59 70.32 95.70 122.50 230.40 76.39

n=837
E3 Intercept .472 19.03 86.59 112.30 139.20 276.50 108.12

X2 .502 15.64 89.14 110.90 139.30 259.20 106.16
X2X3 .467 12.63 85.13 111.20 139.10 267.30 91.67

X2X3X4 .476 22.89 84.32 110.50 139.30 228.90 105.87
X2X3X4Z1 .489 19.42 84.66 109.60 137.00 285.70 97.78

n=744
E4 Intercept .467 6.07 78.44 102.10 129.20 243.70 96.67

X2 .449 7.87 73.52 100.80 129.70 276.60 98.97
X2X3 .470 22.00 77.44 100.50 127.70 251.50 91.19

X2X3X4 .447 12.21 73.47 98.52 125.00 274.60 79.79
X2X3X4Z1 .466 7.39 73.76 99.47 128.10 279.00 90.61

n=1467
E5 Intercept .454 29.91 91.94 119.90 148.50 353.30 117.37

X2 .441 25.67 93.79 122.60 156.80 277.20 112.48
X2X3 .470 19.03 94.00 119.40 149.40 280.10 114.78

X2X3X4 .483 25.88 94.58 121.60 149.80 267.20 115.64
X2X3X4Z1 .447 6.00 95.41 122.90 156.80 263.60 107.76

n=1675
E6 Intercept .502 1.72 35.60 49.22 67.57 151.70 44.41

X2 .513 -0.80 34.05 48.56 65.98 138.80 42.03
X2X3 .476 3.00 36.18 51.44 69.36 143.40 47.69

X2X3X4 .493 1.15 36.32 51.17 67.16 144.90 48.83
X2X3X4Z1 .500 3.34 33.79 48.96 66.66 142.60 41.27

n=575

NOTE: PPP denotes the posterior predictive p-value, and n denotes the sample size.
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Table 3.6: Study the effects of covariates under simple random sampling
log-Bayes Factor

Examples Covariates PPP Min Q1 Q2 Q3 Max Mode
E1 Intercept .494 19.03 57.50 72.23 89.75 162.30 68.54

X2 .451 7.965 57.72 74.52 91.08 163.70 73.62
X2X3 .491 16.24 56.92 73.05 90.33 162.50 73.75

X2X3X4 .458 15.56 56.30 72.21 90.81 164.60 66.95
X2X3X4Z1 .440 9.50 56.61 76.13 97.72 179.60 65.52

n=781
E2 Intercept .445 15.54 72.67 90.57 108.60 198.00 92.23

X2 .465 20.35 73.13 89.93 109.50 199.40 84.00
X2X3 .461 9.383 71.30 87.60 110.20 173.70 81.41

X2X3X4 .496 16.92 72.89 89.05 109.20 218.80 82.89
X2X3X4Z1 .474 12.15 71.00 93.71 121.30 272.30 81.17

n=837
E3 Intercept .471 40.41 86.16 104.90 124.30 212.20 104.38

X2 .476 20.81 87.47 107.00 126.80 233.90 106.26
X2X3 .478 32.79 87.22 104.10 125.20 203.20 98.45

X2X3X4 .450 43.01 85.83 106.40 126.40 198.00 108.45
X2X3X4Z1 . 460 28.78 87.23 110.90 134.80 245.10 108.36

n=744
E4 Intercept .444 26.41 75.43 95.77 120.10 269.90 92.04

X2 .437 18.81 75.42 97.26 119.50 241.30 99.95
X2X3 .441 19.06 77.10 97.48 120.20 215.70 93.27

X2X3X4 .440 13.24 74.93 96.56 117.80 207.10 97.51
X2X3X4Z1 .443 15.12 75.72 100.20 124.60 240.10 102.19

n=1467
E5 Intercept .439 33.44 87.06 111.20 135.60 236.40 110.940

X2 .398 34.18 90.93 112.30 137.20 239.40 102.00
X2X3 .411 24.15 91.54 112.90 137.20 250.80 109.46

X2X3X4 .446 30.14 88.21 111.30 137.40 238.90 107.68
X2X3X4Z1 .448 28.25 92.32 118.10 121.10 145.80 113.94

n=1675
E6 Intercept .478 5.15 35.37 47.76 60.82 127.10 44.80

X2 .468 0.90 34.40 47.26 61.90 168.00 37.02
X2X3 .463 4.31 35.95 48.60 62.49 111.10 46.89

X2X3X4 .444 4.68 34.89 47.07 62.58 133.90 42.36
X2X3X4Z1 .470 5.30 35.83 50.17 67.04 138.80 44.94

n=575

NOTE: PPP denotes the posterior predictive p-value, and n denotes the sample size.
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Table 3.7: Sensitivity anlaysis of the log-Bayes factor with respect to a and b in the prior of
σ2, by examples

MTS vs. STS
Examples a(= b) .001 .01 .1 1.0

E1 Mode 77.28 67.66 74.03 63.31
Median 77.85 75.01 77.14 75.10

IQR (55.83,101.60) (53.68,99.74) (56.19,100.10) (54.61,99.18)

E2 Mode 76.39 88.41 84.95 89.53
Median 95.70 92.34 93.37 94.12

IQR (70.32,122.50) (66.56,121.70) (69.14,121.20) (70.51,122.40)

E3 Mode 97.78 99.63 101.85 107.09
Median 109.60 109.60 109.00 110.70

IQR (84.66,137.00) (87.19,140.00) (85.17,138.70) (86.78, 138.30)

E4 Mode 90.61 93.05 80.92 84.32
Median 99.47 98.45 98.00 99.47

IQR (73.76,128.10) (74.62,126.00) (73.24,129.20) (75.21,127.50)

E5 Mode 107.76 115.49 120.64 122.43
Median 122.90 119.70 120.60 122.80

IQR (95.41,156.80) (92.87,150.00) (91.18,151.40) (93.79,151.70)

E6 Mode 41.27 48.45 45.97 46.95
Median 48.96 51.31 49.01 49.39

IQR (33.79,66.66) (35.72,67.64) (34.50,66.67) (34.07,68.40)
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Table 3.8: Simulation: summary of the log-Bayes factor for the cluster model with covariates
(MWC) and without covariates (MWOC)

log-Bayes factor: WC log-Bayes factor: WOC
Ind ρ ℓ mode Q1 Q2 Q3 mode Q1 Q2 Q3

1.0 .01 27 -1.87 -1.98 -1.95 -1.82 -1.69 -2.04 -1.92 -1.62
1.0 .10 27 -1.31 -1.87 -1.68 -1.32 -0.88 -1.75 -1.50 -0.83
1.0 .30 27 -0.22† -1.67 -1.42 -0.62 3.53† -1.28 -0.54 1.71
1.2 .01 27 -0.97 -1.66 -1.20 -0.82 -1.79 -2.05 -1.92 -1.69
1.2 .10 27 0.20† -1.72 -1.06 0.18 -0.62† -1.73 -1.44 -0.76
1.2 .30 27 0.17† -1.50 -1.16 -0.13 4.60 † -1.11 -0.20 3.16
1.4 .01 27 4.20† 0.95 3.54 6.43 0.35† -1.35 -0.57 0.94
1.4 .10 27 5.12 0.23 2.98 7.86 2.73 -1.16 0.22 3.56
1.4 .30 27 8.95 -1.55 -0.10 6.41 13.12 -0.49 2.80 18.57

NOTE: Ind is the degree of dependence, ρ is the intracluster correlation, ℓ is the number of
cluster and † indicates that the corresponding values are different. The sample size is 837.

