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Abstract 

Abstract 

      Membrane chromatography is a promising process for the isolation, purification, and 

recovery of proteins, enzymes, and nuclear acids. Comparing with traditional beads 

column chromatography, membrane chromatography can faster, easier and cheaper to 

mass-produce. And also, it is easy to set up and scale up.  In this thesis, we are trying to 

study the performance of membrane chromatography, and the mixture of HSA and 

chicken egg white is used as an example. 

       We are investigating the purification of Human serum albumin (HSA) from chicken 

egg white in terms of precondition, dilution, purification method, product recovery, 

product purity and product cost.   

HSA, is a very important clinical protein. In order to obtain low cost, high efficiency 

and less risk HSA, recombinant DNA technology is used.  Many kinds of host organism 

have been used to produce recombinant HSA (rHSA).  

In this thesis, a kind of ion-exchange membrane (Mustang Q membrane capsule) 

chromatography was used. The membrane capsule is disposable because it is designed for 

use in pharmaceutical production. For this project, a cleaning method was used which 

made the membrane capsule reusable. Washing with 4 mL 1 M NaCl and 4 mL NaOH 

was sufficient for this purpose. 

Since the egg white protein solution was very viscous, it needs to be diluted before 

loaded on FPLC. Dilute experiment was done to find the best dilution level. In this thesis, 

we found that 5 times dilution was best not only for high efficiency but also for FPLC 

operation. After getting the basic conditions, some purification experiments were done to 
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Abstract 

find the optimal operation condition to purify HSA form chicken egg white protein 

solution by changing buffer pH, salt concentration in elution buffer and gradient used to 

elute proteins. The best purification condition for loading buffer is Tris-HCl buffer A 

(4.75g/L, pH 9.5) and the elution buffer is Tris-HCl buffer A + 0.2M NaCl. The purity of 

HSA recovered was 93% on the Mustang Q membrane capsule at 1 ml/min when the 

mixture of HSA and chicken egg white was diluted 10 times. And the yield was 85%. 

The impurity is probably ovoglobulin as suggested by the result of SDS-PAGE, whose 

molecular weight is close to 40kd.    

     To characterize the separation capability of the Mustang Q membrane capsules, 

equilibrium adsorption and breakthrough curve studies were made using bovine serum 

albumin (BSA). 1mg/mL BSA solution was used to get the breakthrough curve with 

different flow rate ranging from 1 to 4 ml/min. With a flow rate is 1 ml/min, 

breakthrough curve were obtained with different concentrations of BSA ranging from 1 

to 16 mg/mL. The dynamic binding capacity was found to be from 9.1 to 119.1 mg/mL. 

     The equilibrium adsorption isotherm showed Langmuir isotherm behavior with 

dissociation constant and a maximum adsorption capability. According to the result of 

isotherm adsorption, a multi-plate mathematical model was used to get the theoretical 

breakthrough curve. By fitting the theoretical breakthrough curve to the experimental 

breakthrough curve, constants in the multi-plate model were obtained and were used to 

estimate the axial dispersion coefficient of the membrane capsule. The estimated axial 

dispersion coefficient of 2.45*10-6 is very small which means that the axial 

ispersion is not significant. The adsorption process is therefore controlled by radial radius 

dispersion or film dispersion. 

scm /2
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Introduction 

Introduction 

    Human serum albumin (HSA) is a very important protein in the circulatory system of 

human blood. It is important in maintaining normal osmolarity in plasma and in 

interstitial fluid[1]. And it can be used to treat severe hypoalbuminemia or traumatic shock 

and also can be used to treat burns and maintain homeostasis[2,3].   

    Recombinant DNA technology is widely used to produce recombinant HSA (rHSA) in 

bacteria, yeast, E. coli, and some farm animals including cows, sheep, goats and even 

pigs in their milk. Among the host organisms, transgenic chickens are promising because 

of low cost and high efficiency and low risk. One objective of this thesis is to investigate 

the use of membrane chromatography for large-scale recovery of HSA from chicken egg 

white. 

    The main method used to purify recombinant protein is chromatography[4].  Membrane 

chromatography has very good characteristic for biomolecular purification. It is easy 

scale up and set up. Comparing with the traditional column, membrane has bigger pores, 

which makes the proteins can access the binding site on the membrane surface by directly 

bulk convection and with very little pore diffusion. So the total mass transfer resistance 

of proteins passing by the membrane is much lower than that of traditional bead column. 

The benefit of using membrane column is that there is no high pressure drop comparing 

with bead column. And the total process is much faster than that of bead column. From 

these points, membrane is much better than traditional bead column to purify proteins. 

But the disadvantage of membrane is obvious too. The broaden radius comparing with 

the short length makes the process not uniform which makes the total performance is 

 1



Introduction 

close to that of the traditional beads[5]. In this thesis, Mustang Q membrane from Pall 

corporation was used as a column.  
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Objective 

Objective 
 
    Isolation of rHSA from transgenic chicken egg white has not been done commercially 

on a large scale. However, due to the vast potential of getting rHSA from transgenic egg 

white, and the big market requirement for HSA, large-scale production of rHSA is highly 

demanded.  

    One objective of this thesis was, therefore, to find an efficient purification method to 

isolate rHSA from chicken egg white, potentially transferable to large scale. In the 

absence of transgenic chicken egg white, HSA was mixed with chicken egg white and got 

the mixture of HSA and chicken egg white, then HSA was isolated from the mixture by 

FPLC. The primary objective was to develop a method for recovering HSA from chicken 

egg white. We expect that this developed technique can be applicable with some 

modifications to the large scale HSA purification from chicken egg white.  

    According to the advantage of membrane, Mustang Q membrane was used to replace 

traditional bead column.  Chicken egg white is highly viscous system. When it meets 

with Tris-HCl buffer, precipitation comes out. Trying to understand what makes the 

result of precipitation, and making all of the precipitation out is important for FPLC 

system. In order to lower cost, the lowest amount of dilution level which can make all of 

the precipitation come out should be used. The following step, therefore, was to find the 

optimal method including pH of the running buffer, salt concentration of the elution 

buffer, and the gradient used to elute the protein. Minimizing cost and maximizing 

recovery is the basic objective of this thesis. At last, in order to know some basic 

membrane characteristic, flow rate and concentration effect on the breakthrough curves 

has been tested by BSA solution. And isotherm adsorption was obtained too. 
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Background 
HSA 

  Human serum albumin (HSA) is the most abundant protein in plasma and more than 

50% of the protein in human blood plasma is HSA[1,3,6]. It is a major antioxidant and 

transport protein and is important in maintaining normal osmolarity in plasma and in 

interstitial fluid[7].  

The structure of HSA 

  HSA is a 66.5 Kd single-chain, non-glycosylated polypeptide that organizes to form 

a heart-shaped protein. It is 67% alpha-helical and contains no beta-sheet structure[8]. 

HSA is the major transport protein for unesterified fatty acids around the  

 

 

Figure. 1.1[9] Domain structure of HSA and location of myristate and TIB binding sites. The protein secondary 

structure is shown schematically and the domains are colour-coded as follows: I, red; II, green; III, blue. The A and 

B sub-domains within each domain are depicted in dark and light shades respectively. 
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blood-stream. The protein is composed of three homologous domains (I-III), and each 

domain has two subdomains (A and B) that possess common structural elements. It 

contains 35 cystrinyl residues, of which 34 form 17 stabilizing disulfide bridges. 

(Figure.1.1)[9].  

  The isoelectric point of HSA is 4.9. There are pH-dependent conformational changes 

named neutral to base or N-B transition. In phosphate buffer at about pH 6, HSA is in 

the N conformation. And at pH 9 the B form is predominant. Binding of some ligands, 

especially site I-ligands, are affected by the N-B transition[10].  

Application of HSA 

  HSA can serve as an almost universal transport and depot protein in the circulation 

since it can bind reversibly a large number of endogenous and exogenous compounds. 

There are two major binding regions named Sudlow’s site I and II in HSA which 

relative to its binding to aromatic and heterocyclic[11]. 

The source of HSA 

  In a long time, the only source of HSA for clinical application is donated human 

plasma. But, this source is very limited. Also, since the HSA coming directly from 

human plasma, it has the risk of transmission of pathogenic vira such as hepatitis, HIV, 

and others[2]. So find another source of HSA is very important. In recent years, several 

groups and companies try to produce recombinant HSA (rHSA) by recombinant DNA 

technology by using different host organisms[12]. These organisms include bacteria, 

yeast, and mammalian cells like cows, sheep, goats and even pigs. These cells are 

grown and stimulated to express HSA.  
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  The ideal protein production system is one in which the host organism is easily and 

inexpensively grown and HSA is easily and inexpensively recovered in high purity and 

high yield. Among the host organisms, transgenic chickens are promising. The main 

advantage of chicken egg white to produce rHSA is that they can be bred and grown 

faster and with less expense than diary animals, and with much less capital and 

operating costs than cell culture techniques comparing with bacterial and E. coli. With 

low cost and high efficiency, and less risk, chicken egg white is the best source to 

produce rHSA.  
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The study of egg-white proteins 

  Chicken egg white has many kinds of proteins very important and valuable. Table 

1.1 lists all the proteins in chicken egg white[13]. The most important thing is that 

chicken egg white is cheap and easy to get. As a cheaper way to obtain useful protein 

comparing with the other resource, chicken egg white has been studied widely. Many 

authors have reported that they use different methods to get the proteins in chicken egg 

white.    

   Fractionation of proteins from their crude extract or culture broth was used before, 

but it was too time consuming and expensive, so in recent years, this method has been 

given up[14]. As a consequence, there are some continued improvements used in the 

separation techniques appeared such as ion-exchange chromatography[13,15], affinity 

chromatography[14], expanded bed adsorption[16,17], membrane chromatography and so 

on. They are more effective, relatively less expensive and less time consuming. 

