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Abstract

In this thesis, we develop three interpretations of the transfer homomorphism: via
topological spaces, simplicial homology, and group theory. Historically, the first appear-
ance was in group theory, from the permutation action of G on cosets of a subgroup. The
constructions in topology and homological algebra can be interpreted this way through re-
sults on the fundamental groups and homology groups of covering spaces. The goal of this
thesis is to describe enough background in each area to define and interpret the transfer
homomorphism and to give some applications of the transfer in finite group theory.
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Chapter 1

Topological Motivations

The transfer homomorphism was initially investigated by Burnside and Frobenius around
1900 as part of their investigations of the structure of finite groups. With the development
of homology and homotopy in the 1930s, it was realised that the transfer is a special case
of a more general homological construction. In this chapter we develop the concepts
necessary to understand the motivation for the transfer map.

1.1 Topological Spaces
While we will define and discuss general topological spaces, we will not be terribly inter-
ested in details of point-set topology, so we will mostly focus on the case of manifolds.
Later, we will need some additional generality when we discuss Eilenberg-MacLane spaces.
General background on topology can be found in the textbook of Bredon [1] and Hatcher
[5].

We start our discussion from the general concept of a topological space, focusing in
particular on manifolds are what we are interested later. Then we will look at examples
of some commonly seem topological spaces.

Definition 1.1 (Topological Space). Let X be a nonempty set and τ be a collection of
subsets of X satisfying the following:

(i) X ∈ τ .

(ii) ∅ ∈ τ .

(iii) Intersection of finite number of elements from τ is in τ .
That is, if S1, ..., Sn ∈ τ , then ⋂i=1,...,n Si ∈ τ .

(iv) Union of arbitrary number of elements from τ is in τ .
That is, if for each α ∈ I, Sα ∈ τ , then ⋃α∈I Sα ∈ τ .

The pair (X, τ) is called a topological space, and τ is called the topology on set X. Elements
of τ are called open sets. It is sometimes denoted as X for short.
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Remark 1.1. Note the topology on a set depends on how the open sets are defined.
The standard topology on R is generated by open intervals of the form (a, b) for a, b ∈ R.
That is: an open set in the standard topology is constructed from finite intersections and
arbitrary unions of open intervals. There are also non-standard topologies: for example
the discrete topology on set X is a topology that takes every subset of X as an open set.
In the cofinite topology a set is open if and only if the complement of the set is finite.

Many important topological spaces are induced from metric spaces. We briefly discuss
some metric spaces here for getting some intuition.

Definition 1.2 (Metric Space). A metric on a set X is a function d : X × X → R
satisfying the following conditions: ∀x, y, z ∈ X,

(i) d(x, y) = 0 if and only if x = y.

(ii) If x 6= y then d(x, y) > 0.

(iii) d(x, y) = d(y, x).

(iv) the Triangle Inequality: d(x, y) + d(y, z) ≥ d(x, z).

A metric space is a set X equipped with a metric d.

Example 1.1 (Rn). Recall that Rn is a metric space when we define the metric to be the
distance function:

d(x, y) =
√

(x− y) · (x− y) .

Definition 1.3 (Open ball). We define the open ball of radius r around x ∈ Rn to be the
set

Br(x) = {y ∈ Rn : d(x, y) < r} .

The collection of all open balls in Rn is a basis for the standard topology on Rn. In
other words, every open set in Rn in the standard topology is constructed by taking finite
intersections and arbitrary unions of open balls.

More generally, any metric on a set X induces a topology, but not every topological
space can be induced from a metric. The next definition contains some standard termi-
nology for discussing topological spaces. For the spaces that we consider, the intuitive
notions of interior, boundary, etc. will suffice, but in the interests of being mathematical
precise we include formal definitions.

Definition 1.4. Let (X, τ) be a topological space.

(i) Let S ⊆ X. A neighborhood of S is a subset V ⊆ X that contains an open set U
such that:

S ⊆ U ⊆ V
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(ii) Given a ∈ X, a neighborhood of a is subset V of X that contains an open set U
such that:

a ∈ U ⊆ V

(iii) A subset S ⊆ X is called closed if its complement Sc is open.

(iv) Let S ⊆ X, a point x ∈ X is in the closure of S if every neighbourhood of x has
non-empty intersection with S.

(v) Let S ⊆ X, a point x ∈ X is in the boundary of S if x ∈ S ∩ Sc.

(vi) Let S ⊆ X, a point x ∈ X is in the interior of S if there is an open set V such that
x ∈ V and V ⊆ S.

1.2 Maps Between Topological Spaces
In analysis, continuity is defined in the “ε − δ” language, this definition of continuity
makes sense for functions between metric spaces. To generalize continuity to arbitrary
topological spaces a little more generality is required.

Definition 1.5 (Continuous function between topological spaces). Let X, Y be topolog-
ical spaces, a function f : X → Y is continuous if for all open set V ⊆ Y , f−1(V ) = {x ∈
X : f(x) = V } is open in X.

Remark 1.2. When f : X → Y is continuous functions between metric spaces X, Y , the
open set definition of continuity is equivalent to the ε− δ definition of continuity.

To show the “open set” continuity implies the “ε− δ” continuity, consider continuous
function f : X → Y between metric spaces X, Y . Given x0 ∈ X and ε > 0, the open
ball Bε(x0) = {y ∈ Y : d(f(x0), y) < ε} is open in Y and therefore f−1(Bε(x0)) is open
in X. Since x0 ∈ f−1(Bε(x0)), we choose δ = min{d(x0, b) : b ∈ ∂f−1(Bε(x0))}. Then
for x ∈ X, d(x, x0) < δ implies x ∈ f−1(Bε(x0)) and hence f(x) ∈ Bε(x0), we have
d(f(x), f(x0)) < ε.

To show the “ε−δ” continuity implies “open set” continuity. Let f : X → Y be a given
continuous function between metric spaces X, Y . Given open set V ∈ Y , let x0 ∈ f−1(V ),
then f(x0) ∈ V . Choose ε = min{d(f(x0), b) : b ∈ ∂V }. Then by the ε− δ continuity of
f , ∃δ > 0 such that ∀x ∈ X, d(x0, x) < δ implies d(f(x0), f(x)) < ε, which is the same
as f(Bδ(x0)) ⊆ Bε(f(x0)) ⊆ V . It follows Bδ(x0) ⊆ f−1(V ). Since this holds for any
x0 ∈ f−1(V ), f−1(V ) is open.

Example 1.2 (Continuous functions). We give some examples of continuous functions
between topological spaces.

• A constant function f : X → Y defined as x 7→ c for all x ∈ X with some c ∈ Y is
a continuous function. Take any open set V ∈ Y , f−1(V ) is either ∅ or X, both are
open.
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• The distance function f : Rn → R to a fixed point x0 ∈ Rn defined as x 7→ d(x, x0)
is continuous. Take any open set (a, b) ∈ R, f−1(a, b) is an open set in Rn.

• The indicator function fU : R → {0, 1} is defined as x 7→ 1 if x ∈ U and x 7→ 0 if
x /∈ U for some U ⊆ R. Let R be equipped with the standard topology and {0, 1}
be equipped with the discrete topology. Then fU is a discontinuous function.

Definition 1.6 (Homeomorphism). Given topological spaces X, Y , a function f : X → Y
is called a homeomorphism is:

(i) f is bijective.

(ii) Both f and f−1 are continuous.

If there is a homeomorphism between spaces X and Y we say X and Y are homoemorphic,
equivalently, if one can be continuously deformed from another.

Example 1.3 (S1 and square). A circle is homeomorphic to a square since the deformation
between them is bijective, both deformation and its inverse are both continuous. Thus S1

is homeomorphic to a square.

Example 1.4 (S2 and tetrahedron). A tetrahedron can be continuously deformed to a
sphere. Each point on the surface is identified by a one to one correspondence before and
after the deformation. This deformation is a homeomorphism since it is bijective and each
open set on sphere correspond to an open set on the tetrahedron and thus continuous in
both direction. The sphere is therefore homeomorphic to a tetrahedron.

4



1.3 Topological Manifolds
Definition 1.7 (Topological Manifolds). A topological spaceX is said to be a n-dimensional
Topological Manifold if it is:

(i) Hausdorff.

(ii) Second countable.

(iii) Locally Euclidean.

Recall that Hausdorff is the property that ∀x, y ∈ X, ∃U, V open such that x ∈ U , y ∈ V
and U ∩ V 6= ∅, Second countable means that the basis of X has countable size. Finally
locally Euclidean is ∀x ∈ X, ∃U that is open and homeomorphic to the Euclidean n-ball
Bn = {x ∈ Rn : d(x, 0) < 1}, or equivalently if U is homeomorphic to Rn. We will say
manifold to refer topological manifold after now.

The motivation for the three conditions are: (i) allows points to be distinguishable
on the topological space. Motivation for (ii) is that it ensures the topological space is
not too large and exclude pathological examples. Condition (iii) enables us to map the
local subsets from a manifold to the Euclidean space where we can easily handle. Note
that Hausdorff and second countability are hereditary properties. More discussion on
properties of manifolds can be found in Tu [12]. Below are some examples of topological
spaces and we skip some of their verifications.

Example 1.5 (Rn). Rn is homeomorphic to itself by the identity map fid : x 7→ x,
∀x ∈ R.

Example 1.6 (Sn). A n-sphere (contained in Rn+1) has the property that every point
x ∈ Sn has a neighborhood homeomorphic to Rn and thus is a manifold.

Example 1.7 (Tn). The n-dimentional torus is also a manifold since all x ∈ Tn has
neighborhood homeomorphic to Rn.

Definition 1.8 (P (Rn)). Given space Rn+1, we define the equivalence relation “∼” on
Rn+1 \ {0}: (x0, ..., xn) ∼ (y0, ..., yn) if and only if (x0, ..., xn) = λ(y0, ..., yn) for some
nonzero λ ∈ R. The projective space is defined to be:

P (Rn) = (Rn+1 \ {0})/“ ∼ ”
= {Lines through 0 in Rn+1}

Example 1.8 (Real Projective Plane). Take the vector space R3, by definition P (R3) is
given as:

P (R3) = (R3 \ {0})/“ ∼ ”
= {Lines through 0 in R3}

5



To see the projective plane from a geometric perspective, we take the vector space R3

and consider an plane z = α for α 6= 0 in R3. Lines in R3 through 0 form elements of
P2. Each line intersects the plane at a unique point except lines on z = 0. The projective
plane P2 thus have a one to one correspondence to the points on the plane z = α excepts
the lines on z = 0. If we consider lines on z = 0 as a projective line, the projective plane
can be identified by the plane z = α added with the projective line (refered as “line at
∞”).

Definition 1.9 (Alternate definition of real projective plane). It is more often we see the
projective plane is constructed by a sphere S2 with antipodal points identified. That is,
the projective plane is given as the quotient space of S2 with the relation “∼”: x ∼ −x.
Then PR2 = S2/(x ∼ −x). Then if we take the upper hemisphere of S2, an element x of
PR2 can be represented by the point of intersection on the upper hemisphere. For every
point not on the equator we obtained unique identification. For the points on the equator
of S2, they correspond to the lines on the z = 0 plane. We we refer them as “points at
infinity”.

Although a manifold is locally homeomorphic to the Euclidean space, its global proper-
ties are different from Eulidean Spcace. To observe the difference on the global structure,
we will need to review charts and continuous transitions of a manifold.

Definition 1.10 (Charts). On a manifold X, a Chart (or Coordinate Chart) is a pair
(U, φ) where U is an open set and φ is a homeomorphism such that φ : U → V ⊆ Rn.

Thus for a point u ∈ U , the chart φ assigns u a coordinate in Rn. Precisely, φ(u) =
(f1(u), ..., fn(u)) where fi’s are functions from U to R. We will look at a simple example
of charts defined on a sphere:

Example 1.9 (Charts of Sphere). Let φ be the homeomorphism from the northern hemi-
sphere to an open disk in R2, then φ is a chart. Similarly we obtain a chart by taking
homeomorphism from southern hemisphere to an open disk in R2.

Definition 1.11 (Atlas). Given manifold X, a set of charts {φi : i ∈ N} with domains
Ui is called an atlas of X if the set covers X: X ⊆ ⋃i∈I Ui.
Example 1.10 (Cover as Atlas). Consider X = R as a manifold, then set of all open
intervals covers R and thus is the atlas of X.

When there are different charts with overlapping domain, the overlapping part can be
mapped to different coordinates in Rn. The transition map allows their coordinates to be
identified from one to another.

Definition 1.12 (Transition map). Given manifold X, two charts φ, ψ with overlapping
domain U, V . The transition maps between φ and ψ are:

ψ ◦ φ−1 : φ(U ∩ V )→ ψ(U ∩ V )
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φ ◦ ψ−1 : ψ(U ∩ V )→ φ(U ∩ V )
The composite function ψ ◦φ−1 is called the transition map from φ to ψ, similarly φ◦ψ−1

is from ψ to φ. We say two charts are compatible if transition maps in both direction are
C∞(or “smooth”).

These transition maps are useful as their differentiability will define a new class of man-
ifold called the differentiable manifolds. Moreover when they are infinitely differentiable,
we call such manifolds smooth manifolds.

Remark 1.3. We now use the term Atlas to refer smooth atlas which is a collection of
compatible charts covers the space.

Definition 1.13 (Smooth Manifold). A smooth manifold is a pair (M,A) where M is a
topological manifold and A is a smooth structure given by the Maximal Atlas A of M
where the charts in A are pairewise compatible.

Remark 1.4. By Maximal Atlas we mean an atlas such that no bigger atlas contains it.
A topological space either has a Maximal Atlas or not. This is a result of the property
that every atlas is contained in a maximal atlas. Readers who feel unfamiliar with these
may consult any standard textbook on smooth manifolds.

1.4 Fundamental Group
In the study of Algebraic Topology, the principal idea is to associate every topological
space an algebraic interpretation such that it simplifies the situation. We will soon review
some ideas about fundamental groups and covering spaces as they will be useful when
study any particular topological space.

The idea of fundamental group is to associate a group to the space we would like to
study, the structure of the group captures properties of the space and implies more infor-
mation about the space. We follow the ideas of Kuga [8] in our exposition of fundamental
groups and covering spaces.

Definition 1.14 (Homotopy). Let f, g : X → Y . We say f and g are homotopic if
one can be continuously deformed to another. More formally, let I = [0, 1]. Then f is
homotopic to g if there exist a family of maps F : X × I → Y such that F (x, 0) = f(x)
and F (x, 1) = g(x). F is called a homotopy from f to g and we denote f ' g when such
F exists.

Example 1.11 (Homotopic path). Recall that a path γ on X is a continuous function
function f : I → X where f(0) is the initial point and f(1) is the endpoint. Two paths
α, β : I → X are homotopic if α(0) = β(0), α(1) = β(1) and one can be continuously
deformed to another.

The idea of homotopy between paths allows explicit expression of the continuous
deformation of paths with fixed endpoints, vice versa such continuous deformation gives
a homotopy.
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Example 1.12. Consider f(x) = sin(x) and g(x) = 0 on [0, 2π]. A homotopy F :
[0, 2π]→ R can be given as:

F (x, t) = (1− t) sin(x)
then F (x, 0) = f(x) and F (x, 1) = g(x).