Table 3.9: Simulation: summary of the log-Bayes factor for the cluster model with covariates
(MWC) and without covariates (MWOC)

log-Bayes factor: WC log-Bayes factor: WOC
Ind ρ ℓ mode Q1 Q2 Q3 mode Q1 Q2 Q3

1.0 .01 54 -2.06 -2.25 -2.17 -1.94 -1.71 -2.23 -1.99 -1.53
1.0 .10 54 -1.51 -2.15 -2.02 -1.76 -0.94 -1.96 -1.64 -0.86
1.0 .30 54 1.00 -1.70 -1.27 2.08 2.86 -1.45 -0.68 1.38
1.2 .01 54 0.37† -1.44 -0.27 1.73 -1.92† -2.29 -2.12 -1.74
1.2 .10 54 1.26† -1.51 -1.02 0.51 -0.71† -1.91 -1.48 -0.55
1.2 .30 54 4.41 -1.75 -1.50 -0.50 9.25 -1.10 1.08 8.65
1.4 .01 54 13.41 9.23 12.37 18.57 3.08 -0.30 1.18 5.79
1.4 .10 54 12.34 2.34 9.75 17.80 7.83 0.04 3.62 11.13
1.4 .30 54 16.18 -1.54 -0.38 31.04 25.20 1.73 14.00 37.38

NOTE: Ind is the degree of dependence, ρ is the intracluster correlation, ℓ is the number of
cluster and † indicates that the corresponding values are different. The sample size is 1674.
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Figure 3.1: Plot of the empirical densities of the log-Bayes factors for the simulation with
covariates when ind=1.0, ind=1.2 and ind=1.4. In the legend on the top right side, the first
and second values of the pair represent the intracluster correlation (ρ) and the cluster size
(ℓ) respectively.
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Figure 3.2: Plot of the estimated power function of the test
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Chapter 4

Concluding Remarks

In Chapter 4, we summarize our methodological contributions and we discuss some future

problems. We have developed a test of independence in two-way categorical tables for two-

stage cluster sampling. We have applied our methods to two TIMSS data sets.

4.1 Contribution in Methodology

We have proposed methods to study independence in a two-way contingency table which has

been obtained from two-stage cluster sampling design with simple random sampling at both

stages. In doing so, we have studied an association (not directional) between two categorical

variables when (a) there are no covariates and (b) there are covariates at unit level and/or

cluster level.

In Chapter 2, for the test of independence without covariates, methodology is developed

to overcome the limitations of Rao-Scott correction. The Rao-Scott methods were developed

to correct for design effects such as cluster effects by correcting the standard Pearson’s

chi-squared (X2) and the likelihood ratio (G2) statistics. They are “large sample” methods

and work well when there are large cell counts. However, they are less successful when the

cell counts are small. We have used a hierarchical Bayesian model to convert the observed

cluster samples to an equivalent simple random sample. This provides surrogate samples

which can be used to derive the distribution of the Bayes factor to make an inference about

independence. We use a sampling-based method to fit the model under which we draw a large

number of samples from the approximate posterior density and subsample them using SIR

algorithm. Although our method is a sampling based method, it is at least as fast as the Rao-
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Scott methods. We demonstrate the utility of our procedure using an example from TIMSS

1995 to study the association between student’s mathematics score and the community the

student come from, and the student’s science score and the community the student come

from. We have also provided a simulation study that establishes our methodology as a viable

alternative to the Rao-Scott approximations for relatively small two-stage cluster samples.

Relative to standard methods, our approach provides additional insight by displaying the

distribution of the Bayes factor rather than simply relying on a single summary measure.

In Chapter 3, for the test of independence with covariates, we have developed a model in

which we incorporate the covariates and accommodated the clustering effect. We have used

an idea of surrogate sampling similar to the one applied in Chapter 2. However, in this case,

the cluster sample with covariates is first converted to a cluster sample without covariates.

We then have converted this cluster sample to an equivalent simple random sample using the

hierarchical Bayesian model, which is used to compute the Bayes factor to make inference

about the test of independence. The second part of the procedure is similar to what was

done in Chapter 2. However, we have used a new methodology here rather than adopting

the procedure from Chapter 2 because the procedure presented in Chapter 2 is expensive

for this new problem. We have used a Gibbs sampling method to fit the model. We have

demonstrated the utility of our procedure using examples and also provide a simulation study.

We have fitted both models (i) with covariates and (ii) without covariates. The results show

that if there is a strong association between two categorical variables, there is no difference in

an inference for the test of independence between two models. However, there is a noticeable

difference in the corresponding inferences between the two models when there are borderline

cases (i.e., situations where there is marginal significance).

Although we developed methods for the test of independence in two-way categorical tables

for two-stage cluster sampling with simple random sampling at both stages, the methods

are more general and can also work for two-stage cluster sampling with proportional to

population size (pps) sampling at both stages, in which case we have a self-weighing sample

of units.

Finally, we note that, although we applied surrogate sampling to the test of independence
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using some specific examples for educational data, there are many other applications of sur-

rogate sampling. One example is data masking, which is the process of obscuring (masking)

sensitive data by replacing it with realistic but not real data in order to reduce the exposure

of sensitive information. In many government agencies and research organizations, due to

confidentiality issues, real data is barely published. Our surrogate sampling can be used as

a data masking procedure so that the surrogate sample can be made available to secondary

data analysts.

4.2 Interpretations of Surrogate Sampling Table and

discussion

It is interesting to compare the surrogate data and the observed data. For illustration we

have chosen the model and the examples (TIMSS 1995 data) from Chapter 2 because these

examples have substantial clustering effects. In Chapter 2, for the Bayesian test of indepen-

dence, we have converted the total cluster table into a large number of equivalent simple

random samples which are the surrogates of the original data.

To simplify the discussion, we average the surrogate tables to obtain a single table which

we call TSUR. We call the total table for the observed data TOBS. We have also obtained

two more total tables which use the effective sample sizes, one for the observed data and

another for the surrogate data. The first table, which we call ETOBS, is obtained by dividing

the cells count in TOBS by the Bayesian design effects (BDEFs), presented in Table 2.2. To

get the second table, which we call ETSUR, we divide the cell counts in each of the surrogate

tables by the same BDEFs, and we average all the tables to obtain a single table. We present

all these tables for examples E1-E8 in Table 4.1.

Our main interest is to compare TOBS and TSUR. In Table 4.1 as we expect, there

are some differences in the cell counts between these tables. For example, in E1, TOBS has

57, 5, 83, 63 respectively in (1, 2), (1, 3), (2, 1), (3, 1) and TSUR has 28, 34, 43, 83. Similarly,

in E4, TOBS has 17, 157, 134, 294 in (1, 2), (2, 1), (2, 2), (3, 2) and TSUR has 46, 252, 95, 190.