Bedi[13]has used ion-exchange chromatography with hydrophobic interaction 

chromatography to get HSA from HSA and egg-white mixture. In this method, the 

egg-white only needs to be diluted 5 times, then the mixture is centrifuged to get rid of 

the precipitate. Then the product of the centrifuge can be used for chromatography. 

Since the precondition is shortened, it can save time and money. The recovery is more 

then 90%.  
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Table 1.1. Properties of egg white proteins and Human Serum Albumin[13]. 

 % of total Isoelectric Point Molecular Weight 

Ovalbumin 54 4.5 45,000 

Ovotransferrin 12 6 77,700 

Ovomucoid 11 4.1 28,000 

Lysozyme 3.4 10.7 14,300 

Ovomucin 3 4.7 220,000 

G3 Ovoglobulin 1 4.8 50,000 

G2 Ovoglobulin 1 5 47,000 

Ovoglycoprotein 1 3.9 24,400 

Ovoflavoprotein 0.8 4 66,500 

Ovomacroglobin 0.5 4.5 32,000 

Avidin 0.05 10 900,000 

Cystatin 0.05 5.1 68,300 

Thiamin-binding protein N.D. N.D. 12,700 

Glutamul aminopeptidase N.D. 4.2 320,000 

Minor glycoprotein N.D. 5.7 52,000 

Minor glycoprotein N.D. 5.7 52,000 

Human Serum Albunin - 4.9 66,500 
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Immobilized metal ion affinity chromatography (IMAC) relies on the formation of 

weak coordinate bonds between metal ions immobilized on a column and basic groups 

on proteins including histidine, cysteine and tryptophan. As we all know, amino acid is 

the basic structure of proteins. By using different ligands, which can interact with 

amino acid on the surface of target protein, the target protein can be separated from 

other proteins. Currently, there has been a dramatic increase in the use of IMAC for the 

separation and purification of proteins at the laboratory scale. Sadhana et al[14] used 

IMAC adsorb three chicken egg-white proteins including ovalbumin, conalbumin and 

lysozyme on Cu (II) and Ni (II) loaded on IMA gels. Also, this method gave some 

information that the hybrid bioseparation techniques such as metal chelate 

displacement chromatography and immobilized metal ion-membrane filtration is good 

at protein separation.  

  Expanded bed adsorption (EBA) is now widely used too. Ryan et. al[17] used a novel 

4-stage system to purify malate dehydrogenase (MDH) continuously from a crude 

homogenate of Sacharomyces cerevisiae, delivering a fully clarified product stream 

containing the targeted protein. This method has a high yield and purification factor. In 

this method, the adsorbent used consisted of a Procion Red HE-7B derivatized 

perfluorocarbon support. And in his work, hen lysozyme was purified from a solution 

of egg white, and from a mixture of lysozyme-enriched bovine milk. They purified 

lysozyme directly from chicken egg white using a continuous, counter-current, 

expended bed adsorption system. This technique overcame some of the problems 

associated with packed bed chromatography, such as consolidation of packing material, 
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formation of channels, and column blocking by particles in the feed solution.  

  In recent years, natural antibodies are found in chicken egg white proteins[18]. 

Natural antibodies (NAb) are antigen binding antibodies present in non-immunized 

individuals. NAb has a lot of functions. It can be involved in the clearance of foreign 

and dead or catabolic materials. Also, it may enhance antigen uptake, processing and 

presentation via B cells and it also can provide initial protection against infection. 

Finally, it may provide tolerance to body-own tissue antigens preventing auto-immune 

response. So NAb is very important. Henk and Jalkanen with their groups separately 

found that NAb are present in chicken egg white[18].  

  Ultrafiltration (UF) processes give a very high throughput of product and can be 

fine-tuned to give high selectivity in large-scale protein purification process. Ghosh 

and Cui[19] used ultrafiltration to separate lysozyme from chicken egg white. They 

found that the separation of lysozyme from chicken egg white by ultrafiltration with 25 

kDa MWCO membrane was a simple process since the membrane largely retained the 

other proteins.  

  Membrane chromatography was introduced as an integrative technology for the 

purification of proteins several years ago. The main feature of chromatographic 

separations based on membranes is the large decrease of pore diffusion. Since its 

introduction, many successful applications of membrane chromatography have been 

described[20]. Eli Ruckenstein, Xianfang Zeng[21]employed macroporous chitin 

membranes for the affinity separation of lysozyme from egg white. Figureure 1.2 is a 

process using membrane to get lysozyme from egg white. Lysozyme of very high 
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purity (>98%) was obtained from a mixture of lysozyme, ovalbumin and egg white. 

The results indicate that the macroporous chitin membranes can be used for the 

separation, purification, and recovery of lysozyme at large scale. 

 
Figureure 1.2[21]  Isolation of lysozyme from egg white. A 6 mL portion of homogenized egg white was 
diluted with 60 mL of 0.1M PBS buffer, filtered and centrifuged at 1600g for 20 min. The supernatant 
was loaded to a chitin membrane cartridge (four stacked flat membranes, 1 mm total thickness and 1.4 
mL total membrane volume) at 1 mL/min. Washing followed it with 0.1M PBS buffer at 15 mL/min and 
elution with 0.1M aqueous acetic acid solution at 5 mL/min. 
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Liquid Chromatography 

  Liquid chromatography is a commonly used technique to separate mixtures of 

protein, nuclear acid, and other molecules. 

  The principle for liquid chromatography to separate proteins is that the molecules in 

a solution (mobile phase) will interact (bind and dissociate) with the chromatography 

media (stationary phase). If the solution is allowed to flow across the solid surface, 

then the molecules that interact frequently with the solid surface will spend more time 

bound to the surface and thus move more slowly than molecules that interact 

infrequently with the solid surface.  

  The interactions between proteins and the chromatographic column are very 

complicated. Not only because the protein interaction with the solid adsorbent is at 

more than one site on protein’s surface, but also because the types and strengths of 

interaction at these sites are different. Perhaps even more important is the fact that the 

adsorbent itself presents a heterogeneous array of binding sites, even assuming that the 

interacting areas are randomly distributed.  Thus, no single parameter can describe 

adequately the protein-matrix interaction (except in highly specific affinity sites), and 

chromatographic theory for protein separation must be a compromise of 

approximations and assumptions[22].  

  Normally, liquid chromatography is performed in a column packed with spherical 

beads. The nature of these beads determines whether separation of proteins depends on 

differences in mass, charge, or binding affinity. However, the traditional packed beds 
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based chromatography has several major limitations. These limitations include high 

pressure drop across a packed bed, slow intra-particle diffusion and radial and axial 

dispersion limitations[23, 24].  

 

Ion-exchange Chromatography 

  Ion-exchange chromatography is the most popular method for protein purification.  

The theory of it is to use the difference of charges on proteins at a given pH. The solid 

adsorbents are charged, positive or negative. Then the charged protein will be adsorbed 

by the charged adsorbents. According to the difference of the interaction forces 

between the protein and adsorbent, different protein is bounded differently by the 

adsorbent. Then, when we use some other buffer to replace the protein, they (the 

proteins) will be washed out of the adsorbents in different velocity: the less the 

interaction between the adsorbent and the proteins, the faster they will be washed out. 

Then, proteins can be separated according to the sequence of their elution.  

  There are two kinds of ion exchangers: anion exchangers, which have positively 

charged matrix, and will adsorb the proteins with negative charge; cation exchanger, 

which have negative charged matrix, and will adsorb the proteins with positive charge. 

The most common anion exchangers are DEAE- ,TEAE- and QAE-, and the cation 

exchangers often being used are CM- , S- and SP-[22]. The membrane of Pall Mustang 

Q cartridge is polypropylene with quaternary ammonium ligand, which is a strong 

anion exchange adsorbent. 
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Membrane Chromatography 

  In order to overcome the limitations of traditional beads column, synthetic 

microporous or macroporous membranes have been used as chromatography media. 

This method is called membrane chromatography. 

  Membrane chromatography can overcome the limitations associated with packed 

beds based chromatography. In membrane chromatographic processes, the transport of 

solutes to their binding sites take place predominantly by convection (Figure 1.3) and 

the pore diffusion is very small comparing with the beads column, thereby the mass 

transfer resistance is tremendously reduced[5].  

  The result of this advantage is to reduce process time including adsorption, washing, 

elution and regeneration time, which save time and improve efficiency[25, 23]. Most 

importantly, fast process can avoid the inactivity of biomolecules. As we all know, all 

the biomolecules have activities. The faster is the process, the less possibility for the 

biomolecules lose activity. 

 14



Background 

 

Figure.1.3. Solute transportation in packed bed chromatography and membrane chromatography. 

 

  The idea of membrane chromatography is especially suited for large-scale process 

since the column volume of membrane can be made from less than 0.1 ml and larger 

than thousands of liters. Due to the macroporous structure of the membrane support, 

membrane chromatography has a lower pressure drop, higher flow rate and higher 

productivity[5, 26, 27, 28]. And also, membrane chromatography is particularly suitable for 

large proteins (MW larger than 250kd). In traditional beads, the pore is too small for 

large size protein to enter, so large size proteins rarely enter pores and only bind on the 

externally available surface area. Since the pore size on membrane is rather big 

comparing with that of beads, large size proteins can bind on it easily. The binding 

capacity of membrane adsorbents for large size protein is much bigger than that of 

traditional beads. Membrane chromatography has higher capture efficiency and higher 

productivity than column chromatography and shows most promising industrial 

applications for the recovery, isolation and purification of proteins and enzymes. Also, 

membrane chromatography provides easy set up and scale up. After you buy a 
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membrane module, there are connections you can choose to set up the membrane on 

the chromatography and needn’t make the column as the traditional chromatography[29, 

30]. So, membrane chromatography is really a good separation process for the 

purification and recovery of proteins, enzymes and nuclear acids.  