Definition 1.15 (Loop). The embedding γ : I → X of interval I = [0, 1] to X is called
a loop when γ(0) = γ(1). Equivalently, the embedding S1 → X defines a loop too.

Proposition 1.1 (Homotopy as equivalence relation). Homotopy is an equivalence rela-
tion on the set of maps from X to Y .

Proof. For any f : X → Y , f ' f thus the relation is reflexive. For any f, g : X → Y ,
if the homotopy from f to g is F : X × I → Y , we let the homotopy from g to f be
G : X×I → Y by letting G(x, t) = F (x, 1−t). Thus g ' f and the relation is symmetric.
For any f, g, h : X → Y with f ' g and g ' h, homotopy from f to h can be obtained
by letting H : X × I → Y defined piecewise: H(x, t) = F (x, 2t) for t ∈ [0, 1/2] and
H(x, t) = G(x, 2t− 1) for t ∈ [1/2, 1].

Definition 1.16 (Homotopy class). By Proposition 1.1 homotopy between X, Y is an
equivalence relation, its equivalence classes are called the homotopy classes.

Definition 1.17 (Fundamental group). The set of homotopy classes of loops in X based
at a point x0 ∈ X form a group called the fundamental group of X and is denoted
as π1(X, x0). The binary operation ∗ of π1(X, x0) is defined as the concatenation of
(homotopy classes of)loops: if [f ], [g] are two homotopy classes, let [f ]·[g] be the homotopy
class [h] described in proof of Proposition 1.1

Example 1.13 (π(Sn)). Recall an n-sphere Sn is the set of points in Rn+1 with distance
r to a fixed point.

• A 1-Sphere S1 is a circle, the embedding of a loop can be winding the circle any
integer number of times, thus π1(S1) ∼= Z. More explicitly, let γn : I → S1 defined
as γn : t 7→ (cos(2π(nt)), sin(2π(nt))) where n ∈ Z. Each γn gives an embedding,
the set {γn} has the group structure and is isomorphic to Z.

• A 2-Sphere S2 is a usual “sphere”, the embedding of a loop to S2 is always con-
tractible to a point thus π1(S2) ∼= {1}.

• Similarly, all Sn for n ≥ 2 have trivial fundamental group.

Example 1.14 (π1(PR2)). By Definition 1.9 the real projective plane can be constructed
by a sphere with the equivalence relation of identifying antipodal points. PR2 can be
identified by the piece of upper hemisphere with the equator(Since one point on the
hemisphere is enough to identify the pair). There’s only two way to embed a loop to this
configuration:

(i) The loop is contained in the interior(upper hemisphere);
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Figure 1.1: Two types of loops in PR2

(ii) The loop intersects the equator.
In the first case such loop is contractable and the homotopy class of such loop is the set

of trival loops which gives the identity element of π1(PR2), in the second case the loop is
non-contractable and its homotopy class gives an non-identity element of π1(PR2). Thus
there’s only two elements in π1(PR2). The only group of order 2 is Z2, π1(PR2) ∼= Z2.

1.5 Covering Spaces
In this section we try to use minimal algebraic topology background and maximal con-
creteness to cover some of the basic and useful properties we need to study covering spaces.
Most of the details of the following discussion can be found in Kuga [8].
Definition 1.18 (Covering Space). Given a topological space X, a space X ′ is called the
covering space of X if there is a map f : X ′ → X satisfying the following:

(i) f is a continuous surjective function.

(ii) For each point x ∈ X, there exist an open neighbourhood U around x such that
f−1(U) is a union of disjoint open sets {V1, V2, ..., Vn}. Each open set Vk maps onto
U by f homeomorphically.

Such map f is called a covering map from the covering space X ′ to the base space X.
Example 1.15 (Covering space of PR2). Let X ′ = S2, then X ′ is a cover of PR2 by
f : S2 → PR. For every point x ∈ PR2, we can find a small open neighbourhood U on
S2 around x such that f−1(U) are the two disjoint open sets that are antipodal to each
other.
Definition 1.19 (Sheets). Given open neighbourhood U and the set of copies of f−1(U).
The cardinality of the set is said to be the number of sheets of the covering space.
Example 1.16 (Circle S1). Example 1.13 shows the fundamental group of S1 is the group
Z. This illustration of fundamental group can also be interpreted as a covering space of
S1. Precisely, let f : S1 → S1 be defined as z 7→ zn where z is on the unit circle on
complex plane. This gives a covering of S1 by S1 which has n sheets. Note that covering
space is not necessarily unique, another covering map of S1 can be given as g : R → S1

where x 7→ e2πix for x ∈ R.
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Proposition 1.2 (Concatenation of path). If given f : X → X ′, define “·” as concatena-
tion of paths, then f(α · β) = f(α)f(β) where α, β ∈ X ′.

Proposition 1.3 (Covering preserves homotopy). Given α ' β in X ′, then f(α) ' f(β)
in X.

Definition 1.20 (Lifting). Given a covering f : X ′ → X, a lift of a curve C ∈ X is a
curve C ′ ∈ X ′ such that f(C ′) = C.

Proposition 1.4 (Lifts of curve uniquely determined by initial point, see Kuga [8] Page
62-64). Give base space X, its cover f : X ′ → X. Let C be a curve on X. There can be
multiple lifts of C exist in X ′. When initial point of C ′ is chosen the lift C ′ is uniquely
determined.

Proof. As stated in the definition of the covering map, if we take a small neighbourhood
U of a point p on X, there exists a union of disjoint neighbourhood V1, V2, ..., Vn that
contains the copies of lifts of p in X ′. Suppose for given curve C on X there are multiple
lifts C ′1, C ′2, ..., C ′n on X ′. Given initial point p on C and there are n copies of lifts of
p : p′1, p′2, ..., p′n in V1, V2, ..., Vn respectively. Suppose that we begin our lift at p′k = (f |Vk

)−1(p) for some k, then we can show the lift of curve C is unique: Starting from the
initial point we choose sufficiently small open neighbourhood to be disjoint from other
neighbourhoods, the lifting process is unique at each step and eventually we obtain an
unique lifted curve started from initial point p′k.

p′1V1 p′kVk

Proposition 1.5 (Lifting preserves homotopy, see Kuga [8] Page 66 Preparation Theo-
rem). If given topological space X with covering space X ′ and covering map f : X ′ → X,
for a pair of homotopic curves C0, C1, their lifts C ′0, C ′1 in X ′ are also homotopic.

Proof. Given C0 ' C1 inX, from definition of homotopy, C0, C1 have common initial point
p0 and end point p1 and they lift to p′0 and p′1 in X ′. We know C0 can be continuously
deformed to C1, at each step of the deformation of C0, we make the deformation sufficiently
small so that the different part while deforming Cn to Cn+1 is contained in a sufficiently
small open neighbourhood U . Restricting to an open neighbourhood Vk, the lift (f |Vk

)−1(Cn) and the lift(f |Vk
)−1(Cn+1) coincide in everywhere else except the difference part

in the small neighbourhood U ′ = (f |Vk
)−1(U). By property of covering map, f |Vk

is a homeomorphism between U and U ′, thus homotopy is preserved by f and lifts of
homotopic curves Cn, Cn+1 must be homotopic in covering space.
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p0 p1

Cn

Cn+1

U

1.6 Covering Space & Fundamental Group
Let X be a manifold, giving a covering f : X → X ′ is equivalent to give a subgroup of
the fundamental group of X. Our goal is to show that there is a bijection between the
fundamental group of the covering space X ′ and a subgroup of fundamental group of base
space X.

Take the base point o ∈ X and its lift o′ ∈ X ′, we have two fundamental groups:
π1(X, o) for the space X and π1(X ′, o′) for space X ′.

The elements in π1(X, p) and π1(X ′, p′) are homotopy classes of loops in X and X ′

respectively. When the covering map f act on homotopy classes [α] ∈ X ′ we denote its
image as f∗([α]) ∈ X.

Theorem 1.1 (Bijection between π1(X ′) and a subgroup of π1(X), see Kuga [8] Theorem
10.1). Let X ′ be a covering space of X and f : X ′ → X be the covering map. The induced
map f∗ : π1(X ′, o′) → π1(X, o) is an injection and there is a bijection from π1(X ′, o′) to
the image f∗(π1(X ′, o′)) which is a subgroup of π1(X, o).

Proof. To show injection, let [γ] ∈ Ker(f∗) be the set of null homotopic loops in X ′,
f∗([γ]) = [1]. Suppose there is a different homotopy class of loops [β] ∈ X ′ such that
f∗([β]) = [1]. By Proposition 1.5, lifts of homotopic loops are homotopic, then [β] must
be the same as the null homotopy class [1]. The kernel is trivial, thus f∗ is injective.

To show this is a subgroup, note the property f(α·β) = f(α)f(β) induces f∗([α]·[β]) =
f∗([α])f∗([β]). Thus f∗ is a homomorphism, f∗(π1(X ′, o′)) ≤ π1(X, o).

Thus π1(X ′, o′) and f∗(π1(X ′, o′)) has a bijection relationship, and also we have:

π1(X ′, o′) ∼= f∗(π1(X ′, o′))

Remark 1.5. This one-to-one correspondence between a covering of space X and a
subgroup of π1(X, o) can be interpreted as “covering space” version of the Galois Corre-
spondence of intermediate fields, we will continue investigating this after Theorem 1.2.

Definition 1.21 (Covering transformation). Let f : X ′ → X be a covering map. A
homeomorphism t : X ′ → X ′ is called a covering transformation (or deck transformation)
of f : X ′ → X if f(t(p)) = f(p) for all p ∈ X ′.
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Example 1.17. Recall Example 1.15 shows S2 is a cover of PR2. A covering transfor-
mation is the antipodal map t given by x 7→ −x for x ∈ S2.

Example 1.18. A typical covering transformation of the covering g : R→ S1 in Example
1.16 is translation of integers on R.

Definition 1.22 (Conjugate). If in the covering space X ′, under the covering transfor-
mation map t, for p1, p2 ∈ X ′ we have t(p1) = p2, then p1 and p2 are called conjugates of
each other.

Proposition 1.6 (Covering transformations group). Given a covering space X ′ of X, the
set S of all covering transformation form a group under composition and is called the
covering transformation group of f : X ′ → X.

Proof. Identity covering transformation is regarded as the identity element. For any t
with g(p1) = p2, there’s an inverse t−1 since t is a homeomorphism. If there is t1, t2
with t1(p1) = p2 and t2(p2) = p3, then composition is t2(t1(p1)) = p3 is again a covering
transformation. To see associativity, let t1, t2, t3 defined as t1(p1) = p2, t2(p2) = p3, and
t3(p3) = p4. Then (t3t2)t1(p1) = p4 = t3(t2t1)(p1).

Proposition 1.7 (Uniqueness of covering transformation). Let t be a covering transfor-
mation, for a pair of conjugates p1, p2 ∈ X ′ with t(p1) = p2, the covering transformation
t is uniquely determined.

Proof. For the pair {p1, p2}, suppose there’s two different covering transformations t, t′
both from p1 to p2. Then t(p1) = p2 = t′(p1), t = t′.

Proposition 1.8. A coset of π1(X ′) in π1(X) is the set of loops in X ′ that lifts to a path
from x0 to xi for some i where 1 ≤ i ≤ n and n is the number of sheets of X ′.

Proof. “⊇” direction:
Let α ∈ π1(X) with a lift starts at x0 ends at xi. Then αt−1

i is a closed loop based at x0
thus αt−1

i ∈ π1(X ′), hence α = (αt−1
i )ti ∈ π1(X ′)ti. Any element in π1(X) that lifts to

path from x0 to xi is in the coset π1(X ′)ti.
“⊆” direction:

Consider coset π1(X ′)ti, an element in π1(X ′)ti is of the form βti where β ∈ π1(X ′) and
ti is a path from x0 to xi. Therefore all elements in π1(X ′)ti are path from x0 to xi.
Moreover, any path γ from x0 to xi can be written in form of β′ti up to homotopy for
some β′ ∈ π1(X ′) because any γ can be obtained by deformation of some β′ti.

Thus there exist bijection between n set of paths who lift to paths end at xi’s and n
cosets generated by π1(X ′) in π1(X). Moreover the ti are representatives in these cosets
and the choice of ti in each coset does not affect the pre-transfer map because changing
ti to another element in the same coset preserves homotopy in X ′.

Definition 1.23 (Galois covering). A covering f : X ′ → X is called Galois or normal
covering if for every p ∈ X and every pair of lifts p′1, p′2 ∈ X ′ of p ∈ X there is a covering
transformation t such that f(t(p′1)) = f(p′2).

12



p1 p2

f(p1)

t

f
f

Theorem 1.2 (Kuga [8] Theorem 11.2). Let f : X ′ → X be a Galois covering space of
X then:

(i) f∗(π(X ′, o′)) / π1(X, o).

(ii) π1(X, o)/f∗(π1(X ′, o′)) ∼= S

Note: S is the set of all covering transformations correspond to the covering space f :
X ′ → X. o′ ∈ X ′ is a lift of o ∈ X by f−1.

Proof. (i). For every element α ∈ π1(X, o), its lift in X ′ is not necessarily a loop. Denote
the starting point as o′ and endpoint as p(α).(Note that o′ and p(α) are conjugates to
each other). let φ(α) ∈ S denote the covering transformation t s.t. t(o′) = p(α). We show
first φ is a homomorphism and then Ker(φ) = f∗(π1(X ′, o′)).

φ is a homomorphism can be illustrated by the following diagram.

o
x y

f−1

f

φ(x)

φ(x)

φ(y) φ(y)

o′
p(x)

p(y) Q

Given x, y ∈ π1(X, o). In one way we apply covering transformation to p(y) = φ(x)o′
gets to the point Q = φ(x)φ(y)o′, in another way we follow the loop x · y in X, loop x
correspond to the curve o′p(x) ∈ X ′, loop y correspond to the curve p(x)Q ∈ X ′. Thus
the point Q = φ(x)φ(y)o′ = φ(x · y)o′, φ is a homomorphism.

Now we show Ker(φ) = f∗(π1(X ′, o′)).
“⊆” direction:

Ker(φ) = {α ∈ π1(X, o) : lift α′ ∈ X ′ gives φ(α) connects o′ to p(α) = o′}
⊆ f∗(π1(X ′, o′))

“⊇” direction:

f∗(π1(X ′, o′)) = {α = f∗(α′) ∈ π1(X, o) : α′ ∈ X ′, φ(α) connects o′ to p(α) = o′}
⊆ Ker(φ)

Thus, f∗(π1(X ′, o′)) = ker(φ) implies f∗(π1(X ′, o′)) / π1(X, o) and we have shown (i).