Thus, the surrogate samples are different from the observed tables. This is due to large

intracluster correlations in these examples.
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We performed the test of independence on each of the tables (TOBS, ETOBS, TSUR

and ETSUR) for all examples E1-E8. We compute the Bayes factors and the p-values for the

chi-squared and likelihood ratio test; the results are presented in Table 4.2. Note here that

the test based on the total observed table is not the right test because it is not adjusted with

the design effects. However, the tests based on the other tables are expected to be correct;

the counts in TSUR may be too large though. There are some agreement and disagreement

among the χ2 test, the G2 test and the Bayesian test. For example in E3 and E6, they mostly

agree with each other inferring that there is evidence of independence between math score

and communities in E3 and between science score and communities in E6. However, they do

not all agree in rest of the examples. But the tests based on ETOBS and ETSUR do mostly

agree in all examples.

Dividing the total table TOBS by the design effects to get ETOBS is similar to what

Rao and Scott (1981) did. We believe that TSUR should not have the same sample size as

the observed data because the observed data are correlated owing to the clustering effect but

the simple random simple data are not correlated. So there may be excessive information in

TSUR. We also divide the cells by the same design effects, and currently, it is not clear what

is the best way to proceed. We contemplate working in this problem in future.
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Table 4.1: Comparision of the observed total table and the surrogate total table by example

Example Table (1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3) Total

E1 TOBS 44 57 5 83 71 5 63 136 5 469
ETOBS 5 8 0 10 10 0 10 20 0 63
TSUR 45 28 34 43 78 8 83 142 8 469

ETSUR 6 4 2 5 11 0 13 21 0 62

E2 TOBS 49 74 1 107 151 13 93 164 11 663
ETOBS 9 14 0 20 29 2 17 30 1 122
TSUR 36 81 15 84 166 26 112 109 34 663

ETSUR 6 15 0 15 32 4 21 20 5 118

E3 TOBS 44 47 8 54 44 3 56 167 15 438
ETOBS 9 9 1 11 8 0 10 34 2 84
TSUR 45 55 13 27 49 4 77 130 38 438

ETSUR 9 11 1 5 8 0 14 26 6 80

E4 TOBS 25 17 0 157 134 13 205 294 12 857
ETOBS 4 2 0 30 26 2 38 57 1 160
TSUR 38 46 4 252 95 28 181 190 23 857

ETSUR 7 8 0 48 18 4 33 36 3 157

E5 TOBS 63 38 5 105 47 7 70 124 10 469
ETOBS 9 5 0 13 7 0 10 18 0 62
TSUR 58 24 5 115 45 17 54 137 14 469

ETSUR 8 3 0 15 7 1 8 20 1 63

E6 TOBS 61 56 7 117 141 13 117 145 6 663
ETOBS 12 12 0 23 27 2 23 27 0 126
TSUR 45 37 9 170 126 34 136 90 16 663

ETSUR 9 8 1 33 24 5 27 16 1 124

E7 TOBS 53 44 2 67 30 4 95 133 10 438
ETOBS 11 8 0 13 5 0 16 25 1 79
TSUR 52 25 9 52 29 20 102 133 16 438

ETSUR 11 4 0 10 5 2 17 25 2 76

E8 TOBS 34 7 1 181 112 11 226 272 13 857
ETOBS 6 0 0 34 21 1 41 52 2 157
TSUR 66 21 2 183 77 19 239 229 21 857

ETSUR 12 2 0 34 15 2 44 43 3 155
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Table 4.2: Comparison of inference from the observed total table and the surrogate total
table by example

p-values
Example Table χ2 G2 log-BF

E1 TOBS 0.00078 0.00078 1.76
ETOBS∗ 0.78126 0.78681 -2.83

TSUR 0.00000 0.00000 28.01
ETSUR 0.29211 0.32900 -1.33

E2 TOBS 0.24716 0.15015 -5.54
ETOBS 0.96669 0.96454 -4.87
TSUR 0.00035 0.00033 2.94

ETSUR 0.25675 0.25096 -1.95

E3 TOBS 0.00000 0.00000 10.09
ETOBS 0.06817 0.06547 0.09
TSUR 0.07659 0.05312 -2.40

ETSUR 0.76671 0.75176 -3.06

E4 TOBS 0.00140 0.00145 -1.34
ETOBS 0.07041 0.14045 -3.16
TSUR 0.00000 0.00000 16.78

ETSUR 0.04342 0.03962 -0.66

E5 TOBS 0.00000 0.00000 13.65
ETOBS∗ 0.24715 0.24273 -0.95

TSUR 0.00000 0.00000 34.61
ETSUR 0.02922 0.02612 1.67

E6 TOBS 0.23971 0.22037 -5.45
ETOBS 0.97307 0.97070 -4.96
TSUR 0.51144 0.49650 -6.17

ETSUR 0.88711 0.88628 -4.35

E7 TOBS 0.00020 0.00015 3.44
ETOBS 0.17346 0.16263 -1.05
TSUR 0.00000 0.00000 9.20

ETSUR 0.12072 0.11850 -0.33

E8 TOBS 0.00000 0.00000 8.44
ETOBS 0.02906 0.04128 -1.80
TSUR 0.00000 0.00000 11.03

ETSUR 0.05706 0.04405 -1.27

Note: In Examples E1 and E2, ∗ indicates that ETOBS has all zeros in its last column.
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4.3 Future Work

The following problems can be solved within our framework.

4.3.1 Stratified Two-stage Cluster Sampling

It is easy to accommodate stratification in our framework because this is simply an additional

step in our two-stage cluster sampling procedure. We just need to index all quantities with s

(for stratum). For instance, if we consider our model for a two-stage cluster sampling design

without covariates in (2.2), (2.3) and (2.4), we can write the model of stratified two-stage

cluster design as

n
˜
hi ∼ Multinomial(nhi, a

˜
hi), (4.1)

where n
˜
hi = (nhi1, ..., nhiS), nhi =

∑S
s=1 nhis and ahis = αhisπs, h = 1, . . . , H, i = 1, . . . , ℓ, s =

1, . . . , S. Here, the indices h, i and s stand for stratum, cluster and cell of the table respec-

tively. Note here that αhisπs is the probability that a unit has the sth characteristic within the

ith cluster of stratum h of the super population, and πs, s = 1, . . . , S, are the probabilities

corresponding to a homogeneous superpopulation (i.e., there are no strata and clusters). We

want the test of independence based on πs. In (4.1) we have the constraints ahis = αhisπs,
∑

s αhisπs = 1,
∑

s πs = 1, αhisπs > 0 and πs > 0. Here, the αhis are used to adjust for the

clustering. A priori we take

αhis
iid∼ Gamma(τhs, τhsνh), (4.2)

π
˜
∼ Dirichlet(1

˜
), (4.3)

and

p(νh) ∝ 1/νh, h = 1, . . . , H independent, (4.4)

where π
˜
= (π1, . . . , πS) and τhs, h = 1, . . . , H, s = 1, . . . , S are to be specified. We can apply

the same idea for the cluster model with covariates.