  All I talked above is the advantages of membrane chromatography, which is the 

reason of its fast development. On the other hand, there are still disadvantages, which 

need to be overcome. It is difficult to get uniform flow for the short wide beds of the 

membranes. This happens in many cases and makes the membrane efficiency 

decrease.[29]. And adequate flow distribution is also necessary to maintain the 

membrane efficiency when scale-up.  

The shapes of the membranes 

  Here, I want to mention the shapes of the membranes used for membrane 

chromatography. Membrane chromatography can reduce the mass transfer resistance 

but diffusion transport is not totally absent. Flow distribution is a major factor in 

chromatographic process that can affect transport phenomena. There are mainly three 

shape membranes including flat sheet, hollow fiber and radial flow (Figure 1.4) used 

for protein purification[5].  

  Comparing with the other two shapes, flat sheet is simpler and cheaper design of the 

disk holder. So for lab use, it is better than the other two. But there are many 

disadvantages too. The application of membrane disks are usually restricted by their 

inability to deal with crude solutions, the problems of flow maldistribution and disk 

edge leaking in large-scale separation[25].  
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  A hollow fiber membrane usually consists of a bundle of several hundred fibers 

potted together within a module in a shell conFigureuration. Hollow fiber membranes 

are considered better because of their high specific surface area leading to a higher 

relative adsorption capacity. In addition, the cross-flow cartridge design of hollow 

fibers is feasible to induce an effective separation for crude solutions. There are 

problems with hollow fiber membranes too. First, the ligand immobilized onto the 

fibers are distributed nonuniformly which lower the specific adsorption. Second, if the 

ligand is immobilized onto the fiber uniformly, it is difficult to assemble the fibers into 

a cartridge. Radial flow membranes are prepared by spirally winding a flat sheet 

membrane over a porous cylindrical core.  

  Radial flow membrane is clearly not suitable for pulse chromatography. It is likely to 

be more suitable for use in the bind and elute mode. Radial flow membranes are 

claimed to be suitable for large-scale applications[5].  
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Figure. 1.4. Flow in membrane adsorbers. 

  Further improvement with proper design and operation of adsorptive membrane is 

still very important. In this thesis, we use mustang Q membrane capsule. It is a kind of 

flat sheet membrane with 6 layers flat sheets housed within membrane capsule. It is 

cheap and easy installed. 

 
Application of membrane chromatography for protein purification 

  Usually, the membranes used for membrane chromatography have functional ligands 

attached to their inner pore surface as adsorbents. There are many types of adsorptive 

membranes including ion-exchange membranes, affinity membranes, reverse-phase 

membranes and hydrophobic interaction membranes. All these membranes have been 

developed for the purification of proteins, enzymes, and antibodies from various 

sources[20].  
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Membrane cleaning 

  In some applications, sample molecules may not fully elute or may precipitate on the 

column which makes membrane fouled.  

 

Methods used to clean the membrane  

  In the clean up method, reverse the flow direction to help flush out particulates and 

to prevent contamination of the lower part of the bed. Also, slow the flow rate to 

expose the column to the regeneration solution for several minutes at each step of the 

cleaning protocol.  

  Inazumi[31] used 0.3-2.0 N acid solution at less than 50oC to clean the ion-exchange 

membrane which is used for electrode. And there is a patent, in which NaClO are used 

to clean cation exchange membranes.  A Neocepta CH-45 membrane was soaked in 

aq. 500 ppm polyethyleneimine (molecular weight 1000) for 10 hour, and then in aq. 

HCl-HCHO for 20 hours[32]. When used along with anionic Neocepta ACS membranes 

in stacks for seawater desalination, the pressure increased from 0.5 to 1.1 kg/cm2 after 

3 mo. Aq. 1000 ppm Na dodecylbenzenesulfonate was circulated through the diln. 

Chambers for 1 hour and aq. NaClO, contg. 100ppm available Cl, at pH 11.0 for 3 

hours to reduce the membrane pressure to 0.5kg/cm2. Also, Uehara[33] used a mixture 

of an organic solvent including alcohols and alkali metals and alkalies (including 

NH4OH) to clean an electrodialyzer consisting of ion-exchange membranes. 

Heterogenous ion-exchange membranes consist of ion exchange resins dispersed in a 
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polypropylene matrix. They have good electro properties. They can resist ≤3 kg/cm2 

gage pressure and ≤50oC temperature. Although the membrane can be fouled by 

organic matter in the raw water, its ion exchange capacity can be fully regenerated by 

cleaning. Kishi[34] used 3% NaOH solution at 40oC for 1 hour followed by a rinse with 

HCl for 0.5 hour to clean it.   

 

 

 

Mustang Q capsule 

  The new Pall Mustang® Q product range is designed to remove protein, DNA and 

other macromoleculars in a flow-through step in downstream bioprocessing by anion 

exchange filtration[35]. In this thesis, I used Mustang Q capsule to purify HSA from 

chicken egg white.  

 

Figureure. 1.5 Mustang Q membrane capsule[33]

  On Mustang Q membrane capsule, pendant quaternary amine groups are 

immobilized on the surface of the membrane. Since pendant quaternary amine groups 

have positive charges and only negative charged protein can be adsorbed on it, this 

membrane capsule is anion exchange adsorbent with a crosslinked polymeric coating. 
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The pores in Mustang Q membranes are 0.8µm which is very large to allow 

biomacromoleculars to access all the binding sites by direct fluid convection. So the 

pore diffusion resistance is very small comparing with traditional column. This 

produces a very high dynamic protein binding capacity in comparison to beads with 

large diffusive pores. Combining this high capacity membrane with a unique capsule 

design resulted in the Mustang Q Capsule. Each Mustang Q Capsule contains 6 layers 

of pleated membrane that will bind genomic, plasmid, protein and viral DNA. These 

filters are specifically designed to be single use to eliminate cleaning and cleaning 

validation. 

  The membrane used for this thesis is acrodisc unit mustant Q membrane, just as the 

Figure. 1.5[35]. The membrane bed volume of the acrodisc is 0.18 ml, and the pore size 

of the membrane is 0.8 µm. The pressure and temperature that can be stand is 5.5 bar 

(550 kPa, 80 psi) at 21 - 24 °C (70 - 75 °F) and 2.1 bar (210 kPa, 30 psi) at 60 °C (140 

°F), the flow rate should be between 1~4 ml/min. 

 

 

 

 

 

 

 

 21



Background 

Breakthrough and Breakthrough Curves 

  If a fluid having an absorbable solute is contacted with a stationary phase which has 

ligands on, equilibrium between the solute and the adsorbent will be obtained. In order 

to analysis the mass transfer of the mobile phase in the membrane capsule, 

breakthrough curves are always used. When continuous sample solution flows into the 

membrane, a breakthrough occurs by detection of the sample at the system outlet.  

  Breakthrough is defined as that point where the exit protein concentration in the 

fluid phase equals 10% of the feed sample concentration[36]. In this thesis, 

breakthrough is defined that point that there is protein in the exit as described on the 

manual of the membrane capsule. Actually, this concentration may be taken as the 

minimum detective concentration. Loading capacity is defined as the amount of 

protein bound to the membrane at the point of breakthrough. A broadly disperse 

breakthrough curve causes a decrease in ligand utilization, or a delay in the saturation 

time, or a waste of feed solution.  

  Breakthrough curve is the plot of effluent concentration of the sample versus time or 

throughput volume. Sometimes, dimensionless breakthrough curves are used. 

Dimensionless breakthrough curves are obtained by plotting dimensionless effluent 

concentration versus dimensionless effluent volume. The dimensionless effluent 

concentration is the ratio of effluent sample concentration over feed sample 

concentration. The dimensionless effluent volume is the ratio of the amount of sample 

introduced to the system over the total system capacity at equilibrium[37].   
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Isotherm Adsorption 

  The mass transfer of the adsorption to the immobilized phase can be described by 

chase[38]: 

1 ( )l
dq k C q q k q
dt

= − − 2                             (1) 

here, C is the mobile phase concentration, q is the stationary phase concentration and ql 

is the maximum binding capacity of the stationary phase and t is the time. The rate 

constant and , are “lumped” parameters that represent rate of adsorption and 

desorption of the protein to the immobilized ligand as well as contributions from mass 

transfer limitations.  

1k 2k

Langmuir Isotherm[14]  

  With the assumptions that all binding sites have equal energy, are independent in 

nature and single-site interaction occurs between protein and ligand, at equilibrium, Eq. 

(1) can be reduce to: 

l

d

q Cq
K C

=
+

                                       (2) 

2

1
d

kK
k

=                                           (3) 

Eq. 2 is called Langmuir isotherm equation.  
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Multi-plate Mathematical Model Used to Predict Breakthrough 

Curves 

  Hao and Wang developed a multi-plate mathematical model to describe the 

chromatography process as occurring in a series of theoretical plates[39]. In order to 

understand the model, I cite the equations used for the model in their paper here. In 

each plate, the amount of the solute entering the plate should equal to the sum of that 

leaving and the increment in mobile and stationary phase. The mass balance can be 

expressed as: 

0 1 ,1
(1 )m

s
V VC dV C dV dC dC

N N 1
mε ε−

− = +                 (7) 

1
(1 )m

i i s i
V VC dV C dV dC dC

N N,
m

i
ε ε

−

−
− = +                (8) 

1 ,
(1 )m

N N s N
V VC dV C dV dC dC

N N
m

N
ε ε

−

−
− = +             (9)  

here, V is the effluent volume, is the membrane volume, is the theoretical plate 

number, 

mV N

ε is the porosity, and C sC are the solute concentration in the mobile and 

stationary phases.  