13



To show (ii), we show φ is surjective. Take α ∈ π1(X, o), all lifts of α is a set of
conjugates {α′1, α′2, ..., α′n} where each pairs of conjugates correspond to a covering trans-
formation and such process consumes all covering transformations. Thus φ is surjective.
By the fundamental homomorphism theorem,

π1(X, o)/f∗(π1(X ′, o′)) ∼= Im(φ) = S

Remark 1.6 (Analogy of Galois Correspondence). This one-one correspondence between
covering spaces of X and subgroups of π1(X, o) is analogous to the Galois Correspondence
in Galois Theory about field extensions. If we define Aut(X ′/X) to be which is the set
of deck transformations t : X ′ → X ′. When the cover is Galois, Aut(X ′/X) reach the
largest cardinality it can be and in this case it is analogous to the Galois extension.

Theorem 1.3 (Number of Sheets in cover is the index of f∗(π1(X ′, o′))). Given Galois
covering f : X ′ → X, the number of sheets of f equals to the index of f∗(π1(X ′, o′)) in
π1(X, o).

Proof. To show this we build a bijection between a set of conjugates in X ′ and the set
of cosets of f∗(π1(X ′, o′)) in π1(X, o). For g ∈ π1(X, o), consider the map φ : Hg → p(g)
which sends the coset Hg to the endpoint of lift of h · g. Here all elements of H lifts to
loops base at a fixed point o′.

To see injectivity, consider φ(Hg1) = φ(Hg2), then g1, g2 must have same endpoint in
X ′, also they have same initial point o′. Since homotopy curves lift to homotopy curves,
g1 = g2 and Hg1 = Hg2.

To see surjectivity, consider the set {f−1(o)} of all conjugates of o′, since o′ can be
connected to any element in {f−1(o)} by a lift of some g ∈ π1(X, o). Thus φ is surjective.

We have now shown this is a bijection and the number of sheets of Galois covering f
is exactly the index of f∗(π1(X ′, o′)).

1.7 Pre-Transfer Map
Given manifold X and its covering space X ′ with covering map f : X → X ′. From π1(X ′)
to π1(X), there is the natural projection from π1(X ′) to π1(X) induced by f by sending
loops in X ′ to loops in X up to homotopy. On the opposite direction, when lift loops
from X to X ′, there are ways to take elements from π1(X) to π1(X ′) but there exist no
canonical map. In fact some loops in π1(X) might not even lift to closed loop in π1(X ′).
We construct the following way to map elements from π1(X) to π1(X ′):

14



X

x

g
f−1

f

g
x0

X ′

g

x1

xn

Consider the base point x in X ′ which has n lifts {x0, ..., xn−1}. A loop g ∈ π1(X)
with basepoint x lifts to a paths connecting a pair (xi, xj) of conjugates determined by
initial point. We abuse notation here and denote that g connects (xi, xj) pairs. With
out loss of generality let initial point to be x0, g takes x0 to some xi. Meanwhile since
the covering space is connected there exist a path from x0 to xi, denote as ti. The image
of ti in X begins and ends at x0, so this is an element of the fundamental group of
X. Furthermore, no two of the ti are homotopic, by the definition of a cover: disjoint
open neighbourhoods seperate the xi’s which means that a path between them cannot be
contracted homeomorphically to the identity. Thus we obtain a set T = {t0, ..., tn−1} of
path that act on {x0, ..., xn−1} as deck transformations: an element of the fundamental
group of X may be lifted to any of the xi and so determines a permutation of the sheets
of the cover. (It takes a little more work to verify that these maps are automorphisms of
the covering space, but this is true).

Concatenation tig is viewed as concatenation of path in X ′. We let the dot operation
defined as follow: ti · g is defined to be the unique tj which maps to the endpoint of the
concatenation tig. This means that tig(ti · g)−1 maps x0 to x0 and so is an element of the
fundamental group of X ′.

We can now construct the following map from π1(X) to π1(X ′):

V (g) =
∏
ti∈T

tig(ti · g)−1

Then V (g) can be interpreted as a sum of loops with basepoint x0 and we call it the
pre-transfer map. Consider elements in π1(X), they either lift to loops in X ′ and belongs
to π1(X ′) or lift to path connecting two fibers of the basepoint. While lifting, fixing the
initial point, by Proposition 1.4 the lift is uniquely determined.

Since we have not explicitly imposed an ordering on the elements of T , the map V (g)
is well defined only when π1(X ′, x′) is abelian. As a function between abelian groups

V : Abπ1(X, x)→ Abπ1(X ′, x0)
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V is known as the Transfer, and turns out to be a homomorphism. The terms in the
product may be reordered as desired, and this is necessary to establish the homomorphism
property:

V (g1g2) =
∏
ti∈T

tig1g2(ti · (g1g2))−1

=
∏
ti∈T

tig1(ti · g1)−1(ti · g1)g2((ti · g1) · g2)−1

=
∏
ti∈T

tig1(ti · g1)−1 ∏
ti∈T

(ti · g1)g2((ti · g1) · g2)−1

=
∏
ti∈T

tig1(ti · g1)−1 ∏
tj∈T

tjg2(tj · g2)−1

The last equality is only reordering the index of T of the last product. As just discussed
earlier the order of ti won’t affect the image when π1(X ′) is abelian. Thus V (g1g2) =
V (g1)V (g2). As we desired, the tansfer map is a homomorphism when π1(X ′) is abelian.

To conclude: the fundamental groups of a space and its cover have geometric inter-
pretations, and there is a natural covering map which can be used to show that up to
isomorphism

π1(X ′, x0) ≤ π1(X, x) .
In this section, we have constructed a homomorphism in the other direction at the cost
of moving to the abelianised groups.

V : Abπ1(X, x)→ Abπ1(X ′, x0)

This map is called the transfer homomorphism, and in general is neither injective nor
surjective. Unfortunately, the abelianisation of the fundamental group does not yet have
obvious connections to the geometric structure of the underlying space. In the next
chapter we will show that this group is the first in a sequence of homology groups, which
are of central interest in algebraic topology.

In contrast to the higher homotopy groups, which are mysterious even for the simplest
topological spaces (e.g. being unknown even for sufficiently large n-spheres), homology
groups can be computed using linear algebra and finite combinatorial approximations of
topological spaces. This is the topic of the next chapter.
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Chapter 2

Simplicial Homology

In this chapter we develop the beginnings of homology theory. Recall that an invariant
of a topological space is an object associated to the space which is invariant under home-
omorphisms. For example, the dimension of a manifold is an invariant. Thus spaces with
the same invariant may be homeomorphic or not, but spaces with distinct invariants are
never homeomorphic. The fundamental group is an example of an invariant. In fact,
taken together, the set of homotopy groups is a complete invariant for a space: the spaces
are homeomorphic if and only if all their homotopy groups are isomorphic. Unfortunately,
the homotopy groups are not effectively computable. In this chapter, we define the ho-
mology groups of a space, which are effectively computable given a simplicial resolution
(or triangulation) of a topological space. We will begin by developing the machinery of
simplicial complexes and chain complexes. Further discussions about simplicial homology
can be found in Chapter 2 of Hatcher [5].

2.1 Simplicial Chain Complex
There are many homology theories, but simplicial homology is the most concrete. The
idea is to replace a nice topological space with a covering by finitely many contractible
open sets. We require also that intersections are simply connected. Then much of the
structure of the topological space is captured by a finite combinatorial structure, which
is a simplicial chain complex. We define these structures in this section.

Definition 2.1 (Standard n-simplex). The standard n-simplex is defined as follow:

∆n = (e0, ..., en) = {t0e0 + ...+ tnen : ti ≥ 0 and
n∑
i=0

ti = 1}

Definition 2.2 (Simplex). Generalized idea of standard n-simplex is called the n-simplex,
an n-simplex is the image of the standard n-simplex under some homeomorphism.

Definition 2.3 (Triangulation). Given a n-dimensional manifold X, a triangulation of
X is a decomposition of X into n-simplices satisfying the following conditions:
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(i) Interior of the simplexes are disjoint.

(ii) Union of all simplexes is the whole topological space X.

(iii) Intersection of n-simplexes are lower dimensional simplexes.

Note: when applying triangulation to a space, we assume homeomorphism is allowed.
Next example is an illustration.

Example 2.1 (Triangulation of Sphere). We can divide the surface of the sphere into 4
pieces and each piece is homeomorphic to a triangle. This makes the surface of the sphere
homeomorphic to a tetrahedron as shown in Example 1.4

In fact, it is possible to triangularise any compact manifold with finitely many sim-
plices, though known algorithms often result in impractically large numbers of simplices.
Finding triangulations with small numbers of simplices even for well-known topological
surfaces is an ongoing project. In the other direction, it is possible to define a topolog-
ical space by giving a triangulation, which is defined by finite combinatorial data: one
needs only to specify the intersections of each pair of simplices. Deciding the topological
properties of such spaces from the triangulation is a well-studied problem.

Now we move toward the definition of the homology groups.

Definition 2.4 (Boundary Map). LetX be a simplicial complex. For n ≥ 1, the boundary
map of X is a map ∂n : Cn(X)→ Cn−1(X) defined as:

∂n[v0, ..., vn] =
n∑
i=0

(−1)i[v0, ..., v̂i, ...vn]

where v̂i denotes the term vi is omitted.

Consider a topological space X, up to homeomorphism, X can be thought as the
union of many n-simplex for n = 0, 1, 2, ... etc. We are interested to see if some n-simplex
is ought to be the boundary of some (n + 1)-simplex, for example, given a 2-simplex
(triangle), then the boundary of it is made of 1-simplex (lines).

Example 2.2 (Boundary of a Triangle). Suppose given a single triangle with vertices la-
beled a, b, c. This is a single 2-simplex. The edges are 1 simplxes given by [a, b], [b, c], [c, a].

a

b

c
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If we take the boundary twice on the triangle we obtain 0.

∂[a, b, c] = [b, c]− [a, c] + [a, b]

∂∂[a, b, c] = ∂([b, c]− [a, c] + [a, b])
= (c− b)− (c− a) + (b− a)
= 0

We extend the concept of a single simplical complex to a chain of simplcial complexes
now.

Definition 2.5 (Cn(X)). Given a simplicial complex X, let Cn(X) be the free abelian
group generated by the basis of all n-simplexes in X. An element in Cn(X) is called a
n-chain.

Definition 2.6 (Simplicial Chain Complex). Given a simplicial complex X, we associate
it a sequence of free abelian groups connected by boundary maps. Each Cn(X) is defined
as in Def. 2.5 and let C−1 = 0.

...
∂n+1−−−→ Cn(X) ∂n−→ ......

∂2−→ C1(X) ∂1−→ C0(X) ∂0−→ 0

where each ∂ are boundary maps. For short, we write Cn to refer Cn(X).

Proposition 2.1. For all n ≥ 0, ∂n−1 ◦ ∂n = 0.

Proof.
∂n(x0, ..., xn) =

n∑
k=0

(−1)k(x0, ..., x̂k, ..., xn)

Each term in the summation is of the form (−1)i(x0, ..., x̂i, ..., xn), apply ∂n−1 to it:

∂n−1(x0, ..., x̂i, ..., xn) =
i−1∑

k=0,k<i
(−1)k(x0, ..., x̂k, ..., x̂i, ..., xn)

+
n∑

k=i+1
(−1)k−1(x0, ..., x̂i, ..., x̂k, ..., xn)

Notice that since the x̂i term disappeared, thus exponent of (−1) after i-th entry
alters.
In ∂n−1 ◦ ∂n(x0, ..., xn), the term (x0, ..., x̂i, ..., x̂j, ...xn) occurs twice, one in
∂n−1(x0, ..., x̂i, ..., xj, ...xn), one in ∂n−1(x0, ..., xi, ..., x̂j, ...xn), with different signs. Thus
the composition has ∂n−1 ◦ ∂n = 0.

Definition 2.7 (Exact Chain Complex). A simplicial chain complex is said to be exact
if for all i ≥ 0, Ker(∂i) = Im(∂i+1).
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Note: Not all chain complexes are exact. For all chain complexes, Im(∂n+1) ⊆
Ker(∂n), a chain becomes exact only when equality holds.
Definition 2.8 (Homology Group). Given topological space X, we can construct a sim-
plicial chain complex as given in above definition. The homology group at each Ci is
defined as:

Hi = Ker∂i
Im∂i+1

A chain complex is exact if all of its homology groups are 0 (trivial group).
Definition 2.9 (Boundary, Cycle, Homology class). The elements of Im(∂n+1) are bound-
aries. Each one is the boundary of some (n+1)-chain element in Cn+1X. For this reason,
an n-cell attached to the simplicial complex along the boundary retracts to a point.

The elements in ker(∂n) are cycles. Every boundary is a cycle, as is every linear
combination of boundaries. But their may be other non-obvious cycles in the space.

The homology classes of a topological space are the elements of the quotient group
Hn(X) = ker(∂n)/Im(∂n+1). These are cosets of the boundaries. We say two cycles f, g
are homologous if they represent the same coset, that is, the difference of f and g is a
boundary. We denote it as f ∼ g.

It is interesting to note that two topological spaces can have isomorphic homology
groups in every dimension without being homeomorphic – homology is not a complete
invariant of topological spaces. On the other hand, it is routine to calculate homology
once a triangulation is given.

The Mayer-Vietoris sequence in homology is a tool which can be used to compute
homology of a space X from open subsets X1, X2 satisfying X1 ∪X2 = X, provided the
homology of X1, X2 and X1 ∩ X2 are known. This generalises easily to open covers by
finitely many open sets, and can be used recursively to compute homology. In particular:
the main obstruction to computing homology groups is the computation of a triangulation.

Finally, since a topological space can be triangulated in many different ways, it is not
clear that homology groups are an invariant of a manifold rather than a triangulation,
but in fact this is the case. We refer the reader to Brown [2] for a proof of this fact.

2.2 Some Computed Examples
Example 2.3 (Hn(T2)). Given a torus, we are can represent it and its triangulation as
follow:

a

b

x
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The simplicial chain associated with torus is given as:

0 ∂3−→ C2
∂2−→ C1

∂1−→ C0
∂0−→ 0

Ci = 0 for i ≥ 3 since in this case no simplexes exist for i ≥ 3 on a torus. We can
compute the homology at each Ci:

• C0 = 〈x〉 where x is a single vertex.

• C1 = 〈a, b, c〉 where a, b, c are the 1-simplexes in the triangularization.

• C2 = 〈U,L〉 where U,L denotes the upper and lower triangles in the triangulation.

Note: 〈...〉 denotes the spanning set.

H0 = Ker(∂0)
Im(∂1) = 〈x〉

{0}
∼= Z

H1 = Ker(∂1)
Im(∂2) = 〈a, b, c〉

〈a+ b+ c〉
∼=

Z⊕ Z⊕ Z
Z

∼= Z⊕ Z

H2 = Ker(∂2)
Im(∂3) = Z

{0}
∼= Z

Since Ker(∂2) is generated by single element U − L, 〈U − L〉 ∼= Z For higher dimension,
all Hi = 0 with i ≥ 3.

Example 2.4 (Hn(PR2)). As discussed in Example 1.14. The real projective plan can be
identified by the upper hemisphere plus the equator. Thus it can be viewed as a closed disk
where the boundary is the “line at ∞”. In order to triangularize it, consider continuously
deform the disk to a square. Thus a triangularization can be done as following:
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The simplicial chain complex associated with PR2 is given as:

0 ∂3−→ C2
∂2−→ C1

∂1−→ C0
∂0−→ 0

Similarly, Ci = 0 for i ≥ 3 since in this case no simplexes exist for i ≥ 3 in PR2. At each
Ci, we have:

• C0 = 〈v, w〉 where v, w are points on the “equator”.

