
Improving Computing Efficiency and Reducing
Carbon Footprint for Turing Cluster
An Interactive Qualifying Project Submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE
In partial fulfillment of the requirements for the

Degree of Bachelor of Science

Qixing Xue
Advised by Fabricio Murai and Ermal Toto

March 19, 2024

This report represents the work of the WPI undergraduate students submitted to the faculty
as evidence of a degree requirement. WPI routinely publishes these reports on its website without
editorial or peer review. For more information about the projects program at WPI, please visit
https://www.wpi.edu/Academics/Projects

https://www.wpi.edu/Academics/Projects

Abstract

With the increasing popularity of large language models (LLM) and its great poten-
tial of renovating the way we work, now, more than ever, high performance computing
(HPC) is paramount for training accurate machine learning models and creating scien-
tific breakthroughs in numerous subjects. However, due to arising concerns of its carbon
footprint and ecological impact, user education of proper cluster usage is vital for im-
proving energy efficiency, while administrators also need a tool to gain understanding of
utilization status and identify problems, so to better manage the cluster and guide its
users. In order to achieve this, it can be helpful to increase the observability of comput-
ing resource utilization that is previously impacted by workload managers like SLURM
isolating compute nodes from login nodes and make it harder for users to interact with
the former ones. This increased observability in turn reveals the problems and can raise
the awareness of underutilization. In this project, we implement an automated tool that
collects statistics and GPU driver readings for readings of processes under job allocations
and generates actionable reports with user-friendly explanations of potential problems
in job submissions and their possible solutions. The tool can both be started by regular
users along with their job allocations without administrator involvement or be deployed
by administrator as daemons to sample the cluster at tunable frequency, with both data
collection and problem identification components being highly extensible. By running
on the Turing HPC cluster in WPI for roughly half a year, it has helped users to better
understand running status of their jobs and has aided administrators in identifying job
problems across multiple dimensions, such as user, resource, and time period.

Acknowledgements

I want to thank James Kingsley in Academic & Research Computing group for ini-
tially proposing the topic, providing the implementation with needed resources and
information, and suggesting improvements in user experience, Reily Siegel in Academic
& Research Computing group for providing input in improving report format and in-
frastructures implemented for exporting power usage data. This research was performed
using computational resources supported by the Academic & Research Computing group
at Worcester Polytechnic Institute.

Contents

I. Introduction 2

1. Overview 3

2. Related Work 13
2.1. Environmental Impact . 13
2.2. Monitoring in the context of HPC . 15

II. Implementation 16

3. Watcher: Data Collection 17
3.1. Interacting with the Database . 17
3.2. Database Design . 18
3.3. Scraper . 19
3.4. Scraper Distributor . 19

4. Analyzer: Report Generation 26
4.1. Email Report . 26
4.2. Types of Analyses . 27

4.2.1. Resource Usage . 28
4.2.2. GPU Usage . 28
4.2.3. System Time Ratio . 29
4.2.4. Extensibility . 33

4.3. Web Interface . 33
4.3.1. Backend . 33
4.3.2. Frontend . 33

III. Conclusions 42

IV. Appendices 45

A. Sample Report Email 46

B. Case Study: Optimization Hinted by System Time Ratio 54
B.1. Overlaid Memory Management . 54

B.1.1. Memory Recycling and Reusing . 54
B.1.2. Results . 56

B.2. Other Possible Slowdowns . 56

References 63

1

Part I.

Introduction

2

1. Overview
High performance computing enables scientific and engineering breakthroughs [25] by
providing computationally intense domain-specific software with powerful computing re-
sources [12] that entails at least hundreds to thousands of CPU cores, dozens to hundreds
of gigabytes of RAM, as well as hardware accelerators like NVIDIA A100 that could each
perform around 20 trillion float operations (FLOPs) per second [30]. For this capability,
it has been used in multiple natural science fields including physics, astronomy, chem-
istry, geology and material sciences in early years [11] and is recently being applied onto
artificial intelligence, especially deep learning, backed by advancements in both theory
and hardware [31]. The advantage of high compute power naturally comes with the
cost of high energy consumption, which eventually leads to high carbon footprint [18]
that will keep growing when without intervention [10], contributing to global warming
and climate change [7]. Together with the pollution from handling e-wastes [2] from
hardware upgrades, it brings risks to health, water, food, and meanwhile possibly hurt
economy development [21]. The power consumption and corresponding carbon footprint
of HPC clusters are being further driven up by the increasing adoption of high per-
formance computing by machine learning community for the difference in performance
and price of compute cards in contrast to regular customer-grade GPUs. However, its
methodology and efficiency brings concerns [27], due to the nature of model training
being experimental and the practice of frequently discarding results of unsatisfactory
accuracies even though significant amount of power is consumed on producing them.
As of October 12, 2023, WPI operates a Turing cluster consisting a total of 46 compute

nodes, 3492 CPU cores, 40.5 TB of RAM and 60 GPU cards. Based on hardware power
usage data collected from Jan. 18, 2024 to Feb. 7 2024 that does not include facility
power usage like those for cooling, Figure 1.1 shows that the usage roughly follows
normal distribution, and, on average, fluctuates by roughly 1 kW throughout the day
and falls in a range of 36.365 to 37.59 kW, with peak usage occurring at night, as in
Figure 1.2. Using this data, we estimate the carbon footprint from purely power draws
of hardware. As shown in Table 1.1, the 95% confidence range1 of power usage falls
between 36.88 and 37.16 kW which, per year, corresponds to 323.13-325.56 MWh of
power consumption, or 156.72-157.90 tons of CO2 emission per year – following the
2022 US EPA data that natural gas, has an average carbon emission of 0.000485 ton of
CO2 per kWh. Natural gas is chosen for calculation considering that it is known to be
used by WPI prior to 2023 and is one of the major energy source being used by New
England, while also being the source with largest carbon footprint as of February 22,
2024, as shown in Figures 1.3 and 1.4 fetched from ISO New England Dashboard2 on

1x̄ = 37.02611, s = 2.1809, n = 950, with sampling frequency of 30 minutes.
2https://www.iso-ne.com/isoexpress/

3

https://www.iso-ne.com/isoexpress/

February 22 at 8PM. When combined with power consumption from cooling, using the
estimation that it takes roughly 30% of electricity needed to power the computational
resources [35], the yearly power consumption will be 461.61-465.09 kWh, and therefore
corresponds to a carbon footprint of 223.89-225.57 tons of CO2 per year. Using the
estimation that a 3.69kWh LMO–NMC battery have a carbon footprint of 216.2 kg
CO2/kWh in the production phase, 94.2 kg CO2 eq/kWh in the use phase, and −17.18 kg
CO2 eq/kWh in the recycling phase [17], the aforementioned carbon emission equivalents
to roughly 200 life cycles of electric vehicle batteries from raw material to production to
recycle. However, as gross measurement of power draw does not differentiate between
energy required for the computation and those that could possibly be saved, energy
efficiency, as defined by Green5003 as number of FLOPs per watt, better measures how
well energy is being utilized, and optimizing it can reduce environmental implications
without negatively impacting efficiency.

Power Usage
(kW)

Consumption
(MWh/year)

Equivalent Carbon Emission
(tCO2/year)

Min 30.5 267.18 129.5823

25% 35.5 310.98 150.8253

95% CI Lower 36.887 323.134 156.7199

50% 37.1 324.996 157.6231

95% CI Higher 37.165 325.563 157.8983

75% 38.5 337.26 163.5711

Max 42 367.92 178.4412

Table 1.1.: Different percentiles and 95% confidence range values of power usage in col-
lection period, converted to yearly power consumption and equivalent carbon
emission, assuming natural gas is used, and follows 2022 US EPA data that
0.000485 ton of CO2 is emitted per kWh generated.

Unlike working on a single shared node, users do not have direct access to nodes per-
forming actual computing, or compute nodes. Instead, they submit a request to workload
manager, indicating time and computing resources required, and wait for the resource
to be available following a job priority considering account used, job size and past usage
history. After the requested resources are allocated, the user may send commands re-
motely to run multiple steps or simply a batch script and perform actual computations
on allocated nodes. SLURM [33] is a workload manager widely used in HPC clusters that
allocates each job a set of resources, including CPU cores, RAM, licenses, and hardware
accelerators like GPU, for programs to run on one or more nodes for limited amount of
time, with which multiple commands are executed as steps, following the specification

3https://top500.org/lists/green500

4

https://top500.org/lists/green500

Figure 1.1.: Distribution of power usage data collected from January 18, 2024 to Febru-
ary 7, 2024, excluding facility power consumption like those from cooling,
with sampling interval of 30 minutes and displayed in percentage of samples
falling in corresponding bins.

Figure 1.2.: Average power usage by hours plotted using data collected from January 18,
2024 to February 7, 2024, excluding facility power consumption like those
from cooling, with sampling interval of 30 minutes, and in local time.

5

Figure 1.3.: Energy source compositions for electric generation, as provided by ISO New
England.

6

Figure 1.4.: Estimation of CO2 emissions of different sources for electric generation, as
provided by ISO New England.

7

by the users. Although utilizing SLURM to isolate executions on login nodes and com-
pute nodes ensured the enforcement of resource allocation policy, it also reduced users’
observability of their job, and therefore requires extra effort for the scripts to report
utilization of resources like CPU cores, memory and GPU, or instead uses resources
blindly, overestimating the amount of computational resources needed, or not knowing
certain resources is not being utilized at all, wasting resources that could be otherwise
allocated to other jobs to use concurrently.
The problem worsens if the user has no reference of running time or performance of

program, e.g. from test runs on local machine, possibly due to program being unavailable
locally or requires too much memory to run, it may be even harder for them to realize that
the job is running under a nonideal condition that might cause it to be computing at a
performance slower than running on a laptop. This would also cause power consumption
of components whose usage varies less with workload change, e.g., cooling and disk
controller, to be amortized by fewer jobs and therefore lowers overall energy utilization.
However, according to our literature review, there is currently no solution fulfilling

this demand, as most monitoring tools identified focus on administrators rather than
users, reporting to them node health and overall operating status without information
at the granularity of individual jobs other than those provided by SLURM accounting
interface, that describes job characteristics and flags problematic submissions.
For this reason, the tool proposed here is designed with cluster users in mind: it enables

them to start their own instance and collect data along with regular job submission, with
minimal environment setup efforts and only minor modifications to job scripts to start
and stop tool components, by porting job submission script into provided template.
Based on the collected data, we can easily generate a report that is readable, actionable

and persuasive, displaying both summary of identified problems and detailed explanation
and common solution, as well as data supporting it, as demonstrated in Appendix A.
While our tool is capable of being used by regular user, it does not surrender its

usability by administrators. By providing the functionality of sampling data across nodes
in the cluster and generating reports in the style of pivot tables with different aggregation
level, as seen in Figure 4.7, it allows them to identify the most prevailing problems
intuitively and to communicate with users in a more effective manner by knowing what
change to ask for, ultimately bringing the cluster to be better utilized and in higher
efficiency.
In order to achieve aforementioned functionality, the proposed tool operates through

the collaboration of SLURM and multiple components, with connections depicted in
Figure 1.5, data and control flow shown in Figure 1.6 and summarized below:

• Watcher server (Section 3.1) establishes a simple server for receiving results
from scrapers, which, together with updates from SLURM accounting interface,
are used for inserting and updating records in a SQLite database with schema
specified in Section 3.2. Involving this component reliefs the need of setting up a
full database server, making the tool more portable and easy to set up by cluster
users. In addition, it circumvents the need of storing database file in a network
location, which helps speed up file access when the tool has a dedicated machine

8

to run on, as in the case of being used by administrators.

• Scraper (Section 3.3) runs for certain number of rounds each time it is invoked,
with constant timing interval between each round, during which various resource
usage data of processes are fetched and mapped onto job steps that would be sent
back to the watcher server at the end of execution. It may also use external data
source like the readings collected by samplers of Bright Cluster Manager in case the
device driver being inaccessible, for example when being used by administrators
and executed under the resource constraints imposed by SLURM job allocation.

• Scraper Distributor (Section 3.4) distributes scrapers onto nodes with con-
currency control mechanism in place, following an algorithm that prioritizes the
allocation of the scrapers in nodes with more running jobs, but ensures allocation
on every node with running jobs is attempted during a distribution round. This
component is only required if the use case is to sample jobs across the cluster, as
when being used by administrators, while regular users could simply run scrapers
within their regular job allocation to monitor the resource usage of their own jobs.

• Analyzer (Chapter 4) converts the dataset into a unified base table in the
form of time series and performs analyses as queries (Section 4.2) to check for
presence of resource underutilization by comparing actual usage against allocated
amount, as well as certain inefficiencies, such as low GPU utilization or having
large proportion of time waiting for system calls. Furthermore, with the tool
designed to be extensible in order to adapt to different cluster setups and use cases,
analyses can be easily added or modified, while data needed for the added analyses
can also be collected and recorded using the scraping and database migrating
framework, as discussed in subsection 4.2.4. It then renders reports for individual
users using result rows from the queries, in the format of HTML email (Section
4.1) using a predefined template that provides rich navigation functionality and
detailed explanations. In addition to receiving periodically reports characterizing
jobs since the last was sent, a website (Section 4.3) is also available for users to
look for old reports and view the latest report with higher updating frequency
than the interval of sending emails, for example per hour v.s. per week, as well
as old reports for their reference. The analyzer also combines all result rows from
analyses into a JSON file for them to be displayed as a pivot table of multiple
aggregation levels, including user and time period. Using this view, administrators
can better understand current usage status and locate prevailing problems, while
the capability of reading users’ report allows them to better communicate with
users for their mutual access to same content.