  By adding above equations, we obtained 

,
0

1 1

(1 ) N N
s im m

N
i i

dCV VC C
N dV N d

ε ε
= =

−
− = +∑ ∑ idC

V
               (10) 

/idC dV and may be assumed to decrease to zero with increasing effluent 

volume. Then Eq. (10) can be simplified as: 

, /s idC dV

,
0

(1 ) s Nm m
N

dCV VC C
N dV N dV

ε ε−
− ≈ + NdC

                    (11) 

  From Langmuir isotherm equation (2), 
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It can be written as: 

,
l N

s N
d N

C CC
K C

=
+

                                        (12) 

so, 
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N                    (13) 

Using Eq. (12) into (13), 
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Eq. (14) can be rewritten as:  
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With initial condition  at V=0, the analytical solution of Eq. (15) is: 0NC =

2
0 0

ln(1 )
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l N l d
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  If C replaces  to denote the outlet concentration and the following 

dimensionless groups are introduced to simplify the expression,  

NC

0

Cc
C

=  
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0

lC
C

λ =  

0

d
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Eq. (16) can be expressed as below, 
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  can be considered as the theoretical dimensionless breakthrough volume at which 

the solute just reaches the outlet. Parameter 

0v

α may indicate the chromatographic 

performance. The value of and 0v α can be obtained by fitting experimental data Eq. 

(17).  

The author of the model said that, Eq. (16) may be rewritten as[36]  

N
cAcv )()( =                                                (19) 

Comparing Eq. (17) and (19), the value of α and should be similar, especially when 

is very big.  

N

)(cA
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Materials and Methods 

Transgenic HSA 

   Since there is no transgenic egg with HSA(human serum albumin). A model of a 

recombinant protein mixture is used here. HSA was added to egg white, then we tried 

to separate HSA from the protein mixture using anion-exchange membrane 

chromatography. Since the protein mixture was very viscous and it would block the 

pores on the membrane, increasing the operation pressure and decreasing the flow rate, 

it was diluted first by the running buffer. There came some precipitate after dilution, so 

a centrifugation step was used before applying to the membrane. The eggs were bought 

from the grocery store; HSA is from Sigma (A-1653), the centrifuge is IEC/Damon HT 

table-top centrifuge. The separation process is shown schematically in Figure 2.1.   

Dilution in 
sample 
buffer and 
addition 
HSA 

 
 

Centrifugation 
Chicken
eggs 
from 
grocery 
store 
Figure

 

Chicken
egg 
white 
Anion-exchange 
membrane 
chromatography 

 

 2.1 Steps for HSA purification from crude chicken egg white 
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FPLC 

Experimental Setup 

   FPLC (fast protein liquid chromatography) system is from Amersham-Pharmacia 

Biotech. It has UV detector, pH meter and conductivity meter. All of there were 

calibrated and controlled by a computer using the UNICORN software coming with 

the system. And there is also a printer connecting with the system. The details about 

how FPLC running can be found on a master thesis written by Mandeep Bedi[13].   

Ion-exchange Chromatography 

   Strong anion-exchange adsorption on Mustang Q membrane capsule from Pall was 

performed. The flow rate used for protein separation was 1 ml/min.  

Buffers 

   All the buffers for anion-exchange chromatography were made in deionized water 

(Millipore, Milli-Q). Before applying on the FPLC, air bubble were removed by 

degassing. Buffer was degassed using a vacuum pump by pulling a vacuum while  

 

Table 2.1. Buffer formulations for ion-exchange chromatography in 1 litre deionized water 

Name Composition 

Sample buffer A 4.75 g Tris Base + HCl 

Elution buffer B Sample buffer A + NaCl 

 

Stirring. Table 2.1 gives a list of buffers used. For sample buffer A, it was made by 

adding 4.75 g Tris Base into 1 L deionized water, then added some drops of 
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concentrated HCl. Different pH needed different drops of HCl. Once sample buffer A 

was obtained, added NaCl to get elution buffer B. The amount of NaCl used depended 

on the salt concentration needed in the experiment.  

Chicken Egg White Solution Preparation 

   Egg white was separated from the yolk with care first and put the egg white into a 

cylinder. Read the volume of the egg whiter and then put the egg white into a beaker. 

The egg white solution was slowly stirred until it seems homogenous. Separate the 

CEW solution into 10 tubes, each tube contained about 10 ml, then put the tubes into 

the refrigerator. In order to keep the protein fresh, a fresh egg only can be stored one 

week at most before it was used. Each time, three tubes were used.  

When one volume egg white was added one volume Tris-HCl buffer A, the 

solution was called 2X in this thesis. The sample was diluted 10X, then put the solution 

with precipitation 10mL into a 15mL tube. Centrifuged the tube at the speed of 

30,000rpm, got rid of the precipitation, and kept the supernatant into another tube.  

Based on a usual 30-35 ml egg white per egg, and assume that 10% of the egg 

white is protein given 3 to 3.5 g of protein obtained from each egg and a protein 

concentration of 0.1g/mL before dilution supposing that the chicken egg white protein 

concentration was 10%.  

Procedure 

   As we all know, each protein has its own PI (isoelectric point). When the buffer pH 

is larger then PI, the protein has negative charge, and on the other hand, it has positive 

charge. And when the buffer pH equals to PI, the protein will become precipitation.  
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   Since the PI of HSA is close to 5, and there are some other proteins in the CEW 

whose PI is very close to that of HSA, the pH of buffer was chosen larger than 5. At 

this time, the proteins whose PI larger than the buffer pH has positive charge, and they 

are not bound on the membrane which has positive charge. Then they will be washed 

out directly without binding. For the other proteins, they have negative charge, so they 

will bind on the membrane first. But the interaction between the proteins and 

membrane is different since the amounts of the charges these proteins have are 

different. So when eluted, they come out at different times. The tighter the interaction 

between the protein and membrane, the slower the protein comes out.  

In this experiment, different buffer pH, and different salt concentration in elution 

buffer, different gradient were used to optimize the resolution. Columns were washed 

by 100% buffer B to get rid of any bound protein after the runs.  
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Protein Assay 

Protein concentration was measured by the Bio-Rad protein assay (Bio-Rad 

Laboratories, 500-0006).  

Sample preparation 

Protein solutions were made in pH 9.5 Tris-HCl buffer to produce absorbance 

values between 0.1-1.0 for the standard procedure, and 0.2-1.0 for microassay 

procedure. 

Analysis 

For concentrations of 0.2 to 0.9 mg/ml the standard assay was used. 5 mL diluted 

Bio-Rad dye reagent was placed in a test tube and 100 µL sample was added and 

vortexed. After 5 minutes, the absorbance of the sample was read by 595 nm. 

According to the calibration curve for standard procedure made by BSA, the sample 

concentration can be obtained. 

For concentrations of 0.001 to 0.01 mg/mL, the microassay was used. 0.6 mL 

Bio-Rad dye regent was placed in a test tube and 2.4 mL sample was added and 

vortexed. After 5 minutes, the absorbance of the sample was read at 595 nm. 

According to the calibration curve for microassay procedure made by BSA, the sample 

concentration can be obtained.  
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SDS-PAGE Analysis 

   Laemmli sodium dodecyl-polyacrylamide gel electrophoresis(SDS-PAGE) was 

used to analyze sample and estimated the purity of the product. The gel used is 

Bio-Rad Tris-HCl 12% precast polyacrylamide gel. 

Collect the product 

   The samples were collected as fractions from the membrane when there was the 

peak we wanted coming out. Since there was a distance between the UV detector to the 

exit of the sample, there was a delay from the peak coming out to the sample coming 

out of the exit. Fill the tube between the UV detector to the exit, then get the solution 

out, the total volume of the solution was 1.5ml. Since the flow rate was 1 ml/min, the 

time interval from the peak coming out to the product coming out of the exit was 90 

seconds.  

V vt= , 

90Vt
v

= = seconds 

here is the volume of the solution in the tube from the UV detector to the exit.  V

v  is the flow rate, it is 1 ml/min here, and  is the time interval from the peak coming 

out to the product coming out of the exit. Using stopwatch to get the product of each 

peak we wanted. Then collect the sample. From the peak, we can see how much 

volume the sample has, then collect the same volume of product.  

t
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Electrophoresis procedure 

  Precast Polyacrylamid Gels (12%, Bio-Rad Laboratories) were used. The gels were 

loaded on the electrophoretic chamber (Bio-Rad Laboratories, Mini Protean III 2-D 

Cell), in which was filled by electrode buffer. There were 10 lanes on the gel. 20µl of 

sample was loaded on each lane, 2µl molecular weight marker was loaded and in the 

first lane. The initial voltage used was 200 V(Hoefer Scientific, PS 500XT) and current 

was 20mA. Proteins were concentrated into respective bands on the gel. When the 

bands were out of the concentrated area, the current was changed to 40 mA, till the 

bands of the proteins run to the end of the gel.  

Coomassie Brilliant Blue strain 

   Staining of the gels was carried out using Coomassie brilliant blue overnight. And 

the Coomassie brilliant blue can be collected and reused next time. Destaining of the  

Table 2.2 Composition of the buffers used for SDS-PAGE [40]

Electrode buffer 3g Tris + 14.4 glycine in 1 L 

Solubilization buffer 3.03g Tris in 40ml water, add HCl to 

adjust pH to 6.8. Diluted to 50 ml. 

Loading buffer 2mL solubilization buffer + 1 ml 

87%glycerol+ 0.1mg bromophnol blue 

 

gels with 40% methanol and 10% acetic acid until adequate visibility of the bands was 
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achieved. After destaining, the gel should be dried in the air, and avoiding broken. In 

the event of excessive destaining the gels were stained back again for best result. The 

gels were then taken photos by a digital camera. 
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Dilution Experiment 

In order to determine the least possible dilution, dilution experiment was made. 

When 10ml Tris-HCl buffer was added into 10ml egg white protein mixture, it was 

called 2 times dilution, and 2X was used to express it. In this experiment, 2X, 3X, 4X, 

5X, 6X, 7X, had been used separately.  