• C1 = 〈a, b, c〉 where a, b, c are all 1-simplexes in the triangularization.

• C2 = 〈U,L〉 where U,L denotes the upper and lower triangles in the triangulation.

H0 = Ker(∂0)
Im(∂1) = 〈v, w〉

〈v − w〉
Z⊕ Z
Z
∼= Z

H1 = Ker(∂1)
Im(∂2) = 〈a+ b, c〉

〈a+ b− c, a+ b+ c〉
= 〈a+ b, c〉
〈a+ b− c, 2c〉

∼=
Z⊕ Z
Z⊕ 2Z

∼= Z2

H2 = Ker(∂2)
Im(∂3) = 0

0
∼= 0

Hi = 0 for i ≥ 3.

2.3 Singular Homology
After above discussion and examples about simplicial homology, we observe that the sim-
plicial homology can get difficult to compute when topological space gets complicated. It
is natural to introduce the “singular homology” as a generalization of simplicial homology.

The singular n-simplex is the image of the standard n simplex under a (not necessarily
bijective) continuous map.

Definition 2.10 (Singular n-simplex). Given a topological space X, a singular n- simplex
in X is a continuous map σ : ∆n → X.
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For singular homology, we define the n-chains to be linear combinations of singular
n-simplexes. This space is typically infinite dimensional, but typically there are only
finitely many distinct singular n-simplexes up to homotopy. The chain complex is defined
as before, as are the homology groups. Singular homology is more flexible than simplicial
homology: it allows for calculation of homology groups in a wider range of contexts.
This is somewhat analogous to the difference between Riemann integration and Lebesgue
integration: where both are defined they always agree, but Lebesgue (at the cost of a
slightly more difficult definition) allows for computations in some additional cases.

2.4 n = 1 Case of Hurewicz Theorem
In this section we prove a special case of a famous theorem of Hurewicz, which relates the
first homology group to the fundamental group of a topological space. Hatcher [5] gives
a topological verification of Ab(π1(X, x0)) ∼= H1(X) using singular homology in §2.A, we
give full details now.

Theorem 2.1. For a path connected space X, Ab(π1(X, x0)) ∼= H1(X).

Proof. By regarding loops in π1(X, x0) as 1-dimensional singular cycle, we obtain a ho-
momorphism h : π1(X, x0) → H1(X) where h is surjective and the commutator sub-
group of π1(X, x0) is the kernel of h. Then this implies there is an isomorphism between
Ab(π1(X, x0)) and H1(X). To verify this claim, we first show the following properties
holds:

(i) If f ∈ π1(X, x0) is a constant path, then f ∼ 0 in H1(X).
f is viewed as a trivial loop (a constant path) here. Thus it is also a cycle. In H(X),
h(f) = 0. Explicitly, f is the boundary of the constant 2-simplex σ = (v0, v1, v2)
where v0 = v1 = v2 and ∂(v0, v1, v2) = (v1, v2)− (v0, v2) + (v0, v1) = f − f + f = f
since each of the (vi, vj) is a constant path again.

(ii) f · g ∼ f + g. Let σ = (v0, v1, v2) be a 2-simplex, if f and g are two paths given as
edge (v0, v1) and (v1, v2) respectively, we denote the concatenation of the two paths
f and g as f · g. f · g is also the composition of projections of f and g onto the edge
(v0, v2). Taking boundary on σ, ∂(σ) = g − f · g + f . Since the difference between
f + g and f · g is a boundary, we have f · g ∼ f + g.

v0 v1

v2

f

gf · g
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(iii) If f ' g in π1(X, x0), then f ∼ g in H1(X).
Consider a homotopy F : I×I → X from f to g. Split the I×I into two 2-simplces
σ1 and σ2. Taking boundary of σ1 − σ2, the diagonal cancels, (v0, v2) and (v1, v3)
are constant path thus homologous to 0 by (i). We have ∂(σ1− σ2) = f + b− g− a.
Since F is a homotopy defined on I×I, a, b are constant paths. By (i), a, b both are
boundaries of constant 2-simplices. Thus the difference of f−g must be a boundary,
and therefore f ∼ g.

v0

v2 v3

v1

a

g

b

f

σ2
σ1

(iv) f ∼ −f . f denotes the inverse path of f . This is a result from and (ii) and (i):
f + f ∼ f · f ∼ 0, thus f ∼ −f .

(iii) shows h is a well-defined map. (ii) shows that if given f · g in π1(X, x0), h(f · g) =
h(f + g) = h(f) + h(g). Thus h is a homomorphism.

To see h is a surjection, consider a 1-cycle ∑i niσi representing a given element of
H1(X). We can relabel the σi’s so that the coefficient is all 1: write nσi as σi+ ...+σi and
then relabel as σi + ...+ σi+n for multiple of the same simplex, for any ni = −1, write 1σ′i
to replace −1σi where σ′i is the same simplex with opposite orientation. Thus the cycle
can be written as ∑i σi. Now suppose there is some σi is not a loop, then the fact that
∂(∑i σi) = 0 will imply there must be some σj such that σ1 · σj is defined. Use (iii) and
denote σk = σi ·σj and use σk to replace σi ·σj in the summation. repeat this process and
update the summation, then we will end up with the summation ∑

i σi being a sum of
loops where each σi is a loop. Given X is path connected, for each loop σi, we connect x0
to the basepoint of σi and denote this path as γ, then γ · σi · γ is the element in π1(X, x0)
that maps to the element in H1(X) represented by ∑i σi. Explicitly, h(γ · σi · γ) ∼ h(σi)
where h(σi) denotes the image 1-cycle in H1(X).

To see the commutator subgroup of π1(X, x0) is contained in ker(h), notice that
H1(X) is an abelian group under addition. Thus any fgf−1g−1 becomes 1 in H1(X) thus
[π1(X, x0), π1(X, x0)] ⊆ ker(h).

To obtain the opposite direction, we show that every element in ker(h) is a commutator
in π1(X, x0). Take f ∈ Ker(h), then in H1(X), f is a 1-cycle which is a boundary of some
2-chain ∑

i niσi. Similarly we can rewrite ∑i niσi such that ni = ±1 in the way we did
previously. Each σi correspond to a 2-simplex. If we apply boundary, ∂(σi) = τi,0−τi,1+τi,2
as shown in the following figure:
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v0 v1

v2

τi,2

τi,0τi,1
σi

Then f = ∂(∑i niσ1) = ∑
i ni∂(σi) = ∑

i,j(−1)jniτi,j. Since f is a singular 1-cycle in
H1(X), ∑i,j(−1)jniτi,j must have everything inside of the cycle canceled: by choosing
proper orientation some edges τi,j will appear twice with opposite sign thus will be can-
celed. The remaining edges ∑i,j(−1)jniτi,j form f . Since f is a cycle thus is null homo-
topic, we can now consider a homotopy σ that deforms every vertex in this 2-chain ∑i niσi
to the point x0. Abusing the notation, we denote the newly deformed singular 2-chain
again as∑i niσi, this chain has every edge being a loop based at x0. Since in∑i,j(−1)jniτi,j
we had all edges in the interior canceled, the homology class [∑i,j(−1)jniτi,j] can be
written as ∑i,j(−1)jni[τi,j]. Moreover, ∑i,j(−1)jni[τi,j] = ∑

i ni[∂(σi)]. Since now in
the new chain ∑

i niσi every edge is a loop at x0, in [f ] = ∑
i ni[∂(σi)], all [∂(σi)] =

[τi,0]− [τi,1] + [τi,2] = 0, this implies [τi,2] = −([τi,0 − [τi,1]). In π1(X, x0), this is expressed
as [τi,2] = ([τi,0] · [τi,1]−1)−1. Thus [∂(σi)] is in the form of an element followed by its in-
verse, [∂(σi)] is in the commutator subgroup for all i. As a result f is in the commutator
subgroup.

The higher homology groups are not the abelianisations of the higher homotopy
groups, though the Hurewicz theorem generalises to show that this relation holds in the
smallest dimension where either group is non-zero.

2.5 Eilenberg-Maclane Space
Recall that topological spaces X and Y have the same homotopy type if and only if
πi(X, x) = πi(Y, y) for some fixed points x and y. This does not imply that X and Y
are homeomorphic, since for example any contractible space has all homotopy groups
trivial. (A homeomorphism requires a bijection between spaces.) But spaces with the
same homotopy type have the same singular and simplicial homology and cohomology
groups.

Eilenberg-Maclane spaces have a unique non-trivial homotopy group. For a group G
and positive integer n, an Eilenberg-Maclane space of type K(G, n) has πn(X) isomorphic
to G, and all other homotopy groups trivial. Note that the homology groups of an
Eilenberg-Maclane space may be non-trivial in infinitely many dimensions.

In applications, the most useful Eilenberg-Maclane spaces are of type K(G, 1), that
is, spaces with only π1(X) being nontrivial and πn(X) = 0 for all n > 1. Such spaces
are also called aspherical spaces and their properties are completely determined by the
fundamental group. For example, the unit circle S1 is an Eilenberg Maclane space of type
K(Z, 1). More generally, Eilenberg-Maclane spaces exist for any finitely presented group.
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According to Hatcher [5] §1.B, to construct a K(G, 1) space for arbitrary given group
G, the following steps suffice:

(i) Construct a simplicial complex EG whose n-simplices are (n+ 1) tuples: [g0, ..., gn]
where gi ∈ G for 1 ≤ i ≤ n. The boundary of an n-simplex is given by the formula

δ([g0, ..., gn]) =
n∏
i=1

(−1)i[g0, ..., ĝi, . . . , gn] .

It can be verified that δ is a boundary map. (Though we do not require it, the
homology of G can be computed from this description.)

(ii) Consider homotopy h(t) : EG → EG with t ∈ [0, 1] where h slides every point
x ∈ [g0, ..., gn] along the line in [e, g0, ..., gn] from x to vertex e where e is the
identity in G. Thus h is a homotopy between EG and the point e. So EG has the
homotopy type of a point, and all homotopy groups are trivial.

(iii) There is action of G on EG: [g0, ..., gn] 7→ [gg0, ..., ggn], which is proper and discon-
tinuous. Consider the natural quotient map EG→ EG/G, which sends each point
to its G-orbit. This gives a covering of BG = EG/G by EG. By the results of
Section 1.6, π1(BG) = G. It can be shown that all higher homotopy groups of BG
remain trivial on passing to the quotient, and so BG is a K(G, 1) space.

With the Eilenberg Maclane space of K(G, 1), at least the first homotopy group of
any random G can be defined as the first homotopy group of its corresponded space BG.
It is a well-known fact that homology is determined by homotopy type, so that we can
refer to the homology of a K(G, 1) space as the homology of G without ambiguity.

2.6 Transfer Map in Simplicial Homology
Let X ′ be a covering space of X. In Chapter 1 we proved that there is a natural injective
homomorphism π1(X ′, x) → π1(X, x). At the end of that Chapter, we observed that
there is a mysterious “pre-transfer map” (which is not a homomorphism!) in the direction
π1(X, x) → π1(X ′, x). We observed that the obstruction to being a homomorphism is
essentially just non-commutativity of π1(X ′, x).

By Theorem 2.1, the first homology group is the abelianisation of the fundamental
group. In this section we show that the pre-transfer on fundamental groups descends to
a true homomorphism between homology groups. Note that by the Eilenberg-Maclane
construction, every finite group has an associated space K(G, 1). By general theorems
about covering spaces, there exists a cover with π1(X ′, x) ∼= H for any subgroup H of G.
As a result, we will be able to define a homomorphism

v : Ab(G)→ Ab(H)
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for any subgroup H of a finite group G. We will state the remaining results in this section
in sufficient generality to apply both to covers of topological spaces and to subgroups of
finite groups.

We begin with an insight into the group of deck transformations of a covering space.

Proposition 2.2. Given topological space X and a finite covering f : X ′ → X, there
exists a canonical bijection between cosets of π1(X ′, x′) in π1(X, x) and conjugates of x′
over x.

Proof. Let s be a deck-transformation. Since s(x) is conjugate to x, the image of a path
from x to s(x) in X ′ is an element of π1(X). Conversely, any two paths between x and
s(x) differ by an element of π1(X ′, x′) and so the deck transformations sending x to s(x)
all correspond to elements of this coset of π1(X ′, x′) in π1(X, x).

Now we introduce some notation for our treatment of the transfer homomorphism
(unifying notation for finite groups and covering spaces).

(i) Let G be the group of deck transformations, which is isomorphic to π1(X).

(ii) Let H be the group π1(X ′) which is isomorphic to a subgroup of π1(X).

(iii) Let T be a set of representatives from cosets of H in G, which is a transversal of
the group of deck transformations by Proposition 1.8.

Now we can write the transfer map as follows.

1. Given an element of π1(X, x), there exists a lift to X ′ which is uniquely determined
by the starting point (which must be a conjugate of x′. Consider a lift which begins
at a point y. Let ty be the unique element in T which maps x′ to y, and write ty·s
for the element which maps from x′ to the image of s. Then tyst

−1
y·s is a path in X ′

beginning and ending at x′. So it is an element of π1(X ′, x′). The transfer is the
image of the composition of all such lifts in Ab(π1(X ′, x′)).

2. Given g ∈ G, there exist unique elements of the transversal T of H such that g = tih
and gt−1

j ∈ H. The transfer in Ab(H) is given by

v(g) =
∏
t∈T

tg(t · g)−1 mod H ′

Again, each term in the product is an element of H, but there is no natural ordering
on the terms, so that the homomorphism is defined only in the abelianisation of H.

Note that a homomorphism v : G → Ab(H) necessarily has G′ ≤ ker(V ). By the
First Isomorphism Theorem, we refer without ambiguity to v as a homomorphism out
of G or out of Ab(G). Note that this result no longer requires any topological notions,
the proof works at the level of group theory. It remains only to show that v really is a
homomorphism. We leave the proof to Chapter 3 (See Theorem 3.1). In the next chapter,
we will also investigate applications of the transfer in the theory of finite groups.
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Chapter 3

Transfer Theory in Finite Groups

In Chapter 1, we introduced topological spaces, fundamental groups and covering spaces.
We saw in Theorem 1.1 that there is a bijection between subgroups of the fundamental
group of a manifold and covers of that manifold. We concluded the chapter with by
constructing a natural evaluation map from the fundamental group of a cover into the
fundamental group of a space, and an unnatural pre-transfer map in the other direction.
This map is not a homomorphism of fundamental groups.

In Chapter 2, we constructed simplicial complexes and their homology groups. Ho-
mology is a coarser invariant than homotopy, and is easier to compute than the homotopy
groups (of which the fundamental group is the first). Nevertheless, homology is an invari-
ant of manifolds. Theorem 2.1 shows that the first homology group is the abelianisation
of the fundamental group. It turns out that the image of the pre-transfer map in the first
homology group is a true homomorphism of groups. More generally there exist trans-
fer homomorphisms between the homology groups of a cover and the homology of the
underlying space.