4.3.2 Introduction of Survey Weights

Let {wij, i = 1, . . . , ℓ, j = 1, . . . , ni} denote the survey weights in a two-stage cluster sam-

pling design. Each wij is the number (including itself) that each sampled unit represents in
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the population. Thus, these wij sum to the total population size. There are many contro-

versies of how survey weights should be handled (e.g., Gelman, 2007). We will mention one

possible method that we will consider using.

We plan to incorporate the survey weights partially using the technique of Pfeffermann,

Skinner, Holmes, Goldstein and Rashbash (1998) who devised the scheme for applying sam-

pling weights to the likelihood function. In fact, Pfeffermann et al. (1998) applied sam-

pling weights to multilevel samples by defining a pseudo-likelihood. The resulting multilevel

pseudo-likelihood is maximized to yield maximum likelihood estimates of the model parame-

ters (see Pfeffermann, et al, 1998). Under regularity conditions, pseudo-likelihood estimators

are consistent and asymptotically normal (Arnold and Strauss, 1991). However, pseudo-

likelihood is an approximate likelihood and, of course, a Bayesian will use proper likelihood.

Under normal distribution the pseudo-likelihood approach is the same as the correct

likelihood approach. Otherwise these two are different as discussed below using two examples.

Example 1: Let Y ∼ N(µ, σ2) and w be the sampling weight associated with the unit.

The density function of the random variable is

p(y) =
1

√

(2πσ2)
e−

1
2σ2 (y−µ)2 .

For a single unit the pseudo-likelihood after applying the sampling weight is

L1(y) = [p(y)]w =

[

1
√

(2πσ2)
e−

1
2σ2 (y−µ)2

]w

, (4.5)

and the exact likelihood function is

L2(y) =
[p(y)]w

∫

[p(y)]wdy
=

[

1√
(2πσ2)

e−
1

2σ2 (y−µ)2
]w

∫

[

1√
(2πσ2)

e−
1

2σ2 (y−µ)2
]w

dy

. (4.6)

It is easy to show that the estimation of the parameters using the likelihood in (4.5) is

equivalent to the one in (4.6).

Example 2: Let us consider a logistic function

p(y) =
ex˜

′β
˜
y

1 + ex˜
′β
˜

,
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where y = 0 or 1. For a single unit, the pseudo-likelihood after applying the sampling weight

is

L1(y) = [p(y)]w =

[

ex˜
′β
˜
y

1 + ex˜
′β
˜

]w

, (4.7)

and the exact likelihood function is

L2(y) =
[p(y)]w
∑

y[p(y)]
w
=

[

e
x
˜

′β
˜
y

1+e
x
˜
′β
˜

]w

∑

y

[

e
x
˜
′β
˜
y

1+e
x
˜
′β
˜

]w =

e
x
˜

′β
˜
w

[

1+e
x
˜
′β
˜

]w

e
x
˜
′β
˜
w

[

1+e
x
˜
′β
˜

]w + 1
[

1+e
x
˜
′β
˜

]w

=
ex˜

′β
˜
w

1 + ex˜
′β
˜
w
. (4.8)

Clearly, the estimation of the parameters using the likelihood in (4.7) is different from the one

in (4.8). This can be easily seen by showing that normal equations and Hessian matrices for

the estimation of the parameters are different. We will extend the idea explained in Example

2 for our cluster model as described briefly below.

Let us consider the model from Chapter 2:

n
˜
i | a

˜
i
ind∼ Multinomial(ni, a

˜
i),

where ais = αisπs, s = 1, . . . , S. This is equivalent to

I
˜
ij | a

˜
i
iid∼ Multinomial(1, a

˜
i),

where I
˜
ij refers to the cell in which jth individual falls in the ith cluster with

∑S
s=1 Iijs = 1

and
∑ni

j=1

∑S
s=1 Iijs = ni. Including the survey weights {wij, i = 1, . . . , ℓ, j = 1, . . . , ni}

P (I
˜
ij | a

˜
i) =

[
∏S

s=1(αisπs)
Iijs
]wij

∑

{Iijs}

[
∏S

s=1(αisπs)Iijs
]wij

=

[
∏S

s=1(αisπs)
Iijs
]wij

∑S
s=1(αisπs)wij

.

Then,

P (I
˜
| a
˜
) =

ℓ
∏

i=1

ni
∏

j=1

[
∏S

s=1(αisπs)
Iijs
]wij

∑S
s=1(αisπs)wij

.

The rest of the model is the same as in Chapter 2. Also, the computation can be done in a

very similar manner.

4.3.3 Sampling Zero Problem

Here, we discuss our plan to deal with a problem when there are sampling zeros in cluster

tables by using the Brier (1980) model. We will extend this idea to our cluster model later.
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When a cluster sampling is performed, there will be many cells with zero counts. The

total counts in each cluster are generally assumed fixed and known, so when a parametric

model is fitted to the data, the fitted values corresponding to the zero counts get much larger

than zeros and the positive counts get smaller. This causes the model studied by Brier (1980)

to fit poorly. The Brier (1980) model is

n
˜
i | π

˜
i
ind∼ Mult(ni, π

˜
i), πi

˜
| µ
˜
, τ

iid∼ Dirichlet(µ
˜
τ), i = 1, . . . , ℓ,

where n
˜
i = (ni1, . . . , niS) and π

˜
i = (πi1, . . . , πiS). Let Ci =

{

s : nis > 0
}

and C̄i =
{

s : nis =

0
}

. Let

zis =

{

0, − 1, s ∈ Ci
0, 1, s /∈ Ci,

where s = 1, . . . , S. That is, we plan to remove one observation or leave unchanged the

positive cell and for a zero cell we either add an observation or leave it unaltered. We require
∑S

s=1(nis + zis) = ni, i.e,
∑S

s=1 nis +
∑S

s=1 zis = ni and
∑S

s=1 nis = ni, so that

P (ni
˜
, zi
˜
| πi
˜
) = ni!







∏

s∈Ci

πnis+zis
is

(nis + zis)!
×
∏

s/∈Ci

πzis
is

zis!







.

The likelihood function of the data is

P (n
˜
, z
˜
| πi
˜
) =

ℓ
∏

i=1







ni!
∏

s∈Ci

πnis+zis
is

(nis + zis)!
×
∏

s/∈Ci

πnis+zis
is

(nis + zis)!







, (4.9)

where
∑S

s=1 nis = ni,
∑S

s=1 zis = 0 and nis = 0 for s /∈ Ci.

A priori we assume

πi
˜
| µ
˜
, ρ ∼ Dirichlet

(

µ
˜

1− ρ

ρ

)

,

π(µ
˜
, ρ) = 1. (4.10)

Now, combining the likelihood function in (4.9) and priors in (4.10) via Bayes’ theorem, we

obtain the joint posterior density

π(z
˜
, π
˜
, µ
˜
, ρ | n

˜
) ∝

ℓ
∏

i=1

{

ni!
∏

s∈Ci

πnis+zis
is

(nis + zis)!
×
∏

s/∈Ci

πnis+zis
is

(nis + zis)!
×
∏S

s=1 π
µs(

1−ρ
ρ

)−1

is

D(µ
˜

1−ρ
ρ
)

}

. (4.11)

This method does not cover a single large table with many zeros because the probabilities
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of the zero cells can not be estimated efficiently. A uniform prior is not reasonable for π
˜
in a

large table with many zeros. A likelihood ratio test of independence in a single contingency

table is given by Nandram, Bhatta and Bhadra (2012) with many sampling zeros under

simple random sampling. We will apply this method to two-stage cluster sampling.