Since there were precipitate coming out, when the CEW solution was loaded on the 

FPLC, precipitate will appear again after loading sample when buffer A is used. The 

precipitate can bound on the membrane unevenly and it will block the pores on the 

membrane, which will cause the operation pressure to increase greatly. And also, the 

amount of protein bounded on the membrane as precipitation is unknown, and the 

interaction between the precipitation and the membrane is unknown too. The 

precipitation can be washed out in different time comparing with the protein in the 

solution, which makes the total process complex. So it is very important to find a good 

dilution level.   

When one volume egg white was added one volume Tris-HCl buffer A, the 

solution was called 2X in this thesis. Added 5mL egg white into a tube first, then added 

5mL Tris-HCl buffer, used glass pole to stir the beakers till they are mixed thoroughly 

to get 2X solution with precipitate. Then added another 5mL Hris-HCl buffer into the 

beaker to get 3X. Kept doing this to get 4X, 5X, 6X, 7X, 8X, 9X and 10X solution 

separately. Observe the precipitation in the beakers.  
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Breakthrough Experiment 

    In order to test some characteristic of membrane using for protein purification, 

breakthrough experiment was designed. And since the purpose of this experiment was 

to test the performance of the membrane capsule used to purify protein, it is no need to 

use egg white. Because BSA has similar structure as HSA, and HSA is too expensive to 

do this experiment, BSA was used to do this experiment.  

The system was set up as Figure. 2.2. Track 1 is the way the sample loop was filled 

with buffer. Track 2 is the way that the sample loop was filled with sample. 150 mL 

sample column was used.  

 

Figure 2.2 Set up for breakthrough experiment 
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Flow Rate Experiment 

   This experiment is designed to optimize flow rate. A high flow rate is generally 

desirable to increase process throughput, however, too high a flow rate will cause 

excessive pressure drop and may damage the membrane. According to the manual of 

the membrane capsule, the flow rate that the membrane can stand is 1-4mL/min. In this 

experiment, 1mg/mL BSA solution was made then used different flow rate 1 mL/min, 

2 mL/min, 3 mL/min and 4 mL/min to get breakthrough curve separately. In this 

experiment, BSA was used rather than HSA since BSA has similar properties but is 

less costly than HSA. 

Process 

   The membrane was equilibriumed with 15 column volume first, then loaded 17 mL 

sample using 150mL sample column in which the concentration of BSA is 1 mg/mL, 

then the breakthrough curve were obtained. Fig. 2.2 showed the set up of this 

experiment.  

Concentration Experiment 

   In order to test the effect of protein concentration on the breakthrough curve, 

different BSA concentrations ranging from 1 to 16mg/mL were used to get 

breakthrough curve when the flow rate was 1mL/min.   
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Membrane Cleaning  

Mustang Q membrane capsule is said to be used once. But it is too wasteful to use 

it to get the purification condition. So cleaning experiment was designed to find a good 

way to clean the membrane. If the sample is simple like HSA, it is enough to clean the 

membrane only use 100% buffer B. If the sample is CEW or the mixture of CEW and 

HSA, another method should be used since there are so many kinds of proteins in CEW 

and the interaction is too complicated to use 100% buffer B itself. 

Two methods had been tried. One was to use 4 ml 1M NaOH and 4 ml 1M NaCl to 

clean the membrane each time after it was used. Another one was to use 10 ml 100% 

Tris buffer B to clean it each time after a membrane was used, and after it was used 5 

times, use 4 ml 0.5M NaOH to clean it. Comparing the reproducibility of the graph and 

the total times a membrane could be used to know which method was better.  

Table 2.3 The methods used for cleaning the membrane 

Method one 4 ml 1M NaOH + 4 ml 1M NaCl/use 

Method two 10 ml 100 Tris buffer B/use + 0.5 M 

NaOH/5 use 
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Isotherm Adsorption Experiment 

In order to test the isotherm capability, experimental isotherms were obtained for 

the isotherm absorption of BSA on Mustang Q membrane. Since BSA has similar 

structure as HSA, and HSA is too expensive to do this experiment, BSA was used to do 

this experiment.  

Process 

The sample was buffered by Tri-HCl buffer (pH 9.5). Different concentrations of 

BSA solution were used in this experiment including 1, 1.2, 1.4, 1.5, 1.6, 1.8, 2, 2.5, 3, 

3.5, 3.7, 4, 4.2, 4.4 and 4.5 mg/mL. 5 mL of these solutions was put into small test 

cells[41,42].  

The Mustang Q membrane capsule was preconditioned by 4 mL 1M NaOH and 4 

mL 1M NaCl by 10cc syringe. Then the membrane capsule was put on FPLC to desalt 

by Tris-HCl buffer (pH 9.5). Then Mustang Q membrane capsule was opened by 

mechanical force and the membrane was taken out. Each capsule has 6 layers of 

membrane. 3 layers of membrane were put into the BSA solution mentioned above. 

And a top was used to avoid solution loss. The membrane was kept into the solution 

for 48 hours. Then test the adsorption at 595 nm. According to protein assay mentioned 

before, the concentration left in the solution can be obtained by measuring absorbance 

at 595nm. Then according to mass balance,  

09.0
5*)( 0 CC

Cs
−

=  

The concentration bound on the membrane can be obtained.  

sC  is the protein concentration on the membrane, C is the concentration in the 
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solution after membrane adsorption,  is the original protein concentration. Since 

the total membrane volume of the capsule is 0.18 mL, and there are 6 layers membrane, 

the volume of 3 layers membrane should be 0.09 mL.  

0C
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Multi-plate mathematical model 

Frontal analysis (FA) is a useful method for chromatography graphic studies 

especially for preparative chromatography where maximum usage of adsorbent is 

desirable. In order to test the partition coefficient, multi-plate mathematical model was 

used. This model was established first by Weiqiang and Junde[39]. It can fit well 

experimental breakthrough curves from membrane affinity chromatography. Since in 

this thesis, membrane chromatography is used and breakthrough curve has been 

obtained, frontal analysis experiment according to this model was used too.  

From adsorption isotherm experiment, Kd and Cl is known. For the experimental 

break through curve, C0 was 1mg/mL. Then the dimensionless groups are available 

now. For the experimental break through curve, V is effluent volume which can be got 

from the curve, and Vm is the volume of the membrane capsule, which is 0.18mL, also 

the porosity of the membrane capsule ε was assumed to be 0.7. Then v is available. 

According to the equations, v0 and α can be obtained. Then the simulated break 

through curve can be available.  
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Result and discussion 

Calibration curves 

    For Bio-Rad protein assay, there are two kinds of assay process. For standard process, 

the linear range of the assay for BSA is 0.2 to 0.9mg/mL. And when the protein  

standard procedure calibration curve

y = 1.0883x + 0.0672
R2 = 0.9991

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

BSA concentration(mg/ml)

O
.D

 5
95

 

cal i br at i on cur ve f or  mi cr oassay

y = 0. 0439x + 0. 0733
R2 = 0. 9903

0
0. 2
0. 4
0. 6
0. 8

1
1. 2
1. 4

0 5 10 15 20 25 30
pr ot ei n concent r at i on( ug/ ml )

O
.D

.5
95

 

Figure 3.1 Calibration curve for protein assay, a) standard procedure, b) microassay procedure 

concentration is smaller then 0.2mg/ml, standard assay is not accurate enough. Then, 

microassay procedure should be used.  

 42



Results and Discussion 

    In this thesis, protein concentration can be obtained by spectrophotometer at 595, then 

according to the calibration curve in Figure 3.1, protein concentration can be obtained. 
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Purification result 

    In order to optimize the separation and resolution between HSA and chicken egg white 

proteins, various buffers with different pH, elution buffers with different salt 

concentration, and step gradients had been tried. Table 3.1 shows the time profile for 10X 

sample when loading buffer A was Tris-HCl pH 9.5 and elution buffer B was Tris-HCl 

pH9.5 + 0.2M NaCl which achieved the best result.      

 

Table 3.1. Parameters for elution of HSA and CEW proteins (10X) 

Time(minutes) Buffer A (percent) Buffer B(percent) 

0 100 0 

0.9 100 0 

6.3 55 45 

10 40 60 

20 0 100 

29 0 100 

 

 

This method was separately applied to chicken egg white and HSA, and the results

showed the positions of the peaks which were later confirmed by SDS-PAGE as 

illustrated by Figure 3.5. 
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Figure 3.2. HSA elution from Mustang Q membrane capsule at 1 ml/min 

 

In Figure 3.2, there was a small peak coming out when the time interval was from 9 to 

about 18 mins and a big peak coming out when the time interval was from 20 to 30 mins. 

The HSA was made in ninetieth, so maybe part of the HSA has denaturated or just 

because the purity of the HSA is 97%, there is just some impurity in the small peak. The 

HSA peak was eluted when buffer B was 60% and buffer A was 40%. 
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Figure 3.3 Elution of egg white proteins from Mustang Q membrane at 1ml/min. 

 

    Egg proteins are shown in Figure 3.3.  Egg white proteins were separated to three 

peaks, the first one was the proteins including lysozyme and avidin which had positive 

charges at this buffer pH and can’t be adsorbed by the membrane which has positive 

too. The second peak is separated into three small branches, maybe they are different 

kinds of proteins which have similar interaction with the membrane. So they come out 
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almost the same time, but still have some different. The second peak was the proteins 

which were eluted when the gradient is from 0 to 45% B buffer. And the time interval 

was from about 9 to 20 min. The third peak came out when the gradient is 60% B 

buffer. The time interval of it is from 22.5 to 28 min.  

 

Figure 3.4 Elution of HSA and Egg which proteins from Mustang Q membrane capsule at 1 ml/min  

 

    The chromatogram in Figure 3.4 shows egg white proteins and HSA run together. In 

this graph, there are three peaks which were similar with the egg white protein curve. 