As an result, a complete data pipeline spanning collection, analysis and reporting
is established and automated through this project, and is being deployed on Turing
cluster. With collection from early September 2023 to late February 2024, more than
5.5 million measurements are collected, occupying around 0.5 GB of storage space. These
data are grouped into 16 periods starting November 1, 2023 and allows users to have

9

more observability over their job submissions and raised awareness on utilization status.
This is shown by receiving emails inquiring about fixes to problems identified, as well
as certain trend in pivot table view that, for certain job family, it started as having
problem for all jobs in the family but no longer had it starting certain time period. By
putting effort into resolving these problems, users spend less time waiting in queue, since
now they can reduce the amount of resources specified in the request without hurting
performance, and hence obtain results faster, by better utilizing allocated resources.
This helps ensure users get what they actually need and actually use what they get.
Meanwhile, it enables administrators to understand usage status of the cluster in more
dimensions, including by user, by resource, and by comparing across different times.
This allows them to locate problem more easily and communicate more effectively, by
having job characteristics easily obtainable and aggregated following specific needs puts
them into a more vivid context.

10

New Service

JobNodes

Chapter 4 Appendix B

Watcher ServerSec.
3.1

turingwatch.dbSec.
3.2

Bright Cluster Manager
(CMDaemon)

GPUSampler, JobSampler

Scraper DistributorSec.
3.4

salloc
(slurmctld)

Scraper2

Scraper1

Scraper3

Scraper4

Sec. 3.3

IKernel1 IKernel2 IKernel3

JupyterHub
User / AdminAnalyzer Optimizations

JobNode2
nvidia-smi

JobNode1
nvidia-smi

JobNode3
nvidia-smi

JobNode4
nvidia-smi

JobNode5
nvidia-smi

JobNode6
nvidia-smi

file
access

allocation
request

socket

socket

socket

socket

REST API

REST API

REST
API

REST
API

re
mo
te
_i
ke
rn
el

remote_ikernel

remote_ikernel

srun

srun

sr
un

srun

srun

srun

srun

readonly
file access

Reports
Email, Website
Sec. 4.1, 4.3

allocate
s

(1,2,3,5
)

monitor

Figure 1.5.: Collaboration graph of workers in watcher, with example of 4 concurrent scrapers

11

/proc

allocates

/proc/proc

SLURM Cluster
Manager

Root Node

Login / Web Nodes

Compute Nodes

sbatch systemd

salloc

/proc

LEGEND
Admin
SLURM
Reports

Direct GPU Readings
Process Statistics

Indirect GPU Readings
Either Source

Worker ProcessSpawns

GPU Driver

Data Scraper
Scraper
Distributor

START

Figure 1.6.: Diagram demonstrating flow of commands and data among components.
The scraper is started by users along with job submission using sbatch, or
by administrators with systemd, in which case scrapers will be distributed
through allocating jobs. Either way, the scrapers are spawned on compute
nodes and read data from /proc and GPU driver readings, which comes
either directly from driver communications or indirectly from data collected
by the cluster manager, and send them back to the watcher server. The
watcher server periodically invokes analyzer, which produce reports that
can be received through email and viewed on a website by users and admin-
istrators.

12

2. Related Work

In an effort to recognize and reduce the environmental impact of HPC clusters, numer-
ous studies were performed with different concentrations in multiple subjects, including
artificial intelligence, green computing, data analytics, and HPC infrastructures. By an-
alyzing related works, it helps in understanding current status of HPC clusters from both
environment and operational aspects, and identify the need and difficulties of HPC clus-
ter operations in terms of improving computing efficiency and reducing carbon footprint,
ultimately contributing to making the project useful in practice.

2.1. Environmental Impact
Given that power consumption and environmental implication being one major back-
ground of this project, reviewing existing literatures help better understand current
difficulties and state-of-art. As defined by Hogan [13], data centers host computing
infrastructures like servers and nodes of HPC clusters as stacked racks, as well as com-
ponents supporting them, including storage, cooling, and backup power. Lannelongue,
Grealey, and Inouye indicate [18] that data centers produce 100 megatonnes of CO2 emis-
sion yearly and contributes substantially to global warming and hence climate change
[7], while Freitag et al. suggest [10] that the amount is going to increase without ac-
tive intervention, as computing resources are less likely to be saturated. In addition,
upgrading hardware for state-of-art performance also possibly creates e-wastes, which
creates multiple forms of pollutants as suggested [2] by Ankit et al. The combined ef-
fect of climate change and pollution brings hazard to humanity in aspects including
health, water, food [2] and possibly economy [21]. The article by Filiposka, Mishev, and
Juiz [9] also mentions that reducing power consumption not only saves constructional
and operational costs, but also increases reliability and availability of the system.
Although the energy efficiency data of top high performance computers is regularly

published on Top5001 and Green500, they are coarsely aggregated and make no connec-
tion to workload, and therefore are less useful for evaluating environment impact of clus-
ters. In order to measure the environment impact and effectiveness in a finer granularity,
more than 200 models have been proposed as of 2016 [8], covering different aspects of a
cluster, including different job categories, major pieces of server hardware, cooling, and
operating system. Despite that large number of models are available and that energy ef-
ficiency was brought into attention as early as 2008 by Kamil, Shalf, and Strohmaier [16],
there is few identified dataset for understanding environmental implication of HPC clus-
ters that is public available and valid across time and cluster configuration until deep

1https://top500.org/lists/top500

13

https://top500.org/lists/top500

learning gains its popularity through the development of deep convolutional network
and utilization of hardware accelerators, as marked by the publishing of AlexNet in
2015 that is described by Tan and Lim as landmark of AI Renaissance, for it being
the only ANN-based work for object recognition in its publishing year while was used
in almost all works on this topic in subsequent years. In the benchmark performed by
Svedin et al. [30], the result indicates that NVIDIA V100, a data center GPU released
two years earlier than consumer grade GPU NVIDIA RTX 2060 Super, has double the
performance of latter in terms of FP32 FLOPs per second, while performance of FP64
FLOPs per second differs by more than 30 times, making training on HPC environment
highly attractive.
In the context of machine learning, hyperparameters are a set of values that, unlike

model parameters, needs to be set outside of training process to control the architecture
and behavior of the model [23], and regulate the flexibility of model and prevent overfit-
ting that causes lose of accuracy while predicting [15]. Passos and Mishra [23] remarks
that hyperparameter selection depends on users’ expertise and understanding of the
model architecture and affects training and inference time significantly, while there are
usually hundreds of them in a larger model and the values could sometimes be in float
type, further expanding the number of possible values. Schwartz et al. points out [27]
that publications frequently focus on accuracy of models rather than efficiency and cost
of training models, especially the part of hyperparameter tuning, enabling the result to
be “purchased” with higher energy consumption and therefore raising the barrier of par-
ticipation. Lannelongue et al. [19] suggest advocating findable, accessible, interoperable,
and reusable (FAIR) code, data, and models to reduce unnecessary data generation and
storage, meanwhile improving implementation efficiency and enlarging project impact.
The environmental impact of this practice is significant, as Strubell, Ganesh, and

McCallum estimates [28] that, although a single training of NLP model only produces
39 lbs of CO2, this number skyrockets to 78,468 lbs when parameter tuning is taken into
consideration, which is equivalent to double of the emission from a regular American
life. In a more recent commentary, Vries indicates [32] that the training phase of a few
language models, namely GPT-3, Gopher, OPT3, and BLOOM, respectively consumed
1,287, 1,066, 324 and 433 MWh of power. It is also mentioned in the same article that
power consumption from inference stage is often significant but ignored, as ChatGPT
is estimated to be consuming 2.9 Wh per request and 564 MWh per day. It is also
mentioned that 60% of energy consumption in AI from 2019 to 2021 could come from
inferencing, but is under influence of parameters like retraining rate and energy–accuracy
trade-off.
The trend of using AI techniques to learn from dataset also attracted domain-specific

applications in plasma physics, cosmology, gravitational wave astrophysics, high energy
physics, multi-messenger astrophysics, materials science, and genetic data, which is de-
scribed by Huerta et al. [14] as convergence of HPC and AI. In their correspondence,
Augier et al. highlighted [3] the takeaway in the original article [24] that “scientists
should be mindful of their carbon footprint” and suggested raising attention in user ed-
ucation, as choosing the right tool, profiling and parallelizing the code, and using shared
cluster and job scheduler in a right manner contributes to higher energy efficiency. In

14

addition, the survey [26] performed by Schlagkamp et al. shows that experience level of
HPC users positively correlates with their satisfactory level of the service.

2.2. Monitoring in the context of HPC
The interview with multiple cluster administrator reported by Allcock et al. [1] expressed
the desired functionality of monitoring tools, namely being able to show current status
and generate reports at any desired level of detail for any given time period, and to
locate what could be improved, including identifying patterns that are different from
those assumed during initial configuration. In addition, for an administrator it is more
important to value users’ time and attention than hardware, for their effort pushing
the boundary of human knowledge. As part of the conclusion, Allcock et al. suggests
forming active community to collaborate on a mature, integrated and optimal solution
that is less labor-intensive.
Numerous monitoring tools applicable for HPC environment exist as early as 2012 to

monitor problems ranging from service quality like response time to security and Service
Level Agreement (SLA) violation, as shown in the survey performed by Benedict [5]. In
addition, Benedict also identified serval tools measuring environmental impact of HPC
systems, through deploying hardware, software, or combination of both. Multiple recent
articles proposed tools with modern technology and enhanced functionality, such as the
tool proposed by Sukhija et al. [29] enabled custom rules to be set with Prometheus, a
database management system designed for monitoring system and timeseries, whereas
the tools proposed by Beneventi et al. [6] and Yoo et al. [34] both involve techniques
for analyzing big data. However, many of the automated tools are commonly concerned
about node and hardware health rather than job status. The tool OpenXDMoD devel-
oped by Palmer et al. [22] uses external data source to flag problematic jobs, such as
those with CPU under-usage, with data stored in a database server like MySQL or Mari-
aDB and backend supported by packages including NodeJS, LibreOffice, and Chromium.
In addition to deploying monitoring utilities, there is also work performing manual anal-
ysis on data obtained from these utilities, as Zhu, Neuwirth, and Lippert [36] performed
data analysis with regard to I/O pattern on data collected throughout an entire year,
while Liu et al. [20] performed their analysis with more diversed dataset that includes
hardware counters and added jobs as a dimension of analysis.

15

Part II.

Implementation

16

3. Watcher: Data Collection
The watcher is at the core of this project, as its responsibility of collecting performance
measurements of jobs on the cluster enables scattered and single-point data to be aggre-
gated into a representation of job step characteristics in different time slices. By doing
this, it helps effectively locate problematic submissions and guide human intervention
and further profiling and optimization efforts. With implementing a scraper to fetch
process statistics and GPU data, for the data from existing providers like SLURM and
Bright Cluster Manager are not collected for the purpose of depicting job characteristics,
it naturally raises the need of spawning the scraper onto compute nodes. In addition
to manually spawning by administrators, or being spawned along with users’ job allo-
cations, the implementation also contains a job-queue aware scraper distributor that
dispatches scrapers onto nodes as regular jobs. For adaptability of different infrastruc-
tures and use cases, all components implemented are under tunable frequency control so
to ensure that the intensity of RPCs like job allocations and queries are not overwhelm-
ing, while enough data are collected for the reports to be meaningful. To simplify usage,
multiple scripts and systemd service file templates are provided for users to use the tool
in a single command after simple and guided modifications.

3.1. Interacting with the Database
For the purpose of analyzing job characteristics, a data source that supplies abundant
information for purpose needs to be considered. Although SLURM and Bright Cluster
Manager available for use in the cluster collect similar metrics as those in out database
schema, the data from them may not be helpful in depicting submission characteristics
as they are not designed to serve this purpose, in addition to requiring API keys or
even administrative privilege to obtain data. Given that main job of SLURM is to
allocate resources and measure usage for evaluating job priorities, it enforces constraints
mainly through cgroup mechanism and does not store regular monitoring data into
accounting database. Furthermore, the real-time measuring functionality sstat only
supports measuring a single job at a time that meanwhile takes nearly one second to
complete, for an RPC request to go through multiple SLURM daemons in the hierarchy
and further stress the daemons that can already be busy enough handling allocation
requests. On the other hand, although the Bright Cluster Manager has daemons on
nodes to collect real time metrics, the data are mostly not mapped onto individual job
steps and rather a measurement of the node to monitor health status and raise alerts, in
addition to having rather long updating interval of two minutes by default, as this type
of software is constantly collecting data from all nodes in the cluster and has to limit
growing speed of database size.