In this chapter, we extend these geometric concepts to finite groups, as follows. An
important theorem in algebra, due to MacLane and Eilenberg is that for any group G
there exists a topological space which has G as its fundamental group, with all higher
homotopy groups vanishing. This is called the Eilenberg-MacLane space for G. We will
not be concerned with the construction of these spaces (which typically are not sufficiently
geometric to be visualisable). But algebraic techniques establish that these spaces are
unique up to homotopy.

It is a deep and surprising fact that, while the homotopy theory of the Eilenberg-
MacLane space is not interesting, since the first homotopy group is as intended and all
higher homotopy groups vanish, the homology groups turn out to be interesting and to
have deep connections to finite groups seemingly unconnected to geometric or topological
considerations. Since the Eilenberg-MacLane space is unique, we define the homology of a
group to be the homology of the Eilenberg-MacLane space. Transfer maps can be defined
at this level.

Historically, the transfer homomorphism pre-dates the development of homology, and
can be defined without reference to homology. Nevertheless, understanding the homolog-
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ical motivation for the transfer provides insight into the types of applications it has.

3.1 Definition and Properties of Transfer Map
In this section, we provide a group theoretic verification of the basic properties of the
transfer homomorphism. Throughout this section, G is a group, H is a subgroup of G
of finite index, and T is a transversal of the cosets of H in G. The following definition
captures the action of G on the cosets of H, which are in bijection with the elements of
T . In this chapter, theorems and proofs about the transfer homomorphism and related
results follow from Isaacs [7].

Definition 3.1 (Transversal). Let H ⊆ G, and let T be a transversal of the cosets of H.
For t ∈ T and g ∈ G, define t · g to be the element in T that labels the coset Htg.

Note that the action of G on T is identical to the action of G on the cosets of H as a
permutation group.

Before we proceed further it’s helpful to review group action and give a concrete
example. In most textbook of group theory, group action is defined in following language:

Definition 3.2 (Group action). Let G be a group and S be a set, a left group action
φ : G× S → S is a map if the following properites are satisfied:

(i) ∀x ∈ S, 1 · x = x

(ii) ∀x ∈ S, ∀g, h ∈ G, g · (h · x) = (gh) · x

Right group action can be defined in similar way.

This is equivalent to the say the group action is a homomorphism from G to Sym(S).
That is, the group action is a homomorphism φ : G → Sym(S) such that for a fixed
g ∈ G: g 7→ σg where σg ∈ Sym(S). And then for every s ∈ S, σg : s 7→ g · s.

To see the this is a homomorphsim, take s ∈ S,

φ(gh)(s) = σgh(s)
= (gh) · s
= g · (h · s)
= σg(σhs)
= φ(g)φ(h)(s)

Example 3.1. Consider D4, the symmetry group on a square. Take G = D4 and S =
{1, 2, 3, 4}. We can view D4 as a group acting the set of vertices of a square. r gives
permutation (1234): rotate every vertex by 90 degree; f gives permutation (24): fix
vertices 1, 3 and flip 2, 4.

Lemma 3.1. Suppose H ⊆ G and T is a right transversal. For t ∈ T and x, y ∈ G,
following properties hold:
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(i) t · 1 = t.

(ii) (t · x) · y = t · (xy).

(iii) tx(t · x)−1 ∈ H

Proof. (i) t · 1 returns the element in T belongs to coset Ht1 = Ht which is t.

(ii) “·” can be thought as group action of G on the cosets of H in G: Hti · g = Htig.
Then ti’s are the labels of the cosets. (ii) follows as an axiom of group action.

(iii) Let t ∈ T and x ∈ G, then tx ∈ Htx = Ht · x, this implies there’s some h ∈ H such
that tx = h(t · x), then tx(t · x)−1 = h ∈ H.

Definition 3.3 (Transfer Map). Let H ⊆ G be a subgroup with finite index, suppose
M / H and H/M be abelian, The transfer from G to H/M is defined as a map v : G →
H/M giving by the following:

V (g) =
∏
t∈T

tg(t · g)−1

v(g) = V (g) mod M

where T is the transversal of G.

With this definition, it is not entirely obvious that the transfer is in fact a homomor-
phism. Before we verify this, we give an example of the computation of the transfer.

Example 3.2 (v : D4 → 〈r〉). Consider the transfer map fromD4 to its subgroupH = 〈r〉.
Since H is abelian, take M = H ′ and H/H ′ = H. There’s two cosets by Lagrange’s
theorem: {1, r, r2, r3} and {f, r2f, fr3, fr}. Choose T = {1, f} as a transversal. Then
the transfer map sends the two generators {r, f} of D4 to the their image as below:

v(r) =
∏
t∈T

tr(t · r)−1 = [1r(1 · r)−1][fr(f · r)−1] = (r1−1)(frf−1) = 1

v(f) =
∏
t∈T

tf(t · f)−1 = [f(1 · f)−1][f 2(f · f)−1] = (ff−1)(f 21−1) = 1

We skip the remaining elements in D4 and it can be verified that the transfer map v :
D4 → H is trivial for all g ∈ D4. In general this is not true for any group G and its
subgroup H. We give another example now, where the transfer is non-trivial.

Now consider the transfer from D4 to another subgroup K = 〈f〉. Choose S = {1, r}
as a transversal. Then,

v(r) =
∏
t∈S

tr(t · r)−1 = [1r(1 · r)−1][rr(r · r)−1] = (rr−1)(r21) = r2

v(f) =
∏
t∈S

tf(t · f)−1 = [1f(1 · f)−1][rf(r · f)−1] = (f1−1)(fr3r−1) = r2
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Next, we establish that the transfer is a homomorphism of groups. The next proof is
identical to that at the end of Chapter 2 for simplicial homology, but we include it again
so that this chapter on finite groups is self-contained. Then for groups like D4 it suffice
to know what the image of the whole group is with v(r) and v(f) since these are the
generates of D4.

Theorem 3.1 (Transfer is a Homomorphism). Let G be a group, and H ≤ G with finite
index with transversal T . Let M ≤ H be such that H/M is abelian. Then the map
v : G→ H/M given by

V (g) =
∏
t∈T

tg(t · g)−1

v(g) = V (g) mod M

is a homomorphism from G into H/M .

Proof. Let T be a transversal of H, for t ∈ T and x, y ∈ G, we have t · (xy) = (t · x) · y
by Lemma 3.1. Thus we have:

t(xy)(t · (xy))−1 = (tx(t · x)−1)((t · x)y((t · x) · y)−1)

Both factors on right hand side above are in H by lemma 3.1, thus take transfer on both
sides we get: ∏

t∈T
t(xy)(t · (xy))−1 ≡

∏
t∈T

tx(t · x)−1 ∏
t∈T

(t · x)y((t · x)y)−1

≡
∏
t∈T

tx(t · x)−1 ∏
t′∈T

t′y(t′ · y))−1

≡
∏
t∈T

tx(t · x)−1 ∏
t∈T

ty(t · y))−1 mod M

We have the first congruence since we are modulo M thus terms commute. We have the
second congruence since t · x run through all elements of T and t′ is relabeling t · x. Thus
v(xy) = v(x)v(y) and transfer is a homomorphism.

The transfer map does not depend on choice of left or right transversal, and it does
not depend on the choice of transversal since the action of G is on the cosets and t as a
label does not affect the image. Next we provide an explicit proof to show the invariance
of transversal.

Theorem 3.2 (Invariance of Transversal). Let S and T be two different transversals of
H ⊆ G, let M /H with H/M abelian and H of finite index. Then for g ∈ G:

∏
t∈T

tg(t · g)−1 ≡
∏
s∈S

sg(s · g)−1 mod M
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Proof. Since S and T are two transversals of H ⊆ G, for each t ∈ T , there is a unique
st ∈ S that lies in the same coset Ht that contains t, we can write st = htt for some
ht ∈ H. Thus we have:

S = {st : t ∈ T} = {htt : t ∈ T}

Let s ∈ S and g ∈ G, then s = st for some t and s · g returns the unique element of S lies
in Hsg = Htg = H(t · g), thus s · g = st·g = ht·g(t · g) and we have:

sg(s · g)−1 = httg(ht·g(t · g))−1 = ht(tg(t · g)−1))h−1
t·g

∏
s∈S

sg(s · g)−1 ≡
∏
t∈T

ht(tg(t · g)−1)h−1
t·g

≡
∏
t∈T

ht
∏
t∈T

tg(t · g)−1(
∏
t∈T

ht·g)−1

≡
∏
t∈T

tg(t · g)−1 mod M

We have the second congruence since it’s modulo M and H/M is abelian. The third
congruence is obtianed by cancelling the first and last products since t ·g runs through all
elements of T . Thus we conclude the transfer is independent from choice of transversal.

As we have illustrated in Chapters 1 and 2, these results can be interpreted in terms of
covering space theory and in terms of homology, though here they are formulated entirely
in terms of groups. In the next section, we recall some of the theory of finite groups, and
explore a few applications of the transfer in finite group theory.

3.2 Sylow Theorems and Topics in Elementary Group
Theory

The Sylow theorems provide powerful structural results about subgroups of prime power
order in a finite group. Since groups of prime power order have numerous special properties
(e.g. non-trivial centers, many normal subgroups) it will be productive to consider the
transfer from G into a subgroup of prime power order. Historically, these methods were
pioneered by Frobenius and Burnside in the study of finite simple groups.

Lemma 3.2. Let p be a prime and m be an integer not divisible by p, then then number
of ways of selecting pk elements from a set of size pkm is:(

pkm

pk

)
≡ m mod p

Proof. We skip the proof here. Details can be found in Lemma 7.5 from Shahriari [11].
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Names and proof techniques of the Sylow Theorems varies in different textbooks and
the Sylow Theory is rich in its materials and applications. More discussions can be found
in Chapter 5 of Hall [4] and Chapter 11 of Humphreys [6]. Here we mainly follow the above
two reference with minimum prerequisite properties to show the three main theorems.

Theorem 3.3 (Sylow’s First Theorem). Let G be a finite group with order pkm where
pk is a prime power and p - m, then G has subgroup of order pk.

Proof. Let |G| = pkm and p - m. Let S = {S ⊆ G : |S| = pk}, that is, the set of all
subsets of G that contains exactly pk elements. |S| is the number of ways to choose pk
elements from a set containing pkm elements. By Lemma 3.2, |S| ≡ m mod p. Now
let G act on S with action “·” : g · s = gS where gS is a left coset of S in G. This
defines a group action and produces orbits that partition S. Choose representatives
from these orbits and denote as {S1, ...Sr}. Then S = Orb(S1) ∪ ... ∪ Orb(Sr) implies
|S| = |Orb(S1)| + ... + |Orb(Sr)|. If every orbit have size divisible by p then p divides
|S|. This contradicts |S| ≡ m mod p. Thus at least one orbit has size not divisible by p.
Denote this orbit by S. By the Orbit-Stabilizer Theorem, pk | |G| and p - |Orb(S)| implies
pk | |Stab(S)|. Thus pk ≤ |Stab(S)|. For fixed s ∈ S, if g ∈ Stab(S) then g · S = S and
hence gs ∈ S. Thus the coset Stab(S)s ⊆ S. It follows |Stab(S)| = |Stab(S)s| ≤ |S| = pk.
We must have |Stab(S)| = pk and Stab(S) ≤ G is a subgroup of order pk.

Theorem 3.4 (Sylow’s Second Theorem). If P is a Sylow p-subgroup of finite G with
|P | = pk and Q ≤ G is a p-group(|Q| = pi, i ≤ k). Then for some g ∈ G,

Q ⊆ gPg−1

Proof. Consider S = {Pg : g ∈ G}, that is, the set of all cosets of P in G. Then
|S| = |G : P | is not divisible by p since P is a Sylow-p subgroup of G. G acts on
S by right multiplication thus P acts on S too. Then S can be partitioned into P -
orbits. Choose representatives from these orbits and denote as {S1, ..., Sr}. Then S =
Orb(S1)∪...∪Orb(Sr) implies |S| = |Orb(S1)|+...+|Orb(Sr)| . If all |Orb(Si)| for 1 ≤ i ≤ n
divides p then |S| divides p which is a contradiction. Thus there exist at least one orbit Si
with |Si| not divisible by p. By the Orbit Stabilizer Theorem, |Orb(Si)| = |P |/|Stab(Si)|
implies |Orb(Si)| divides |P | = pk. The only possibility is |Orb(Si)| = 1. Thus Si is a
set of single coset Pg for some g ∈ G and all elements in P fixes Pg, that is, ∀p ∈ P ,
Pgp = Pg. It follows gp ∈ Pg and p ∈ g−1Pg for all p ∈ P . Thus P ⊆ g−1Pg.

Corollary 3.1. If P , Q are Sylow p-subgroups of G, then Q = g−1Pg for some g ∈ G.

Proof. By Theorem 3.4, let P = Q then we have Q ⊆ g−1Pg for some g ∈ G. Since P , Q
both are Sylow p-subgroups, |Q| = |P | = |g−1Pg| thus must have P = Q.

Theorem 3.5 (Sylow’s Third Theorem). Given G of order pkm, where p - m, the number
n of Sylow p-subgroups is congruent to 1 modulo p.
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Proof. Consider the same set S from proof of Theorem 3.3 with the same group action.
As we saw in there, if an orbit in S containing S have length not divisible by p, then for all
s ∈ S, Stab(S)s ⊆ S and |Stab(S)s| = |S|. Thus Stab(S)s = S, it follows Stab(S) = Ss−1

is a Sylow p-subgroup of G. Conjugate this group by s, s−1(Ss−1)s = s−1S is again a
Sylow p-subgroup. Notice s−1S ∈ Orb(S), since |Stab(S)| = |S| = pk, by the Orbit
Stabilizer Theorem, |Orb(S)| = m. Thus we conclude if an orbit has length not divisible
by p then it contains a Sylow p-subgroup and has length m.

On the other way around, if an orbit in S contains a Sylow p-subgroup P , then if
g ∈ Stab(P ), there is gP = P and this implies g ∈ P . Thus Stab(P ) ⊆ P and hence
Stab(P ) = P . Orb(P ) has length m by the Orbit Stabilizer Theorem. Therefore every
orbit that contains a Sylow p-subgroup have length m which is not divisible by p.

Now we have every orbit that contains a Sylow p-subgroup has length m, and every
orbit that is not divisible by p contains a Sylow p-subgroup and has length m. Next
we show every orbit contains at most one Sylow p-subgroup. Suppose P1, P2 are Sylow
p-subgroups in the same orbit, then P1 = gP2 for some g ∈ G. This implies 1 ∈ P2 ∩ gP2,
that is, the two cosets have non-empty intersection. This is impossible, thus P1 = P2.

Let np denote the number of Sylow p-subgroups in G, then |S| ≡ mnp mod p. Apply
Lemma 3.2, |S| ≡ mnp ≡ m mod p, thus np ≡ 1 mod p.

Application of the Sylow Theorem is useful in classifying simple groups as the theorem
tells information about Sylow subgroups. In fact, many application is about using the
Sylow Theorem to show existence of proper nontrivial normal subgroup and show the
group is not simple, or a group of given order is solvable or not. We will look at some
quick results about simple groups.