4.4 My Accomplishments

Besides my dissertation, I have also worked on various other problems and have submitted

corresponding papers. The work in Chapter 2 is reported in Nandram, Bhatta, Bhadra and

Sedransk (2012). Two of the papers have been published for the publication and the other

two are still under review. I will briefly discuss these works here.

4.4.1 Mortality Curve Fitting

a. Switching Nonlinear Regression Model

Bhatta and Nandram (2013) considered fitting of age-specific mortality curve to English

and Welsh (1988-1992) mortality data. We used the eight-parameter Heligman-Pollard

(HP) empirical law to fit the mortality curve. It consists of three nonlinear curves: child

mortality, mid-life mortality and adult mortality. The eight unknown parameters in the

HP law are difficult to estimate because of a convergence problem during computation.

In order to overcome this problem, we considered a novel idea to fit the three curves

(nonlinear splines) separately, and then connect them smoothly at the two knots. To

connect the curves smoothly, we express uncertainty about the knots because these

curves do not have turning points.

b. Small Area

Wei, Nandram and Bhatta (2012) considered fitting of mortality curves to US mortality

data for 1999-2001 summed across all ages in each race-gender domain (white males,

black males, white females and black females) by state. We used the eight-parameter

Heligman-Pollard (HP) empirical law to fit these curves. Because the data are studied

in small domains, the death counts for some ages tend to be very low, and for some
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small areas, few or zero deaths can be observed in a time period. This causes difficulties

for fitting the HP law to accurately estimate real mortalities and model age-mortality

curves in smoothing patterns for those areas. Our Bayesian method provides a solution

to overcome these difficulties by using data from other states.

4.4.2 Selection Bias

Nandram, Bhatta, Bhadra and Shen (2012) have shown how to infer about a finite population

proportion using data from a possibly biased sample. We have used the Bayesian nonignorable

selection model to accommodate the selection mechanism. We have extended the work of

Malec, Davis and Cao (1999) in a direction different from that of Nandram and Choi (2010).

We illustrated our method using numerical examples obtained from NHIS 1995 data. The

result shows that our nonignorable selection model appears to accommodate the selection

mechanism reasonably well.

4.4.3 Sparse Two-Way Contingency Tables

Nandram, Bhatta and Bhadra (2012) considered a likelihood ratio test of independence for

large two-way contingency tables having cells with small and/or zero counts. Specifically,

we restricted attention to tables with many sampling (random) zeros which can become

positive with larger sample sizes. We combined all the cells with sampling zeros to form a

single positive cell. Then, assuming all cell counts are positive random variables, we modeled

the counts using a truncated multinomial distribution, thereby providing a test of quasi-

independence for two-way contingency tables. In fact, we have two truncated multinomial

distributions; one of these is for the null hypothesis of independence and the other for the

unrestricted parameter space.
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Appendix A

Joint Posterior Density

Letting S = rc, the set of constraints is

T =

{

(α
˜
, π
˜
, ν) :

S
∑

s=1

αisπs = 1,
S
∑

s=1

πs = 1, αis > 0, i = 1, . . . , ℓ, πs > 0, s = 1, . . . , S, sν > νo

}

.

Letting b =
∑S

s=1 τs, the joint prior density is

p(α
˜
, π
˜
, ν | τ

˜
) ∝ νℓb−1

ℓ
∏

i=1

S
∏

s=1

ατs−1
is e−ντsαis , (α

˜
, π
˜
, ν) ∈ T. (A.1)

In (A.1) we want to accommodate the constraints,
∑S

s=1 αisπs = 1, i = 1, . . . , ℓ, and
∑S

s=1 πs = 1. We have a convenient way of doing so.

We transform αiS, i = 1, . . . , ℓ, to φi and πS to φ0, keeping all other random variables

untransformed so that

S
∑

s=1

αisπs = 1 + φi, i = 1, . . . , ℓ and
S
∑

s=1

πs = 1 + φ0.

Our idea is to remove πS and αiS, i = 1, . . . , ℓ, when φi, i = 0, 1, . . . , ℓ, are set to zero. Then,

πS = 1+ φ0 −
S−1
∑

s=1

πs and αiS =
1 + φi −

∑S−1
s=1 αisπs

1 + φ0 −
∑S−1

s=1 πs
, i = 1, . . . , ℓ. Note that πS and αiS are

all kept in (0, 1).

The Jacobian of the transformation is

(∣

∣

∣

∣

∣

1 + φ0 −
S−1
∑

s=1

πs

∣

∣

∣

∣

∣

)−ℓ

and the joint prior density

is

p(α
˜
(S), π

˜
(S), φ

˜
, ν) ∝ νℓb−1

ℓ
∏

i=1

[

S−1
∏

s=1

ατs−1
is e−ντsαis

×
(

1 + φi −
∑S−1

s=1 αisπs

1 + φ0 −
∑S−1

s=1 πs

)τS−1

e

−ντS







1 + φi −
∑S−1

s=1 αisπs

1 + φ0 −
∑S−1

s=1 πs







(∣

∣

∣

∣

∣

1 + φ0 −
S−1
∑

s=1

πs

∣

∣

∣

∣

∣

)−1











,

0 <
S−1
∑

s=1

αisπs < 1, i = 1, . . . , ℓ, 0 <
S−1
∑

s=1

πs < 1, αisπs > 0, πs > 0, ν ≥ π∗.
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Then, letting

T̃ =

{

(α
˜
(S), π

˜
(S), ν) : 0 <

S−1
∑

s=1

αisπs < 1, i = 1, . . . , ℓ, 0 <
S−1
∑

s=1

πs < 1, αisπs > 0, πs > 0,

s = 1, ..., S − 1, ν > νo} ,

p(α
˜
(S), π

˜
(S), ν | φ

˜
= 0

˜
) ∝ νℓb−1

ℓ
∏

i=1

[

S−1
∏

s=1

ατs−1
is e−ντsαis

×
(

1−∑S−1
s=1 αisπs

1−∑S−1
s=1 πs

)τS−1

e

−ντS







1−∑S−1
s=1 αisπs

1−
∑S−1

s=1 πs







(

1−
S−1
∑

s=1

πs

)−1











, (α
˜
(S), π

˜
(S), ν) ∈ T̃ .

(A.2)

Henceforth, for convenience, we will denote this prior distribution by p(α
˜
(S), π

˜
(S), ν) which,

we note, is improper.

Now, the conditional distribution of n
˜
given (α

˜
(S), π

˜
(S), ν) ∈ T̃ is

p(n
˜
| α
˜
(S), π

˜
(S), ν) =

ℓ
∏

i=1

[

ni!

(

S−1
∏

s=1

(αisπs)
nis/nis!

)(

1−
S−1
∑

s=1

αisπs

)niS

/niS!

]

(A.3)

nis ≥ 0,
∑S

s=1 nis = ni, i = 1, . . . , ℓ.