17

For these reasons, it will be desirable to collect a database on our own and therefore
a database will be needed. Considering the need of having the application compatible
with running at privilege of regular user, SQLite is chosen as the database management
software used for maintaining data collected from various sources. With the advantage
of portability and no SQL server installation required comes with the drawback that the
only way to synchronize among connections is locking file pages when accessed across
network file system. Therefore, a watcher server is implemented to hold exclusive access
to the database file and serialize queries on it, using the data sent by scrapers through
sockets in a custom stream format.
Although being the central component in collaboration, the implementation of watcher

server is relatively straightforward, which simply accepts incoming socket connections
and stage received measurement data in a message queue. In each periodical update,
measurements staged before the end of last insertion period are inserted along with
the update of jobinfo table that imports latest job accounting information, after which
analyzer is invoked and have reports generated. By inserting at this specific timing rather
than those received before current period, it reduces complexity of locking design and
enforcing constraints of foreign key to jobinfo table, by avoiding repeatedly querying
SLURM accounting API for information of new jobs appearing since last import whose
process statistics are scraped and reported at the last minute before staging insertion is
finalized. However, it can be worthwhile to optimize this insertion timing to be more
responsive.

3.2. Database Design
As demonstrated in Figure 3.1, the database schema is designed in a relatively straight-
forward way that stores metric readings from data sources in unified units and match
them onto originating job steps. To accommodate the case that a job step using more
than one GPU on a node, the GPU measurements are split out into another table and
related to the measurements table by field batch, with each batch consisting of mea-
surements of all GPU in use for the unique measurement entry it is being related to.
With implementing the analyzer in mind, the metrics chosen represents certain charac-

teristics of the execution, but can be added easily with the provided migrating framework
as needed. The most indicative metric can be sys_[u]sec showing the time spent in
kernel space, which measures time waiting certain resources like disk data or memory
allocation to be available and is frequently being unhelpful in progressing common HPC
computing which prefers larger portion of time to be spent in user space. In addition,
the growth rate of other metrics could be established by forming time series, from which
the rate and frequency of allocating memory pages can be drawn from minor_pagefault
and have the behavior be further resembled by the change of resident set size res, while
the disk and tty I/O rate can be derived from change in the values of dev_in and
dev_out in adjacent rows, just to name a few. Jobs having similar inefficient patterns
in these metric changes can be of similar problem, so that the optimization could be
implemented in a way that is more generally applicable and ultimately promote com-

18

puting efficiency more efficiently. On the other hand, the GPU metrics serve slightly
different purpose, mainly to identify underutilized allocations and rare malfunctioning
cases like inadequate cooling, although these usually not be happening in cluster setting
given that the server room is being maintained by professionals.

3.3. Scraper
For collecting data, measurements are taken by running scrapers on the target nodes and
directly fetch data provided in /proc directory and aggregate using process tree formed
with parent process ID information, with slurmstepd processes mapping process sub-
trees to job steps. The scraper runs in a relatively high frequency and performance
but terminates quickly, rather than keep running for indefinite amount of time, to avoid
inflating the database too quickly, although the rate is easily tunable. However, since
measuring GPU requires device access not to be denied in cgroup policy and therefore
naturally requires the card to be allocated by SLURM when sampling the cluster under
a job step, indirect measurements from daemons like those from Bright Cluster Man-
ager are utilized when available. Note that user submissions are not impacted by this
restriction as they rightfully have access to the card needing to be monitored and only
have to properly ensure card access by the scraper either by sharing cards for all tasks
or by allowing scraper task to see all cards allocated on the node in newer versions of
SLURM, whose instructions are documented in detail in the template submission script.
Algorithm 1 sketches the workflow of a scraper run in detail.

3.4. Scraper Distributor
As the scrapers need to be spawned on compute nodes, in addition to starting along
with users’ jobs or being manually spawned by administrator, it is desirable to have a
distributor to sample the cluster so to grow data size in an automated and controllable
manner. However, this brings the problem of selecting which nodes to run on for each
scraping round, especially when under the constraint of maximum concurrent allocated
nodes in a partition or even globally. In this case, in order to learn about characteristics of
not only more jobs, but also jobs on different nodes, it will need a distributing mechanism
that maximizes the number of job steps measured in one round to know about more
jobs, while displaying fairness that makes sure every node available is tried and tries to
know about jobs on different nodes. For implementation, in each loop, the distributor
reads the number of ongoing jobs on each node in the cluster and sort them and sort
them descendingly as the scraping order, after which it selects account to be used in each
partition using the algorithm shown in Algorithm 2 and starts attempting allocation onto
nodes, with concurrency capped at certain parameter. The node list in each allocation
request is composed by combining two queues, old queue and new queue, with combined
size of these two queues not exceeding double of the concurrency value, in which new
queue consisting of nodes attempted for the first time in this loop, whereas old queue
contains nodes failed to be allocated in the last round. When new queue is empty, every

19

watcher
UNIQUE (jobid, ifnull(stepid, '.'), source)

INT id
INT pid ≥ 0

INT jobid ≥ 0

INT stepid?
INT target_node?
INT privileged ∈ {0, 1}
INT lastfetch
INT prev_lastfetch ≤ lastfetch

GEN source

gpu_measurements
NODELETE NOUPDATE

INT watcherid 1−→

INT jobid > 0
2−→

INT stepid? 2−→
INT batch > 0

INT pid

INT gpuid

INT age secs
INT power_usage Watts
INT temperature
INT sm_clock
INT util %

STR clock_limit_reason
STR source

measurements
NODELETE NOUPDATE

INT recordid

INT watcherid 1−→

INT jobid 2−→

INT stepid? 2−→
INT dev_in bytes
INT dev_out bytes
INT user_sec, user_usec
INT sys_sec, sys_usec

GEN tot_time
INT res_size bytes
INT minor_pagefault

INT gpu_measurement_batch 3−→

application_usage
NODELETE NOUPDATE

INT jobid 1−→

INT stepid 1−→
STR application

jobstep_cpu_available

INT watcherid 1−→

INT jobid 2−→

INT stepid 2−→
INT ncpu

jobinfo
UNIQUE (jobid, ifnull(stepid, '.'))

CHECK isnull(user) OR isallnull(stepid, ngpu)

INT jobid > 0

INT stepid?
STR user?
STR [job]name?
INT submit_line?
INT mem?
INT peak_res_size?
INT timelimit?
INT started_at? > 0

INT ended_at? ∈ {0,≥ started_at}
INT ncpu, ngpu? > 0

INT nnodes? > 0

analyze_user_info

STR user
INT application ∈ {0, 1}

scrape_freq_log

INT start > 0

INT scrape_interval > 0

worker_task_info

INT ensure_uniq = 0

INT schema_version
INT gpu_measurement_batch_cnt
INT analysis_offset
INT prev_schema_version
INT prev_gpu_measurement_batch_cnt
INT prev_analysis_offset

1

2 1

2

3

1

1

2

Figure 3.1.: Database schema used by watcher and analyzer.

20

node that was failed to be allocated in any previous rounds are added into a reattempt
queue, in which failed nodes are requested with concurrency limit repeatedly until none
of the nodes can be allocated, which terminates a loop. Whenever a node is successfully
allocated, it is popped out of the queue, regardless of queue type. To show this more
clearly, Figure 3.2 shows diagram of an example round of distribution. By providing
a list with size being double of expected concurrency, it ensures concurrency by giving
SLURM extra options to choose from. Although it is possible that SLURM prefers
nodes provided as alternative, for reasons like having less workload on them, requesting
allocation twice for each node in a way that it had both in the category of under heavy
and light workload relative to others in the requested list, as well as allocating from
reattempt queue until empty, should help relief this problem. However, it is worthwhile
to note that the workload situation may have changed at the time of allocation when
compared to the time when sorted list is formed, especially if the scrape time for each
round is long enough, in which case further development taking changes in number of
ongoing jobs on nodes into consideration is desired.

21

Node C D A B E G L F

Ongoing
Jobs 20 15 10 7 5 3 2 1

Round #

1 3 7 3 3

2 7 7 3

3 3 7 7

Reattempt
Round #

1 3 3 7

2 7

END 7

Node C D A B E G L F T N O P S U V M

Ongoing
Jobs 43 40 30 27 25 23 22 21 20 15 10 7 5 3 2 1

Round #

1 7 3 7 3 7 7 7 3

2 3 7 7 7 3 3 7 7

3 7 3 7 7 3 7 3

Reattempt
Round #

1 3 7 7 3 7 3 7

2 7 7 7 3

END 7 7 7

Old Queue New Queue

Not in request 3 Allocated 7 Not Allocated

Figure 3.2.: Diagram for building list of nodes to request allocation for two sample sce-
narios, in which concurrency set and number of nodes with having ongoing
job steps are respectively 2 and 8 and 4 and 16 for the smaller one at top
and larger one at bottom.

22

Algorithm 1
Algorithm to scrape measurements from remote nodes

procedure Scrape(Env, FreqConfig)
Results ← []
Timeout ← 0
for Round from 1 to FreqConfig.ScrapeRounds do

Timeout ← CurrentUnixTime + Freq.PerScrapeRound
ProcessData, ChildProcesses, StepdList, ApplicationInUse ← {}
for all Directories in /proc with Name being a number do

PID ← Name
StepdRegex ← [slurmstepd: ([0-9])+.([0-9]+|[a-z]{3,11})]
. ParseStat reads various status and statistics from /proc/PID and re-

turns the data collected /
ProcessData[PID] ← ParseStat(PID)
CmdLine ← Read(/proc/PID/cmdline)
IsMatch, JobId, StepID ← CmdLine matches StepdRegex
if IsMatch and ValidateStepID((StepID)) is true then

StepIDVal ← NumericStepID(StepID)
NCPUAvailable ← ReadCPUSet(PID, Env.CGroupMountPoint)
StepdList.Append({(JobID, StepIDVal): (PID, NCPUAvailable)})

else
ChildProcesses[PPID].Append(PID)
Command ← Read(/proc/PID/comm)
ApplicationInUse[PID].Append(Command)

end if
end for
. Establish connection with environment data and set GPU stats for processes

in the result. /
FetchGPUStats(ProcessData, StepdList, Env.GPUProvider)
. Take each PID in StepdList as root and update values to be aggregated data

in the subtree. /
Aggregate(StepdList, ChildProcesses, ProcessData, ApplicationInUse)
Results.Append(StepdList, ProcessData.Filter(PID in StepdList))

end for
SendData(Results, Env.WatcherServerInfo)

end procedure
function AllocateScraper(Env, RequestedNodes, FreqConfig)

AllocReq ← {NodeList: RequestedNodes, TimeLimit: FreqConfig.PerNode}
AllocReq.UnionBy({MinNodes: 1, MaxNodes: RequestedNodes.Size})
Wait ← FreqConfig.AllocationMaxWait
AllocatedNodes ← SLURMAlloc(AllocReq, GetScraperEnv(Env), Wait)
if Allocated.Size > 0 then

WaitForRemoteCallOnNodes(Scrape, [FreqConfig], AllocatedNodes)
end if
return AllocatedNodes

end function

23

Algorithm 2
Algorithm to select an available account for each partition, if any
. Returns (Account, Partition) tuple, through essentially simulating SQL

query, by performing a series of set operations. /
function GetNodePartitionAccountMapping(SLURMConfig)

Require: {Nodes, Associations, Partitions} ∈ SLURMConfig
AllQos, AllAccounts ← SLURMConfig.Associations.Union(Qos; Account)
CurUserAssocs ← SLURMConfig.Associations.Filter(User is EffectiveUser)
UsableQos ← CurUserAssocs.GroupBy(Qos).Union((Account, Qos))
UsablePartition ← {}
for all Partition ∈ SLURMConfig.Partitions do

DeniedQos ← Partition.DeniedQos
DeniedQos.UnionBy(AllQos.Except(Partition.AllowedQos))
DeniedAccts ← Partition.DeniedAccounts
DeniedAccts.UnionBy(AllAccounts.Except(Partition.AllowedAccounts))
AccountToUse ← NULL
for all (Account, Qos) ∈ UsableQos do

if Account 6∈ DeniedAccts and Qos 6∈ DeniedQos then
AccountToUse ← Account
exit for

end if
end for
if AccountToUse 6= NULL then

UsablePartition.UnionBy((Partition, AccountToUse))
end if

end for
. The scraper runs for a comparatively short period so prefer fast queues to avoid

waiting for long jobs to finish. /
UsablePartition.Sort({MaxNodes: LargerFirst, MaxTime: SmallerFirst})
AssignedNodes ← {}
NodesInPartition ← {}
for all (Partition, _) ∈ UsablePartitions in sorted order do

for all Node ∈ Partition.Nodes.Exclude(AssignedNodes) do
AssignedNodes.UnionBy(Node)
NodesInPartition[Partition].UnionBy(Node)

end for
end for
return UsablePartition, NodesInPartition

end function

24

Algorithm 3
Node selection algorithm used by distributor to spawn scrapers across compute nodes
. Subset of Env will be passed to scrapers to build connections and read configura-

tions. /
procedure Distribute(RunningJobs, Env, Concurrency, FreqConfig)

Timeout ← 0
loop

WaitUntilUnixTimestamp(Timeout)
SLURMConfig ← GetSLURMConfig(Env)
. Too long to name in single line. /
PAM, NIP ← GetNodePartitionAccountMapping(SLURMConfig)
PartitionAccountMapping, NodesInPartition ← PAM, NIP
. One entry for each node allocated to a job step. /
JobCntOnNode ← RunningJobs.GroupBy(Node)
Timeout ← CurrentUnixTime
for all (Partition, Account) ∈ PartitionAccountMapping in sorted order do

NodesInPartition[Partition].UseOnly(JobCntOnNode[Node] > 0)
NodesInPartition[Partition].SortBy({JobCntOnNode[Node]: Larger First})
FullQueue.Push(NodesInPartition[Partition] in sorted order)
EffectiveConcurrency ← Min(bPartition.MaxNodes / 2c, Concurrency)
. Accumulate overestimated timing here to avoid stressing allocator when

no allocation could be given. Finer estimation could be acheived by
accumulating timeout within loops. /

CntNodes ← FullQueue.size
Dt← (bCntNodes / (2 · EffectiveConcurrency)c + 1) · FreqConfig.PerNode
Timeout ← Timeout + Dt
MixedQueue, NewQueue ← {}
. It would be hard to be allocated to nodes with largest amount of job steps.