Corollary 3.2. If a group G with finite order has only one proper nontrivial subgroup
of a given order, then this subgroup is normal and G is not simple.

Proof. Observe that g−1Xg is a subgroup of G if and only if X is a subgroup of G.

Corollary 3.3. np divides |G|/pk.

Proof. Take any Sylow p-subgroup P , since every two Sylow p-subgroups are conjugate,
by the Orbit Stabilizer Theorem number of conjugates of P equals to the index of NG(P ).
Thus np = |G : NG(P )| = |G|/|NG(P )|. Since P ⊆ NG(P ), NG(P ) has order contains pk
as a factor, |G|/|NG(P )| has no factor of p thus np divides |G|/pk.

Proposition 3.1. A group of order 28 has a normal subgroup of order 7.

Proof. If |G| = 28, then the number of Sylow 7-subgroups divides 4 and congruent to
1 modulo 7, thus the number must be 1, this Sylow 7-subgroup is a proper non-trivial
normal subgroup and therefore G is not simple.

Proposition 3.2. If p, q are primes with q < p, then any group of order pq has a single
subgroup of order p and this subgroup is normal in G.
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Proof. The number of Sylow p-subgroups is np ≡ 1 mod p, and divides the order of G.
The only such integer is 1, by hypothesis.

More generally, unless q ≡ 1 mod p the same conclusion holds for q and every group
of order pq is cyclic. In the case that q ≡ 1 mod p there is an additional group, which
may be described in terms of the semi-direct product.

Proposition 3.3. Let Zn be a cyclic group of order n, written additively. The automor-
phism group of Zn is the multiplicative group Z∗n.

Proof. Since Cn is generated by 1, for any automorphism α, we have α(m) = m ·α(1), so
the automorphism is entirely known once the image of 1 is known. Clearly α(1) generates
the whole group if and only if α(1) is coprime to n and the result follows.

Next, we review two ways of factoring a group G into two smaller subgroups, equiv-
alently, we can construct larger group with small groups by taking direct product or
semidirect product.

Definition 3.4 (Complement). Given H as a subgroup of G, a subgroup K of G is called
a complement of H in G if G = HK and H ∩K = 1.

Proposition 3.4. Given G and H,K ≤ G, if H ∩K = 1, the set HK = {hk : h ∈ H, k ∈
K} can be uniquely expressed as product of form hk. Moreover, if both H,K are normal
in G, HK ∼= H ×K.

Proof. The first statement is obvious, to see the second statement we consider ψ : HK →
H × K defined as hk 7→ (h, k). Before showing this is a homomorphism, notice H / G
implies k−1hk ∈ H thus h−1k−1hk ∈ H, similarly we have h−1k−1hk ∈ K. Since by
hypothesis H ∩K = 1 we have h−1k−1hk = 1 which means hk = kh.

Now let h1, h2 ∈ H, k1, k2 ∈ K, then

ψ(h1k1h2k2) = ψ(h1h2k1k2)
= (h1h2, k1k2)
= (h1, k1)(h2, k2)
= ψ(h1k1)ψ(h2k2)

Thus ψ is a homomorphism and it is a bijection since HK can be written uniquely with
elements of the form hk. We have HK ∼= H ×K.

Definition 3.5 (Direct and semidirect product). Let G be a group and H,K are subgroup
of G satisfying the following conditions:

(i) H / G and K / G.

(ii) H ∩K = 1.

(iii) G = HK.
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Then G is a direct product of H and K.
Now we look at a generalization of the direct product by relaxing the condition of

both groups being normal but keep the other conditions:

(i) H / G.

(ii) H ∩K = 1.

(iii) G = HK.

What we obtain here is called a semidirect product.

In the case of semidirect product, for given H,K ≤ G, the semidirect product is not
necessarily unique (counterexamples can be easily found), H and K are not enough give
information of the group G. The extra information is given by action of K on H by
conjugation: for h ∈ H, k ∈ K, k · h = khk−1. Now for two elements h1k1, h2k2 in the
semidirect product, the group operation can be well defined:

(h1k1)(h2k2) = h1k1h2k
−1
1 k1k2

= (h1k1h2k
−1
1 )(k1k2)

= hk

where h = h1k1h2k
−1
1 and k = k1k2. Now k is a well defined element from K, h involves

elements from both K and H, but with the group action above we have h = h1(k1 · h2).
Recall Definition 3.2, the action of K on H gives a homommorphism φ : K → Aut(H).
Thus we write HoφK to denote the semidirect product of H and K with homomomrphism
φ from K to Aut(H).

One application of the semidirect product is that it let us classify groups of certain
order, for example group of order pq where p, q are distinct primes. Although this method
can write group of certain order as factor of two subgroups, it does not imply any group
G can be written as semidirect product, for example any group that is simple, or the
quaternion group Q8 where no proper subgroup has a complement.

Example 3.3. We classify the groups of order 2p for odd prime p. By the Sylow theorems,
a group of order 2p has subgroups of orders 2 and p. By Lagrange’s theorem these
subgroups intersect only in the identity element, and by the counting portion of the
Sylow theorems, the group of order p is normal. Hence a group of order 2p is a semidirect
product with normal subgroup of order p and complement of order 2. Since a semi-direct
product is determined by a homomorphism from the complement H into Aut(N) and the
automorphism group of Cp is cyclic of order p−1, there are just two choices. If the action
is trivial, we obtain a cyclic group while if the action is by inversion we obtain a dihedral
group.

Generalising the previous example, we can classify all groups of order pq where p and
q are distinct primes.
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Example 3.4. Suppose G is a group with order pq where p < q are two primes. Let
P be a Sylow p-subgroup of G and Q be a Sylow q-subgroup of G. Then apply the
Sylow Theorem, G ∼= Q oφ P for some φ : P → Aut(Q). If p - |Aut(Q)| the only
homomomrphism φ is the trivial map which implies G is a direct product of two groups
of order p and q, thus G is a cyclic group of order pq. Otherwise, there is a nonabelian
group of order pq where Cp maps onto the unique cyclic subgroup of order p in Aut(Q).
As an example, consider the following element of order 3 in Aut(Z7):

σ = (1, 2, 4)(3, 6, 5)

which realises multiplication by 2. This is an automorphism of Z7, and the group generated
by x 7→ x + 1 and σ is a nonabelian group of order 21. As a permutation group, it is
generated by the permutations

(1, 2, 3, 4, 5, 6, 7), (1, 2, 4)(3, 6, 5) .

More generally, a nonabelian group of order pq can be constructed for any divisor p of
q − 1 by taking an element of order p from the multiplicative group the field of order q,
together with a generator for the additive group.

3.3 Computations With The Transfer
Often there is not much useful information we can tell from directly applying the transfer
map on a group. There is more information can be given from properties of the transfer
map. The Transfer Evaluation Lemma helps on evaluation of transfer map and tells more
than just evaluation.

Lemma 3.3 (Transfer Evaluation). Let G be a group and H ≤ G with finite index, let
T be a transversal of H. For a fixed g ∈ G, there exist a subset T0 ⊆ T and positive
integers nt for t ∈ T0 with the following properties:

(i) ∑nt = |G : H|

(ii) tgntt−1 ∈ H for all t ∈ T0

(iii) V (g) ≡ ∏t∈T0 tg
ntt−1

(iv) If o(g) < +∞, then nt divides o(g) for every t ∈ T0.

Proof. (i) The cyclic group 〈g〉 ⊆ G acts on T by the dot “·” action, T thus can
be divided into 〈g〉-orbits. Let T0 be a set of representatives of these orbits and
let nt denote size of the orbit containing t, thus the sum of the sizes of orbits is∑
nt = |T | = |G : H|.

(ii) Take t ∈ T , then the permutation induced by g on the 〈g〉-orbit containing t is an
nt cycle, elements of the orbit are: t, t · g, t · g2, ..., t · gnt−1, thus t · gnt = t and this
implies Ht = Htgnt . Thus tgnt ∈ Htgnt = Ht and hence tgntt−1 ∈ H.
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(iii) Since ∀s ∈ T , sg(s · g) ∈ H by Lemma 3.1, and the product of all such elements
with s chosen in some order gives V (g). Now let s = t · gi, then

sg(s · g)−1 = (t · gi)g((t · gi) · g)−1

= (t · gi)g(t · gi+1)−1

∈ H

Contribution to V (g) from elements of T that lie in the orbit containing t is:

nt−1∏
i=0

(t · gi)g(t · gi+1)−1 = tgntt−1

Then it follows:
V (g) =

∏
t∈T0

tgntt−1 mod M

(iv) Since o(g) = k < +∞, then |〈g〉| = k, the size of every 〈g〉-orbit on T divides k.

For a transfer homomorphism G → H the Evaluation Lemma is best understood in
terms of the coset action of G on H. Often knowing the orbit structure of G on cosets of
H is sufficient.

Example 3.5. Let p, q be primes with p | q − 1. Let G be a group of order pq. Let H
be a Sylow p-subgroup of G with generator h and consider the transfer homomorphism
V : G → H. By the Sylow theorems, h acts on the cosets of H fixing exactly one point,
and moving all others in orbits of length p. So by the Transfer evaluation lemma, all
orbits except that of length 1 are trivial. So V (h) = h for any h ∈ H and the transfer is
nontrivial.

We give a concrete example of the use of the Transfer Evaluation Lemma to classify
groups of order 30.

Proposition 3.5. Suppose that G is a group of order 30. Then G is isomorphic to one
of the following: C30, D15, D5 × C3 or D3 × C5.

Proof. By the Sylow theorems, G must have a subgroup H of order 2. We consider the
transfer V : G→ H. Let h be the non-trivial element of H and apply Lemma 3.3.

V (h) =
r∏
i=1

tih
nit−1

i

where each term ni ∈ {1, 2} and tih
nit−1

i ∈ H. Since ∑r
i=1 ni = 15 an odd number of the

ni must be equal to 1. Furthermore, tiht−1
i = h for any term which does not vanish. We

conclude that V (h) = h and so the transfer is not identically 0.
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By the First Isomorphism Theorem, G has a normal subgroup of order 15. Since 3 ≡ 2
mod 5 a group of order 15 must be cyclic. So G is a semi-direct product of a cyclic group
of order 15 and a complement of order 2.

Semi-direct products are classified by homomorphisms H → Aut(N). In this case,
Aut(C15) = Aut(C3) × Aut(C5) ∼= C2 × C4. There are three subgroups of order 2 in
Aut(C15), inverting an element of order 3, an element of order 5 or both. These give all
groups of order 30.

Let us now give a more general application of the Transfer homomorphism.

Theorem 3.6. Let G be a group and suppose G has center Z(G) of index n. Then the
transfer map from G to Z is the map g 7→ gn. This gives a homomorphism from G into
Z(G).

Proof. Choose a transversal T for the cosets of Z(G) in G. Since Z(G) is abelian, there
is no need to quotient by commutators. By the Transfer Evaluation Lemma,

v(g) = π(G) =
∏
t∈T0

tgntt−1

By the Transfer Evaluation Lemma again, for g ∈ G, tgntt−1 ∈ Z(G) for all t ∈ T . Since
tgntt−1 ∈ Z(G), tgntt−1 = t−1(tgntt−1)−1t = gnt . Thus

v(g) = π(G) =
∏
t∈T0

gnt = g
∑

nt = gn

As an application of the above result, we recover a well-known result of Schur’s. If
G is a torsion group with center of finite index, then the commutator subgroup of G is
finite. Let V : G→ Z(G) be the transfer homomorphism.

Since G′ ≤ ker(V ), and Z(G) has finite index in G then G′ ∩ Z(G) has finite index in
G′. Since G′ is generated by commutators of a transversal of Z(G), it is finitely generated.
And since G′ ∩ Z(G) has finite index in G′ it too is finitely generated. So G′ ∩ Z(G) is a
finitely generated torsion abelian group: so it is finite. But then G′ has a finite subgroup
of finite index, and so is finite.

Finally, observe that g(xg−1x−1) as xgx−1 varies over the conjugates of G. These
elements are distinct, and are commutators. So every conjugacy class in a group satisfying
these hypotheses is finite.

Remark 3.1. Arguments such as the above motivated Burnside to ask whether a finitely
generated group in which all elements have order divisible by p is necessarily finite. This
was a famous problem in group theory which continues to attract researchers. This lead
to the construction of the so called Tarski monsters: infinite simple groups in which every
element has prime order p (for some prime p > 1075). Worse, every non-trivial subgroup
is cyclic of order p, so they behave nothing like finite p-groups.

39



3.4 The Focal Subgroup and Transfer into Sylow Sub-
groups

The existence of Sylow subgroups is established by the Sylow theorems. One of the
original motivations for the study of transfer in group theory was to study simple groups.
The transfer can be used for this purpose.

Theorem 3.7. Let G be a finite group and suppose G has abelian Sylow-p subgroup,
then p - |Z(G) ∩G′|.

Proof. Let P be a Sylow p-subgroup of G, and T a transversal of P in G. Suppose that
z ∈ Z(G) ∩ P and consider the transfer homomorphism v : G→ P .

By hypothesis, Ptz = Pzt = Pt. So t · z = t for all t ∈ T and

v(z) =
∏
t∈T

z = z|G:P | .

Since P is Sylow, |G : P | is coprime to p, so v(z) 6= 1. But G′ ⊆ ker(v) so z /∈ G′.
In particular, no element of order p is contained in Z(G) ∩ G′, so the triple intersection
P ∩G′ ∩ Z(G) is trivial.

Remark 3.2. A group G is a perfect central extension of an abelian group Z by a group
H if G satisfies the following conditions:

(i) G = G′, i.e. G is perfect.

(ii) G contains a central subgroup isomorphic to Z.

(iii) The quotient G/Z is isomorphic to H.

An important example of a perfect central extension is SLn(k) which is an extension of
the central group of scalar matrices isomorphic to a subgroup of k∗ by the group PSLn(k).

For a fixed perfect group H, Theorem 3.7 gives conditions on the Sylow subgroups
of a perfect central of H. For example, if p divides the order of the central subgroup
in a perfect central extension, then |H| must be divisible by p3. In particular, these
methods can be used to show that GLn(q) is not perfect (without direct reference to the
determinant).

To go deeper into applications of the transfer we develop the focal subgroup, which
was introduced by Burnside and developed into a powerful tool in finite group theory by
D. G. Higman.

Definition 3.6 (Focal Subgroup). Let H ⊆ G, the focal subgroup of H in G is defined
as follows:

FocG(H) = 〈x−1y : x, y ∈ H, x, y conjugates in G〉
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It is immediate from the definition of the focal subgroup that

H ′ ≤ FocG(H) ≤ G′ .

In particular, FocG(H) ≤ ker(V ) where V : G → H is the transfer homomorphism. Of
particular interest in the theory of finite simple groups is the distinct between elements
of H ′ are of the form xy−1 for H-conjugate elements x, y ∈ H and the Focal subgroup,
in which x, y need only be conjugate in G. This fusion of conjugacy classes turns out to
have deep implications for the structure of G as a whole.

The next theorem characterises the Focal subgroup of a Sylow p-subgroup precisely,
and is the first important application of the transfer in finite group theory. It is due to
Burnside.