Then, using Bayes’ theorem, the joint posterior density is

p(α
˜
(S), π

˜
(S), ν | n

˜
) ∝

ℓ
∏

i=1

[

ni!

(

S−1
∏

s=1

(αisπs)
nis/nis!

)(

1−
S−1
∑

s=1

αisπs

)niS

/niS!

]

×νℓb−1

ℓ
∏

i=1

[

S−1
∏

s=1

ατs−1
is e−ντsαis

×
(

1−
∑S−1

s=1 αisπs

1−∑S−1
s=1 πs

)τS−1

e

−ντS







1−∑S−1
s=1 αisπs

1−
∑S−1

s=1 πs







(

1−
S−1
∑

s=1

πs

)−1











, (α
˜
(S), π

˜
(S), ν) ∈ T̃ .

(A.4)

Note that in (A.4) αiS =
(

1−
S−1
∑

s=1

αisπs
)

/
(

1−
S−1
∑

s=1

πs
)

and πS = 1−
S−1
∑

s=1

πs.
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Appendix B

A Property of the Gamma Distribution

Let d1, . . . , dn
iid∼ Gamma(e, ef). Let A =

∑n
i=1 di/n andG = (

∏n
i=1 di)

1/n denote respectively

the arithmetic and the geometric mean of the di.

Lemma

The maximum likelihood estimator (MLE) of f is f̂ = A−1 which is the unique solution

of

ln(f̂)− ψ(f̂) = ln(A/G), (B.1)

where ψ(·) is the digamma function.

Proof of Lemma

The log-likelihood function is

∆(e, f) = n{e ln(f) + e ln(e) + (e− 1) ln(G)− efA− ln(Γ(e)}.

Differentiating, we have,

∂∆(e, f)

∂f
= ne

(

1

f
− A

)

and
∂2∆(e, f)

∂f 2
= −ne

f 2
. (B.2)

Using (B.2) it follows that the MLE of f is unique and is given by f̂ = A−1.

Thus, the profile log-likelihood is

∆(e, f̂) = n{e ln(f̂) + e ln(e) + (e− 1) ln(G)− e− ln(Γ(e)}.

Differentiating, we have,

∂∆(e, f̂)

∂e
= n {ln(e)− ψ(e) + ln(G/A)} and

∂2∆(e, f̂)

∂e2
=

1

e
− ψ′(e), (B.3)

where ψ′(·) is the trigamma function.

Then, because eψ′(e) > 1 for all positive real numbers e (Abramowitz and Stegun 1969,

Ch. 6), it follows from (B.3) that the MLE of e is the unique solution of (B.1).
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Appendix C

Mode of a Kernel Density Estimator

Let x1, . . . , xn
iid∼ f(x), where f(x) is an unknown density function. We need the mode of

this density function based on a large sample of size n. We use the Parzen-Rosenblatt kernel

density estimator with a standard normal kernel and optimal window width (Silverman

1986), where

f̂(x) =
1

nh

n
∑

i=1

φ

(

x− xi
h

)

, −∞ < x <∞, (C.1)

and h is the optimal window width.

Using differentiation,

f̂ ′(x) = − 1

nh3

n
∑

i=1

(x− xi)φ

(

x− xi
h

)

and

f̂ ′′(x) = − 1

nh3

n
∑

i=1

{

1− (
x− xi
h

)2
}

φ

(

x− xi
h

)

.

A necessary condition for a mode x∗ is that f̂ ′(x∗) = 0, which gives

x∗ =
n
∑

i=1

w{(x∗ − xi)}xi, (C.2)

where w{(x∗−xi)} = φ

(

x∗ − xi
h

)

{

n
∑

i=1

φ

(

x∗ − xi
h

)

}−1

, i = 1, . . . , n (i.e., x∗ is a weighted

average).

We use a simple iterative procedure to solve (C.2). Starting with the sample mean on

the right side of (C.2), we update x∗ and iterate the procedure. This procedure is very fast

even though it can take a large number of iterations for convergence. We need to check

that f̂ ′′(x∗) < 0. This is approximately true because

{

1− (
x− xi
h

)2
}

≈ exp

{

−(
x− xi
h

)2
}

which is positive. In fact, it is easy to show that f̂ ′′(x∗) ≥ −h−1; so it can be negative.

Alternatively, the global mode can be found by drawing samples from (C.1) and then

finding the maximum of the values of f̂(x) over these samples; this procedure is easy and fast.
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We have performed both procedures and they give virtually the same answer; but the latter

procedure is expected always to work (Robert and Casella 1999, Ch. 5) for more complex

optimization procedures.

Appendix D

Joint Posterior Density: A Simplification

Here, we provide the algebra to simplify a term from joint posterior density (3.7). We show

that
ℓ
∑

i=1

(νi − γ
˜

′z
˜
i)
2 + (γ

˜
− γ

˜
0)

′∆−1
0 (γ

˜
− γ

˜
0)

= γ
˜
0
′ (z

′z)

κ+ 1
γ
˜
0 + ν

˜
′

[

I − κ

κ+ 1
z(z′z)−1z′

]

ν
˜
− 2

κ+ 1
γ
˜
0
′z′ν
˜

+

(

γ
˜
−
κγ̂
˜
+ γ

˜
0

κ+ 1

)′(
κ+ 1

κ

)

∆̂−1

(

γ
˜
−
κγ̂
˜
+ γ

˜
0

κ+ 1

)

.

From (3.8), we have

ℓ
∑

i=1

(νi − γ
˜

′z
˜
i)
2 + (γ

˜
− γ

˜
0)

′∆−1
0 (γ

˜
− γ

˜
0) =

ℓ
∑

i=1

(νi − γ̂
˜

′z
˜
i)
2 + (γ̂

˜
− γ

˜
)′∆̂−1(γ̂

˜
− γ

˜
)

+ (γ
˜
− γ

˜
0)

′∆−1
0 (γ

˜
− γ

˜
0), (E.1)

where γ̂
˜
= (z′z)−1(z′ν

˜
) and ∆̂ = (z′z)−1. We further simplify the right side of (E.1). First,

ℓ
∑

i=1

(νi − γ̂
˜
z
˜
i)
2 = (ν

˜
− zγ̂

˜
)′(ν

˜
− zγ̂

˜
)

= ν
˜
′ν
˜
− 2γ̂

˜

′z′ν
˜
+ γ̂

˜

′z′zγ̂
˜

= ν
˜
′ν
˜
− 2ν

˜
′z(z′z)−1z′ν

˜
+ ν

˜
′z(z′z)−1z′z(z′z)−1z′ν

˜
[since γ̂

˜
= (z′z)−1(z′ν

˜
)]

= ν
˜
′ν
˜
− 2ν

˜
′z(z′z)−1z′ν

˜
+ ν

˜
′z(z′z)−1z′ν

˜

= ν
˜
′ν
˜
− ν

˜
′z(z′z)−1z′ν

˜

= ν
˜
′[I − z(z′z)−1z′]ν

˜
. (E.2)
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Second, because (c
˜
− a

˜
)′A(c

˜
− a

˜
) + (c

˜
− b
˜
)′B(c

˜
− b
˜
) = (c

˜
− c
˜
)′(A+B)(c

˜
− c
˜
)

+ (a
˜
− b
˜
)′A(A+ B)−1B(a

˜
− b
˜
),

with c
˜
= (A + B)−1(Aa + Bb), where A and B are symmetric matrices and A−1, B−1 and

(A+ B)−1 exist, we can write

(γ
˜
− γ̂

˜
)′∆̂−1(γ

˜
− γ̂

˜
) + (γ

˜
− γ

˜
0)

′∆0
−1(γ

˜
− γ

˜
0) =

[

γ
˜
− (∆̂−1 +∆0

−1)−1(∆̂−1γ̂
˜
+ ∆0

−1γ
˜
0)
]′

(∆̂−1 +∆0
−1)−1

[

γ
˜
− (∆̂−1 +∆0

−1)−1(∆̂−1γ̂
˜
+ ∆0

−1γ
˜
0)
]

+ (γ̂
˜
− γ

˜
0)

′∆̂−1(∆̂−1 +∆0
−1)−1∆0

−1(γ̂
˜
− γ

˜
0).