Try these only once, instead of twice, before adding to mixed queue. /
OldQueue ← FullQueue.PopAtMost(EffectiveConcurrency)
while FullQueue.NotEmpty() do

NumNodeMissing ← 2 · EffectiveConcurrency − OldQueue.Size
NewQueue.Push(FullQueue.PopAtMost(NumNodeMissing))
ReqNodes ← OldQueue + NewQueue
Allocated ← Scrape(Env, ReqNodes, FreqConfig)
MixedQueue.Push(OldQueue.PopAll().Exclude(Allocated))
OldQueue.Push(NewQueue.PopAll().Exclude(Allocated))

end while
MixedQueue.Push(NewQueue.PopAll())
while MixedQueue.NotEmpty() do

ReqNodes ← FullQueue.PopAtMost(2 · EffectiveConcurrency)
Scrape(Env, ReqNodes, FreqConfig)

end while
end for

end loop
end procedure

25

4. Analyzer: Report Generation
Using raw data collected by the watcher, the analyzer identifies active users during
current time period and builds time series for each of their job steps, showing changes of
resource usage like GPU utilization, as well as intensity of kernel activities like disk I/O
and memory allocation, throughout each sampling timeframe that has sampling intervals
kept constant. Queries can then be performed on the series, deriving metric values and
flagging problems of submissions with custom policies, in an extensible manner. The
results are further processed into both HTML format for individual users to view on-
demand through web interface and receive periodically through email, and into JSON
format for external applications like pivot table renderer to use. Both summary and
on-demand details are included in all user interfaces designed in this project, including
email and web versions of reports, as well as multilevel pivot table view of raw data, to
communicate issues effectively and suggest most cost-effective changes, in a persuasive
way.
Regarding implementation details, an offset is maintained as the starting record ID of

the period, and then job steps with record ID larger than the offset are treated as latest
ones in the periods, and naturally those users with job steps marked latest are identified
as active. In addition, the analyzer maintains an expiry timestamp for the offset, after
which the offset will be switched to the ID of last record and therefore starts a new
period. To utilize file operation atomicity and help save disk space, the analysis results
produced from each analysis run, including HTML and JSON files, are compressed into
gzipped tarballs. With this, a script template is provided for users to perform scheduled
actions, like sending batch emails, using the latest tarball, with users’ scripts interacting
directly with individual result files without worrying about details like selecting tarball,
extracting, and cleaning up.

4.1. Email Report
In order to active alert users of problems in their jobs, like underutilization of computing
resources or that the execution does not seem to be parallelized, which is an important
feature in case of being deployed by administrators, the HTML reports are generated
under constraints of HTML emails and delivered to users’ inbox. This allows users
to easily and effectively respond to the report and obtain supports, as replying the
email already have the recipient address filled and original report attached, which waives
the need of looking for support address and provides context with both summary and
processed data, like histograms of CPU or GPU utilization, reducing the time and effort
needed for establishing mutual understandings. In addition, this is also helpful when
users are using this tool on their own, as it waives the need and burden of setting up

26

a web server, that requires certain familiarity to deploy and to configure authentication
and access control, while clusters usually have existing mail server set up for job status
notifications of SLURM to work that can be leveraged by this tool. Regardless, the user
can simply download the HTML file and view with local browsers, which still provides
aesthetic and navigational features hard to achieve with plaintext files. To make email
recipients feel less insecure and to encourage reading the report when it is being sent in
batch by administrators, instead of sending as attachment, the report is embedded as
body of email with heavy use of anchors to provide a smooth cross-referencing experience
in a restricted setting.
As shown in Appendix A, each report generated consists of a Table of Contents showing

report structure, with important subsections highlighted, a usage instruction explaining
the reason why the user is receiving this email and describing the navigational features
of this HTML email, a TL; DR box summarizing problems identified in the report and
how they can be fixed, and a section for each analysis. In each of these analysis sections,
there is a subsection named metrics explaining columns of result rows and a subsection
listing the causes, impacts, and solutions of possible problems identified in the analysis,
followed by subsections consisting of result rows, showing detailed data that results in
the color-labelled problem list in the last column. In addition to having a subsection
showing individual result rows for each new job step in the period, there may also be
a subsection aggregating result rows from current and previous periods that have both
name and submit line matching one of the new job steps, so to show the characteristics
and common problems of different families of jobs the user is recently submitting.

4.2. Types of Analyses
In order to make the measurement records meaningful and useful for end users, the
analyzer is built with a set of easily modifiable and extendable analysis information,
each containing a database query used to aggregate data and identify problems using
this data and given criteria, as well as the description of problems showing user the
causes, impacts, and solutions of a problem, which will be described in detail in the
following subsections. The analyses in the generated report are ordered following the
difficulty of resolving potential issues, with the easiest at top that may simply require
adjustments to the amount of resources requested while submitting the job allocation.
Prior to executing analysis queries, an in-memory database is created and attached to
the database connection for higher performance, and loaded with a table combining
records and job allocation information, with a unique value assigned to each time slice
for the analysis queries to distinguish among them. By having the preloaded table to
be the data source for analyses to use, this reduces redundancy in queries and eases in
adding new analyses.
Through resolving the problems identified, the user can gain benefit by reducing the

amount of time waiting in job queue and obtain computation result faster, as less com-
puting resources are requested and certain part of job requiring less resources can be
executed while the compute-intense part is being queued. Besides, the user can also

27

obtain performance benefit with alerts of possible inefficiencies in the allocation requests
and execution scripts, like inadequate number of CPU cores or level of parallelization.
By guiding users to have higher utilization of resources and have less time spent on
inefficient work like waiting for disk I/O and dynamic memory allocation, this ensures
that higher amount of time is spent on actual computing and hence less time is required
to return result, with which related fixed-rate carbon footprints, like those produced by
cooling when the job runs for unnecessarily long, can be reduced without affecting users’
work, and therefore increases energy efficiency. This ultimately contributes to higher
energy efficiency, as the tasks are now completed faster and have less energy consump-
tion from facility, e.g. those from cooling and disk array, associated with them, for the
fact that these components have to be always powered but a single task have minor
impact on their consumption, while the amount of computation is constant regardless
of computing resources available.

4.2.1. Resource Usage
Poor utilization of allocated computing resources can occur independent of whether the
job submission uses some script or software written from scratch or scientific software
that has been highly optimized and consumes every bit of compute power available to it.
For example, the user may forget to specify number of cores available and therefore use a
small default value instead, may assume that the software could utilize GPU cards while
in fact not, or may simply mistyped #SBATCH and #SBTACH, leading sbatch to ignore
this line. Plus, overestimating the amount of RAM required is commonly happening
partly due to concerns of OOM kills causing loss of work and waste of time, while it
takes extra effort to check the amount of memory actually used. With this reason,
this analysis is placed first for its alerts being intuitive while easy and worthwhile to
fix, and provides users with observability of the situation by contrasting the amount of
computing resources allocated and actually used in a job submission and individual steps
in it, in percentile format for easy interpretation and being presented as histogram when
the granularity of data allows, as shown in Table 4.1. To aid in quickly locating the
problem, nodes that raised certain type of alert is marked with a double asterisk in the
respective column. In addition to commonly identified problems like underutilization of
CPU cores and GPU cards, this analysis also alerts submissions that appears to have
no concurrency by utilizing only one CPU core and no GPU, or those that requested
unusually low amount of resources, leading to the fact that their computing capability
may not as competent as a regular laptop, whose examples are shown in Table 4.2.

4.2.2. GPU Usage
The demand of high-specification compute cards and GPUs in HPC clusters increased
with the raising popularity of machine learning and developments on it required more
and faster devices to train high accuracy models. However, the computing power of GPU
cards cannot be split into hundreds or thousands of cores as CPU does and therefore
has less granularity when sharing, requiring efficient usage and careful selection of card

28

type to reduce waste of allocated resources. This analysis uses direct or indirect data
from GPU driver, such as NVIDIA Management Library (NVML) or those collected by
Bright Cluster Manager through this library, to alert users of misuses and suggest them
to split job into GPU and pure CPU parts when there is long period of idle observed, for
the scarce resource to be better shared among the cluster. Besides the zero-usage alert
that flags connection to GPU card driver with no observed utilization, low utilization
observed for high percent of time is also used as a criterion for asking users to investigate
code submitted for execution or to use cards of lower specification so to ensure jobs are
using cards whose specification is matching their need. An example section of GPU is
shown in Table 4.3.

4.2.3. System Time Ratio
Since it is unrealistic to write rules to cover all possible misuses and inefficiencies in
HPC environment, indicative and suggestive rules like the ratio of time spent in kernel
state to that in user time, or system time ratio, is introduced to identify submissions for
which profiling and targeted optimization will be helpful, as in the example result shown
in Table 4.4. The case study in Appendix B shows a dedicated optimization hinted
by system time ratio, using profiling result from strace, a tool profiling system call
patterns. By helping users to profile their code, administrators can gain understanding
on common problems when porting jobs onto the cluster, with which a checklist can be
given for users to write code and submission scripts that are efficient for the cluster,
ultimately benefiting all users and make cluster run more efficiently.

29

Job ID Step Name Memory
Usage Timespan CPU Util GPU

Count
GPU
Util

Problems
Found

699999 training
(1 node)

10.87%
(3560
/ 32768 MB)
source: samples

20.36% of time-
limit used
actual:
0-04:53:10
available:
1-00:00:00

allocated: 16 cores
average: 5 cores
actual: 0-20:14:27
available: 3-06:10:40
percentage: 25.89%

CPU Underusage

Memory Underusage

batch
training
/batch
(1 node)

10.87%
(3560
/ 32768 MB)
source: samples

[0.00%, 100.00%]

** gpu-2-03
900 samples
ncpu
inuse percentage
1 57.95%
2 1.14%
3 4.55%
4 2.27%
5 3.41%
6 2.27%
8 3.41%
10 2.27%
11 6.82%
12 10.23%
13 5.68%
(16 cores available)

8

** gpu-2-03
90 samples
ngpu
inuse percentage
0 60.90%
1 39.10%

GPU Underusage

CPU Underusage

Memory Underusage

700011 experiment1
(1 node)

18.93%
(15506
/ 81920 MB)
source: SLURM

27.63% of time-
limit used
actual:
1-22:24:40
available:
7-00:00:00

allocated: 40 cores
average: 38 cores
actual: 73-03:41:55
available: 77-08:26:40
percentage: 94.57%

Memory Underusage

batch
experiment1
/batch
(1 node)

18.93%
(15506
/ 81920 MB)
source: SLURM

[0.00%, 100.00%]

** compute-1-01
900 samples
ncpu
inuse percentage
6 0.23%
7 7.27%
8 37.73%
9 45.80%
10 8.52%
11 0.45%
(32 cores available)

0

CPU Underusage

Memory Underusage

Table 4.1.: Anonymized sample underutilization data rows in the resource usage section of the generated report. Word
wrapped to fit page size.

30

Job ID Step Name Memory
Usage Timespan CPU Util GPU

Count
GPU
Util

Problems
Found

700009 test
(1 node)

82.66%
(41133
/ 50000 MB)
source: SLURM

100.00% of time-
limit used
actual:
5-00:00:18
available:
5-00:00:00

allocated: 8 cores
average: 6 cores
actual: 26-06:03:53
available: 40-00:02:24
percentage: 65.53%

Low Compute Power

batch
test
/batch
(1 node)

82.66%
(41133
/ 50000 MB)
source: SLURM

[0.00%, 100.00%]

compute-2-02
2025 samples
ncpu
inuse percentage
1 4.29%
2 4.90%
3 11.36%
4 2.93%
5 4.24%
6 2.53%
7 9.44%
8 60.30%
(8 cores available)

0

700055 algo
(1 node)

81.92%
(163846
/ 200000 MB)
source: SLURM

60.24% of time-
limit used
actual:
0-10:50:33
available:
0-18:00:00

allocated: 4 cores
average: 1 core
actual: 0-10:50:29
available: 1-19:22:12
percentage: 25.00%

CPU Underusage

batch
algo/batch
(1 node)

81.92%
(163846
/ 200000 MB)
source: SLURM

[0.00%, 100.00%]

** compute-2-03
135 samples
ncpu
inuse percentage
1 100.00%
(4 cores available)

0

Low Concurrency

CPU Underusage

Table 4.2.: Anonymized sample data rows with low concurrency or low compute power alert, in the resource usage section of
the generated report. Word wrapped to fit page size.