 47



Results and Discussion 

And for the second peak, the small branches do not exist any longer, but a big whole 

peak. Because the impurity protein in HSA is mixed with the proteins in egg white, and 

they changed the interaction between the proteins and the membrane, so the little 

different of the proteins in egg white was almost disappear, and they came out together.  

The third peak was much bigger, because the HSA was added into the proteins which 

come out last in the egg white. The small impurity above at 25 mL in the egg 

chromatogram was visible as in the HSA peak and was difficult to separate from the large 

HSA peak. So the third peak is not pure HSA. The contaminant may be 

ovomacroglobulin or one of the ovoglobulins whose MW was close to 40kd as shown by 

SDS-PAGE. If pure HSA is needed, another process should be used, such as the 

hydrophobic column used in Bedi’s thesis. Further purification was not investigated here. 

    Fractions were collected for the impurity peak shown in Figure 3.3 and the HAS+ 

impurity peak in Figure 3.4 and analyzed for protein concentration using a total protein 

assay.  For a 0.05mL sample load of CEW+HSA at 10X dilution and a flow rate of 1 

mL/min, the overall yield of HSA is around 85%. The purity is 93% under the similar 

conditions, obtained by comparing the total protein for HSA+ impurity in Figure 3.4 with 

the impurity peak along in Figure 3.3 for an identical CEW load in both cases. 
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SDS-PAGE 

    Figureure 3.5 shows a gel verifying the presence of different proteins recovered by ion-

exchange chromatography of HSA in chicken egg white mixture. The sample from 

second HSA elution peak was loaded in the second lane; the sample from the third HSA 

and CEW mixture elution peak was loaded in the 4th lane; the sample of 10X HSA and 

CEW mixture was loaded in the 6th lane; Molecular weight markers for the range of 6.7 

to 209 kD were loaded in the lane 8. 

 

 
209kD 
 
120kD 
 
52.8kD 
 
33kD 

 

Figure 3.5 SDS-PAGE of chicken egg white proteins and HSA recovered by mustang Q membrane. 
Lanes: (2) Sample HSA; (4) Recovered HSA; (6) Sample CEW+ HSA; (8) Molecular weight markers. 
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From the gel result, the molecular weight of the impurity in the elution of HSA and CEW 

was around 40kD. And the molecular weight of HSA is close to 66kD which matches the 

published molecular weight of HSA very well. 
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Dilution experiment 

Since the mixture of chicken egg white and HSA is very viscous, it can’t be loaded 

on FPLC directly. Tris-HCl buffer A was used to dilute the mixture. When the mixture 

met with Tris-HCl buffer, some precipitate came out. Precipitation can’t be loaded on 

FPLC too. It will cost too much if dilute level is too high, so an optimal dilution level 

should be found. Various runs were made to study the dilution level. 

the 

 

 

Figure 3.6 Phenomena for diluted egg white at different dilution level 

 

 

       When Tris-HCl buffer was added into egg white protein mixture, some phenomena 

were found. At first, when dilution level increased, there were more precipitation came 

out, then if the dilution level increased to 5, the largest amount of precipitation came out. 

When the dilution level went on increasing, the amount of precipitation decreased. Like 

Figure.3.6 showed.There are much more precipitation in the first beaker. The reason for 

the phenomena was that some kind of protein could change their structure, like folding 
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when it meets with Tris-HCl buffer. Then it denatures and becomes precipitation. When 

the protein mixture was diluted 5 times, almost all of this protein has been out as 

precipitation, so there were the biggest amount of precipitation came out at 5X. But this 

kind of denature is reversible, when more Tris-HCl buffer was added into the beaker, the 

amount of precipitation became smaller.  

Since the loaded protein meets with Tris-HCl buffer in the FPLC system, all of the

precipitation should be got rid of before it is loaded on the system.  During the 

purification experiment, all of the samples were diluted 5 level or more to make sure all 

of the precipitation had come out.  

 

 After diluted, the solution was centrifuged at 3000rpm for 20min, then the

precipitation was got rid of and the supernatant was used as sample for FPLC.  
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Breakthrough experiments 

1. Effect of flow rate on breakthrough curves 

    For Mustang Q membrane, the flow rate can be 1-4 ml/min. Different flow rate has 

been used to get the breakthrough curves when protein concentration is 1mg/ml.  
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Figure 3.7 Effect of flow rate on breakthrough curves when protein concentration is 1mg/ml 

In Figure. 3.7, we can find that, the larger is the flow rate, the larger is the slope of the 

breakthrough curve. And also, the mobile phase concentration can reach to the original 

protein concentration in less time interval for the higher flow rate. So decreasing the flow 

rate can delay the start of breakthrough, steepen the breakthrough curve and complete it 

in a longer time[43]. The observed effect arises from pore diffusion althrough a slower 

flow permits a longer contact time of a point concentration in the mobile phase with the 

stationary phase, resulting in more complete equilibrium. The observed behavior 

indicated that the pore diffusion resistance still affects the adsorption process although for 
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membrane it is not very important. When different flow rate was used, it still impacts the 

adsorption process.  

 
 
 
2. Effect of protein concentration on breakthrough curve when flow rate is 1 ml/min 

    In order to test the effect of protein concentration on breakthrough curves, different 

concentrations of BSA have been used to get breakthrough curves. 

 

-2 0 2 4 6 8 10 12 14 16 18 20

0.0

0.2

0.4

0.6

0.8

1.0

C
/C

0

t(min)

 16mg/mL
 6mg/mL
 1mg/mL

 
 

Figure. 3.8 Effect of protein concentration on breakthrough curve when flow rate is 1 ml/min 

    From Figure. 3.8, we can find that increasing protein concentration with the same flow 

rate (1 ml/min) can cause a steeper rise and earlier completion of breakthrough curve just 

as the effect of decreasing the flow rate on the breakthrough curves. Increasing protein 

concentration causes a increase in pore diffusivity[43]. It is the increased pore diffusivity 

that contributes to the increase in the initial slope of the breakthrough curve and the early 

start to the curves with increasing protein concentration. 
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Membrane fouled and cleaning 

    When the membrane is fouled, there is no adsorption left.  The possible reasons for 

membrane fouled includes: the membrane is destroyed; the ligands structure is destroyed 

or lost; the adsorption is irreversible and the membrane is blocked.  

Figure 3.9 showed the elution of BSA through a fouled membrane. 

 

Figure 3.9 Membrane fouled curve.  

      In this graph, there are two peaks, the first one was much bigger than the second one. 

And the first one came out before buffer gradient. The first peak was the BSA coming out 

just after they are loaded on the membrane. It means that they were not bound at all. The 

second peak is BSA which are bounded on the membrane and washed out later. The 
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second peak is much smaller than the first peak, which means that almost all of the BSA 

is washed out without binding. At this time, we say that the membrane is fouled.  

    The membrane capsule is designed to use once, or to say disposable. To save money, 

we do membrane cleaning.  When 10 ml 1M NaOH was used to clean the membrane, it 

can be used again. But since 1M NaOH is strong base, it maybe destroy the membrane 

and leading to the irreversible membrane dead. So the membrane is cleaned in this way: 

using 100% B buffer washing 20 min each time the membrane is used. Then use 10 ml 

0.5 M NaOH to clean the membrane when it has been used 5 times. This method can 

keep the membrane clean enough to be used. On this experiment, 10 membranes capsules 

are used hundreds of times by using this cleaning method. Since the membrane can be 

cleaned, the membrane dead is reversible. The possibility for the membrane dead is that 

the membrane is blocked.  

    When the buffer pH is the same as the PI of protein, the protein will precipitate. The 

precipitation not only can block the membrane pores, which will cause membrane to be 

fouled, but also it will cause the whole process unrepeatable. Because the precipitate is 

denatured protein, they are not acted as they are supposed to be eluted on a certain 

gradient or pH. At this time, the membrane seems not dead, but the result is not accurate. 

So thorough cleaning is very important.  

    And also, since there are many kinds of proteins in egg white, the PI of these proteins 

are wide, so when running egg white the cleaning should be done longer time.  
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Langmuir isotherm adsorption experiment 

    According to Langmuir isotherm equation (12): 

    Kd should be the mobile phase concentration when the stationary phase concentration 

equals to the half of the Cl. 
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Figure. 3.10 Fitting of theoretical Langmuir isotherm equation (solid line) by experimental data (red point)  
 

    From the graph above, the highest stationary concentration Cl is close to 226 mg/ml, 

and Kd is close to 0.012mg/ml.  

    Some points in the graph have very low Cs comparing with the others. There are some 

reasons can cause this result: the membranes were not identical; some membranes 

especially the are attached to the capsule which was destroyed when it was opened; the 

top membrane was dry when they were put into the BSA solution, so the ligand was not 

activated as the others which were still wet.  
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In Figure. 3.10, the maximum capability is 226mg/mL. From Figure. 3.7 and 3.8, the 

binding capacities were obtained. The binding capacity here was calculated by 

breakthrough curve and it is the protein concentration on the membrane when there were 

BSA observed at the exit of the column. Before loading sample, 2.7mL (15 column 

volume) buffer was used to equilibrium the column. After calculation, the binding 

capacities for different flow rate and different concentration were listed in Table 3.2. 

When the sample concentration was 1mg/mL, the four binding capacities with different 

flow rate were very close, and the higher of the flow rate, the higher of the binding 

capacity. This result means that pore diffusion still should be counted on although it 

didn’t make too much difference. When the flow rate is 1ml/min, the binding capacity for 

6mg/ml sample was much lower than 16 mg/mL. This result meant that when sample 

concentration was very high, the pore diffusion became much more important. Since the 

sample concentration used for this experiment was much lower than 16 mg/ml, pore 

diffusion was still not important.  