Using ∆0 = κ∆̂ so that ∆0
−1 = 1

κ
∆̂−1, we get

(∆̂−1 +∆0
−1)−1(∆̂−1γ̂

˜
+ ∆0

−1γ
˜
0) =

1

κ+ 1
(κγ̂
˜
+ γ

˜
0)

and

∆̂−1(∆̂−1 +∆0
−1)−1∆0

−1 =
1

κ+ 1
∆̂−1.

Therefore,

(γ
˜
− γ̂
˜
)′∆̂−1(γ

˜
− γ̂
˜
)+(γ

˜
−γ
˜
0)

′∆0
−1(γ

˜
−γ
˜
0) =

(

γ
˜
−
κγ̂
˜
+ γ

˜
0

κ+ 1

)′(
κ+ 1

κ

)

∆̂−1

(

γ
˜
−
κγ̂
˜
+ γ

˜
0

κ+ 1

)

+(γ̂
˜
− γ

˜
0)

′ ∆̂
−1

κ+ 1
(γ̂
˜
− γ

˜
0). (E.3)

Here,

(γ̂
˜
− γ

˜
0)

′ ∆̂
−1

κ+ 1
(γ̂
˜
− γ

˜
0) = γ̂

˜

′ ∆̂
−1

κ+ 1
γ̂
˜
− 2γ

˜
0
′ ∆̂

−1

κ+ 1
γ̂
˜
+ γ

˜
0
′ ∆̂

−1

κ+ 1
γ
˜
0

= ν
˜
′z(z′z)−1 ∆̂−1

κ+ 1
(z′z)−1z′ν

˜
− 2γ

˜
0
′ ∆̂

−1

κ+ 1
(z′z)−1z′ν

˜
+ γ

˜
0
′ ∆̂

−1

κ+ 1
γ
˜
0

= ν
˜
′z(z′z)−1 (z

′z)

κ+ 1
(z′z)−1z′ν

˜
− 2γ

˜
0
′ (z

′z)

κ+ 1
(z′z)−1z′ν

˜
+ γ

˜
0
′ (z

′z)

κ+ 1
γ
˜
0, [since, ∆̂ = (z′z)−1]

= ν
˜
′z
(z′z)−1

κ+ 1
z′ν
˜
− 2γ

˜
0
′ (z

′ν
˜
)

κ+ 1
+ γ

˜
0
′ (z

′z)

κ+ 1
γ
˜
0.
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Therefore,

(γ
˜
− γ̂
˜
)′∆̂−1(γ

˜
− γ̂
˜
)+(γ

˜
−γ
˜
0)

′∆0
−1(γ

˜
−γ
˜
0) =

(

γ
˜
−
κγ̂
˜
+ γ

˜
0

κ+ 1

)′(
κ+ 1

κ

)

∆̂−1

(

γ
˜
−
κγ̂
˜
+ γ

˜
0

κ+ 1

)

+ν
˜
′z
(z′z)−1

κ+ 1
z′ν
˜
− 2γ

˜
0
′ (z

′ν
˜
)

κ+ 1
+ γ

˜
0
′ (z

′z)

κ+ 1
γ
˜
0. (E.4)

Now, using (E.2) and (E.3) in (E.1), we get

ℓ
∑

i=1

(νi − γ
˜

′z
˜
i)
2 + (γ

˜
− γ

˜
0)

′∆−1
0 (γ

˜
− γ

˜
0)

= ν
˜
′[I − z(z′z)−1z′]ν

˜
+

1

κ+ 1
ν
˜
′z(z′z)−1z′ν

˜
− 2

κ+ 1
γ
˜
0
′z′ν
˜
+ γ

˜
0
′ (z

′z)

κ+ 1
γ
˜
0

+ (γ
˜
−
κγ̂
˜
+ γ

˜
0

κ+ 1
)′
(κ+ 1

κ

)

∆̂−1(γ
˜
−
κγ̂
˜
+ γ

˜
0

κ+ 1
)

= γ
˜
0
′ (z

′z)

κ+ 1
γ
˜
0 + ν

˜
′[I − κ

κ+ 1
z(z′z)−1z′]ν

˜
− 2

κ+ 1
γ
˜
0
′z′ν
˜

+ (γ
˜
−
κγ̂
˜
+ γ

˜
0

κ+ 1
)′
(κ+ 1

κ

)

∆̂−1(γ
˜
−
κγ̂
˜
+ γ

˜
0

κ+ 1
). (E.5)

Appendix E

Proof that
∫∞
∞ h(νi)dνi is finite.

From (3.17), we have

F =

∫

φ
˜

∫

y
˜

(1)

∫

σ2

g(φ
˜
)B(φ

˜
)(1/σ2)(ℓ+a)/2−1

× e−
1

2σ2

[

b+y
˜

(1)′y
˜

(1)
] ℓ
∏

i=ℓ−q+1

{∫ ∞

−∞

h(νi)dνi

}

dσ2dy
˜

(1)dφ
˜
.

where h(νi) =
eνiai

∏ni
j=1[1+eνicij ]

as defined in (3.14) with 0 ≤ ai ≤ ni and cij ≥ 0. It is difficult to

find the exact definite integral of h(νi) because of the complicated integrand. However, we

can show that
∫∞

∞
h(νi)dνi is finite by bounding the integrand with something simpler.

Let ni = n and then dropping subscript i and assuming that all cj are same (equal to c),
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we have from (G.1)

h(νi) =
eνa

∏n
j=1(1 + eνc)n

.

Now,
∫ ∞

−∞

h(ν)dν =

∫ 0

−∞

eνa
∏n

j=1(1 + eνc)n
dν +

∫ ∞ eνa
∏n

j=1(1 + eνc)n
dν. (G.1)

Note here in the first part of (G.1), 1 + eνc ≥ 1 for ν in [−∞, 0] and c ≥ 0. Therefore

eaν

(1 + ceν)n
≤ eaν .

Similarly, on the second part of (G.1)

eaν

(1 + ceν)n
≤ eaν

cnenν
= (1/cn)e−(n−a)ν .