31

Job ID Step Name GPU
#

Avg.
Util%

No
Util

Low
Util

Longest
Continuous

No Util

Avg.
SM

Clock
(MHz)

Avg.
Power
Usage

(Watts)

Problems Found

700028 batch training
/batch

1 0.00
48 0 0

210.00 26.89 Completely No Utilout of 48 records
100.00% 0.00% 0.00%

700029 batch training
/batch

0 1.76
96 2 75

384.76 30.88
Try Splitting

out of 103 records Investigate GPU Usage
93.20% 1.94% 72.82%

Table 4.3.: Anonymized sample data rows in the GPU usage section of the generated report. Word wrapped to fit page size.

Job ID Step Name
(10%,
33%]

#

(33%,
66%]

(66%,
100%] > 100% Unified

Ratio Problems Found

700033 batch collect
/batch

36 881 295 0.00 1471.00
System Time Ratioout of 1,212 records

2.97% 72.69% 24.34% 0.00% 121.37%

Table 4.4.: Anonymized sample data rows in the system time ratio section of the generated report. Word wrapped to fit page
size.

32

4.2.4. Extensibility
It is clear that being easy to add or modify metrics being recorded and rules for analyses
is vital for the tool be applicable in different scenarios and use cases. Therefore, extensi-
bility is taken into consideration when designing the tool and users can add new columns
to the record and start collecting and recording these data without concerning too much
about implementation details. To do this, they will first append a table modification
SQL query to a database migration switch-case, which jumps with regard to current
database schema version and performs migration queries for each schema change all the
way up to the latest schema version. After this, for the values to be recorded, they will
need to add code in scraper to read metric values that are mapped to either subprocesses
of slurmstepd or job step, and send them back data to server for process, by following
existing code as template for appending data as new section in message and inserting
data received into the new column just created. No matter whether new columns are
added to the database, the users can cleanly extend the analyses by making appropriate
changes to the query to add or change alert rules using existing data, or to show more
data in generated reports. To do this, they only have to fill out fields of constant struc-
tures to inform the analyzer of the change and provide textual content to show in the
reports. Both extensions have enough code near sites of changes for reference.

4.3. Web Interface
4.3.1. Backend
The backend is implemented in a relatively simple manner, by having all available re-
sults loaded into structures split by period and user, with reports further parsed into
different sections and deduplicated to remove redundancy from descriptive texts. To
signal creation of and updates to the tarball after finish overwriting it, the analyzer
creates empty files with specific filename format indicating a period is updated, which
allows filesystem notification set up in the directory to trigger the callback function to
reload that period. For handling HTTP requests, it takes authentication header passed
by HTTP server and composes JSON response with data selected based on periods in
the request and the user’s permission.

4.3.2. Frontend
In comparison to HTML emails, in addition to higher consistency across devices, the
major advantage of displaying reports with a website is the added interactivity. As
shown in Figure 4.1, users can navigate through report sections more easily, not only
with the table of contents at left showing current and available sections, but also with
the arrow buttons in bottom right and corresponding arrow keys to jump to previous
or next section or user, which is especially useful for administrators to scan through the
TL; DR section. In addition, the added interactivity also allows the implementation of
zooming in individual cells with Ctrl+hover, as in Figure 4.2, to learn more details of
a job step without scaling up entire table and requiring horizontal scrolling. Another

33

feature enabled by this benefit is checking problem explanations and column definitions
with popup instead of jumping with anchors, as shown in Figure 4.3. However, it cannot
replace emails, as the latter proactively and periodically alert users and keep them aware
of the problem instead of requiring them to routinely check the website, while users can
also respond easily by clicking on reply button that will also provide support person
with context, as aforementioned. Considering that some tips can be helpful for users
to improve their productivity, by adopting to shortcut keys and learning command line
utilities, as well as to avoid confusions, such as that message [1]+ Stopped does not
terminate process and that Ctrl+S freezes terminal instead of saving file, a popup named
Tips of the Day is included in the interface, as shown in Figure 4.4 with a teaser showing
in top right attracting users to click. While tips that better targets individual cluster
condition can be identified from user interactions like consulting sessions, initial content
are populated with some manually reviewed, edited, and styled ChatGPT 3.5 output
for demonstration purpose, with the prompt of “Give me ten less known linux terminal
tricks; Summary each of them as informal and short question less than 7 words.”
Even given the feature of horizontally navigating through users’ reports, it may still

be hard for administrators to grasp the cluster’s utilization condition quickly, especially
when it has to be compared across different periods. Therefore, the analyzer also outputs
raw values in JSON format for integrations to use, such as the multi-level pivot table
view powered by a JavaScript library named FINOS Perspective1. As demonstrated in
Figure 4.5 and Figure 4.6, this allows administrators to quickly spot the users constantly
underutilizing computing resources, and to compare across time periods to see whether
usage condition has improved, for purposes like evaluating the effectiveness of certain
policy. This view can also be useful for regular users to see whether certain changes
made are effective in resolving certain problem for jobs of specific name, or to simply
compare running time of different job submissions, as shown in Figure 4.7.

1https://perspective.finos.org/

34

https://perspective.finos.org/

Figure 4.1.: Screenshot of a sample report section viewed through web interface

35

Figure 4.2.: Screenshot demonstrating zooming in individual cell with Ctrl+hover

36

Figure 4.3.: Screenshot showing popups in place of anchors in HTML email

37

Figure 4.4.: Screenshot demonstrating tip of the day feature

38

Figure 4.5.: Screenshot demonstrating pivot table view listing values of different users in the same time period, sorted in
ascending average CPU usage, with usernames anonymized to protect privacy. The problem columns are showing
percentages of rows having corresponding problem.

39

Figure 4.6.: Screenshot demonstrating pivot table view comparing average values from multiple periods, with problem columns
showing percentages of rows having corresponding problem.

40

Figure 4.7.: Screenshot demonstrating showing changes in problem distribution in a fam-
ily of jobs submitted by a user, grouped by time periods, with username, job
name, and job numbers anonymized to protect privacy. The values shown
in problem columns are percentages of rows having corresponding problem.

41

Part III.

Conclusions

42

High performance computing has long been a tool for enabling new breakthroughs
in natural science subjects due to its unpaired capability in performing simulation and
mathematical operations. The fast-paced development of deep learning, as well as the
rising popularity of large language models, all of which require vast amount of compu-
tation to achieve state-of-the-art accuracy, further pushed the demand to a new peak.
However, our literature review shows that HPC has a significant carbon footprint that
will continue to grow in the absence of inventions, raising severe concerns around its sus-
tainability. Despite the amount of energy necessary for the computation to be performed,
a significant proportion of energy is not utilized well by cluster users, by underutiliz-
ing the resources utilized or running job in a unnecessarily slow manner, both of which
hurts energy efficiency. This underutilization is usually not by meant, but due to the
fundamental difference between cluster and single machine setting, which the users are
typically familiar with, that users do not interactive access to compute nodes in clus-
ters for workload managers isolating them from login nodes to ensure availability of
allocated resources, which, in essence, makes the former a black box for cluster users.
Unfortunately, most monitoring tools for HPC clusters are not suitable for identifying or
addressing those inefficiencies, as they focus on overall operating status rather than indi-
vidual job characteristics. Moreover, they cannot be easily used by regular cluster users
as these tools frequently require deploying database or web servers. To increase energy
efficiency – and hence, reduce carbon footprint – without hurting the users’ experience
and productivity using the cluster, it is vital to guide them to better use the cluster. One
way to provide such guidance is to make resource underutilization be observable to them.
With this, tools that show resource utilization and automatically identify problems in
job submissions grow in demand. In addition, for educating users, administrators also
need a tool to know what are the prevailing problems and what changes to ask for users
to make.
To keep the usability of both users and administrators under aforementioned consid-

erations, we propose and build a complete data pipeline for this project, encompassing
everything from data collection and cluster sampling to reporting via both email and
web interface. Our web interface provides a pivot table view for users and administrators
to aggregate data easily and see trends and the most prevailing problem in different di-
mensions. For the users of this new tool to get quickly acquainted, abundant script and
systemd service file templates are provided with detailed usage instructions. During the
6 months running this tool on our cluster, we have received email inquires indicating the
interest from users to improve their job submissions. In addition, patterns can be seen
from the pivot table view that some problems identified are resolved starting at certain
time point, while administrators now have a better data-driven tool to locate improve-
ment goal. They can also learn about job characteristics easier when communicating
with users, without having to examine their submission script first.
Although the tool has already proved useful for both administrators and users to col-

laboratively make the cluster better utilized, due to limited time and resources available
for building the infrastructure to fully support this utility, we enlist a number of points
for improvement, that can be taken up by future IQPs:

43

• Generate suggestive SLURM argument in reports for users to try as a start point.

• Import hierarchical information from SLURM account management interface and
allow advisors to see the reports of their students if configured;

• Responding to the cell click event in the pivot table and jump to respective report
if the aggregation level is low enough to locate one;

• Immediately sending alert emails to users when serious misuses are observed, such
as only one core is being used for a job that has been running for hours;

• Further simplify the process to add analyses, by reading data scraping sequence
from a configuration file that instructs where and how values should be fetched;

• Use macro or code generator to automatically populate template for sending and
receiving data between scraper and server.

In addition, complementary analysis can be implemented in future works, such as:

• Infer the type of system call that causes an observed increase in system time by
checking for concurrent change in values, e.g., total I/O and resident set size;

• Check for frequency of unnecessary operations to free up memory, for example an
allocation that happens shortly after freeing memory, of size smaller or equal to
freed chunk.

44

Part IV.

Appendices

45

A. Sample Report Email
Hi,

Thanks for your attention and hope this letter could help your cluster submissions to
be more efficient in terms of both performance and energy! Since the letter serves the
purpose of more than communication, but as an observation tool, please do check out
the attached usage instruction for best experience.

Table of Contents
TL; DR

Usage Instructions News

Resource Usage
• Metrics
• Possible problems in the category
• All latest submissions

GPU Usage
• Metrics
• Possible problems in the category
• All latest submissions
• Across submission history

System Time Ratio
• Metrics
• Possible problems in the category
• latest concerning submissions
• Across submission history

Ending

TL; DR
All bold texts in this section are clickable!

• For analysis Resource Usage
◦ Within 8 records in all latest submissions
� 1 entry has problem GPU Underusage and could be solved by

checking your code and allocation request parameters.
� 5 entries has problem CPU Underusage and could be solved by

checking your code and allocation request parameters.
� 1 entry has problem Low Compute Power and could be solved by

checking your code and allocation request parameters.
� 1 entry has problem Low Concurrency and could be solved by

checking your code and allocation request parameters.
� 4 entries has problem Memory Underusage and could be solved by

checking your code and allocation request parameters.

46

(Continued Figure)
• For analysis GPU Usage
◦ Within 2 records in all latest submissions
� 1 entry has problem Completely No Util and could be solved by

checking your code and allocation request parameters.
� 1 entry has problem Investigate GPU Usage and could be solved by

requesting a consultation session if needed.
� 1 entry has problem Try Splitting and could be solved by

requesting a consultation session if needed.
◦ Within 1 record in across submission history
� 1 entry has problem Investigate GPU Usage and could be solved by

requesting a consultation session if needed.
� 1 entry has problem Try Splitting and could be solved by

requesting a consultation session if needed.
• For analysis System Time Ratio
◦ Within 1 record in latest concerning submissions
� 1 entry has problem System Time Ratio and could be solved by

could be solved by sending a request to profiling staff to identify
bottleneck of the code.

(Similar summary for analysis across submission history omitted)

Check out the instructions below for the best way of reading this summary letter.

Usage Instructions

• For best experience, use browser-based email rendering engine. Cer-
tain email clients like Outlook Desktop have the functionality of
opening the email in browser.

• This letter is designed for you to have a better observability of the jobs and identify
problems related to resource usage, including underusage or misusage, so that
you could use less to have the same effect or spot possible bottlenecks of the
submissions. This not only helps you to better utilize the resources and potentially
speed up your jobs, but also contributes to a collective effort of taking up what
really need and make queues move faster. All these could contribute to a greener
computing.

• Internal links are heavily used in this letter and it is strongly advised to use them
to avoid scrolling overwhelmingly. All text in table of contents and headers are
clickable and would respectively bring you to corresponding section or back to table
of contents. When being lost in result rows, click on the values of Job ID and you
would be sent back to section header. Besides, all of the identified problems
and many of the column headers are also clickable, which could bring you to
a detailed explanation of these names. Please submit a feedback if anything you
don’t understand is not explained well, including the usage of this letter.