The binding capacity obtained by breakthrough curve should be lower than isotherm 

adsorption. The proportion of isotherm adsorption and binding capacity is much different[ 

41, 44, 45, 46, 47, 48]. Sometimes, the isotherm adsorption can be 25 times higher than the 

binding capacity[49].  For traditional column beads, the maximum capability of BSA 

solution is much different for different test methods, different salt concentration, pH and 

different type of beads[50, 51, 52, 53]. The highest qs I found is 480mg/mL when BSA was 

merged in hard Dextran DEAE at pH 6.9[50].  This result means that the maximum 

adsorption capability for BSA on ion exchange adsorbent is in a broad range.   
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Table 3.2 Binding capacity at different conditions 

Concentration(mg/mL) 1 6 16 

Flow rate(ml/min) 1 2 3 4 1 1 

Binding capacity(mg/mL) 9.1 12 13 15.2 68.3 119.1 

 

After breakthrough point, the protein appeared at the exit of the column. But at this 

time, the membrane was not saturated. Until the protein concentration of the exit reached 

to the loading concentration of the protein solution, the membrane still has ability to bind 

more protein. And for the maximum capability of the membrane, the maximum amount 

of protein was bound on the membrane after 48 hours, and at this time, the membrane 

was totally saturated. This is one the reasons that why the stationary maximum capability 

is bigger than the binding capacity. 

    The rate of interface mass transfer is dependent the combination of different mass 

transfer resistance, film transport, intrapartical diffusion and reaction kinetics. The one 

which is slow among these mass transfer mechanisms might be considered as the rate-

limiting tep of the sorption process, and governing the whole saturation performance.       

The result of isotherm adsorption much higher than binding capacity means that the 

process of protein passing through the membrane is diffusion control. Permeability, 

equilibrium capability and mass transfer behavior are all relative for membrane binding 

capacity[54]. For Mustang Q membrane, a strong anion exchange adsorbent, the 

adsorption equilibrium between protein and ligand in membrane should be fast. Mass 

transfer resistance including axial dispersion, radial dispersion, pore diffusion, and film 
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diffusion. According to the peclet number(from the result of the model fitting), the axial 

dispersion is very small, which means axial dispersion is not the rate-limiting step too. 

The size of BSA is 3.0*3.0*14nm [55], and the pore size of the membrane is 0.8µm, which 

is much bigger than the size of BSA. The large pore size makes the proteins pass through 

the membrane before it reaches to the pore wall[47]. So the mixture of radial dispersion, 

pore diffusion and film diffusion must be the main points in mass transfer resistance. 

Since the pore size on membrane is much bigger than the size of protein, the pore 

diffusion should be neglect too. So the total mass transfer resistance should be mainly 

contributed by radius dispersion or film diffusion. And steric hindrance in the lining of 

ligands may be a factor too.   
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Multi-plate mathematical model 

    The result of isotherm experiment has been used for multi-plate mathematical model.  
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Figure. 3.11 Fitting of simulated data calculated by multi-plate model (solid line) by experimental 
breakthrough curve (red circle) when the BSA concentration is 1mg/ml and the flow rate is 1 ml/min 

 

    When α=47, υ0=0.25, the fitting breakthrough curve is showed as Figure.3.11. From 

this figure, the theoretical breakthrough curve fits that of the experiment one very well 

when BSA concentration was 1 mg/ml and the flow rate was 1 ml/min.  

    Parameter α may indicate the chromatographic performance, and it is related to 

theoretical plate number. The higher is α, the better the chromatographic performance. 

Parameter υ0 may be considered as the theoretical dimensionless breakthrough volume. 

Under this operation, υ0 is about 0.25. When the mathematical model was used, porosity 

was needed. Here, porosity was chosen as 0.7. Since the theoretical graph matches the 

experimental graph very well, the evaluation of porosity is very close to the real data.   
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    From Equation (17) and (19), we can see that, α has not the same meaning as N. But 

when is very big, the value of α is very close to N. So the value of α from this 

model can be thought the same as that of theoretical plates.  

)(cA

    Under the assumption that instantaneous equilibrium between stationary and mobile 

phases, the solid phase concentration Cs is directly derived from the adsorption isotherm 

model, Cs,i = f(C1,C2, . . . ,Cn). The contribution of the mass transfer resistances is 

included in the value of the apparent axial dispersion coefficient[54, 56, 57]. 

i
i N

uLD
2

=                                                                     (20) 

Ni the plate number for component i. In practice, it is assumed that all components have 

the same plate number.  

Since peclet number is defined as, 

DuLPe /=                                                                   (21) 

Then, 

 PeN
2
1

=                                                                        (22) 

So  

8422 =≈= αNPe  

    And here, u is the interstitial flow rate (cm/min), L is the length of the membrane, D is 

apparent axial dispersion coefficient (cm2/s). 

    The radius of the membrane is 2.2cm, and the flow rate is 1ml/min, 

So 
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Such small axial dispersion coefficient means that the axial dispersion is not 

significant[54].  
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Conclusions and Recommendations 

      Mustang Q membranes prove to be a promising technique for the separation of HSA 

from chicken egg white proteins. For a 50µl sample load of CEW+HSA at 10X dilution 

and flow rate of 1ml/min, the overall yield of HSA is 85%, and the purity is 93% under 

similar conditions.  However, it is not enough to get the HSA from chicken egg white 

proteins and HSA mixture only by mustang Q membrane chromatography. It can’t 

separation HSA from chicken egg proteins thoroughly, and there are still some impurity 

left in the production. The molecular weight of the impurity is close to 40kD according to 

the result of SDS-PAGE. So the impurity should be one of the ovoglobins according to 

the Table 1.1. The isoelectric point of the impurity is very close to that of HSA, so they 

are not able to be separated by ion-exchange chromatography 

      In order to get rid of the impurity, another method like hydrophobic interaction 

chromatography should be used. The theory of hydrophobic interaction chromatography 

to separate proteins is according to different hydrophobic interaction between the proteins 

and the adsorbent. So hydrophobic interaction column should be able to be used to get 

pure HSA. Since in Bedi’s thesis, this method has been tried and good result has been 

obtained, we didn’t use this method again.  

      Precondition steps like dilution and centrifugation are required to get rid of egg white 

precipitate before loading on the membrane. When the mixture of chicken egg white 

proteins and HSA meets with Tris-HCl buffer, there are precipitation comes out. Since 

the solution loaded on FPLC meets with Tris-HCl buffer A on the membrane, and there 

are still precipitation comes out, all of the precipitation should be got rid of before sample 
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loading. The reason for the precipitation should be a kind of protein folding when meets 

with Tris-HCl buffer. Then the denatured protein becomes precipitation and comes out of 

the solution. This denaturation is reversible according to the dilution experiment. After 

5X, all of the precipitation comes out. Then with increasing dilution level, the amount of 

precipitation becomes smaller. Since it costs for more dilution time, 5X should be best.  

Multi-plate mathematical model has proven suitable to predict breakthrough curve in this 

experiment.  

The method used to get specific pH in the buffer was adding concentrated HCl into 

Tris buffer in this experiment. This method is not accurate to keep the pH in the accurate 

number since the pH machine is not very accurate. In the future, if this experiment can be 

gone on, some other accurate method to get specific pH of buffer should be used.  

For Mustang Q membrane capsule used in this experiment, the radius is broad 

comparing with the length of it, so the process is not uniform. And the radius diffusivity 

should be very high comparing with the pore diffusivity and axial diffusivity.  

For isotherm adsorption experiment, 10mg/mL BSA solution was made first. Then 

different BSA solution with different concentration was made by diluting the 10mg/mL 

solution. Since the isotherm adsorption was tested by two parts, and the second part was 

late than the first part about one week.  The same original solution was used to get the 

diluted BSA solution in order to avoid the operation difference. But the concentration of 

original solution maybe change since the temperature was so high in the room and the 

humidity was so low in the refrigerator. Next time, isotherm adsorption experiment 

should be finished in one time. Or the preexperiment can be done first to know some 

basic protein concentration needed, then according to the first experiment, the protein 
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concentrations using for the experiment can be obtained. Then the total experiment 

should be done in the same time.  

From multi-plate mathematical model, the theoretical plate number, peclet number 

and axial dispersion coefficient can be obtained.  Since the axial dispersion coefficient is 

very small which means that axial dispersion is not important for the adsorption process. 

And the radius dispersion or film diffusion or both of them is the rate-limiting step for the 

adsorption process.  
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Appendix 1 

Appendix 1 
 
    Numerical data for the calibration curve 

    The data used for the calibration curve for standard procedure was listed in Table A.1. 

 

Table A.1 The data used for the calibration curve for standard procedure 

 

C(mg/mL) A595 Aaverage
0.2 0.291 0.291 0.289 0.290 
0.25 0.343 0.340 0.334 0.342 
0.5 0.597 0.595 0.589 0.594 
0.9 1.052 1.054 1.052 1.053 

 
 
 
 
    The data used for the calibration curve for microassay procedure was listed in Table 

A.2. 

 
Table A.2 The data used for the calibration curve for microassay procedure 

 
C(ug/mL) A595 Aaverage

1 0.087 0.091 0.096 0.089 
5 0.322 0.325 0.323 0.324 
10 0.518 0.523 0.518 0.521 
15 0.690 0.695 0.688 0.693 
20 1.009 1.021 1.014 1.009 
25 1.133 1.141 1.133 1.137 

 
 
 
 
 

 67



Appendix 2 

Appendix 2  

    Numerical data for the flow rate experiment. Breakthrough curve has been run by 

different flow rate when the concentration of BSA was 1 mg/mL. Table A.3 listed the 

data for flow rate experiment graph. 

Table A.3 Data for flow rate experiment graph. 