Theorem 3.8 (Focal Subgoup). Let G be a finite group, and H ⊆ G be a Sylow p-
subgroup of G. Take the transfer map v : G→ H/H ′, then

FocG(H) = H ∩G′ = H ∩ ker(v)

Proof. First, we notice that

FocG(H) ⊆ H ∩G′ ⊆ H ∩Ker(v) .

The first inclusion follows from the elements of FocG(H) being commutators in G. Since
the image of v is abelian, G′ ≤ ker(v). We need only to show that H∩ker(v) ⊆ FocG(H).

Equivalently, if h ∈ ker(v) then h is a product of commutators in G. Write P0 = P∩G′.
By the Transfer Evaluation Lemma,

v(h) =
∏
t∈T ′

thntt−1mod P0

for some subset T ′ of a transversal of P in G. Since P/P ′ is abelian, we may introduce
an additional factor

v(h) =
∏
t∈T ′

hnt

(
h−ntthntt−1

)
mod P ′ .

Since the second term is a commutator, we find that

v(h) =
∏
t∈T ′

hnt = h|G:P | mod P0 .

Now, since P is a Sylow p-subgroup, |G : P | is coprime to p, so that V : P → P/P0 is
surjective. Hence P ∩ ker(v) ≤ P0, as required.

Remark 3.3. Groups of prime power order have the property that P ′ < P , that is
the abelianisation is always non-trivial. As a result, the Focal subgroup theorem can
interpreted as stating that fusion always occurs in the Sylow p-subgroups of a simple
group. This observation has led to much work on so-called fusion systems of finite groups.
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We now have a precise description of the kernel of the transfer into a Sylow p-subgroup.
In particular, the transfer is non-trivial if and only if P0 6= P . The next result shows that
knowledge of NG(P ) is sufficient to determine the focal subgroup of an abelian Sylow
p-subgroup.

Remark 3.4. Recall that the centraliser of a subgroup H ≤ G is the subgroup CG(H) =
{g ∈ G : [g,H] = 1}. The normaliser of H is the group NG(H) = {g ∈ G : gHg−1 = H}.
The centraliser is normal in the normaliser, and H is normal in both. The quotient
NG(H)/CG(H) is isomorphic to a subgroup of Aut(H).

Lemma 3.4 (Burnside’s lemma). Let P be an abelian Sylow p-subgroup of a finite group
G. If x, y ∈ P are conjugate in G then there exists n ∈ NG(P ) such that n−1xn = y.

Proof. By hypothesis, there exists g ∈ G such that y = g−1xg. Since x ∈ P , it follows
that y ∈ P g where P g is a conjugate of P . Since the Sylow p-subgroups of G are abelian,
P g ∈ CG(y). But by hypothesis, CG(P ) ∈ CG(y), also.

By order considerations, P and P g are Sylow p-subgroups of CG(y) and so are con-
jugate by some element n ∈ CG(y). So P n = P g. So gc−1 ∈ NG(P ) and xgc

−1 = y as
required.

Recall that a normal p-complement of G is a normal subgroup N such that G/N is
isomorphic to a Sylow p-subgroup of G.

Theorem 3.9 (Burnside’s Normal p-Complement theorem). Let G be a finite group and
let P ∈ Sylp(G), suppose P ⊆ Z(NG(P )), then G has a normal p-complement.

Proof. Take P to be abelian, we have P ⊆ CG(P ), by the previous Burnside’s Lemma,
any two elements x, y ∈ P are G-comjugate are also conjugate in NG(P ), but P is in the
center of NG(P ), x, y must be the same element. Therefore no two distinct elements of P
can conjugate in G.
By the Focal subgroup Theorem, we have FocG(P ) = 1 = P ∩ ker(v) with transfer map
v : G→ P
Now ker(v) / G, then Ker(v)P has order |ker(v)||P |

|ker(v)∩P | = |ker(v)||P |, since P is a sylow p-
subgroup we know p does not divide |ker(v)|, thus |G : ker(v)| = |v(g)| is a power of p,
we have now shown that ker(v) is a normal p-complement.

As an easy corollary of the p-complement theorem we have the following results.

Proposition 3.6. Let p be the smallest prime which divides |G|. If the Sylow p-subgroup
of G is cyclic then G has a normal p-complement.

Proof. Write P for a Sylow p-subgroup of G. Observe that |Aut(Cpn)| = pn−1(p− 1). So
all prime divisors of this order are ≤ p. So by hypothesis, NG(P ) = CG(P ) and no fusion
occurs in P , so G has a normal p-complement.

We conclude with an application to finite simple groups.
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Theorem 3.10. Let P be an abelian 2-group such that Aut(P ) is a 2-group. Then P is
not the Sylow 2-subgroup of a finite simple group.

Proof. We will show that any group having P as a Sylow 2-subgroup has a normal 2-
complement.

First, the Focal Subgroup Theorem states that the image of the transfer homomor-
phism v : G→ P is isomorphic to P/P ∩ [G,G]. In particular the image is trivial if and
only if P ⊆ [G,G]. But Lemma 3.4 shows that fusion in P is controlled by the normaliser
NG(P ). Since P is abelian and Sylow, we know that NG(P )/CG(P ) is isomorphic to a
subgroup of Aut(P ) of odd order.

Finally, we use that Aut(P ) has no subgroups of odd order to see that NG(P ) has
trivial action on P . Hence v(G) ∼= P and G has a normal 2-complement. In particular,
G cannot be simple.

The next result gives some examples of 2-groups satisfying the hypotheses of the
theorem.

Proposition 3.7. Let P be a product of cyclic 2-groups of distinct orders. Then Aut(P )
is a 2-group.

Proof. Multiplication by an odd integer is an automorphism of the cyclic group of order
2k. Clearly there are 2k−1 such automorphisms, so Aut(C2k) is of order 2k−1.

If P is a direct product of non-isomorphic groups, then each factor is characteristic
and automorphisms map these direct factors to themselves. So Aut(P ) is a direct product
of the automorphism groups of the individual factors.

Note that the condition on the distinct factors cannot be relaxed. The Sylow 2-
subgroup of the simple group A5 is isomorphic to C2 × C2. The methods developed in
this section require that a group of order 3 acts to permute the three subgroups C2 of the
Sylow 2-subgroup, ensuring that the transfer into this subgroup is trivial.

Transfer arguments become more complicated when the Sylow 2-subgroups of G are
nonabelian, though much can still be said. We refer the reader to Chapter 10 of Robinson’s
monograph for further applications of the transfer [10]. Many of the deeper applications
of transfer theory for finite simple groups appears in the literature as research on fusion
systems.
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Chapter 4

Further Interpretations and
Applications of the Transfer

In this thesis we have explored the topological motivations for the transfer homomorphism
and its applications in finite group theory. In this section we sketch some further homo-
logical and representation theoretic ways of understanding the transfer homomorphism.

4.1 G-modules, Homology and Cohomology
Dual to homology theories are cohomology theories. These may be interpreted in a few
different ways, depending on context. For our purposes the most convenient is to develop
an analogy to the dual of a vector space.

Definition 4.1. A G-module is an abelian group M together with an action of G on M
which satisfies

g(m1 +m2) = gm1 + gm2 ,

for all m1 and m2.

Since an abelian group is a Z-module, a G module is precisely the same thing as a
ZG module. Note that a G-module structure on a vector space V is precisely the same
thing as a representation of G on V . The study of G-modules should be considered a
generalisation of representation theory.

Next, we introduce a chain complex for a finite group G. Define ZGn to be the free
module with basis {[g1, . . . , gn] : gi ∈ G} with boundary map

δ[g1, . . . , gn] =
n∏
i=1

(−1)i[g1, . . . , ĝi . . . , gn] .

As noted in chapter 2, this chain complex is exact, and so has trivial homology. Taking
the G-coinvariant submodule at each point in the complex gives a derived chain complex,
as follows

. . .→Mn →Mn−1 →Mn−2 → . . .
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where a basis for Mn is given by the orbits of G on ZGn and the boundary maps are
chosen so that implicit diagram commutes.

The homology groups of G are then defined to be the quotients Im(δn)/Ker(δn−1).
To construct the cohomology groups, one may consider the modules of homomorphisms
from ZGn into a fixed module M . Observe now that in the derived resolution we obtain
homomorphisms

ZGn → ZGn−1 →M

which suggests that there is an induced coboundary map from ZGn → M which factors
through ZGn−1. As a result, we obtain a chain complex

. . .→ Hom(ZGn,M)→ Hom(ZGn+1,M)→ . . .

where as before the cohomology groups are defined as quotients Im(δn)/Ker(δn+1). We
do not delve into the details of cohomology of finite groups, which is a large and well-
developed subject. Details may be found in Section 17.2 of Dummit and Foote [3]. Two
observations are important:

1. Under fairly general conditions, the first homology and first cohomology groups are
isomorphic, but not in a canonical way. (This is exactly analogous to the existence
of a non-canonical isomorphism between a finite dimensional vector space and its
dual).

2. Cohomology is a dual theory to homology in the sense that all arrows are reversed.
Just as there is a natural evaluation map Ab(H)→ Ab(G) and an unnatural transfer
map Ab(G) → Ab(H), there is a natural map Hom(G,M) → Hom(H,M) and an
unnatural transfer map Hom(H,M) → Hom(G,M). These are often encountered
in representation theory: they are respectively the restriction and induction maps.
These satisfy many relations, most famously Frobenius reciprocity.

Throughout this thesis, we chose to emphasise topological and group theoretic methods
over those of homological algebra. In fact, it is entirely possible to develop the transfer
homomorphism in a homological framework (though this can appear unmotivated without
the topological notions). This approach to homology is developed fully by Dummit and
Foote in Chapter 17.

4.2 Induced Representations
Finally, we can describe Marshall Hall’s representation with theoretic treatment of the
transfer homomorphism. To do so, we will need some material on induced representations.

Given an arbitrary subgroup H of G with finite index n, Frobenius constructed a
method to find the representation of G from representation of H. We suppose χ is
a representation of H. To extend χ to a representation of G, we consider the cosets
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{Ht1, ..., Htn} where T = t1, ..., tn is the set of transversal of H in G, we can write G as:
G = Ht1 ∪ ... ∪Htn. For every g ∈ G, defined χ̇(g) as:

χ̇(g) =

χ(t1gt−1
1 ) χ(t1gt−1

2 ) ... χ(t1gt−1
n )

... ... ...
χ(tngt−1

1 ) χ(tngt−1
2 ) ... χ(tngt−1

n )


Where if tigtk−1 /∈ H for some i, j, denote χ(tigtk−1) = 0 in the (i, j) entry of χ̇(g). It
terms out that χ̇ is indeed a representation of G, that is, ∀g, h ∈ G, χ̇(g)χ̇(h) = χ̇(gh).

There’s two cases arise when considering matrix multiplication of χ̇(g) and χ̇(h) and
in both cases the equality holds. We omit the proof here where readers can find details
in §3.1 of Ledermann [9]. The character χ̇ is called induced representation of χ.

With above construction, we can consider the special case that representation ρ of G
is induced from a one-dimensional representation of a subgroup H.

Definition 4.2 (Monomial Representation). Given a group G, a representation ρ of G is
said to be monomial if there is a subgroup H of G with one-dimensional representation
ρ′ such that ρ is induced by ρ′.

We may interpret a monomial representation as an induced representation as follows.
The proof is omitted since it follows immediately from a careful application of the relevant
definitions.

Theorem 4.1. The following are equivalent, for a representation ρ of a group G.

(i) There exists a G-invariant system of one-dimensional subspaces spanning V , with
the stabiliser of a single subspace denoted by H.

(ii) ρ is a transitive monomial representation.

(iii) ρ is induced from a one-dimensional representation of H.

Recall that an element of Hom(G,C) is a one-dimensional character of G. Suppose
that ρ is a monomial representation of G. Then

g 7→ det(ρ(g))

is a such a homomorphism by the multiplicative property of determinants. The natural
restriction map

Hom(G,C)→ Hom(H,C)
is obtained from restricting a character of G to one of H. There is a more subtle map:

χ ∈ Hom(H,C)→ det ·χGH ∈ Hom(G,C)

obtained from the composition of the determinant map with the induced representation.
This is precisely the cohomological version of the transfer map.
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We can proceed even a step further. Recall that we have shown that the first homology
group of G is canonically isomorphic to Ab(G), while the first cohomology group of G
with coefficients in C is Hom(G,C), the group of linear characters of Ab(G). By the
well-known duality of abelian groups, the first homology and first cohomology groups are
isomorphic (but not canonically isomorphic). It follows that the natural evaluation map
for homology can be interpreted as a corestriction map and that the transfer in homology
is coinduction. This interpretation leads to further insights into the relations between the
transfer in homology and cohomology which we do not pursue further.

We conclude with the observation that Hall’s definition of the transfer is non-canonically
isomorphic to the usual definition, since he defines the cohomological version of the trans-
fer rather than the homological version. One is non-trivial if and only if the other is, so
for the purposes of group theory (where typically one wants to verify that certain groups
are not perfect) Hall’s version has the advantage of allowing the immediate application
of methods from character theory and representation theory.

Definition 4.3 (Monomial permutation). Consider a set S = {u1, ..., un} that can be
multiplied from the left by elements of a group H with the following rules: ∀ui ∈ S,
hi, hj ∈ H, 1ui = ui and hi(hjuk) = (hihj)uk. Then a monomial permutation M is
defined to be a mapping: si 7→ hijuj where i = 1, ..., n and j = j(i).

Proposition 4.1 (Monomial permutations form a group). Define the product of two
mapping as following: if M1 : ui 7→ hijuj, M2 : uj 7→ hjkuk, let M1M2 : ui 7→ hijhjkuk.
Then all such mappings form a group.

Proof. Each mapping M : ui 7→ hijuj can be written as a matrix of dimension n×n with
hij on the ij-th entry for every pair of i, j and 0 in the remaining entries. Then it is the
same as the usual matrix algebra but with matrices of entries from H. Identity is just
the identity matrix, associativity follows from matrix algebra property. Composition of
two mapping is multiplication of two matrices and thus closed under composition. For a
given mapping, for each hij in its matrix, we construct a new matrix assigns h−1

ij in the
ji-th entry and zero everywhere else, then this gives the inverse element.

Proposition 4.2. If we let M denote the group of all such mappings on a set S, then
mappings of the form ui 7→ hiiuj form a normal subgroup D under multiplication.

Proof. Similar to above, write elements of D in matrix form it is easily seen they form
a subgroup and any elements of the form mdm−1 where m ∈ M and d ∈ D is again a
diagonal matrix thus D is normal.

The quotient group M/D is a set of cosets of form mD where m : ui 7→ hijuj is a
monomial permutation on set S. Then M/D can be viewed as the symmetric group of
permutations of elements u1, ..., un. In general, for any subgroup G of M , for g ∈ G :
ui 7→ hijuj, we can define map g∗ : ui 7→ uj induced by g. Then these induced elements
g∗ preserves structure of G, χ : g 7→ g∗ is a homomorphism and the induced group G∗

from G is a permutation group on set S.
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Definition 4.4 (Transitive monomial permutation group). We say a monomial permu-
tation group G ≤M is transitive if the induced permutation group G∗ is transitive.