47

https://support.microsoft.com/en-us/office/view-an-email-in-your-browser-87aa5c86-be18-4f70-b408-92c814bd96ec

(Continued Figure)
• The highlighted and bolded sections in table of contents are suggested to read

first for getting the most out of this letter. Following many users’ convention,
the measurements are also aggregated by job name across the entire measurement
dataset collected so far for a comprehensive overview of job characteristic. Besides
identifying problems, the raw data contributing to identifying the problems are
also included for your reference.

• Make sure to complete the feedback form for this summary letter to be continuously
improved and bring you more valuable information!

NEWS
We have added a series of new GPU nodes last week!

Resource Usage
This analysis identifies resource allocation misuses for you to set allocation request

parameters that better fits the actual need and benefit the submission by having requests
allocated faster or lowering the risk of having the jobs killed by using more resources
than allocated.

Metrics

Job ID

For results aggregated across history runs, the Job ID and Step
fields shows a representative job step that has the same job name
and submit line, which could be fetched by running sacct -j . -o
Name,SubmitLine

Name This field is formed by joining job name and step name with slash.

Timespan

The timing of result row relative to parent constraint. It compares
allocated time and actual consumption for jobs, and shows the timing
of steps relative to the time window of their parent jobs. For example,
a result of [25%, 75%] for a step shows that the step started after a
quarter of the job’s actual time consumption has elapsed, while ends
after running for as long as half of the job’s actual time consumption.

CPU Util The amount of CPU cores used is an average calculated from aggregated
CPU time and actual time consumption and does not show peak usage.

GPU Util The GPU usage information is derived from sampled data and may not
represent the full picture.

48

https://example.com/survey?id=username:1234567

(Continued Figure)

Possible problems in the category

Low
Compute Power

Cause The job submission requested no GPU and only a few
CPU cores.

Impact

While it is possible that only large amount of available
memory is desired, i.e. your computation is memory-
bounded, this combination of request parameter could
make job to run in a performance that is slower than
on your laptop.

Solution

Confirm your need. Try requesting more CPU cores
and setting higher concurrency parameter in your code
with consulting library documentations to see if there
is improvement. Ignore this message if the computa-
tion is memory-bounded and large amount of available
memory is the only resource in need.

GPU
Underusage

Cause Resources allocated is not fully used.

Impact

Generally, this increases the difficulty for the request
to be satisfied, while also keeps unused resources un-
available to other jobs for the length of job and there-
fore lengthen the queue. Remember sometimes your
other jobs could also be in the queue waiting for re-
sources! The combined result of zero GPU utilization
and low amount of average CPU cores would bring
the submission to be running at extremely poor per-
formance.

Solution Adjust allocation request with referring to the usage
info provided.

CPU
Underusage Refer to GPU Underusage section above.

Memory
Underusage Refer to GPU Underusage section above.

All latest submissions

See Tables 4.1 and 4.2 for examples.

49

GPU Usage

This analysis helps in making submissions’ GPU usage condition more observable
and provides suggestions on requesting GPU resource so to shorten allocation turnaround
time, make allocations better utilized, and save energy.

Metrics

Job ID

For results aggregated across history runs, the Job ID and Step
fields shows a representative job step that has the same job name
and submit line, which could be fetched by running sacct -j . -o
Name,SubmitLine

Name This field is formed by joining job name and step name with slash.

GPU Index of GPU on machine.

Average
Util%

Consider lowering GPU constraint or using lower GPU specification
when in low utilization for easier allocation and energy saving, or
specifying better GPU in case of high average utilization to get job
done faster.

Low Util Low is currently defined as utilization values in the range of (0,
12.5%].

Longest
Continuous

No Util

Number of continuous measurements showing zero utilization of the
GPU streaming multiprocessor.

Average
SM Clock

(MHz)
Average streaming multiprocessor clock provided for reference.

Average
Power Usage

(Watts)

Average power usage provided for understanding environmental im-
pact. As a reference, GPUs typically use 10 Watts when in idle. This
does not take external power consumption into calculation, like those
for cooling.

50

(Continued Figure)

Possible problems in the category

Completely No Util

Cause The submission is never observed to be utilizing
GPU.

Impact

This causes unnecessary energy consumption by wak-
ing GPU from idle mode. In addition, it possibly per-
formed heavy computing with less CPU, which would
take even longer to complete than a pure CPU sub-
mission. It would also block other jobs from using the
device for equally long time and stress the queue.

Solution Check for code and documentation to ensure the com-
putation is using GPU.

Try Splitting

Cause

This submission is having a high percentage of longest
zero utilization, indicating that there possibly exists
segment of code that is running for long time while
not utilizing any GPU resource.

Impact

Allocations without GPU is generally faster to be allo-
cated so that the preparation work for computing with
GPU could be performed while waiting for allocation
during peak time of GPU usage. This could also al-
low wasted GPU cycles to be used on other jobs and
utilize energy better, while also helps the queue to
progress faster and shorten the turnaround time wait-
ing for a GPU. Remember your task could be the one
waiting for GPU next time so let’s be involved in this
optimization!

Solution

Identify code segments running long while utiliz-
ing no GPU and split execution into tasks re-
questing GPU and no GPU. The task depedency
could be set while submitting jobs with argument
--dependency=afterok:(jobid). Use accurate time
limit for smooth transition from one job to another.

51

(Continued Figure)

Investigate
GPU Usage

Cause

This submission is observed to be utilizing GPU but in
a low utilization for long period. This possibly in-
dicates inefficacies in GPU usage, like bottlenecks
in the pipeline moving data to GPU, or the computa-
tion is light enough that GPUs of lower specification
or parallized pure CPU computation would fulfill the
need while being easier to be allocated and uses less
energy.

Impact

Checking for bottlenecks could help the submission
to complete in a faster and more efficient manner.
Choosing appropriate resource combination reliefs un-
necessary constraints, so that the allocation could be
assigned quicker, while avoid blocking jobs with real
demands of high specification hardware.

Solution

Compare time consumption on each part of computa-
tion, like that of loading data from disk and prepro-
cessing, moving data to GPU memory, and computing
with GPU. Check for bottlenecks in the pipeline. Try
GPU of lower specifiction if GPU type is specified in
the allocation request.

All latest submissions

See Table 4.3 for an example.

Across submission history

Similar to Table 4.3, with results rows of same name and submit line, both from the
latest submissions and previous data, being aggregated together.

System Time Ratio

This analysis identifies job submissions that are likely to be less computationally
effective but may not have been captured by other analyses, possibly due to problems
that are not previously identified and therefore have no specific rules set up, or those
that could not be determined with available metrics.

52

(Continued Figure)

Metrics

The columns are the number of sampled time slice having ratios in the shown range
when the time spent on system requests (system time) is divided by the time spent on
user computations (user time). These ratios show how significant the system time is
when compared to user time.

Job ID

For results aggregated across history runs, the Job ID and Step
fields shows a representative job step that has the same job name
and submit line, which could be fetched by running sacct -j . -o
Name,SubmitLine

Name This field is formed by joining job name and step name with slash.
>100% The value shown in this field is the sum of all ratios greater than 100%.

Unified
Ratio

The value shown in this field shows the underestimated equivalent of
the system-time to user-time ratio based on significant ratios shown in
previous columns. A unified ratio that equals to the number of mea-
surements as shown in denominator equivalents to a 1/3 system-time to
user-time ratio and scales linearly.

Possible problems in the category

System Time
Ratio

Cause

The process is usually waiting for certain resource to
be ready or certain device operation to be done while
being counted toward system time. High ratio may
indicate a bottleneck of the submitted job.

Impact
Given the nature of system time, it is less helpful for
progressing the actual computation and should
be reduced to improve the overall computing efficiency.

Solution

Since system time is highly coupled with the architec-
ture behind, it is suggested to submit your job for
profiling. This should be low effort and would be
beneficial to both you and other cluster users.

Latest concerning submissions

See Table 4.4 for an example.

Across submission history

Similar to Table 4.4, with results rows of same name and submit line, both from the
latest submissions and previous data, being aggregated together.
You are receiving this email because you have recently submitted jobs to the cluster.

For any questions, concerns, or to unsubscribe, please contact administrator. Top

53

B. Case Study: Optimization Hinted by
System Time Ratio

The sample program being profiled uses Tensorflow to perform link prediction, by utiliz-
ing methods like FullBatchLinkGenerator and GCN (Graph Convultion Network), with
initial test showing that system time is 10.74s and user time is 12.19s when the num-
ber of epoches is set to be 50, while system time become 17.35s and user time become
16.38s when that is set to be 100, and system call munmap took 38.51% and 51.21% of
time when being profiled by strace. Considering the significant performance penalty of
system call for switching into kernel state and possible lockings involved in the process,
the project started out by profiling the system call pattern of the sample code. The
result indicates that each munmap call is taking about 1ms to perform in average and the
amount of requests is linear to epoch amount, causing significant slowdown of the pro-
gram. With the further finding that most of these calls are made by functions including
malloc, memalign, and posix_memalign in glibc (referred as malloc below) to allocate
chunked memory, a recycle and reuse mechanism for these chunks is designed as detailed
below with utilizing the unused spaces within the chunk with pleasing performance and
optimization result.

B.1. Overlaid Memory Management
Since, as profiling the system calls from running a sample Python script turns out,
munmap is the system call running the slowest while does not serve as a synchronization
primitive, individual calls to it, as well as its sibling call mmap, are timed and plotted
as in Figure B.1. It could be identified from the figure that the first half of calls are
of relatively light colors, indicating that they runs relatively fast, with the difference of
having used MAP_NORESERVE flag in the mmap call that specifies no swap space should
be reserved and risk running out of physical memory. However, in contrast, the latter
half working on fitting the model is using malloc to repeatedly allocate and free same
set of memory in each epoch with large size parameter and are running much slower,
as indicated by the deep color. Since these memory regions are backed by mmap and
managed by malloc, a design based on the chunk structure malloc uses is proposed
here to relief the problem.

B.1.1. Memory Recycling and Reusing
Given the fact that the same set of memory chunks are to be requested in the near future
after being freed, while the free operation comes with significant overhead coming from

54

Figure B.1.: mmap and munmap pattern with regard to request size. Color indicates time
taken to perform the system call and the legends shows color of fastest call
at leftmost side and slowest at rightmost side. The yellow-red colormap rep-
resents the timing of munmap operation while the green-blue one represents
that of mmap operation.

switching context into kernel state, acquiring locks in library and operating system, as
well as causing page faults, it would be better to manage these chunks in user space.
This led into the solution of trying to recycle freed chunk before calling free in glibc
and trying to reuse recycled chunk of the same specification, namely size and alignment,
before calling the actual implementation in glibc. This is achieved by making our
library a preload library so that the runtime linker prioritizes binding symbols onto our
functions.
However, as shown in Figure B.2, the size field is actually storing value that computes

into the size of entire chunk instead of requested size, making it hard to limit their
reuse to requests with exactly the same specification without storing extra information.
Fortunately, with the source code of glibc indicating that Arena and PrevInUse bits
are always ignored when MMapChunk bit is set, it is guaranteed that there is always
a space outside header region and user memory that is capable of storing value that
could compute into the requested size. Within the chunk from mmap, the regions before
header consisting of prev_size and size fields and after user region possibly exists but
are used by neither the library nor the user, as demonstrated in Figure B.2. Since these
free space come from the alignment need of glibc and the need of rounding up to page
size for being a vaild mmap call, they may not be large enough to store a size_t-typed
value or even do not exist all. However, the presence of both of these extreme cases also
indicate there are really small difference between the size of entire chunk and requested
size (less than 8 bytes to no difference), and hence the data could be stored in 1 byte as a
difference or 1 bit as a flag, as in C1, C2 and N fields in Figure B.3. One exception here is
aligned allocation like memalign or posix_memalign, in which glibc automatically adds
alignment bytes to the requested size to ensure there is an aligned address to return at
the worst case, in which case the alignment value could be stored along with the size
requested by the user, achieving the goal of storing exact specification of allocation.
For the selection of data structure to maintain the records, an implementation that

does efficient exact matching for recently recycled chunks while automatically discard

55

long unused chunks would be desirable, which exactly resembles an LRU buffer. While
linked list has been considered as one option, their cursors in many of the concurrent
implementations are subject to invalidation when deletion happens, not to mention keep-
ing the query under appropriate amount of time with lengthening chains and being not
cache-friendly are also problematic for applying to this purpose. After evaluating the
characteristics of the possible choices, to ensure efficiency, the recycle and reuse processes
are implemented by maintaining a pool of recycled chunks using atomic primitives un-
der relaxed memory order. By having the bitwidth of cursor to match that of pool
size, it enables unsigned cursor to automatically wrap to zero with natural overflow
when incrementing out of bound. Meanwhile, the downside of this implementation is
that it requires the pool size to be chosen from a few fixed powers of 2 to match the
bitwidth. The size of 256 is selected here since the next value 65,536 would be too large
to traverse and confirm there is no matching chunk. For the limited pool size, only
large enough chunk is recycled so that the cache would not be invalidated so fast, while
also ensuring that the time saved from calling less munmap exceeds the overhead from
this implementation. The correctness of this implementation is guarded by implanting
data onto allocated memory region that does not intersect with where glibc and user
program would access.