 
1 mL/min 2 mL/min 3 mL/min 4 mL/min 

t(min) C/C0 t(min) C/C0 t(min) C/C0 t(min) C/C0
0 0 0 0 0 0 0 0 
1 0 1 0 1 0 1 0 
2 0 2 0 2 0 2 0 
3 0 3 0 3 0 3 0 
4 0 4 0 4 0 4 0 

4.33 0 2.434211 0 1.684588 0 1.359223 0 
5.91 0.292 2.5 0.033 2.007168 0.206 1.432039 0.014 
6.16 0.359 2.631579 0.1 2.150538 0.281 1.504854 0.048 
6.57 0.438 2.763158 0.144 2.293907 0.357 1.57767 0.079 
7.17 0.552 2.894737 0.208 2.365591 0.414 1.626214 0.112 
7.78 0.635 3.092105 0.283 2.473118 0.474 1.703883 0.146 
8.74 0.719 3.223684 0.347 2.616487 0.544 1.747573 0.194 
10.20 0.808 3.355263 0.4 2.795699 0.638 1.796117 0.25 
15.76 1 3.486842 0.45 2.939068 0.693 1.868932 0.301 

  3.552632 0.497 3.010753 0.745 1.917476 0.362 
  3.618421 0.547 3.089606 0.781 1.966019 0.396 
  3.684211 0.583 3.512545 0.844 2.014563 0.455 
  3.815789 0.639 3.835125 0.896 2.11165 0.511 
  3.947368 0.7 4.193548 0.940 2.160194 0.545 
  4.144737 0.767 4.659498 0.974 2.257282 0.593 
  4.342105 0.811 5.376344 1 2.378641 0.646 
  4.671053 0.858   2.5 0.705 
  4.934211 0.881   2.645631 0.772 
  6.184211 0.944   2.791262 0.837 
  6.842105 0.978   2.912621 0.890 
  7.894737 1   2.985437 0.927 

      3.179612 0.972 
      3.446602 1 
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Appendix 3  

    Numerical data for concentration experiment. When flow rate is 1 mL/min, 3 different 

BSA concentrations have been used to run breakthrough curve. Table A.4 listed the data 

for concentration experiment.                                       

                                         
Table A. 4 Data for concentration experiment graph. 

 
1 mg/mL 6 mg/mL 16 mg/mL 

t(min) C/C0 t(min) C/C0 t(min) C/C0
0 0 0 0 0 0 
1 0 1 0 1 0 
2 0 2 0 2 0 
3 0 3 0 3 0 
4 0 4.75 0.001 4.04 0 

4.33 0 5.15 0.059 4.27 0.138 
5.91 0.292 5.25 0.105 4.31 0.034 
6.16 0.359 5.51 0.191 4.51 0.243 
6.57 0.438 5.81 0.305 4.60 0.344 
7.17 0.552 5.96 0.355 4.69 0.395 
7.78 0.635 6.16 0.409 4.79 0.523 
8.74 0.719 6.26 0.457 4.88 0.583 
10.20 0.808 6.41 0.5 4.98 0.665 
15.76 1 6.57 0.548 5.07 0.693 

  6.77 0.591 5.11 0.725 
  6.92 0.630 5.26 0.764 
  7.07 0.673 5.42 0.798 
  7.27 0.725 5.59 0.842 
  7.58 0.770 5.92 0.874 
  7.88 0.816 6.48 0.910 
  8.59 0.855 7.70 0.9500 
  8.99 0.884 10.33 0.982 
  9.75 0.914 16.81 1 
  11.11 0.966   
  13.43 0.982   
  18.48 1   
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    Data for isotherm adsorption was listed in Table A.5.  

Sample calculation: 

For C0=1.5 mg/mL, by microassay, 

Aaverage=0.449,  

The calibration curve for microassay is  

0733.00439.0 += xy  

So the concentration after membrane adsorption is, 

C=(0.449-0.0733)/0.0439=8.558 ug/mL 

Cs=(C0-C)*5/0.09=83.33 mg/mL 

 

For C0=3.7 mg/mL, use standard procedure,  

Aaverage=0.166, 

And the calibration curve for standard procedure is 

0672.00883.1 += xy  

So the concentration after membrane adsorption is, 

C=(0.166-0.0672)/1.0883=0.091 mg/mL 

Cs=(C0-C)*5/0.09=200.5 mg/mL 
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Table A.5 Data for isotherm adsorption 
 

C0(mg/ml) A595 Aaverage C(ug/mL) Cs(mg/mL) 
1 0.515 0.498 0.492 0.502 9.765 55.56 

1.2 0.587 0.576 0.573 0.579 11.519 66.67 
1.4 0.536 0.532 0.527 0.532 10.449 77.78 
1.5 0.457 0.447 0.442 0.449 8.558 83.33 
1.6 0.554 0.546 0.543 0.548 10.813 88.89 
1.8 0.381 0.377 0.371 0.376 6.895 100 
2 0.364 0.364 0.357 0.362 6.576 111.11 

C0(mg/ml) A595 Aaverage C(mg/mL) Cs(mg/mL) 
2.5 0.266 0.261 0.259 0.262 0.179 128.94 
3 0.563 0.553 0.549 0.555 0.448 141.77 

3.5 0.566 0.555 0.552 0.558 0.451 169.39 
3.7 0.169 0.167 0.162 0.166 0.091 200.5 
4 0.430 0.428 0.425 0.428 0.332 203.80 

4.2 0.123 0.119 0.115 0.197 0.234 220.3 
4.4 0.415 0.414 0.410 0.517 0.413 221.5 
4.5 0.364 0.367 0.370 0.367 0.275 234.70 
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Data for model 

    The theoretical breakthrough curve was done according to Table A.6.  

Sample calculate: 

When C/C0=0.2, 

0

lC
C

λ = =226 

0

d

C
K

ϕ = =1/0.012 

 
then 

2 2

/ / 50( ) ln(1 ) [ ]ln(1 )
1 (1/ ) (1/ ) (1 (1/ )) (1 (1/ )) 1

cA c c c
c

λ λ ψ λ ψ εψ
ψ ψ ψ ψ ε

= + + − +
+ + + + −

−  

         

        =244.91 

When  

0v =0.25 and α =47,  

0
( )( ) A cv c v
α

= + = 0.25 + 197.9/47=5.461 

 

Table A.6 Data used for multi-plate mathematical model 

 
C/C0 A V(cth) 

0 0 0.25 
0 0 0.25 
0 0 0.25 
0 0 0.25 

0.002 32.54995 0.942552 
0.02 144.5829 3.326231 

 72



Appendix 5 

0.04 180.5384 4.091242 
0.06 198.2275 4.467606 
0.08 209.5339 4.708168 
0.1 217.8788 4.885718 
0.12 224.6205 5.02916 
0.14 230.4084 5.152306 
0.16 235.5933 5.262624 
0.18 240.3828 5.364527 
0.2 244.9081 5.460811 
0.22 249.2573 5.553348 
0.24 253.4923 5.643454 
0.26 257.6584 5.732094 
0.28 261.7902 5.820004 
0.3 265.9151 5.907769 
0.32 270.0557 5.995867 
0.34 274.2312 6.084706 
0.36 278.4583 6.174645 
0.38 282.7526 6.266014 
0.4 287.1286 6.359119 
0.42 291.6002 6.454259 
0.44 296.1814 6.551732 
0.46 300.8865 6.65184 
0.48 305.7302 6.754897 
0.5 310.7281 6.861235 
0.52 315.897 6.971212 
0.54 321.2552 7.085217 
0.56 326.8229 7.203679 
0.58 332.6227 7.32708 
0.6 338.68 7.455958 
0.62 345.0238 7.590932 
0.64 351.6874 7.732711 
0.66 358.7096 7.882119 

0.68 366.1359 8.040126 
0.7 374.0205 8.207884 
0.72 382.4286 8.386779 
0.74 391.4395 8.5785 
0.76 401.1516 8.785141 
0.78 411.6887 9.009335 
0.8 423.21 9.254469 
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0.82 435.9249 9.524997 
0.84 450.1166 9.826949 
0.86 466.1825 10.16878 
0.88 484.7039 10.56285 
0.9 506.5821 11.02834 
0.92 533.3269 11.59738 
0.94 567.7683 12.33018 
0.96 616.2592 13.3619 
0.98 699.0714 15.12386 

 
 

Table A.7 Data used to calculate coefficient of determination(COD) 
 

v C(ex) C(th) 
0 0  
1 0  
2 0  
3 0  

4.3333 0  
5.909 0.29167 0.3 

6.16162 0.3594 0.36 
6.5656 0.4375 0.44 
7.1717 0.55208 0.56 
7.7778 0.63542 0.66 
8.737 0.71875 0.76 
10.202 0.8177 0.86 

15.75757 1  
 
    Calculation for COD: 
    The data used here for are listed in Table A.7. ,ex jc

exc =0.37 
2( ex exc c∑ − )

)

=1.518 
 

2
,( th ex jc c∑ − =0.004 

 
2

,
2

,

( )
1

( )
ex i thi

exex ii

c c
COD

c c
−

= −
−

∑
∑

=0.997 

 
 
 

 74



Appendix 6 

Appendix 6 

    Data for HSA purity and recovery calculation is listed in Table A.8. 

 

Table A.8 Data for HSA purity and recovery calculation 

Peak Mean A595 Concentration (ug/mL) Protein content 

HSA+ Impurity 1.049 22.23 0.167 

Impurity 0.147 1.67 0.013 

 

 

Microassay detection limit ≤ 25 ug/mL 

Sample loaded= 0.05 mL 

Total initial load of HSA= 4mg/mL* 0.05mL=0.2mg 

Elution volume for HSA+ Impurity=7.5mL 

Total HSA in the HSA + Impurity peak= 22.23 ug/mL * 7.5mL=0.167 mg 

The recovery of HSA = 0.167/0.2=85% 

Total protein content in the elution= 0.167+0.013=0.18mg 

The purity of HSA= 0.167/0.18=93% 
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