Theorem 4.2. Let G be a group with subgroup K of finite index n and G = K +Kx2 +
...+Kxn. If K → H is a homomorphism of K on to H, then there is a transitive monomial
representation of G with multiplier H: ∀g ∈ G, let xig = kijxj where i = 1, ..., n, j = j(i)
and kij ∈ K. Let the homomorphism from K to H be kij 7→ hij. Then π(g) : si 7→ hijsj
is a transitive monomial representation with multiplier H.

Proof. Given subgroup H ≤ G and G = K+Kx2 + ...+Kxn. Let g1, g2 ∈ G and suppose
xig1 = kijxj and xjg2 = kksxs, then xi(g1g2) = kijkjsxs. Applying the homomorphism
kij 7→ hij, π(g1g2) = π(g1)π(g2). Thus π is a representation of G. By applying π(g)
to al g ∈ G, we generate a permutation group that permutes the cosets of H that is
transitive.

4.3 Transfer map
Suppose we have a monomial representation of a group G with multiplier H defined as
π(g) : ui 7→ hijuj, i = 1, ..., n, j = j(i). From π, we induce the following mapping:

g 7→
n∏
i=1

hij mod H ′

Then this is a homomorphism from G to H/H ′. To see it is a homomorphism, let g1, g2 ∈
G, then g1 7→

∏n
i=1 hi1j1 mod H ′, g2 7→

∏n
i=1 hi2j2 mod H ′, g1g2 7→

∏n
i=1 hi1j1hi2j2 mod H ′.

We define this map more formally as below.

Definition 4.5. If we let K ≤ G, and let φ(kxj) = xj where k ∈ K,

VG→K(g) =
n∏
i=1

xigφ(xig)−1 mod K ′

VG→K is a map from G to K/K ′ called the transfer map from G to K.

Thus, for a given g ∈ G, its image is:

VG→K(g) =
n∏
i=1

xigφ(xig)−1 mod K ′

=
n∏
i=1

(kijxj)φ(kijxj)−1 mod K ′

=
n∏
i=1

kijxj(xj)−1 mod K ′

=
n∏
i=1

kij mod K ′
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Theorem 4.3. (i) The mapping g 7→ VG→K(g) is a homomorphism from G to K/K ′.

(ii) The transfer map VG→K(g) is independent of choices of representatives xi.

(iii) If T ≤ K ≤ G, then VG→T (g) = VK→T (VG→K(g)).

Proof. To see (i), we let g1, g2 ∈ G, suppose xig1 = kijxj and xjg2 = kjsxs for i = 1, .., n
and j = j(i). Then,

VG→K(g1) =
n∏
i=1

kij mod K ′

VG→K(g2) =
n∏
j=1

kjs mod K ′

VG→K(g1g2) =
n∏
i=1

kijkjs mod K ′

Thus VG→K(g1g2) = VG→K(g1)VG→K(g2) and VG→K is a homomorphism.
To see (ii), suppose instead of {xi}, we use a different set of transversals {x′i} to

represent the cosets. On each coset, since xi and xi′ both represent the same coset,
Kxi = Kx′i, then kixi = ki′xi′ for some ki and ki′ and xi′ = k−1

i′ kixi.If g act on xi as
xig = kijxj, then xi′g = k−1

i′ kixig = k−1
i′ kikijxj = k−1

i′ kikijk
−1
j′ kjxj Taking the transfer

map with transversals {xi′} it becomes:

VG→K(g) =
n∏
i=1

(k−1
i′ kikijk

−1
j′ kj) mod K ′

=
n∏
i=1

k−1
i′ ki

n∏
i=1

kij
n∏
i=1

k−1
j′ kj mod K ′

=
n∏
i=1

kij mod K ′

To see (iii), suppose G = K + Kx2 + ... + Kxn, K = T + Ty2 + ... + Tym. Then,
expressing G in terms of T :

G =T + Ty2 + ...+ Tym

+ ...

+ Txi + Ty2xi + ...+ Tymxi

+ ...

+ Txn + Ty2xn + ...+ Tymxn

Thus {xpyq} with p = 1, ..., n and 1 = 1, ...,m is a new transversal related to subgroup T .
For g ∈ G, if xig = kijxj and yrkij = tijrsys, then yrxig = tijrsysxj.

VG→T (g) =
∏
i,r

tijrs mod T ′
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Note also on the set of transversals {xi} where i = 1, .., n related to subgroup K,

VG→K(g) =
∏
i

kij mod K ′

And on the set of transversals {yi} where i = 1, ..,m related to subgroup K,

VK→T (kij) =
∏
r

tijrs mod T ′

Then,

VG→T (g) =
∏
i,r

tijrs mod T ′

=
∏
i

∏
r

tijrs mod T ′

=
∏
i

(VK→T (kij)) mod T ′

= VK→T
∏
i

kij mod T ′

= Vk→T (VG→K)
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Appendix A

Homology Group Derived From Free
Resolution

In this chapter we aim to follow the construction in Brown [2] on deriving the group
homology. We will first review some terminologies and construct homology of a group, at
the end we show that Ab(G) ∼= H1(G) as we shown in Chapter 2 but in a group theoretic
approach. Reader who are interested in further topics of cohomology may find related
materials in first three chapter of Brown.

A.1 Review on Modules and Group Rings
Definition A.1 (Left Module). Given a ring R, a left R-module is an additive abelian
group M where the R action on M is given as following:
For m,m1,m2 ∈M and r, r1, r2 ∈ R,

(i) r(m1 +m2) = rm1 + rm2.

(ii) (r1 + r2)m = r1m+ r2m.

(iii) (r1r2)m = r1(r2m).

(iv) 1m = m when R has an multiplicative identity. This condition is not required for
M to be a R-module.

In a similar way we can define a right R-module. If R is commutative then any left
R-module M will satisfy the properties for right R-module as well and thus is also a right
R-module, we say it is a R-module. A R-module M can be also viewed as a “vector space”
with the “vectors” from M , and “scalars” from R.

Example A.1. Below are some examples that naturally comes with a module structure:

• A vector space: regard the field of vector space as the ring R and the vectors as
elements in the additive abelian group M .
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• A ring R: let M = (R,+) be the additive abelian group over the ring R, then M is
an R module.

• An abelian group G: let R = Z and rm := m+ ...+m represent the r copies of m
for any r ∈ Z and m ∈ G.

Definition A.2 (Free Module). Let R be a ring with identity element, and for n ∈ N,
let:

Rn = {(x1, x2, ..., xn) : xi ∈ R}
Rn is a R-module. It is closed under entrywise addition. To turn it into a R-module,
define the R action:

r(x1, x2, ..., xn) = (rx1, rx2, ..., rxn)
Rn is called a free R-module, in general any R-module isomorphic to the above Rn is a
free R-module.

Definition A.3 (Submodule). IfM is an R-module, a subsetN ofM is called a submodule
if:

• N is a subgroup closed under addition: for all n1, n2 ∈ N , n1 + n2 ∈ N .

• N is closed under ring action: for all r ∈ R and n ∈ N , rn ∈ N .

Definition A.4 (Quotient Module). Let M be an R-module and N be a submodule of
M , then the quotient module M/N is the set of all cosets:

M/N = {m+N : m ∈M}

and R act on M/N as: r(m+N) = rm+N for r ∈ R.

Definition A.5 (Module Homomorphism). If M1,M2 are R-modules, a map φ from M1
to M2 is an R-module homomorphism if it satisfy the following: for all m,m1,m2 ∈ M ,
and r ∈ R,

• φ(m1 +m2) = φ(m1) + φ(m2)

• φ(rm) = r(φ(m))

We now explore more on a special kind of module: group ring. It has both ring and
free module structure. Later we will use it to define free resolution and from there we
develop group homology.

Example A.2 (Group Ring). Given a group G, a ring R, a group ring RG has elements
of the form: x = ∑

g∈G αgg with g ∈ G and αg ∈ R as coefficient. A Group ring RG is
a ring and also a RG module. Thus, Let M = RG be the additive abelian group, then
(RG,+) admits RG action as:

(
∑

αgg) · (
∑

αhh)

where we consider ∑ αgg as the ring element and ∑ αhh as the module element.

52



Definition A.6 (Augmentation Map). Let ZG be the group ring, the augmentation map
is defined as: for ∑ αgg ∈ ZG,

ε(
∑

αgg) =
∑

αg

The kernel of augmentation map ε is called the augmentation ideal.

Example A.3. Take ZG as a ring and cyclic group G of order n. We obtain a module
over Z. Define the module homomorphism T : ZG −→ ZG by T (g) = g − 1 for basis
element g ∈ ZG. Here the group ring ZG is both a ZG-module and a Z-module, we
express it in Z-basis with basis elements from G. For any basis element gi ∈ G, T act as
following:

T (gi) = gi − gi−1

then, for ∑ αgg ∈ ZG,
T (
∑

αgg) =
∑

αgT (g)

Example A.4. Similar to above example, we can define a module homomorphism N :
ZG→ ZG by N(1) = 1 + g + g2 + ...+ gn−1 acting on the Z baiss as:

N(gi) = gi + gi+1 + ...+ gn−1+i

then, for ∑ αgg ∈ ZG,
N(
∑

αgg) =
∑

αgg + g2...+ gn−1

Example A.5 (Fn module). Recall the free module defined earlier, given a group G,
we can construct Z modules Fn by elements of the form (g0, g1, ...gn) with each gi ∈ G.
This is a Z module if we allow addition to be pointwise and Z act as (g0, g1, ...., gn)m =
(g0m, g1m, ...., gnm) for m ∈ Z.

Example A.6. Let M be the Fn module defined above, we can take the quotient of
M by dividing the submodule generated by all elements of the form m − mg. Denote
N = 〈m−mg〉 to be the submodule. Each element in M/N is of the form (g0, ..., gn) +N
for some (g0, ..., gn) ∈M . It can be verified that M/N is a quotient module where G acts
trivially.
We first show M/N is a quotient module, then show G action on M/N is trivial.
Let m = (g0, ..., gn) ∈M = Fn, by definition,

M/N = {m+N : m ∈M}
= {(g0, ..., gn) +N : (g0, ..., gn) ∈M}

M/N is closed under group addition since:

((g0, ..., gn) +N) + ((h0, ..., hn) +N) = (g0, ..., gn) + (h0, ..., hn) +N

= (g0 + h0, ..., gn + hn) +N
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= (k0, ...kn) +N

For some element (k0, ..., kn) in the module Fn.
Let r = ∑

αgg ∈ ZG denote the ring element, M/N is closed under ring action since

r((g0, ..., gn) +N) =
∑

αgg((g0, ..., gn) +N)

=
∑

αg((g0g, ..., gng) +N)

=
∑

αg(g0g, ..., gng) +N

= m′ +N

Where M ′ = ∑
αg(g0g, ..., gng) is an element in module M = Fn.

We have shown M/N is a submodule and we now want to show M/N under G action is
invariant.

Since m−mg ∈ N , N = m−mg +N , then

(g0, ..., gn) +N = (g0, ..., gn) + (m−mg) +N

= (g0, ..., gn) + (g0, ..., gn)g−1 − (g0, ..., gn) +N

= (g0, ..., gn)g−1 +N

Now if g acts on element (g0, ..., gn) +N ,

((g0, ..., gn) +N)g = ((g0, ..., gn)g−1 +N)g
= (g0, ..., gn) +N

A.2 Homology Group of Cyclic Group Cn

Given a group G, we can derive the homology of G by first build a free resolution of G over
the group ring ZG, and quotient each module in the resolution to make it G-invariant,
this derived chain is called the co-invariant chain. The homology of group G will be
defined on the co-invariant chain.

Definition A.7 (Chain Complex). We have introduced the simplicial chain complex in
Chapter 2, we now generalize the idea from linear combinations of simplexes to modules.
In the module case, a chain complex is a sequence of R-modules

...
dn+1−−−→ Cn

dn−→ ...
d2−→ C1

d1−→ C0
d0−→ 0

where each Ci is a R-module and di is a boundary operator(analogous to the simplicial
homology). The composition of two adjacent boundary operator satisfy: for all n ≥ 0,
∂n ◦ ∂n+1 = 0 for all n.
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Definition A.8 (Free Resolution). A free resolution of of a ZG-module M is an exact
chain complex

...
dn+1−−−→ Cn

dn−→ ......
d2−→ C1

d1−→ C0
d0−→ 0

where each Ci is a free ZG module.

Example A.7 (Homology of Cyclic Group). Here we show an example of how to compute
the homology of a cyclic group G. First we can construct a free resolution of G over group
rings ZG.

...
T−→ ZG N−→ ZG T−→ ZG ε−→ Z 0−→ 0

Where the maps are defined as follow:

• 0: Z→ 0, let z ∈ Z, 0(z) = 0.

• ε: ZG→ Z, ε(∑αgg) = ∑
αg.

• T : ZG→ ZG, let 1 ∈ ZG, T (1) = g − 1.

• N : ZG→ ZG, N = 1 + g + g2 + ...+ gn−1.

We show this chain is exact:
The first composition 0 ◦ ε = 0 is trivial.

ε ◦ T (
∑

αgg) = ε[(a0g + ...+ an−1g
n)− (a0 + ...+ an−1g

n−1)]
= (a0 + ...+ an−1)− (a0 + ...+ an−1)
= 0

T ◦N(
∑

αgg) = T [(a0 + ...+ an−1g
n−1) + ...+ (a0g

n−1 + ...+ an−1g
−2)]

= [(a0g + ...+ an−1) + ...+ (a0 + ...+ an−1g
−1)]

− [(a0 + ...+ an−1g
n−1) + ...+ (a0g

n−1 + ...+ an−1g
−2)]

= 0

By repeating the maps N and t − 1 we get a periodic resolution. Now quotient the
modules and derive the co-invariant modules. From earlier discussion,the co-invariant
modules are quotients by 〈m − mg〉, the induced co-invariant chain needs to make the
diagram commute. In this example with cyclic G, the induced complex chain has maps
n and 0 alternates where n : Z→ Z is a given as: for z ∈ Z, n(z) = nz.

... ZG ZG ZG Z 0

... Z Z Z Z 0

T N

T

T

T

T

T

0

ε

n 0 n 0 0
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Now we can compute the homology group of the induced chain,

H0(G) = ker(0)
Im(n) = Z

{0}
∼= Z

H1(G) = ker(0)
Im(n) = Z

nZ
∼= Zn

H2(G) = ker(n)
Im(0) = {0}

{0}
∼= 0

......

Where {0} denotes the set of zero and 0 denotes trivial group.
As the n and 0 alternates, we obtain the pattern of the n-th homology group:

• If i = 0, H0 ∼= Z.

• If i is odd, Hi
∼= Zn

• If i is even, Hi
∼= 0.

Up to here we have developed homology group of cyclic group G from free resolution.
To define homology group for arbitraryG, a more standard method used is to construct the
standard resolution of Fn’s connected by the usual boundary maps. With bar notation,
one can verify that a map from H1(G) to H1(H) for H ≤ G can be regarded as the
transfer map from Ab(G) to Ab(H). Readers with further interest may work through this
in exercise 2 of §3.9 in Brown [2].
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