B.1.2. Results
The results from this optimization comes out pleasant, mainly because it optimized out
one heavy factor that led the system time to be almost linear to number of epoches
training a model. For the distribution of epoches used to sample performance data, the
X-axises of the figures are set to be logarithmic of number of epoches to make them
spread evenly on the axises, and therefore what seemed to be growing exponentially in
the figure is actually linear in the original scale.
From the perspective of time consumption, the implementation turns the time spent

on the munmap call from being linear to the number of epoches to be staying in a relatively
constant level, and in the meantime also avoided the call from taking increasingly higher
proportion of overall system call time, as shown in Figure B.4. For the overall time,
the use of this implementation resulted in much lower system time with only slight
increase in user time, as in Figure B.5, whose combined effect is nearly halving the total
execution time as in Figure B.6 for larger epoches, although having slightly slowed down
the execution for runs of less than 20 epoches, as detailed in Figure B.7.
As for memory consumption, as shown in Figure B.8, this implementation used about

200∼300M more of memory than the original version at peak, possibly due to the chunks
in recycle pool but is tolerable. However, the effect of this implementation on reducing
page fault and saving time is significant, especially as the number of epoches goes up.

B.2. Other Possible Slowdowns
1. After resolving the slowdown from mmap, unlink becomes the slowest system call,

with time impact much more trivial than munmap although still being linear to

56

01234567

* user_size F
alignment if F = 1

prev_size - 8 × (F + 1) bytes


prev_size bytes

prev_size
size

=chunk_size - prev_size 0 1 0

S

User Region

user_size if prev_size = 0 and chunk_size - user_size > 16 0

Figure B.2.: Noncompress version of implanting, where the mmaped region starts at
the byte as indicated by * and the returned address points to the byte
as indicated by S. It discards the highest bit with the assumption that this
implementation is not handling such a large size, and implant at either start
of chunk or immediately after the user region, with the former one preferred
to avoid extra page fault when the last page is never accessed by the user
program. It also implants an alignment value if there is space available and
set F to 1 in this case. Compressed version as in Figure B.3 shall be used
when neither of the spaces are available.

57

01234567

* C1 (prev_size - 1) bytes
}
prev_size bytes

prev_size < 8
size

=chunk_size - prev_size C1N

S

User Region

C2

Figure B.3.: Compressed version of implanting, where the mmaped region starts at the
byte as indicated by * and the returned address points to the byte as indi-
cated by S. C1 as indicated here is the first byte of mmaped region and C2
as indicated here is the byte immediately following the end of user region.
It implants the difference between available size and requested size, which
is guaranteed to be less than 8, at either C1 or C2 with C1 preferred and
set C=1 and N=0. By preferring C1, it avoids an extra page fault when
user program never accesses the last page. If neither space is available then
C=0 and N=1 are set, indicating that the size available is exactly the same
as size requested.

58

Figure B.4.: Time spent on munmap in original (blue) and optimized (black) versions, as
well as their percentage in overall system call time (dashed), for different
amount of epoches in exponential spread

59

Figure B.5.: User time (dashed) and system time in original (blue) and optimized (black)
versions for different amount of epoches in exponential spread

amount of epoches. This is probably caused by Python making copies of scripts
to /tmp directory and simply deleted them after done using, instead of reusing
the filenames from mktemp. This could possibly be fixed by handling mktemp and
unlink to recognize and reuse discarded filenames.

2. Checkpointing, which stores current program state into a file, could also been one
reason for slowing down the overall performance for its blocking nature. However,
there is currently no sample code handy that is reproducing this situation.

60

Figure B.6.: Wall clock time in original (blue) and optimized (black) versions for different
amount of epoches in exponential spread

Figure B.7.: Wall clock time in original (blue) and optimized (black) versions for smaller
epoches

61

Figure B.8.: Frame reclaim page fault count (dashed) and memory usage as represented
by maximum resident set size in original (blue) and optimized (black) ver-
sions, for different amount of epoches in exponential spread

62

References

[1] William (Bill) Allcock et al. “Challenges of HPC monitoring”. In: State of the Prac-
tice Reports. SC ’11. New York, NY, USA: Association for Computing Machinery,
Nov. 2011, pp. 1–6. isbn: 9781450311397. doi: 10.1145/2063348.2063378. url:
https://doi.org/10.1145/2063348.2063378 (visited on 10/09/2023).

[2] Ankit et al. “Electronic waste and their leachates impact on human health and
environment: Global ecological threat and management”. In: Environmental Tech-
nology & Innovation 24 (Nov. 2021), p. 102049. issn: 2352-1864. doi: 10.1016/j.
eti.2021.102049. url: https://www.sciencedirect.com/science/article/
pii/S2352186421006970 (visited on 12/11/2023).

[3] Pierre Augier et al. “Reducing the ecological impact of computing through educa-
tion and Python compilers”. en. In: Nature Astronomy 5.4 (Apr. 2021), pp. 334–
335. issn: 2397-3366. doi: 10.1038/s41550-021-01342-y. url: https://www.
nature.com/articles/s41550-021-01342-y (visited on 10/09/2023).

[4] Shajulin Benedict. “Energy-aware performance analysis methodologies for HPC
architectures—An exploratory study”. In: Journal of Network and Computer Ap-
plications 35.6 (Nov. 2012), pp. 1709–1719. issn: 1084-8045. doi: 10.1016/j.
jnca.2012.08.003. url: https://www.sciencedirect.com/science/article/
pii/S1084804512001798 (visited on 10/09/2023).

[5] Shajulin Benedict. “Performance issues and performance analysis tools for HPC
cloud applications: a survey”. en. In: Computing 95.2 (Feb. 2013), pp. 89–108. issn:
1436-5057. doi: 10.1007/s00607-012-0213-0. url: https://doi.org/10.1007/
s00607-012-0213-0 (visited on 10/09/2023).

[6] Francesco Beneventi et al. “Continuous learning of HPC infrastructure models
using big data analytics and in-memory processing tools”. In: Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE), 2017. ISSN: 1558-1101.
Mar. 2017, pp. 1038–1043. doi: 10.23919/DATE.2017.7927143. url: https:
//ieeexplore.ieee.org/abstract/document/7927143 (visited on 10/10/2023).

[7] Raúl Cassia et al. “Climate Change and the Impact of Greenhouse Gasses: CO2
and NO, Friends and Foes of Plant Oxidative Stress”. In: Frontiers in Plant Science
9 (Mar. 2018), p. 273. issn: 1664-462X. doi: 10.3389/fpls.2018.00273. url:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5837998/ (visited on
12/11/2023).

63

https://doi.org/10.1145/2063348.2063378
https://doi.org/10.1145/2063348.2063378
https://doi.org/10.1016/j.eti.2021.102049
https://doi.org/10.1016/j.eti.2021.102049
https://www.sciencedirect.com/science/article/pii/S2352186421006970
https://www.sciencedirect.com/science/article/pii/S2352186421006970
https://doi.org/10.1038/s41550-021-01342-y
https://www.nature.com/articles/s41550-021-01342-y
https://www.nature.com/articles/s41550-021-01342-y
https://doi.org/10.1016/j.jnca.2012.08.003
https://doi.org/10.1016/j.jnca.2012.08.003
https://www.sciencedirect.com/science/article/pii/S1084804512001798
https://www.sciencedirect.com/science/article/pii/S1084804512001798
https://doi.org/10.1007/s00607-012-0213-0
https://doi.org/10.1007/s00607-012-0213-0
https://doi.org/10.1007/s00607-012-0213-0
https://doi.org/10.23919/DATE.2017.7927143
https://ieeexplore.ieee.org/abstract/document/7927143
https://ieeexplore.ieee.org/abstract/document/7927143
https://doi.org/10.3389/fpls.2018.00273
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5837998/

[8] Miyuru Dayarathna, Yonggang Wen, and Rui Fan. “Data Center Energy Consump-
tion Modeling: A Survey”. In: IEEE Communications Surveys & Tutorials 18.1
(2016), pp. 732–794. issn: 1553-877X. doi: 10.1109/COMST.2015.2481183. url:
https://ieeexplore.ieee.org/document/7279063/ (visited on 10/08/2023).

[9] Sonja Filiposka, Anastas Mishev, and Carlos Juiz. “Opportunities and Challenges
for Green HPC”. en. In: ICT Innovations 2014. Ed. by Ana Madevska Bogdanova
and Dejan Gjorgjevikj. Advances in Intelligent Systems and Computing. Cham:
Springer International Publishing, 2015, pp. 45–54. isbn: 9783319098791. doi: 10.
1007/978-3-319-09879-1_5.

[10] Charlotte Freitag et al. “The real climate and transformative impact of ICT:
A critique of estimates, trends, and regulations”. In: Patterns 2.9 (Sept. 2021),
p. 100340. issn: 2666-3899. doi: 10.1016/j.patter.2021.100340. url: https:
//www.sciencedirect.com/science/article/pii/S2666389921001884 (visited
on 12/11/2023).

[11] Pablo García-Risueño and Pablo E. Ibáñez. A review of High Performance Comput-
ing foundations for scientists. en. May 2012. doi: 10.1142/S0129183112300011.
url: https://arxiv.org/abs/1205.5177v1 (visited on 12/03/2023).

[12] David Guyon et al. “How Much Energy Can Green HPC Cloud Users Save?”
In: 2017 25th Euromicro International Conference on Parallel, Distributed and
Network-based Processing (PDP). ISSN: 2377-5750. Mar. 2017, pp. 416–420. doi:
10.1109/PDP.2017.62. url: https://ieeexplore.ieee.org/document/
7912681/;jsessionid=tgctRYP8C7pg5xecbxi4jRDHW4HQiw6gV3L_w2B0w2KSTdi6D_
7U!1291350239 (visited on 12/03/2023).

[13] Mél Hogan. “Data Center”. en. In: Encyclopedia of Big Data. Ed. by Laurie A.
Schintler and Connie L. McNeely. Cham: Springer International Publishing, 2022,
pp. 272–275. isbn: 9783319320106. doi: 10.1007/978-3-319-32010-6_299. url:
https://doi.org/10.1007/978-3-319-32010-6_299 (visited on 12/11/2023).

[14] E. A. Huerta et al. “Convergence of artificial intelligence and high performance
computing on NSF-supported cyberinfrastructure”. In: Journal of Big Data 7.1
(Oct. 2020), p. 88. issn: 2196-1115. doi: 10.1186/s40537-020-00361-2. url:
https://doi.org/10.1186/s40537-020-00361-2 (visited on 10/08/2023).

[15] Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. “An Efficient Approach
for Assessing Hyperparameter Importance”. en. In: Proceedings of the 31st Inter-
national Conference on Machine Learning. PMLR, Jan. 2014, pp. 754–762. url:
https://proceedings.mlr.press/v32/hutter14.html (visited on 11/20/2023).

[16] Shoaib Kamil, John Shalf, and Erich Strohmaier. “Power efficiency in high perfor-
mance computing”. In: 2008 IEEE International Symposium on Parallel and Dis-
tributed Processing. ISSN: 1530-2075. Apr. 2008, pp. 1–8. doi: 10.1109/IPDPS.
2008.4536223. url: https://ieeexplore.ieee.org/document/4536223 (visited
on 10/09/2023).

64

https://doi.org/10.1109/COMST.2015.2481183
https://ieeexplore.ieee.org/document/7279063/
https://doi.org/10.1007/978-3-319-09879-1_5
https://doi.org/10.1007/978-3-319-09879-1_5
https://doi.org/10.1016/j.patter.2021.100340
https://www.sciencedirect.com/science/article/pii/S2666389921001884
https://www.sciencedirect.com/science/article/pii/S2666389921001884
https://doi.org/10.1142/S0129183112300011
https://arxiv.org/abs/1205.5177v1
https://doi.org/10.1109/PDP.2017.62
https://ieeexplore.ieee.org/document/7912681/;jsessionid=tgctRYP8C7pg5xecbxi4jRDHW4HQiw6gV3L_w2B0w2KSTdi6D_7U!1291350239
https://ieeexplore.ieee.org/document/7912681/;jsessionid=tgctRYP8C7pg5xecbxi4jRDHW4HQiw6gV3L_w2B0w2KSTdi6D_7U!1291350239
https://ieeexplore.ieee.org/document/7912681/;jsessionid=tgctRYP8C7pg5xecbxi4jRDHW4HQiw6gV3L_w2B0w2KSTdi6D_7U!1291350239
https://doi.org/10.1007/978-3-319-32010-6_299
https://doi.org/10.1007/978-3-319-32010-6_299
https://doi.org/10.1186/s40537-020-00361-2
https://doi.org/10.1186/s40537-020-00361-2
https://proceedings.mlr.press/v32/hutter14.html
https://doi.org/10.1109/IPDPS.2008.4536223
https://doi.org/10.1109/IPDPS.2008.4536223
https://ieeexplore.ieee.org/document/4536223

[17] Arvind Kumar et al. “Life Cycle Assessment Based Environmental Footprint of a
Battery Recycling Process”. en. In: Intelligent Manufacturing and Energy Sustain-
ability. Ed. by A. N. R. Reddy et al. Smart Innovation, Systems and Technologies.
Singapore: Springer, 2022, pp. 115–123. isbn: 9789811664823. doi: 10.1007/978-
981-16-6482-3_12.