Thus, from (G.1)

∫ ∞

∞

h(ν)dν ≤
∫ 0

−∞

eνadν +

∫ ∞

0

(1/cn)e−(n−a)νdν.

Because n ≥ a, we get
∫ ∞

∞

h(ν)dν =
1

a
+

1

cn(n− a)
<∞.
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Appendix F

Cluster Tables for Examples E1-E6 using TIMSS 2007 Data

E1
Clusters n (1, 1) (1, 2) (2, 1) (2, 2)

1 9 1 1 0 7
2 48 20 9 9 10
3 21 0 2 2 17
4 39 2 6 5 26
5 21 6 3 1 11
6 44 20 6 7 11
7 41 0 0 4 37
8 38 23 3 3 9
9 44 10 7 3 24

10 35 15 7 5 8
11 35 6 7 3 19
12 25 12 2 5 6
13 32 5 8 6 13
14 33 8 6 4 15
15 39 13 4 8 14
16 12 9 1 1 1
17 21 7 5 5 4
18 28 7 6 4 11
19 31 3 4 2 22
20 21 16 2 1 2
21 32 1 1 2 28
22 29 12 8 2 7
23 19 9 3 3 4
24 34 16 3 8 7
25 27 4 8 4 11
26 23 4 4 4 11

E2
Clusters n (1, 1) (1, 2) (2, 1) (2, 2)

1 19 3 2 1 13
2 14 1 1 0 12
3 34 12 9 7 6
4 35 3 0 2 30
5 23 0 2 4 17
6 43 8 7 2 26
7 41 1 1 2 37
8 35 26 3 2 4
9 46 9 8 12 17
10 37 7 2 7 21
11 34 17 7 5 5
12 36 17 4 10 5
13 29 17 2 4 6
14 40 18 4 9 9
15 25 13 4 3 5
16 15 7 4 0 4
17 29 2 4 1 22
18 26 6 4 3 13
19 34 2 2 1 29
20 27 5 2 7 13
21 10 7 1 0 2
22 29 2 4 4 19
23 39 14 4 3 18
24 32 15 4 6 7
25 41 9 8 13 11
26 43 7 4 7 25
27 21 11 4 2 4

E3
Clusters n (1, 1) (1, 2) (2, 1) (2, 2)

1 18 12 0 2 4
2 29 16 4 3 6
3 36 14 5 6 11
4 32 15 2 4 11
5 44 5 5 5 29
6 32 19 5 4 4
7 34 24 2 2 6
8 24 19 3 1 1
9 35 2 4 2 27

10 42 17 4 8 13
11 32 12 7 6 7
12 36 3 4 3 26
13 35 13 6 5 11
14 29 7 2 3 17
15 24 3 4 4 13
16 21 6 4 3 8
17 14 4 2 5 3
18 25 4 3 2 16
19 34 2 2 3 27
20 37 12 6 1 18
21 24 0 2 1 21
22 21 17 0 3 1
23 25 4 7 2 12
24 4 1 0 0 3
25 31 1 2 2 26
26 26 7 3 5 11

E6
Clusters n (1, 1) (1, 2) (2, 1) (2, 2)

1 11 3 5 1 2
2 17 5 5 2 5
3 10 9 0 1 0
4 20 6 5 3 6
5 31 4 8 3 16
6 31 0 2 1 28
7 24 6 5 0 13
8 12 2 1 1 8
9 19 5 1 4 9
10 39 5 7 1 26
11 32 12 4 3 13
12 23 4 4 1 14
13 34 9 8 3 14
14 29 4 5 4 16
15 19 15 2 1 1
16 28 10 3 5 10
17 26 5 8 3 10
18 26 4 5 3 14
19 21 4 8 1 8
20 12 2 5 0 5
21 28 2 5 0 21
22 6 0 2 0 4
23 32 12 3 7 10
24 29 5 6 3 15
25 16 8 5 2 1
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E5
Clusters n (1, 1) (1, 2) (2, 1) (2, 2)

1 25 8 5 2 10
2 30 5 1 7 17
3 27 3 5 4 15
4 25 4 4 2 15
5 23 5 7 4 7
6 34 7 5 7 15
7 40 8 4 4 24
8 32 11 6 4 11
9 26 2 6 4 14

10 35 6 4 5 20
11 42 6 9 6 21
12 32 5 7 2 18
13 22 5 5 1 11
14 26 14 2 7 3
15 32 10 9 2 11
16 30 1 2 1 26
17 35 11 6 3 15
18 31 10 2 3 16
19 21 1 3 1 16
20 26 5 6 2 13
21 34 5 2 3 24
22 41 0 6 3 32
23 34 10 9 4 11
24 26 17 7 2 0
25 28 20 3 4 1
26 19 5 3 4 7
27 21 4 4 4 9
28 32 6 9 4 13
29 21 0 4 1 16
30 34 5 3 3 23
31 33 3 8 5 17
32 27 10 4 3 10
33 29 5 1 8 15
34 29 13 9 1 6
35 31 7 1 6 17
36 27 3 3 4 17
37 21 3 9 1 8
38 34 9 16 1 8
39 31 3 11 0 17
40 22 8 5 2 7
41 26 12 3 3 8
42 28 2 5 4 17
43 26 3 6 1 16
44 30 5 6 7 12
45 26 13 4 4 5
46 29 2 3 6 18
47 26 3 5 2 16
48 31 2 6 5 18
49 41 20 9 8 4
50 9 0 0 1 8
51 8 3 1 1 3
52 28 21 1 5 1
53 27 10 3 8 6
54 30 5 6 2 17
55 26 12 4 5 5
56 24 10 4 2 8
57 36 9 10 4 13
58 23 9 9 1 4
59 33 8 5 2 18

E4
Clusters n (1, 1) (1, 2) (2, 1) (2, 2)

1 26 2 3 3 18
2 37 3 8 4 22
3 27 8 7 5 7
4 36 6 6 7 17
5 32 1 6 2 23
6 38 1 8 3 26
7 38 1 2 3 32
8 31 18 5 5 3
9 36 18 4 5 9
10 30 8 4 3 15
11 23 8 6 1 8
12 32 7 5 10 10
13 42 7 11 3 21
14 32 5 8 3 16
15 29 3 3 6 17
16 19 4 5 1 9
17 37 3 2 6 26
18 29 2 4 4 19
19 33 1 5 2 25
20 27 2 5 2 18
21 32 5 2 2 23
22 26 13 4 3 6
23 38 0 2 3 33
24 28 3 3 3 19
25 32 8 10 2 12
26 28 13 6 0 9
27 36 5 3 4 24
28 34 3 4 3 24
29 25 3 11 2 9
30 14 2 4 0 8
31 16 3 1 4 8
32 23 0 3 2 18
33 22 3 3 4 12
34 24 5 3 4 12
35 36 8 4 2 22
36 27 8 2 6 11
37 33 19 2 6 6
38 33 9 3 3 18
39 31 5 4 2 20
40 36 6 7 4 19
41 30 4 6 6 14
42 22 5 4 3 10
43 37 10 6 6 15
44 29 4 5 3 17
45 26 4 4 2 16
46 35 0 6 1 28
47 24 3 2 4 15
48 32 3 8 4 17
49 24 6 6 2 10
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