[18] Loïc Lannelongue, Jason Grealey, and Michael Inouye. “Green Algorithms: Quan-
tifying the Carbon Footprint of Computation”. In: Advanced Science 8.12 (May
2021), p. 2100707. issn: 2198-3844. doi: 10.1002/advs.202100707. url: https:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC8224424/ (visited on 12/11/2023).

[19] Loïc Lannelongue et al. “GREENER principles for environmentally sustainable
computational science”. en. In: Nature Computational Science 3.6 (June 2023),
pp. 514–521. issn: 2662-8457. doi: 10.1038/s43588-023-00461-y. url: https:
//www.nature.com/articles/s43588-023-00461-y (visited on 12/12/2023).

[20] Zhengchun Liu et al. “Characterization and identification of HPC applications
at leadership computing facility”. In: Proceedings of the 34th ACM International
Conference on Supercomputing. ICS ’20. New York, NY, USA: Association for
Computing Machinery, June 2020, pp. 1–12. isbn: 9781450379830. doi: 10.1145/
3392717.3392774. url: https://doi.org/10.1145/3392717.3392774 (visited
on 11/20/2023).

[21] Camilo Mora et al. “Broad threat to humanity from cumulative climate hazards
intensified by greenhouse gas emissions”. en. In: Nature Climate Change 8.12 (Dec.
2018), pp. 1062–1071. issn: 1758-6798. doi: 10 . 1038 / s41558 - 018 - 0315 - 6.
url: https://www.nature.com/articles/s41558-018-0315-6 (visited on
12/11/2023).

[22] Jeffrey T. Palmer et al. “Open XDMoD: A Tool for the Comprehensive Manage-
ment of High-Performance Computing Resources”. In: Computing in Science &
Engineering 17.4 (July 2015), pp. 52–62. issn: 1558-366X. doi: 10.1109/MCSE.
2015.68. url: https://ieeexplore.ieee.org/document/7106398 (visited on
12/28/2023).

[23] Dário Passos and Puneet Mishra. “A tutorial on automatic hyperparameter tuning
of deep spectral modelling for regression and classification tasks”. In: Chemometrics
and Intelligent Laboratory Systems 223 (Apr. 2022), p. 104520. issn: 0169-7439.
doi: 10.1016/j.chemolab.2022.104520. url: https://www.sciencedirect.
com/science/article/pii/S0169743922000314 (visited on 11/20/2023).

[24] Simon Portegies Zwart. “The ecological impact of high-performance computing
in astrophysics”. en. In: Nature Astronomy 4.9 (Sept. 2020), pp. 819–822. issn:
2397-3366. doi: 10.1038/s41550-020-1208-y. url: https://www.nature.com/
articles/s41550-020-1208-y (visited on 11/20/2023).

65

https://doi.org/10.1007/978-981-16-6482-3_12
https://doi.org/10.1007/978-981-16-6482-3_12
https://doi.org/10.1002/advs.202100707
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8224424/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8224424/
https://doi.org/10.1038/s43588-023-00461-y
https://www.nature.com/articles/s43588-023-00461-y
https://www.nature.com/articles/s43588-023-00461-y
https://doi.org/10.1145/3392717.3392774
https://doi.org/10.1145/3392717.3392774
https://doi.org/10.1145/3392717.3392774
https://doi.org/10.1038/s41558-018-0315-6
https://www.nature.com/articles/s41558-018-0315-6
https://doi.org/10.1109/MCSE.2015.68
https://doi.org/10.1109/MCSE.2015.68
https://ieeexplore.ieee.org/document/7106398
https://doi.org/10.1016/j.chemolab.2022.104520
https://www.sciencedirect.com/science/article/pii/S0169743922000314
https://www.sciencedirect.com/science/article/pii/S0169743922000314
https://doi.org/10.1038/s41550-020-1208-y
https://www.nature.com/articles/s41550-020-1208-y
https://www.nature.com/articles/s41550-020-1208-y

[25] J. Ranilla, E. M. Garzón, and J. Vigo-Aguiar. “High performance computing: an
essential tool for science and engineering breakthroughs”. en. In: The Journal of
Supercomputing 70.2 (Nov. 2014), pp. 511–513. issn: 1573-0484. doi: 10.1007/
s11227-014-1279-6. url: https://doi.org/10.1007/s11227-014-1279-6
(visited on 12/03/2023).

[26] Stephan Schlagkamp et al. “Analyzing users in parallel computing: A user-oriented
study”. In: 2016 International Conference on High Performance Computing & Sim-
ulation (HPCS). July 2016, pp. 395–402. doi: 10.1109/HPCSim.2016.7568362.
url: https://ieeexplore.ieee.org/abstract/document/7568362 (visited on
12/02/2023).

[27] Roy Schwartz et al. “Green ai”. en. In: Communications of the ACM 63.12 (Nov.
2020), pp. 54–63. issn: 0001-0782, 1557-7317. doi: 10.1145/3381831. url: https:
//dl.acm.org/doi/10.1145/3381831 (visited on 10/08/2023).

[28] Emma Strubell, Ananya Ganesh, and Andrew McCallum. “Energy and Policy
Considerations for Modern Deep Learning Research”. en. In: Proceedings of the
AAAI Conference on Artificial Intelligence 34.09 (Apr. 2020), pp. 13693–13696.
issn: 2374-3468. doi: 10.1609/aaai.v34i09.7123. url: https://ojs.aaai.
org/index.php/AAAI/article/view/7123 (visited on 10/08/2023).

[29] Nitin Sukhija et al. “Event Management and Monitoring Framework for HPC
Environments using ServiceNow and Prometheus”. In: Proceedings of the 12th In-
ternational Conference on Management of Digital EcoSystems. MEDES ’20. New
York, NY, USA: Association for Computing Machinery, Nov. 2020, pp. 149–156.
isbn: 9781450381154. doi: 10.1145/3415958.3433046. url: https://doi.org/
10.1145/3415958.3433046 (visited on 10/09/2023).

[30] Martin Svedin et al. “Benchmarking the Nvidia GPU Lineage: From Early K80 to
Modern A100 with Asynchronous Memory Transfers”. en. In: Proceedings of the
11th International Symposium on Highly Efficient Accelerators and Reconfigurable
Technologies. Online Germany: ACM, June 2021, pp. 1–6. isbn: 9781450385497.
doi: 10.1145/3468044.3468053. url: https://dl.acm.org/doi/10.1145/
3468044.3468053 (visited on 10/08/2023).

[31] Kar-Han Tan and Boon Pang Lim. “The artificial intelligence renaissance: deep
learning and the road to human-Level machine intelligence”. en. In: APSIPA Trans-
actions on Signal and Information Processing 7 (Jan. 2018), e6. issn: 2048-7703.
doi: 10 . 1017 / ATSIP . 2018 . 6. url: https : / / www . cambridge . org / core /
journals/apsipa-transactions-on-signal-and-information-processing/
article/artificial-intelligence-renaissance-deep-learning-and-the-
road-to-humanlevel-machine-intelligence/A82CA4909877C98B23755744A18EA64F
(visited on 11/03/2023).

[32] Alex de Vries. “The growing energy footprint of artificial intelligence”. In: Joule
7.10 (Oct. 2023), pp. 2191–2194. issn: 2542-4351. doi: 10.1016/j.joule.2023.
09 . 004. url: https : / / www . sciencedirect . com / science / article / pii /
S2542435123003653 (visited on 11/02/2023).

66

https://doi.org/10.1007/s11227-014-1279-6
https://doi.org/10.1007/s11227-014-1279-6
https://doi.org/10.1007/s11227-014-1279-6
https://doi.org/10.1109/HPCSim.2016.7568362
https://ieeexplore.ieee.org/abstract/document/7568362
https://doi.org/10.1145/3381831
https://dl.acm.org/doi/10.1145/3381831
https://dl.acm.org/doi/10.1145/3381831
https://doi.org/10.1609/aaai.v34i09.7123
https://ojs.aaai.org/index.php/AAAI/article/view/7123
https://ojs.aaai.org/index.php/AAAI/article/view/7123
https://doi.org/10.1145/3415958.3433046
https://doi.org/10.1145/3415958.3433046
https://doi.org/10.1145/3415958.3433046
https://doi.org/10.1145/3468044.3468053
https://dl.acm.org/doi/10.1145/3468044.3468053
https://dl.acm.org/doi/10.1145/3468044.3468053
https://doi.org/10.1017/ATSIP.2018.6
https://www.cambridge.org/core/journals/apsipa-transactions-on-signal-and-information-processing/article/artificial-intelligence-renaissance-deep-learning-and-the-road-to-humanlevel-machine-intelligence/A82CA4909877C98B23755744A18EA64F
https://www.cambridge.org/core/journals/apsipa-transactions-on-signal-and-information-processing/article/artificial-intelligence-renaissance-deep-learning-and-the-road-to-humanlevel-machine-intelligence/A82CA4909877C98B23755744A18EA64F
https://www.cambridge.org/core/journals/apsipa-transactions-on-signal-and-information-processing/article/artificial-intelligence-renaissance-deep-learning-and-the-road-to-humanlevel-machine-intelligence/A82CA4909877C98B23755744A18EA64F
https://www.cambridge.org/core/journals/apsipa-transactions-on-signal-and-information-processing/article/artificial-intelligence-renaissance-deep-learning-and-the-road-to-humanlevel-machine-intelligence/A82CA4909877C98B23755744A18EA64F
https://doi.org/10.1016/j.joule.2023.09.004
https://doi.org/10.1016/j.joule.2023.09.004
https://www.sciencedirect.com/science/article/pii/S2542435123003653
https://www.sciencedirect.com/science/article/pii/S2542435123003653

[33] Andy B. Yoo, Morris A. Jette, and Mark Grondona. “SLURM: Simple Linux Util-
ity for Resource Management”. en. In: Job Scheduling Strategies for Parallel Pro-
cessing. Ed. by Dror Feitelson, Larry Rudolph, and Uwe Schwiegelshohn. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer, 2003, pp. 44–60. isbn:
9783540397274. doi: 10.1007/10968987_3.

[34] Wucherl Yoo et al. “PATHA: Performance Analysis Tool for HPC Applications”.
In: 2015 IEEE 34th International Performance Computing and Communications
Conference (IPCCC). ISSN: 2374-9628. Dec. 2015, pp. 1–8. doi: 10.1109/PCCC.
2015.7410313. url: https://ieeexplore.ieee.org/abstract/document/
7410313 (visited on 10/10/2023).

[35] Qingxia Zhang et al. “A survey on data center cooling systems: Technology, power
consumption modeling and control strategy optimization”. In: Journal of Systems
Architecture 119 (Oct. 2021), p. 102253. issn: 1383-7621. doi: 10.1016/j.sysarc.
2021.102253. url: https://www.sciencedirect.com/science/article/pii/
S1383762121001739 (visited on 02/22/2024).

[36] Zhaobin Zhu, Sarah Neuwirth, and Thomas Lippert. “A Comprehensive I/O Knowl-
edge Cycle for Modular and Automated HPC Workload Analysis”. In: 2022 IEEE
International Conference on Cluster Computing (CLUSTER). ISSN: 2168-9253.
Sept. 2022, pp. 581–588. doi: 10.1109/CLUSTER51413.2022.00076. url: https:
//ieeexplore.ieee.org/abstract/document/9912689 (visited on 10/10/2023).

67

https://doi.org/10.1007/10968987_3
https://doi.org/10.1109/PCCC.2015.7410313
https://doi.org/10.1109/PCCC.2015.7410313
https://ieeexplore.ieee.org/abstract/document/7410313
https://ieeexplore.ieee.org/abstract/document/7410313
https://doi.org/10.1016/j.sysarc.2021.102253
https://doi.org/10.1016/j.sysarc.2021.102253
https://www.sciencedirect.com/science/article/pii/S1383762121001739
https://www.sciencedirect.com/science/article/pii/S1383762121001739
https://doi.org/10.1109/CLUSTER51413.2022.00076
https://ieeexplore.ieee.org/abstract/document/9912689
https://ieeexplore.ieee.org/abstract/document/9912689

	Introduction
	Overview
	Related Work
	Environmental Impact
	Monitoring in the context of HPC

	Implementation
	Watcher: Data Collection
	Interacting with the Database
	Database Design
	Scraper
	Scraper Distributor

	Analyzer: Report Generation
	Email Report
	Types of Analyses
	Resource Usage
	GPU Usage
	System Time Ratio
	Extensibility

	Web Interface
	Backend
	Frontend

	Conclusions
	Appendices
	Sample Report Email
	Case Study: Optimization Hinted by System Time Ratio
	Overlaid Memory Management
	Memory Recycling and Reusing
	Results

	Other Possible Slowdowns

	References

